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A B S T R A C T   

Sleep is an essential feature of living beings. For neonates, it is vital for their mental and physical 
development. Sleep stage cycling is an important parameter to assess neonatal brain and physical 
development. Therefore, it is crucial to administer newborn’s sleep in the neonatal intensive care 
unit (NICU). Currently, Polysomnography (PSG) is used as a gold standard method for classifying 
neonatal sleep patterns, but it is expensive and requires a lot of human involvement. Over the last 
two decades, multiple researchers are working on automatic sleep stage classification algorithms 
using electroencephalography (EEG), electrocardiography (ECG), and video. In this study, we 
present a comprehensive review of existing algorithms for neonatal sleep, their limitations and 
future recommendations. Additionally, a brief comparison of the extracted features, classification 
algorithms and evaluation parameters is reported in the proposed study.   

1. Introduction 

Sleep is a complex physiological state that involves orchestrated changes in brain activity, muscular relaxation, and alterations in 
sensory responsiveness. It is a fundamental process essential for maintaining both mental and physical well-being. Sleep serves various 
crucial functions, including energy conservation, consolidation of neural connections, memory processing, and facilitation of mental 
and physical development, particularly in neonates. Monitoring neonatal sleep patterns through intensive neuro-monitoring at the 
bedside allows for a comprehensive understanding of normal neurological function [1–3]. 

Neonatal sleep measurement holds paramount clinical importance for paediatricians and neonatologists. Administration and 
maintenance of newborns require a detailed assessment and deep understanding of neonatal sleep patterns. These patterns help 
paediatricians to supervise and monitor the progress in growth and health of newborns. Correlation between sleep cycle and brain 
development is of essential significance, therefore, observation and evaluation of sleep patterns and their time span in infants reflect 
the functioning and overall wellness of neonatal brains. 

This precise evaluation of sleep patterns can play a vital role in the early diagnosis of sleep disorders in infants. These disorders can 
hinder the brain development, consequently causing health issues. However, early diagnosis of sleep disorders like sleep apnea or 
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movement disorders during sleep can be made by coherent analysis of sleep cycles. This can help health professionals to take timely 
and appropriate measurements for improving neonatal health. These measures also lead to asses the effectiveness of healthcare in
terventions and treatment therapies targeting sleep quality elevation and nurture healthy maturation. Ultimately, better healthcare 
plans for infants can be devised. Analysis of sleep patterns in new borns can also provide valuable insights for the functioning of 
metabolism and immune system due to the connection between sleep and physiological processes. These insights can lead to ad
vancements in neonatal healthcare. 

There are two major methods used for recording an infant’s sleep: polysomnography (PSG) and behavioral sleep measurement. 
Notably, research on both approaches has identified certain limitations [4]. Classification of sleep stages can be achieved using three 
methods: utilizing PSG technique alone [5–9], employing behavioral approaches [10–13], or combining both methods simultaneously 
[14–18]. The standard procedure for classifying an infant’s sleep pattern typically involves the manual interpretation of EEG pointers. 
Accurate sleep recording is a crucial aspect of this process, essential for reaching accurate diagnoses and determining appropriate 
treatments, which are grounded in various biological accounts. Although the conventional visual scoring technique involves inter
preting diverse indicators or signals, it is considered the most widely accepted method [19]. However, the qualitative nature of scoring 
can lead to variations in results among different experts due to differences in experience [20,21]. 

Optimistically, when two experts agree on the obtained results and conclusions, the average agreement ratio is approximately 83 ±
3 % [22], which may not be entirely convincing. Additionally, visual examination based on EEG labelling for the entire night can be 
time-consuming. Therefore, the use of an automatic recording process is deemed a well-organized method [23,24]. Sleep consists of 
two major stages: Non-Rapid Eye Movement (NREM) and Rapid Eye Movement (REM) sleep. Active Sleep (AS), also known as REM 
sleep, occurs in intervals of 5–30 min with 70-min intervals. Neural activity during REM sleep is significantly higher compared to 
NREM sleep. In contrast, during NREM sleep, or Quiet Sleep (QS), blood pressure, metabolic rate, heart rate, and sympathetic activity 
decrease, while parasympathetic activity increases. Sleep specialists typically adhere to firm guiding principles for sleep scoring, which 
are based on strategies established by standardization bodies [25,26]. In Fig. 1, the time consumed in every sleep phase over the whole 
period of neonatal age is given [27]. 

Numerous researchers have recently proposed various approaches to systematize the procedure of sleep classification, commonly 
known as sleep scoring. Signal processing methods and machine learning techniques have been extensively explored to derive valuable 
insights from biological signals [28]. However, when it comes to neonatal sleep staging, the utilization of certain features and clas
sifiers has yielded limited success due to technological challenges. Many of these approaches have relied on characteristics typically 
employed in adult sleep research, such as time and frequency domains, as well as nonlinear and complexity aspects [29]. Conse
quently, these techniques are often applied to conflicting types of sleep classification. Notably, the neonatal sleep stage classification 
algorithm can be categorized into four types: quiet sleep detection, sleep-wake classification, three-stage classification, and tetrad 
stage classification [30,29,31]. Later in this study, we will delve into the details of these algorithms, including the data used and their 
outcomes. 

Our study establishes that specific physiological indicators contain valuable information regarding sleep phases. These facts and 
figures are further employed to support analysis, treatment observation, and assessments of drug effectiveness. The extraction of 
information and the measurement of signals are crucial for harnessing the benefits mentioned. However, there is currently no stan
dardized procedure for extracting information from physiological signals, leading to ambiguity in determining which signal provides 
sufficient evidence for accurate diagnosis. 

To address this ambiguity, we have revised the mechanisms for extracting material from altered physiological signals, aiming to 
provide a signal that is essentially data-driven. Recognizing the significance of automatic sleep phase scoring in future work, we 

Fig. 1. Percentage of QS and AS with respect to gestational age [27].  
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emphasize the role of computer machinery in reducing inter-observer and intra-observer inconsistencies. Integrating advanced 
technology with manual analysis can result in cost savings. Computer-centered systems have the potential to enhance the quality of 
extracted evidence by leveraging decision support classifications to assist in signal interpretation. 

The rest of the paper is organized as follows: Section 2 presents the methodology of the proposed review, Section 3 provides a 
comprehensive review of automatic neonatal sleep stage classification, exploring the existing methodologies, techniques, and 

Table 1 
Review/comparative analysis of neonatal sleep-stage classification.  

Author Electrophysiological 
Signal 

Dataset Epoch 
Length 
(sec) 

Feature Classification 
Type 

Classification 
Method 

Classification Results 

Accuracy 
(%) 

Kappa 

L. Fraiwan [50] Electroencephalography University of 
Pittsburg (29 
recordings) 

30 Time- 
Frequency 
Analysis 

Three- stage Artificial 
Neural Network 

84 0.65 

L. Fraiwan [51] Electroencephalography University of 
Pittsburg (27 
recordings) 

30 Multiscale 
Entropy 

Three- stage Neural 
Networks, 
Random Forest 

81.3 – 

Koolean [52] Electroencephalography Medical 
University 
Vienna (67 
recordings) 

600 57 features 
time, 
frequency 
and spatial 

QS and AS 
classification 

Support Vector 
Machine 

85 – 

L. Fraiwan [53] Electroencephalography University of 
Pittsburg (29 
recordings) 

60 7 temporal 
and spectral 
features 

Three-stage Deep 
Autoencoders 

80.4 – 

K. Pillay [30] Electroencephalography University 
Hospital of 
Leuven (16 
recordings) 

30 112 
features 
time, 
frequency 
and spatial 

2-stage 
classification 

Hidden Markov 
models 

95 0.89 

4-stage 
classification 

8 0.62 

A. H. Ansari [54] Electroencephalography University 
Hospital of 
Leuven (26 
recordings) 

30 – QS detection Convolutional 
neural network 

92 AUC 0.74 

A.  
Dereymaeker 
[55] 

Electroencephalography University 
Hospital of 
Leuven (26 
recordings) 

– 9 time and 
frequency 
domain 

QS detection CLASS 97 AUC 0.93 

H. Ghimatgar [29] Electroencephalography University 
Hospital of 
Leuven (16 
recordings) 

30 – 4-stage 
classification 

Bi-Long Short 
Term Memory 

78.9–82.4 0.71–0.76 

A. H. Ansari [31] Electroencephalography University 
Hospital of 
Leuven (42 
recordings) 

30 – 2-stage 
classification 

Convolutional 
neural network 

– 0.76 

4-stage 
classification 

0.64 

S. F. Abbasi [56] Electroencephalography Fudan 
University 
(19 
recordings) 

30 8-time and 
4-frequency 
domain 

Sleep-wake 
classification 

Multi-layer 
perceptron 

82.53 0.62 

S. F. Abbasi [57] Electroencephalography Fudan 
University 
(19 
recordings) 

30 8-time and 
4-frequency 
domain 

Three-stage 
classification 

Ensemble 
learning 

81.99 – 

J. Werth [58] Electrcardiography Philips (34 
recordings) 

30 – 4-stage 
classification 

Recurrent 
neural network 

– 0.33 

M. Awais [59] Videos Fudan 
University 
(19 
Recordings) 

300 – Sleep-wake 
classification 

Convolutional 
neural network 

93.8 – 

S. Cabon [60] Audio and Video The 
University 
Hospital of 
Rennes 

–  semi-automatic 
eye state 
estimation and 
sleep stage 
classification 

5 diferent 
classification 
methods were 
compared. 

99.4 0.5 for RF 

L. Fraiwan [61] Electroencephalography University of 
Pittsburg (29 
recordings) 

300 – Three stage 
classification 

Long-short term 
memory 

96.81 – 

In the context of neonates, ECG-based neonatal sleep stage classification is very limited. For this reason, we mentioned the comparison of ECG-based 
neonatal sleep classification and the EEG-based classification. Table-1 Shows the comparison of the neonatal sleep stage classification algorithms in 
detail. 
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algorithms employed in this field. Section 4 identify the limitations associated with current approaches to neonatal sleep stage 
classification. By recognizing these limitations, we aim to shed light on the areas that require further research and improvement. 
Section 5 focuses on future directions and potential avenues for advancement in automatic neonatal sleep stage classification. Finally, 
Section 6 concludes the paper by summarizing the key findings, emphasizing the clinical relevance of automatic neonatal sleep stage 
classification, and providing insights into the implications for pediatric practice. 

2. Methodology 

To ensure a comprehensive and systematic review, this study focused on identifying relevant studies published between 2011 and 
December 2022. Electronic searches were conducted in the PubMed and Web of Science databases using specific keywords related to 
machine/deep learning techniques and sleep scoring. The selected keywords included terms such as ‘deep learning’, ‘deep neural 
network’, ‘machine learning’, ‘SVM’, ‘Random Forest’, ‘convolutional neural network’, ‘recurrent neural network’, ‘CNN’, ‘RNN’, 
‘LSTM’, combined with ‘neonatal sleep’, ‘neonatal sleep scoring’, ‘neonatal sleep stage’, and ‘neonatal sleep staging’. 

In this research, a total of 103 records have been considered for detailed analysis. At first, 85 research articles were considered out 
of which 55 records were from Web of Science and 32 from PubMed. While these articles were being thoroughly studied, 18 more 
articles were found relevant from references, leading to a total of 103 records. In the screening phase, first and second authors followed 
the inclusion criteria process independently and removed duplicates. Any discrepancy was resolved through mutual consultation 
among all authors. This screening process lead to the selection of 25 records, taking into account the most recent addition by same team 
of researchers. 

Following conditions were followed for including specific studies: 1) Polysomnography (PSG) data from neonatal subjects who 
were 37 ± 5 weeks gestational age was used; 2) Automated sleep-scoring methods were employed using only EEG signals, ECG signals, 
video, or a combination of these with audio signals; 3) Rules set by the American Academy of Sleep Medicine (AASM), were utilized to 
score the sleep states taking into account three different sleep states; 4) Use of a clinical setting or a sleep research facility for the PSG 
data collection; 5) Implementation of deep learning techniques directly to raw data or spectrogram images; 6) Machine learning 
methods were applied to specifically crafted features; 7) The study was published in English, in peer-reviewed journals or presented at 
scientific conferences or workshops. 

Out of 25 records, a total of 15 studies met the inclusion criteria for review. All of these studies comprise of machine and deep 
learning-based methodologies for neonatal sleep analysis, enhancing the understanding of this research area. 

3. Automatic neonatal sleep classification 

This part of the research is focused on reviewing the relevant literature on automatic sleep stage scoring. Specifically, our analysis is 
organized based on different physiological signals i.e. EEG and ECG. We have presented a detailed table summarizing the sleep 
classification results for each signal. A substantial number of systematic studies have been examined for this review. In the following 
subsections, we will briefly explain the neonatal sleep stage classification algorithms using different physiological signals. 

3.1. Electroencephalography (EEG) 

The electrical activity occurring in the brain is recorded through EEG. These recordings These recordings reveal distinct features 
during different sleep stages, which have been utilized for the development of various sleep stage classification systems [32–35]. The 
first EEG of humans was recorded by Hans Berger in 1924 [36]. The brain’s electrical activity is captured through electrical com
pulsions and is measured from the scalp of the patient. Electrodes are placed according to the standard 10–20 systems for electrode 
placement [37]. Clear EEG patterns indicating sleep-wake cycling (SWC) can be observed by neurologists from 30 weeks’ post
menstrual age [38]. In 1937, Loomis et al. emphasized the significant application of EEG-based analysis of human sleep patterns [39]. 
Subsequently, after the innovative research of Loomis, several methods have been proposed for adult sleep staging using machine 
learning [40–43] and deep learning [44–47]. Profound learning methods for sleep classification include convolutional neural network 
(CNN) [44], recurrent neural network (RNN) [45], the combination of CNN or RNN [46,47] along with Long Short-Term Memory 
(LSTM) [48,49]. 

The automatic sleep stage algorithms are distributed in two major classifications: hand-crafted feature-based classification and 
deep learning-based classification. In the handcrafted feature extraction approach, an extensive range of signal processing methods 
have been used to extract sleep-correlated data from EEG signals comprising: time domain, frequency domain, and spatial domain. The 
classification stage encompasses various algorithms, with deep learning and machine learning being the main approaches. Table 1 
Shows a comparison of the neonatal sleep phase arrangement algorithms in detail. 

3.2. Electrocardiography (ECG) 

The electrical activity generated by the human heart is captured through the ECG signals. ECG signals exhibits a structured pattern, 
especially in the absence of heart disease and individual signal components can be identified through visual inspection [62]. Delicate 
variations in the ECG signal reflect specific sleep stages. Studies by Yucelbas et al. Xiao et al., and Kesper et al. suggest that sleep staging 
using ECG signals is slightly less complex but still accurate compared to PSG analysis [63–65]. Redmond et al. provided additional 
support for the rationality of ECG-based sleep staging by associating it with EEG-established sleep staging [66,67]. Fell et al. proposed 
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the application of nonlinear examination of ECG signals for sleep staging [68,69]. 

3.3. Video-based classification 

This classification involves the analysis of neonatal facial expressions to determine sleep or wake states. It is crucial to have a 
reliable neonatal face detection method that minimizes the inclusion of non-face-related regions, allowing for the automatic identi
fication of sleep or wake states based on facial expressions. Recently, Awais et al. proposed a hybrid deep convolutional neural network 
for neonatal sleep-wake classification [59]. The algorithm utilized five deep Conv layers for automatic feature extraction, followed by 
classification using support vector machines. The proposed algorithm achieved an impressive accuracy of 93.8 %, which to date is the 
highest classification accuracy for neonatal sleep-wake classification. According to the literature, it is widely accepted that neonatal 
EEG can be classified as sleep when the neonate’s eyes are closed. Therefore, this should be considered an important signal for 
automatic neonatal sleep stage classification. 

3.4. Combination 

Based on our thorough research, the performance of sleep stage classification algorithm has been examined using a combination of 
different bio-physiological signals i.e. combination of EEG and ECG, EEG and electrooculogram (EOG), and EEG + EOG + ECG. 
Interestingly, in existing neonatal research, not a single algorithm has been found that utilizes a combination of multi signals for 
classification. 

Fig. 2 shows the percentage of different bio-physiological signals employed for neonatal sleep stage classification. 

4. Limitations 

The overall performance of the existing algorithms is commendable; however, there are still some limitations that needs to be 
acknowledged.  

[1] Neonates are delicate and susceptible to disturbances caused by electrode placement, which can affect their sleep. For this 
reason, parents may feel insecure and uneasy about subjecting their child for a monitored environment. These limitations make 
it challenging to conduct the neonatal sleep research in an ordinary environment. However, due to the electrode placement and 
monitoring, this study will still need professional caretakers for data extraction. This monitored environment can only be 
available in the NICU. Parents usually have an increased risk of depression, anxiety, and stress after discharge from the NICU. 
Therefore, unless we remove 100 % human intervention, this will count as a limitation of this study.  

[2] In the above table, it can be analyzed that the dataset used for neonates’ sleep classification is limited. In literature, it is believed 
that a larger dataset yields better performance compared to a limited dataset. Therefore, acquiring larger dataset is essential for 
achieving better results.  

[3] Existing research tends to combine amalgamates AS and wake state into low voltage irregular (LVI) signals. Corrupting overall 
classification authenticity. This needs to be addressed in future studies to enhance the authenticity of the classification process. 

Fig. 2. Percentage of bio-physiological signals used for neonatal sleep stage classification in existing research.  
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5. Future work 

Researchers can work on several interesting ideas to improve the quality of automated neonatal sleep stage classification. The 
following ideas can be considered for future study.  

[4] According to the AASM neonatal sleep stage classification guidelines, it is believed that a neonate is sleeping when the eyes of a 
neonate are closed. Therefore, in addition to EEG, EOG signals should be extracted in future studies. The classification is then 
done by assembling EEG and EOG features. Only two additional electrodes will be needed for this. According to my assiduous 
research, this ensemble can increase the accuracy of the sleep stage classification algorithm to 10–15 %. For annotation, 
multiple neurologists should be hired to have authentic annotation. Initially, pair of neurologists should separately annotate the 
sleep stages then the third neurologist will compare the annotation and make a concluding annotation based on his knowledge 
and existing annotation.  

[5] After the situation of the global pandemic (Covid-19) will become better, there is a need to collect a larger dataset for neonatal 
sleep. A larger dataset will increase the accuracy of the classification network. Deep learning algorithms like CNN, RNN, and 
LSTM should then be applied to raw EEG data for classification. Feature extraction is a hectic process, as it is difficult to select 
relevant features for sleep. Therefore, in future studies, the main task is to classify sleep stages from raw EEG data. Also, at least, 
3–4 sleep cycles for 1 subject should be included in the dataset. This will give a more complete dataset, as all subjects will have 
the same number of AS, QS, and awake epochs.  

[6] Neonates are very fragile subjects and prone to these heavy and uncomfortable electrodes. Recently, multiple unobtrusive 
methods were published for EEG and ECG extraction. These methods should be applied in neonatal sleep. The burden of EEG 
electrodes can affect the sleep quality of neonates. Therefore, it is particularly important to study unobtrusive methods for 
automatic neonatal sleep stage classification. This unobtrusive method will help to get parental consent easily, as there is no 
need to attach heavy wire electrodes to the neonatal body for data extraction. Also, this will help to reduce the depression, 
anxiety, and stress of the subject’s parents.  

[7] Recently, an article has been published on neonatal sleep-wake classification using video data [59]. In the future, it will be very 
interesting to combine two methods i.e. sleep-wake classification using video data and QS detection using EEG. VEEG data will 
be extracted for this study. Then, for classification, the study will be divided into two parts. Firstly, sleep-wake segments will be 
separated using video data. Recently, Awais et al. published an article using neonatal video data. These sleep segments will then 
be used for further classification. QS can be classified with EEG with an accuracy of up to 95 %. I believe this combination can be 
the breakthrough for neonatal sleep stage classification soon. 

6. Conclusion 

The analysis and classification of sleep stages heavily rely on physiological signals, as they provide valuable information about the 
different phases of sleep. Extracting and interpreting this data is the primary task of a decision support system, which then presents it to 
healthcare practitioners. In the context of neonatal sleep stage scoring, the focus is on utilizing physiological signals and their inherent 
information. In our investigation of various automated neonatal sleep stage algorithms, it became evident that EEG is the most accurate 
method for classifying sleep stages. However, certain stages exhibit signals that are indistinguishable from one another, necessitating 
the integration of multiple bio-physiological signals to improve the outcomes of the neonatal sleep stage classification algorithm. 
Additionally, obtaining a larger dataset is essential to achieve better results, as deep learning algorithms tend to perform more 
effectively when applied to extensive datasets. In conclusion, while the existing sleep stage classification algorithms have reached a 
mature stage, further improvements are necessary to address the identified issues and enable their full clinical utilization. 
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[2] K. Malk, M. Metsärant, S. Vanhatalo, Drug effects on endogenous brain activity in preterm babies, Brain Dev. 36 (2) (2014) 116–123. 
[3] M.J. Benders, K. Palmu, C. Menache, C. Borradori-Tolsa, F. Lazeyras, et al., Early brain activity relates to subsequent brain growth in premature infants, Cerebr. 

Cortex 25 (9) (2015) 3014–3024. 
[4] M. Grigg-Damberger, D. Gozal, C.L. Marcus, S.F. Quan, C.L. Rosen, et al., The visual scoring of sleep and arousal in infants and children, J. Clin. Sleep Med. 3 (2) 

(2007) 201–240. 
[5] S.M. Ludington-Hoe, M.W. Johnson, K. Morgan, T. Lewis, J. Gutman, et al., Neurophysiologic assessment of neonatal sleep organization: preliminary results of a 

randomized, controlled trial of skin contact with preterm infants, Pediatrics 117 (5) (2006) e909–e923. 
[6] K. Palmu, T. Kirjavainen, S. Stjerna, T. Salokivi, S. Vanhatalo, Sleep wake cycling in early preterm infants: comparison of polysomnographic recordings with a 

novel EEG-based index, Clin. Neurophysiol. 124 (9) (2013) 1807–1814. 
[7] M.S. Scher, J. Turnbull, K. Loparo, M.W. Johnson, Automated state analyses: proposed applications to neonatal neurointensive care, J. Clin. Neurophysiol. 22 

(4) (2005) 256–270. 
[8] P.I. Terrill, S.J. Wilson, S. Suresh, D.M. Cooper, C. Dakin, Application of recurrence quantification analysis to automatically estimate infant sleep states using a 

single channel of respiratory data, Med. Biol. Eng. Comput. 50 (8) (2012) 851–865. 
[9] V. Gerla, K. Paul, L. Lhotska, V. Krajca, Multivariate analysis of full-term neonatal polysomnographic data, IEEE Trans. Inf. Technol. Biomed. 13 (1) (2008) 

104–110. 
[10] D. Holditch-Davis, M. Scher, T. Schwartz, D. Hudson–Barr, Sleeping and waking state development in preterm infants, Early Hum. Dev. 80 (1) (2004) 43–64. 
[11] E.B. Thoman, E.W. Ingersoll, Sleep/wake states of preterm infants: stability, developmental change, diurnal variation, and relation with caregiving activity, 

Child Dev. 70 (1) (1999) 1–10. 
[12] T.F. Anders, M.A. Keener, H. Kraemer, Sleep-wake state organization, neonatal assessment and development in premature infants during the first year of life. II, 

Sleep 8 (3) (1985) 193–206. 
[13] R. Michaelis, A.H. Parmelee, E. Stern, A. Haber, Activity states in premature and term infants, Dev. Psychobiol.: The Journal of the International Society for 

Developmental Psychobiology 6 (3) (1973) 209–215. 
[14] A.H. Parmelee Jr., W.H. Wenner, Y. Akiyama, M. Schultz, E. Stern, Sleep states in premature infants, Dev. Med. Child Neurol. 9 (1) (1967) 70–77. 
[15] L. Curzi-Dascalova, J.M. Figueroa, M. Eiselt, E. Christova, A. Virassamy, et al., Sleep state organization in premature infants of less than 35 weeks’ gestational 

age, Pediatr. Res. 34 (5) (1993) 624–628. 
[16] J. Kohyama, Y. Iwakawa, Developmental changes in phasic sleep parameters as reflections of the brain-stem maturation: polysomnographical examinations of 

infants, including premature neonates, Electroencephalogr. Clin. Neurophysiol. 76 (4) (1990) 325–330. 
[17] E. Stephan-Blanchard, K. Chardon, A. Leke, S. Delanaud, V. Bach, et al., Heart rate variability in sleeping preterm neonates exposed to cool and warm thermal 

conditions, PLoS One 8 (7) (2013), e68211. 
[18] E. Stern, A.H. Parmelee, M.A. Harris, “Sleep state periodicity in prematures and young infants,” Developmental Psychobiology, J. Int. Soc. Dev. Psychobiol. 6 (4) 

(1973) 357–365. 
[19] M. Younes, W. Thompson, C. Leslie, T. Egan, E. Giannouli, Utility of technologist editing of polysomnography scoring performed by a validated automatic 

system, Annals of the Am. Thoracic Soc. 12 (8) (2015) 1206–1218. 
[20] A. Malhotra, M. Younes, S.T. Kuna, R. Benca, C.A. Kushida, et al., Performance of an automated polysomnography scoring system versus computer-assisted 

manual scoring, Sleep 36 (4) (2013) 573–582. 
[21] N.A. Collop, Scoring variability between polysomnography technologists in different sleep laboratories, Sleep Med. 3 (1) (2002) 43–47. 
[22] F. Chapotot, G. Becq, Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules, Int. 

J. Adapt. Control Signal Process. 24 (5) (2010) 409–423. 
[23] R. Ferri, F. Rundo, L. Novelli, M.G. Terzano, L. Parrino, et al., A new quantitative automatic method for the measurement of non-rapid eye movement sleep 

electroencephalographic amplitude variability, J. Sleep Res. 21 (2) (2012) 212–220. 
[24] C.C. Chiu, B.H. Hai, S.J. Yeh, Recognition of sleep stages based on a combined neural network and fuzzy system using wavelet transform features, Biomed. Eng.: 

Applications, Basis and Communications 26 (2) (2014), 1450029. 
[25] A. Kales, A. Rechtschaffen, A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects, US Department of Health, 

Education and Welfare, Public Health Service, National Institutes of Health, National Institute of Neurological Diseases and Blindness, Neurological Information 
Network, 1968. 

[26] R.B. Berry, R. Brooks, C.E. Gamaldo, S.M. Harding, C. Marcus, et al., The AASM Manual for the Scoring of Sleep and Associated Events,” Rules, Terminology and 
Technical Specifications, Darien, Illinois, vol. 176, American Academy of Sleep Medicine, 2012, p. 2012. 

[27] J. Werth, L. Atallah, P. Andriessen, X. Long, E. Zwartkruis-Pelgrim, et al., Unobtrusive sleep state measurements in preterm infants–A review, Sleep Med. Rev. 32 
(2017) 109–122. 

[28] S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C.M. Hill, P.R. White, Signal processing techniques applied to human sleep EEG signals—a review, Biomed. 
Signal Process Control 10 (2014) 21–33. 

[29] H. Ghimatgar, K. Kazemi, M.S. Helfroush, K. Pillay, A. Dereymaker, et al., Neonatal EEG sleep stage classification based on deep learning and HMM, J. Neural. 
Eng. 17 (3) (2020), 036031. 

[30] K. Pillay, A. Dereymaeker, K. Jansen, G. Naulaers, S. Van Huffel, et al., Automated EEG sleep staging in the term-age baby using a generative modelling 
approach, J. Neural. Eng. 15 (3) (2018), 036004. 

[31] A.H. Ansari, O. De Wel, K. Pillay, A. Dereymaeker, K. Jansen, et al., A convolutional neural network outperforming state-of-the-art sleep staging algorithms for 
both preterm and term infants, J. Neural. Eng. 17 (1) (2020), 016028. 

[32] M. Sharma, D. Goyal, P.V. Achuth, U.R. Acharya, An accurate sleep stages classification system using a new class of optimally time-frequency localized three- 
band wavelet filter bank, Comput. Biol. Med. 98 (2018) 58–75. 

S.F. Abbasi et al.                                                                                                                                                                                                       

http://refhub.elsevier.com/S2405-8440(23)09403-3/sref1
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref1
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref2
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref3
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref3
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref4
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref4
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref5
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref5
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref6
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref6
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref7
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref7
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref8
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref8
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref9
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref9
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref10
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref11
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref11
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref12
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref12
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref13
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref13
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref14
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref15
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref15
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref16
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref16
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref17
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref17
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref18
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref18
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref19
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref19
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref20
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref20
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref21
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref22
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref22
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref23
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref23
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref24
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref24
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref25
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref25
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref25
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref26
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref26
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref27
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref27
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref28
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref28
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref62
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref62
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref59
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref59
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref63
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref63
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref29
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref29


Heliyon 9 (2023) e22195

8

[33] L.G. Doroshenkov, V.A. Konyshev, S.V. Selishchev, Classification of human sleep stages based on EEG processing using hidden Markov models, Biomed. Eng. 41 
(1) (2007) 25. 

[34] A. Flexer, G. Gruber, G. Dorffner, A reliable probabilistic sleep stager based on a single EEG signal, Artif. Intell. Med. 33 (3) (2005) 199–207. 
[35] J. Shi, X. Liu, Y. Li, Q. Zhang, Y. Li, et al., Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel 

learning, J. Neurosci. Methods 254 (2015) 94–101. 
[36] J.D. Bronzino, Biomedical engineering handbook, Springer Sci. Business Media 2 (2) (2000). 
[37] R.W. Homan, J. Herman, P. Purdy, Cerebral location of international 10–20 system electrode placement, Electroencephalogr. Clin. Neurophysiol. 66 (4) (1987) 

376–382. 
[38] M. Andre, Pesquisas sobre formaço de professores: contribuiçes delimitaço do campo. Convergncias e tenses no campo da formao e do trabalho docente: 
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[69] J. Fell, K. Mann, J. Röschke, M.S. Gopinathan, Nonlinear analysis of continuous ECG during sleep II. Dynamical measures, Biol. Cybern. 82 (6) (2000) 485–491. 

S.F. Abbasi et al.                                                                                                                                                                                                       

http://refhub.elsevier.com/S2405-8440(23)09403-3/sref30
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref30
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref31
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref32
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref32
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref33
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref34
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref34
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref35
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref35
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref36
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref37
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref37
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref38
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref38
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref39
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref39
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref40
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref40
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref40
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref41
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref41
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref42
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref42
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref43
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref43
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref44
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref44
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref45
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref45
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref46
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref46
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref55
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref55
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref56
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref56
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref57
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref57
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref58
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref58
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref60
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref60
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref61
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref61
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref64
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref64
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref65
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref65
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref66
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref66
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref67
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref67
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref68
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref68
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref69
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref47
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref47
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref48
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref48
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref49
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref49
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref50
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref50
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref51
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref51
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref52
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref52
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref53
http://refhub.elsevier.com/S2405-8440(23)09403-3/sref54

	Automatic neonatal sleep stage classification: A comparative study
	1 Introduction
	2 Methodology
	3 Automatic neonatal sleep classification
	3.1 Electroencephalography (EEG)
	3.2 Electrocardiography (ECG)
	3.3 Video-based classification
	3.4 Combination

	4 Limitations
	5 Future work
	6 Conclusion
	Data availability statement
	Funding statement
	Additional information
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


