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ABSTRACT—This study investigated the temporal dynamics of childhood sepsis by analyzing gene expression changes asso-
ciated with proinflammatory processes. Five datasets, including four meningococcal sepsis shock (MSS) datasets (two temporal
and two longitudinal) and one polymicrobial sepsis dataset, were selected to track temporal changes in gene expression. Hier-
archical clustering revealed three temporal phases: early, intermediate, and late, providing a framework for understanding sepsis
progression. Principal component analysis supported the identification of gene expression trajectories. Differential gene analy-
sis highlighted consistent upregulation of vascular endothelial growth factor A (VEGF-A) and nuclear factor κB1 (NFKB1), genes
involved in inflammation, across the sepsis datasets. NFKB1 gene expression also showed temporal changes in the MSS
datasets. In the postmortem dataset comparing MSS cases to controls, VEGF-A was upregulated and VEGF-B downregulated.
Renal tissue exhibited higher VEGF-A expression compared with other tissues. Similar VEGF-A upregulation and VEGF-B
downregulation patterns were observed in the cross-sectional MSS datasets and the polymicrobial sepsis dataset. Hexagonal
plots confirmed VEGF-R (VEGF receptor)–VEGF-R2 signaling pathway enrichment in the MSS cross-sectional studies. The
polymicrobial sepsis dataset also showed enrichment of the VEGF pathway in septic shock day 3 and sepsis day 3 samples
compared with controls. These findings provide unique insights into the dynamic nature of sepsis from a transcriptomic perspective
and suggest potential implications for biomarker development. Future research should focus on larger-scale temporal transcriptomic
studies with appropriate control groups and validate the identified gene combination as a potential biomarker panel for sepsis.

KEYWORDS—Gene expression; proinflammation; sepsis; septic shock; temporal sepsis; VEGF-A; VEGF-B
INTRODUCTION

The global burden of pediatric sepsis is substantial, with
20 million cases yearly (1) and 2.9 million deaths in those younger
than 5 years worldwide. Early detection and rapid intervention
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ory (https://www.ncbi.nlm.nih.gov). There were no restrictions to data
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are lifesaving, thus necessitating evidence-based guidelines to
optimize early interventions to improve sepsis-related outcomes.
However, such efforts have yet to improve sepsis mortality signif-
icantly (2). For neonates, the estimated number of deaths annually
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was estimated by Fleischmann-Struzek et al. (3) as a part of a sys-
tematic analysis, calculating 3 million cases annually.

In adults, a secondary analysis of 1,332 participants in theARISE
(Australian Resuscitation in Sepsis Evaluation) study showed that
infected patients with isolated hyperlactatemia had worse 90-day
mortality than thosewith isolated hypotension (4). This suggests that
metabolic derangement associated with sepsis leading to high serum
lactate may be a more important determinant of mortality than he-
modynamic dysfunction. The cellular effects of sepsis/septic shock
are life-threatening and are mediated by several pathogen-induced
proinflammatory cytokines. Meningococcal sepsis, caused by the
gram-negative bacteriaNeisseriameningitidis, is prototypical of sep-
tic shock dynamics. LPS, an important outer membrane antigen of
gram-negative bacteria (5), overburdens the host immune system
and elicits a wide array of inflammatory cascade resulting in septic
shock (6). Using transcriptional information, a temporal-spatial tra-
jectory has been described in infants with septic shock (7). TNF-α,
a key cytokine implicated in sepsis pathogenesis, is known to ac-
tivate nuclear factor κB subunit (NF-κB) (8) a key regulator of
gene expression (GE) of proinflammatory cytokines in innate
and adaptive immune cells (8). Nuclear factor κB activation re-
sults in the release of IL-6, activation of STAT-3, and other proin-
flammatory molecules such as vascular endothelial growth factor
(VEGF) (9). Vascular endothelial growth factor A is a known
proangiogenic and proinflammatory agent with a complex role
in the inflammatory cascade. Vascular endothelial growth factor
A is shown to stimulate the production and release of various cy-
tokines such as TNF, NF-κB, IL-4, IL-6, monocyte chemotactic
protein 1, and so on and vice versa (10–15). Wang and Yang (16)
demonstrated TNF-α increasing VEGF-A expression resulting
in increased cell migration and angiogenic differentiation in human
fibroblasts. Vascular endothelial growth factor is an important deter-
minant of sepsis morbidity and mortality (17) and a marker of in-
flammation and a potential therapeutic target (18). Vascular endo-
thelial growth factor B, like VEGF-A, belongs to the VEGF family
and, like VEGF-A, binds to the VEGF receptor 1 (VEGF-R1).
However, VEGF-B has actions counter to that of VEGF-A, with
studies suggesting its role as a vascular survival factor safeguarding
endothelial cells, smoothmuscle, and also cardioprotection (19–21).

Considering the diffuse endothelial dysfunction and vascular
leakage; key in the pathogenesis of sepsis, septic shock, and
multiorgan dysfunction; restoring vascular integrity during the re-
covery phase; and the close relation of VEGFs with endothelium
and vascular health, we believe temporal dynamics of VEGF-A
and VEGF-B in sepsis could potentially provide important in-
sights on sepsis evolution and have the potential for biomarking
and as a therapeutic target.

We aimed to study time-related sepsis dynamics from theGEper-
spective. Also, an objective was to appreciate differential GE
changes in TNF-α (TNF), NFKB1, and VEGF-A and VEGF-B
genes. The methodology was based on our findings in Kawasaki
disease–associated inflammation, which has shown consistent acute
upregulation of TNF, NFKB1, and VEGF-A genes and the down-
regulation of VEGF-B GE in acute Kawasaki disease (22). In this
study, we performed transcriptomic analysis of longitudinal and
cross-sectional datasets of childhood meningococcal to evaluate
temporal dynamics. Finally, a temporal polymicrobial dataset was
selected to evaluate GE changes in the broader context of sepsis.
METHODS

Systematic transcriptome data search and preprocessing

A systematic search of publicly available online repositories from Gene Expres-
sion Omnibus datasets—National Center for Biotechnology Information (https://
www.ncbi.nlm.nih.gov/geo/) (23) and the EuropeanMolecular Biology Laboratory-
Bioinformatics Institute (EMBL-BI) (https://www.ebi.ac.uk/ebisearch/about) was
undertaken (Fig. 1). Thus, clinical datasets involving temporal transcriptomic sepsis
studies in children were selected (Table 1). The search terms “meningococcal sepsis”
and “meningococcal shock” were parsed through the Gene Expression Omnibus
Gene Expression Omnibus database and EMBL-EBI ArrayExpress, leading to 64
and 5 datasets in each. Thiswas followed by the term “meningococcal transcriptome,”
resulting in eight and two datasets. Finally, two temporal datasets, E-MEXP-3850
(Kwan dataset) and GSE11755 (Emonts dataset), and two nontemporal datasets,
GSE141864 (Brusletto dataset) and GSE80496 (Wright dataset), were included in
the final analysis, after excluding comparative genomic hybridization by array, pro-
teomic profiling by array, duplicates, in vitro studies, and nonhuman organism
experiments. Temporal “polymicrobial” sepsis transcriptome studies using key
words “pediatric sepsis and septic shock” and GE profiling by array were searched.
The initial search resulted in 80 datasets from the two databases. Finally, one dataset
GSE13904 (Wong dataset), of 29 (Gene ExpressionOmnibus n = 9 and EBI n = 20),
was included in the final analysis after the exclusion strategy outlined in Figure 1.
Table 1 summarizes the clinical sepsis datasets included for final analysis.

Demographic comparisons between Kwan and Emonts datasets are shown
(Table 2). The Kwan dataset (24) has blood sampled during the first 48 h of admission
to the pediatric intensive care unit (PICU) with meningococcal sepsis, whereas Emonts
covered 72 h (28). According to the systematic search, these were the only two tempo-
ral transcriptomic datasets in the clinical literature with multiple sampling in children
with sepsis over the first 48 to 72 h. Patients in the Kwan dataset were numbered 1
to 5 (P1 to P5); in the Emonts dataset, patients were labeled 1 to 6 (P1 to P6). An ar-
bitrary time point was designated as time 0 (T = 0) at the time of PICU admission
andwas used in both studies. The other twomeningococcal sepsis shock (MSS) disease
datasets are cross-sectional studies, GSE80496 (Wright dataset) and GSE141864
(Brusletto dataset), comparing meningococcal sepsis ± meningitis with controls. The
Brusletto dataset is from the end-stage meningococcal disease from postmortem sam-
ples, focusing on transcriptomic changes in various organs (heart, liver and kidney)
and immune cells (whole blood, lymphocytes, andmonocytes). The polymicrobial sep-
sis dataset GSE13904 (Wong dataset) is also a temporal dataset that compared sepsis
with septic shock, systemic inflammatory response syndrome (SIRS), and controls
from day 1 (D1) to day 3 (D3). The datasets were first inspected for data process-
ing methods indicated by the author(s), and appropriate normalization and log
2 transformation were applied as required using R script.

Gene Ontology analyses

Qlucore Omics Explorer (QOE) version 3.1 software (Qlucore AB, Lund,
Sweden) was used to analyze the differential expression of genes. Box plots were
used to illustrate differences in GE in QOE,with the y-axis plots showing log 2 nor-
malized GE values. The data were centered to zero (mean) and scaled to variance 1.
Gene set expression analysis (GSEA) was used to determine a priori–defined set
of genes that showed statistically significant differences between two biological
states (29). The MSigDB (Molecular Signatures Database) from the Broad Insti-
tute website (www.gsea-msigdb.org) was searched for human gene sets using key-
words (“VEGF,” “TNF,” and “NFKB1”), and corresponding gene ranks were then
downloaded. In QOE, the default settings were used for GSEA (min match set
size = 15, max match set size = 500, permutations = 1,000, permutation method =
sample, enrichment weight = 1). The data were preprocessed using the mean expres-
sion value of multiple probe IDs that matched an official gene symbol, and a net en-
richment score was calculated. This value was considered to represent the expression
intensity of the corresponding gene symbol. ANOVA and Student t tests were under-
taken for intergroup comparisons. False discovery rate (FDR) and the familywise
error rate were used for statistical analysis, with familywise error rate using the
Bonferroni correction. A q (FDR) value of 0.25 was used for principal component
analysis (PCA) and GSEA exploration to circumvent the small sample size problem.
Other platforms used for gene enrichment included ShinyGo (30) and g:Profiler (31).

Transcript time course analysis

Transcript time course analysis (TTCA) R software was used for temporal data
analysis (32). TheKwan dataset's last sample (at the 48-h collection point) was referred
to as a constant or control. Emonts had age- and gender-matched controls. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (33) was used to obtain cu-
rated genes for VEGF-associated signaling, apoptosis, complement, and coagula-
tion. The Hugo database (34) curated the heat shock protein genes, including
HSPBAP1, zinc finger, and metallothionein genes. Simple overrepresentation
analyses (via hypergeometric-distribution–based testing) were performed using

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/ebisearch/about
http://www.gsea-msigdb.org


FIG. 1. Search of publicly available databases for transcriptional studies in childhood meningococcal sepsis and polymicrobial sepsis. This figure
displays the approach to select the sepsis datasets used in this article. Two public databases were utilized, namely, the NCBI GEO database and the EMBL-EBI
ArrayExpress. The selection process for publicly available temporal Neisseria meningococcal transcriptomic datasets is depicted in A. A search term,
“meningococcal shock,” was used to parse through the NCBI GEO database (yielding 64 datasets) and the EMBL-EBI ArrayExpress (yielding five datasets).
The term “meningococcal sepsis” was used in both databases, resulting in seven datasets from EMBL-EBI ArrayExpress and 64 datasets from NCBI GEO. In
addition, the term “meningococcal transcriptome” was searched in PubMed, assessing eight datasets. These searches yielded two publicly available datasets,
E-MEXP-3850 (Kwan Dataset) and GSE11755 (Emonts dataset), for analysis. Furthermore, the selection process for nontemporal publicly available Neisseria
meningococcal transcriptomic datasets is illustrated in B. Using “meningococcal” as the key term and “expression profiling by array” as the study type, a total of
29 datasets were identified from the NCBI GEO (n = 9) and EMBL-EBI ArrayExpress (n = 20) searches. The EMBL-EBI search initially yielded larger datasets
(n = 2,433); however, irrelevant datasets and study types were excluded, resulting in 20 datasets for further screening. After removing duplicates, a total of 23
datasets remained. In vitro studies, experiments with nonhuman organisms, and temporal studies were excluded, leaving three datasets eligible for final
selection. The objective was to select clinical transcriptomic studies on meningococcal infection with septic shock manifestation and transcriptome profiles of
children with a bacterial infection. With this objective in mind, two datasets, GSE141864 (Brusletto dataset) and GSE80496 (Wright dataset), were selected.
The super series GSE72829 with subseries GSE80496 was excluded as GSE80496 contained the desired meningococcal dataset. Lastly, C represents the
selection process for temporal polymicrobial studies. Pediatric sepsis datasets obtained from the two online public databases using gene expression and
profiling by array were initially searched for sepsis and septic shock, resulting in 80 datasets. The NCBI search included the following datasets: GSE26440,
GSE26378, GSE13904, GSE11755, GSE9692, GSE8121, and GSE4607. The EBI search yielded GSE13904, GSE8121, GSE9692, GSE11755, and
GSE4607. Duplicate studies were accounted for, resulting in seven eligible datasets (GSE26440, GSE26378, GSE13904, GSE11755, GSE9692, GSE8121,
and GSE4607) for genomic expression analysis. Nontemporal studies were excluded from further analysis. In addition, substudies (GSE9692, GSE8121, and
GSE4607) were deselected because they were included in the main study GSE13904 (the “Wong” dataset). EMBL-BI, the European Bioinformatics Institute;
NCBI GEO, National Center for Biotechnology Information Gene Expression Omnibus.
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the TTCA results. This resulted in significant genes related to “consensus,” “early
response,” “middle response,” “late response,” “complete response,” “dynamic,”
and “MaxDist.” Similarly, pathfindR software (35) was used to analyze the genes
from TTCA. KEGG pathway and Gene Ontology (36) Biological Process
(GO-BP) enrichment analysis were undertaken using Enrichr (37).
Enrichr

Enrichr is an enrichment tool that allows the pasting of gene lists onto its online
platform. On enrichment, there is a connection to Appyter tools allowing the illus-
tration of the data in bar charts and hexagon plots.



TABLE 1. Summary of clinical sepsis datasets for analysis

Accession number* Label Platform Study design n† Ref‡

E-MEXP-3850 Kwan Microarray: Affymetrix Human Gene
1.0 ST Arrays

Blood was sampled at six time points
during the 48 h in PICU in children

5 Kwan et al. (24), 2013

GSE11755 Emonts Microarray: Affymetrix Human
Genome U133 Plus 2.0 Array

Case-control study
Children with meningococcal sepsis
(n = 6) compared with controls (n = 4)

10 NA

GSE80496 Wright Microarray: Illumina HumanHT-12
V3.0 bead chip

Case-control study
Meningococcal sepsis (n = 21),
meningococcal sepsis with meningitis
(n = 3) and controls (n = 21)

45 Herberg et al. (25), 2016

GSE141864 Brusletto Microarray: Affymetrix Human
Transcriptome Array 2.0

Case-control study
Meningococcal septic shock (n = 5) vs.
control (n = 2)

7 Brusletto et al. (26), 2020

GSE13904 Wong Microarray: Affymetrix Human
Genome U133 Plus 2.0 Array

Case-control prospective observational
study, normal controls (n = 18), SIRS
(n = 22), sepsis (n = 32), septic shock
(n = 67) (day 1)

139 Wong et al. (27), 2009

All human datasets were quantile normalized as a part of the data prepossessing. Each dataset is given a label for use throughout the article. Datasets in-
cluded children admitted to the PICU. No publication reference for the Emonts dataset, which was therefore marked as NA. The selected datasets were
named for readership ease according to the first author of the associated publication or designated person on the online repository.
*NCBI and EMBL-BI data repositories.
†n is the number of patients.
‡Ref is the reference literature pertaining to the study containing the dataset.
EMBL-BI, the European Bioinformatics Institute; NA, not available; NCBI GEO, National Center for Biotechnology Information Gene Expression Omnibus;
PICU, pediatric intensive care unit; SIRS, systemic inflammatory response syndrome.
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RESULTS

Time-series analysis

Principal component analysis of GE datasets from infants with
MSS fromKwan and Emonts studies showedGE transitions from
an early to a late stage. Figure 2 (A–D) illustrates the PCA plots
TABLE 2. Demographic comparis

Patient identifier 1 2 3 4

Mortality (at 28 d) Died Alive Alive Alive A
Neisseria meningococcal

serotype
Negative culture

(presumes
meningococcal
sepsis)

GpB GpB GpB

Title 1 N 2 N 3 N 4 N 5
DIC Y Y Y Y
Mechanical ventilation Y Y Y Y
Gender Female Female Female Male M
Protein C Y N N N
Hospital Kwan Kwan Kwan Kwan K
No. samples taken 5 5 5 5
Age (y) 1.08 0.83 1.83 2
Duration of PICU

admission (d)
9 4 3 6

Median PRISM score 15 7 15 13
Leukocyte count (�10−9/L) 6.8 18.4 18.8 3.7
Platelet count (�10−9/L) 129 126 123 88 8
CRP (mmol/L) 52 81 60 138 9
Lactate (mmol/L) 6.75 0.99 1.71 6.48
Base excess (mmol/L) 1.2 2.4 −8 −15.1 −
Urea (mmol/L) 11.7 4.9 8 6
Potassium (mmol/L) 4.5 4.5 4 3.4
Bilirubin (μmol/L) 12 7 5 3

*A P value comparison is shown comparing the Kwan group against the Emont
istics apart from the PRISM score.
CRP, C-reactive protein; DIC, disseminated intravascular coagulation; GpB, G
diatric intensive care unit; PRISM, Pediatric Risk of Mortality Score.
and heat maps on gene transitions across different time points
from zero to 48 h inmeningococcal sepsis. Multigroup (ANOVA)
temporal analysis of the Kwan dataset showed the expression
levels of 728 genes defining differences between time points
(P < 0.01). The PCA plot (Fig. 2A) shows the time as the most
important component in differences between samples (principal
on of Kwan versus Emonts

5 1 2 3 4 5 6
P value

comparison*

live Alive Alive Alive Alive Alive Alive
GpB GpB GpB GpB PCR

negative
GpB GpB

N 1R 2R 3R 4R 5R 6R
Y Y Y N Y Y N
Y Y Y Y Y Y Y
ale Male Male Male Male Male Male
N N N N N N N
wan Emonts Emonts Emonts Emonts Emonts Emonts
5 4 4 4 4 4 4
0.75 5.06 1.37 1.79 2.09 1.51 8.04 0.13
3 4 5 1 2 60 4 0.46

4 26 23 21 25 28 14 0.0035
15.1 16.1 5.1 35.5 18.1 8.3 9.9 0.6
2 111 26 184 91 116 124 0.97
6 51 78 176 258 105 31 0.44
0.6 9 5.7 1.7 1.8 9.5 2.2 0.43
6.9 −9 −11 −7 −6 −12 −9 0.32
3.3 7 7.4 4.4 11.4 7.6 6 0.77
3 3 3.7 3.2 3.4 3.2 3.4 0.14
4 6 9 3 3 12 8 0.78

s group, indicating that the two groups have similar demographic character-

roup B Neisseria meningitidis; PCR, polymerase chain reaction; PICU, pe-



FIG. 2. Gene expression trajectory from two data series of infants with meningococcal sepsis. This figure illustrates various analyses conducted on the
Kwan (A and B) and Emonts datasets (C–G). In A, a PCA plot of the Kwan dataset using multigroup (ANOVA) temporal analysis (P ≤ 0.01, 728 genes) shows the
expression levels of 728 genes that contribute to differences between time points. Time is identified as the most important component in distinguishing between
samples, accounting for 52% of the variation. B presents a synchronized heat map alongside the PCA data for the Kwan dataset, demonstrating the upregulation
(red) and downregulation (green) of gene expression. The heat map visualizes gene expression transition from an early to a late state, with significant differences
observed between 0 and 48 h. For the Emonts dataset, C shows a PCA plot based on different cell types (blood, lymphocyte, and monocytes) analyzed using
ANOVA set to “Time” (P = 0.01 and q = 0.012), identifying 4,543 significant genes. This dataset also includes a PCA plot comparing controls and sepsis (D) and a
corresponding heat map (E). Then, a PCA plot is displayed for the Emonts dataset based on patients and time points, removing the “cell type” factor from the
multigroup ANOVA (P = 0.002, q = 0.14) (F). This PCA plot highlights 776 genes differentially upregulated across time points in the Emonts dataset. At the same
time, the associated heat map is presented, showcasing the transition from an early to a late state of sepsis (G).
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component, 52%). The heat map (Fig. 2B) synchronized to the
Kwan dataset's PCA data showed that most filtered genes exhib-
ited low expression at time 0 that reverted to upregulation by
48 h, demarcating an early, intermediate, and late state. The vertical
and horizontal hierarchical clustering heat map indicated that time
points 0 and 48 h were the most different in GE and demonstrated
the transition from one pattern to another. Similarly, for Emonts
data, ANOVA temporal analysis according to different cell types
(blood, lymphocytes, and monocytes) generated 4,543 genes of
significance (P = 0.01 and q = 0.012) (Fig. 2, C and D) and sepsis
versus controls. In PCA multigroup ANOVAwith respect to time
(eliminating “cell type”), 776 genes were differentially upregu-
lated across time points (Fig. 2F) (P = 0.002, q = 0.14, axis
FIG. 3. Transcript time course analysis (TTCA) for the Kwan and Emonts da
Emonts (B andD) representing pathway enrichment according to the KEGGdatabase
data are scaled in accordance with the false discovery rate. KEGG, Kyoto Encyclope
41%, 13%, and 8%) with the associated heat maps (Fig. 2, E
and G), showing the transition from an initial state to a final state.

TTCA pathfindR results

Statistically significant differentially expressed genes in the
Kwan and Emonts datasets identified by TTCAwere enriched ac-
cording toKEGGpathways andGO-BP terms using the R package
Enrichr. The resulting enrichment tables were saved and visualized
as bar plots (Fig. 3). KEGG enrichment shows the coronavirus path-
way to be enriched for the Kwan dataset (Fig. 3A). Further, for both
Kwan and Emonts, neutrophil pathways (mediation, activation,
and degradation) are highly enriched. Moreover, both datasets
show enrichment for “antigen processing and presentation” and
tasets. Bar plots are shown, generated from TTCA for the Kwan (A and C) and
. Also, GOpathways are shown according to biological processes (C andD). The
dia of Genes and Genomes.
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hematopoietic cell lineage. Emonts datasets showed enrichment for
TNF signaling and the regulation of TNF production (Fig. 3, B and
D). Both Emonts and Kwan datasets showedGO pathways associ-
ated with neutrophil function (Fig. 3, C and D).

The TTCA patterns for VEGF-A andVEGF-B for both Emonts
and Kwan datasets suggest a falling trend in GE toward controls,
although the trend of VEGF-A in the Emonts dataset was less
well defined (Fig. 4).

Curated genes from TTCAwere enriched using pathfindR with
enrichment charts depicting significant pathways (Fig. 5). For both
datasets, KEGG gene enrichment showed pathways related to ribo-
some and NF-κB signaling pathways. Also, T-helper 17 cell differ-
entiation Kwan (complete response) and Emonts (complete and dy-
namic response)were enriched. Ribosome gene enrichment was sig-
nificant for both datasets for complete and dynamic responses. Also,
T cell receptor signaling pathways were significant in the complete
response for both datasets. Table 3 shows the TTCA gene enrich-
ment comparison of Kwan versus Emonts datasets.

Postmortem sampling GE (GSE141864)

Meningococcal sepsis shock samples were analyzed from post-
mortem tissue (Fig. 6), with patients with MSS compared against
acute noninfectious controls (Fig. 6A). Vascular endothelial growth
factor A and NFKB1 were upregulated in patients with MSS
FIG. 4. Transcript time course analysis (TTCA) for the Kwan and Emonts da
and D) datasets. TTCA gene expression intensities for VEGF-A and VEGF-B showe
Kwan datasets. VEGF, vascular endothelial growth factor.
compared with controls, whereas VEGF-B was downregulated.
Gene expression comparisons across tissues are shown for TNF
NFKB1VEGF-A and VEGF-B patients withMSS (Fig. 6B). Re-
nal VEGF-Awas upregulated against all of the other tissue types.
Gene expression for liver tissue against other cell types was also
compared (not shown) and showed no differentiation for the four
gene transcripts studied (NFKB1, TNF, VEGF-A, and VEGF-B).
Two-group comparison was undertaken in patients with MSS to
compare heart samples against other tissue types (P = 0.001,
q = 0.01), with 2,619 genes isolated after filtering (from 26,914
genes) (Fig. 6C). This was then parsed through g:Profiler (settings,
organism = Homo sapiens, significance threshold = Benjamini-
HochbergFDR,user threshold=0.05,numeric IDs=ENTREZ_ACC).
Then, the 2,619-gene list was also parsed through the ShinyGo
platform (version 0.741, setting = Homo sapiens), illustrated
here (Fig. 6, D–F). Enrichment of pathways related to mito-
chondrial function was a continuing theme known to be
disrupted in MSS. Cardiac muscle enrichment pathways were
also noted; cardiac dysfunction is an important feature consis-
tent with severe sepsis and septic shock. Analysis through the
Enrichr platform was also undertaken (Fig. 6, G and H), which
showed KEGG enrichment for cardiac muscle contraction and
oxidative phosphorylation, with Wikipathway gene enrichment
for striated muscle contraction and mitochondrial pathways.
tasets for VEGF-A and VEGF-B. TTCA for the Emonts (A and B) and Kwan (C
d a tendency toward convergence of cases and controls in both the Emonts and



FIG. 5. pathfindR enrichment analysis of Kwan and Emonts datasets. From the TTCA data, pathfindR enrichment charts were generated for both the Kwan (A
and B) and Emonts datasets (C and D). The data are adjusted in line with the Bonferroni correction.
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Also, significant pathways enriched included VEGF-A/VEGF-R,
mitogen-activated protein kinase (MAPK), P13k, IL-18, and fo-
cal adhesion.

Wright dataset (GSE80496)

Qlucore Omics Explorer was set to the gene symbol setting,
and data collapsed by averaging in dataset GSE80496 (Fig. 7).
TABLE 3. Curated genes from TTCA gene enrichment for Kwan

Gene set

K

Fold enrichm

KEGG_APOPTOSIS 1.82
KEGG_VEGF_SIGNALING_PATHWAY 0.47
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 1.53
Heat shock proteins (HUGO) 1.48
Metallothionein genes (HUGO) 0.97
Zinc finger genes (HUGO) 1.29

TTCA and enrichment generated the “complete response” category for the Emo
dataset. According to the KEGG apoptosis pathway, genes are enriched for
whereas there was no enrichment for the Emonts dataset. For Emonts VEGF,
noted.
FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes
factor.
Box plot analysis showed that, compared with the meningitis
group, theMSS group differed the most from the controls (Fig. 7A).
In patients with MSS, TNF, NFKB1, and VEGF-A GE were upreg-
ulated compared with controls, whereas VEGF-B was down-
regulated. Patients with MSS were compared with controls after
GE filtering (P = 0.001 and q = 0.003) (Fig. 7B). The subsequent
gene list was parsed through g:Profiler generating tree and
and Emonts datasets in the “complete response” category

wan dataset Emonts

ent P FDR Fold enrichment P FDR

0.004 0.01 1.69 2.49E-14 1.50E-13
0.931 0.93 1.79 1.11E-12 3.34E-12
0.196 0.29 1.36 8.89E-07 1.78E-06
0.173 0.29 1.14 8.46E-05 0.00012693
0.656 0.79 0.61 0.831 1.00
0.003 0.01 0.61 0.998 1.00

nts and the Kwan datasets. The pathway gene sets are compared for each
apoptosis in both datasets. The zinc finger genes are enriched for Kwan,
complement and coagulation cascades and heat shock proteins are also

; TTCA, transcript time course analysis; VEGF, vascular endothelial growth



FIG. 6. Transcriptional changes in postmortem samples in Neisseria meningococcal sepsis versus controls. This figure represents an analysis of the
postmortem dataset GSE141864, comparing individuals with noninfectious causes for death (controls) and patients diagnosed with Neisseria meningococcal
septic shock (MSS). The data in A was organized based on gene symbol, and box plot analysis was conducted. In MSS cases, there was a significant
upregulation of NFKB1 and VEGF-A GE compared with controls, whereas VEGF-B was downregulated. However, there was no difference in TNF GE between
cases and controls. GE was used to analyze tissue from patients with MSS (B). TNF GE showed the highest upregulation in the heart compared with the
kidneys and spleen, with no difference compared with the lungs. No significant differential GE was noted for NFKB1 across tissue types. In the kidneys,
VEGF-A exhibited upregulation compared with the heart, lungs, and spleen, whereas VEGF-B showed upregulation in the heart compared with the lungs. A
two-group comparison was performed between heart tissue and all other tissues using QOE (P = 0.01 and q = 0.05). This analysis filtered 26,193 variables to
6,179 genes and generated a three-axis principal component analysis plot (C). The resulting differential gene set was then analyzed using the ShinyGo platform
generating lollipop and tree plots (D and E). The ShinyGO platform was set for Homo sapiens and an FDR cutoff of 0.05 to display the top 30 pathways. The
lollipop and tree plots depicted various aspects of the respiratory chain, aerobic respiration, and mitochondrial function pathways. A network plot was also
generated from the gene 6,179 list, revealing networks associated with the heart muscle (F). A subset of 19 genes was removed from the gene list to comply with
the Enrichr platform, resulting in 6,160 enriched genes showing enrichment by hexagon plots (G). Highly significant pathways included VEGF-A/VEGF-R, MAPK,
P13k-Akt, IL-18, and focal adhesion. FDR, false discovery rate; GE, gene expression; NFKB1, NF-κB1; QOE, Qlucore Omics Explorer; VEGF, vascular endothelial
growth factor; VEGF, VEGF receptor.
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lollipop plots (Fig. 7, C and D). Further, the gene list underwent
analysis by Enrichr generating bar and hexagon plots (Fig. 7, E
and F). Cytoplasmic ribosomal proteins were noted to be signif-
icantly enriched. Further significant pathways related to MAPK,
P13K-Akt, VEGF-A, IL-4, epidermal growth factor/epidermal
growth factor receptor, and IL-18 were noted.

Four gene transcript patterns (VEGF-A, VEGF-B, TNF, and
NFKB1 GE in temporal datasets

In the Emonts dataset, on analysis according to cell type, NFKB1
differentiated all three categories (blood, lymphocytes, and mono-
cytes) (Fig. 8A). At the same time, blood and monocytes showed
VEGF-A upregulation and VEGF-B downregulation compared
with lymphocytes. For Emonts, when controls were compared against
sepsis patients, TNF, NFKB1, and VEGF-Awere upregulated against
controls, with no change noted in VEGF-B (Fig. 8B). Of the four
GE transcripts under study, for Emonts and Kwan, the only gene to
show a temporal difference was NFKB1 (Fig. 8, C and D).
For the Wong dataset, septic shock D3, compared with con-
trols D3, was upregulated for NFKB1 and VEGF-A and down-
regulated for VEGF-B (Fig. 8E). This was also similar for sepsis
D3 versus controls D3. For SIRS D3 versus controls D3, NFKB1
only was upregulated, whereas VEGF-B was downregulated
(Fig. 8E). Gene set expression analysis was performed for the
genes of interest in theWong dataset; septic shock D3 versus con-
trols is illustrated (Fig. 8F), and all of the combinatory GSEA
comparisons are listed (Table 4), with the KEGGVEGF signaling
pathway enrichment being noteworthy for the sepsis but not for
the SIRS categories.
DISCUSSION

The primary aim of this study was to enhance our understanding
of dynamic changes associated with sepsis from a transcriptomic
perspective. Thus, using a systemic search strategy, we found rele-
vant temporal and cross-sectional datasets for childhood sepsis



FIG. 7. Transcript (cross-sectional) of the Wright dataset. The GSE80496 Neisseria meningococcal dataset was classified into healthy (controls, n = 21) and
meningococcal disease (sepsis only, n = 21; sepsis with meningitis, n = 3) groups. Box plot analysis (A) showed elevated GE in patients with sepsis alone
compared with both controls and patients with sepsis and meningitis. Specifically, NFKB1 and VEGF-A GE are elevated in patients with sepsis only, compared
with controls, whereas VEGF-B GE is downregulated. GSE80496 dataset contains 18,631 variables when averaged according to gene symbol. Principal
component analysis plot is illustrated (B). This dataset is then filtered in QOE ( P = 0.001 and q = 0.003), leading to 5,596 unique genes, which are then parsed
through the ShinyGO platform (setting = Homo sapiens, FDR cutoff = 0.05, top pathways shown =30, database used = GO biological process). This results in
the tree diagram (C) and lollipop plot shown (D). Also, the same gene list is pasted into the Enrichr tool, generating enriched pathways in the KEGG 2021
database category. These data are sent through an Appyter connection to generate a hexagon plot (E). The hexagonal canvas plot shows terms from the
WikiPathway 2021 Human gene set library. Each hexagon in the plot represents a single term. The brighter the color, the higher the Jacquard similarity
between the term gene set and the input gene set. Terms highlighted in blue show the most significant overlap with the input query gene set, with similar gene
sets grouped close to each other. FDR, false discovery rate; GE, gene expression; KEGG, Kyoto Encyclopedia of Genes and Genomes; QOE, Qlucore Omics
Explorer; VEGF, vascular endothelial growth factor.
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FIG. 8. Comparing proinflammatory gene expression transcripts in meningococcal and polymicrobial sepsis and VEGF-B GE. This figure compares GE
acrossNeisseriameningococcal and polymicrobial sepsis. The figure includes A, B, and C (Emonts dataset); D (Kwan dataset); and E (Wong dataset). A displays GE
analysis according to the cell type in the Emonts dataset, specifically for TNF, NFKB1, VEGF-A, and VEGF-B genes, with controls removed and gene symbols
collapsed. B analyzes the same genes for the Emonts dataset, focusing on GE in whole blood and comparing sepsis patients against controls. Among the four
selected genes, only NFKB1 is depicted in a box plot, illustrating temporal changes in GE for the Emonts (C) and Kwan (D) datasets, with controls removed for the
Emonts dataset. The NFKB1 gene shows a temporal increase in expression for the Emonts dataset when comparing 8 h with 72 h, whereas no difference is
observed across the start and end points. In the Kwan dataset, there is also an increase in NFKB GE between the 0- and 48-h time points. The Wong dataset
(GSE13904), including controls, is analyzed in E. Using the VEGF.gmt file, GSEA is performed using a two-group comparison of septic shock day 3 versus
controls day 3, with 124 samples and 22,480. F presents the GSEA result, indicating enrichment for the KEGG VEGF signaling pathway (Net enrichment
score = 1.57, P = 0.04, and q = 0.17) in the septic shock day 3 versus controls day 3 comparison. GE, gene expression; GSEA, gene set expression analysis;
KEGG, Kyoto Encyclopedia of Genes and Genomes; NFKB1, NF-κB1; VEGF, vascular endothelial growth factor.
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 from the clinical literature; four were related toNeisseriameningo-

coccal disease and one to polymicrobial sepsis. Two time-series
meningococcal datasets (Kwan and Emonts) suggested temporal
organization, with PCA heat maps showing three phases (early,
intermediate, and late). Transcript time course analysis allows
the appreciation of dynamic changes in GE and was thus applied
to our work. Although there were potential similarities in the
Emonts and Kwan trajectories using TTCA, this was difficult to
compare because of the different periods of the two independent
studies. Transcript time course analysis provided a temporal illus-
tration of GE and was combined with Pearson correlation and
TABLE 4. GSEA comparison against day 3 contro

Gene set Keyword
No. gene sets
downloaded

Septic
vs. c

NES

KEGG VEGF signaling pathway VEGF 20 1.57
Hallmark TNFA signaling via NFKB NFKB1 746 1.64
Hallmark inflammatory response NFKB1 746 1.79
GOBP Response to IL-6 NFKB1 746 1.79
GOBP TNF superfamily cytokine production TNF 1,329 1.7
GOBP TNF-mediated signaling pathway TNF 1,329 NS

Using GSEA, a two-group comparison was undertaken against day 3 controls
two-group comparison. The headline gene sets are shown (first column), consist
to the keyword (second column). The number of gene sets downloaded per ke
according to P < 0.05 and q < 0.25, with their corresponding NES.
GSEA, gene set expression analysis; KEGG, Kyoto Encyclopedia of Genes an
κB1; SIRS, systemic inflammatory response syndrome; VEGF, vascular endoth
pathR enrichment analysis mapped to the KEGG database. Using
TTCA applied to the Neisseria meningococcal disease temporal
datasets (Kwan and Emonts), gene enrichment pathways related
to coronavirus infection were identified, suggesting the sharing
of pathways related to disease pathogenesis for bothMSS and se-
vere acute respiratory syndrome.

Gene set expression analysis is a method allowing the compar-
ison of multiple gene sets or pathways and was used by Raman
et al. (38) on the Kwan dataset to show a temporal fall in oxida-
tive phosphorylation GE. Our study also used GSEA applied to
the polymicrobial dataset, using controls as a comparison, to
ls in the Wong (polymicrobial sepsis) dataset

shock day 3
ontrol day 3

Sepsis day 3 vs.
control day 3

SIRS day 3 vs.
control day 3

SIRS resolved day 3
vs. control day 3

P q NES P q NES P q NES P q

0.04 0.17 1.56 0.03 0.16 NS NS NS NS NS NS
0.05 0.18 NS NS NS NS NS NS NS NS NS
0.02 0.11 1.73 0.03 0.14 NS NS NS NS NS NS
0.004 0.1 1.98 0 0.02 NS NS NS NS NS NS
0.02 0.13 1.8 0.02 0.06 NS NS NS 1.64 0.04 0.15
NS NS NS NS NS NS NS NS NS NS NS

according to the first row, with the GSEA label set to “Category” for the
ing of a number of reference gene sets downloaded fromMSigDB according
yword is shown (third column). Significant gene sets are shown in the table

d Genomes; NES, net enrichment score; NS, Not Significant; NFKB1, NF-
elial growth factor.
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differentiate between the SIRS and sepsis. Sepsis showed significant
enrichment for VEGF signaling, IL-6 response, TNF signaling
via NFKB, inflammatory response, and TNF superfamily cyto-
kine production. In contrast, the SIRS group showed no differen-
tial enrichment of the aforesaid pathways. Further, GSEA showed
the enrichment of the TNF superfamily cytokine production gene
set in septic shock and sepsis patients (compared with controls).
However, GSEA suggested that the TNF-mediated signaling
pathway was no different in sepsis, SIRS, and controls groups.
One explanation for TNF superfamily production being signifi-
cant but lacking TNF-mediated signaling could be as a manifes-
tation of sepsis-associated dysfunction. Gene set expression anal-
ysis was shown to differentiate patients with sepsis from those with
SIRS. Therefore, GSEA may have utility in a predictive capacity,
such as demonstrated through GSEA-based modular cluster analy-
sis, which has helped to identify early predictive biomarkers of
sepsis (39,40), relating changes to outcomes by Kaplan-Meier
analysis (41).

Given the proinflammatory nature of sepsis, three genes with
corresponding proinflammatory proteins were chosen for analysis
(VEGF-A, TNF, and NFKB1). TNF GE was differential only in
the Wright dataset, showing gene upregulation in children with
MSS against controls and when children with sepsis were com-
pared with those with combined sepsis and meningitis. From
whole blood, the Emonts dataset showed all three genes upregu-
lated in patients with MSS versus controls. However, from a tem-
poral perspective, only NFKB1 elicited a temporal relationship in
both Emonts and Kwan. Further, the Emonts study allowed a
comparison of GE according to cell category (whole blood, lym-
phocytes, and monocytes), illustrating that NFKB1 GE can differ-
entiate by cell type. In the Wright and Brusletto datasets, NFKB1
genes were upregulated in MSS versus control patients. Further,
NFKB1 was upregulated in the Wong dataset compared with con-
trols for both septic shock and sepsis groups. Several studies have
identified the NF-κB as the primary signaling pathway for the pro-
inflammatory cytokine/chemokine response induced by severe
acute respiratory syndrome coronavirus 2 infection (42). We con-
centrated on NFKB1GE as the corresponding protein forms a sub-
unit with RelA regulating GE involved in immune and inflamma-
tory responses. NFKB1/RelA complex contributes to the predom-
inant NF-κB transcriptional activity through proinflammatory
mediation (43). AbdAllah et al. (44) also demonstrated the im-
portance of NF-κB in sepsis by examining the Toll-like receptor
pathway in a case-control study of neonates with sepsis. Based
on a receiver operating characteristic curve, NFKB1 transcript
levels showed good sepsis biomarking potential and were gender
independent. Moreover, Liu et al. (45) examined transcription
factor genes in adults with sepsis, showing protein-protein inter-
action for NFKB1 being present at the center of the networks,
with the potential role also in cytokine-mediated signaling and
cell communication. Studies suggest that NF-κB inhibitors may of-
fer useful therapies for sepsis, underlying the importance of the
NF-κB pathway (46). Given the changes in NFKB1 GE noted in
our study across sepsis datasets, NFKB1 requires further scientific
consideration in its role as a temporal biomarker and in the value of
NFKB1 inhibition. Inhibition of NF-κB activation, resulting in de-
creased proinflammatory cytokine generation and the restriction of
the inflammatory response, could also have therapeutic value.
The Brusletto and Wright datasets show pathway enrichment
for VEGFRA-VEGFR2 signaling and P13K/AKT/mTOR. Fur-
ther, in the Kwan and Emonts datasets, KEGG VEGF signaling
enrichment was noted by TTCA. Also in theWong dataset, septic
shockD3 and sepsis D3, versus controls D3 showedKEGGVEGF
signaling pathway enrichment. This consistent pattern of enrich-
ment underlines the importance of VEGF and its associated path-
way. Vascular endothelial growth factor A activates both the
MAPK and phosphatidylinositol-3-kinase-Akt (PI3K-Akt) sig-
naling pathways critical for cellular development, proliferation,
and survival (47,48). In addition, VEGF-A stimulates the activa-
tion of diverse signaling proteins in endothelial cells, such as the
mammalian target of rapamycin (mTOR) (49). This serine/
threonine kinase divides into two complexes called mTORC1
and mTORC2, resulting in downstream PI3K-Akt-mTORmodu-
lation of angiogenesis. Thus, MAPK, PI3K-Akt, and mTOR are
activated by VEGF-A to influence angiogenesis. Accordingly,
we investigated VEGF-A GE in the sepsis GE datasets. The dy-
namics of the interaction of VEGF-A and VEGF-B in sepsis have
not been previously described. In the Brusletto dataset postmor-
tem kidney tissue, VEGF-A GE was upregulated against all other
tissue types and VEGF-B downregulated. The Brusletto dataset is
unique in allowing a view of end-stage disease from postmortem
tissue data, suggesting an end-point interpretation of the GE tra-
jectory. In the Wright datasets, VEGF-A showed gene upregu-
lated in patients with MSS versus controls, with VEGF-B show-
ing downregulation. Vascular endothelial growth factor A likely
has an intricate molecular relationship with VEGF-B because
both activate the VEGF-R1 receptor. However, the relationship
between VEGF-A and VEGF-B has not been previously investi-
gated in sepsis. In the Brusletto, Wright, and Wong datasets,
VEGF-A was upregulated in combination with VEGF-B down-
regulation in children with sepsis against controls. However, in
the Emonts dataset, although VEGF-A was upregulated in MSS
versus controls, there was no change for VEGF-B GE. Moreover,
when the Emonts dataset was analyzed according to cell type,
VEGF-Awas upregulated and VEGF-B downregulated for whole
blood and monocytes compared with lymphocytes. The signifi-
cance of this pattern of VEGF-A and VEGF-B GE across inde-
pendent studies may be related to the differential function of the
corresponding proteins. Vascular endothelial growth factor B has
approximately 47% amino acid sequence identical to VEGF-A
with differential effects (50). The most popular and thoroughly
researched VEGF subtype, VEGF-A, has been linked to nu-
merous physiological and pathological processes, including
angiogenesis, wound healing, and tumor formation. On the
other hand, VEGF-B has been implicated in other processes,
such as cardioprotection and metabolic regulation, and is less
powerful in inducing angiogenesis. Vascular endothelial growth
factor A and VEGF-B are members of the VEGF protein family
regulating angiogenesis (51). This study intimates the importance
of VEGF-A GE because of its acute rise in sepsis and its role in
proinflammation, although the fall in VEGF-B GE requires fur-
ther study. Future research should consider VEGF-A and VEGF-B
interactions, given the potential reciprocal pattern of changes in
acute sepsis.

The analysis of temporal GE in sepsis was central to this study.
However, it was limited by the availability of only two temporal
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datasets (Kwan and Emonts) in the clinical literature, which used
a multisampling strategy in pediatric sepsis within the first 1 to
2 days of PICU admission. TheKwan dataset lacked healthy controls,
whereas the Emonts dataset included age- and gender-matched
controls, possibly preventing the matching of these datasets. The
inclusion of controls is also desirable for TTCA. The Brusletto
dataset provided controls for comparison against children with
MSS, although these controls were derived from adult samples.
A further limitation was the small sample sizes in the Kwan and
Emonts datasets, which posed a statistical challenge. A super-
vised strategy was used to structure differential GE analysis of
TNF, NF-κB, and VEGF-A differential GE. However, unsuper-
vised analysis of transcriptomic data was also adopted using
TTCA. This revealed TNF and NF-κB signaling pathways to be
enriched in the Kwan and Emonts datasets. Further, using TTCA
applied to the polymicrobial dataset showed evidence of TNFA
signaling and the VEGF pathway (septic shock D3 samples
com-pared against controls D3). Furthermore, Emonts also dem-
onstrated VEGF pathway enrichment by TTCA.Moreover, when
genes differentially expressed in myocardium tissue were com-
pared against other tissues (using Enrichr), the Brusletto dataset
showed enrichment for VEGF-A/VEGF-R2 signaling. Vascular
endothelial growth factor is a key regulator of angiogenesis, and
VEGF-R2 is a receptor for VEGF-A. The observed enrichment
for VEGF-A/VEGF-R2 signaling indicates that this pathway may
play a critical role in the myocardium, thus providing grounds
for future downstream analysis using the genes discussed in this
article. In summary, we believe future work should include tem-
poral transcriptomic studies with larger datasets and relevant con-
trols and the use of the gene combination adopted in this article.

The proinflammatory pattern of GE, as intimated by changes
in TNF, NFKB1, and VEGF-A explored in this article, follows
our work in Kawasaki disease, which also demonstrated similar
changes in VEGF-A and VEGF-B GE. Given the acute elevation
of VEGF-A GE noted in sepsis studies, especially with respect to
postmortem renal tissue, future work should consider the value of
VEGF-A counteraction in sepsis. The importance of VEGF-A is
evident in murine studies where myeloid-specific St18-deficient
mice exhibit enhanced serumVEGF-A concentration (52), leading
to a higher risk of colitis, LPS-induced shock, and polymicrobial
sepsis. Axitinib-induced VEGF signaling inhibition improved
survival rates in these mice, suggesting mortality improvement
by countering VEGF-A's inflammatory effect. Furthermore, un-
derstanding changes in VEGF-B relative to VEGF-A and the
resulting therapeutic insights could provide unique insights for
future research.
CONCLUSION

This study demonstrated temporal changes in acute sepsis. Un-
supervised heat plots revealed distinct early, intermediate, and late
phases of MSS based on GE analysis. Consistent upregulation of
VEGF-A and NFKB1 in sepsis GE datasets was observed. The
application of TTCA to temporal datasets indicated potential en-
richment of coronavirus pathways, suggesting possible overlap
with sepsis processes. Notably, temporal changes in NFKB1 GE
were identified in the MSS datasets, suggesting its potential as a
biomarker for future analysis. The study also emphasized the sig-
nificance of VEGF-A upregulation in acute sepsis.

Furthermore, given the limited scientific knowledge surround-
ing the role of VEGF-B in sepsis, its close molecular similarity to
VEGF-A in terms of structure and receptor binding makes it an
area of scientific interest. The study suggests that investigating
both proteins in combination could provide valuable insights.
Overall, the importance of comprehending the temporal dynam-
ics of sepsis from a transcriptomic perspective was highlighted.
Suggestions for future research include exploring biomarkers
such as NFKB1, investigating VEGF-A inhibition, and examin-
ing the combined role of VEGF-A and VEGF-B in sepsis.

A video summary of the article is provided (http://links.lww.
com/SHK/B770).
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