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Abstract—A secure Multi-Party Computation (MPC) is one
of the distributed computational methods, where it computes a
function over the inputs given by more than one party jointly
and keeps those inputs private from the parties involved in the
process. Randomization in secret sharing leading to MPC is a
requirement for privacy enhancements; however, most of the
available MPC models use the trust assumptions of sharing and
combining values. Thus, randomization in secret sharing and
MPC modules is neglected. As a result, the available MPC models
are prone to information leakage problems, where the models can
reveal the partial values of the sharing secrets.

In this paper, we propose the first model of utilizing a random
function generator as an MPC primitive. More specifically, we
analyze our previous development of the Symmetric Random
Function Generator (SRFG) for information-theoretic security,
where the system is considered to have unconditional security if it
is secure against adversaries with unlimited computing resources
and time. Further, we apply SRFG to eradicate the problem
of information leakage in the general MPC model. Through a
set of experiments, we show that SRFG is a function generator
that can generate the combined functions (combination of logic
GATEs) with n/2 -private to n-private norms. As the main goal
of MPC is privacy preservation of the inputs, we analyze the
applicability of SRFG properties in secret sharing and MPC and
observe that SRFG is eligible to be a cryptographic primitive
in MPC developments. We also measure the performance of
our proposed SRFG-based MPC framework with the other
randomness generation-based MPC frameworks and analyze
the comparative attributes with the state-of-the-art models. We
observe that our posed SRFG-based MPC is ≈ 30% better in
terms of throughput and also shows 100% privacy attainment.

Index Terms—Cryptography, Privacy, Security, Information,
Randomness, Function, Computation, Multi-party

I. INTRODUCTION

The paradigm of the Internet of Things (IoTs) drives the
present age of technology. The present computing paradigm
shifted from centralized to decentralization and now, multi-
party computing is showing its potential in every domain
of applications. Multi-Party Computation (MPC) is a crypto-
graphic tool that allows multiple parties to compute a function
using their combined data, without revealing their input. With
the increasing demand for IoT applications, the security and
privacy of the data become the primary focus of security
protocols and methods. Even though Yao’s seminal work
introduced MPC in 1982, the increasing demand for IoT
applications and distributed architecture of computing resulted
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in a re-birth of MPC’s popularity [1]. The adoption of MPC in
IoT provides the required processing power to provide smart
services in the shortest time. In the following, we discuss the
basic understanding of MPC functionality and information-
theoretic security in MPC connection.

A. MPC functionality

In the context of digital assets, MPC replaces individual pri-
vate keys for the signing of transactions [2]. MPC distributes
the signing process among multiple systems. Each system
possesses a piece of private data representing a share of the key
(secret), and together they cooperate to sign transactions in a
distributed way. There are several possible applications of this
technology. Being able to store secrets with different systems,
rather than in a single system leading to the central failure,
would make the computation much harder for a potential
intruder. By using multiparty computation, legitimate users
can still use relevant information to verify the legitimacy of
the operation.

In an MPC, we consider a given number of partici-
pants as P1, P2, ..., PN . Each participant has a private data:
D1, D2, ..., DN . All the participants want to compute the
value of a public function on that private data given as
F (D1, D2, ..., DN ) while keeping their own inputs secret. We
can show a mathematical notion of MPC as in Equation 8. In
this equation, F denotes a public function and ⃝ represents
any operation in the function F . We show a logical representa-
tion of MPC in Figure 1. The figure shows that MPC consists
of three functions: sharing, computation, and reconstruction. In
sharing, the participants share their private data with the public
function. In computation, the public function computes with
the given private inputs. In reconstruction, the output is again
shared with all the participants, where the output is public
without inferring the knowledge about the input private data.
Note that, the public function considers the private data of all
the participants and jointly computes to output the result [3]
[4]. The general expression is shown in Equation 1.

{P1, P2, ..., PN} → {D1, D2, ..., DN} = F (D1⃝D2⃝, ...,⃝DN ).
(1)

There are two basic properties, which an MPC protocol aims
to ensure: input privacy and correctness.

a) Input privacy: The inputs given to the public function
F are private to the individual. No information about the
private data held by the participants is inferential from the
messages sent during the execution of the MPC protocol. The

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3381959

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Edinburgh Napier University. Downloaded on June 04,2024 at 17:46:16 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2022 2

Fig. 1. Logical interpretation of MPC

maximum information that can be inferred from an MPC is
only by observing the output of the public function.

b) Correctness: The essence of this property of MPC
lies in the impact of the adversarial colluding parties. In such
a real-world scenario with the adversaries, the correctness
property uses two dimensions: either the honest parties are
guaranteed to compute the correct output, or they abort if they
find an error. We call the former one a “robust” protocol and
the latter one is an MPC protocol with abort.

B. Information theoretic security

A cryptosystem is information-theoretic secure if the sys-
tem is secure against adversaries with unlimited computing
resources and time [5]. Information-theoretically secure pro-
tocols are resistant to future developments in computing, more
specifically for quantum-safe cryptographic protocols [6]. Dif-
ferent cryptographic tasks use information-theoretic security
in a meaningful way to accomplish some useful security
requirements. Secret sharing schemes such as Shamir’s are
information-theoretically secure with a threshold number of
shares. Secure MPC protocols often have information-theoretic
security. Information-theoretic privacy for the user’s query in
Private Information Retrieval (PIR) is another dimension of re-
search. Reductions between cryptographic primitives urge the
need for achieving information-theoretic security. Symmetric
encryption can be constructed under an information-theoretic
notion of security called entropic security, which assumes that
the adversary knows almost nothing about the message being
sent.

We show a mathematical understanding of information-
theoretic security in the following. We consider a adversary
game protocol π, where x is an integer within [0, n− 1]. We
execute a game of random bit selection b and try to identify
whether b is 0 or 1. If b = 0, we send a random value r ← X
to the (unbounded) adversary. We sample r from a set R. If
b = 1, we sample a random value r ← R and send x + r to
the adversary. We fix a security parameter k and consider that
π has the perfect security if the adversary has a probability of
exactly 1/2 of guessing the value of b given the input. On the
other hand, the protocol has information-theoretic security if
the adversary has the probability 1/2 + µ(k) of guessing the

value of b, where µ is a negligible error function. From the
entropy point of view, we can show that information-theoretic
security must follow the condition H(K|C) < H(K), where
H() is the entropy function, K is the information of key, and
C is the information of cipher text.

As MPC avoids the signing of encryption keys, the se-
cret sharing with multiple systems must obtain information-
theoretic security. Previous research also emphasize on this
particular requirement of MPC and analyzes secure MPC to
have a certain amount of information-theoretic security [7].

C. Motivation and contribution

Even though information-theoretic security and MPC are
available in existing research work dated back to the 1990s, the
popularity of these two aspects revokes the progress of IoTs
and their various applications. Besides, the researchers also
negotiate with the construction of a set of binary strings R to
where the functions that try to fool an MPC protocol are effi-
cient. However, the randomness from a non-Boolean circuit is
also a question to solve for information-theoretic security. On
the other hand, our previously developed Symmetric Random
Function Generator (SRFG) shows the capability of posing
information-theoretic security. A symmetric random function,
acting as a random number generator in MPC, ensures the in-
dependence and unpredictability of shared random values. This
is crucial for preserving privacy in computations where parties
collaborate on private inputs. By incorporating the symmetric
random function, MPC addresses existing randomness and pri-
vacy challenges. The function’s pseudorandom outputs obscure
patterns and correlations, fortifying the protocol against adver-
sarial attacks. It promotes fairness, consistency, and efficiency
across parties, offering a versatile tool to generate secure and
unpredictable values, ultimately mitigating privacy concerns
within the MPC framework. Thus, the urge for randomness
in MPC secret sharing and the scope of SRFG motivate us
to analyze the function generator for multi-party computing
assuring information-theoretic security. To this end, the major
contribution of our present work is as follows.

• Random function generator for MPC: Randomization
is a requirement in information-theoretic security and
privacy in connection with MPC. However, the existing
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literature neglects this fact. We pioneer in this direction
and use a symmetric random function generator in MPC
as a primitive for secret sharing.

• Information-theoretic security and privacy of a ran-
dom function: We show a detailed analysis of the appli-
cation of the random function generator for the assurance
of information theoretic security and privacy. We observe
that our random function generator is able to provide a
negligible probability of information leakage.

• t-private notion of privacy in random function gener-
ator: We pioneer the analysis of the privacy properties in
a symmetric random function generator. The application
of this random function generator in MPC shows that
the functions from this generator achieve the strength of
n-private norms for n-bit variable.

D. Organization of the paper

We organize the rest of the paper as follows. Section II
shows some contributory works in the domain of information-
theoretic security and privacy in connection with MPC. Sec-
tion III discusses the basic technical construction of SRFG as
a cryptographic primitive. Section IV analyzes the properties
of SRFG for being adaptive to information-theoretic security
and its utilization is MPC secret sharing. Section V analyzes
the security and privacy of SRFG applications in secret sharing
and MPC. Section VI discusses the experimental methodology
and related results. Finally, Section VII concludes our work.

II. RELATED WORK

In this section, we discuss some of the important works in
the direction of secret sharing, which is an enabler method in
MPC.

Threshold secret sharing or (t, n) threshold secret sharing
is a popular use in MPC for providing secrecy and robustness
services for various cryptographic protocols. To enhance the
security of n distributed shares with t threshold of secrecy, [8]
shows a secure secret reconstruction. Alike the traditional
secret sharing schemes [9], the proposed work mitigates the
outsider attack on the shares by leveraging the need to know
all the released shares. However, the limitation of the work is
that the method of the secret sharing shown in [8] is unable to
prevent the outsiders from learning the secret if the outsiders
intercept all the released shares. The authors also address
this limitation by making the reconstructed secret accessible
only to shareholders, but not to outsiders. A traditional secret
sharing has the risk of an adversary without a valid share may
obtain the secret when more than t shareholders participate
in the secret reconstruction. To mitigate this risk, a Group-
Oriented Secret Sharing (GOSS) uses (t,m, n) parameters
based on the Chinese remainder theorem [10]. Without any
share verification or user authentication, the scheme uses
Randomized Components (RCs) to bind all participants into
a tightly coupled group, and ensures that the secret is recov-
erable only if all m(m ≥ t) participants in the group have
valid shares and release valid RCs honestly. Recent work in
this direction of GOSS [11] shows that the group-orientation
property in [10] is invalid and concrete attacks on GOSS allow

an unauthenticated adversary with no valid share to participate
in the reconstruction phase and obtain the secret.

A secure secret sharing scheme based on symmetric bivari-
ate polynomials and its extended version to an asymmetric one
is available in recent literature [12]. Secret Sharing Scheme
(SSS) is also compatible with a Group-Characterizable (GC)
random variable [13], where the scheme works as an en-
tropy function between the group G and the subgroups
G1, G2, ..., GN . Such discussion also shows that Homomor-
phic SSS (HSSS) is equivalent to GC-SSS, whose subgroups
are normal in the main group G.

Verifiable Secret Sharing (VSS) or Verifiable Multi-Secret
Sharing (VMSS) is another constituent of secret sharing
schemes. We have gone through a survey of such schemes
in [14]. Some open problems notified by this survey include
broadcast complexity, communication complexity, and lower
bounds of the schemes. The work in the paper [15] proposes
two VMSS schemes, which by add new validity checks in
the verification phase to overcome the problems of malicious
behaviour of the dealer. The schemes use XTR public key
system and realizes GF (p6) security by computations in
GF (p2) without explicit constructions of GF (p6), where p
is a prime. The method uses the trace function to provide
short parameters for the requirements assuring a high level
of security. In addition, the two schemes are dynamic and
threshold changeable.

Random functions are playing a great role in secret
sharing schemes. For example, a recent work proposes a
(t, n)–threshold verifiable secret sharing scheme with change-
able parameters based on a trapdoor one-way function [16].
This scheme consists of a generation phase, a distribution
phase, an encoding phase, and a reconstruction phase. The
generation and distribution phases are, respectively, based on
Shamir’s and Feldman’s approaches, while the encoding phase
uses a novel trapdoor one-way function. In the reconstruction
phase, the shares and reconstructed secrets are validated using
a cryptographic hash function. SMPC solutions use random
numbers to mask the shared secrets followed by encryption.
To ensure correct decryption of the final result, it is required
that these random numbers sum to a publicly known value. The
work in [17] proposes two novel protocols for joint random
number generation with very low computational and commu-
nication overhead. The protocol relies on bit-wise sharing of
individually generated random numbers, allowing parties to
adapt random numbers to yield a public sum. Second, we
propose a protocol that uses the sign function to generate a
random number from broadcast numbers. Recently, the authors
in the paper [18] show a partially synchronous protocol that
allows a system of N processes to produce an unpredictable
common random number shared by correct participants. The
protocol claims to be optimally resilient, as it allows up to
f = bN−1 the processes to behave arbitrarily and ensures
deterministic termination.

Furthermore, we review several current research works
related to secret share and multi-party computation to val-
idate that the randomness provided by SRFG and applied
to MPC is quite efficient in terms of privacy and computa-
tional performance. For example, entangled polynomial codes
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do not consistently outperform PolyDot codes in the MPC
setting, contrary to their superiority in coded computation.
Adaptive Gap Entangled (AGE) polynomial codes for MPC
prove their superiority through analysis and simulations in
terms of worker requirement and computational, storage, and
communication overhead [19]. The work in [20] introduces
a novel secure computation approach based on a client-server
model, utilizing (k,n) threshold secret sharing to protect inputs
distributed across multiple clients. Unlike conventional meth-
ods, this approach minimizes communication during secure
computation, concentrating communication in the preprocess-
ing phase. Another work shown in [21] introduces a secure
multiparty federated learning control system to prevent data
leakage in federated learning. It includes secure training and
prediction processes where data providers collaborate without
revealing local data, and users receive prediction services
without accessing the model, ensuring privacy and security for
all parties involved. A recent study introduces the problem of
private randomness agreement (PRA), where two participants
aim to agree on a random string unknown to an adversary,
utilizing a public, authenticated channel alongside main chan-
nels [22]. It demonstrates that PRA cannot be solved in a
single round, but presents efficient solutions requiring three or
four rounds, balancing privacy and computational cost. How-
ever, communication overhead becomes higher. Another recent
work toward randomness introduces Funder, a decentralized
randomness solution for proof-of-stake blockchains, leverag-
ing a post-quantum threshold Verifiable Random Function
(VRF) [23]. It also presents a compiler for transforming clas-
sical VRF solutions into post-quantum VRF using symmetric-
key primitives, validated and evaluated with quantum-secure
zero-knowledge systems ZKBoo and ZKB++. The drawback
in this work is the potential performance overhead introduced
by using symmetric-key primitives for achieving post-quantum
VRF, which may impact the efficiency and scalability of the
solution, particularly in large-scale blockchain networks.

From the above discussion, we observe that the random or
arbitrary functions are good candidates for being applicable
in secret sharing schemes; however, the existing literature
has not emphasized this aspect and is more inclined towards
developing the schemes for threshold maintenance. Therefore,
the missing link of randomness in functions and resilient
secret-sharing schemes motivates us for the present work.

III. SRFG

In our previous development of the Symmetric Random
Function Generator (SRFG) mathematical model [24], we
show that SRFG produces balanced and symmetric outputs in
terms of the number of 1s and number of 0s in the output
string with the variable input patterns. In this section, we
recall some important mathematical expressions from [24]
and [25] for a clear understanding of SRFG behaviour. We
show the generalized mathematical expression for SRFG as in
Equation 2.

f() = ⊗fL
i , (2)

where i is the number of gates used in SRFG (AND, OR,
NOT, XOR gates with randomized selection); L represents the

expression length. We defined expression length as the number
of the combined terms used in f and ⊗ symbolizes the random
combination. We show the logical model of SRFG in Figure 2.
As randomness is the main criterian for a random number
generator, we granulate the SRFG generalized equation with
N input variables’ following a random selection as shown
in Equation 3. As per the shown model of SRFG in the
literature [24], it uses a finite field F 0,1

2 and ⊗ denotes an
operation on the field. SRFG inputs N variables, each of n
bit vector V = v1, v2, ..., vn. As the values in the vector is
either 1 or 0, Vi is a binary vector. . We show the expanded
structure and chaining of functions in Figure 3.

f(V1, V2...., VN ) = ⊗fL
i [rand(V1, V2..., VN )]. (3)

SRFG embodies a set of functions as BN is. All the
functions map the elements from FN

2 into F2, where FN
2 =

{(V1, V2, ..., VN )|Vi ∈ F2}. The output of SRFG is a vector,
which is a combination of 2N with N variables. This vector
comprises of all the values f(y), y ∈ FN

2 as the variables
are randomly selected and represented as a polynomial form
of Algebraic Normal Form (ANF) [26]. We show the mathe-
matical interpretation as in Equation 4 with the condition in
Equation 5 and Equation 6.

f(V1, V2, ..., VN ) = ⊗ λu

( N∏
i=1

rand(Vi)
ui

)L

,

λu ∈ F2, u ∈ FN
2 and L ∈ Z,

(4)

with

λu = ⊗ f(v), v ⪯ u , ∀ Vi = {vi1 , vi2 , ...., vin}, (5)

where

(vi1 , vi2 , ..., vin) ⪯ (u1, u2, ..., un) ⇐⇒ ∀i, j, vij ≤ ui

(6)
In coding theory and in cryptography, ANF considers a

boolean function as a multivariate polynomial. As the N
inputs contain values in F2, we consider modulo X2 + X .
Therefore, the multivariate polynomial construction for SRFG
has the degree of at most 1 for each input variable such
that any monomial of this polynomial is the product of some
input variables. For any u ∈ FN

2 , (Vi)
ui defines monomial

as:
(∏N

i=1(Vi)
ui

)
. Extending this monomial for L terms

and random basis we get
(∏N

i=1(Vi)
ui

)L

. The proofs are
available in [26]. In SRFG, the outputs and input mapping
correspond to a function g : 0, 1, . . . , n → F2 such that
∀x ∈ FN

2 , f(x) = g(w(x)). Following this, we reconstruct
Equation 4 in the form of Equation 7.

f(V1, V2, ..., VN ) =

⊗ λf (j)⊗
( N∏

i=1

rand(Vi)
ui

)L

= ⊗λf (j)Xj,N , (7)
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Fig. 2. Logical block structure of SRFG

Fig. 3. Chaining of randomization

where λf (j), u ∈ FN
2 and L ∈ Z, j = 1, .., N . Xj,N is the

elementary polynomial of degree j with N variables. λ(f) =
λf (0), λf (1), ..., λf (N) is called as simplified vector.

For the ease of the understandability of the readers, we have
included Table I to summarize the notions used in explaining
the technical details of the integration between SRFG and
MPC.

TABLE I
SUMMARY OF NOTIONS

Notion Description
f() SRFG Function
i Number of GATEs in SRFG function
L Number of terms in SRFG function
V Bit vector
rand Random function
λ Random vector output∏

Selection function
GF Isomorphic field
s A secret
b Size of the secret
αs Encoded secret
n Number of participants
n− variate Polynomial size
FL(.) Linear component
Pj Participants
c Scalar unit belongs to the field
xi Secret input

IV. SRFG ANALYSIS

In this section, we analyze the SRFG properties to check the
candidacy of being a primitive in secret sharing use. We divide
our discussion into two subsections. Section IV-A shows the

applicability properties of SRFG for secret sharing and in
Section IV-B, we use the notified properties for MPC.

A. Secret sharing with SRFG

For the applicability of SRFG, we analyze the properties
with random Galois field GF (2n) [27]. We can reuse the
polynomial form of ANF in SRFG as shown in Equation 8.

⊗ λu

( N∏
i=1

rand(Vi)
ui

)L

= rand(V1)
u1 ⊗ rand(V2)

u2⊗

...⊗ rand(VN )uN

(8)

We consider the secret of sharing to be of b bits. Our goal
is to create n parts or shares and require at least m shares
to reconstruct. We generate the keys and other initial states
such as Initialization Vector (IV) randomly and collectively
call them as key K. We use traditional Shamir method [28] to
split K into n secret shares as: s0, s1, s2, ..., sn−1. We use an
isomorphic field of GF (2b), and each si is equal to the size
of K.

We follow the TUS method of secret encryption with a
random number for secure secret sharing objectives [29].
Instead of the simple product-sum operation of the shares of
random numbers, we use extended product-sum operation of

the polynomial terms:
∑
⊗ λu

(∏N
i=1 rand(Vi)

ui

)L

. This
allows multiple computations to be performed at once instead
of only one computation of ⊗ λu

(∏N
i=1 rand(Vi)

ui) each
time. We input the secret S and timestamp to SRFG and an
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output random bitstream of size b. This b bits output generates
the m−1 degree random polynomial that follows Equation 9.

q(x) = a0 + a1x+ ...+ am−1x
m−1. (9)

In Equation 9, a0 is S to be shared and calculates: s1 =
q(1), s2 = q(2), ..., sn = q(n) for n shares. The coefficients
a0, a1, ..., am−1 in q(x) are random based on SRFG outputs
and follows a uniform distribution over the integers in [0, p],
and the values s1, s2, ..., sn are computed modulo p, where
p is a prime number and S < p and n < p. We divide the
overall process of secret sharing in two phases: distribution and
reconstruction. However, we shift some parts of the computa-
tion, where the values do not have any dependency on other
values, to the pre-processing stage of the computation. Thus,
the values can be generated in advance before distribution.
This effectively reduces the cost of communication in the
online phase of distribution and speeds up the entire process of
sharing the secret. In pre-processing, the participants generate
the secrets and select the random polynomials through SRFG.
In the online phase, the participants distribute the secrets and
reconstruct the secrets.

a) Pre-processing: As we set the goal of sharing a b-
bit secret in n shares, each share size is b/n bits. We denote
the shares as: si, where i = 1, 2, ..., n. If b mod n ̸= 0, we
use least significant bits padding. In addition, all the random
numbers used in the polynomial are in uniform distribution
and do not include the value 0. Moreover, all other values
belong to GF (2n).

b) Distribution: Let s be a secret for sharing among
n participants and s is a share of s for a participant Pi.
The dealer generates n random numbers α0, α1, ..., αn−1 and
computes α as in Equation 10.

α =
∏n−1

j=0
αj . (10)

The dealer computes αs as a encoded secret and distributes
αs, α0, ..., αn−1 to n players by using (k, n) secret sharing
schemes. The computation of the dealer’s side uses the fol-
lowing equations (Equation 11 to Equation 13) for sharing the
secrets.

αs = ([αs]0, ..., [αs]n−1). (11)

α0 = ([α0]0, ..., [α0]n−1). (12)

αn−1 = ([αn−1]0, ..., [αn−1]n−1). (13)

c) Reconstruction: A user restores a secret α by col-
lecting αj shares of secret from j parties. The user then
reconstructs the secret using the formula shown in Equation 14
to Equation 18.

REC([αs]0, ..., [αs]k−1) = αs. (14)

REC([α0]0, ..., [α0]k−1) = α0. (15)

From the above, we obtain the following.

REC([αk−1]0, ..., [αk−1]k−1) = αk−1. (16)

α =
∏k−1

j=0
αj . (17)

αs× α−1 = s. (18)

B. MPC with SRFG

We study an MPC problem in an unconditionally secure
environment as mentioned in [30]. An unconditionally secure
environment considers two assumptions: i) in the presence of
a passive adversary, no set of size t < n/2 of participants
learns any additional information other than the information
derivable from their own private inputs and the output of the
protocol, and ii) in the presence of an active adversary, no
set of size t < n/3 of participants can learn any additional
information or disrupt the protocol. Though there are some
developments available for improving the bound of t < n/3,
the tight bound obtained from the literature is t < n/2.

Let F : (GF (p)∗)n → GF (p) denote a n-variate polyno-
mial over GF (p) (with inputs restricted to GF (p)∗) having
ℓ non-linear monomials, a form of polynomial with a single
term. We represent the function F as F (x1, ..., xn) = FL(·)+
FC1(·)++FCℓ(·), where FL(·) denotes the linear component,
and FCi(·)(i = 1, ..., ℓ) denotes monomials. The previously
mentioned secret sharing scheme provides the outputs of
shares as s1, s2, ..., sN of N participants using the additive-
(n, n) threshold scheme. For the generality of the solution, we
can assume a multiplicative scheme too as per the application
requirements. Let si,j and sk,j are the shares of a participant
Pj from the secret inputs xi and xk, respectively. We compute
every linear function in the following way. To obtain xi + xk

, each participant Pj computes si+kj = si,j + sk,j as an
additive (n, n)-threshold scheme is (+,+)-homomorphic (a
homomorphism is a structure-preserving map between two
algebraic structures of the same type of groups). For every
known scalar c ∈ GF (p) and each secret input xi, computation
of c × xi requires that each participant Pj , j = 1, ..., n)
calculates c × si,j as his share of c × xi. We can follow
two ways for the computation of c× xi: (i) share the value c
amongst all the participants, using the additive (n, n)-threshold
scheme. Then each participant Pj computes cj + si,j as his
share of c+ xi , where cj is the share of Pj from c and (ii) a
designated participant, Pℓ, chosen by all participants adds c to
his share from xi, i.e., computes c + si,ℓ. We also observe
that computation of an additive inverse is easy and every
participant computes the additive inverse of his own share.
Thus, every linear function with n inputs can be computed
with no interaction. Similarly, we can also compute c× xi if
we use a multiplicative (n, n)-threshold; the only change is
that we share the value of each monomial in this scheme. To
compute the function value, without revealing any information
about the value of each component, we require the conversion
of multiplicative (n, n)-threshold sharing associated with each
monomial FCi(·)(i = 1, ..., ℓ) to a corresponding additive
(n, n)-threshold sharing. Each participant Pi receives n − 1
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values αi,jmj from the participants. Knowing αi,i, mi, and the
received information, a participant Pi computes si as shown in
Equation 19. The correctness of the computation is available
in [31].

si =
∏n

j=1
αi,jmj . (19)

Our assumption restricts the private inputs of all participants
to be non-zero. This implies that the value of all monomials
in the function F (when evaluated at the private inputs) is
in GF (p)∗, as required. Although this restriction prevents
our protocol from being applied non-trivially over GF (2),
it is still possible to use our protocol to compute arbitrary
functions over GF (2) by encoding them as polynomials over
a larger field such as GF (5). Each participant Pi distributes
private input xi ∈ GF (p)∗ amongst all participants, using the
additive and multiplicative (n, n)-threshold schemes. In order
to compute the function F (x1, x2, ..., xn) = FL(·)+FC1(·)+
..., FCℓ(·), each participant Pi privately computes FL(·) and
all monomials FCj(·), j = 1, 2, ..., ℓ.

All the participants collectively have the values of each
component of the function. We share the linear component in
additive (n, n)-threshold form, while each shared monomial
is in multiplicative (n, n)-threshold form. Let Ai,j be the
share of participant Pi associated with monomial FCj(·), in an
additive (n, n)-threshold format. The participant Pi computes
Yi = Ai,0 + Ai,1 + ..., Ai,ℓ, where Ai, 0 is the share of
Pi associated with the linear component FL(·). Since each
participant has a share of the function value associated with
an additive (n, n)-threshold scheme, they can pool their shares
and compute the function value fout, using Equation 20.

fout =

n∑
i=1

Yi(mod p). (20)

a) Randomness in MPC: Reconsidering Equation 5,
the Algebraic Normal Form (ANF) of the polynomial rep-
resentation of SRFG has a degree at most 1 in each input
variable following that any monomial of this polynomial is
the product of some input variables. In our MPC model with
randomness shown above, these linearly connected monomials
are the constructions of MPC. As in [25], for any u ∈
F2

N , Vi
ui defines monomial as:

∏N
i=1(Vi)

ui . Solving these
linear monomials implies the fact of SRFG applicability in
MPC. Random functions in cryptography ensure unconditional
security against adversaries with unlimited resources by intro-
ducing unpredictability and complexity. In a key generation,
high-entropy random numbers enhance security by generating
unpredictable cryptographic keys, making brute-force attacks
computationally infeasible. Cryptographic hash functions uti-
lize randomness to produce seemingly random outputs, resist-
ing predictability and collision attacks. Randomized encryp-
tion employs Initialization Vectors (IVs) to add variability,
preventing patterns in the ciphertext. In Secure MPC, random-
ization techniques like secret sharing leverage random values
to protect sensitive information. The random oracle model, a
theoretical construct, aids in analyzing cryptographic schemes’
security under certain conditions. Quantum random number
generators exploit quantum indeterminacy for true random-
ness, offering an additional layer of security. Post-quantum

cryptography explores randomness in lattice-based schemes,
where the difficulty of finding short vectors in random lattices
contributes to security against quantum attacks. Overall, the
strategic use of randomness across cryptographic applications
forms a robust defense against sophisticated adversaries.

b) Privacy norms and MPC, SRFG coverage: In MPC,
n/2-private (semi-honest) assumes up to n/2 parties may act
maliciously, while n-private (malicious) allows for adversarial
behavior by any subset of up to n parties. The decision
depends on the application’s sensitivity, practicality, and reg-
ulatory demands. N-private norms offer higher security but
involve more complex cryptography, potentially leading to in-
creased computational overhead. N/2-private protocols strike a
balance between security and efficiency, making them suitable
for scenarios where malicious behavior is deemed less likely
or where stringent security measures may be impractical. The
choice depends on a nuanced evaluation of specific application
requirements and threat landscapes. A SRFG can be employed
in MPC as a cryptographic primitive when it possesses cer-
tain properties essential for secure computation. Through the
work of SRFG, we have seen that SRFG possesses secure
cryptographic properties as it shows randomness. In MPC,
parties jointly compute a function on their private inputs while
revealing only the necessary results. The SRFG exhibits pseu-
dorandomness and proceeds toward true randomness behavior
with the efficient use of tuning parameters, ensuring that the
generated values are computationally indistinguishable from
each other. Additionally, the generator is resistant to key
recovery attacks, as each party must independently contribute
to the computation without revealing sensitive information.
Properly incorporating the SRFG within the MPC protocol,
often through techniques like secret sharing and cryptographic
commitments, guarantees that joint computations maintain
privacy and security. The selection of SRFG is crucial for
achieving confidentiality and integrity across distributed com-
putations in MPC scenarios.

V. SECURITY PROOF

The objective of applying SRFG in secret sharing and MPC
is to build a privacy-ensured MPC framework. We also show
that randomness in sharing secrets leads to MPC with privacy
assurance. In this section, we first define the adversary model
and analyze the application of SRFG based on two aspects:
information-theoretic security and privacy analysis. Finally, we
also provide a discussion on the trust assumptions for the
operational context of the proposed MPC framework.

A. Adversary model and trust assumptions

Let us consider a specific case with a focus on a passive
adversary model in the context of secure MPC. The goal is
to mathematically describe the capabilities of an adversary
attempting to breach privacy in an MPC protocol. The adver-
sary uses the inputs of the number of parties in the distributed
network for computation, say n. The attacker also attempts
to observe the inputs and outputs of the parties, say Xi and
Yi, respectively. The attacker is unaware of the f() used for
secure computation of secret shares and reconstruction. We
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assume that the adversary is passive and can only eavesdrop
on the communication channels between parties during the
MPC protocol execution. The adversary cannot actively tamper
with the messages, inject new messages, or alter the behavior
of honest parties. The adversary aims to infer additional
information about the private inputs of the parties by analyzing
the exchanged messages. The attacker attempts to calculate the
indistinguishability of two adjacent inputs for a party with a
probability of Pr[f(Xi) = Yi] ≈ Pr[f(X ′

i) = Yi].
Adversary models outline potential attacks, while trust

assumptions denote parties’ reliability. Therefore, it is also
necessary to include the trust assumptions under which the
adversary model operates and our proposed approach provides
robustness. In the context of MPC, trust assumptions regarding
the use of SRFG are crucial for the security of cryptographic
protocols. Let G be a SRFG G(.) its core algorithm. The trust
assumptions typically include the following parameters to be
applicable in MPC.

• Unpredictability: The SRFG produces unpredictable and
statistically indistinguishable random values. We can for-
malize it for the SRFG as: ∀i, j ∈ Output space of
G,Pr[G(.) = i] ≈ Pr[G(.) = j].

• Seed Unpredictability: The initial seed used to initialize
the SRFG is secret to prevent retroactive predictions.
Formally, we write this as: ∀s1, s2, P r[G(s1) = .] ≈
Pr[G(s2) = .].

• Independent outputs: The outputs of the SRFG are inde-
pendent, ensuring that knowledge of one output does not
reveal information about others. We can write this as in
Equation 21.

Pr[G(.) = i1, G(.) = i2, ..., G(.) = ik] =

k∏
j=1

Pr[G(.) = ij ].

(21)

B. Information-theoretic analysis of SRFG application

In our information-theoretic analysis of SRFG, we consider
two aspects: secrecy and privacy separately.

In information theory, we can represent a digital information
content by a message; further we can describe a message as a
random variable Z, where Z is a discrete set, Z ∈ 1, ...,M . An
adversary can observe this message as a random vector Rn,
where n is the number of symbols in the vector taking value
in the set R. We call n block length implies the sequences in a
vector. In the best case, the joint probability distribution PZRn

of Z and Rn is known, which implicitly assumes that i) the
statistics of the source of information are fully controlled; and
ii) the statistical models that describe the processes relating the
observation Rn to the message Z are fully characterized. The
notion of perfect secrecy implies that Z and Rn be statistically
independent, which means that ∀m ∈ Z,∀rn ∈ Rn we say,

PZRn(m, rn) = PZ(m)PRn(rn), i.e., I(W,Rn) = 0. (22)

In Equation 22, I(W,Rn) is the mutual information, which
measures how much one random variable tells us about
another, between the messages and the adversary’s interpreted
observation. In our SRFG application in MPC, message and
shared secrets are synonymous in our discussion. We also

need to remember that Z cannot be a function of Rn,
which implies that some randomization is important to assure
information secrecy. Thus, our SRFG application in MPC
becomes significant. Now, we analyze how the properties of
SRFG can provide I(W,Rn) = 0 in MPC and make the
MPC information-theoretic secure. We consider two random
variables x ∈ X and y ∈ Y , where |X|, |Y | <∞ and have the
fixed joint distribution PXY . x is a random secret share output
from SRFG and y is the adversary’s observation and correlated
with x. Further, we also consider another variable q ∈ Q that
may have some limited information of x. We characterize the
quantity as in Equation 23.

gϵ(X;Y ) := max I(Y,Q), I(X;Q) ≤ ϵ. (23)

In the extreme point of information leakage, I(X;Q) = ϵ
and assuming that there is a deterministic function f , we
can get the simplified quantity of Equation 23 as shown in
Equation 24.

g̃ϵ(X;Y ) := sup H(f(Y )), f : I(f(Y );X) = ϵ. (24)

In case of perfect secrecy, ϵ = 0 and the notion of
Equation 23 becomes as Equation 25.

g0(X;Y ) := max I(Y,Q), I(X;Q) = 0. (25)

Assuming the random b bits variable for X and Y , and l
bits of Q, the probability of information leakage among X,Y ,
and Z becomes as shown in Equation 26.

PQ|Y := Q |= X. (26)

Since X,Y , and Q form a Markov chain X → Y → Q, we
say that Equation 27 and Equation 28 hold.

PQ|Y (.|0)PY |X(0|1) + PQ|Y (.|1)PY |X(1|1) = PQ|X(.|1)
(27)

and

PQ|Y (.|0)PY |X(0|0) + PQ|Y (.|1)PY |X(1|0) = PQ|X(.|0)
(28)

The condition Q |= X implies that PQ|X(.|1) = PQ|X(.|0) =
PQ(.). Therefore, we can rewrite the above equations as in
Equation 29:

PQ|Y (.|0)PY |X(0|1) + PQ|Y (.|1)PY |X(1|1) =
PQ|Y (.|0)PY |X(0|0) + PQ|Y (.|1)PY |X(1|0) = PQ(.). (29)

From the assumption that X and Y are dependent as X is
an input to SRFG and Y is an output from SRFG for MPC, the
above system of equations has a unique solution that turns out
to satisfy Equation 29. This implies that I(Y ;Q) = 0. Simi-
larly, we can also follow for I(X;Q) = 0. Thus, MPC with
SRFG as a primitive ensures information theoretic secrecy.
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C. Privacy analysis of SRFG application

We follow the t − private notion for privacy analysis as
shown in [32]. We also use the concepts of strong privacy, and
weak privacy as mentioned in the work [32]. Let V1, V2, ..., VN

are non-zero binary variables used in SRFG and each variable
consists of {0, 1}n, where n is the number of bits in the
variable. The interpretation of the variables is synonymous
with the private inputs to MPC, which outputs shared se-
crets; thus we formalize MPC as a system of randomization.
We also consider ϵ, δ ≥ 0 satisfying ϵ + δ < 1

2 , and
f(V1, V2, ..., VN ) → {0, 1}n. Following this construction and
the respective Theorem 1 and Lemma 5 of [32], we say that
f is weakly n

2 -private. This means that no coalition of size
≤ n

2 can get any additional information on the private input
variables. We also apply Theorem 3 of [32] to check the
strong privacy validity for SRFG in MPC. As we know, SRFG
uses a chaining process for the randomization, there exist L
subsets depending upon the chaining length or the required
terms of chains. Any subset of SRFG f can be written as in
Equation 30:

f̃L(V1, V2, ..., VN ) =
⊕

Vj , j ∈ L, (30)

where
⊕

can be any boolean function. The probability of any
Vi = Vj is minimum as 1

nn.nn → 0. Thus, for n-bit private
inputs SRFG benefits to provide n-privacy.

We also analyze the information-theoretic privacy for our
SRFG application in MPC. Information-theoretic privacy is
another aspect to ensure the privacy of a system. As MPC
deals with private inputs, the analysis of information-theoretic
privacy becomes important. The main goal of the presented
secret sharing and MPC in this paper is to use SRFG as
a primitive in the mentioned processes. Therefore, we are
more interested to analyze the information-theoretic privacy
for SRFG. Let S be a set of secret shares in our presented
MPC and J be the set of interpreted or guessed versions of
the secrets by an adversary. We can measure the leakage of
privacy as shown with a conditional probability formation in
Equation 31 [33].

L(S → J) ≜
P (S|J)
P (S)

, (31)

where P (S|J) :=
∑

j∈J PJ(j)maxs∈SPS|J(s|j) =∑
j∈J maxs∈SPS(s)PJ|S(j|s). The value of this conditional

probability of leakage becomes 0 as per norms of SRFG [25].
Thus, SRFG ensures the information-theoretic privacy norms.

VI. EXPERIMENTS AND RESULTS

In this section, we first describe the methods followed to
execute the integration of SRFG in MPC in Section VI-A.
It also includes the definition of performance metrics used
for experiments and evaluation. We discuss the observed
results in Section VI-B. Further, we analyze the impact of
MPC and SRFG integration on the messaging systems in
Section VI-C and provide a comparative analysis with the
existing frameworks in Section VI-D.

Fig. 4. Logical network model of the proposed MPC

A. Experimental methodology

We use a three-node network model for the implementation,
where the three nodes are three participants under a controller
node. The function of a controller node is to keep a watch on
the trust and privacy factors of the MPC, whereas individual
nodes (N1, N2, and N3) compute secrets based on the use
of SRFG. The nodes have standard computing hardware with
sufficient processing power and memory, Network interface
cards (NICs) for communication, and storage for data and
program files. The controller also confirms the task of com-
bining the secret shares. We show a logical network model
in Figure 4. Each node is configured with 16GB RAM, 4TB
of hard disk space, and 4.6GHZ CPU speed. The controller
C is a general computing system only doing synchronization
tasks and also has the specifications of other nodes. We use
Linux OS and server for storage. For the network, we use
Campus Area Network (CAN) with a transmission speed of
100 Mbps. The steps of implementing MPC in a distributed
network model are discussed below.

• Step 1: Initialize node configuration with pre-defined
secure keys for computation purposes. We use Py-
Cryptodome, previously PyCrypto, and pyOpenSSL. Py-
Cryptodome provides a wide range of cryptographic func-
tions such as encryption, decryption, hashing, and key
generation; it offers a high-level API for easy integration
into Python applications. pyOpenSSL provides a Python
wrapper around the OpenSSL library for SSL/TLS func-
tionality; it is useful for secure communication over
networks using SSL/TLS protocols and supports cer-
tificate management, encryption, decryption, and secure
connections.

• Step 2: Ensure secure channels with VPN installed among
the three nodes and the controller. We use openvpn-api for
interacting with OpenVPN. These libraries enable Python
scripts to initiate and manage VPN connections for secure
node-to-node communication.

• Step 3: Initialize a secret pool. We use Python libraries
like secrets for generating random secrets, pyOpenSSL
for encryption, and sqlite3 for storage.

• Step 4: Select a random secret and send it to the nodes
from the controller.

• Step 5: All the nodes and the controller are pre-tested
with the SRFG function call. SRFG function call is im-
plemented in Python and included in the overall execution
using higher-level libraries such as Socket.IO.

• Step 6: Split input of secret share and use SRFG function
call. We use Python’s MPyC.
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• Step 7: Integrate consistency checks and cryptographic
verifications to ensure that messages are not tampered
with during transmission and that parties adhere to the
protocol.

• Step 8: Execute joint computations.
• Step 9: Reconstruct the final output by aggregating results

from different parties securely.
• Step 10: Conclude the protocol securely, accounting

for potential network failures or disruptions. Implement
mechanisms for graceful termination and cleanup.

• Step 11: Review privacy attainment.
Based on the above methodology, we implement our MPC

with SRFG and measure the performance based on the fol-
lowing metrics.

• Latency: We measure the latency by calculating the delay
of the message transmission. In this case, we consider
the time starting from initializing the secret till the
reconstruction of the secret.

• Throughput: Throughput is measured by the number of
secrets processed successfully by the proposed system in
a single unit of time. We observe the results in minutes.

• Privacy attainment: The number of attempts of privacy
breaches on the secrets or the components of the secrets
and the resiliency of the proposed system to avoid the
breaches. The ratio provides us with a clear indication of
the privacy measures of the system.

To compare the proposed MPC using SRFG with other random
number generators, we use the Permuted Congruential Gener-
ator (PCG) and Xorshift [34]. The criteria to select these two
random number generators for comparison is the quality of
randomness is statistically proven and both are quite fast in
producing randomness.

B. Obtained results

We execute overall 500 secret-sharing trials with the three
nodes and for each trial, we try to execute adversarial methods
to obtain a secret component. We compare all the trials for all
the random number generators. The comparison of the latency
for all the methods is shown in Figure 5. The results show that
PCG has more latency than the SRFG, whereas Xorshift is the
fastest randomness generator in the comparison and also has
less latency than the SRFG. Statistically, the average latency
for PCG is 32.4 seconds, SRFG is 22.5 seconds, and Xorshift
is 20.7 seconds.

In the next experiment, we measure the throughput of
the systems and obtain the results shown in Figure 6. We
observe the fact that our proposed MPC framework with
SRFG randomness is good in throughput; it is approximately
30% better in throughput as compared to PCG and Xorshift
combined. Another interesting fact to notice between Figure 5
and Figure 6 is that despite showing more latency for SRFG-
based MPC, the throughput is better for this combination. This
is because of the internal construction of the random number
generators.

In another experiment, we measure the privacy to ensure the
resiliency of the methods. We convert the privacy attainment
ratio into percentages and obtain a suitable graph as shown in
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Figure 7. From this figure, we observe that privacy attainment
performance is optimum for our proposed SRFG-based MPC
with 100%, whereas the other two methods show degrading
performance with the increased number of shares. This signi-
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TABLE II
COMPARATIVE ANALYSIS OF THE STATE-OF-THE-ART MODELS

Ref. Randomness Communication
overhead

Computational
overhead

Average latency
(seconds)

Average through-
put

Privacy
attainment

L. Harn et al. [8] No O(nmlogn) O(nmlogn) 40.2 46 78%
R. Xu et al. [11] No O(n)O(lognm) O(nmlogn) 30.5 43 80%
J. Ding et al. [12] No O(nmlogn) O(nmlogn) 19.5 56 65%
J. Yang et al. [15] No O(n2logm) O(nlogn) 21.7 67 89%
Z. Li et al. [23] No O(nlogm) O(nlogn) 24.7 32 92%
Proposed SRFG-
based MPC

Yes O(logn) O(logn) 22.5 70 100%

fies that our proposed method of SRFG-based MPC is resilient
and ensures privacy, which is the main objective of developing
the proposed method.

C. Impact on messaging system compliances

In this part, we analyze the impact of SRFG on a general
distributed messaging system that allows asynchronous con-
nections, fault tolerance, and scalability.

• Asynchronous connections and scalability: Our proposed
MPC framework with SRFG construction for random se-
cret shares ensures asynchronous connections, as we have
experimented with the work in a distributed asynchronous
messaging system architecture. With the increasing num-
ber of shares or secrets, the proposed system does not
show any significant overhead; however, its latency is
higher. We keep the scope open to optimize the latency
in our future works.

• Fault tolerance: In terms of fault tolerance, our proposed
system shows high tolerance as we can see from Figure 7
the system is stable as its privacy attainment percentage
is 100 percent.

Apart from the above discussion for the messaging system
compliance, we also measure the complexity of our system
in terms of communication cost and computational cost. For
computation cost, the average cost for secret share and secret
reconstruction stands for O(nlogn), where n is the number
of secret shares; the communication cost becomes O(logn).
The use of oblivious transfers and shared random values
reduces the need for direct communication between all parties,
contributing to the O(logn) communication complexity.

D. Comparative analysis

We compare our proposed work with some of the significant
state-of-the-art models such as the work of L. Harn et al. [8],
R. Xu et al. [11], J. Ding et al. [12], J. Yang et al. [15], and Z.
Li et al. [23]. We show the comparative analysis in Table II.
The table shows that our proposed MPC framework is better
than the other existing frameworks in terms of complexity,
randomness of shares, throughput, and privacy attainment;
however, there is scope for improvement in the latency.

VII. CONCLUSION

In our presented work, we show the analysis of random
function applicability in secret sharing and MPC. We show the
use of a symmetric random function generator in secret sharing

and MPC. Our application is the first one in the direction of
MPC to use a random function generator for secret sharing.
The analysis of the properties of the used random function
generator shows that our application of MPC can achieve a
negligible probability of information leakage; thus, it confirms
provides information-theoretic security and privacy. Besides,
for the first time in the domain of randomness, we show
that randomness in MPC can obtain optimum privacy with n-
private notions for a Boolean function-based random function
generator for binary dependent variables, such as the secret
shares. This observation also implies that the properties of
a symmetric random function generator are well-suited for
information security and privacy. The presented work lacks the
efficient computation of the decryption model ensuring trust
and privacy. Besides, the presented work faces the limitation
of communication overhead arising from the random secret
exchanges. In the future, we would like to design a fair
decryption model with the same notions of privacy and use the
random function generator to be applicable in a trustworthy
and uncoordinated environment.
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