
IEE
E P

ro
of

Hybrid Tree-Rule Firewall
for High Speed Data Transmission

Thawatchai Chomsiri, Xiangjian He, Senior Member, IEEE, Priyadarsi Nanda, and Zhiyuan Tan

Abstract—Traditional firewalls employ listed rules in both configuration and process phases to regulate network traffic. However,

configuring a firewall with listed rules may create rule conflicts, and slows down the firewall. To overcome this problem, we have

proposed a Tree-rule firewall in our previous study. Although the Tree-rule firewall guarantees no conflicts within its rule set and

operates faster than traditional firewalls, keeping track of the state of network connections using hashing functions incurs extra

computational overhead. In order to reduce this overhead, we propose a hybrid Tree-rule firewall in this paper. This hybrid scheme

takes advantages of both Tree-rule firewalls and traditional listed-rule firewalls. The GUIs of our Tree-rule firewalls are utilized to

provide a means for users to create conflict-free firewall rules, which are organized in a tree structure and called ‘tree rules’. These tree

rules are later converted into listed rules that share the merit of being conflict-free. Finally, in decision making, the listed rules are used

to verify against packet header information. The rules which have matched with most packets are moved up to the top positions by the

core firewall. The mechanism applied in this hybrid scheme can significantly improve the functional speed of a firewall.

Index Terms—Firewall, high speed firewall, network security, computer network, cloud network

Ç

1 INTRODUCTION

FIREWALLS were first invented in 1990s [1], and have been
developed to operate more securely and faster. Since the

first generation firewalls, the commercially used firewalls
still perform network traffic regulation based on listed rules.
The listed rules are a set of rule sequences which consist of
conditions and actions. If information carried in the header
fields (e.g., Source IP, Destination IP and Destination Port)
of an incoming packet is matched with the condition of a
rule, the packet will be accepted or denied in accordance
with the action specified in the rule. However, in the listed-
rule set of a traditional firewall, there may be ‘shadowed
rules’ [2] and/or redundant rules. On one hand, shadowed
rules may cause security problems because protection rules
could be shadowed by other rules listed ahead. On the other
hand, redundant rules cause latency in traffic processing
and lower the throughput of a network due to the undesir-
able waste of time on verifying against these rules. The
detailed discussion of these problems can be found in our
previous work published in [3].

To address the afore-mentioned problems, we recently
proposed a new type of firewall called ‘Tree-rule firewall’ in
[4]. It has been proved that the Tree-rule firewall guarantees
no conflicts (e.g., no shadowed rules and no redundant
rules) in rule sets, and is more efficient in traffic processing

in comparison with traditional listed-rule firewalls [4]. In
our recent follow-up study [5], a new stateful mechanism
was proposed to further improve the Tree-rule firewall with
the capability of tracking the states of network connections.
In comparison with IPTABLES, the most popular open
source firewall, the stateful Tree-rule firewall is more
advanced in terms of processing speed.

However, complex hashing computations are involved in
the stateful mechanisms used in the Tree-rule firewall and the
IPTABLES. A hashing function has to be invoked at least once
in either the stateful Tree-rule firewall or the IPTABLES in
stateful mode to verify each single packet travelling through
the firewall. It takes approximately 1,400 nanoseconds to com-
pute the Jenkins hash (jhash) [6] used in these two firewalls
running on a standard PC with a Pentium 2.4 GHz CPU.
Whereas, comparing twovariables takes only 1.4 nanoseconds
with the same setup. On contrary, if an incoming packet
matches with the first rule in a stateless firewall (e.g., IPT-
ABLES in stateless mode), then the firewall needs to conduct
comparisons between four packet header fields (i.e., Source IP
address, Destination IP address, Source Port and Destination
Port) and the respective conditions specified in the rule. This
rule matching is approximately 1,400/(1.4 * 4) ¼ 250 times
faster than that of a stateful firewall.

Although the traditional stateless firewalls (e.g., IPTABLES
in statelessmode) can operate fast, the rule conflict problem is
still the main obstacle for improving firewall speed using the
rule sequence tuning. In a firewall rule list, there may be
many frequently matched rules which are positioned at the
bottom of the list. These rules, especially the last rule which
was created to deny all packets, cannot be moved up to the
top positions because rule conflicts may cause the change of
firewall policy if they are moved up. However, if frequently
matched rules in a firewall can be moved up to top positions,
the firewall, especially a firewall working in a large network
with a huge number of rules, will operate faster.

� T. Chomsiri, X. He, and P. Nanda are with the University of Technology
Sydney, POBox 123, Broadway 2007, Sydney, Australia.
E-mail: ThawatchaiChomsiri@student.uts.edu.au,
{Xiangjian.He, Priyadarsi.Nanda}@uts.edu.au.

� Z. Tan is with the University of Twente, PO Box 217 7500AE, Enschede
7522 NB, the Netherlands. E-mail: z.tan@utwente.nl.

Manuscript received 17 Jan. 2015; revised 22 Feb. 2016; accepted 3 Apr. 2016.
Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by M. Shamim Hossain, C. Xu, M. Murshed,
J.H. Abawajy, and A. El Saddik.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2016.2554548

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016 1

2168-7161� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://www.researchgate.net/publication/234798978_Firewalls_and_Internet_Security_Repelling_the_Wily_Hacker?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/233730838_Limitation_of_Listed-Rule_Firewall_and_the_Design_of_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266319157_A_Stateful_Mechanism_for_the_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==

IEE
E P

ro
of

Motivated by the above, the contributions of this paper
are shown as follows:

� We propose a hybrid firewall which takes advan-
tages of both the Tree-rule and stateless mechanism
in design. This scheme ensures no rule conflicts and
high traffic processing speed in nature. More fre-
quently matched rule will be moved to higher posi-
tions in the rule list automatically.

� We derive a mathematical model measuring the time
consumption in the hybrid firewall and a mathemati-
cal model for measuring the efficiency of data trans-
mission. The experimental results show a great
improvement in terms of efficiency on the proposed
firewall.

� The proposed firewall is implemented under a cloud
environment. The experimental results show that the
proposed hybrid firewall using ‘automatic rule
sorting’ outperform the ones with ‘non-automatic rule
sorting’modes.

The rest of this paper is organized as follows. The back-
ground and the related work are introduced in Section 2.
Our proposed hybrid firewall scheme is then detailed in
Section 3. The implementation of our proposed scheme is
presented and the experimentation is demonstrated in
Section 4. Finally, conclusion is drawn along with the
discussion of our future research in Section 5.

2 BACKGROUND AND RELATED WORK

Previous research approaches aiming to enhance func-
tional speed of firewalls can be categorized into three
types. The first type focuses on discovery and elimination
of rule conflicts, especially redundant rules, to reduce the
rule size of a firewall. This can reduce memory space con-
sumption and processing time on a firewall. The second
type emphasizes on developing firewalls with high per-
formance hardware, such as implementing a firewall on
Field Programmable Gate Array (FPGA). Whereas,
research of the third type focuses on filtering mechanisms
of firewalls, for instance, converting firewall rules into a
tree structure which can process packets faster than a tra-
ditional sequential rule list.

In this section, we first conduct a review on the recent
advances in the afore-discussed research focuses. Then, we
present the achievements from our previous studies on

Tree-rule firewall. These achievements are the underlying
infrastructure of the new hybrid firewall proposed in this
paper.

2.1 Enhancing Processing Speed via Rule
Conflict Elimination

Rule conflicts have come into focus of many researches on
traditional firewalls. These firewalls use their listed rules to
filter packets. The listed rules shown in Table 1, for example,
illustrate how to regulate traffic traversing over the network
presented in Fig. 1 in compliance with the network topology

In the context of firewall, rule conflicts can be classified
into two categories, the ones causing speed issues and the
ones causing security problems, respectively. As discussed
in [2], [4] and [7], these rule conflicts result from shadowed
rules and redundant rules, and they present critical impact
on the performance of traditional firewalls.

Specifically, shadowed rules result in security problems
on a traditional firewall. Rules blocking attack packets can
be shadowed by some other rules with higher priorities
(i.e., positioned ahead of them) and may not be used by the
firewall at all. This, consequently, causes security problems
and weakens the firewall [4]. Redundant rules decrease the
processing speed of a firewall [2], [4]. This is because they
are redundant to other rules and waste the firewall’s time to
process them. Therefore, shadowed rules and redundant
rules should be cleaned from a firewall rule set to improve
the functional speed of a firewall.

To detect these rule conflicts, Al-Shaer and Hamed
applied the set theory in their work published in [2]. Their
approach is to map the original listed rules to a ‘policy tree’.

Fig. 1. An example network.

TABLE 1
A Set of Listed Rules Created for an Example Network in Fig. 1

No. Source_IP Dest_IP Dest_Port Action

1 100.3.3.� 200.1.1.5 3,306 Accept
2 100.3.3.� 200.1.1.2 80 Accept
3 100.3.3.� 200.1.1.2 443 Accept
4 100.3.3.� 200.1.1.3 25 Accept
5 100.3.3.� 200.1.1.4 53 Accept
6 100.3.3.� � � Deny
7 200.1.1.� 100.3.3.� � Deny
8 200.1.1.� 200.1.2.� � Deny
9 200.1.1.� � � Accept
10 200.1.2.2�100 100.3.3.� 3,306 Accept
11 200.1.2.254 100.3.3.� 22 Accept
12 200.1.2.� 100.3.3.� � Deny
13 200.1.2.� 200.1.1.2 22 Accept
14 200.1.2.� 200.1.1.2 80 Accept
15 200.1.2.� 200.1.1.2 443 Accept
16 200.1.2.254 200.1.1.3 22 Accept
17 200.1.2.� 200.1.1.3 25 Accept
18 200.1.2.� 200.1.1.3 143 Accept
19 200.1.2.254 200.1.1.4 22 Accept
20 200.1.2.� 200.1.1.4 53 Accept
21 200.1.2.� 200.1.1.5 22 Accept
22 200.1.2.� 200.1.1.5 3,306 Accept
23 200.1.2.� 200.1.1.� � Deny
24 200.1.2.� � � Accept
25 � 200.1.1.2 80 Accept
26 � 200.1.1.2 443 Accept
27 � 200.1.1.3 25 Accept
28 � 200.1.1.4 53 Accept
29 � � � Deny

2 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==

IEE
E P

ro
of

The conflicting rules and the types of the conflicts are
reported after detection is completed. The authors further
extended their methods to discover anomalies inside dis-
tributed networks [8].

The methods proposed in [7] also aim to discover rule con-
flicts. However, the proposed method in [7] is based on rela-
tional algebra techniques. It can discover more rule conflicts
in comparison with the method suggested in [2]. The findings
highlighted in [2], [7] and [8] suggest potential solutions to
remove these problematic rules from a firewall rule set.

In addition, tools such as Binary Decision Diagrams
(BDDs) [9], Constraint Logic Programming (CLP) [10] and
Fireman Toolkit [11] were proposed to help analyze and
remove rule conflicts from the rule set of a listed-rule firewall.

Although these studies [2], [7], [8], [9], [10], [11] have
introduced several schemes to deal with rule conflicts, their
solutions are not satisfactory to this problem yet because
listed rules are still in favor of all these proposed schemes.

2.2 Enhancing Processing Speed via Hardware
Implementation

Fong et al. [12] implemented their firewall on FPGA devices
to achieve a Terabit per second throughput for large and
complex rule sets. They presented a scalable parallel archi-
tecture, named ParaSplit, for high-performance packet clas-
sification. Moreover, a rule set partitioning algorithm based
on range-point conversion was proposed to reduce the over-
all memory requirement [12].

Likewise, Erdem and Carus [13] proposed a multi-pipe-
lined and memory-efficient firewall to classify packets.
They designed high throughput SRAM-based parallel and
pipelined architectures on FPGAs. Hager et al. [14] pro-
posed the Massively Parallel Firewall Circuits (MPFC) to
generate customized firewall circuits in the form of synthe-
sizable VHDL code for FPGA configuration. They claimed
that MPFC circuits were highly parallel and could achieve a
deterministic throughput of one packet per clock cycle.

However, the high speed performance achieved by the
above-mentioned firewalls [12], [13], [14] was relied on spe-
cial hardware (i.e., the FPGA) rather than on the design of a
rule set architecture or development of a filtering algorithm.

2.3 Enhancing Processing Speed via Advanced
Filtering Mechanisms

Ni et al. [15] applied statistical analysis on two Transport
layer protocol header fields of packets (i.e., Protocol and IP
Address) based on the extracted features and the characteris-
tics of multi-tree and dual-index strategy to decrease the fire-
wall preprocessing time. This research used the ‘data storage
structure and search diagram’ to filter packets. This structure
is considered as a tree structure. However, the tree consists of
only the fields of Protocol and IP address. It has no Port and
Action fields in their tree. Moreover, firewall administrators
still create firewall rules in a form of listed rule. Their
approach compares the performance of their algorithm with
Stochastic Distribution Multibit-trie (SDMTrie) algorithm
[16] only. They claimed that their schemewas better than tra-
ditional firewalls and firewalls working with the SDMTrie
algorithm. However, performance comparison with stan-
dard firewalls (e.g., IPTABLES, Cisco ACL) and any well
known firewall algorithm is not presented.

Trabelsi et al. [17] proposed an analytical dynamic multi-
level early packet filtering mechanism to enhance firewall
performance. The proposed mechanism uses statistical
splay tree filters that utilize traffic characteristics to mini-
mize packet filtering time. The statistical splay tree filters
are reordered according to the network traffic divergence
upon certain threshold qualification (Chi–Square Test).
They claimed that this method was faster than traditional
methods because unwanted packets were rejected as early
as possible, and the proposed mechanism could also be con-
sidered as a device protection mechanism against Denial-of-
Service (DoS) attacks.

Hung et al. used B-Tree [18] to improve the speed of clas-
sifying and processing packets on firewall. They proposed a
new two-dimensional early packet rejection technique
based on the B-Tree. They defined a core firewall process as
the ‘Original Filter’, and created their new scheme called
‘Early rejected filter’. Their work focused on preventing
unwanted packets and applied the ‘Original Filter’ to mini-
mize packets traversing to the core firewall process. Their
scheme can reduce firewall processing time under DoS
attacks. However, under normal network operations (with-
out DoS attack), their ‘Early rejected filter’ scheme may
slightly increase firewall processing time.

Liu and Gouda [19] proposed ‘Diverse Firewall Design’
using tree-structured rules, which are converted from a rule
list, to discover and eradicate rule conflicts. However, their
work was still based on listed rules of traditional firewalls.

Zhao et al. [21] proposed to use ‘goto’ function inside
listed-rule firewalls (e.g., a ‘jump’ command in IPTABLES).
Although their rule structure looks like a tree structure,
their sub-rules (or nodes) contain listed rules. Therefore,
their firewalls are still deemed as Listed-rule firewalls and
are time consuming when performing linear and sequential
rule searching.

Likewise, although the methods proposed in [2], [8] can
convert firewall rules to a ‘policy tree’, the ‘policy tree’ can-
not be considered as a tree-based filtering firewall men-
tioned in this paper. This is because the ‘policy tree’ is used
only for rule conflicts discovery but not for filtering packets.

Apart from the afore-discussed three types of appro-
aches, recent research has been investigating to develop a
new generation firewall based on Software Defined Net-
working (SDN). For example, the firewalls proposed in [22],
[23], [24] and [25] employ SDN and support centralized
management like SDN switches and SDN router do. How-
ever, this SDN-based approach focuses on connectivity and
compatibility with other SDN devices instead of firewall
rule optimization.

2.4 Background of Tree-Rule Firewall

Chomsiri et al. have further studied firewall rules’ problems,
and published their interesting findings in [3] and [4]. They
proposed a Tree-rule firewall to overcome these problems.
The Tree-rule firewall not only organizes firewall rules in a
tree structure as shown in Fig. 2 but also filters out unwanted
packets in accordance with tree-structured rules. To inspect
a packet, the Tree-rule firewall first reads the relevant header
fields from the packet. Then, the value of the first header field
is compared with a firewall sub-rule stored in the root node
of the tree. Afterwards, the firewall checks the other header

CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 3

https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/233730838_Limitation_of_Listed-Rule_Firewall_and_the_Design_of_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/3236183_Conflict_classification_and_analysis_of_distributed_firewall_policies?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/3236183_Conflict_classification_and_analysis_of_distributed_firewall_policies?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/3236183_Conflict_classification_and_analysis_of_distributed_firewall_policies?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/3236183_Conflict_classification_and_analysis_of_distributed_firewall_policies?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/2376741_An_Expert_System_for_Analyzing_Firewall_Rules?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/2376741_An_Expert_System_for_Analyzing_Firewall_Rules?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/232616403_FIREMAN_A_toolkit_for_firewall_modeling_and_analysis?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/232616403_FIREMAN_A_toolkit_for_firewall_modeling_and_analysis?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/278333509_Multi-Pipelined_and_Memory-Efficient_Packet_Classification_Engines_on_FPGAs?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/278333509_Multi-Pipelined_and_Memory-Efficient_Packet_Classification_Engines_on_FPGAs?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/286669966_MPFC_Massively_Parallel_Firewall_Circuits?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/286669966_MPFC_Massively_Parallel_Firewall_Circuits?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/270722867_A_New_Multi-tree_and_Dual_Index_based_Firewall_Optimization_Algorithm?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/278414096_Statistical_Dynamic_Splay_Tree_Filters_towards_Multilevel_Firewall_Packet_Filtering_Enhancement?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266556632_B-tree_based_two-dimensional_early_packet_rejection_technique_against_DoS_traffic_targeting_firewall_default_security_rule?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/4080139_Diverse_firewall_design?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/221425643_Linear-tree_rule_structure_for_firewall_optimization?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/300297527_Formal_modeling_and_verification_for_SDN_firewall_application_using_pACSR?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/269310977_Building_firewall_over_the_software-defined_network_controller?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/260487306_Towards_a_Reliable_SDN_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==

IEE
E P

ro
of

fields sequentially against their respective tree nodes at the
corre-sponding levels. Finally, a consequent action, such as
an approval or a denial of access to the network, is taken on
the packet. As shown in Fig. 2, packet header fields including
Destination IP address (Dest IP), Destination Port (Dest
Port), and Source IP address (Source IP) are taken into
account in the example Tree rule. This tree structure eases
the design of firewall rules andmakes sure that they are con-
flict free, namely non-shadowed and non-redundant rules.

To further improve the processing speed of the Tree-rule
firewall [4], we have proposed a stateful mechanism in [5].
However, this mechanism requires hashing calculation [6]
at least once per packet. Therefore, the speed of the firewall
can be significantly improved if this complex hashing is
eliminated. To achieve better speed performance, we pro-
pose a new hybrid firewall in this paper. The details of the
proposed firewall are presented in Section 3.

3 OUR APPROACH

In this section, we propose a hybrid firewall which is a com-
bination of a Tree-rule firewall and a traditional firewall. A
Tree-rule firewall’s GUI presented in our previous work [4]
is used in the configuration phase to create tree rules, which
are then converted to traditional conflict-free listed rules.
During decision making, an incoming packet is verified
against the listed rules sequentially until a match is found.
Unlike the traditional firewalls, our hybrid firewall periodi-
cally re-arranges a sequence of rules. Each rule is indepen-
dently moved to its suitable position in accordance with the
number of matches with the incoming packets. For example,
the rule matching with most packets is moved up to the top
of the list in order to optimize the processing speed of the
hybrid firewall.

3.1 Methodology

As shown in Fig. 3, there are four steps involved in the pro-
cess of our hybrid approach. In the first step shown in
Fig. 3-(1), a tree rule is created using the GUI by a firewall
rule designer. The created tree rule is then converted into
listed rules as shown in Fig. 3-(2). The listed rule is then
used in a core firewall for verifying against the header fields
of an incoming packet. ‘Counter’ field shown in Fig. 3-(3)
records the number of packets matched with each rule and
is initially set to 0 for each rule. The ‘Counter’ of a rule will
increase by one when a match between an incoming packet
and the rule is confirmed. The counter determines which
rule is most frequently matched. To reduce the computa-
tional time, the most frequently matched rule is relocated in
the top of the list as shown in Fig. 3-(4). The counters of all
the rules will be reset to 0 when a pre-determined ‘Time

Fig. 2. A Tree rule structure created for an example network in Fig. 1.

Fig. 3. Four steps of proposed scheme.

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266319157_A_Stateful_Mechanism_for_the_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==

IEE
E P

ro
of

interval’ (e.g., 3 seconds) is reached. The ‘Time interval’ is
specified by a firewall administrator.

When putting into practice, a range of IP addresses and a
range of ports are applied in each line within nodes. The
root node shown on the left-hand side of Fig. 2 consists of
six lines. The range of numbers in each line does not overlap
with the ranges of numbers in other lines within a same
node. For example, the range [100.3.3.1-100.3.3.254] does
not overlap with the range [200.1.1.2-200.1.1.2]. Likewise,
the ranges of numbers in lines within a node (e.g., the first
node of ‘Dest Port’ column) do not overlap with each other
as well. These non-overlapping ranges allow us to trans-
form a tree rule into a set of conflict-free listed rules.

Transforming a tree rule into a listed rule can be done for
one rule path at a time. For example, the first rule path

ð½100:3:3:1-100:3:3:254� ��> ½22-22� ��> ½200:1:2:254
200:1:2:254� ��> AcceptÞ

can be transformed into the listed rule shown in Table 2.
The second rule path

ð½100:3:3:1-100:3:3:254� ��> ½22-22� ��> ½Else� ��> DenyÞ

can be transformed into the listed rule shown in Table 3.
Bearing the same idea in mind, the tree rules shown in

Fig. 2 can be transformed to the listed rules shown in
Table 4.

After designing and transforming tree rules into listed
rules using the GUI, the listed rules shown in Table 4 are
loaded into the memory of the core firewall for verifying
against incoming packets. The counter of each rule will be
increased individually when a packet is matched with a
rule. All rules are sorted in descending order according to
the value of a counter.

3.2 Discussion on Efficiency

Although various methods [2], [7], [8], [10], [11], [19] have
been designed to minimize rule conflicts through re-
arrangement of those frequent matched rules to the top
positions in a rule list, they do not guarantee that a conflict-
free rule list can be reached.

Let us take the rule list illustrated in Table 1 as an exam-
ple. When the network is under attack of worms, the last
rule will be the most frequently matched rule within the list
and is applied to drop those attack packets. Therefore, the
last rule, namely Rule-29, will be re-positioned to the top of

TABLE 2
Example of a Listed Rule Transformed from a Rule Path

RuleNo. Dest-IP Dest-Port Source-IP ACTION

1 100.3.3.1-100.3.3.254 22-22 200.1.2.254-200.1.2.254 Accept

TABLE 3
Example of Two listed Rules Transformed from a Rule Path

RuleNo. Dest-IP Dest-Port Source-IP ACTION

2 100.3.3.1-100.3.3.254 22-22 0.0.0.0-200.1.2.253 Deny
3 100.3.3.1-100.3.3.254 22-22 200.1.2.255-255.255.255.255 Deny

TABLE 4
The Listed Rules Transformed from the Tree Rules in Fig. 2

RuleNo. Dest-IP Dest-Port Source-IP ACTION

1 100.3.3.1-100.3.3.254 22-22 200.1.2.254-200.1.2.254 Accept

2 100.3.3.1-100.3.3.254 22-22 0.0.0.0-200.1.2.253 Deny

3 100.3.3.1-100.3.3.254 22-22 200.1.2.255-255.255.255.255 Deny

4 100.3.3.1-100.3.3.254 3306-3306 200.1.2.2-200.1.2.100 Accept

5 100.3.3.1-100.3.3.254 3306-3306 0.0.0.0-200.1.2.1 Deny

6 100.3.3.1-100.3.3.254 3306-3306 200.1.2.101-255.255.255.255 Deny

7 100.3.3.1-100.3.3.254 0-21 0.0.0.0-255.255.255.255 Deny

8 100.3.3.1-100.3.3.254 23-3305 0.0.0.0-255.255.255.255 Deny

9 100.3.3.1-100.3.3.254 3307-65535 0.0.0.0-255.255.255.255 Deny

10 200.1.1.2-200.1.1.2 2-22 200.1.2.2-200.1.2.254 Accept

11 200.1.1.2-200.1.1.2 22-22 0.0.0.0-200.1.2.1 Deny

12 200.1.1.2-200.1.1.2 22-22 200.1.2.255-255.255.255.255 Deny

13 200.1.1.2-200.1.1.2 80-80 0.0.0.0-255.255.255.255 Accept

14 200.1.1.2-200.1.1.2 443-443 0.0.0.0-255.255.255.255 Accept

15 200.1.1.2-200.1.1.2 0-21 0.0.0.0-255.255.255.255 Deny

16 200.1.1.2-200.1.1.2 23-79 0.0.0.0-255.255.255.255 Deny

17 200.1.1.2-200.1.1.2 81-442 0.0.0.0-255.255.255.255 Deny

18 200.1.1.2-200.1.1.2 444-65535 0.0.0.0-255.255.255.255 Deny

19 200.1.1.3-200.1.1.3 22-22 200.1.2.254-200.1.2.254 Accept

20 200.1.1.3-200.1.1.3 22-22 0.0.0.0-200.1.2.253 Deny

21 200.1.1.3-200.1.1.3 22-22 200.1.2.255-255.255.255.255 Deny

22 200.1.1.3-200.1.1.3 25-25 0.0.0.0-255.255.255.255 Accept

23 200.1.1.3-200.1.1.3 143-143 200.1.2.2-200.1.2.254 Accept

24 200.1.1.3-200.1.1.3 143-143 0.0.0.0-200.1.2.1 Deny

25 200.1.1.3-200.1.1.3 143-143 200.1.2.255-255.255.255.255 Deny

26 200.1.1.3-200.1.1.3 0-21 0.0.0.0-255.255.255.255 Deny

27 200.1.1.3-200.1.1.3 23-24 0.0.0.0-255.255.255.255 Deny

28 200.1.1.3-200.1.1.3 26-142 0.0.0.0-255.255.255.255 Deny

29 200.1.1.3-200.1.1.3 144-65536 0.0.0.0-255.255.255.255 Deny

30 200.1.1.4-200.1.1.4 22-22 200.1.2.254-200.1.2.254 Accept

31 200.1.1.4-200.1.1.4 22-22 0.0.0.0-200.1.2.253 Deny

32 200.1.1.4-200.1.1.4 22-22 200.1.2.255-255.255.255.255 Deny

33 200.1.1.4-200.1.1.4 53-53 0.0.0.0-255.255.255.255 Accept

34 200.1.1.4-200.1.1.4 0-21 0.0.0.0-255.255.255.255 Deny

35 200.1.1.4-200.1.1.4 23-52 0.0.0.0-255.255.255.255 Deny

36 200.1.1.4-200.1.1.4 54-65535 0.0.0.0-255.255.255.255 Deny

37 200.1.1.5-200.1.1.5 22-22 200.1.2.2-200.1.2.254 Accept

38 200.1.1.5-200.1.1.5 22-22 0.0.0.0-200.1.2.1 Deny

39 200.1.1.5-200.1.1.5 22-22 200.1.2.255-255.255.255.255 Deny

40 200.1.1.5-200.1.1.5 3306-3306 100.3.3.1-100.3.3.254 Accept

41 200.1.1.5-200.1.1.5 3306-3306 200.1.2.2-200.1.2.254 Accept

42 200.1.1.5-200.1.1.5 3306-3306 0-100.3.3.0 Deny

43 200.1.1.5-200.1.1.5 3306-3306 100.3.3.255-200.1.2.1 Deny

44 200.1.1.5-200.1.1.5 3306-3306 200.1.2.255-255.255.255.255 Deny

45 200.1.1.5-200.1.1.5 0-21 0.0.0.0-255.255.255.255 Deny

46 200.1.1.5-200.1.1.5 23-3305 0.0.0.0-255.255.255.255 Deny

47 200.1.1.5-200.1.1.5 3307-65535 0.0.0.0-255.255.255.255 Deny

48 0.0.0.0-100.3.3.0 25-25 200.1.1.3-200.1.1.3 Accept

49 0.0.0.0-100.3.3.0 25-25 0.0.0.0-200.1.1.2 Deny

50 0.0.0.0-100.3.3.0 25-25 200.1.1.4-255.255.255.255 Deny

51 0.0.0.0-100.3.3.0 53-53 200.1.1.4-200.1.1.4 Accept

52 0.0.0.0-100.3.3.0 53-53 0.0.0.0-200.1.1.3 Deny

53 0.0.0.0-100.3.3.0 53-53 200.1.1.5-255.255.255.255 Deny

54 0.0.0.0-100.3.3.0 80-80 200.1.2.2-200.1.2.254 Accept

55 0.0.0.0-100.3.3.0 80-80 0.0.0.0-200.1.2.1 Deny

56 0.0.0.0-100.3.3.0 80-80 200.1.2.255-255.255.255.255 Deny

57 0.0.0.0-100.3.3.0 443-443 200.1.2.2-200.1.2.254 Accept

58 0.0.0.0-100.3.3.0 443-443 0.0.0.0-200.1.2.1 Deny

59 0.0.0.0-100.3.3.0 443-443 200.1.2.255-255.255.255.255 Deny

60 0.0.0.0-100.3.3.0 0-24 0.0.0.0-255.255.255.255 Deny

61 0.0.0.0-100.3.3.0 26-52 0.0.0.0-255.255.255.255 Deny

62 0.0.0.0-100.3.3.0 54-79 0.0.0.0-255.255.255.255 Deny

63 0.0.0.0-100.3.3.0 81-442 0.0.0.0-255.255.255.255 Deny

64 0.0.0.0-100.3.3.0 444-65535 0.0.0.0-255.255.255.255 Deny

65 100.3.3.255-200.1.1.1 25-25 200.1.1.3-200.1.1.3 Accept

66 100.3.3.255-200.1.1.1 25-25 0.0.0.0-200.1.1.2 Deny

67 100.3.3.255-200.1.1.1 25-25 200.1.1.4-255.255.255.255 Deny

68 100.3.3.255-200.1.1.1 53-53 200.1.1.4-200.1.1.4 Accept

69 100.3.3.255-200.1.1.1 53-53 0.0.0.-200.1.13 Deny

70 100.3.3.255-200.1.1.1 53-53 200.1.1.5-255.255.255.255 Deny

71 100.3.3.255-200.1.1.1 80-80 200.1.2.2-200.1.2.254 Accept

72 100.3.3.255-200.1.1.1 80-80 0.0.0.0-200.1.2.1 Deny

73 100.3.3.255-200.1.1.1 80-80 200.1.2.255-255.255.255.255 Deny

74 100.3.3.255-200.1.1.1 443-443 200.1.2.2-200.1.2.254 Accept

75 100.3.3.255-200.1.1.1 443-443 0.0.0.0-200.1.2.1 Deny

76 100.3.3.255-200.1.1.1 443-443 200.1.2.255-255.255.255.255 Deny

77 100.3.3.255-200.1.1.1 0.24 0.0.0.0-255.255.255.255 Deny

CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 5

https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/3236183_Conflict_classification_and_analysis_of_distributed_firewall_policies?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/2376741_An_Expert_System_for_Analyzing_Firewall_Rules?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/232616403_FIREMAN_A_toolkit_for_firewall_modeling_and_analysis?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/4080139_Diverse_firewall_design?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==

IEE
E P

ro
of

the list. This creates an undesirable consequence that all fol-
lowing incoming packets are blocked by Rule-29 even
though they may be allowed by the other rules below. In
contrast, individual listed rules created by our proposed

scheme as shown in Table 4 can be moved to any position
independently.

Moreover, given that the most frequently matched rules
are listed at the bottom of a rule list, data transmission over-
head of the aforementioned firewalls increase along with
the expansion of their rule lists. This is because that it takes
the firewalls’ time to process unmatched rules before reach-
ing the matched one and allowing/denying packets to pass
through. According to our studies, 1,000 redundant rules
can reduce data transmission speed by approximately
10 percent. The drop of speed depends on several factors,
i.e., type of firewall [20] and CPU speed of the machine run-
ning the firewall.

The decrease of data transmission speed prolongs data
transmission time of a system (e.g., time consumption for
downloading the data increases 10 percent if data trans-
mission speed drops by 10 percent as shown in Fig. 4a and
4b respectively). Moving the matched rule from the bottom
of firewall rule list to the top position (e.g., from rule num-
ber 1,000 to rule number 1 enhances the data transmission
speed and shortens transmission time as illustrated in
Fig. 4c. Using our proposed scheme, rule sorting is exe-
cuted periodically for each specified time interval, such as
1, 3 or 5 seconds. Sorting the firewall rules takes less time
in comparison with rule matching. Time consumption for
data transmission using our proposed scheme can be
found in Fig. 4d. The time consumption shown in Fig. 4d
is more than that revealed in Fig. 4c but less than that
revealed in Fig. 4b.

In summary, there are five main factors determining time
consumption, T, for data transmission and they are shown
as follows:

- Time interval (w).
- Data size (F).
- Network speed (S).
- Efficiency of transmission speed before rule sorting

(e).
- Time for sorting rules (g).
Fig. 5 illustrates the time (T) used for transmitting data and

the five main factors. x axis and y axis denote transmission
time and transmission speed respectively. The figure reveals
the relation between time T used for data transmission and

TABLE 4
(Continued)

RuleNo. Dest-IP Dest-Port Source-IP ACTION

78 100.3.3.255-200.1.1.1 26-52 0.0.0.0-255.255.255.255 Deny

79 100.3.3.255-200.1.1.1 54-79 0.0.0.0-255.255.255.255 Deny

80 100.3.3.255-200.1.1.1 81-442 0.0.0.0-255.255.255.255 Deny

81 100.3.3.255-200.1.1.1 444-65535 0.0.0.0-255.255.255.255 Deny

82 200.1.1.6-255.255.255.255 25-25 200.1.1.3-200.1.1.3 Accept

83 200.1.1.6-255.255.255.255 25-25 0.0.0.0-200.1.1.3 Deny

84 200.1.1.6-255.255.255.255 25-25 200.1.1.4-255.255.255.255 Deny

85 200.1.1.6-255.255.255.255 53-53 200.1.1.4-200.1.1.4 Accept

86 200.1.1.6-255.255.255.255 53-53 0.0.0.0-200.1.1.3 Deny

87 200.1.1.6-255.255.255.255 53-53 200.1.1.5-255.255.255.255 Deny

88 200.1.1.6-255.255.255.255 80-80 200.1.2.2-200.1.2.254 Accept

89 200.1.1.6-255.255.255.255 80-80 0.0.0.0-200.1.2.1 Deny

90 200.1.1.6-255.255.255.255 80-80 200.1.2.255-255.255.255.255 Deny

91 200.1.1.6-255.255.255.255 443-443 200.1.2.2-200.1.2.254 Accept

92 200.1.1.6-255.255.255.255 443-443 0.0.0.0-200.1.2.1 Deny

93 200.1.1.6-255.255.255.255 443-443 200.1.2.255-255.255.255.255 Deny

94 200.1.1.6-255.255.255.255 0-24 0.0.0.0-255.255.255.255 Deny

95 200.1.1.6-255.255.255.255 26-52 0.0.0.0-255.255.255.255 Deny

96 200.1.1.6-255.255.255.255 54-79 0.0.0.0-255.255.255.255 Deny

97 200.1.1.6-255.255.255.255 81-442 0.0.0.0-255.255.255.255 Deny

98 200.1.1.6-255.255.255.255 444-65535 0.0.0.0-255.255.255.255 Deny

Fig. 4. Transmission speed versus transmission time.

Fig. 5. Time (T) used for data transmission and the five main factors (w,
F, S, e and g).

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

IEE
E P

ro
of

the five important factors (i.e.,w, F, S, e and g). In this example,
we assume that thematched rule is at the bottom position of a
rule list. The size of the rule list is 1,000, which decreases
transmission speed by roughly 10 percent of the maximum
speed. In the first state, transmission speed beginswith 90per-
cent (e ¼ 0.9) until the time reach the Time Interval (w). Then,
the firewall takes time g to sort its rules. We assume that the
transmission speed during this period of time is 0 because the
firewall is sorting its rules and not processing any packets. At
this moment, data which have been transmitted is denoted as
A1. After the rule sorting is complete, the firewall continues
to process packets with its sorted rules. The transmission
speed can peak at 100 percent because the matched rule has
been moved up to the top position. When time interval w
ends, the firewall takes time g to re-sort its rules again. This
process repeats until the transmission of the last block of data
(A6) is complete. The time v used to transmit the last block
may be smaller than w. The total amount of data (F) transmit-
ted is F¼A1þA2þA3þA4þA5þA6.

The efficiency, e, is determined by the number of rules.
We have created a special program to measure e with 1,000
rules on a 2.8 GHz CPU computer and 345 Mbps network
speed. We found that e was approximately 0.9. However,
the value of e may vary in different environments because it
is influenced by multiple factors. Like e, g is also determined
by the number of rules. However, it equals to the base 2 log-
arithm of the number of rules because the Quick Sort [26] is
used for rule sorting in this paper. Thus, g increases slightly
while the number of rules increases. We measured g in the
same environment where e was done. We found that the
value of g was approximately 1 millisecond for 1,000 rules.
The w is a free parameter and assigned by firewall adminis-
trators. It can be 1, 3 or 5 seconds. However, transmission
time may be longer than usual if w is specified inappropri-
ately. The details of wwill be discussed later in Section 4.

3.3 A mathematical Model for Measuring
Time Consumption

Let

� n denote the number of data blocks that do not
include the first and the last data block (e.g., n ¼ 4 in
Fig. 5),

� F denote size of data being transmitted (in bits),
� e denote efficiency of transmission speed before sort-

ing the rules, 0 < e < 1,
� S denote speed of network (in bits per seconds),
� w denote time interval between two rule sortings (in

seconds),
� g denote time used for rules sorting (in seconds),
� v denote the time span of transmitting the last block

(in seconds), e.g., the time span of A6 in Fig. 5,
� u denote v/w, 0 < u < 1, and
� T denote the time used for data transmissions.

Then, we have

F ¼ eSwþ nSwþ Sv

F � eSw ¼ nSwþ Sv

ðF � eSwÞ=S ¼ nwþ v ¼ nwþ uw

ðF � eSwÞ=Sw ¼ nþ u

nþ u ¼ ðF � eSwÞ=Sw
¼ ðF=SwÞ � e:

(1)

The time T used for data transmissions shown in Fig. 5 is
defined as,

T ¼ ðwþ gÞ þ nðwþ gÞ þ v

¼ ðwþ gÞ þ nðwþ gÞ þ uw

¼ ðwþ gÞ þ nðwþ gÞ þ uðwþ gÞ � ug

¼ ðwþ gÞ þ ðnþ uÞ � ðwþ gÞ � ug:

(2)

Substituting Equation (1) into Equation (2), we have that

T ¼ ðwþ gÞ þ ððF=SwÞ � eÞ � ðwþ gÞ � ug

¼ ðwþ gÞ � eðwþ gÞ þ ðwþ gÞF
Sw

� �
� ug

¼ ð1� eÞðwþ gÞ þ F

S
1þ g

w

� �
� ug:

(3)

Equation (3) reveals that the larger the data size F is, the
longer time it takes a system to transmit data. Similarly, the
higher the network speed S is, the shorter time the systemwill
take to transmit data.Moreover, g,w and e also play important
roles in determining the time used for data transmission.

We have conducted a simple testing using this formula on
Microsoft Excel, and given some input data for observing the
result and output graphs. The results are shown in Fig. 6. We
specified F ¼ 2,048 MB (16,384 Mbits), S ¼ 300 Mbps, g ¼
0.001 seconds and e ¼ 0.9. We calculated consumption time T
for w ¼ 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50,
2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75 and 5.00, respec-
tively. Fig. 6 shows a relation between the consumption time
T in the vertical axis and Time Interval w in the horizontal
axis. The curve of graph tells us that there is the optimal value
of w which can give the minimum consumption time T for
data transferring. In this case, w ¼ 0.75 causes T ¼ 54.7603,
which is better than the values T ¼ 54.7673, T ¼ 54.9313 and
T¼ 55.1243whenw¼ 1.00, 3.00 and 5.00, respectively.

Regarding to the operation without using our proposed
scheme, the firewall will take the time calculated using
Equation (4) below for data transferring.

Fig. 6. Relation between Time use (T) and Time Interval (w).

CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 7

IEE
E P

ro
of

T ¼ F

eS
: (4)

Thus, in this example,without using our proposed scheme,
the firewallwill take time:T¼ 16,384/(0.9 * 300)¼ 60.6815 sec-
onds. In contrast, using our proposed scheme, the transferring
time can be saved for 9.76 percent for w ¼ 0.75, and 9.75, 9.48
and 9.16 percent forw¼ 1, 3 and 5 seconds, respectively.

3.4 Determining Time Interval w

To determine the time interval w, we created a special pro-
gram to measure a time used for sorting 1,000 rules. We
found that the sorting took less than 1 millisecond. Taking a
four minute data transmission as an example, the sorting
function is executed 80 (¼ 4 * 60/3) times if rules are sorted
every 3 seconds. The overall time taken for rule sorting is
merely 80 milliseconds which is very small in comparison
with 4 minutes for the whole process. In the networks that
have a small size of data transmission, setting the Time
Interval to 3 or 5 seconds may not be suitable because a time
use T of the firewall applying the proposed scheme may be
bigger than a time use T of the firewall without applying
the proposed scheme (noting that the proposed scheme
may waste firewall processing times due to the sorting time
g as shown in Equation (3)). Firewall administrators should
calculate and set a good value of Time Interval w to the fire-
wall before using it. The proposed scheme focuses in cloud
which mostly working with big size of data transferring.
Thus, we can set the Time Interval w to any value (e.g., 3 or
5 seconds) as long as the T calculated from Equation (3) is
less than the T calculated from Equation (4).

We have found that the optimal Time Interval can be
accurately estimated using Equation (5) below.

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fg

Sð1� eÞ

s
: (5)

We have derived Equation (5) based on Calculus from a
function represented as T ¼ f(w), showing the relationship
between the time use (T) and the time interval (w). The opti-
mal w occurs at the minimum point on the curve repre-
sented by this relation function (see Fig. 6) and can be
obtained by differentiating T with respect to w as shown in
Equation (6) below.

dT

dw
¼ 0: (6)

From Equation (3) in Section 3, ‘T’ can be calculated by:

T ¼ F

S

g

w
þ 1

� �
þ ð1� eÞðwþ gÞ � ug:

Therefore, Equation (6) is equivalent to

d

dw

F

S

g

w
þ 1

� �
þ ð1� eÞðwþ gÞ � ug

� �

¼ d

dw

F

S

g

w
þ 1

� �
þ ð1� eÞðwþ gÞ

� �

¼ d

dw

Fgw�1

S
þ F

S
þ ð1� eÞwþ ð1� eÞg

� �

¼ d

dw

Fgw�1

S
þ ð1� eÞw

� �
¼ � Fg

Sw2
þ ð1� eÞ ¼ 0:

Thus, w ¼
ffiffiffiffiffiffiffiffiffiffiffi

Fg
Sð1�eÞ

q
that proves Equation (5).

In Fig. 6, we have calculated the time use (T) for w ¼ 0.25,
0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25,
3.50, 3.75, 4.00, 4.25, 4.50, 4.75 and 5.00, respectively using
Microsoft Excel. We have found that the optimal w is 0.75 as
we have discussed in Section 3.2. With the same environ-
ments and parameters (e.g., the same value of F, S, g and e),
we have calculated w using Equation (5), and found that the
optimal w, which is 0.739008. Therefore, it can be concluded
that the optimal w can be estimated by either of the two
methods as follows.

� Using Equation (3) to find the minimum T for vari-
ous input values of w

� Directly using Equation (5)

4 IMPLEMENTATION AND EXPERIMENTATION

Similar to our previous schemes [4], [5], we implement the
proposed schemes based on the Netfilter module [27], [28],
[29]. We hook packets’ events using a technique presented
in [30] by calling the function named ‘nf_register_hook’
[30]. Before calling this function, the hooking function must
be declared first, as such in the line: ‘nfho.hook ¼
hook_func’. When packets arrive at the firewall, the
‘hook_func’ will be called. It will receive several important
parameters as shown below:
unsigned int hook_func(unsigned int hooknum,

struct sk_buff �skb,
const struct net_device �in,
const struct net_device �out,
int (�okfn)(struct sk_buff �))

{
}

4.1 Experimental Setup and Environment

We create the Tree-rule firewall using C on Cent OS 6.3
Linux. It operates as a kernel module and runs in a kernel
level. Our original firewall source code, ‘firewall.c’, is com-
piled into the ‘firewall.ko’ and can be executed by the com-
mand ‘# insmod firewall.ko’. We develop rule editor GUI
using C# on Windows. The firewall rule is created by GUI
and is sent to the core firewall running on Linux. The rule
structure is modified for handling listed rules and counters
information.

We evaluate the firewall on one Giga bits per second link
speed LAN with seven standard PCs as shown in Fig. 7.
The five clients and the firewall machine in this testbed are
equipped with a 2.4 GHz CPU and 4 GB RAM as well as a
Cent OS 6.3. The server is equipped with a 2.8 GHz CPU
and 8 GB RAM as well as an ESXi (by VM Ware company)
as OS/Hypervisor in a cloud environments. Within the
server, we create five Virtual Machines (i.e., guest OSs) to
serve as web servers (as shown in Fig. 8). Each Virtual
Machine (VM) runs a Cent OS 6.3. All Ethernet links operate
on 1 Gbps speed including network switches. Based on our
experience, the performance on different hypervisors, such
as VMW, ESXi, Microsoft Hyper-V etc., are almost the same.
Therefore, we decided to test on only on ESXi for the pro-
posed work in this paper.

In our experimentation, time used for downloading big
size of data (e.g., big files) is measured. To do so, we store a

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266319157_A_Stateful_Mechanism_for_the_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/288916077_Netfilter's_connection_tracking_system_Login?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==

IEE
E P

ro
of

4 GB file on VM #1 (Server #1), and 2 GB files on VM #2 and
VM #3 respectively. We also place 1 GB files on VM #4 and
VM #5, respectively. During evaluation, client #1 down-
loads a file from VM #1 only. Likewise, client #i downloads
a file from VM #i only. We measure the downloading times
on both ‘automatic rule sorting’ and ‘non-automatic rule
sorting’ modes.

4.2 Experiments

The equation used in Section 3.4 for finding optimal w con-
siders a single file containing firewall rules. However, in a
real network, multiple files are simultaneously transmitted
and each file may be matched with a different rule as well.

Moreover, the size of each transmitting file may vary as
well. Thus, finding the optimal “w” with multiple files is
difficult. The selected w of 3 makes administrators easy to
manage the network and takes a little time for rule-sorting.
For example, a computer LAB which is matched with one
allowed rule, and open 3 hours for users to use it. Assume
that w is set to be 3 seconds on a firewall. In this case, the
firewall will sort its rules 3 * 60 * 60/3 ¼ 3,600 times. If one
round of rule sorting takes 0.002 seconds, the total sorting
time will be 3600 * 0.002 ¼ 7.2 seconds, which is 0.067 per-
cent in comparison to the 3 hours. This selected w leads to a
little sorting time in total. The firewall application devel-
oped using the proposed scheme can display information in
its monitor screen to inform administrator which rules are
the frequently matched rules. It is similar to the ‘top’ com-
mand in Linux which shows percentages of CPU used by
each process. If we specify a too small w (e.g., 0.5 or 1 sec-
onds), it is hard for administrators to read the information
within such a short time window. In contrast, specifying a
too big value of w (e.g., 5 or 10 seconds) will result in slow
reaction to apply administrators’ preferences. Hence, the w
selected in our experiments is set to 3 seconds.

To begin with, we test on three cases with non-automatic
rule sorting as shown in Cases #1, #2 and #3 of Fig. 9. We
create 500 firewall rules and intentionally make rule #250
match with the 4 GB file. In this case, the first rule and the
last rule will match 2 GB files, while rules #125 and #375
match with 1 GB files. This is for measuring time consump-
tion in average case.

Case #2 is another average case for which five rules are in
almost middle position. These files are matched with rules
#248, #249, #250, #251 and #252, respectively. In case #3, we
want to simulate the worst case by creating matched rules
in positions 496, 497, 498, 499 and 500.

Secondly, we test with automatic rule sorting. We use a
3 second time interval (w), i.e., all rules are resorted every
3 seconds and a counter of each rule is reset to zero after all

Fig. 7. Experiment with ESXi.

Fig. 8. Five Linux Web Servers within a ESXi Hypervisor.

Fig. 9. Three cases of ‘non automatic rule sorting’ and a case of
‘automatic rule sorting’.

CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 9

IEE
E P

ro
of

rules are resorted. Whilst five files are downloaded simulta-
neously, results of sorting may be different from the right
bottom picture of Fig. 9. They may be sorted in many
sequences as shown in Fig. 10.

Lastly, we test with 1,000, 2,000 and 4,000 rules, respec-
tively. Five files start to transfer at the same time. We start a
timer at this point. All packets of files travel through the
firewall rules. We stop the timer when the transfer of the
last file is complete. In each case, we conduct the experimen-
tation for five times, and the average result numbers are
taken and highlighted in Table 5.

Case #1 and Case #2 in Table 5 are average cases, whose
results are very similar. Case #3 is the worst case that takes
a longer time in comparison with Case #1 and Case #2. In
three cases, the downloading times are longer when the
number of rule is increased. In the case of ‘automatic rule
sorting’, firewall rules are sorted every 3 seconds so that
five rules matching with fives active connections are moved
to the top five positions. In other words, these rules are
moved to rules with numbers 1, 2, 3, 4 and 5. The firewall

has to verify packets against only the first five rules and is
not necessary to process the remaining unmatched rules.
Consequently, time consumption in this case is the smallest
in comparison with the other cases. Moreover, the time con-
sumptions for 500, 1,000, 2,000, and 4,000 rules are slightly
different. The percentages of time saving are presented in
Table 6. As shown in Table 6, our scheme can reduce the
processing time of the firewall with 500 rules by 8.17 percent
on average. More time is saved in the cases with bigger rule
sizes. For example, the proposed method saves 60.89 percent
of the time for the case with 4,000 rules as shown in Table 6.

Apart from testing on ESXi Hypervisor, we also conduct
experiments setting up a small LAN with four servers, four
clients and our Tree-rule firewall in the perimeter. We com-
pare the performance of our proposed firewall with IPT-
ABLES, the most popular open-source firewall, using
multiple sets of rule having different size. All computers
including the firewall machine in this testbed are equipped
with a 2.2 GHz CPU and 8 GB RAM. The firewall’s OS is
Cent OS 6.3 while the Back Track 5 R3 was used as OS for
servers and clients. The servers generate packets using
‘hping3’ command with ‘—flood’ parameter to create and
send the packets as fast as possible. This test uses 1,440 bytes
packet size. We choose a bigger packet size because HTTP
typically uses packet size of 1,400-1,500 bytes.

The worst cases (when all packets are matched with the
last rules) can be tested by creating one matched rule at the
bottom position of firewall rule list. Apart from the last rule,
other rules are considered unmatched rules. This condition
is similar to case #3 of the previous experimentation but
using one matched rule at the bottom of rule list.

We measure speeds of IPTABLES with different rule size,
e.g, 100, 250, 500, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500 and
4,000 rules. The ‘hping3’ command with ‘—flood’ can throt-
tle the firewall to operate with its maximum speed
(throughput). With no rule (rule size ¼ 0), IPTABLES can
process 30,956 packets per second, as shown in Table 7. In
Table 7, the firewall speed was represented in term of pack-
ets per second, and mega bytes per second. The data were
calculated using 1,440 bytes packet size.

We can see, the speed of IPTABLES drops from 42.51 to
22.25 MB/s (47.66 percent) having 1,000 rules. The percent-
age of speed drop increases when the firewall processes a
bigger rule size.

We also test the proposed firewall with the same condi-
tion (as we tested IPTABLES) by disabling the feature
‘Automatic rule sorting’. As shown in Table 8, speed of our
firewall operating with rule size ¼ 20,000, 30,000, 40,000,
50,000, 60,000, 70,000 and 80,000 indecate that our firewall
operates faster than the IPTABLES approximately by
20 times. For rule size ¼ 1,000, speed of our firewall drops
only 7.43 percent. In comparison, IPTABLES speed drops

Fig. 10. Sequences of rules in ‘automatic rule sorting’.

TABLE 5
Time Consumption for Transferring Files from

Servers to Clients (Minutes)

Case Number of Rules

500 1,000 2,000 4,000

#1 4.40 4.79 5.66 7.34
#2 4.42 4.82 5.58 7.33
#3 4.82 5.65 7.32 10.66
Automatic rule sorting 4.05 4.13 4.21 4.17

TABLE 6
Time Save in Percentage

Time Save (%) Number of Rules

500 1,000 2,000 4,000

avg of case #1 and #2 8.17 14.06 25.10 43.16
case #3 15.99 26.91 42.50 60.89

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

IEE
E P

ro
of

by 47.66 percent. The two plots as shown through Figs. 11
and 12 translate corresponding data present in Tables 7 and
8. In the two plota, vertical axis of the graph represents
speeds of firewall in MByte/sec whereas the horizontal axis
represents numbers of rules.

We perform more experiments for the proposed firewall
to compare between operations with and without
‘Automatic rule sorting’. Experimental results are presented
in Table 9 and Fig. 13.

With rules size ¼ 1,000 in Table 9, the proposed firewall
with ‘Automatic rule sorting’ gives 2.07 percent of speed
drop whereas operating without ‘Automatic rule sorting’
gives 7.43 percent (see Table 8). Fig. 13 shows speed com-
parison for three firewalls, i.e., (1) the proposed firewall
operating with ‘Automatic rule sorting’, (2) the proposed
firewall operating without ‘Automatic rule sorting’, and (3)

TABLE 7
Speed Achieved Through IPTABLES

Number of rules
Speed

Drop (%)
Packets/sec Mega Bytes/sec

- 30,956 42.51 -
100 27,964 38.40 9.67
250 25,099 34.47 18.92
500 21,226 29.15 31.43
1,000 16,202 22.25 47.66
1,500 13,172 18.09 57.45
2,000 11,103 15.25 64.13
2,500 9,580 13.16 69.05
3,000 8,471 11.63 72.64
3,500 7,526 10.34 75.69
4,000 6,653 9.14 78.51

TABLE 8
Speed of Proposed Firewall without ‘Automatic Rule Sorting’

Number of rules
Speed

Drop (%)
Packets/sec Mega Bytes/sec

- 30,956 42.51 -
100 30,475 41.85 1.55
250 30,254 41.55 2.27
500 29,755 40.86 3.88
1,000 28,658 39.36 7.43
2,000 27,251 37.42 11.97
5,000 23,563 32.36 23.88
10,000 19,288 26.49 37.69
20,000 14,338 19.69 53.68
30,000 11,602 15.93 62.52
40,000 9,556 13.12 69.13
50,000 8,384 11.51 72.92
60,000 7,156 9.83 76.88
70,000 6,556 9.00 78.82
80,000 5,860 8.05 81.07

Fig. 11. Speed of IPTABLES (represented in graph).

TABLE 9
Speed of Proposed Firewall with ‘Automatic Rule Sorting’

Number of rules Speed
Drop (%)

Packets/sec Mega Bytes/sec

- 30,948 42.50 -
100 30,672 42.12 0.92
250 30,663 42.11 0.95
500 30,412 41.76 1.76
1,000 30,316 41.63 2.07
2,000 30,060 41.28 2.90
5,000 29,821 40.95 3.67
10,000 29,487 40.49 4.75
20,000 29,043 39.88 6.18
30,000 28,488 39.12 7.97
40,000 28,272 38.83 8.67
50,000 27,696 38.03 10.53
60,000 27,741 38.10 10.39
70,000 27,444 37.69 11.34
80,000 26,936 36.99 12.99

Fig. 13. Comparision of firewalls’ speeds.

Fig. 12. Speed of proposed firewall without ‘automatic rule sorting’
(represented in graph).

CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 11

IEE
E P

ro
of

IPTABLES. The results shown through these graphs confirm
that our proposed firewall with ‘Automatic rule sorting’
operates faster than IPTABLES significantly, and particulay
with large size of rule set.

5 CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a hybrid Tree-rule firewall
which reduces processing time in verifying packets. The
proposed firewall applies the concepts of Tree-rule firewall
in designing conflict-free rules and the concepts of tradi-
tional firewall in decision making. Verifying incoming net-
work packets against conflict-free listed rules contributes a
more secure and faster processing firewall. Counters are
introduced to analyze which rules match with the most
packets. The rules are sorted according to the counters peri-
odically, and the most frequently matched rules are moved
to the top positions. As such, time spent in rule matching
can be further reduced because a match can most possibly
be found in the first few rules.

We have also proposed a mathematical model to illus-
trate a relation between ‘time use’ for data transferring and
other relevant factors, especially ‘time interval’. Moreover,
we have proposed an equation for calculating an optimal
‘time interval’ with a mathematical proof based on
Calculus.

Experiments have been conducted using our imple-
mented testbed for evaluating the performance of our pro-
posed hybrid firewall on a big size of data transferring. The
experimental results show that our scheme can reduce fire-
wall processing time significantly. For our future research,
we will further improve and test the proposed firewall in
other environments.

REFERENCES

[1] W. Cheswick, S. Bellovin, and A. Rubin, Firewalls and Internet Secu-
rity: Repelling the Wily Hacker. Reading, MA, USA: Addison-
Wesley, 2003.

[2] E. Al-Shaer and H. Hamed, “Firewall policy advisor for anomaly
detection and rule editing,” in Proc. IEEE/IFIP Integr. Manage.,
2003, pp. 17–30.

[3] T. Chomsiri, X. He, and P. Nanda, “Limitation of listed-rule fire-
wall and the design of Tree-rule firewall,” in Proc. 5th Int. Conf.
Internet Distrib. Comput. Syst., 2012, pp. 275–287.

[4] X. He, T. Chomsiri, P. Nanda, and Z. Tan, “Improving cloud net-
work security using the Tree-rule firewall,” Future Gen. Comput.
Syst., vol. 30, pp. 116–126, 2014.

[5] T. Chomsiri, X. He, P. Nanda, and Z. Tan, “A stateful mechanism
for the tree-rule firewall,” in Proc. IEEE 13th Int. Conf. Trust, Secu-
rity Privacy Comput. Commun., 2014, pp. 122–129.

[6] P. Ayuso,Netfilter’s Connection Tracking Syst., LOGIN; The USENIX
Mag., vol. 32, pp. 34–39, 2006.Q1

[7] C. Pornavalai and T. Chomsiri, “Firewall policy analyzing by rela-
tional algebra,” in Proc. Int. Tech. Conf. Circuits/Syst., Comput. Com-
mun., 2004, pp. 214–219.

[8] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict clas-
sification and analysis of distributed firewall policies,” IEEE J.
Select. Areas Commun., vol. 23, no. 10, pp. 2069–2084, Oct. 2005.

[9] S. Hazelhusrt, “Algorithms for analyzing firewall and router
access lists,” Dept. Comput. Sci., Univ. Witwatersrand, Tech. Rep.
TR-WitsCS-1999, 1999.

[10] P. Eronen and J. Zitting, “An expert system for analyzing firewall
rules,” in Proc. 6th Nordic Workshop Secure IT-Syst., 2001, pp. 100–
107.

[11] L. Yuan, J. Mai, and Z. Su, “FIREMAN: A toolkit for Firewall
modeling and analysis,” in Proc. IEEE Symp. Security Privacy, 2006,
pp. 199–213.

[12] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang, “ParaSplit: A scalable
architecture on FPGA for terabit packet classification,” in Proc.
IEEE 20th Annu. Symp. High-Perform. Interconnects, 2012, pp. 1–8.

[13] O. Erdem, and A. Carus. “Multi-pipelined and memory-efficient
packet classification engines on FPGAs,” Comput. Commun.,
vol. 67, pp. 75–91, 2015.

[14] S. Hager, F. Winkler, B. Scheuermann, and K. Reinhardt, “MPFC:
Massively parallel firewall circuits,” in Proc. IEEE 39th Conf. Local
Comput. Netw., 2014, pp. 305–313.

[15] C. Ni, G. Jin, and X. Jiang, “A new multi-tree and dual index
based firewall optimization algorithm,” TELKOMNIKA Indonesian
J. Elect. Eng., vol. 11, no. 5, pp. 2387–2393, 2013.

[16] S. Fengjun, P. Yingjun, P. Xuezeng, and B. Bin, “Research on a sto-
chastic distribution multibittrie tree IP classification algorithm,” J.
Commun. (Chin.), vol. 29, no. 7, pp. 109–117, 2008.

[17] Z. Trabelsi, M. M. Masud, and K. Ghoudi, “Statistical dynamic
splay tree filters towards multilevel firewall packet filtering
enhancement,” Comput. Security, vol. 53, pp. 109–131, 2015.

[18] N. M. Hung and V. D. Nhat, “B-tree based two-dimensional early
packet rejection technique against DoS traffic targeting firewall
default security rule,” in Proc. 7th IEEE Symp.Comput. Intell. Secu-
rity Defense Appl., 2014, pp. 1–6.

[19] A. Liu and M. Gouda, “Diverse firewall design,” IEEE Trans. Par-
allel Distrib. Syst., vol. 19, no. 9, pp. 1237–1251, Sep. 2008.

[20] 1000 redundant rules of IPTABLES (TCCSI-2015–01–0032.R1)
(2016) [Online]. Available: https://www.youtube.com/results?
search_query ¼ TCCSI-2015–01–0032.R1

[21] L. Zhao, A. Shimae, and H. Nagamochi, “Linear-tree rule struc-
ture for firewall optimization,” in Proc. 6th IASTED Int. Conf. Com-
mun. Internet Inf. Technol., 2007, pp. 67–72.

[22] M. Kang, J. Choi, H. Kwak, I. Kang, M. Shin, and J. Yi, “Formal
modeling and verification for SDN firewall application using
pACSR,” in Proc. 4th Int. Conf. Electron. Commun. Netw., 2014,
p. 155.

[23] S. Kumar and R. Perumalraja, “Establishing user-defined firewall
in software defined network,” Int. J. Res., vol. 2, no. 6, pp. 28–31,
2015.

[24] M. Suh, S. Park, B. Lee, and S. Yang, “Building firewall over the
software-defined network controller,” in Proc. 16th Int. Conf. Adv.
Commun. Technol., 2014, pp. 744–748.

[25] H. Hu, G. Ahn, W. Han, and Z. Zhao, “Towards a reliable sdn fire-
wall,” in Proc. Open Netw. Summit, 2014. Q2

[26] Java applets centre—University of Canterbury (2015) [Online].
Available: http://www.cosc.canterbury.ac.nz/mukundan/dsal/
QSort.html

[27] R. Rosen,Netfilter, Linux Kernel Netw., Apress, 2014, pp. 247–278.
[28] The netfilter.org project (2014) [Online]. Available: http://www.

netfilter.org/
[29] P. Ayuso,Netfilter’s Connection Tracking Syst., LOGIN; The USENIX

Mag., vol, 32, pp. 34–39, 2006.
[30] V. Fidel and J. Mar�ıa, “Mecanismopara el accesop�ublico a servi-

dores con direccionamientoprivado,” 2011.

Thawatchai Chomsiri is working toward the PhD
degree at the Faculty of Engineering and Infor-
mation Technology, University of Technology,
Sydney, Australia. He is also an assistant profes-
sor at the Department of Information Technology,
Faculty of Informatics, Mahasarakham Univer-
sity, Thailand. He has 20 years of experience in
industry, teaching and research. His research
interests include computer networking, and com-
puter and network security.

Xiangjian He is a professor of computer science.
He is also the Director of Computer Vision and
Recognition Laboratory and a co-leader of the
Network Security Research group, University of
Technology, Sydney. He has been awarded
Internationally Registered Technology Specialist
by International Technology Institute (ITI). His
research interests include network security,
image processing, pattern recognition and com-
puter vision. He is a senior member of the IEEE.

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

https://www.researchgate.net/publication/234798978_Firewalls_and_Internet_Security_Repelling_the_Wily_Hacker?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/234798978_Firewalls_and_Internet_Security_Repelling_the_Wily_Hacker?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/234798978_Firewalls_and_Internet_Security_Repelling_the_Wily_Hacker?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/244427217_Firewall_Policy_Advisor_for_Anomaly_Detection_and_Rule_Editing?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/233730838_Limitation_of_Listed-Rule_Firewall_and_the_Design_of_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/233730838_Limitation_of_Listed-Rule_Firewall_and_the_Design_of_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/233730838_Limitation_of_Listed-Rule_Firewall_and_the_Design_of_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/253599145_Improving_cloud_network_security_using_the_Tree-Rule_firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266319157_A_Stateful_Mechanism_for_the_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266319157_A_Stateful_Mechanism_for_the_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266319157_A_Stateful_Mechanism_for_the_Tree-Rule_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/3236183_Conflict_classification_and_analysis_of_distributed_firewall_policies?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/3236183_Conflict_classification_and_analysis_of_distributed_firewall_policies?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/3236183_Conflict_classification_and_analysis_of_distributed_firewall_policies?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/2376741_An_Expert_System_for_Analyzing_Firewall_Rules?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/2376741_An_Expert_System_for_Analyzing_Firewall_Rules?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/2376741_An_Expert_System_for_Analyzing_Firewall_Rules?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/232616403_FIREMAN_A_toolkit_for_firewall_modeling_and_analysis?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/232616403_FIREMAN_A_toolkit_for_firewall_modeling_and_analysis?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/232616403_FIREMAN_A_toolkit_for_firewall_modeling_and_analysis?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/278333509_Multi-Pipelined_and_Memory-Efficient_Packet_Classification_Engines_on_FPGAs?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/278333509_Multi-Pipelined_and_Memory-Efficient_Packet_Classification_Engines_on_FPGAs?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/278333509_Multi-Pipelined_and_Memory-Efficient_Packet_Classification_Engines_on_FPGAs?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/286669966_MPFC_Massively_Parallel_Firewall_Circuits?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/286669966_MPFC_Massively_Parallel_Firewall_Circuits?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/286669966_MPFC_Massively_Parallel_Firewall_Circuits?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/270722867_A_New_Multi-tree_and_Dual_Index_based_Firewall_Optimization_Algorithm?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/270722867_A_New_Multi-tree_and_Dual_Index_based_Firewall_Optimization_Algorithm?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/270722867_A_New_Multi-tree_and_Dual_Index_based_Firewall_Optimization_Algorithm?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/278414096_Statistical_Dynamic_Splay_Tree_Filters_towards_Multilevel_Firewall_Packet_Filtering_Enhancement?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/278414096_Statistical_Dynamic_Splay_Tree_Filters_towards_Multilevel_Firewall_Packet_Filtering_Enhancement?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/278414096_Statistical_Dynamic_Splay_Tree_Filters_towards_Multilevel_Firewall_Packet_Filtering_Enhancement?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266556632_B-tree_based_two-dimensional_early_packet_rejection_technique_against_DoS_traffic_targeting_firewall_default_security_rule?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266556632_B-tree_based_two-dimensional_early_packet_rejection_technique_against_DoS_traffic_targeting_firewall_default_security_rule?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266556632_B-tree_based_two-dimensional_early_packet_rejection_technique_against_DoS_traffic_targeting_firewall_default_security_rule?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/266556632_B-tree_based_two-dimensional_early_packet_rejection_technique_against_DoS_traffic_targeting_firewall_default_security_rule?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/4080139_Diverse_firewall_design?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/4080139_Diverse_firewall_design?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/221425643_Linear-tree_rule_structure_for_firewall_optimization?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/221425643_Linear-tree_rule_structure_for_firewall_optimization?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/221425643_Linear-tree_rule_structure_for_firewall_optimization?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/300297527_Formal_modeling_and_verification_for_SDN_firewall_application_using_pACSR?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/300297527_Formal_modeling_and_verification_for_SDN_firewall_application_using_pACSR?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/300297527_Formal_modeling_and_verification_for_SDN_firewall_application_using_pACSR?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/300297527_Formal_modeling_and_verification_for_SDN_firewall_application_using_pACSR?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/269310977_Building_firewall_over_the_software-defined_network_controller?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/269310977_Building_firewall_over_the_software-defined_network_controller?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/269310977_Building_firewall_over_the_software-defined_network_controller?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/260487306_Towards_a_Reliable_SDN_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/260487306_Towards_a_Reliable_SDN_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/260487306_Towards_a_Reliable_SDN_Firewall?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/288916077_Netfilter's_connection_tracking_system_Login?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==
https://www.researchgate.net/publication/288916077_Netfilter's_connection_tracking_system_Login?el=1_x_8&enrichId=rgreq-acac5ef4037becaff9b09163486aa2b6-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczMDQ5MjtBUzozNTY0NDQ1OTI0NTk3NzZAMTQ2MTk5NDQyMTQxMg==

IEE
E P

ro
of

Priyadarsi Nanda is a senior lecturer in the
School of Computing and Communications, and
is a core research member at the Centre for
Real-time Information Networks, University of
Technology, Sydney. His research interests
include network QoS, network securities,
assisted health care using sensor networks, and
wireless networks. He has over 25 years of expe-
rience in teaching and research.

Zhiyuan Tan is a postdoctoral researcher in
Services, Cyber security and Safety Research
Group, Faculty of Electrical Engineering, Mathe-
matics and Computer Science, University of
Twente, the Netherlands. His research interests
include network security, pattern recognition,
machine learning and distributed computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 13

IEE
E P

ro
of

Queries to the Author

Q1. Please provide full bibliography for Ref. [6], [27], [29], [30].
Q2. Please provide page range for Ref. [25].

