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ity Prediction

Abdul Aziz,Md. Akram Hossain,Abu Nowshed Chy,Md Zia Ullah,Masaki Aono

e [ exical complexity prediction is a subtask of text simplification
e Fusion of transformer models provides more meaningful representations of the inputs

o The BiLSTM-Regressor improve pairwise learning between sentence and target word

Contextual features from transformers effective for lexical complexity estimation
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ARTICLE INFO ABSTRACT

Keywords: Lexical complexity prediction (LCP) determines the complexity level of words or phrases in a
Lexical complexity prediction sentence. LCP has a significant impact on the enhancement of language translations, readability
Lexical simplification assessment, and text generation. However, the domain-specific technical word, the complex
Sentence-pair regression grammatical structure, the polysemy problem, the inter-word relationship, and dependencies
Transformer models. make it challenging to determine the complexity of words or phrases. In this paper, we propose

an integrated transformer regressor model named ITRM-LCP to estimate the lexical complexity
of words and phrases where diverse contextual features are extracted from various transformer
models. The transformer models are fine-tuned using the text-pair data. Then, a bidirectional
LSTM-based regressor module is plugged on top of each transformer to learn the long-term
dependencies and estimate the complexity scores. The predicted scores of each module are then
aggregated to determine the final complexity score. We assess our proposed model using two
benchmark datasets from shared tasks. Experimental findings demonstrate that our ITRM-LCP
model obtains 10.2% and 8.2% improvement on the news and Wikipedia corpus of the CWI-2018
dataset, compared to the top-performing systems (DAT, CAMB, and TMU). Additionally, our
ITRM-LCP model surpasses state-of-the-art LCP systems (DeepBlueAl, JUST-BLUE) by 1.5%
and 1.34% for single and multi-word LCP tasks defined in the SemEval LCP-2021 task.

1. Introduction

Text simplification is the procedure of transforming a complex sentence using simple and familiar words to
improve its readability (Nisioi et al. (2017)). It is beneficial for improving reading aids for children, people with
reading disabilities like dyslexia, aphasia, non-native speakers, and people with a low literacy rate (Watanabe et al.
(2009); Saggion (2017)). It is also beneficial for other natural language processing (NLP) applications including
text summarization (Vanderwende et al. (2007); Zaman et al. (2020)), machine translation, and text generation.
Lexical simplification (LS) is a subtask of simplification of texts (Vanderwende et al. (2007)) that focuses on
identifying the complex words for a target audience and replacing them with their simpler alternatives of equivalent
meaning (Shardlow, Matthew (2014)). It follows the four important steps including synonym ranking, word sense
disambiguation, substitution generation, and complex word identification (CWI) (Shardlow, Matthew (2014)). CWI
focuses on determining the complex words of a sentence whereas substitution generation is the process of finding
words or expressions to replace these complex words. The polysemy problem of the substitute candidates is addressed
through the word sense disambiguation task (Li and Suzuki (2021); Kwon et al. (2021)) and the synonym ranking
task ranks the remaining substitutes according to the simplicity score. The CWI and synonym ranking tasks in LS are
highly identical as they both address the notion of lexical complexity.

Lexical complexity prediction (LCP) is the process of precisely determining the complexity of words or phrases in a
sentence (Shardlow et al. (2021a)). It has a significant impact on selecting complex words and their alternative simpler
words in the lexical simplification task. However, it is challenging to estimate the complexity of a word or phrase
due to the use of domain-specific technical words and the complex grammatical structure. The contextual information
of a word is also important because the complexity of a word might be context-dependent. Recently, researchers are
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increasingly interested in the LCP task because of its promising applications. Following this trend, a couple of shared
tasks are introduced to address the challenges (Yimam et al. (2018); Shardlow et al. (2021a)).

Most of the LCP systems (Gooding and Kochmar (2018); Gooding, Sian and Kochmar, Ekaterina (2019); Islam
et al. (2021)) used a vast amount of features through exploiting morphological, lexical, semantic, collocational,
nominal, syntactical, and psycho-linguistic characteristics. These features are mostly word-based and do not capture
the context properly. To address this limitation most of the top-performing systems (Pan et al. (2021); Rivas Rojas and
Alva-Manchego (2021); Yuan et al. (2021)) approached to leverage various transformers models for learning better
contextual representation. We want to shed light on some of those systems. First, DeepBlueAl (Pan et al. (2021)) the
top performing team of LCP-2021 fuse four transformer models prediction with different additional training strategies
including multi-sample dropout, pseudo-labeling, and data augmentation. Second, (Rivas Rojas and Alva-Manchego
(2021)) fuse four transformer models prediction but they use light gradient-boosting machine (LightGBM) Bayesian
optimizer to fuse them whereas (Yuan et al. (2021)) performed a fusion of three transformer models prediction and
a random forest regressor models prediction for the LCP-2021 task. The findings from these recent works motivate
us to make a hypothesis that the fusion of various transformer models may learn better contextual representation than
other settings. However, those systems still have some limitations to learn pair-wise features effectively. Those models
predict the complexity score from the transformer model’s final layer without adding any neural network architecture
that affects the model’s performance in distilling the relationship of the token-sentence pair effectively.

In this work, the benefits of contextual representation of the sentence pair settings from different transformer models
are investigated for diverse corpus. Moreover, we also study the effectiveness of different integration techniques to
fuse the outcome of the transformers models. This facilitates an investigation into how the inclusion of a deep neural
network (DNN) architecture improves pairwise learning. Finally, an investigation is performed to determine whether
the domain-specific contexts of words can be extracted effectively from the text that is useful for the LCP task.

The key contributions of our work are listed as follows:

1. We introduce an integrated transformer regressor model (ITRM) for the lexical complexity prediction (LCP) task
named as [ITRM-LCP. It employs various fine-tuned transformer models with token-sentence pairs to capture the
diversity of contextual features.

2. To address the long-term dependencies problem and estimate the complexity scores effectively, a BILSTM-based
regressor is plugged on top of each transformer model.

3. We analyze and present the experimental findings of various integration strategies to select the effective one for
the lexical complexity prediction (LCP) task.

4. Rigorous experimental findings and the comparative performance analysis against the state-of-the-art approaches
are presented based on the two benchmark datasets. Our research findings provide some useful insights of the
lexical complexity prediction (LCP) task.

The structure of the remaining contents is as follows: Section 2 includes a summary of prior research that ignites
us to contribute in this problem domain. Later, we introduce our proposed lexical complexity prediction method in
Section 3. Section 4 includes the detailed experiments and evaluation as well as performance comparison with related
approaches. Some insightful discussions are provided in Section 4.5. Finally, we conclude our work and draw a set of
future notions in Section 5.

2. Related Work

Complex word identification (CWI) is a crucial part of the automatic lexical simplification (LS) task (Zaman et al.
(2020); Shardlow, Matthew (2014)). Several methods have been proposed to identify complex words or phrases in a
sentence (Gooding and Kochmar (2018); De Hertog and Tack (2018)). Most of the earlier CWI systems are low-level
feature-based (Kajiwara and Komachi (2018); Hartmann and Dos Santos (2018); Gooding and Kochmar (2018)) that
exploited various hand-designed features to tackle the task challenges (see Section 2.1). Later, various methods used
embedding features and deep learning-based approaches (De Hertog and Tack (2018); Saggion et al. (2018)) (see
Section 2.2). Along with this direction, recently, transformer models are studied in the CWI task (Pan et al. (2021);
Aziz et al. (2021)) (see Section 2.3).

2.1. Hand-crafted Features (HCFs) based Machine Learning Approaches for the LCP Task
To identify complex words, most of the CWI-2016 participants used different types of hand-crafted features (HCFs)
including bag of n-grams, word length (Malmasi and Zampieri (2016); Malmasi et al. (2016)), psycholinguistic,
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morphological (Paetzold and Specia (2016b); Sanjay et al. (2016)), syntactic, semantic (Paetzold and Specia (2016b);
Sanjay et al. (2016)), Zipfian frequency distribution (Zampieri et al. (2016)), and word probability (Malmasi and
Zampieri (2016)). They have utilized different well-established classification approaches including support vector
machine (SVM), tree-based classifiers, and maximum entropy classifiers. Later, in the CWI-2018 shared task, most
of the top-performing systems also employed several feature-based approaches including n-grams, word length,
inter-word relationship, WordNet and parts of speech (POS) based features, syntactic, lexical, and psycholinguistic
features (De Hertog and Tack (2018); Gooding and Kochmar (2018); Kajiwara and Komachi (2018)). Recently, in
the LCP-2021 shared task (Shardlow et al. (2021a)), some of the HCF-based systems (Rotaru (2021)) also performed
well. However, these systems are either good for single-word instances (SWIs) (Rotaru (2021); Islam et al. (2021)) or
multi-word expressions (MWEs) (Bestgen (2021)) tasks. Since HCFs are mostly task and domain-specific, formulating
an efficient generalized model for LCP is difficult. Besides, designing and exploiting hand-crafted features is arduous
and time-consuming and these features are unable to represent the contextual dimension effectively.

2.2. Word-embedding and Deep Learning based Approaches for the LCP Task

A number of prior systems (Kuru (2016); Sanjay et al. (2016); Saggion et al. (2018)) used word or sentence
embedding based features to train their learning models built on support vector machine (SVM), linear regression,
and deep learning-based models. Some other systems concatenate embedding features with other HCFs. To extract the
embedding-based features, Kuru (2016) used Glove embedding (Pennington et al. (2014)) whereas Sanjay et al. (2016)
and Saggion et al. (2018) used the Gensim Word2Vec skip-gram and continuous bag-of-words (CBOW) models trained
with Google News dataset (Mikolov et al. (2013)). In the LCP-2021 task, some participants used word embeddings
including global vectors (Glove), Word2Vec, and embeddings from language models (ELMo) (Rotaru (2021); Islam
etal. (2021); Rozi et al. (2021)) where they used these embeddings to initiate their neural models or concatenates those
features with other HCFs.

Deep learning-based approaches achieved competitive results in lexical complexity prediction. De Hertog and
Tack (2018) used a deep neural network architecture with three types of feature sets including character embeddings
with convolution neural network (CNN), HCFs, and word embeddings. Aroyehun et al. (2018) also employed a
deep learning approach where word embeddings passed into the convolution layer. Recently, transformer (Vaswani
et al. (2017)) based approaches are widely employed to tackle the LCP problem. Zaharia et al. (2020) utilized
several transformer models and reported their experimental results on the CWI-2018 dataset where they obtained
competitive performances but lower than the top-performing CWI-2018 system. In LCP-2021, most of the top-
performing systems (Bani Yaseen et al. (2021); Pan et al. (2021)) used transformer models including bidirectional
encoder representations from transformers (BERT), robustly optimized BERT approach (RoBERTa), and a lite BERT
(ALBERT) and obtained notable performances. Most of them followed the sentence-pair training strategy to train the
transformer model. Some systems (Bani Yaseen et al. (2021); Pan et al. (2021)) used different training strategies and
employed various ensemble approaches. Pan et al. (2021) used data augmentation, pseudo labeling, ensemble training,
and multi-sample dropout. (Bani Yaseen et al. (2021) used the weighted average of the prediction from different settings
of BERT and RoBERTa models. Few systems applied diverse kinds of training strategies including adversarial training,
multi-task learning (Islam et al. (2021)), and dummy annotation generation (Shirude et al. (2021)).

2.3. Comprehensive Analysis of the Transformer Models for the LCP Task

Observing most of the lexical complexity prediction (LCP) systems that were based on handcrafted features (HCF)
and word embeddings with the deep neural networks. These systems do not capture the semantic orientation of the
texts properly to estimate the lexical complexity. They usually suffer from generalization problems as systems perform
well either for single-word or multi-word token data. Alternatively, transformer-based systems perform better than HCF
and word embedding-based systems. Transformers overcome the limitations of learning long-term dependency through
processing the sentence as a whole rather than word by word. Here, the multi-head attention and positional embedding
mechanisms provide the necessary information about the relationship between words. These properties of transformers
are important to tackle the challenges of the LCP task. Among the various transformers model, bidirectional encoder
representations from transformers (BERT) (Devlin et al. (2019)) is very popular and perform well for various natural
language processing (NLP) tasks including sentence classification, question-answering, text tagging, and text-pair
regression. The general transformer (Vaswani et al. (2017)) model uses an encoder and a decoder network, whereas
BERT uses only the encoder network to learn the latent representation of the input text. BERT employs two different
types of training objectives; one is a masked language model and another is next sentence prediction (NSP). The NSP
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idea focuses on learning whether the next text portion in a pair of texts is either true next or not. It helps BERT to distill
the relationships between sentences which is crucial for the LCP task.

After BERT, several augmented and revised architectures are proposed by the researchers to improve the learning
ability of the contextual information as well as reduce the resource overhead. For instance, the robustly optimized
BERT pre-training approach, ROBERTa (Liu et al. (2019)) uses the same architecture as BERT but eliminates the next
sentence prediction (NSP) objectives of BERT in pre-training. It focuses mainly on the key hyper-parameter choices
through exploiting model training with longer sequences and larger mini-batches. Besides, RoOBERTa utilizes dynamic
masking that is performed every time a sequence is fed to the model. Therefore, the model encodes the different
versions of the same sentence with masks on different positions which is critical for the LCP task to learn the inherent
complexity of a token in context. The distilled version of BERT (DistilBERT) (Sanh et al. (2019)) model is another
variant of BERT (Devlin et al. (2019)) that focuses on the speed-up of training through exploiting knowledge distillation
to BERT. It discards the token-type embeddings and the NSP objective used in BERT as well as lessens the layers by a
factor of two thus making it 60 percent faster and smaller than BERT. But following the RoBERTa (Liu et al. (2019))
model, DistilBERT is also trained on large batches using gradient accumulation with dynamic masking and retains the
97 percent performance of BERT. Extension of the Transformer-XL model (XLNet) (Yang et al. (2019)) is an another
variant of BERT (Devlin et al. (2019)). It is a large bidirectional transformer that exploits advanced training strategy,
greater data sets and more processing power. During the training phase, XLNet used permutation language modeling
to combine the advantages of auto-regressive (AR) language modeling and auto-encoding (AE) methods, where tokens
are predicted in random order. This aids the model to distill and learn bidirectional relationships between words which
is beneficial for the LCP task.

The transformer-based systems distill the contextual information effectively and perform well in both single-word
and multi-word token data. However, employing pre-trained transformer models without following appropriate neural
architecture may not encode the pair-wise relations of the texts effectively. Therefore, an effective ensemble approach
to fuse those diverse transformer models may capture the contextual dimension as well as pair-wise representation of
the texts effectively.

3. Proposed Method

Given a text pair as the input and generating a continuous value as the output is called the text-pair regression task.
We employed this approach to predict the lexical complexity of given target words in a sentence. The overview of our
proposed integrated transformer regressor model for lexical complexity prediction (ITRM-LCP) framework is shown

in Figure 1.
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Figure 1: Schematic diagram of our proposed ITRM-LCP system. Transformer models are tuned on pairwise settings of
sentences and tokens to generate the contextualized vectors. A BiLSTM-regressor module is plugged on the top of each
transformer to enhance the feature learning representations. Finally, regression scores of each module are fused to get the
final prediction.

Given an input token and sentence, we convert them to the corresponding data format where they are represented as
a single packed sequence. To extract the contextualized embedding features, we utilize various transformers including
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BERT, DistilBERT, RoBERTa, and XLNet. We fine-tune these models to capture the task-specific information of
lexical complexity prediction explicitly. Later, we apply a bidirectional long short-term memory (BiLSTM) based
regressor layer on top of each transformer model to predict the lexical complexity scores. We explore two different
integration strategies including mean-based and blending integration-based approaches to fuse these prediction scores
and estimate the final complexity prediction score.

3.1. Fine-tuning Transformer Models

To extract the effective contextual representations, we leverage four pre-trained transformers including BERT,
DistilBERT, RoBERTa, and XLNet in our LCP method ITRM-LCP) motivated from the prior works as described in
Section 2.2 and 2.3. We fine-tune these models to make them specialized in the LCP task to learn the task-specific
information effectively.

Fine-tuning the transformer models can lead to performance enhancement because it helps to fit the model with
the domain-specific task. Hence, we fine-tune each transformer model based on the domain-specific datasets. We just
add a single linear output layer on top of the core model and use the BERT’s text-pair training approach for the LCP
task as illustrated in Figure 2. Here, the target word and sentence pairs are represented as a single sequence where a
special classification [CLS] token is appended at the starting position of the first sentence and a [SEP] tag is added in
between sentences to separate them. A learned embedding is also added where every token indicates whether it belongs
to sentence A or sentence B which is very crucial to learning contextual dependency between sentence and token in
the LCP task. Finally, at the end of the input sequence, a [SEP] token is added. Therefore, the text-pair input sequence
is like- [CLS] sentence [SEP] target word [SEP].

BiLSTM-based

Regressor Complexity Score

T T1 ..... TN T[SEP] T1’ ..... TM’ T

[SEP]

BERT

E

[CLS]‘ ‘ E, ‘ """ ‘ Ex ‘ ‘E[SEF’]‘ ‘ E, ‘ """ ‘ Ew ‘ ‘E[SEP]‘
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[cLS]| [TOK 1) - TOKN [[SEP]| (TOK1] ---- [SEP]
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Figure 2: To employ pairwise settings of an input representation, the tokenizer packed the sentence and token as a single
sequence. Then, this input sequence ([CLS] Sentence [SEP] Token [SEP]) feeds into the BERT model. The last layer's
hidden states vector output of the BERT is passed to the BiLSTM-regressor and finally predicts the complexity score.

During the fine-tuning phase, we learn one new parameter (as compared to the pre-train BERT model) which is the
complexity score (i.e. label). In our fine-tuning procedure, all other hyper-parameters stay the same as in transformer
model training except for learning rates, batch size, epochs, and dropout. We use the last hidden state to get a fixed-
dimensional pooling representation of the input sequence and add a BiLSTM-based regressor layer on top to get the
predicted complexity score of each model.

3.2. BiLSTM-based Regressor Architecture

Bi-directional long short-term memory (BiLSTM) (Brueckner and Schulter (2014)) is a state-of-the-art variant
of recurrent neural network (RNN). It has the ability to selectively assign weights to the words considering varying
contexts. BILSTM ensures the context-based semantic association information used to impressively make up for the
shortfall of deep neural networks in obtaining local features and highlighting the importance of specific words to
the whole context. To learn the long-term dependencies effectively and distill the required contextual information for
predicting the complexity score of a token-sentence pair, we exploit a BILSTM-based regressor model on top of the
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transformer model for the LCP task as shown in Figure 3. We used this architecture for each transformer model to
predict the complexity score.

The sequence output of each transformer model is used as the input features of the BILSTM layer. Let, f =
(f1> f2s .- f7) be the sequential input to the BiLSTM. For capturing the past and future contexts, the BiLSTM
model operates the sequential input in both forward and reverse directions. The forward hidden vector sequence
h = (hy, hy, ...., hy) and the backward hidden vector sequence h= (hy,hr_q, ..., hy) operates the input in standard
and reverse order, respectively (Yu et al. (2015)). Here, W represent the weight matrices, ¢ is the activation function
to set the gating values in [0,1], b is the bias vector, and the following operations presented in equation (1) are iterating
from ¢ = I to T time steps to produce the output y = (y;, ys, ...., yy). This output vector y conveys the context of the
input features.

hy = oW o f+ Wozhy g + br)
h, = oW 5f; + Weehy ) + bs) (1)

V= Wth’ + Wzyl’lz + by

The BiLSTM model uses two LSTMs on the input where the first and second LSTM:s are the reversed copy of one
another. It helps the model to take full advantage of the forward and backward input features to learn the inter and
intra-relational structure of the tokens and sentences. The pooling layer lessens the dimensions of the feature maps
by selecting a part of the input matrix. Hence, it lessens the learning parameters and the amount of computation in
the network. In this work, we have utilized a one-dimensional max-pooling layer that summarizes the features of a
particular region of the feature map produced by the BiLSTM layer as shown in Figure 3.

To avoid over-fitting, we use the dropout layer (Srivastava et al. (2014)) after both the max-pooling and dense layer.
Following this strategy, some neurons are ignored at random during training. That means, on the forward pass their
contribution to the activation of downstream neurons is discarded and on the backward pass, corresponding weight
updates are not considered. Hence, it reduces the model complexity and enhances the generalization ability. Later, a
final activation layer predicts the output complexity score. We use the mean squared error as a loss function and employ
the AdamW (Loshchilov and Hutter (2017)) optimizer.

3.3. Fusion of Transformer Models Scores

Performing the models’ integration is an efficient strategy that may produce better prediction accuracy and
robustness than individual models. To capture the benefit of the diversity of predictions, we integrate the predicted
scores of different transformer models to estimate the final complexity score. We explore two integration techniques
to do this as described below.

3.3.1. Integration with Arithmetic Mean

To capture the benefits of diverse models, we integrate the estimated complexity scores of four models to determine
a unified score in our ITRM-LCP model. Here, we utilize the arithmetic mean to aggregate the predicted complexity
scores of all four models to determine the final score as shown in equation (2).

a;+b;,+c; +d;
C,' _ i i i (2)
4
where C; is the final complexity score. a;, b;, c;, and d; correspond to the complexity score obtained from four
transformer models followed by BiLSTM module, respectively as shown in Figure 1.

3.3.2. Blending Integration

Blending integration is an extension of the stacked generalization integration technique. It uses the predictions of
the validation set obtained from different base models as features to train the meta-model. Then, the predictions of the
test set are passed to the trained meta-model to generate the final prediction (Chatzimparmpas et al. (2021)). The term
blending was first introduced by the winning team of the Netflix Prize data competition?, where they improved existing
algorithm performance by a margin of 10% using the blending integration technique (Koren (2009)) which motivates

Zhttps://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
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Figure 3: Regressor architecture of our ITRM-LCP model. The features vector of the transformer passes to the BiLSTM
layer as an input to learn context-based semantic association information. The MaxPooling layer filters the top features
from the features vector. Later, two Dropout layers and a Linear layer uses for better feature selection and learning.

us to investigate this technique for the LCP task. In Figure 4, we demonstrate the blending integration technique that
we employ in our method. As the base models, we use the four transformer models employed in our method, including
BERT, RoBERTa, XLNet, and DistilBERT with a BiLSTM regressor on top of each. Then, we take predictions on
both validation and test data using these trained base models. To perform blending integration, we blend the validation
predictions of four different base models as features and train the meta-model using these predictions. We choose
various regressors as the meta-model, including decision tree, passive-aggressive, linear regression, support vector
regressor, Theil Sen, Bayesian ridge, and automatic relevance determination (ARD) regressor. Finally, we stacked
the test set predictions of four base models and pass this to the trained meta-model for predicting the final lexical
complexity score.

4. Experiments and Evaluation

4.1. Dataset

To demonstrate the efficacy of our ITRM-LCP model, we evaluate our model on two benchmark datasets including
CWIG3G2 (Yimam et al. (2018)) and CompLex (Shardlow et al. (2021b,a)). The CWIG3G2 dataset is used in NAACL-
HLT-2018 CWI (Yimam et al. (2018)) shared task and the CompLex dataset is used in SemEval-2021 LCP (Shardlow
et al. (2021a)) shared task.
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Figure 4: Oveview of our blending integration strategy.

Table 1

The statistics of the datasets used in this work.
CWI-2018 English dataset (CWIG3G2) (Yimam et al. (2018)) LCP-2021 dataset (CompLex) (Shardlow et al. (2021a))
Corpus-Genres Train Dev Test Corpus-Genres Train Dev Test
News (SWIs) 11949 1502 1813 Bible (SWIs) 2574 143 283
News (MWEs) 2053 262 282 Bible (MWESs) 505 29 66
Wikinews (SWIs) 6780 776 1138 Biomed (SWIs) 2576 135 289
Wikinews (MWEs) 966 94 149 Biomed (MWEs) 514 33 53
Wikipedia (SWIs) 4833 606 750 Europarl (SWis) 2512 143 345
Wikipedia (MWEs) 718 88 120 Europarl (MWEs) 498 37 65
Total 27299 3328 4252 Total 9179 520 1101

NAACL-HLT-2018 Complex Word Identification (CWI) Task (Yimam et al. (2018)). According to the
benchmark of CWI-2016 (Paetzold and Specia (2016a)) shared task, a system needs to identify whether a given word
in a sentence is complex. Later, the CWI-2018 (Yimam et al. (2018)) task focused on both binary and probabilistic
classification tasks. The probabilistic task focused on predicting the complexity score of a given target word in
a particular context. CWI-2018 organizers provided a multilingual and multi-domain dataset. The English dataset
of CWI-2018 contains texts from three different corpora including News (professionally written), Wikinews, and
Wikipedia contents. The model assessments were performed per domain. To annotate the English dataset, they
employed both native and non-native English speakers. CWI-2018 dataset contains an amalgam of single-word tokens
and multi-word tokens annotation. The statistics for the single-word instances (SWIs) and the multi-word expressions
(MWESs) in the train-dev-test segments of the News, Wikinews, and Wikipedia corpora are shown in Table 1. We
performed some minor preprocessing here. To do this, we removed all of the noisy hashtags with numbers (e.g.
Wikinews section id) that appeared before every sentence in Wikinews corpus and also removed the unnecessary
white-space character beginning of the sentence.

SemEval-2021 Lexical Complexity Prediction (LCP) Task (Shardlow et al. (2021a)). CWI-2018 probabilistic
classification task (Yimam et al. (2018)) was an impressive inclusion in the LCP domain. However, measuring the
binary judgments of complexity based on the continuous value is still challenging. To address the challenges, Shardlow
et al. (2021a) introduced a task named LCP at the SemEval-2021 where they focused on the continuous label of the
lexical complexity estimation for a single and multi-word expression. SemEval-2021 LCP used a multiple domain-
based English benchmark dataset CompLex (Shardlow et al. (2021b)). The dataset consists of three different genres
including Bible (World English Bible translation), Biomed (articles from the CRAFT (Colorado richly annotated full
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Table 2
Examples sentences with single and multi-word instances with their complexity scores.

Sentence Token Complexity Score

Examples from CWI-2018 Task

\ marred \ 44000
| poll | .0000
‘ widespread ‘ .0500
The poll has been marred by widespread allegations of vote-rigging. ‘ widespread allegations ‘ 1500
‘ widespread allegations of vote-rigging ‘ .0000
| allegations | .5500
‘ vote-rigging. ‘ .6500
Examples from LCP-2021 Task
Yahweh's blessing brings wealth, and he adds no trouble to it. ‘ blessing ‘ 1718
That is why the European Council will also look at these issues. ‘ European Council ‘ .2205
Results of the European Council (Brussels, 13-14 March 2008) (debate) | European Council | .3611

text) corpus: a collection of open-access biomedical articles), and Europearl (a portion of the European parliament
proceedings) domain. The task is composed of two sub-tasks, where Sub-task-1 and Sub-task-2 focused on estimating
the complexity of a single-word instances (SWIs) and multi-word expressions (MWESs). Here, the length of the MWEs
token is limited to two words. The LCP-2021 dataset statistics are shown in Table 1.

In Table 2, we articulate the instances of single-word and multi-word expressions (MWEs) of CWI-2018
probabilistic and LCP-2021 shared tasks. The examples of the CWI-2018 probabilistic task show that participants
needed to predict the complexity score of almost every word (as single or MWEs) within a sentence. This makes it
one of the most challenging tasks. The LCP-2021 shared task also addressed the problem in the same way where
participants were asked to predict the complexity score on different genres of data and fixed the MWEs token length
two. It also tried to explore the challenges of estimating the complexity score of the same token in diverse contexts. For
example, from the last two rows of Table 2, we see that although both samples contain the identical phrase European
Council, the complexity scores of both cases are not the same.

4.2. Model Configuration

In this section, we illustrate the strategy to set the optimal settings of the hyper-parameters of our ITRM-LCP model.
To design and implement our model we used PyTorch and performed train-test on a GPU to take advantage of the
effectiveness of tensors’ parallel computation. All the experiments were performed on the Google Colaboratory (Bisong
and Bisong (2019)) platform.

In our ITRM-LCP model, we used four pre-trained transformers (Wolf et al. (2020)) models including BERT?,
RoBERTa*, XLNet’, and DistilBERT®. Prior studies (Chy et al. (2021); Aziz et al. (2022)) suggest that fine-tuning
the hyper-parameters of those models always outperforms the pre-trained models for downstream tasks. We fine-tuned
some hyperparameters including training batch size, learning rate, and epochs. The optimal settings of these hyper-
parameters are illustrated in Table 3. We used a grid search technique based on the development dataset, a kind of brute-
force approach to select the optimal hyperparameters. After constructing a grid of potential discrete hyperparameter
values considering the literature, we fit the model using every possible combination. Later, the combination that
provided the best performance is then chosen.

A BiLSTM-based regressor layer plugged at the end of each of the transformers models as described in Section 3.2.
To reduce the noisy features and avoid over-fitting, we fine-tuned some hyper-parameters of this module including the
output dimension of the BiLSTM layer, dropout rate, and hidden units sizes of a dense layer. We employed various
settings for the output dimension of the BiLSTM layer and dropout rate. The best settings of these hyper-parameters

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/roberta-base
Shttps://huggingface.co/xInet-base-cased
Shttps://huggingface.co/distilbert-base-uncased
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Table 3
The optimal hyper-parameters settings for CWI-2018 (Yimam et al. (2018)) and LCP-2021 (Shardlow et al. (2021a))
datasets.

BERT RoBERTa XLNet DistilBERT Corpus
Hyper-parameters (Batch size, Learning rate, Epochs, Dropout#1, Dropout#2, BiLSTM output size)
16, 2.9e-5, 5, 0.7, 0.3, 256 8, 2.5e-5,7,0.7, 0.3, 256 8, 2.5e-5, 7, 0.7, 0.3, 256 8, 2.5e-5, 7, 0.7, 0.3, 256 News
[ee)
—
o
S 8,2.8e-5,5,0.7, 0.3, 256 8, 3.0e-5, 7, 0.7, 0.3, 256 16, 2.8¢-5, 7, 0.7, 0.3, 256 8, 2.6e-5, 7, 0.7, 0.3, 256 WikiNews
=
@]
8, 2.8e-5, 5, 0.7, 0.3, 256 8, 2.5e-5, 7, 0.7, 0.3, 256 16, 2.5e-5, 7, 0.7, 0.3, 256 8, 2.5e-5, 7, 0.7, 0.3, 256 Wikipedia
é' 8, 1.0e-5, 5, 0.7, 0.3, 256 8, 2.5e-5, 5, 0.5, 0.2, 256 8, 2.5e-5, 5, 0.7, 0.3, 256 8, 2.5e-5, 5, 0.7, 0.3, 256 SWis
N
§ 16, 2.8e-5, 5, 0.7, 0.3, 128 16, 3.0e-5, 10, 0.5, 0.2, 128 8, 2.8e-5, 7, 0.5, 0.2, 256 8, 2.5e-5, 10, 0.5, 0.2, 256 MWEs

are reported in Table 3. Besides, we used a 1-dimensional max-pooling layer with kernel size 2 and the hidden units
size of the dense layer set to 512. Moreover, we used the Sigmoid activation function at the end of our BILSTM-based
regressor architecture to predict the complexity score. During training, we saved our model based on the best Pearson
correlation score by evaluating on the validation set. We set up a torch seed using the torch.manual_seed (5) in order
to acquire a consistent and reproducible performance. The rest of the parameters were set to their default values unless
otherwise mentioned. Since the nature of the Wikipedia and Wikinews corpus of the CWI-2018 dataset is similar, we
have aggregated them during the training phase of our model. We followed the default dataset setting for the rest of
the cases.

4.3. Evaluation Metrics

In this experiment, we considered various standard evaluation measures including the Pearson correlation (R) (Vir-
tanen et al. (2020)), the Spearman correlation (Rho) (Virtanen et al. (2020)), the mean absolute error (MAE) (Pedregosa
etal. (2011)), the mean squared error (MSE) (Pedregosa et al. (2011)), and the R-squared (R?) (Pedregosaetal. (2011)).
Following the benchmark of CWI-2018 (Yimam et al. (2018)) and LCP-2021 (Shardlow et al. (2021a)) shared tasks,
mean absolute error and Pearson correlation are used as the primary evaluation measure for these tasks, respectively.
We also report the results based on other mentioned evaluation measures.

Pearson correlation score measures the context learning efficacy of the lexical complexity prediction (LCP) task.
Spearman’s correlation coefficient measures the strength of a monotonic relationship that shows the data has to be
monotonically related. We use MAE to measure how close the system can predict the gold scores. MSE is a measure
that determines a fitted line is how close to the data points where the squaring is critical to reducing the complexity
with negative signs. To determine how well the model fits the data we use the R-squared measure. A higher score is
better for Pearson and Spearman correlation and R-squared measures whereas a lower score is better for error-related
measures including MAE and MSE.

4.4. Experimental Setup, Results, and Analysis
In this section, we now assess the performance of our ITRM-LCP approach. Thus, we shed light on the following
research questions (RQs) related to the lexical complexity prediction (LCP) tasks from the text.

e RQI: What is the effect of different integration strategies on LCP performance?
— We fuse the scores from individual models using the arithmetic mean and blending integration strategies to
improve the overall system performance. The findings are available in the following Section 4.4.1.

4.4.1. Performance of Integration Techniques (RQ1)

We utilize two integration strategies including arithmetic mean and blending as described in Section 3.3. To select
the effective integration strategies (RQ1), we evaluate the performance of these two integration strategies using primary
evaluation measure Pearson correlation on the LCP-2021 MWEs dataset as reported in Table 4. The findings show
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Table 4
Performance (Pearson scores (higher is better)) of our used integration strategies on LCP-2021 multi-word expressions
(MWEs) (Shardlow et al. (2021a)) dataset.

Model with Regression Pearson Score
Decision Tree Regressor 8111
Passive Aggressive Regressor .8523
Linear Regression .8613
Support Vector Machine Regressor .8618
Theil Sen Regressor .8632
Bayesian Ridge Regressor .8633
Automatic Relevance Determination Regressor .8643
Mean-based Integration 8727

Table 5
Performance (Pearson, Spearman, and R?: higher is better; MAE and MSE: lower is better) of our baseline models and
ITRM-LCP for SemEval LCP-2021 datasets.

Model Pearson Spearman MAE  MSE R?
Performance of baseline models on LCP-2021 Dataset SWils corpus
HCF .7363 .6976 .0671  .0075 .5422
Transformer .7525 .7075 .0667 .0073 .5663
ITRM-LCP .8003 .7491 .0612  .0060 .6365
Performance of baseline models on LCP-2021 Dataset MWEs corpus
HCF .7861 7674 .0771  .0093 .6179
Transformer .8361 .8291 .0719 .0082 .6874
ITRM-LCP 8727 .8538 .0587 .0059 7617

that the mean-based integration performance using equation (2) is ~1% higher than the other blending integration
techniques for the LCP-2021 MWEs corpus. It validates the efficacy of the mean-based integration strategy. Therefore,
we choose this integration strategy for our ITRM-LCP system and the rest of the results are reported following this
setting.

e RQ2: How much does our proposed approach improve the performance in comparison to other state-of-the-art
lexical complexity prediction methods?
— To validate our ITRM-LCP method effectiveness we compare it with other SOTA LCP methods. The
corresponding details are available in the following Sections 4.4.2, 4.4.3, and 4.4.4.

4.4.2. Baseline Systems Design and Performance Analysis (RQ2)

The earlier lexical complexity prediction (LCP) systems are mostly low-level hand-crafted features based whereas
in recent times researchers mostly applied the embedding and transformer-based deep learning features to design their
LCP systems. Therefore, to design the standard baseline systems we consider both the hand-crafted features (HCF)
based method and the state-of-the-art (SOTA) transformer-based method.

For our HCF-based baseline system, we extend the work reported by Nandy et al. (2021) ’. Here, we incorporate
14 unique HCF features including transformer (BERT, RoBERTa, and DistilBERT) probability, word length, word
frequency, number of syllables, corpus features (Bible, Biomed, and Europerl), WordNet (Fellbaum (2010)) features
(synsets, hyponyms, and hypernyms), and Glove 50 and 100 dimension features and the total feature dimension is
162. For the transformer’s probability feature, we calculate the probability score of a token using the transformer
mask language modeling feature whereas, for the multi-word expressions (MWESs) task, we multiply both token
probabilities to calculate as a feature. However, to calculate the WordNet features we utilize the natural language
toolkit (NLTK) (Bird (2006)) library where we calculate the mean average score of the token’s synsets, hyponyms,

7https://github.com/abhi 1 nandy2/CS60075-Team-2-Task-1.git
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Table 6
Performance (Pearson, Spearman, and R?: higher is better; MAE and MSE: lower is better) of our ITRM-LCP model for
NAACL-HLT CWI-2018 and SemEval LCP-2021 datasets.

Corpus Pearson Spearman MAE MSE R?
CWI-2018 Dataset Performance

News .8970 7822 .0404 .0067 .8046
Wikinews .8073 .7393 .0540 .0105 .6516
Wikipedia 1774 .7534 0616 .0125 .6044
Average .8273 .7583 .0520 .0099 .6868
LCP-2021 Dataset Performance

SWis .8003 7491 .0612 .0060 .6365
MWEs .8727 .8538 .0587 .0059 .7617
Average .8365 .8015 .0599 .0059 .6991

and hypernyms frequencies. We also utilize two different dimensions i.e. 50 and 100 of Glove feature since it is one
of the widely used embedding features in natural language processing (NLP) and we want to exploit its efficacy on the
LCP task. Finally, based on the extracted features, we use the boosting-based regression model XGBoost (eXtreme
Gradient Boosting) (Chen and Guestrin (2016)) to estimate the complexity score.

Besides, recent studies (Bani Yaseen et al. (2021); Pan et al. (2021)) suggested that the transformer-based model
learns contextual information effectively. Therefore, in our transformer-based baseline, we used the BERT transformer
model with sentence-pair setting to represent contextual information of the lexical complexity prediction (LCP) task.
To capture the task-specific information of LCP explicitly, we fine-tune the BERT model. We exploit a BILSTM layer
on top of the BERT transformer model for the LCP task to learn the long-term dependencies and capture the contextual
information crucial for predicting the complexity score.

The results of our two baseline methods considering two corpora of the LCP-2021 dataset are presented in Table 5.
The HCF-based baseline model achieves 0.7363 and 0.7861 Pearson scores on the single-word instances (SWIs)
and the multi-word expressions (MWEs) corpora, whereas the transformer-based baseline model achieves 0.7525
and 0.8361 Pearson scores, respectively. This means that the transformer-based baseline model performs 2.16% and
5.98% higher than the HCF-based baseline model in terms of primary evaluation measure Pearson correlation on
the SWIs and MWEs corpora, respectively. This deduced the importance of the transformer-based model in the LCP
task. In contrast, our ITRM-LCP method, where we exploited the ensemble of transformer models to determine the
complexity score achieved substantial improvement over both the HCF and transformer-based baselines. For the SWIs
and MWE:s corpora, our ITRM-LCP model outperformed the HCF baseline by 8.7% and 11% as well as outperformed
the transformer-based baseline by 6.4% and 4.4%, respectively. This deduced the effectiveness of our ITRM-LCP to
estimate the complexity score effectively. We also report the results based on other evaluation metrics.

4.4.3. Overall Performance Across Two Benchmark Datasets (RQ2)

The summarized results of our ITRM-LCP method considering different corpora are articulated in Table 6.
The overall performance for the CWI-2018 dataset is 0.8273 and 0.0520 based on Pearson correlation and MAE,
respectively. Here, our proposed method performs better for News corpora compared to the Wikinews and Wikipedia
corpus. On the LCP-2021 dataset, the overall results of our ITRM-LCP method based on the Pearson score and MAE
score are 0.8365 and 0.0599, respectively. Here, our proposed method performs better for MWESs corpora than the SWIs
corpora. This is because MWEs contain more words in the token and, therefore, contain diverse contextual information
that aids the model for better estimation of complexity compared to the SWIs.

4.4.4. Comparative Analysis with Related Methods (RQ2)

We compared the performance of our ITRM-LCP method against the current state-of-the-art methods to validate its
effectiveness (RQ2). The top-performing systems on CWI-2018 dataset (Yimam et al. (2018)) includes DAT (Zaharia
et al. (2022)), Camb (Gooding and Kochmar (2018)), TMU (Kajiwara and Komachi (2018)), ITEC (De Hertog and
Tack (2018)), NILC (Hartmann and Dos Santos (2018)), and SB@GU (Alfter and Pilan (2018)). The comparative
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Table 7
Comparative performance (MAE; lower is better) of ITRM-LCP model against the state-of-the-art on CWI-2018 (Yimam
et al. (2018)) test set. We highlighted the best results in boldface.

Method News WikiNews Wikipedia

ITRM-LCP .0404 .0540 .0616
Top Performing System on CWI-2018 Dataset

DAT (Zaharia et al. (2022)) .0450 .0513 .0671
Camb (Gooding and Kochmar (2018)) .0558 .0674 .0739
TMU (Kajiwara and Komachi (2018)) .0510 .0704 .0931
ITEC (De Hertog and Tack (2018)) 0539 0707 0809
NILC (Hartmann and Dos Santos (2018)) .0588 .0733 .0819
SBQGU (Alfter and Pilan (2018)) 1526 1650 1750
Baseline (Yimam et al. (2018)) 1127 .1053 1112

Table 8
Comparative performance of our method against the state-of-the-art on SemEval-2021 LCP (Shardlow et al. (2021a)) test
set. We highlighted the best results in boldface.

Single Word Instances (SWIs) Multi Word Expressions (MWEs)
Method

Pearson  Spearman MAE  MSE R? Pearson Spearman MAE  MSE R?
ITRM-LCP .8003 .7491 .0612 .0060 .6365 8727 .8538 .0587 .0059 .7617
Top Performing Systems on LCP-2021 Dataset
JUST-BLUE (Bani Yaseen et al. (2021))  .7886 .7369 .0609 .0062 .6172 - - - - -
DeepBlueAl (Pan et al. (2021)) .7882 7425 .0610 .0061 .6210 .8612 .8526 .0616 .0063 .7389
Andi (Rotaru (2021)) 7782 7287 .0637 .0064 .6036 .8506 .8381 .0667 .0070 .7107
DAT (Zaharia et al. (2022)) 7744 - .0652 - - .8285 - .0693 - -
CSECU-DSG (Aziz et al. (2021)) 7716 7326 .0632 .0066 .5909 .8311 .8153 .0678 .0077 .6825
BigGreen (Islam et al. (2021)) 7749 7294 .0629 .0065 .5983 .7898 7769 .0903 .0124 4858
LAST (Bestgen (2021)) 7534 6088 0652 0070 5652 8417 8299 0677 0072 .7030
Baseline (Shardlow et al. (2021a)) .5287 .5263 .0870 .0136 .2779 .6571 .6345 .0924 0140 .4030

results are articulated in Table 7 based on MAE which is the official measure of the NAACL-HLT CWI-2018 shared
task. It shows that our ITRM-LCP model achieved 10.2% improvement on the news corpus and 8.2% improvement on
the Wikipedia corpus compared to the top-performing system DAT (Zaharia et al. (2022)) domain adaptation-based
transformer model.

In addition, we also evaluate the performance of our ITRM-LCP model on the CompLex dataset against the
current top-performing methods. The findings are articulated in Table 8. It demonstrated that our ITRM-LCP
model outperformed all other participants’ systems in both the SWIs and MWEs subtasks of the LCP-2021 task.
In the SWIs subtask, our ITRM-LCP obtained a 1.5% higher score compared to the top-performing system JUST-
BLUE (Bani Yaseen et al. (2021)). Similarly, in the MWESs subtask, our ITRM-LCP achieved a 1.34% higher score
compared to the top-performing system DeepBlueAl (Pan et al. (2021)). However, in comparison to the task baseline,
our ITRM-LCP obtained a 51.37% and 32.81% performance improvement. The baseline used the log frequency from
the Google Web1T corpus with linear regression. The comparative performance analysis confirms that an approach
which integrates several transformer models with deep neural network (DNN) can achieve good performance for lexical
complexity estimation from text across different datasets (RQ2). This validates the effectiveness of our method of
lexical complexity estimation.

To analyze the performance of the above-mentioned related methods, we articulate the description of their system
in Table 9. Top-performing participants’ (De Hertog and Tack (2018); Kajiwara and Komachi (2018); Gooding and
Kochmar (2018)) of CWI-2018 used various handcrafted features (HCF) including word length, WordNet-based
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Table 9

Feature description and regression approaches used in top performing participants systems at the CWI-2018 and LCP-
2021 (Shardlow et al. (2021a)) shared tasks.

Team Name

Features Description

Regression Approach

CWI-2018 Participants’ systems features and regression approaches

Camb (Gooding and Kochmar (2018))

Bag of N-grams, POS tags, dependency parsing rela-
tions, WordNet and psycholinguistic features.

Linear regression

TMU (Kajiwara and Komachi (2018))

‘ token length, token frequency, and probability features

Random forest regressors

ITEC (De Hertog and Tack (2018))

Word length and frequency, word and character embed-
dings, psycholinguistics features.

LSTM

NILC (Hartmann and Dos Santos (2018))

N-grams, word length, number of syllables,average
embedding of target words, psycholinguistic features,
WordNet-based features.

LSTM

SBQOGU (Alfter and Pilan (2018))

Word length, number of syllables, hypernyms, n-grams,
frequency distribution, and POS tags.

Extra trees

LCP-2021 Participants' systems features and regression approaches

JUST-BLUE (Bani Yaseen et al. (2021))

‘ Sentence and token encoded using BERT and RoBERTa

Weighted averaging

DeepBlueAl (Pan et al. (2021))

Sentence and token encoded using BERT, ALBERT,
RoBERTa, and ERNIE with Data augmentation

Linear regression

Andi (Rotaru (2021))

Psycholinguistic features, Glove embeddings, Word2Vec
embeddings, ConceptNet NumberBatch, and ensemble
features of language models

Ridge regression, gradient
boosted regression

CSECU-DSG (Aziz et al. (2021))

‘ Sentence and token encoded using BERT, RoBERTa

Arithmetic mean

BigGreen (Islam et al. (2021))

Word length, semantic, phonetic, word frequency, N-
gram, syntactic, and Glove, Elmo, InferSent embed-
dings, BERT

Gradient boosted regres-
sion, linear regression

LAST (Bestgen (2021))

Word frequency, lexical norms, sentence length, bi-gram
association

Gradient boosted regres-
sion

features, and N-grams to extract the contextual features which reduce the automaticity of the systems and a huge
amount of features trouble the model to learn the contextual patterns. Besides, these systems also explored various
types of regression approaches including linear regression, random forest-based regressor, long short-term memory
(LSTM), and extra tree. However, these traditional regression approaches have limitations to predict the complexity
scores effectively. In LCP-2021, most of the top-performing systems (Pan et al. (2021); Bani Yaseen et al. (2021))
employed transformer-based systems, though some used the HCFs based systems (Islam et al. (2021); Bestgen (2021)).

Recently (Zaharia et al. (2022)) proposed a domain adaptation-based transformer model named DAT where
they used character-level BILSTM for target word representation and transformers model for context representation.
However, this model performed well in learning contextual information but was limited to learning the pair-wise
dependencies between sentence and token that hurt the performance.

To overcome the ineptness of the aforementioned systems, we utilize four transformer models including BERT,
RoBERTa, XLNet, and DistilBERT. Thus, our system effectively captures the diversity of contextual features compared
to the HCF-based approaches. We employ a BILSTM-based regressor on top of each transformer model that helps our
ITRM-LCP model to learn the long-term dependencies as well as capture the pair-wise dependencies between sentence
and token effectively. Besides, we fused the predicted complexity predictions of these four models to estimate the
unified score that improves the performance of our system.

e RQ3: Can diverse transformer models capture better contextual features from different corpus data?
— We incorporate several state-of-the-art (SOTA) transformer models which provide diverse contextual
representations and improve the generalization ability of our proposed method. The corresponding details are
available in the following Section 4.4.5.
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Table 10
Performance (Pearson correlation, Spearman correlation, MAE, MSE, and Rz) of different experimental settings on SWis
and MWEs dataset of SemEval-2021 LCP shared task (Shardlow et al. (2021a)). We highlighted the best results in boldface.

Single Word Instances (SWIs) Multi Word Expressions (MWEs)
Method
Pearson Spearman MAE MSE R? Pearson Spearman MAE MSE R?
ITRM-LCP .8003 .7491 .0612 .0060 .6365 .8727 .8538 .0587 .0059 .7617

Performance on Individual Component

BERTY 7842 7305  .0654 .0068 .6149 .8511 .8448 .0636 .0068 .7244
ROBERTAT 7673 7251  .0671 .0074 .5887 .8500 8179  .0672 .0072 .7223
XLNET} .7583 7168  .0696 .0078 .5749 .8481 8122 .0632 .0069 .7192

DisTiLBERTY .7613 7101  .0645 .0069 .5796 .8363 8126 .0712 .0078 .6994

Table 11

Statistical significant testing on SemEval LCP-2021 shared task’s (Shardlow et al. (2021a)) SWIs and MWEs datasets
using paired t-test. T indicates the statistically significant difference between ITRM-LCP and each method at (p-value <
0.05).

Mean Score (p-value) Mean Score (p-value)

Method (SWIs) (MWEs)
ITRM-LCP - -
Individual Component p-value Against ITRM-LCP
BERT 2.7972e-207 2.1899e-37
RoBERTA 2.9089e-42f 4.6587e-1
XLNET 5.0967e-261 1.2217e-27
DisTILBERT 1.3825e-421 1.0005e-6"

4.4.5. Impact of Individual Transformer Models (RQ3)

Here, we further examine the performance of our ITRM-LCP model through evaluating the performance of
individual transformer models. To do this, we only keep one transformer model at a time and remove the other three
models. The BiLSTM-based regressor head is added on top as usual. We evaluated the performance on LCP-2021
shared tasks (i.e. SWIs and MWEs) and the results are reported in Table 10.

To capture diverse contextual representation, we incorporate four transformer models including BERT, RoBERTa,
XLNet, and DistilBERT. Such integration is crucial for learning semantic information from various domain specific
corpora including News, Wikinews, Wikipedia, BioMed, European parliament proceedings, and English bible
translation (RQ3). It demonstrated that the performance of our ITRM-LCP model on the SWIs task is 0.8003 which is
a maximum of 5.54% and a minimum of 2.05% higher than the individual transformer model performances according
to the primary evaluation measure Pearson score. Similarly, in the MWEs task, ITRM-LCPs performance is 0.8727
and that is a maximum of 4.35% and a minimum of 2.54% higher compared to the performances of other individual
models. We also noticed that among all the four transformer models, BERT based model performed better than others
for both tasks. Moreover, we report the result based on the Spearman correlation, MAE, MSE, and R? measures. From
the results, we have seen that our model outperformed each of the individual models in all the evaluation metrics. This
deduced the effectiveness of our different model integration strategies in the ITRM-LCP model to capture the benefits
of the individual model.

Additionally, we perform statistical significance testing with a two-sided paired t-test at a 95% confidence level
based on the performances between our ITRM-LCP and individual component variations as shown in Table 10. The
findings of our significance testing are presented in Table 11. Here, T represents the statistically significant at (p < 0.05).
It shows that our ITRM-LCP model significantly outperforms all the other variations in the SWIs task. However,
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Table 12
Impact of other alternatives rather than BiLSTM layer into our ITRM-LCP model using MWEs dataset of LCP-2021.

Model: ITRM-LCP with Other Top Layers Pearson Spearman MAE  MSE R?

— BIiLSTM .8727 .8538 .0587 .0059 .7617
— RNN .8465 .8282 .0669 .0069 .7165
— GRU .8434 .8277 .0663 .0070 .7114
— Linear regression .8389 .8250 .0666 .0072 .7039
— LSTM .8348 .8238 .0689 .0077 .6968

for the MWEs task, our ITRM-LCP model significantly outperforms all the other methods except the RoOBERTa-
based approach. Though our approach obtained better results than the RoOBERTa-based approach but the difference in
performance is not significant.

o RQ4: Does the deep neural network architecture with transformer models improve the learning of pairwise
features of texts for the lexical complexity prediction tasks?
— We exploit a BILSTM-based neural network architecture on top of the transformer model for the LCP task
to learn the long-term dependencies effectively and distill the required contextual information for predicting the
complexity score of a token-sentence pair. The corresponding details are available in the following Section 4.4.6.

4.4.6. Impact of BiLSTM-based Regressor (RQ4)

To learn the semantic information effectively, we pass the sequence of hidden states for the whole input sequence
obtained from each transformer model to a BILSTM-based regressor layer on top as discussed in Section 3.2. BILSTM
incorporates two LSTM layer to process the input sentence forward and backward sequentially which help it learn
better semantic dependency than the transformer models on the task-specific dataset. In order to enhance the learning
of task-specific knowledge, we incorporate a BILSTM layer on top of each transformer model. To validate our selection,
we conduct extensive experiments on our ITRM-LCP model utilizing other popular feature learning algorithms
including recurrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU),
and linear regression. Table 12 shows the experimental results which demonstrate that BiLSTM based ITRM-LCP
model outperformed the other settings thus validating our selection of BiLSTM module.

Besides, to demonstrate the impact of BiLSTM-based regressor on our ITRM-LCP model, we present the
comparative performances of each transformer model with and without using the BILSTM-based regressor layer based
on the LCP-2021 MWEs dataset in Figure 5. When removing the BiLSTM regressor, a fully connected layer is added on
top of the transformer model to estimate the complexity score. Experimental findings demonstrate that the performance
of the BERT, RoBERTa, XLNet, and DistilBERT models improved by 5.36%, 3.53%, 2.75%, and 3.45%, respectively
in terms of the Pearson correlation score (RQ4). This deduced the importance of adding a BiILSTM-based regressor
layer on top of each transformer model.

To validate the significance of adding a BiLSTM-based regressor we also perform the token-based analysis in
our ITRM-LCP model (RQ4). In this regard, in Figure 6 we show the importance of every token in predicting the
final complexity score where we focus on three crucial breaking points of our ITRM-LCP model. We analyze the
output (I) after the BERT layer, (II) after the BERT with BiLSTM layer, and (III) after the final layer (i.e BERT
with BiLSTM and max-pooling layer). We visualize the output of these model variants using the Captum library®
where the input tokens are mapped to their corresponding scores and color gradients are used to visualize them. To
calculate the attribution score we use the Integrated Gradients ( Sundararajan et al. (2017)) algorithm. In Figure 6, we
can see that the attribution score of the first model (I) is significantly lower than the others which indicates the minimal
contribution of only BERT embedding into the final prediction. Moreover, the first model (I) is limited to focusing
on crucial words but model (IT) and model (II) improve the attribution score and focus on the crucial words which
deduce the effectiveness of adding the BiLSTM-based regressor on top of the transformer model. Here, in example A,
we present the findings for predicting the complexity score of the EU competitiveness token. Considering this context,
one of the crucial words is Europe. We see that model (IT) and model (III) addressed this token importance whereas
model (I) i.e. only BERT embeddings failed to capture this context. Similarly, in examples B and C crucial words

8https://github.com/pytorch/captum
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Figure 5: Impact of BiLSTM-based regressor on transformer models using MWEs dataset of LCP-2021.

<> BERT Embedding () @ BERT+BILSTM () @  BERT+ BILSTM Regressor(lll)

Example A Token: EU competitiveness

Legend: B Negative (] Neutral [l Positive
Attribution Attribution

True Label Predicted Label Word Importance
Label Score
<> 0.4285714285714286 0.4525143504142761 Jabel 0.58 [CLS] developing innovation policy is crucial to eu competitive ness and our ability to keep good jobs in europe . [SEP]
(0.45) eu competitive ness [SEP]
. 0.4285714285714286 0.4525143504142761 Jabel 122 [CLS] developing innovation policy is crucial to eu competitive ness and our ability to keep good jobs in europe . [SEP]
(0.45) eu competitive ness [SEP]
CLS] developil | ial d bili ke d job: - [SEP
. 0.4285714285714286 0.4525143504142761 Jabel 152 [ ] developing innovation policy is crucial to eu competitive ness and our ability to keep good jobs in europe . | 1
(0.45) &u competitive ness [SEP]
Example B Token: chief priests
Legend: B Negative [] Neutral H Positive
True Label Predicted Label Attribution Label Attribution Score Word Importance
<> 0.3166666666666666  0.355741047889328 (0.36)  label 0.63 [CLS] and he had come here intending to bring them bound before the chief priests | " [SEP] chief priests [SEP]
. 0.3166666666666666  0.355741947889328 (0.36)  label 0.98 [CLS] and he had come here intending to bring them bound before the chief priests | " [SEP] chief priests [SEP]
. 0.3166666666666666  0.355741947889328 (0.36)  label 240 [CLS] and he had come here intending to bring them bound before the chief priests | " [SEP] chief priests [SEP]
Example C Token: chief priests
Legend: B Negative [J Neutral B Positive
True Label Predicted Label Attribution Label Attribution Score Word Importance
<> 0.3333333333333333 0.3567221462726593 (0.36) label 0.53 [CLS] but the chief priests con sp ired to put lazarus to death also , [SEP] chief priests [SEP]
' 0.3333333333333333 0.3567221462726593 (0.36) label 1.01 [CLS] but the chief priests con sp ired to put lazarus to death also , [SEP] chief priests [SEP]
. 0.3333333333333333 0.3567221462726593 (0.36) label 2.31 [CLS] but the chief priests con sp ired to put lazarus to death also , [SEP] chief priests [SEP]

Figure 6: Visualization of word contributions based on different settings and our proposed ITRM-LCP method for predicting
complexity scores.

are bound before and conspired, respectively, to predict the complexity score of token chief priests. Here, also we see
that BERT with BiLSTM-based regressor (model (III)) layer provides comparatively better attention on crucial words
rather than the other two variants. Hence, this visual analysis validates the selection of adding the BiLSTM-based
regressor layer on top of each transformers in our ITRM-LCP model.

e RQ5: Can our proposed approach detect domain-specific inherent meanings of tokens in phrasal texts?
— For effective adaptation to domain-specific words, we fine-tune diverse transformer models. The correspond-
ing details are available in the following Section 4.4.7.
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4.4.7. Genre Based Comparison (RQ5)

In the LCP task, it is important to consider data from different domains including scientific, biomedical, political,
and religious to ensure the generalizability of an LCP system (Shardlow et al. (2021b)). Hence, genre-based analysis is
important for this task (RQS5). Considering this, CWI-2018 shared task employed the genre-wise evaluation strategy.
Since the LCP-2021 shared task focused on single and multi-word evaluation, we conducted a genre-wise comparative
analysis using the LCP-2021 MWEs dataset. The experimental findings are illustrated in Figure 7. It shows that
our system obtained the top performance for the Biomed genre though we didn’t employ any domain-specific
methodologies for this genre. The performance for the Bible genre is also satisfactory. However, our model obtained
comparatively poor performance for the Europarl genre. Further observation revealed that in the Europarl genre, some
target tokens are chosen from the short form of the word(s) like EU (European Union). Besides, in some cases, context
is based on the speaker’s talk time in the European Parliament and the law number of the European Union constitution.
Thus, our model failed to capture such context or was sometimes misled during the training phase.

Pearson Scores by Genres Category

0.8727

0.6576

Corpuses

0 0.2 0.4 0.6 0.8 1
All = Europarl = Biomed m=Bible

Figure 7: Comparative analysis among different genres of SemEval-2021 LCP MWEs dataset based on Pearson score.
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Figure 8: Correlation score between system and true prediction using MWEs dataset of SemEval-2021.
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Figure 9: Correlation matrix among the predictions of our proposed ITRM-LCP model and BERT, RoBERTa, XLNet, and
DistilBERT individual transformer-based models on the MWEs task of LCP-2021 dataset.
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4.5. Discussion

To estimate the effectiveness of our ITRM-LCP model, we present a scatter plot diagram between the true
predictions and the predictions of our system using the LCP-2021 MWEs dataset in Figure 8. It indicates that our
system strongly fits the LCP task because of a higher R? value of 0.7617. Besides, from the scatter plot, we can observe
that the predicted data points of our system are placed nearly to the linear line which indicates the usefulness of our
system in the LCP task. In Figure 9, we depict the correlation among the BERT, RoBERTa, XLNet, DistilBERT, and
our proposed ITRM-LCP model’s predictions of the MWEs task. Here, the ITRM-LCP model highly correlates with
other individual transformer-based models whereas those models’ individual predictions are not so closely correlated.
This deduces the effectiveness of our proposed ensembling approach.

To further examine the aptness of our ITRM-LCP model, we perform the computation time analysis, feature
analysis of the baseline system, research analysis, and error analysis. We use the LCP-2021 MWEs corpora dataset to
perform these comparisons.

4.5.1. Computation Time

Now, we discuss the computation time for training and testing of our proposed ITRM-LCP method. We used
Google Colab’s (Bisong and Bisong (2019)) GPU machine to implement our method. The total training time for the
LCP-2021 MWE:s corpus of our ITRM-LCP method is 23.23 minutes. This indicates that our method is able to learn
from the training data and optimize its parameters in a considerable amount of time. The prediction time for a single
instance and loading base models (transformers with BiLSTM-based regressors), ITRM-LCP requires 45.94 seconds.
The prediction time for a single instance, when base models are already loaded into memory, is only 0.11 seconds. This
indicates that the computational cost of making predictions with the ITRM-LCP is relatively low once base models
are loaded.

4.5.2. Feature Analysis of the Baseline System

For our HCF-based baseline system, we have extracted 162 features. The detailed description of these features
is already described in section 4.4.2. To analyze the contribution of these hand-engineered features on the LCP
task, we depict a feature importance graph in Figure 10, where we plot the most important 15 out of 162 features
according to their F-score. We conducted this experiment using the LCP-2021 multi-word expressions (MWEs)
dataset. In Figure 10, we have seen that the contextual transformer features have the highest contribution to tackling
the challenges of the LCP task. Besides, this plot also deduces that HCF-based features including the number of
syllables, corpus features, word frequency, and WordNet features have limited contributions to model performance.
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Figure 10: Feature importance graph of HCFs based baseline model on MWEs train dataset.

These findings actually motivate us to shift from HCF feature-based baseline model and develop an effective LCP
model through exploiting an ensemble of the transformers model.

4.5.3. Research Analysis

In Section 4.4, we presented five research questions that drove this work. In the first question (RQ1), we focused
on the effective integration techniques for leveraging four transformer models including BERT, RoBERTa, XLNet,
and DistilBERT to determine the final prediction. We showed the comparative performance between the arithmetic
mean and linear regression techniques in Section 4.4.1 where the arithmetic mean Pearson score is on average ~1%
higher than the various blending integration techniques on the LCP-2021 dataset for our proposed method. Next,
in the second question (RQ2), we provided a performance comparison of our ITRM-LCP method with other state-
of-the-art methods (i.e. DAT, CAMB, DeepBlueAl etc.) as described in Sections 4.4.2 and 4.4.4. The comparative
analysis based on the CWI-2018 dataset showed that our proposed ITRM-LCP method achieved 10.2% improvement
on the News corpus and 8.2% improvement on the Wikipedia corpus compared to the top-performing method. Besides,
compared with the top-performing method on the LCP-2021 dataset our proposed ITRM-LCP method led up to 1.5%
and 1.34% improvement for single and multi-word complexity prediction tasks, respectively. The third question (RQ3)
was concerned with capturing better contextual features from different corpus data. In this regard, we incorporated
four transformer models for extracting diverse contextual features. The analysis results of Section 4.4.5 demonstrated
the efficacy of exploiting diverse transformer models in the LCP task. Some prior LCP methods leveraged multiple
transformers models and performed well to learn contextual information but are limited to learning the pair-wise
dependencies between sentence and token that hurt the performance. Considering this, we concentrate on the further
improvement of the performance of the individual transformer model. We placed a BILSTM-based regressor cap on top
of each transformer model which helped the model to take full advantage of the forward and backward input features
to learn the inter and intra-relational structure of the token-sentence pair (RQ4). The impact of BiLSTM-regressor
is presented in Section 4.4.6. Finally, the fifth question (RQ5) pertained to identifying domain-specific meaning from
text. The LCP-2021 dataset contains data from three different domains including Biomedical text, European parliament
proceedings, and English bible translation where it is challenging for a method to equally address domain-specific
contexts of tokens and sentences. In Section 4.4.7, we presented a genre-based analysis that demonstrated the efficacy
of our proposed ITRM-LCP method for capturing domain-specific contexts from token-sentence pairs.
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Table 13

Comparative analysis of the predicted complexity score of the highlighted single word/multi-words in the corresponding
sentences using BERT, RoBERTa, XLNet, DistilBERT, and our proposed ITRM-LCP system against the gold complexity
score for some samples from both datasets (CWI-2018 and LCP-2021).

Sentence Genre Gold BERT RoBERTa XLNet DistiBERT ITRM-LCP
SWis Example
E#1 However | will not tear away all the kingdom; but | Bible .1875 | .1703 .1995 .1944 .1955 .1899

will give one tribe to your son, for David my servant’s sake,
and for Jerusalem's sake which | have chosen.

E#2 loxP sites with different sequences were generated Biomed 2236 | .2154 .1857 .2306 .2626 .2236
to overcome this problem, but these sites also underwent
intramolecular recombination, making RMCE efficient only
if the replacement cassette contained a marker enabling
selection of the desired recombinant (7,95€12).

E#3 | should like, on behalf of the European Parliament, Europarl 1875 | .2033 .1546 1971 .1987 .1884
to express our sympathy to the parents and families of the

victims.

E#4 police say, they were met by gunfire and a standoff | Wikinews .55 6782 .0657 7490 .6485 5353
ensued.

MWEs Example

E#5 It was planted in a good soil by many waters, that Bible 4375 | 4757 4949 .3299 4939 4486
it might bring forth branches, and that it might bear fruit,
that it might be a goodly vine.

E#6 Single strains on an HG background were created Biomed 4 3271 4978 4117 .3655 .4005
for each chromosomal region outside of MMU2, while a
comprehensive panel of overlapping strains with identical
donor regions on both B6 and HG backgrounds were
developed for MMU2.

E#7 Developing innovation policy is crucial to EU com- | Europarl | .4285 | .4530 4515 .4023 .3961 4257
petitiveness and our ability to keep good jobs in Europe.

4.5.4. Error Analysis

To investigate the efficacy of our ITRM-LCP model, we articulate some examples in Table 13. The examples are
taken from all the used corpora and from both the single and multi-word expressions (MWEs). We then presented the
estimated complexity score of the highlighted single word/multi-words in the corresponding sentences using BERT,
RoBERTa, XLNet, DistilBERT, and our proposed ITRM-LCP system. The comparative analysis of these estimated
complexity scores against the gold score shows that the prediction from our proposed ITRM-LCP model is the closest
to the gold compared to its other component variants.

From the Table 13 illustration, we observe a few reasons behind the erroneous prediction of the complexity score
by individual components where our proposed ITRM-LCP model has predicted nearly the gold score. For instance, it
is difficult to extract the contextual dimension from a short sentence as presented in E#4 and E#7. Besides, Biomed
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corpora contain highly domain-specific words in the context thus making it difficult to estimate the perfect complexity
score. However, our ITRM-LCP system overcome this limitation and predicted the complexity score of nearly the
gold as shown in E#2 and E#6. It is also difficult to determine the complexity of such a token with a short form (i.e.
EU). Though the predicted scores of individual transformers including BERT, RoBERTa, XL Net, and DistilBERT are
shaky in comparison with the gold score, our proposed system overcomes this limitation by incorporating an effective
integration strategy as discussed in Section 3.3.

5. Conclusions

In this paper, we have proposed a model for the lexical complexity prediction task where we integrated
four transformer models, including BERT, RoBERTa, XLNet, and DistilBERT. Using pairwise learning of those
transformer models, we have exploited the contextual relation between sentence-word pairs. We have also added a
BiLSTM-based regressor layer on top of each transformer model, which improves the feature learning of each model
in text-pair settings. Besides, we have applied a simple mean-based integration of the prediction of these transformer
models that improved the overall system performance. Experimental findings on benchmark datasets showed that our
ITRM-LCP method surpassed all state-of-the-art LCP methods. To validate the aptness of our system we discussed
our proposed system from various views of angles, including BiLSTM-based regressor impact, integration impact, and
genre-based comparisons. Our experimental results demonstrated that BILSTM with a deep neural network (DNN)
cap on top of diverse transformer models provide more relevant and insightful representations of the given inputs and
ensures the robustness of the new representations. It is crucial for the LCP task to improve results by encouraging the
models to extract more general features.

We intend to investigate two more strategies in the future. The first one is task-adaptive pre-training on the
transformers models, where we need to feed relevant genre sentences into the pre-trained language models. It may
help to learn genre-based information effectively to enhance the model’s efficiency. The second one is to examine
and design a graph neural network (GNN) model to extract effective feature embeddings. The transformer models are
relatively limited in capturing the global information of large linguistic vocabulary. However, the GNN architecture
overcomes this limitation by encoding the topological information and is also promising to apply in the middle of
various transformer models. Moreover, we intend to employ our ITRM-LCP model on related tasks, including lexical
simplification, translation, and text generation.
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