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Abstract—We propose a new way of looking at local optima
networks (LONs). LONs represent fitness landscapes; the nodes
are local optima, and the edges are search transitions between
them. Many metrics computed on LONs have been proposed
and shown to be linked to metaheuristic search difficulty. These
have typically considered LONs as describing static structures.
In contrast to this, Laplacian dynamics (LD) is an approach to
consider the information flow across a network as a dynamical
process. We adapt and apply LD to the context of LONs. As
a testbed, we consider instances from the quadratic assignment
problem (QAP) library. Metrics related to LD are proposed and
these are compared with existing LON metrics. The results show
that certain LD metrics are strong predictors of metaheuristic
performance for iterated local search and tabu search.

I. INTRODUCTION

Local optima networks (LONs) [1] capture the interplay
between an optimisation algorithm and a configuration space.
They record the nature of the local optima level in a fitness
landscape and have provided insight about search behaviour
in combinatorial [2], [3], [4] and continuous problems [5], [6].
LONs have been analysed from a number of different perspec-
tives. A LON model variant where neutral-fitness connected
nodes are compounded into a single node, and where edges
between local optima are non-deteriorating (monotonic) in fit-
ness, was introduced and demonstrated on number partitioning
[7]; these are compressed monotonic LONs: CMLONs for
short. The compressed nodes can be viewed as sub-networks
in their own right. The CMLON model has been considered
in subsequent works on problems such as MAX-SAT [8],
BBOB [6], feature selection [9], and parameter tuning [10].
CMLONs have also been constructed for the QAP [11], [12].
Literature has indicated that metrics relating to the nature
of these networks can be connected to problem and search
difficulty. For example, the original study [7] found that the
size of compressed nodes decreased with an increase of the
number partitioning phase transition parameter; a study on
MAX-SAT found the largest compressed node tended to be
the global optimum in easier problems.

Another line of research on LONs is community or cluster
detection, where groups of local optima are identified with
denser connectivity among themselves than with the rest of
the network. This kind of analysis has been conducted on
LONs for the QAP [13], [14] and NK landscapes [15]. The

existence of multiple clusters — and the modularity (strength)
of them — has been linked to search difficulty. A related
concept is that of funnels. In evolutionary computation, a
funnel is a fitness landscape structure which can be defined
as a basin of attraction at the level of local optima. In the
literature, the end of a funnel has been termed a funnel floor
or a sink. These points are attractors and can be optimal or
sub-optimal. Measurements related to landscape funnels have
gained attention in recent years, perhaps because they can be
computed directly from a LON. Funnel metrics, such as the
existence of sub-optimal funnels [8], the incoming flow to the
apex of optimal funnels [12], or the depth of funnels [16] seem
to have a relationship with problem or search difficulty. Fractal
analysis has also been applied to LONs; associated metrics,
such as fractal dimension, have been proposed and appear to
be linked to metaheuristic performance [17].
We consider in this article the flow of information encoded
within LONs; that is, how the evolutionary dynamics proceed
on the fitness landscape. From previous literature, one of
the most closely-related works proposed Markov Chain local
optima networks [18], where transition probability information
is added to the model and used to compute hitting times.
However, a full enumeration of the solution space is needed
for this approach, which entails scalability issues. There is also
the contributions of Herrmann et al. on computing pagerank
centrality in the context of LONs [19], [20]. Pagerank is a
measurement of centrality typically used for directed graphs;
it captures the influence of each node, taking into account di-
rectionality of edges. Herrmann’s papers demonstrated that the
pagerank centrality of the global optimum is highly correlated
to search difficulty.
In this work, we explore new ways of measuring the flow
of information on LONs. A new visualisation method which
emphasises the flow between source local optima (at the
beginning of search) and sink local optima (search termination
points) is presented. Additionally, we look at sampled LONs
through a Laplacian lens. To this end, we compute and
proposing several metrics associated with Laplacian dynamics
(LD). These are shown to have relationships with metaheuristic
search through a correlation analysis and algorithm perfor-
mance prediction models.



II. PRELIMINARIES

A. Quadratic Assignment Problem

a) Definition: The Quadratic Assignment Problem
(QAP) [21] involves assigning n facilities to n locations. The
search space is permutations of size n; therefore, n! is the size
of this space. In a solution s, si gives the location of a facility i.
There is a distance (cost) between each pair of locations and
there is a flow (cost) between each pair of facilities. The costs
are specified by the distance matrix A and the flow matrix
B, which together define an instance. The objective function
associated with a permutation s is quadratic and considers the
sum of pairs of assignment costs (an assignment cost is the
product of a distance and a flow cost):

f(s) =

n∑
i=1

n∑
j=1

AsisjBij (1)

where n denotes the number of facilities and locations, and
where matrix entries are formulated with subscript; for exam-
ple, Asisj is the distance between the locations si and sj .

b) Instances: In this work we use moderate-size in-
stances (between 25-50 facilities and locations) from the well-
studied QAP library (QAPLIB)1 [22]. From this set, 11 out
of 40 instances do not have known global optima (they have
not been solved yet); in these cases, we refer to their best
known fitness value as being the global optimum. In general,
QAP instances fit into four categories, depending on the
nature of their distance and flow matrices [23], [24]: uniform
random distances and flows, random flows on grids, real-world
problems, and random real-world like problems. The instance
group used in the present work contains all four classes.

B. Monotonic Local Optima Networks

a) Monotonic LON: We describe a monotonic LON
(MLON) by a directed graph G = (L,E), where the nodes
in set L are the local optima and the edges in set E are the
monotonic perturbation edges.

b) Local optima: We assume a search space S with
a fitness function f and a neighbourhood function N ; these
comprise the fitness landscape. A local optimum l ∈ L, which
in the QAP is a minimum, is a solution l such that ∀s ∈ N(l),
f(l) ≤ f(s). Notice that the inequality is not strict — this
accounts for the possible presence neutrality (local optima of
equal fitness).

c) Monotonic perturbation edges: Edges E are di-
rected and based on the perturbation operator (k-exchange,
k > 2). There is an edge from local optimum l1 to local
optimum l2, if l2 can be obtained after applying a random
perturbation (k-exchange) to l1 followed by local search, and
f(l2) ≤ f(l1). These edges are called monotonic as they
record only non-deteriorating transitions between local optima.
Edges are weighted with estimated frequencies of transition.
The weight is the number of times a transition between two
local optima basins occurred with a given perturbation. In this

1http://www.seas.upenn.edu/qaplib/

work, we consider a set of monotonic local optima networks
from previous literature [17]. For problems of any realistic
size, a full enumeration of local optima and edges between
them is not possible. These are therefore sampled LONs.
Further details of their construction will be provided in Section
IV-A.

III. METHODOLOGY

A. Laplacian dynamics on directed graphs

As defined in Sec. II-B, LONs are described by a di-
rected graph (digraph) G = (L,E) with nodes ℓi ∈ L,
i = 1, 2, . . . , n, representing local optima li and edges eij ∈ E
describing perturbation edges. The edges are directed so that
eij implies an edge from ℓi to ℓj . We may interpret the graph
as a model of how information flows over the edges from node
to node. Thus, we may informally say that a directed edge eij
means information goes from node ℓi to node ℓj (ℓi influences
ℓj), but also that ℓj gets information from ℓi (ℓj reacts on, or
is influenced by, or “sees”, ℓi).

For the following discussion, some definitions about struc-
ture and connectedness in directed graphs are needed. Typ-
ically, LONs are weakly connected graphs. It means the
underlying graph (obtained by ignoring the direction of edges)
is connected. Weakly connected implies there are no isolated
nodes (isolated nodes may have self-loops, but otherwise have
neither incoming nor outgoing edges connecting them to other
nodes), but also that there are nodes which are not reachable
from any other node of the LON [25]. Moreover, a LON
may have strictly connected components (SCCs). A SCC is a
subgraph of the LON where for every ordered pair of nodes, ℓi
and ℓj , there is a directed path not only from ℓi to ℓj but also
from ℓj to ℓi. Thus, every node of a SCC is reachable from
any other node of the SCC, which implies that for monotonic
LONs all nodes in a SCC have the same fitness. We notice
that SCCs are related to compressed LONs (CMLONs) [7].
While SCCs consider direction in their criteria, the CMLON
model allows a plateau of local optima to be compressed into
one node if they form a weakly connected component; that is,
if there is a path between the nodes — regardless of direction.

LONs describe how evolutionary dynamics on fitness land-
scapes moves towards better fitness. This implies source and
sink nodes [7], [14]. A source node is a node with no incoming
edge from another node (a self-loop is permitted). Source
nodes are the initial optima and thus constitute the starting
points of evolutionary search. A sink node is a node with no
outgoing edge to another node, again a self-loop is possible.
Sink nodes represent optima where no further improvement
has been found and thus the terminal points of evolutionary
search. Source and sink nodes may also group as SCCs. A
source SCC is a SCC with no ingoing edge from a node
outside the SCC. A sink SCC is a SCC with no outgoing
edge to a node outside the SCC.

Dynamical processes on G can be described by Laplacian
operators [26]. For defining these operators we need the
(combinatorial) adjacency matrix A with elements aij > 0
indicating an edge eji from ℓj to ℓi. If a node ℓi has no

http://www.seas.upenn.edu/qaplib/


incoming edges, we impose a loop by aii = 1. Thus, the
in-degree di =

∑n
j=1 aij is non-zero for all nodes, we have

a non-singular (and consequently invertible) in-degree matrix
D = diag (d1, d2, . . . , dn), and can define the random walk
Laplacian by

L = I −D−1A. (2)

Based on the random walk Laplacian L, we have two dynam-
ical processes on G (which are dual to each other) by the first
order Laplacian differential equations

ṗ = −Lp (3)
q̇ = −qL. (4)

The process (3) is frequently called consensus, while the
process (4) is known as diffusion. For understanding the
dynamics on the directed graph G, we are interested in the
solutions of the Laplacian differential equations (3) and (4),
which are p(t) = exp (−Lp)p0 and q(t) = q0 exp (−qL),
and particularly in the asymptotic dynamics lim

t→∞
p(t) and

lim
t→∞

q(t). Both processes describe how information flows on
the graph, but with an opposite directional focus. In other
words, the dual processes of consensus and diffusion describe
for the whole graph where information comes from and goes
to. The consensus problem specifies how information flows
according to the orientation of the graph and spreads over
the entire graph. It eventually tracks the sinks of information.
Diffusion, on the other hand, characterizes the flow contrary
to the orientation of the graph, and thus reversed to the flow
of information. It thus tracks the sources of information.

Recently, it was shown by Veerman & Kummel [27] that
for weakly connected digraphs the asymptotic solutions of the
Laplacian differential equations (3) and (4) can be obtained by
the left and right kernels of the Laplacian L. We write Γleft for
the left kernel and Γright for the right kernel with Γleft ·L = 0T

and L · Γright = 0. The asymptotic solutions are lim
t→∞

p(t) =

Γp0 and lim
t→∞

q(t) = q0Γ with Γ = Γright⊗Γleft. The solutions
imply that for each node ℓi we can track sinks and sources of
information on the LON by setting initial conditions p0 and q0
and analyzing Γp0 and q0Γ. As a simple example consider the
LON in Fig. 1. The LON has 4 source nodes (ℓ1,ℓ3-ℓ5) and 4
sink nodes (ℓ7,ℓ10-ℓ12). Three of the source nodes (ℓ3-ℓ5) form
a strictly connected component (SCC), which also applies to
two of the sink nodes (ℓ11-ℓ12). We consider the LON with
unity weights, that is for all aij > 0, we have aij = 1. With
the matrix

Γ =
1

6



6 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 2 0 0 0 0 0 0 0
0 0 2 2 2 0 0 0 0 0 0 0
0 0 2 2 2 0 0 0 0 0 0 0
0 0 2 2 2 0 0 0 0 0 0 0
0 0 2 2 2 0 0 0 0 0 0 0
3 0 1 1 1 0 0 0 0 0 0 0
3 0 1 1 1 0 0 0 0 0 0 0
3 0 1 1 1 0 0 0 0 0 0 0
3 0 1 1 1 0 0 0 0 0 0 0
3 0 1 1 1 0 0 0 0 0 0 0



Fig. 1. Simple example of a LON for illustrating LD.

specifying the solution of the Laplacian differential equations,
we can track the information flow on the LON in Fig. 1 as
follows.

For analyzing the information flow either from or to a node
ℓi, we set the initial condition 1(ℓi), which concentrates the
effect on this node and is an unit vector with a unity element
at position i and zero elements otherwise. For instance, for
the local optimum associated with the first node ℓ1, we have
1(ℓ1) = (1 0 0 0 0 0 0 0 0 0 0 0)T . Thus, according to consensus
the quantity Γ1(ℓ1) =

1
6 (6 6 0 0 0 0 0 3 3 3 3 3)

T describes the
information flow from ℓ1 to the entire LON. We see that ℓ1
influences itself and the nodes ℓ2 as well as ℓ8–ℓ12 which are
all the nodes that are reachable by directed paths connected
to ℓ1. Only from source nodes (which can be single nodes or
nodes in SSCs) information flows to the LON. Thus, we have
a metric on the information flow for each source node by the
corresponding columns of Γ. Furthermore, we get an overall
metric of the influence that each source node has on the graph
by averaging the information flow for the node [28]. Thus, we
take the column-average of Γ, which is known as the influence
vector

I =
1

n

n∑
i=1

Γ1(ℓi). (5)

For the LON in Fig. 1, we have I = 1
24 (905550000000). In

this view, the local optima in node ℓ1 has almost twice as much
outgoing information flow, and thus influence on the LON, as
the optima in ℓ3-ℓ5. Any other node only conveys information
coming from source nodes and thus has no influence of its
own.

For tracking the sources of information on the LON we
analyze diffusion. In principle, we can track information for
every node in the LON, but most interesting are the sink
nodes, which correspond with best solutions found on the
underlying fitness landscape. For instance, for the sink node
ℓ12 we obtain 1(ℓ12)Γ = 1

6 (301110000000). In other words,
information flowing to ℓ12 origins from ℓ1 as well as from ℓ3-
ℓ5, or put differently, the influencers of ℓ12 are ℓ1 and ℓ3-ℓ5.
By analyzing the rows of Γ, we see that the same applies to
ℓ10, but the influencers of ℓ7 are just ℓ3-ℓ5. Another interesting
result about diffusion is that it preserves probability [27]. Thus,
1(ℓi)Γ gives a probabilistic measure of the information flow
ending in ℓi. For ℓ12 this means it is 3 times more likely that
the information flow comes from ℓ1 than from either ℓ3, ℓ4, or
ℓ5. However, as the probabilities are preserved (the row sums
equal unity), 1(ℓi)Γ only accounts for the relative influence



which a specific node ℓi receives, but not for comparing the
effects over the nodes of the LON.

B. LON metrics from Laplacian dynamics

In the following we relate Laplacian dynamics (LD) to
LONs. As LONs are tools for studying evolutionary dynamics,
differences in the information flow on LONs may be helpful
for explaining differences in the search dynamics of the
underlying fitness landscapes. For instance, we would expect
more easily searchable fitness landscapes to have LONs where
the influence on sink nodes with better fitness is higher than
on sink nodes with poorer fitness. Moreover, the edges of
the LONs we consider are perturbation edges. According to
the iterative local search used with the QAP, see Sec. IV-A,
an initial solution is generated by a random assignment of
items to locations. Thus, we can assume that finding an initial
optimum (a source node or node in a source SCC) occurs with
the same probability over all source nodes. In other words,
the flow starts with the same probability in any source node.
Thus, a more easily searchable fitness landscape would be
characterized by source nodes which have a rather balanced
influence on the LON and not with large differences in the
elements of the influence vector. In the following, we attempt
to formalize these properties by metrics based on Laplacian
kernels and particularly on the matrix Γ.

Our first metrics are consensus-based, directly use the influ-
ence vector (5) and basically capture differences of influence
over source nodes. Therefore, we calculate the variance of the
elements of the influence vector. We use two versions. The
first, I1, considers the whole influence vector and thus not only
counts the influence of the source nodes, but also takes into
account the zero elements of all other nodes as well. Thus, in
some ways the metric I1 additionally reflects the ratio between
the number of source nodes and the total number of nodes in
the LON. The second variant, I2, ignores the zero elements
of the influence vector by only considering the source nodes.
Thus, we have

I1 = V ar(I), (6)
I2 = V ar(I > 0). (7)

A second metric is diffusion-based and focuses on the in-
fluence of the network on sink nodes, which can include
the global optima of the underlying optimization problem.
Therefore, we define the reduced influence vector Ired, which
uses the column-average of Γ for the sink nodes only. With the
number of sink nodes nsink, we get the metric I3 measuring
the difference between the reduced influence vector and the
influence vector:

Ired =
1

nsink

nsink∑
i=1

1(ℓi)Γ, (8)

I3 = ∥Ired − I∥. (9)

The next set of metrics explicitly involves the fitness f . As the
QAP is a minimization problem, small values of the fitness fi
are superior. In order to consider fitness of the nodes in metrics

related to the influence vector, it is numerically convenient to
normalize fitness to the interval [0, 1] and have a reversal of
fitness values. Thus, we define Fi, i = 1, 2, . . . , n, as reversed
normalized fitness. Thus, we get Fi = 1 for the node (or
nodes) with the smallest fitness min

i
fi, Fi = 0 for the node(s)

with the largest fitness max
i

fi and 0 < Fi < 1 for all other
nodes. With the reversed normalized fitness we calculate a
metric I4, which is the difference between the fitness-weighted
reduced influence vector and the influence vector:

Ifred =
1

nsink

nsink∑
i=1

Fi · 1(ℓi)Γ, (10)

I4 = ∥Ifred − I∥. (11)

Finally, we weight the influence vector by the fitness values
to get the measure

I5 = I × F (12)

which accounts for the relation between influence and fitness
of the source nodes.

So far the metrics are based on the influence vector account-
ing for the influence of source nodes on the graph. In other
words, the metrics I1–I5 can be viewed as source-oriented
metrics. As the flow on the LON is directed towards the sink
nodes, it appears desirable to have an alternative perspective:
sink-oriented metrics. This seems to be particularly natural
to the approach we are proposing as the Laplacian processes
described by the differential equations (3) and (4) explicitly
offer such a dual view.

In this line of thinking, we next analyse the reverse graph
(or transpose graph) GR of the graph G = (L,E) describing
the LON. The reverse LON GR contains the same node set as
the LON G, but all edges eij have reversed directions eji.
Thus, while a LON connects source nodes to sink nodes,
the reverse LON connects sink nodes to source nodes. The
analysis with Laplacian operators as described above can be
carried out accordingly and we get a matrix ΓR for specifying
the solutions of the reverse Laplacian differential equations.
Thus, analogously to the influence vector (5) we can define
the reverse influence vector IR, which we call the defluence
vector. Based on the defluence vector, we can define the
metrics D1–D5 in the same way as I1–I5 in (6)–(12).

C. Other LON metrics

The fractal dimension of a pattern is an index of spatial
complexity and captures the relationship between the level of
detail observed in the pattern against the scale of resolution it
is measured with. Many real-world complex systems cannot be
characterised by a single dimension, however [29]; multifractal
analysis produces a spectrum of dimensions to describe the
object. A group of multifractal dimension metrics were com-
puted in previous literature [17] on the set of LONs in use for
the present study; we therefore include them for comparison
with the Laplacian measurements. For space reasons we do not
describe the algorithm used to obtain the dimensions here (and
indeed it is not the purpose of this study); a full description and



all parameters associated with the fractal analysis are available
in the original work [17].

IV. EXPERIMENTAL SETUP

A. LON construction

We use a set of LONs from the literature [17] which are
extracted from 40 QAPLIB instances of sizes between 25-50.
These were constructed using multiple iterated local search
(ILS) runs; this is Stützle’s iterated local search written in
C, and is used for both gathering performance data and as the
foundation of LON construction [24]. Random pairwise swaps
in the permutation are used as the neighbourhood. For the
hill climbing component, a first-improvement pivot rule was
deployed; the perturbation operation applies k random swaps.
The dataset considered two options for k: N

8 (low perturbation)
and 3N

4 (high perturbation), where N is problem dimension
— thereby producing two sets of LONs (one for each of the
two perturbation settings). There are 100 independent ILS runs
per perturbation strength and instance, and runs terminate after
10,000 iterations without an improvement to fitness.

B. Algorithm runs

We require algorithm performance data in order to study
the relation with the Laplacian metrics. For this, data from the
aforementioned study are used, such that a direct comparison
can be made between the metrics proposed here and previous
work. Two metaheuristics are considered: ILS and robust taboo
search (TS). For both, the mutation operation is a random pair-
wise exchange in the permutation. The ILS was executed in
the same configuration as just described for LON construction,
except that the termination condition is met when either the
best-known fitness is found or 10,000 iterations have passed
without improvement. The TS is Taillard’s implementation in
C of his robust taboo search (ROTS) algorithm for the QAP
[30]2; it uses a best-improvement pivot rule, and the tabu
duration is 8N ; aspiration is set at 5N2; runs terminate when
the best-known fitness is found or after 100,000 iterations.
ILS and TS are each executed 100 times per instance, and
the performance metric is the performance gap, defined as the
mean obtained fitness at the end of runs as a proportion of the
best-known fitness.

C. Feature selection

All feature selection and modelling is coded in R. We
perform backwards recursive feature elimination (RFE) to
obtain feature sets for the predictive models. The learning
algorithm is random forest regression, with the performance
of iterated local search or tabu search as response variable.
The RFE performs 1000 bootstrapping iterations and compares
models based on the root mean squared error (RMSE). There
are 22 candidate predictors; these comprise the set of seven
from a previous study [17], pagerank measurements from
the literature [20], SCC features, and the Laplacian metrics
proposed in the present work:

2http://mistic.heig-vd.ch/taillard/codes.dir/tabou qap2.c

• Number of local and global optima
• Search flow towards global optima (normalised, aggre-

gated incoming weight from edges directed towards
global optima)

• Median fractal dimension and variance of fractal dimen-
sion (proxy for multifractality)

• Maximum fractal dimension and range of the multifractal
spectrum (proxy for multifractality)

• Two pagerank centrality metrics as described in previous
literature [19], [20], p1: pagerank for the global optimum,
and p2: fitness-weighted average pagerank

• Three SCC metrics: the number of SCCs, the number of
nodes in a SCC, and the node-to-SCC ratio

• Ten metrics related to LD as introduced in Section III-B;
these are labelled I1-I5 (influence-based) and D1-D5

(defluence-based)
Because of the limited number of instances in the QAPLIB
of moderate size, our number of observations is small: 40.
We therefore restrict the number of selected features to a
maximum of four: the one-in-ten rule [31] for the ratio
between features and observations guided us in this choice.

D. Modelling

Following feature selection we build the final models with
the chosen predictors. To account for the possible effects of a
small dataset size (high variance depending on the data split),
models are bootstrapped for 1000 iterations with an 80-20
training-validation set split. The learning algorithm is random
forest in its default configuration for R; this constitutes 500
trees, with 1

3Nf features included per split (where Nf is the
number of features). The forest allows sampling with replace-
ment, and the sample size is the number of observations. To
summarise model performance, we consider the pseudo R2:
1 − MSE

variance(y) , where y is the response variable (algorithm
performance). The pseudo R2 is usually between 0 and 1, and
can be interpreted as the proportion of variance explained; it is
also possible to have values below zero — this happens when
the model explains no variance and is useless for prediction.
Whenever there is a value below zero, we convert it to zero
to preserve the metric’s meaning as proportion of variance
explained. We also report the RMSE. For both metrics (pseudo
R2 and RMSE), the bootstrap mean and standard error are
provided: see Sec. V-D and Table II.

V. EXPERIMENTAL RESULTS

A. Visualising information flow on LONs

Visualization of LONs is a powerful method to gain un-
derstanding of underlying network properties. As we here
focus on considering LONs as objects describing dynamical
processes, we use a visualization accordingly. Fig. 2 gives
LONs of three representative QAP instances: a real-world
instance bur26a, a random flow on grids nug25 and a random
real world tai30b, see also [17]. The LONs in the upper row
(Fig. 2a-c) are for low perturbation, while those in the lower
row (Fig. 2d-f) are for high perturbation. The LONs are shown
as to visualize the information flow from source nodes (on the

http://mistic.heig-vd.ch/taillard/codes.dir/tabou_qap2.c


Low perturbation (a) bur26a (b) nug25 (c) tai30b

High perturbation (d) bur26a (e) nug25 (f) tai30b

Fig. 2. Typical examples of LONs from QAP instances with both low and high perturbation. Nodes and SCCs are colored according to normalized fitness
coded by the colorbar on the right.

left hand side of the graph) to sink nodes (on the right hand
side of the graph). Apart from the nodes shown as dots, strictly
connected components (SCCs) are depicted as stars (for 2
nodes in the SCC), squares (3 nodes) and diamonds (more
than 3 nodes). If there are more than 3 nodes in the SCC,
we also give their number. The nodes and SCCs are colored
according to normalized fitness (with 0 denoting minimal
fitness and 1 denoting maximal fitness), with the color code
given by the colorbar on the right of the figure. The 6 examples
represent typical structural and dynamical properties of the
LONs considered in this paper. All LONs are characterized
by rather long paths transferring information from sources to
sinks. We see that along the pathway fitness is decreasing,
sometimes in big leaps. Some of the LONs (bur26a with both
low and high perturbation and nug25 with high perturbation)
have sinks which form a SCC where all nodes have the same
fitness. For bur26a (low and high) the sink SCC has 96 nodes,
for nug25 (high) it has 8 nodes. With the exception of tai30b,
there are intermediate SCCs between sources and sinks; for
bur26a with low perturbation, the number of SCCs and the
number of nodes within SCCs is significantly higher than for
the other examples. Particularly for nug25 (low), the LON has
a low degree of network structure and diversity of information
flow pathways. Mostly, there are separated paths connecting
sources and sinks with few (or no) bifurcations.

B. Properties of SCCs in LONs

With Table I we give data used for analysing the occurrence
of SCCs in the LONs considered in this paper. We have the
fraction of LONs (out of 40 considered for low and high

perturbation) which possess SCCs, the maximum and mean
number of SCCs found in the LONs, the maximum and mean
number of nodes in a SCC, and the maximum and mean
ratio between the number of nodes in a SCC and the number
of nodes in the LON. We see clearly that low and high
perturbation strength leads to significantly different values of
the considered data. Thus, also by evaluating these data, a
differentiation between low and high perturbation is easily
feasible.

C. Correlations between performance data and LON metrics

We next analyse correlations between performance data ob-
tained by ILS and TS, see Sec. IV-B, and the Laplacian metrics
proposed in this paper as well as LON metrics previously
reported, namely median fractal dimension [17] and pagerank
centrality [19], [20]. We start with relations between the
Laplacian metrics proposed in Sec. III-B. Fig. 3 shows scatter
plots of some of the metrics (or combinations of metrics)
for all 40 QAPLIB instances. Low perturbation is given as
blue circles, high perturbation as red circles. We see that for
the given combinations (but also for other combinations not
shown in figures), we get clearly differentiable clouds of data
which enables rather straightforwardly to classify low and high
perturbation by inspecting the proposed Laplacian metrics.

In the following we give correlations between performance
data for TS and ILS, and LON metrics for both low and high
perturbation, see Fig. 4. We test for both linear relationships
(Pearson correlation, Fig. 4a) and monotonic relationships
(Spearman rank correlation, Fig. 4b). The colour code for
interpreting the plot is available in the figure caption. Corre-



TABLE I
PROPERTIES OF SCCS IN LONS FROM QAP

LON Fraction of LONs Max number Mean number Max number of Mean number of Max node-to-SCC Mean node-to-SCC
perturbation with SCC of SCCs of SCCs nodes in SCC nodes in SCC ratio ratio

low 0.725 439 181 15106 2466 0.840 0.348
high 0.550 35 6 1536 339 0.695 0.177

(a) I1/I2 vs. D1/D2 (b) I1 vs. I2 (c) I1 vs. log(D2)

Fig. 3. Laplacian measures for LONs with different perturbation strength. Clearly differentiable clouds of data enable to classify perturbation strength. Blue
circles indicate low perturbation, red circles high perturbation.

lations between ILS performance and TS performance, shown
as I/T at the far left of the figure serve as a baseline for
evaluating the correlations. We notice that some metrics yield
high correlations to performance data, even higher than the
correlation between ILS and TS performance itself. Partic-
ularly for monotonic relationships between performance and
metrics, we get good agreements, for instance for I4, I5, D3

and D5. Generally, correlation to ILS performance is better
than to TS performance with the notable exception of p2 for
Pearson and D4 for Spearman.

(a) Pearson correlation

(b) Spearman rank correlation

Fig. 4. Correlations between TS and ILS performance and LON metrics for
both low and high perturbation. I/T is the correlation between ILS and TS
performance; median fractal dimension: FD, pagerank: p1, p2, number of
SCCs: nS, Laplacian metrics: I1-I5 and D1-D5. Color code: red-TS (high),
blue-TS (low), yellow-ILS (high), purple-ILS (low).

TABLE II
INFORMATION ABOUT MODELS WITH FEATURES SELECTED BY

RECURSIVE FEATURE ELIMINATION IN A RANDOM FOREST SETTING. TOP:
ITERATED LOCAL SEARCH (ILS), BOTTOM: ROBUST TABOO SEARCH (TS)

LON perturbation low high

ILS selected features [I5, D4, p2] [I4, D5, Var FD, Max FD]

R2-train (SE) 0.6606 (0.2742) 0.7725 (0.1947)

RMSE-train (SE) 0.0158 (0.0039) 0.0045 (0.0013)

R2-validation (SE) 0.9596 (0.3457) 0.9878 (0.3109)

RMSE-validation (SE) 0.0046 (0.0080) 0.0008 (0.0019)

TS selected features [p2, I5, D4, no scc] [p2, I5, D4, no scc]

R2-train (SE) 0.7616 (0.2841) 0.0846 (0.0299)

RMSE-train (SE) 0.0673 (0.0281) 0.0630 (0.0297)

R2-validation (SE) 0.7820 (0.3404) 0.8505 (0.3534)

RMSE-validation (SE) 0.0325 (0.0448) 0.0775 (0.0504)

D. Laplacian metrics for performance prediction

Table II summarise the algorithm performance prediction
models. There are four in total — one for each combination of
response variable (ILS or TS) and LON perturbation strength
(low or high). In the table, the selected features rows indicate,
in order of importance, the predictors which were chosen by
RFE and therefore used to build the model. The remaining
four rows contain model quality metrics: the bootstrap mean
of the pseudo R2 and RMSE for the training and validation
sets (the bootstrap standard error is given in parentheses beside
the mean). Notice from the R2-validation rows that these
models have mostly high pseudo R2, which indicates that a
majority of variance in the response variable is explained using
the predictors. From the selected features rows, we note that
at least two of the Laplacian metrics are selected for each
model. In terms of R2-validation, three of these four models
out-perform those from the previous study [17], and the
remaining model is approximately equal. It is interesting that



the addition of the Laplacian, pagerank, and SCC metrics into
the predictor pool results in the fractal dimension metrics only
being selected for one out of four models. The features D4, I5,
and p2 appear to be particularly strong: they were selected for
three out of four model configurations. The number of SCCs,
no scc, was selected twice.

VI. CONCLUSIONS

We have proposed a new perspective on local optima net-
works (LONs). In the past, LON metrics have typically taken
a static perspective. Now, instead, we consider the dynamics
encoded in them (i.e., the flow of information) with the intro-
duction of Laplacian dynamics (LD) for LONs. As a testbed,
40 instances from the quadratic assignment problem library are
used. We extract and propose several measurements related to
LD and compare them to previously-proposed metrics from
the literature. The results show that some of the new metrics
appear to be strong predictors of search difficulty for iterated
local search and tabu search, which improve on previously-
proposed LON metrics. Note that the LD approach proposed
in the paper solely relies upon rather simple linear algebra
operations, for which highly efficient numerical methods are
available. Thus, we believe that LD metrics might scale well
with an increasing number of nodes in a LON.

In future work, we intend to test this — as well as consider
LD on LONs of other problems. Finally, we note that it would
be interesting to decouple the notion of a single source node
from a source node which forms part of a strictly connected
component.
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