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Semantic segmentation of Remote Sensing (RS) images involves the classification of each 
pixel in a satellite image into distinct and non-overlapping regions or segments. This task is 
crucial in various domains, including land cover classification, autonomous driving, and scene 
understanding. While deep learning has shown promising results, there is limited research that 
specifically addresses the challenge of processing fine details in RS images while also considering 
the high computational demands. To tackle this issue, we propose a novel approach that combines 
convolutional and transformer architectures. Our design incorporates convolutional layers with a 
low receptive field to generate fine-grained feature maps for small objects in very high-resolution 
images. On the other hand, transformer blocks are utilized to capture contextual information 
from the input. By leveraging convolution and self-attention in this manner, we reduce the need 
for extensive downsampling and enable the network to work with full-resolution features, which 
is particularly beneficial for handling small objects. Additionally, our approach eliminates the 
requirement for vast datasets, which is often necessary for purely transformer-based networks. 
In our experimental results, we demonstrate the effectiveness of our method in generating local 
and contextual features using convolutional and transformer layers, respectively. Our approach 
achieves a mean dice score of 80.41%, outperforming other well-known techniques such as UNet, 
Fully-Connected Network (FCN), Pyramid Scene Parsing Network (PSP Net), and the recent 
Convolutional vision Transformer (CvT) model, which achieved mean dice scores of 78.57%, 
74.57%, 73.45%, and 62.97% respectively, under the same training conditions and using the 
same training dataset.

1. Introduction

Semantic segmentation plays a pivotal role in numerous Remote Sensing (RS) applications [1–3]. This process involves assigning 
contextual labels to each pixel in an image, enabling a granular and comprehensive analysis of the scene. In the field of RS, the 
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semantic segmentation of multi-spectral images is especially critical for detailed analysis and data extraction from RS images. This 
technique is instrumental in identifying various land cover types and areas of interest, as it classifies individual pixels, providing a 
thorough understanding of the spatial arrangement and scope of different elements within the scene [4].

Semantic segmentation is extensively used in RS for purposes such as mapping land cover, analyzing vegetation, monitoring 
urban expansion, evaluating disasters, and conducting environmental surveys [5–7]. It extracts valuable insights from RS data, 
offering a more nuanced and detailed perspective than traditional classification methods. Deep learning (DL) models, particularly 
convolutional neural networks (CNNs), have demonstrated exceptional effectiveness in semantic segmentation tasks, learning to 
distinguish between different classes and objects using extensive training data. The proliferation of high-resolution satellite imagery 
and annotated datasets has significantly propelled the development and implementation of DL-driven semantic segmentation in RS 
[8].

Despite remarkable advancements in this field, semantic segmentation still faces several key challenges [9–11]. One major chal-
lenge is understanding and interpreting the spatial connections and context among objects of varying scales [12,13]. Current models 
often struggle to grasp the global context of a scene, leading to segmentation errors or incomplete analyses. The size variability of 
objects in RS images, ranging from expansive structures to smaller entities like vehicles or trees, poses another significant challenge. 
This size disparity often hampers the accuracy of DL models.

Furthermore, RS images often contain complex and varied backgrounds, including terrain, vegetation, and atmospheric condi-
tions. Implementing attention mechanisms in DL models for RS image segmentation is essential to tackle these issues [14]. The 
transformative power of transformer-based methods, known for their global modeling capabilities, is gaining traction in RS tasks 
[15].

This study introduces a transformer-based solution focusing on self-attention for semantic segmentation in RS. Leveraging vision 
transformers and attention mechanisms in RS semantic segmentation offers several benefits, including global context capture, spatial 
dependency recognition, and effective handling of intricate backgrounds. Our approach enhances the segmentation accuracy in RS 
by incorporating transformers and attention mechanisms, thereby addressing global context, diverse object sizes, spatial interactions, 
and contextual comprehension.

The principal contributions of this study are as follows:

• A vision transformer-based approach, fortified with a self-attention mechanism, is proposed for high-resolution RS image seman-
tic segmentation.

• The proposed methodology, integrating vision transformers and self-attention, effectively captures long-range dependencies 
and facilitates contextual understanding, thus allowing the model to perceive global context and spatial relations for precise 
segmentation in complex scenes.

• Inspired by the Swin transformer architecture, images are segmented into several non-overlapping regions instead of working 
on the entire image. Then, self-attention was applied to these specific regions. This strategy simplifies model optimization and 
reduces the need for extensive datasets.

• Various experiments were conducted to validate the efficiency of our proposed transformer-attention-based approach in RS 
semantic segmentation.

The remainder of this paper is organized as follows: Section 2 delves into related research in the domain. Section 3 introduces 
foundational concepts. Section 4 details our proposed methodology. Section 5 discusses our training methodology and the outcomes. 
Section 6 underscores the significance of each component of our model via an ablation study. Finally, Sections 7 and 8 present the 
discussion and conclusions, respectively.

2. Related work

In literature, several works have focused on semantic segmentation for RS. In [16], dilated convolutional layers without any 
downsampling were used to segment small objects from RS images. In [6], a technique that encodes features in two stages was 
introduced by the authors. In the first stage, a low receptive field was used to segment smaller objects, while in the second stage, 
downsampling was employed to increase the receptive field, facilitating the segmentation of larger objects. There have also been 
researches like Multi-Feature Network (MFNet) [17] introducing a multi-feature learning algorithm, incorporating high-level, low-
level features and class discriminative features, reducing the confusion between the classes. The authors in [18] have also presented 
a technique to reduce inter-class confusion. A three-stage mechanism was presented, featuring Image Block Segmentation (IBS) 
and Superpixel Cluster (SPC) as its main components. These components serve as pre-processing and post-processing algorithms, 
respectively.

The field of computer vision has been dominated by CNNs for a long time. Remarkable results have been shown by them in all 
vision tasks, such as image segmentation [19], object tracking [20], object detection [21], and classification.

Self-attention-based transformers gained quick popularity in Natural Language Processing (NLP) when they were introduced by 
Vaswani et al. [22]. Bidirectional Encoder Representations from Transformers (BERT) [23], which only uses an encoder from the 
transformer, is trained in two stages called pre-training and fine-tuning. During pre-training, the network is trained on unlabeled 
data, and then the weights are fine-tuned for any specific task. Popularity has been gained by transformers because they can read 
the entire sequence of words at once and create a relation between each word. The success of self-attention mechanisms in NLP have 
2

inspired their use in computer vision tasks [24–26].
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A pure transformer was directly applied to patches of images by Dosovitskiy et al. [27], achieving excellent results in comparison 
to state-of-the-art convolutional networks. It was demonstrated that vision transformers are enabled by self-attention to integrate 
information across the entire image, even in lower layers. Transformers were utilized as the backbone of their network by Ranftl et 
al. [28] in place of convolutional layers at multiple resolutions, setting new state-of-the-art performance in both monocular depth 
estimation and segmentation tasks.

In [29], the single-head and multi-head attention mechanisms were compared by Liu et al., with the suggestion that multi-head 
attention mechanisms result in much more stable training performance.

A novel unsupervised methodology for the efficient analysis and precise segmentation of RS images was introduced in [30]. 
Segmentation is conducted through a three-step process in this methodology. In the initial stage, the images were divided into 
equisized blocks. The mean values of the red, green, and blue components of the pixels within each block are computed, forming 
a feature vector. These feature vectors have a basic clustering algorithm applied to them to achieve a preliminary segmentation 
result. In the subsequent stage, a Bayesian approach was employed to enhance the preliminary segmentation outcome. Finally, a 
graph-based technique was employed in the third stage to identify regions with intricate texture structures.

A structure for accomplishing semantic segmentation of aerial images using incomplete annotations was suggested by Hua et al. 
[31]. The authors suggested labeling a small number of pixels with easy-to-draw scribbles. These annotations were utilized effectively 
through the proposed FEature and Spatial relaTional regulArization (FESTA) approach. Complementing supervised learning with an 
unsupervised signal, this technique has considered spatial and feature-related neighborhood structures.

In [32], an approach called Convolutional Vision Transformer (CvT) was introduced. The performance and efficiency of the 
existing Vision Transformer (ViT) were enhanced by incorporating convolutional elements, thereby amalgamating the strengths 
of both designs. This advancement was achieved via two principal adjustments: the integration of a novel convolutional token 
embedding within a hierarchy of Transformers and the utilization of a convolutional projection within a convolutional Transformer 
block.

A refined deep CNN was introduced in [33]. Building upon HRNet and PSPNet, this network has been engineered to achieve 
improved segmentation results, thus enabling profound scene analysis and elevating the quality of pixel-level semantic segmentation 
in high-resolution remote sensing images. The approach primarily revolves around multiband segmentation, employing a foundation 
of hierarchical multiscale segmentation research. Rule sets for the experimental region’s vegetation, buildings, roads, waters, and 
bare land were established. From this foundation, classification was extracted, and each pixel within the image was labeled with 
a corresponding category. Leveraging the structure of an image classification network allowed for the utilization of diverse levels 
of feature vectors to satisfy the classification requirements. The HRNet and PSPNet algorithms were employed for scene analysis, 
facilitating the acquisition of category labels for all pixels within an image.

A concept called Conv-PVT (Combination of Convolution Blocks and Pyramid Vision Transformer) was introduced in [34] to 
enhance the overall effectiveness of vision transformers. The authors integrated simple convolution blocks at the initial layer to 
minimize memory usage through input down-sampling. Comprehensive experiments had been conducted across various tasks, such 
as image classification, object detection, and segmentation using datasets like ImageNet-1k, COCO, and ADE20k. These experiments 
assessed the model’s accuracy, training time, memory consumption, and resilience. The outcomes indicated that Conv-PVT performed 
on par with the original PVT while surpassing the performance of ResNet and ResNetXt in certain downstream vision tasks. Moreover, 
it accomplished this while reducing training time by 60% and diminishing GPU memory usage by 42%. Additionally, Conv-PVT was 
found to have achieved twice the inference speed of PVT5.

Numerous approaches and techniques have been developed in the field of semantic segmentation, yet our proposed method 
establishes a unique position among the available solutions. Here, we highlight the key distinctions and improvements our approach 
provides relative to the discussed works:

• Resolution and Receptive Field Trade-off: The importance of details in RS is signified by the emphasis on high resolution, as 
shown by approaches like [16] and the two-stage encoding method proposed by [6]. Similarly, the self-attention mechanism is 
leveraged in our work, ensuring that both resolution and object segmentation are treated with paramount importance, thereby 
providing an optimal balance.

• Unsupervised Learning and Bayesian Refinement: The potential of unsupervised strategies is underscored by the methodol-
ogy proposed by Song & Qu [30], which involves clustering feature vectors and subsequently refining them through Bayesian 
techniques. Such unsupervised signals could be integrated into our primarily supervised method, potentially augmenting our 
segmentation outcomes with additional robustness, especially in scenarios of data scarcity.

• Sparse Annotations and Neighborhood Structures: The work of Hua et al. [31] revolves around the exploitation of sparse 
annotations, with an emphasis on neighborhood structures in both the spatial and feature domains. This could parallel the focus 
of our approach to capturing spatial context. By potentially incorporating such scribbled annotations, the adaptability of our 
model in real-world scenarios might be further enhanced.

• Feature Learning and Confusion Reduction: Emphasis on multi-feature learning for inter-class confusion reduction is provided 
by solutions like MFNet [17]. Upon this, our model builds by introducing an adaptive window-based self-attention, which is 
provided to yield more distinct and contextually accurate feature representations.

• Transformers in Vision with Convolutions: Impressive capabilities have been demonstrated by transformers in vision, as 
seen in [27] and [28], while newer works like CvT [32] merge convolutions with transformers. This fusion is mirrored by our 
approach, albeit with innovations tailored specifically for remote sensing, ensuring a more granular attention mechanism is 
3

provided.



Heliyon 10 (2024) e29396W. Boulila, H. Ghandorh, S. Masood et al.

Table 1

Summary of existing models.

Ref DL Method Main Steps Advantages Drawbacks

[17] Multi-Feature learning 
algorithm

Utilizes ASSP for contextual 
features.

Reduces class confusion like trees 
vs grass.

Struggles with generalization 
across diverse datasets.

[18] Three-stage mechanism for 
class confusion

Superpixel clustering and block 
segmentation.

Improves boundaries and 
computational efficiency.

Increased computational 
requirements, less efficient for 
real-time applications.

[35] Multiscale deformable CNN Light-weight network with dense 
conditional random fields.

Balanced computational 
complexity and feature extraction.

Computationally expensive, 
requires more training data.

[27] Transformer on image patches Self-attention on patches across 
multiple datasets.

Generalized but computationally 
heavy.

High computational cost, large 
training data requirement.

[36] Vision transformer on image 
windows

Self-attention within windows 
with cyclic shift.

Reduces computational 
complexity.

Challenges in capturing very fine 
details.

[37] YOLT and SSD for object 
detection

Resolution enhancement effects on 
detection performance.

Higher resolution improves mAP. Struggles with small or 
overlapping objects, SSD has lower 
accuracy.

[16] Full-resolution segmentation Dilated convolutions replace 
pooling layers.

Better at segmenting small objects. Increased computational load, 
slower inference times.

[30] Unsupervised segmentation Three-stage segmentation with 
Bayesian and graph-based 
methods.

Efficient and accurate for complex 
textures.

May not perform well compared to 
supervised methods with 
abundant, high-quality data.

[31] FESTA method for sparse 
annotations

Combines supervised and 
unsupervised learning.

Effective use of sparse annotations. Underperformance in complex 
scenes with intricate object 
relationships.

[32] CvT: Convolutions in ViT Hierarchy of Transformers with 
convolutional tokens.

Enhances ViT performance and 
efficiency.

Complexity in integration, 
difficulties in optimization and 
training.

[33] HRNet + PSPNet for high-res 
images

Multiband pixel-level 
segmentation.

Improved pixel-level segmentation. High computational requirements 
for high-resolution images.

[34] Conv-PVT for efficient training First-layer convolutions for 
down-sampling.

Faster training, less GPU memory. Trade-off with depth of feature 
extraction, affecting performance 
in some tasks.

• Hierarchical Multiscale Segmentation: The power of hierarchical multiscale segmentation is tapped into by the fusion of 
HRNet and PSPNet by Sun & Zheng [33]. Similarly, patterns across multiple scales are aimed to be captured by our model by 
harnessing the inherent capabilities of transformers, thereby providing richer contextual insights.

• Efficiency Enhancements in Transformers: The computational efficiency of transformers is aimed to be enhanced by the 
Conv-PVT model proposed by Zhang & Zhang [34]. This objective is aligned with our work, which focuses on computational 
efficiency through the selective application of self-attention and the optimization of computational demands for large-scale RS 
datasets.

The proposed method integrates features from several leading-edge techniques, tailoring them specifically to overcome the 
inherent challenges of semantic segmentation in RS. This will help to open new avenues and establish a foundation for further 
advancements in the field. A detailed comparison of our approach with existing models is provided in Table 1, which highlights the 
distinctive features, advantages, and potential limitations of each method. This comparative analysis underscores the contributions 
of our methodology, setting a new benchmark in the field of RS semantic segmentation.

3. Background

Semantic segmentation, the task of classifying each pixel in an image into a particular class, has become a pivotal computer vision 
problem with many applications, including medical imaging, autonomous driving, and remote sensing (RS) [38]. The objective is not 
just to identify the presence of specific features but to delineate the precise boundaries and spatial characteristics of these features 
within the image.

• Remote Sensing and its Unique Challenges: RS images, particularly high-resolution satellite images, pose distinct challenges. 
The vastness of the captured scenes implies high intra-class variability, numerous small objects, and significant scale variability. 
Conventional convolutional architectures might lose out on capturing such fine-grained details, especially when downsampling 
4

operations reduce the spatial resolution of feature maps.
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Fig. 1. Illustration of the self-attention mechanism applied per region.

• Transformers in Computer Vision: Initially designed for natural language processing tasks, they have been repurposed for 
computer vision problems due to their self-attention mechanism [39]. Unlike convolutional layers with a fixed and local receptive 
field, the self-attention mechanism can capture long-range dependencies and contextual information.

• Self-Attention Mechanism: The crux of the self-attention mechanism lies in its ability to compute a weighted combination of all 
input features based on their relevance. It utilizes three primary components – Query, Key, and Value – to derive these weights. 
The weight between any two pixels, say 𝑖 and 𝑗, in the image, is computed as a function of their corresponding Key and Query 
representations. This allows the model to focus on relevant parts of the image, regardless of their spatial proximity.

• CNNs in Remote Sensing: Traditional CNNs, while effective for many vision tasks, leverage pooling layers to gather context 
information, inevitably reducing the spatial resolution. This trade-off between spatial resolution and receptive field size is 
detrimental for RS, where the segmentation of smaller objects with high precision is of utmost importance [40,41].

In the subsequent sections, we delve into a novel approach that seeks to amalgamate the strengths of transformers and CNNs, aiming 
to address the unique challenges posed by RS images and enhance the granularity and accuracy of semantic segmentation [42].

4. Proposed method

This section delves deep into our proposed network architecture, elucidating both the rationale behind our design choices and 
the mathematical foundations that underpin its performance.

Central to our technique is the information retrieval capability of the key, query, and value mechanism. This mechanism is 
renowned for its ability to achieve a global receptive field. Transformer-based techniques, especially those employing self-attention, 
are powerful and generalized systems. However, they often demand vast amounts of data. This becomes a bottleneck for RS appli-
cations where datasets are inherently limited. The challenge arises from the nature of the self-attention mechanism: each output is 
intricately linked to all input values, making optimization a herculean task as the input size grows.

The convolutional operation is a linchpin in our approach, serving as the primary mechanism for spatial feature extraction. As 
a filter or kernel traverses the input feature map, it computes an output at each position. This output is derived from element-wise 
multiplication with the overlaid image segment, followed by summation. These adaptive filters, which undergo refinement during 
training, excel at discerning spatial patterns, ranging from edges to intricate textures. Their proficiency is contingent on their depth 
within the network. This operation is mathematically captured in Equation (1):

𝑂(𝑥, 𝑦) =
∞∑

𝑖=−∞

∞∑

𝑗=−∞
𝐼(𝑖, 𝑗) ⋅𝐾(𝑥− 𝑖, 𝑦− 𝑗) (1)

Here, 𝑂 represents the output feature map, 𝐼 the input feature map, and 𝐾 the kernel or filter.
Segmentation accuracy is significantly enhanced by assimilating information from neighboring pixels. However, indiscriminate 

aggregation from the entire image can be counterproductive, potentially decelerating optimization. Addressing this, we segment 
feature maps into fixed, non-overlapping regions. For each region, the Key, Query, and Value are computed, forming the bedrock for 
self-attention, as illustrated in Fig. 1. The self-attention mechanism is encapsulated by Equation (2):

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√
𝑑𝑘

)𝑉 (2)

In this equation, 
√
𝑑𝑘 acts as a scaling factor, with 𝑑𝑘 denoting the dimensionality of the keys and values. The matrices 𝑄, 𝐾 , and 𝑉

emerge from applying a Linear layer to input features, ensuring that the attention weights are appropriately scaled.
High-resolution RS imagery presents a diverse landscape of objects, varying in size and necessitating different receptive fields. 

Our encoder, depicted in Fig. 2, processes features at full resolution, effectively segmenting smaller objects. Concurrently, the self-
5

attention mechanism collates essential contextual information, providing a holistic view of the scene. Each convolutional block is a 
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Fig. 2. Overview of the proposed methodology’s architecture.

composite of six convolution layers, succeeded by a 1x1 kernel convolution layer. This layer plays a pivotal role, halving the channel 
count before feeding into the self-attention block. The block houses two self-attention layers, with the second layer undergoing a 
cyclic shift, a technique inspired by the Swin Transformer. This shift facilitates information sharing between windows, bolstering 
model performance. Features from self-attention and convolution blocks are concatenated, ensuring a rich feature representation. 
The convolutional block, enriched with both local and global features at each pixel, is empowered with a wealth of information. The 
subsequent 1x1 convolutional layer discerns the most pertinent information at each pixel by halving the channels. Downsampling 
employs a 2D convolutional layer with a 3x3 kernel, a stride of 2, and padding of 1, reducing spatial resolution by half. Upsampling 
leverages bilinear interpolation, complemented by two 3x3 kernel convolutional layers.

Algorithm 1 offers an overview of our technique’s inference pipeline, with various feature map notations elucidating the trans-
formation stages.

Algorithm 1 Transformer-based approach with self-attention for semantic segmentation in remote sensing.
Require: Satellite image 𝐼
Ensure: Semantic segmentation of the satellite image 𝐼
1: Divide feature maps into fixed non-overlapping windows: 𝐹𝑖 = 𝑓𝑖,1, 𝑓𝑖,2, ..., 𝑓𝑖,𝑛 , where 𝑖 denotes the 𝑖-th window and 𝑛 is the number of patches.
2: Process features in full resolution using convolutional layers to properly segment smaller objects: 𝐹 ∗

𝑖
= 𝑓 ∗

𝑖,1, 𝑓
∗
𝑖,2, ..., 𝑓

∗
𝑖,𝑛

, where 𝑓 ∗
𝑖,𝑗

is the processed feature of 𝑓𝑖,𝑗 .
3: Use self-attention mechanism to gather necessary context information: 𝐹 ′

𝑖
= SelfAttention(𝐹 ∗

𝑖
), where 𝐹 ′

𝑖
is the output feature map of self-attention on 𝐹 ∗

𝑖
.

4: Used a convolutional block with 6 convolution layers followed by a 1x1 convolution layer to reduce the number of channels by half: 𝐹 ′′
𝑖
= ConvBlock(𝐹 ′

𝑖
), where 

𝐹 ′′
𝑖

is the output feature map of the convolutional block on 𝐹 ′
𝑖
.

5: Concatenate self-attention and convolutional block features: 𝐹 ′′′
𝑖

= 𝑓 ′′′
𝑖,1 , 𝑓

′′′
𝑖,2 , ..., 𝑓

′′′
𝑖,𝑛

, where 𝑓 ′′′
𝑖,𝑗

= [𝑓 ′
𝑖,𝑗
, 𝑓 ′′

𝑖,𝑗
].

6: Downsample the image using a 2D convolutional layer with 3x3 kernel size, the stride of 2, and padding of 1: 𝐼 ′ = Downsample(𝐼).
7: Upsample the image using bilinear interpolation followed by 2 convolutional layers with 3x3 kernel size: 𝐼 ′′ = Upsample(𝐼 ′).
8: Return the semantic segmentation of the RS image: 𝑂.

5. Experimentation and results

We have used the Dota dataset [43] for the experimentation. It contains 1411 images with their segmentation masks. Each image 
was cropped into 512x512 patches along with their segmentation masks. These patches were then saved and used as training data. 
We had 8,972 samples, from which we separated them with 8:2 ratio.

The dataset is highly imbalanced; therefore, while splitting data into train and validation sets, we ensured that each class was 
represented in each dataset at equal proportions. To prevent over-fitting during training, the input samples are augmented using 
horizontal and vertical flips at random.

We used Adam as our optimizer with a learning rate of 0.001 and momentum of 0.9. Cross-entropy loss, along with dice loss, 
was used to train our network over 100 epochs. Other hyperparameters, such as dropout rate and weight decay, were set to 𝑋 and 
𝑌 , respectively, to prevent overfitting and ensure model convergence. We also utilized batch normalization after each convolutional 
layer to stabilize learning and accelerate the training process. The training was performed with a batch size of 𝑍 , striking a balance 
6

between computational efficiency and memory usage.
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5.1. Dataset description

The DOTA (Dataset for Object Detection in Aerial Images) encompasses a diverse and extensive collection of aerial photographs, 
recognized for their variety and complexity. This makes it a prime benchmark for testing both object detection and semantic seg-
mentation methodologies within the scope of RS imagery [43].

5.1.1. Dataset size and diversity

Comprising more than 2,800 aerial photographs, the DOTA dataset’s image dimensions range from roughly 800x800 to 
4,000x4,000 pixels. These high-resolution photographs capture a broad spectrum of scenes, from natural landscapes to urban envi-
ronments, featuring diverse objects like vehicles, buildings, ships, airplanes, and athletic fields. The dataset covers a wide range of 
environmental conditions and lighting variations, offering a rich and varied collection for thorough assessment.

5.1.2. Annotations and object categories

One of the significant attributes of the DOTA dataset is its comprehensive annotation system. Each photograph within the dataset 
is accurately marked with oriented bounding boxes, providing precise details on the position and orientation of various objects. It 
includes 15 distinct object categories, each with variations in size, shape, and orientation, contributing to the dataset’s intricacy and 
the challenge of precise object detection.

5.1.3. Challenges posed by the dataset

The DOTA dataset introduces several common challenges associated with aerial image analysis, notably:

• Scale Variability: The dataset features objects of varying sizes, requiring algorithms that are capable of accurately detecting 
objects of both large and small dimensions.

• High Object Density: Certain images in the dataset display a high density of objects, necessitating algorithms that can effectively 
differentiate between objects in close proximity.

• Diverse Backgrounds: The wide array of landscapes and urban settings demands robust feature extraction techniques to manage 
the complexity of various backgrounds.

5.1.4. Suitability for evaluating generalizability

The diversity and intricacy of the DOTA dataset render it an excellent tool for gauging the generalizability of object detection and 
segmentation methods. Its array of object types and challenging scenarios serve as a rigorous testing ground to evaluate the efficacy 
of different algorithms under diverse conditions.

In relation to our proposed approach, the DOTA dataset, with its varied contents and inherent challenges, validates the adapt-
ability and robustness of our model, affirming its efficiency without the necessity for extensive datasets. The dataset effectively 
encapsulates the complexities of real-world scenarios, enabling a comprehensive evaluation of our method’s performance and its 
general applicability.

5.2. Computational resource analysis

This section delves into the computational demands and processing times required by our proposed model throughout its training 
phase, offering a quantitative review of its efficiency across 100 epochs. This analysis is essential for understanding the practical 
deployment of the model in scenarios where computational resources might be limited.

We conducted our experiments on a system equipped with an RTX 3060 12 Gb GPU and a Core i7 12th generation CPU. The 
batch size was maintained at 8, and we used an image resolution of 128x128 pixels. This setup ensured that we did not fully exploit 
the GPU’s maximum capacity, thus allowing us to evaluate the model’s performance without pushing the hardware to its limits.

Throughout 100 epochs, a consistent observation was made regarding GPU memory usage: 45.65 MB was allocated, and 1668.00 
MB was cached for each epoch. The stability of these GPU memory metrics is notable, highlighting the efficiency of our model in 
terms of memory usage. Despite the introduction of additional computational elements in our architectural design, the minimal rise 
in memory allocation indicates our effective architectural strategies, which prevent excessive memory consumption. This aspect is 
particularly beneficial when scaling up to handle larger datasets or images with higher resolutions.

5.3. Evaluation matrix

The assessment of segmentation models requires diverse metrics, each shedding light on different aspects of a model’s precision 
and efficacy. We have selected a comprehensive array of evaluation metrics for our model, including dice score, intersection over 
union [IOU], precision, recall, specificity, and accuracy. Each metric offers a distinct perspective on the model’s capabilities.

Dice score Also known as the Sørensen-Dice coefficient, the Dice Score measures the degree of similarity between two binary 
samples. In segmentation contexts, it assesses how closely the predicted mask aligns with the actual ground truth. A higher Dice 
7

Score indicates a closer resemblance between the model’s predictions and the real data.
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Table 2

Comparison of the segmentation accuracy.

Network mIoU Dice Score Precision Recall Specificity Accuracy

PSP Net 64.89 73.45 68.84 75.97 99.41 98.67
FCN 65.72 74.57 59.14 69.73 98.53 96.26
UNet 71.62 78.57 80.31 85.13 99.66 99.26
CvT 54.11 62.97 67.93 70.37 99.47 98.60

Proposed Network 73.57 80.41 81.36 85.83 99.67 99.30

Table 3

Comparison of the segmentation accuracy.

Network AP65 AP75 AP80 AP90 mAP

PSP Net 87.75 83.60 80.64 70.14 80.53
FCN 91.79 87.62 83.92 64.40 81.93
UNet 92.72 87.92 83.39 68.07 83.02
CvT 90.49 90.15 89.97 89.37 89.99

Proposed Network 91.19 91.03 90.91 90.62 90.93

Intersection over union (IoU) This metric, similar in concept to the Dice Score but differing in its mathematical formulation, evaluates 
the overlap between two binary samples. A model achieving a higher IoU indicates a more significant overlap between its predictions 
and actual segmentations.

Precision Precision assesses the accuracy of positive predictions made by the model. It evaluates the proportion of true positive 
samples among all positive predictions. A model with high precision suggests fewer false positives and greater reliability in detected 
objects within the segmentation task.

Recall Also known as sensitivity, recall measures the model’s ability to correctly identify true positives. In segmentation, it reflects 
the model’s capacity to detect all relevant objects or regions. A higher recall implies fewer true positives being missed.

Specificity This metric focuses on the correct identification of negatives, complementing recall. For segmentation, it means accu-
rately excluding areas that are not of interest.

Accuracy Accuracy provides a comprehensive view of the model’s performance, considering both positive and negative predictions. 
It reflects the frequency of the model’s predictions aligning with the truth across the entire dataset.

Average precision (AP) AP, calculated at different IoU thresholds, offers a balance between precision and recall for specific overlap 
criteria between predicted and actual masks. Higher AP values at more stringent thresholds indicate the model’s precision and 
strength in segmentation tasks.

Mean average precision (mAP) This metric represents the average of AP values across different IoU thresholds, providing a singular 
metric that encapsulates the model’s overall precision in segmentation. A higher mAP indicates strong performance in accurately 
predicting segmentation masks across various levels of overlap stringency.

Tables 2 and 3 provide a comparative analysis of various segmentation models using the metrics discussed. Our proposed network, 
when benchmarked against other popular architectures, demonstrates a commendable performance, highlighting its efficacy in 
addressing segmentation challenges.

Fig. 3 shows the semantic segmentation results achieved by our proposed network, UNet, FCN, and PSP Net, illustrating the 
practical application and visual performance of these models in comparison.

5.4. Early training performance evaluation

5.4.1. Validation metrics improvement

Following the 100-epoch training regimen on the Dota dataset, we observed notable enhancements in the model’s validation per-
formance. By the 10th epoch, validation IoU achieved 44.9%, and validation Dice reached 54.24%, signifying the model’s enhanced 
precision in segmenting images accurately.

Validation accuracy peaked at 97.63%, indicating the model’s robust overall performance on the validation set. This was further 
supported by validation precision, which stood at 56.69%, denoting a substantial rate of true positives amongst the predicted 
positives.

Moreover, validation recall and validation specificity were recorded at 54.48% and 98.85%, respectively, underscoring the mod-
8

el’s efficacy in correctly identifying both positive and negative samples—an essential aspect, particularly in imbalanced datasets.
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Fig. 3. Semantic segmentation results achieved by our proposed network, UNet, FCN, and PSP.

5.4.2. Analysis of average precision at IoU thresholds

The AP values quantified our model’s precision across different IoU thresholds, which offer a detailed view of its precision and 
9

recall. At the 65% IoU threshold (AP65), the model registered an AP of 74.7%, and it remained resilient at higher thresholds with 
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Fig. 4. The distribution of validation metrics over the first 10 epochs.

Fig. 5. AP metric progression over initial 10 epochs for different IoU thresholds and mAP.

AP75, AP80, and AP90 at 73.93%, 73.48%, and 72.02%, respectively. The mAP across these varied thresholds stood strong at 73.53%, 
indicative of the model’s consistent accuracy in segmentation.

5.4.3. Visualization of validation metrics

To clearly depict the progression of the model’s validation performance, we propose dividing the visualization into three separate 
figures: 4, 5, and 6. Fig. 4 illustrates the distribution lines for Validation IoU, Validation Dice, Validation Precision, and Validation 
Recall. Fig. 5 focuses on the distribution of AP65, AP75, AP80, AP90, and mAP. Lastly, Fig. 6 presents Validation Accuracy and 
10

Validation Specificity, providing a comprehensive view of the model’s performance.
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Fig. 6. Validation accuracy and specificity evolution over first 10 epochs.

Table 4

Model performance consistency across four runs over various epochs.

Metric
Epoch 10 Epoch 50 Epoch 100

Mean Std Mean Std Mean Std

AP65 0.6643 0.0923 0.8529 0.0360 0.8833 0.0379
AP75 0.6590 0.0915 0.8497 0.0374 0.8809 0.0381
AP80 0.6560 0.0908 0.8480 0.0376 0.8794 0.0385
AP90 0.6457 0.0902 0.8431 0.0395 0.8760 0.0387
mAP 0.6563 0.0912 0.8484 0.0377 0.8799 0.0383
IOU 0.4418 0.0151 0.4966 0.0257 0.5463 0.0334
Dice 0.5340 0.0163 0.5888 0.0271 0.6411 0.0311
Accuracy 0.9773 0.0022 0.9825 0.0014 0.9849 0.0012
Precision 0.5240 0.0451 0.6192 0.0276 0.6173 0.0218
Recall 0.5586 0.0335 0.6794 0.0256 0.7435 0.0204
Specificity 0.9907 0.0028 0.9935 0.0012 0.9959 0.0007

5.5. Quantitative evaluation of model consistency

Several experiments were conducted to ascertain the dependability and uniformity of our model. We analyzed both the average 
and standard deviation of critical performance indicators at different training stages, encompassing Average Precision (AP) at various 
IoU levels and vital validation metrics at the 10th, 50th, and 100th epochs.

Results in Table 4 offer a comprehensive view of the model’s performance consistency encapsulated at these distinct epochs.
The detailed examination of our model’s performance at epochs 10, 50, and 100, as illustrated in Table 4, reveals significant 

insights into its developmental trajectory and stability during training. From this data, several key insights emerge.
Firstly, there is a noticeable trajectory of performance enhancement from the 10th to the 100th epoch, as reflected by an increase 

of mean values in mAP, Validation IOU, Dice Score, and other metrics. This improvement signifies the model’s growing proficiency 
in delivering accurate and precise segmentation as training progresses. The increase in mAP, in particular, demonstrates the model’s 
enhanced ability to discriminate between classes accurately.

However, an interesting observation was the high accuracy achieved by the proposed model within the first few epochs of 
training, which did not significantly increase in subsequent iterations. This phenomenon can be primarily attributed to the quality 
and simplicity of the DOTA dataset, which facilitated rapid initial learning. The dataset’s well-annotated and clear imagery allowed 
our model to quickly assimilate the fundamental features necessary for accurate object detection and segmentation of aerial images.

Despite achieving high accuracy in early epochs, we continued the training for an extended number of epochs. The purpose was 
to refine the model’s understanding of more nuanced aspects of the data and to enhance its generalization capabilities, especially 
11

for subtle and complex scenarios not immediately captured in the early training phase. Training our model on additional epochs 
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Fig. 7. Results achieved without self-attention.

contributed more towards enhancing the model’s robustness and its ability to handle a variety of complex segmentation tasks. 
Moreover, the declining standard deviations over epochs in various metrics further indicate a reduction in performance variability, 
thereby enhancing the model’s predictability and reliability across different scenarios. This consistency is crucial in RS applications 
where varied conditions and object presentations are common. In addition, the consistent improvement in both Precision and Recall 
metrics throughout the training epochs highlights the model’s increasing accuracy in correctly identifying positive cases (Precision) 
while minimizing false negatives (Recall). This balance is essential in scenarios where the cost of missing true positives can be high. 
It is also noteworthy that the Specificity metric remains high throughout the training process, reaffirming the model’s ability to 
accurately identify true negatives. This is particularly important in datasets with a large number of negative samples, such as the 
DOTA dataset used in our study.

As we move forward, it is imperative to consider how these findings can be translated into practical applications in RS. The ability 
of our model to effectively segment objects in high-resolution aerial images opens up avenues for its application in various fields 
such as urban planning, agricultural monitoring, and environmental conservation. Its robust performance across diverse conditions 
suggests that it can be a reliable tool in these domains.

Future research could focus on further improving the model’s performance with more diverse and challenging datasets. Exper-
imentation with different architectures or hybrid models combining the strengths of various techniques could also yield fruitful 
results. Additionally, exploring dynamic windowing techniques, as mentioned earlier, could provide a more adaptive approach to 
handling varying object sizes and complexities in images.

6. Ablation study

To understand the impact of each architectural component on our results, we conducted a series of experiments by modifying 
parts of the model and analyzing the outcomes of each variant.

6.1. Without self-attention

In this variant, we removed the self-attention mechanisms from our architecture. This modification was intended to assess the 
role of self-attention in capturing context information necessary for effective segmentation.

The results, as illustrated in Fig. 7, reveal a reduced capacity for segmenting detailed features such as the tail of the airplane 
and distinguishing between the plane and its shadow (see Fig. 7(a)). Similarly, in tasks where the objective is to identify cars (small 
objects) adjacent to buildings (large objects), as shown in Fig. 7(b), there is a noticeable challenge. These observations highlight the 
significance of self-attention mechanisms in managing complex segmentation tasks. In Fig. 7, ‘GT’ refers to the ground truth, and 
‘Predicted’ refers to the semantic segmentation performed without the self-attention mechanism.

6.2. With self-attention

Contrasting the previous setup, we applied the self-attention mechanism across the entire image without dividing the features 
12

into non-overlapping areas. This experiment aimed to evaluate the effectiveness of global versus localized self-attention.
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Fig. 8. Results achieved by applying self-attention to the whole image.

Table 5

Performance comparison of the model with and without self-
attention at epoch 100.

Measure Without Self-Attention With Self-Attention

mIoU 42.81 73.57

Dice Score 52.33 80.41

Precision 67.02 81.36

Recall 70.26 85.83

Specificity 99.47 99.67

Accuracy 98.52 99.30

mAP 85.24 90.93

As seen in Fig. 8(a,b), while there is an improvement in large object segmentation, the model still struggles with accurately 
differentiating between closely situated classes.

6.3. Performance comparison

We conducted a performance comparison between the model variants with and without self-attention. The model without self-
attention achieved a validation mIoU of 42.81%, Dice Score of 52.33%, Precision of 67.02%, Recall of 70.26%, Specificity of 99.47%, 
and Accuracy of 98.52%, with an mAP of 85.24%. In contrast, the model with self-attention significantly outperformed in all metrics, 
indicating the efficacy of self-attention in improving segmentation accuracy. This comparative analysis is summarized in Table 5.

6.4. Impact of self-attention on computational efficiency

In addition to performance metrics, we analyzed the average epoch time for models with and without self-attention mechanisms. 
The inclusion of self-attention led to a decrease in average epoch time, enhancing processing efficiency as illustrated in Fig. 9.

Furthermore, we present a distribution of the mAP over the training epochs for both model variants, visually depicting the 
performance improvement over time. The distribution is shown in Fig. 10.

These comparative analyses underscore the significant impact of the self-attention mechanism on both the model’s segmentation 
accuracy and computational efficiency.

7. Discussion

This study proposes a transformer-based approach for semantic segmentation in RS. This approach utilizes a self-attention mech-
anism to improve the segmentation of smaller objects by processing features in high resolution. The self-attention mechanism used 
in this way ensures that the model does not rely on pooling operations for context information.

In this study, semantic segmentation of multi-spectral images is proposed. These images are acquired across a diverse range of 
13

electromagnetic spectrum wavelengths. Each band in a multi-spectral image corresponds to a distinct wavelength interval, offering 
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Fig. 9. Comparative distribution of average epoch times.

Fig. 10. Distribution of mAP over training epochs for models with and without self-attention.

unique insights. This rich, detailed data allows for highly accurate discrimination and classification of various materials and objects, 
rendering multi-spectral imaging exceedingly advantageous for RS applications, including land cover categorization, vegetation 
health analysis, and aquatic quality monitoring. The primary advantage of multi-spectral imaging lies in its enhanced classification 
precision, owing to the extra spectral details that can distinguish features according to their spectral signatures.

In order to gather an adequate amount of context information, a large enough receptive field is necessary for the segmentation 
or detection of any object. This is normally done by adding multiple pooling layers, which also reduces the spatial resolution of the 
features [44].

To properly segment small objects, it is imperative that we process the features in high resolution while also maintaining a large 
14

enough receptive field [16]. This is where our self-attention mechanism shines; convolutional layers are responsible for processing 
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local information with a low receptive field, while self-attention mechanisms provide the necessary context information. The authors 
in [6] have used dilated convolution to layers to process local features and then combined them with the global features achieved 
using downsampling. This is also a good way to solve this issue. However, it requires multiple simultaneous dilated convolution 
layers to achieve a reasonable receptive field.

Unlike traditional transformer mechanisms [27], our self-attention mechanism does not have a global receptive field. It can be 
argued that not having a global receptive field might limit the performance of our model. This might be true in applications that work 
with small input images. However, when working with high-resolution RS images, it is impractical to apply a global receptive field 
since it would drastically increase the resources needed to run the model. To reduce the computational requirements, we divided 
our input image into several windows, and then self-attention was applied in each of these windows. This gives a limited amount of 
surrounding information to each pixel and is easier to optimize. Although using Windows can reduce the need for huge datasets to 
some extent, increasing the size of the dataset can still improve the generalization of the network and its overall performance.

The amount of context information required is different for each object. In our case, the window size is fixed; therefore, the 
amount of surrounding information is also fixed. Future works can try to integrate dynamic windowing where the size of the window 
changes as per the requirement of the task, allowing the model to better understand the spatial relationships between different parts 
of the image and to focus on the most important features for classification.

8. Conclusion

This study proposed a technique that combines convolution and self-attention mechanisms. It shows the importance of dividing 
the image into windows and applying a self-attention mechanism in each window. This windowing method can reduce computational 
resources, and unlike traditional transformer networks, it also eliminates the need for large datasets and pretraining of the networks. 
Without the information gathered by self-attention mechanisms, our model seems to face problems identifying larger objects. Remov-
ing the windowing mechanism and applying self-attention to the whole image has been shown to have optimization problems and 
would also require more computational resources. This approach can be used to identify a wide range of objects in satellite images, 
such as buildings, roads, water bodies, vegetation, vehicles, and other objects. For future work, we plan to apply our approach to 
additional datasets in order to comprehensively evaluate and verify its performance across diverse scenarios.
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