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A B S T R A C T
Lexical complexity prediction (LCP) determines the complexity level of words or phrases in a
sentence. LCP has a significant impact on the enhancement of language translations, readability
assessment, and text generation. However, the domain-specific technical word, the complex
grammatical structure, the polysemy problem, the inter-word relationship, and dependencies
make it challenging to determine the complexity of words or phrases. In this paper, we propose
an integrated transformer regressor model named ITRM-LCP to estimate the lexical complexity
of words and phrases where diverse contextual features are extracted from various transformer
models. The transformer models are fine-tuned using the text-pair data. Then, a bidirectional
LSTM-based regressor module is plugged on top of each transformer to learn the long-term
dependencies and estimate the complexity scores. The predicted scores of each module are then
aggregated to determine the final complexity score. We assess our proposed model using two
benchmark datasets from shared tasks. Experimental findings demonstrate that our ITRM-LCP
model obtains 10.2% and 8.2% improvement on the news and Wikipedia corpus of the CWI-2018
dataset, compared to the top-performing systems (DAT, CAMB, and TMU). Additionally, our
ITRM-LCP model surpasses state-of-the-art LCP systems (DeepBlueAI, JUST-BLUE) by 1.5%
and 1.34% for single and multi-word LCP tasks defined in the SemEval LCP-2021 task.

ction
lification is the procedure of transforming a complex sentence using simple and familiar words to
adability (Nisioi et al. (2017)). It is beneficial for improving reading aids for children, people with

ilities like dyslexia, aphasia, non-native speakers, and people with a low literacy rate (Watanabe et al.
on (2017)). It is also beneficial for other natural language processing (NLP) applications including
zation (Vanderwende et al. (2007); Zaman et al. (2020)), machine translation, and text generation.
ification (LS) is a subtask of simplification of texts (Vanderwende et al. (2007)) that focuses on
e complex words for a target audience and replacing them with their simpler alternatives of equivalent
rdlow, Matthew (2014)). It follows the four important steps including synonym ranking, word sense
n, substitution generation, and complex word identification (CWI) (Shardlow, Matthew (2014)). CWI
termining the complex words of a sentence whereas substitution generation is the process of finding
essions to replace these complex words. The polysemy problem of the substitute candidates is addressed
ord sense disambiguation task (Li and Suzuki (2021); Kwon et al. (2021)) and the synonym ranking
remaining substitutes according to the simplicity score. The CWI and synonym ranking tasks in LS are

al as they both address the notion of lexical complexity.
mplexity prediction (LCP) is the process of precisely determining the complexity of words or phrases in a
rdlow et al. (2021a)). It has a significant impact on selecting complex words and their alternative simpler
lexical simplification task. However, it is challenging to estimate the complexity of a word or phrase
of domain-specific technical words and the complex grammatical structure. The contextual information
lso important because the complexity of a word might be context-dependent. Recently, researchers are
ing author
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terested in the LCP task because of its promising applications. Following this trend, a couple of shared
duced to address the challenges (Yimam et al. (2018); Shardlow et al. (2021a)).
e LCP systems (Gooding and Kochmar (2018); Gooding, Sian and Kochmar, Ekaterina (2019); Islam
used a vast amount of features through exploiting morphological, lexical, semantic, collocational,

actical, and psycho-linguistic characteristics. These features are mostly word-based and do not capture
operly. To address this limitation most of the top-performing systems (Pan et al. (2021); Rivas Rojas and
go (2021); Yuan et al. (2021)) approached to leverage various transformers models for learning better
resentation. We want to shed light on some of those systems. First, DeepBlueAI (Pan et al. (2021)) the
g team of LCP-2021 fuse four transformer models prediction with different additional training strategies
ti-sample dropout, pseudo-labeling, and data augmentation. Second, (Rivas Rojas and Alva-Manchego
our transformer models prediction but they use light gradient-boosting machine (LightGBM) Bayesian
use them whereas (Yuan et al. (2021)) performed a fusion of three transformer models prediction and
st regressor models prediction for the LCP-2021 task. The findings from these recent works motivate
ypothesis that the fusion of various transformer models may learn better contextual representation than
However, those systems still have some limitations to learn pair-wise features effectively. Those models

mplexity score from the transformer model’s final layer without adding any neural network architecture
model’s performance in distilling the relationship of the token-sentence pair effectively.

k, the benefits of contextual representation of the sentence pair settings from different transformer models
d for diverse corpus. Moreover, we also study the effectiveness of different integration techniques to
me of the transformers models. This facilitates an investigation into how the inclusion of a deep neural
) architecture improves pairwise learning. Finally, an investigation is performed to determine whether

ecific contexts of words can be extracted effectively from the text that is useful for the LCP task.
ontributions of our work are listed as follows:
duce an integrated transformer regressor model (ITRM) for the lexical complexity prediction (LCP) task
s ITRM-LCP. It employs various fine-tuned transformer models with token-sentence pairs to capture the

y of contextual features.
ess the long-term dependencies problem and estimate the complexity scores effectively, a BiLSTM-based
r is plugged on top of each transformer model.

lyze and present the experimental findings of various integration strategies to select the effective one for
cal complexity prediction (LCP) task.
s experimental findings and the comparative performance analysis against the state-of-the-art approaches
ented based on the two benchmark datasets. Our research findings provide some useful insights of the
omplexity prediction (LCP) task.

ure of the remaining contents is as follows: Section 2 includes a summary of prior research that ignites
te in this problem domain. Later, we introduce our proposed lexical complexity prediction method in
tion 4 includes the detailed experiments and evaluation as well as performance comparison with related
ome insightful discussions are provided in Section 4.5. Finally, we conclude our work and draw a set of
in Section 5.

Work
ord identification (CWI) is a crucial part of the automatic lexical simplification (LS) task (Zaman et al.

low, Matthew (2014)). Several methods have been proposed to identify complex words or phrases in a
ding and Kochmar (2018); De Hertog and Tack (2018)). Most of the earlier CWI systems are low-level
(Kajiwara and Komachi (2018); Hartmann and Dos Santos (2018); Gooding and Kochmar (2018)) that
ous hand-designed features to tackle the task challenges (see Section 2.1). Later, various methods used
atures and deep learning-based approaches (De Hertog and Tack (2018); Saggion et al. (2018)) (see
Along with this direction, recently, transformer models are studied in the CWI task (Pan et al. (2021);
21)) (see Section 2.3).
rafted Features (HCFs) based Machine Learning Approaches for the LCP Task
complex words, most of the CWI-2016 participants used different types of hand-crafted features (HCFs)

of n-grams, word length (Malmasi and Zampieri (2016); Malmasi et al. (2016)), psycholinguistic,
ossain et al.: Preprint submitted to Elsevier Page 2 of 25
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l (Paetzold and Specia (2016b); Sanjay et al. (2016)), syntactic, semantic (Paetzold and Specia (2016b);
(2016)), Zipfian frequency distribution (Zampieri et al. (2016)), and word probability (Malmasi and
6)). They have utilized different well-established classification approaches including support vector
), tree-based classifiers, and maximum entropy classifiers. Later, in the CWI-2018 shared task, most

rforming systems also employed several feature-based approaches including n-grams, word length,
ationship, WordNet and parts of speech (POS) based features, syntactic, lexical, and psycholinguistic
ertog and Tack (2018); Gooding and Kochmar (2018); Kajiwara and Komachi (2018)). Recently, in
shared task (Shardlow et al. (2021a)), some of the HCF-based systems (Rotaru (2021)) also performed

r, these systems are either good for single-word instances (SWIs) (Rotaru (2021); Islam et al. (2021)) or
pressions (MWEs) (Bestgen (2021)) tasks. Since HCFs are mostly task and domain-specific, formulating
neralized model for LCP is difficult. Besides, designing and exploiting hand-crafted features is arduous
uming and these features are unable to represent the contextual dimension effectively.
mbedding and Deep Learning based Approaches for the LCP Task
of prior systems (Kuru (2016); Sanjay et al. (2016); Saggion et al. (2018)) used word or sentence

sed features to train their learning models built on support vector machine (SVM), linear regression,
ing-based models. Some other systems concatenate embedding features with other HCFs. To extract the
sed features, Kuru (2016) used Glove embedding (Pennington et al. (2014)) whereas Sanjay et al. (2016)
t al. (2018) used the Gensim Word2Vec skip-gram and continuous bag-of-words (CBOW) models trained

ews dataset (Mikolov et al. (2013)). In the LCP-2021 task, some participants used word embeddings
al vectors (Glove), Word2Vec, and embeddings from language models (ELMo) (Rotaru (2021); Islam
ozi et al. (2021)) where they used these embeddings to initiate their neural models or concatenates those

other HCFs.
ning-based approaches achieved competitive results in lexical complexity prediction. De Hertog and
sed a deep neural network architecture with three types of feature sets including character embeddings
ion neural network (CNN), HCFs, and word embeddings. Aroyehun et al. (2018) also employed a
approach where word embeddings passed into the convolution layer. Recently, transformer (Vaswani
based approaches are widely employed to tackle the LCP problem. Zaharia et al. (2020) utilized
rmer models and reported their experimental results on the CWI-2018 dataset where they obtained

erformances but lower than the top-performing CWI-2018 system. In LCP-2021, most of the top-
stems (Bani Yaseen et al. (2021); Pan et al. (2021)) used transformer models including bidirectional

sentations from transformers (BERT), robustly optimized BERT approach (RoBERTa), and a lite BERT
d obtained notable performances. Most of them followed the sentence-pair training strategy to train the
odel. Some systems (Bani Yaseen et al. (2021); Pan et al. (2021)) used different training strategies and
ous ensemble approaches. Pan et al. (2021) used data augmentation, pseudo labeling, ensemble training,
ple dropout. (Bani Yaseen et al. (2021) used the weighted average of the prediction from different settings
oBERTa models. Few systems applied diverse kinds of training strategies including adversarial training,

rning (Islam et al. (2021)), and dummy annotation generation (Shirude et al. (2021)).
ehensive Analysis of the Transformer Models for the LCP Task
most of the lexical complexity prediction (LCP) systems that were based on handcrafted features (HCF)
eddings with the deep neural networks. These systems do not capture the semantic orientation of the
to estimate the lexical complexity. They usually suffer from generalization problems as systems perform
single-word or multi-word token data. Alternatively, transformer-based systems perform better than HCF
edding-based systems. Transformers overcome the limitations of learning long-term dependency through
sentence as a whole rather than word by word. Here, the multi-head attention and positional embedding

rovide the necessary information about the relationship between words. These properties of transformers
to tackle the challenges of the LCP task. Among the various transformers model, bidirectional encoder
s from transformers (BERT) (Devlin et al. (2019)) is very popular and perform well for various natural
essing (NLP) tasks including sentence classification, question-answering, text tagging, and text-pair
e general transformer (Vaswani et al. (2017)) model uses an encoder and a decoder network, whereas
ly the encoder network to learn the latent representation of the input text. BERT employs two different
ng objectives; one is a masked language model and another is next sentence prediction (NSP). The NSP
ossain et al.: Preprint submitted to Elsevier Page 3 of 25
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n learning whether the next text portion in a pair of texts is either true next or not. It helps BERT to distill
ips between sentences which is crucial for the LCP task.
T, several augmented and revised architectures are proposed by the researchers to improve the learning
contextual information as well as reduce the resource overhead. For instance, the robustly optimized
ining approach, RoBERTa (Liu et al. (2019)) uses the same architecture as BERT but eliminates the next
iction (NSP) objectives of BERT in pre-training. It focuses mainly on the key hyper-parameter choices
iting model training with longer sequences and larger mini-batches. Besides, RoBERTa utilizes dynamic
is performed every time a sequence is fed to the model. Therefore, the model encodes the different
same sentence with masks on different positions which is critical for the LCP task to learn the inherent
a token in context. The distilled version of BERT (DistilBERT) (Sanh et al. (2019)) model is another
T (Devlin et al. (2019)) that focuses on the speed-up of training through exploiting knowledge distillation

scards the token-type embeddings and the NSP objective used in BERT as well as lessens the layers by a
hus making it 60 percent faster and smaller than BERT. But following the RoBERTa (Liu et al. (2019))
ERT is also trained on large batches using gradient accumulation with dynamic masking and retains the
formance of BERT. Extension of the Transformer-XL model (XLNet) (Yang et al. (2019)) is an another

RT (Devlin et al. (2019)). It is a large bidirectional transformer that exploits advanced training strategy,
ts and more processing power. During the training phase, XLNet used permutation language modeling

e advantages of auto-regressive (AR) language modeling and auto-encoding (AE) methods, where tokens
n random order. This aids the model to distill and learn bidirectional relationships between words which
r the LCP task.

ormer-based systems distill the contextual information effectively and perform well in both single-word
d token data. However, employing pre-trained transformer models without following appropriate neural
ay not encode the pair-wise relations of the texts effectively. Therefore, an effective ensemble approach
iverse transformer models may capture the contextual dimension as well as pair-wise representation of

tively.

d Method
xt pair as the input and generating a continuous value as the output is called the text-pair regression task.
this approach to predict the lexical complexity of given target words in a sentence. The overview of our

grated transformer regressor model for lexical complexity prediction (ITRM-LCP) framework is shown
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matic diagram of our proposed ITRM-LCP system. Transformer models are tuned on pairwise settings of
tokens to generate the contextualized vectors. A BiLSTM-regressor module is plugged on the top of each
enhance the feature learning representations. Finally, regression scores of each module are fused to get the
.

nput token and sentence, we convert them to the corresponding data format where they are represented as
d sequence. To extract the contextualized embedding features, we utilize various transformers including
ossain et al.: Preprint submitted to Elsevier Page 4 of 25
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ERT, RoBERTa, and XLNet. We fine-tune these models to capture the task-specific information of
exity prediction explicitly. Later, we apply a bidirectional long short-term memory (BiLSTM) based
r on top of each transformer model to predict the lexical complexity scores. We explore two different
ategies including mean-based and blending integration-based approaches to fuse these prediction scores
he final complexity prediction score.
ning Transformer Models
the effective contextual representations, we leverage four pre-trained transformers including BERT,
oBERTa, and XLNet in our LCP method (ITRM-LCP) motivated from the prior works as described in
d 2.3. We fine-tune these models to make them specialized in the LCP task to learn the task-specific

ffectively.
g the transformer models can lead to performance enhancement because it helps to fit the model with
ecific task. Hence, we fine-tune each transformer model based on the domain-specific datasets. We just
near output layer on top of the core model and use the BERT’s text-pair training approach for the LCP
ted in Figure 2. Here, the target word and sentence pairs are represented as a single sequence where a
cation [CLS] token is appended at the starting position of the first sentence and a [SEP] tag is added in

nces to separate them. A learned embedding is also added where every token indicates whether it belongs
or sentence B which is very crucial to learning contextual dependency between sentence and token in
Finally, at the end of the input sequence, a [SEP] token is added. Therefore, the text-pair input sequence
sentence [SEP] target word [SEP].
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[SEP] E
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[SEP]
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[SEP]
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[SEP]
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[SEP]

mploy pairwise settings of an input representation, the tokenizer packed the sentence and token as a single
n, this input sequence ([CLS] Sentence [SEP] Token [SEP]) feeds into the BERT model. The last layer’s
ector output of the BERT is passed to the BiLSTM-regressor and finally predicts the complexity score.

fine-tuning phase, we learn one new parameter (as compared to the pre-train BERT model) which is the
ore (i.e. label). In our fine-tuning procedure, all other hyper-parameters stay the same as in transformer

except for learning rates, batch size, epochs, and dropout. We use the last hidden state to get a fixed-
ooling representation of the input sequence and add a BiLSTM-based regressor layer on top to get the
plexity score of each model.

-based Regressor Architecture
nal long short-term memory (BiLSTM) (Brueckner and Schulter (2014)) is a state-of-the-art variant

eural network (RNN). It has the ability to selectively assign weights to the words considering varying
STM ensures the context-based semantic association information used to impressively make up for the
ep neural networks in obtaining local features and highlighting the importance of specific words to
text. To learn the long-term dependencies effectively and distill the required contextual information for
complexity score of a token-sentence pair, we exploit a BiLSTM-based regressor model on top of the
ossain et al.: Preprint submitted to Elsevier Page 5 of 25
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odel for the LCP task as shown in Figure 3. We used this architecture for each transformer model to
mplexity score.
nce output of each transformer model is used as the input features of the BiLSTM layer. Let, 𝑓 =
) be the sequential input to the BiLSTM. For capturing the past and future contexts, the BiLSTM
s the sequential input in both forward and reverse directions. The forward hidden vector sequence
..., ℎ𝑇 ) and the backward hidden vector sequence ⃖⃖ℎ = (ℎ𝑇 , ℎ𝑇−1, ...., ℎ1) operates the input in standard
der, respectively (Yu et al. (2015)). Here, 𝑊 represent the weight matrices, 𝜎 is the activation function
g values in [0,1], 𝑏 is the bias vector, and the following operations presented in equation (1) are iterating
T time steps to produce the output 𝑦 = (𝑦1, 𝑦2, ...., 𝑦𝑇 ). This output vector 𝑦 conveys the context of the
.

⃖⃖⃗ℎ𝑡 = 𝜎(𝑊
𝑓 ⃖⃗ℎ𝑓𝑡 +𝑊⃖⃗ℎ⃖⃗ℎ

⃖⃗ℎ𝑡+1 + 𝑏⃖⃗ℎ)

⃖⃖ ⃖ℎ𝑡 = 𝜎(𝑊
𝑓 ⃖⃖ℎ𝑓𝑡 +𝑊⃖⃖ℎ⃖⃖ℎ

⃖⃖ℎ𝑡+1 + 𝑏⃖⃖ℎ)

𝑦𝑡 = 𝑊⃖⃗ℎ𝑦
⃖⃖⃗ℎ𝑡 +𝑊⃖⃖ℎ𝑦

⃖⃖ ⃖ℎ𝑡 + 𝑏𝑦

(1)

M model uses two LSTMs on the input where the first and second LSTMs are the reversed copy of one
ps the model to take full advantage of the forward and backward input features to learn the inter and
l structure of the tokens and sentences. The pooling layer lessens the dimensions of the feature maps
part of the input matrix. Hence, it lessens the learning parameters and the amount of computation in
n this work, we have utilized a one-dimensional max-pooling layer that summarizes the features of a
on of the feature map produced by the BiLSTM layer as shown in Figure 3.
ver-fitting, we use the dropout layer (Srivastava et al. (2014)) after both the max-pooling and dense layer.
s strategy, some neurons are ignored at random during training. That means, on the forward pass their
o the activation of downstream neurons is discarded and on the backward pass, corresponding weight
t considered. Hence, it reduces the model complexity and enhances the generalization ability. Later, a
layer predicts the output complexity score. We use the mean squared error as a loss function and employ

Loshchilov and Hutter (2017)) optimizer.
of Transformer Models Scores
g the models’ integration is an efficient strategy that may produce better prediction accuracy and
n individual models. To capture the benefit of the diversity of predictions, we integrate the predicted
rent transformer models to estimate the final complexity score. We explore two integration techniques
escribed below.
ation with Arithmetic Mean
the benefits of diverse models, we integrate the estimated complexity scores of four models to determine

e in our ITRM-LCP model. Here, we utilize the arithmetic mean to aggregate the predicted complexity
ur models to determine the final score as shown in equation (2).

𝐶𝑖 =
𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖

4
(2)

he final complexity score. ai, bi, ci, and di correspond to the complexity score obtained from four
odels followed by BiLSTM module, respectively as shown in Figure 1.
ing Integration
integration is an extension of the stacked generalization integration technique. It uses the predictions of
set obtained from different base models as features to train the meta-model. Then, the predictions of the
sed to the trained meta-model to generate the final prediction (Chatzimparmpas et al. (2021)). The term

first introduced by the winning team of the Netflix Prize data competition2, where they improved existing
formance by a margin of 10% using the blending integration technique (Koren (2009)) which motivates

.kaggle.com/datasets/netflix-inc/netflix-prize-data

ossain et al.: Preprint submitted to Elsevier Page 6 of 25
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essor architecture of our ITRM-LCP model. The features vector of the transformer passes to the BiLSTM
ut to learn context-based semantic association information. The MaxPooling layer filters the top features
res vector. Later, two Dropout layers and a Linear layer uses for better feature selection and learning.

te this technique for the LCP task. In Figure 4, we demonstrate the blending integration technique that
our method. As the base models, we use the four transformer models employed in our method, including
RTa, XLNet, and DistilBERT with a BiLSTM regressor on top of each. Then, we take predictions on
n and test data using these trained base models. To perform blending integration, we blend the validation

four different base models as features and train the meta-model using these predictions. We choose
sors as the meta-model, including decision tree, passive-aggressive, linear regression, support vector
il Sen, Bayesian ridge, and automatic relevance determination (ARD) regressor. Finally, we stacked
edictions of four base models and pass this to the trained meta-model for predicting the final lexical
ore.

ents and Evaluation

strate the efficacy of our ITRM-LCP model, we evaluate our model on two benchmark datasets including
imam et al. (2018)) and CompLex (Shardlow et al. (2021b,a)). The CWIG3G2 dataset is used in NAACL-
I (Yimam et al. (2018)) shared task and the CompLex dataset is used in SemEval-2021 LCP (Shardlow
shared task.
ossain et al.: Preprint submitted to Elsevier Page 7 of 25
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Figure 4: Oveview of our blending integration strategy.

of the datasets used in this work.

18 English dataset (CWIG3G2) (Yimam et al. (2018)) LCP-2021 dataset (CompLex) (Shardlow et al. (2021a))

-Genres Train Dev Test Corpus-Genres Train Dev Test

SWIs) 11949 1502 1813 Bible (SWIs) 2574 143 283
MWEs) 2053 262 282 Bible (MWEs) 505 29 66

ws (SWIs) 6780 776 1138 Biomed (SWIs) 2576 135 289
ws (MWEs) 966 94 149 Biomed (MWEs) 514 33 53

dia (SWIs) 4833 606 750 Europarl (SWIs) 2512 143 345
dia (MWEs) 718 88 120 Europarl (MWEs) 498 37 65

27299 3328 4252 Total 9179 520 1101

LT-2018 Complex Word Identification (CWI) Task (Yimam et al. (2018)). According to the
CWI-2016 (Paetzold and Specia (2016a)) shared task, a system needs to identify whether a given word
is complex. Later, the CWI-2018 (Yimam et al. (2018)) task focused on both binary and probabilistic
tasks. The probabilistic task focused on predicting the complexity score of a given target word in
ontext. CWI-2018 organizers provided a multilingual and multi-domain dataset. The English dataset
contains texts from three different corpora including News (professionally written), Wikinews, and

ntents. The model assessments were performed per domain. To annotate the English dataset, they
native and non-native English speakers. CWI-2018 dataset contains an amalgam of single-word tokens

d tokens annotation. The statistics for the single-word instances (SWIs) and the multi-word expressions
e train-dev-test segments of the News, Wikinews, and Wikipedia corpora are shown in Table 1. We

me minor preprocessing here. To do this, we removed all of the noisy hashtags with numbers (e.g.
tion id) that appeared before every sentence in Wikinews corpus and also removed the unnecessary
haracter beginning of the sentence.
2021 Lexical Complexity Prediction (LCP) Task (Shardlow et al. (2021a)). CWI-2018 probabilistic
task (Yimam et al. (2018)) was an impressive inclusion in the LCP domain. However, measuring the
nts of complexity based on the continuous value is still challenging. To address the challenges, Shardlow
introduced a task named LCP at the SemEval-2021 where they focused on the continuous label of the
exity estimation for a single and multi-word expression. SemEval-2021 LCP used a multiple domain-
benchmark dataset CompLex (Shardlow et al. (2021b)). The dataset consists of three different genres
le (World English Bible translation), Biomed (articles from the CRAFT (Colorado richly annotated full

ossain et al.: Preprint submitted to Elsevier Page 8 of 25
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ences with single and multi-word instances with their complexity scores.

Sentence Token Complexity Score

Examples from CWI-2018 Task

een marred by widespread allegations of vote-rigging.

marred .4000

poll .0000

widespread .0500

widespread allegations .1500

widespread allegations of vote-rigging .0000

allegations .5500

vote-rigging. .6500

Examples from LCP-2021 Task

sing brings wealth, and he adds no trouble to it. blessing .1718

e European Council will also look at these issues. European Council .2205

European Council (Brussels, 13-14 March 2008) (debate) European Council .3611

a collection of open-access biomedical articles), and Europearl (a portion of the European parliament
omain. The task is composed of two sub-tasks, where Sub-task-1 and Sub-task-2 focused on estimating

y of a single-word instances (SWIs) and multi-word expressions (MWEs). Here, the length of the MWEs
d to two words. The LCP-2021 dataset statistics are shown in Table 1.
2, we articulate the instances of single-word and multi-word expressions (MWEs) of CWI-2018
nd LCP-2021 shared tasks. The examples of the CWI-2018 probabilistic task show that participants

dict the complexity score of almost every word (as single or MWEs) within a sentence. This makes it
st challenging tasks. The LCP-2021 shared task also addressed the problem in the same way where
ere asked to predict the complexity score on different genres of data and fixed the MWEs token length
ed to explore the challenges of estimating the complexity score of the same token in diverse contexts. For

the last two rows of Table 2, we see that although both samples contain the identical phrase European
omplexity scores of both cases are not the same.
Configuration
tion, we illustrate the strategy to set the optimal settings of the hyper-parameters of our ITRM-LCP model.

implement our model we used PyTorch and performed train-test on a GPU to take advantage of the
f tensors’ parallel computation. All the experiments were performed on the Google Colaboratory (Bisong
019)) platform.
M-LCP model, we used four pre-trained transformers (Wolf et al. (2020)) models including BERT3,
LNet5, and DistilBERT6. Prior studies (Chy et al. (2021); Aziz et al. (2022)) suggest that fine-tuning
meters of those models always outperforms the pre-trained models for downstream tasks. We fine-tuned
rameters including training batch size, learning rate, and epochs. The optimal settings of these hyper-
illustrated in Table 3. We used a grid search technique based on the development dataset, a kind of brute-

h to select the optimal hyperparameters. After constructing a grid of potential discrete hyperparameter
ering the literature, we fit the model using every possible combination. Later, the combination that
est performance is then chosen.
-based regressor layer plugged at the end of each of the transformers models as described in Section 3.2.

noisy features and avoid over-fitting, we fine-tuned some hyper-parameters of this module including the
ion of the BiLSTM layer, dropout rate, and hidden units sizes of a dense layer. We employed various
e output dimension of the BiLSTM layer and dropout rate. The best settings of these hyper-parameters
ingface.co/bert-base-uncased
ingface.co/roberta-base
ingface.co/xlnet-base-cased

ingface.co/distilbert-base-uncased

ossain et al.: Preprint submitted to Elsevier Page 9 of 25
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yper-parameters settings for CWI-2018 (Yimam et al. (2018)) and LCP-2021 (Shardlow et al. (2021a))

BERT RoBERTa XLNet DistilBERT Corpus

Hyper-parameters (Batch size, Learning rate, Epochs, Dropout#1, Dropout#2, BiLSTM output size)

5, 0.7, 0.3, 256 8, 2.5e-5, 7, 0.7, 0.3, 256 8, 2.5e-5, 7, 0.7, 0.3, 256 8, 2.5e-5, 7, 0.7, 0.3, 256 News

5, 0.7, 0.3, 256 8, 3.0e-5, 7, 0.7, 0.3, 256 16, 2.8e-5, 7, 0.7, 0.3, 256 8, 2.6e-5, 7, 0.7, 0.3, 256 WikiNews

5, 0.7, 0.3, 256 8, 2.5e-5, 7, 0.7, 0.3, 256 16, 2.5e-5, 7, 0.7, 0.3, 256 8, 2.5e-5, 7, 0.7, 0.3, 256 Wikipedia

5, 0.7, 0.3, 256 8, 2.5e-5, 5, 0.5, 0.2, 256 8, 2.5e-5, 5, 0.7, 0.3, 256 8, 2.5e-5, 5, 0.7, 0.3, 256 SWIs

5, 0.7, 0.3, 128 16, 3.0e-5, 10, 0.5, 0.2, 128 8, 2.8e-5, 7, 0.5, 0.2, 256 8, 2.5e-5, 10, 0.5, 0.2, 256 MWEs

n Table 3. Besides, we used a 1-dimensional max-pooling layer with kernel size 2 and the hidden units
se layer set to 512. Moreover, we used the Sigmoid activation function at the end of our BiLSTM-based
itecture to predict the complexity score. During training, we saved our model based on the best Pearson
ore by evaluating on the validation set. We set up a torch seed using the torch.manual_seed (5) in order
nsistent and reproducible performance. The rest of the parameters were set to their default values unless
tioned. Since the nature of the Wikipedia and Wikinews corpus of the CWI-2018 dataset is similar, we

ed them during the training phase of our model. We followed the default dataset setting for the rest of

tion Metrics
eriment, we considered various standard evaluation measures including the Pearson correlation (R) (Vir-
20)), the Spearman correlation (Rho) (Virtanen et al. (2020)), the mean absolute error (MAE) (Pedregosa
the mean squared error (MSE) (Pedregosa et al. (2011)), and the R-squared (R2) (Pedregosa et al. (2011)).
benchmark of CWI-2018 (Yimam et al. (2018)) and LCP-2021 (Shardlow et al. (2021a)) shared tasks,
error and Pearson correlation are used as the primary evaluation measure for these tasks, respectively.

t the results based on other mentioned evaluation measures.
rrelation score measures the context learning efficacy of the lexical complexity prediction (LCP) task.

orrelation coefficient measures the strength of a monotonic relationship that shows the data has to be
related. We use MAE to measure how close the system can predict the gold scores. MSE is a measure
s a fitted line is how close to the data points where the squaring is critical to reducing the complexity
signs. To determine how well the model fits the data we use the R-squared measure. A higher score is
son and Spearman correlation and R-squared measures whereas a lower score is better for error-related
uding MAE and MSE.

ental Setup, Results, and Analysis
tion, we now assess the performance of our ITRM-LCP approach. Thus, we shed light on the following
ions (RQs) related to the lexical complexity prediction (LCP) tasks from the text.
hat is the effect of different integration strategies on LCP performance?
use the scores from individual models using the arithmetic mean and blending integration strategies to
the overall system performance. The findings are available in the following Section 4.4.1.

mance of Integration Techniques (RQ1)
two integration strategies including arithmetic mean and blending as described in Section 3.3. To select
tegration strategies (RQ1), we evaluate the performance of these two integration strategies using primary
asure Pearson correlation on the LCP-2021 MWEs dataset as reported in Table 4. The findings show
ossain et al.: Preprint submitted to Elsevier Page 10 of 25
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Pearson scores (higher is better)) of our used integration strategies on LCP-2021 multi-word expressions
dlow et al. (2021a)) dataset.

Model with Regression Pearson Score
Decision Tree Regressor .8111
Passive Aggressive Regressor .8523
Linear Regression .8613
Support Vector Machine Regressor .8618
Theil Sen Regressor .8632
Bayesian Ridge Regressor .8633
Automatic Relevance Determination Regressor .8643
Mean-based Integration .8727

Pearson, Spearman, and R2: higher is better; MAE and MSE: lower is better) of our baseline models and
SemEval LCP-2021 datasets.

Model Pearson Spearman MAE MSE R2

Performance of baseline models on LCP-2021 Dataset SWIs corpus

HCF .7363 .6976 .0671 .0075 .5422
Transformer .7525 .7075 .0667 .0073 .5663
ITRM-LCP .8003 .7491 .0612 .0060 .6365

Performance of baseline models on LCP-2021 Dataset MWEs corpus

HCF .7861 .7674 .0771 .0093 .6179
Transformer .8361 .8291 .0719 .0082 .6874
ITRM-LCP .8727 .8538 .0587 .0059 .7617

-based integration performance using equation (2) is ∼1% higher than the other blending integration
the LCP-2021 MWEs corpus. It validates the efficacy of the mean-based integration strategy. Therefore,
s integration strategy for our ITRM-LCP system and the rest of the results are reported following this

ow much does our proposed approach improve the performance in comparison to other state-of-the-art
omplexity prediction methods?

validate our ITRM-LCP method effectiveness we compare it with other SOTA LCP methods. The
onding details are available in the following Sections 4.4.2, 4.4.3, and 4.4.4.

ne Systems Design and Performance Analysis (RQ2)
r lexical complexity prediction (LCP) systems are mostly low-level hand-crafted features based whereas
s researchers mostly applied the embedding and transformer-based deep learning features to design their
Therefore, to design the standard baseline systems we consider both the hand-crafted features (HCF)
and the state-of-the-art (SOTA) transformer-based method.

CF-based baseline system, we extend the work reported by Nandy et al. (2021) 7. Here, we incorporate
F features including transformer (BERT, RoBERTa, and DistilBERT) probability, word length, word

mber of syllables, corpus features (Bible, Biomed, and Europerl), WordNet (Fellbaum (2010)) features
nyms, and hypernyms), and Glove 50 and 100 dimension features and the total feature dimension is

transformer’s probability feature, we calculate the probability score of a token using the transformer
e modeling feature whereas, for the multi-word expressions (MWEs) task, we multiply both token
o calculate as a feature. However, to calculate the WordNet features we utilize the natural language
) (Bird (2006)) library where we calculate the mean average score of the token’s synsets, hyponyms,

b.com/abhi1nandy2/CS60075-Team-2-Task-1.git

ossain et al.: Preprint submitted to Elsevier Page 11 of 25
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Pearson, Spearman, and R2: higher is better; MAE and MSE: lower is better) of our ITRM-LCP model for
WI-2018 and SemEval LCP-2021 datasets.

Corpus Pearson Spearman MAE MSE R2

CWI-2018 Dataset Performance

News .8970 .7822 .0404 .0067 .8046
Wikinews .8073 .7393 .0540 .0105 .6516
Wikipedia .7774 .7534 .0616 .0125 .6044

Average .8273 .7583 .0520 .0099 .6868

LCP-2021 Dataset Performance

SWIs .8003 .7491 .0612 .0060 .6365
MWEs .8727 .8538 .0587 .0059 .7617

Average .8365 .8015 .0599 .0059 .6991

s frequencies. We also utilize two different dimensions i.e. 50 and 100 of Glove feature since it is one
used embedding features in natural language processing (NLP) and we want to exploit its efficacy on the
ally, based on the extracted features, we use the boosting-based regression model XGBoost (eXtreme
sting) (Chen and Guestrin (2016)) to estimate the complexity score.
ecent studies (Bani Yaseen et al. (2021); Pan et al. (2021)) suggested that the transformer-based model
ual information effectively. Therefore, in our transformer-based baseline, we used the BERT transformer
ntence-pair setting to represent contextual information of the lexical complexity prediction (LCP) task.
task-specific information of LCP explicitly, we fine-tune the BERT model. We exploit a BiLSTM layer
ERT transformer model for the LCP task to learn the long-term dependencies and capture the contextual

rucial for predicting the complexity score.
s of our two baseline methods considering two corpora of the LCP-2021 dataset are presented in Table 5.
ed baseline model achieves 0.7363 and 0.7861 Pearson scores on the single-word instances (SWIs)
-word expressions (MWEs) corpora, whereas the transformer-based baseline model achieves 0.7525
arson scores, respectively. This means that the transformer-based baseline model performs 2.16% and
than the HCF-based baseline model in terms of primary evaluation measure Pearson correlation on
MWEs corpora, respectively. This deduced the importance of the transformer-based model in the LCP
st, our ITRM-LCP method, where we exploited the ensemble of transformer models to determine the

ore achieved substantial improvement over both the HCF and transformer-based baselines. For the SWIs
rpora, our ITRM-LCP model outperformed the HCF baseline by 8.7% and 11% as well as outperformed
r-based baseline by 6.4% and 4.4%, respectively. This deduced the effectiveness of our ITRM-LCP to

omplexity score effectively. We also report the results based on other evaluation metrics.
ll Performance Across Two Benchmark Datasets (RQ2)
arized results of our ITRM-LCP method considering different corpora are articulated in Table 6.

erformance for the CWI-2018 dataset is 0.8273 and 0.0520 based on Pearson correlation and MAE,
ere, our proposed method performs better for News corpora compared to the Wikinews and Wikipedia

e LCP-2021 dataset, the overall results of our ITRM-LCP method based on the Pearson score and MAE
65 and 0.0599, respectively. Here, our proposed method performs better for MWEs corpora than the SWIs
is because MWEs contain more words in the token and, therefore, contain diverse contextual information
odel for better estimation of complexity compared to the SWIs.

arative Analysis with Related Methods (RQ2)
red the performance of our ITRM-LCP method against the current state-of-the-art methods to validate its
RQ2). The top-performing systems on CWI-2018 dataset (Yimam et al. (2018)) includes DAT (Zaharia
Camb (Gooding and Kochmar (2018)), TMU (Kajiwara and Komachi (2018)), ITEC (De Hertog and
NILC (Hartmann and Dos Santos (2018)), and SB@GU (Alfter and Pilán (2018)). The comparative
ossain et al.: Preprint submitted to Elsevier Page 12 of 25
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erformance (MAE; lower is better) of ITRM-LCP model against the state-of-the-art on CWI-2018 (Yimam
test set. We highlighted the best results in boldface.

Method News WikiNews Wikipedia

ITRM-LCP .0404 .0540 .0616

Top Performing System on CWI-2018 Dataset

DAT (Zaharia et al. (2022)) .0450 .0513 .0671
Camb (Gooding and Kochmar (2018)) .0558 .0674 .0739
TMU (Kajiwara and Komachi (2018)) .0510 .0704 .0931
ITEC (De Hertog and Tack (2018)) .0539 .0707 .0809
NILC (Hartmann and Dos Santos (2018)) .0588 .0733 .0819
SB@GU (Alfter and Pilán (2018)) .1526 .1650 .1750

Baseline (Yimam et al. (2018)) .1127 .1053 .1112

erformance of our method against the state-of-the-art on SemEval-2021 LCP (Shardlow et al. (2021a)) test
hted the best results in boldface.

Method
Single Word Instances (SWIs) Multi Word Expressions (MWEs)

Pearson Spearman MAE MSE R2 Pearson Spearman MAE MSE R2

.8003 .7491 .0612 .0060 .6365 .8727 .8538 .0587 .0059 .7617

Systems on LCP-2021 Dataset

ani Yaseen et al. (2021)) .7886 .7369 .0609 .0062 .6172 - - - - -
n et al. (2021)) .7882 .7425 .0610 .0061 .6210 .8612 .8526 .0616 .0063 .7389
021)) .7782 .7287 .0637 .0064 .6036 .8506 .8381 .0667 .0070 .7107
t al. (2022)) .7744 - .0652 - - .8285 - .0693 - -
ziz et al. (2021)) .7716 .7326 .0632 .0066 .5909 .8311 .8153 .0678 .0077 .6825
et al. (2021)) .7749 .7294 .0629 .0065 .5983 .7898 .7769 .0903 .0124 .4858
(2021)) .7534 .6988 .0652 .0070 .5652 .8417 .8299 .0677 .0072 .7030

low et al. (2021a)) .5287 .5263 .0870 .0136 .2779 .6571 .6345 .0924 .0140 .4030

iculated in Table 7 based on MAE which is the official measure of the NAACL-HLT CWI-2018 shared
that our ITRM-LCP model achieved 10.2% improvement on the news corpus and 8.2% improvement on
corpus compared to the top-performing system DAT (Zaharia et al. (2022)) domain adaptation-based

odel.
n, we also evaluate the performance of our ITRM-LCP model on the CompLex dataset against the
erforming methods. The findings are articulated in Table 8. It demonstrated that our ITRM-LCP
formed all other participants’ systems in both the SWIs and MWEs subtasks of the LCP-2021 task.
ubtask, our ITRM-LCP obtained a 1.5% higher score compared to the top-performing system JUST-
Yaseen et al. (2021)). Similarly, in the MWEs subtask, our ITRM-LCP achieved a 1.34% higher score
he top-performing system DeepBlueAI (Pan et al. (2021)). However, in comparison to the task baseline,
P obtained a 51.37% and 32.81% performance improvement. The baseline used the log frequency from
eb1T corpus with linear regression. The comparative performance analysis confirms that an approach
es several transformer models with deep neural network (DNN) can achieve good performance for lexical
timation from text across different datasets (RQ2). This validates the effectiveness of our method of
xity estimation.

e the performance of the above-mentioned related methods, we articulate the description of their system
p-performing participants’ (De Hertog and Tack (2018); Kajiwara and Komachi (2018); Gooding and

18)) of CWI-2018 used various handcrafted features (HCF) including word length, WordNet-based
ossain et al.: Preprint submitted to Elsevier Page 13 of 25
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ption and regression approaches used in top performing participants systems at the CWI-2018 and LCP-
et al. (2021a)) shared tasks.

Team Name Features Description Regression Approach

CWI-2018 Participants’ systems features and regression approaches

g and Kochmar (2018)) Bag of N-grams, POS tags, dependency parsing rela-
tions, WordNet and psycholinguistic features.

Linear regression

ra and Komachi (2018)) token length, token frequency, and probability features Random forest regressors

tog and Tack (2018)) Word length and frequency, word and character embed-
dings, psycholinguistics features.

LSTM

nn and Dos Santos (2018)) N-grams, word length, number of syllables,average
embedding of target words, psycholinguistic features,
WordNet-based features.

LSTM

r and Pilán (2018)) Word length, number of syllables, hypernyms, n-grams,
frequency distribution, and POS tags.

Extra trees

LCP-2021 Participants’ systems features and regression approaches

Bani Yaseen et al. (2021)) Sentence and token encoded using BERT and RoBERTa Weighted averaging

an et al. (2021)) Sentence and token encoded using BERT, ALBERT,
RoBERTa, and ERNIE with Data augmentation

Linear regression

(2021)) Psycholinguistic features, Glove embeddings, Word2Vec
embeddings, ConceptNet NumberBatch, and ensemble
features of language models

Ridge regression, gradient
boosted regression

(Aziz et al. (2021)) Sentence and token encoded using BERT, RoBERTa Arithmetic mean

m et al. (2021)) Word length, semantic, phonetic, word frequency, N-
gram, syntactic, and Glove, Elmo, InferSent embed-
dings, BERT

Gradient boosted regres-
sion, linear regression

n (2021)) Word frequency, lexical norms, sentence length, bi-gram
association

Gradient boosted regres-
sion

N-grams to extract the contextual features which reduce the automaticity of the systems and a huge
tures trouble the model to learn the contextual patterns. Besides, these systems also explored various
ssion approaches including linear regression, random forest-based regressor, long short-term memory
extra tree. However, these traditional regression approaches have limitations to predict the complexity
ely. In LCP-2021, most of the top-performing systems (Pan et al. (2021); Bani Yaseen et al. (2021))
sformer-based systems, though some used the HCFs based systems (Islam et al. (2021); Bestgen (2021)).
(Zaharia et al. (2022)) proposed a domain adaptation-based transformer model named DAT where
racter-level BiLSTM for target word representation and transformers model for context representation.

model performed well in learning contextual information but was limited to learning the pair-wise
between sentence and token that hurt the performance.
me the ineptness of the aforementioned systems, we utilize four transformer models including BERT,
Net, and DistilBERT. Thus, our system effectively captures the diversity of contextual features compared
sed approaches. We employ a BiLSTM-based regressor on top of each transformer model that helps our
odel to learn the long-term dependencies as well as capture the pair-wise dependencies between sentence
ctively. Besides, we fused the predicted complexity predictions of these four models to estimate the
hat improves the performance of our system.
an diverse transformer models capture better contextual features from different corpus data?
incorporate several state-of-the-art (SOTA) transformer models which provide diverse contextual
tations and improve the generalization ability of our proposed method. The corresponding details are

e in the following Section 4.4.5.
ossain et al.: Preprint submitted to Elsevier Page 14 of 25
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Pearson correlation, Spearman correlation, MAE, MSE, and R2) of different experimental settings on SWIs
aset of SemEval-2021 LCP shared task (Shardlow et al. (2021a)). We highlighted the best results in boldface.

Method
Single Word Instances (SWIs) Multi Word Expressions (MWEs)

Pearson Spearman MAE MSE R2 Pearson Spearman MAE MSE R2

M-LCP .8003 .7491 .0612 .0060 .6365 .8727 .8538 .0587 .0059 .7617

ormance on Individual Component

RT† .7842 .7305 .0654 .0068 .6149 .8511 .8448 .0636 .0068 .7244
ERTa† .7673 .7251 .0671 .0074 .5887 .8500 .8179 .0672 .0072 .7223

Net† .7583 .7168 .0696 .0078 .5749 .8481 .8122 .0632 .0069 .7192
tilBERT† .7613 .7101 .0645 .0069 .5796 .8363 .8126 .0712 .0078 .6994

ificant testing on SemEval LCP-2021 shared task’s (Shardlow et al. (2021a)) SWIs and MWEs datasets
test. † indicates the statistically significant difference between ITRM-LCP and each method at (p-value <

Method
Mean Score (p-value)

(SWIs)
Mean Score (p-value)

(MWEs)

ITRM-LCP - -

Individual Component p-value Against ITRM-LCP

BERT 2.7972e-20† 2.1899e-3†

RoBERTa 2.9089e-42† 4.6587e-1
XLNet 5.0967e-26† 1.2217e-2†

DistilBERT 1.3825e-42† 1.0005e-6†

t of Individual Transformer Models (RQ3)
further examine the performance of our ITRM-LCP model through evaluating the performance of
sformer models. To do this, we only keep one transformer model at a time and remove the other three
iLSTM-based regressor head is added on top as usual. We evaluated the performance on LCP-2021

i.e. SWIs and MWEs) and the results are reported in Table 10.
diverse contextual representation, we incorporate four transformer models including BERT, RoBERTa,
istilBERT. Such integration is crucial for learning semantic information from various domain specific
ding News, Wikinews, Wikipedia, BioMed, European parliament proceedings, and English bible

3). It demonstrated that the performance of our ITRM-LCP model on the SWIs task is 0.8003 which is
f 5.54% and a minimum of 2.05% higher than the individual transformer model performances according

evaluation measure Pearson score. Similarly, in the MWEs task, ITRM-LCPs performance is 0.8727
aximum of 4.35% and a minimum of 2.54% higher compared to the performances of other individual

so noticed that among all the four transformer models, BERT based model performed better than others
Moreover, we report the result based on the Spearman correlation, MAE, MSE, and R2 measures. From
have seen that our model outperformed each of the individual models in all the evaluation metrics. This

ffectiveness of our different model integration strategies in the ITRM-LCP model to capture the benefits
al model.

lly, we perform statistical significance testing with a two-sided paired t-test at a 95% confidence level
erformances between our ITRM-LCP and individual component variations as shown in Table 10. The
significance testing are presented in Table 11. Here, † represents the statistically significant at (𝑝 < 0.05).
our ITRM-LCP model significantly outperforms all the other variations in the SWIs task. However,
ossain et al.: Preprint submitted to Elsevier Page 15 of 25
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r alternatives rather than BiLSTM layer into our ITRM-LCP model using MWEs dataset of LCP-2021.

Model: ITRM-LCP with Other Top Layers Pearson Spearman MAE MSE R2

− BiLSTM .8727 .8538 .0587 .0059 .7617
− RNN .8465 .8282 .0669 .0069 .7165
− GRU .8434 .8277 .0653 .0070 .7114
− Linear regression .8389 .8250 .0666 .0072 .7039
− LSTM .8348 .8238 .0689 .0077 .6968

s task, our ITRM-LCP model significantly outperforms all the other methods except the RoBERTa-
h. Though our approach obtained better results than the RoBERTa-based approach but the difference in
s not significant.
oes the deep neural network architecture with transformer models improve the learning of pairwise
of texts for the lexical complexity prediction tasks?
xploit a BiLSTM-based neural network architecture on top of the transformer model for the LCP task
the long-term dependencies effectively and distill the required contextual information for predicting the

xity score of a token-sentence pair. The corresponding details are available in the following Section 4.4.6.
t of BiLSTM-based Regressor (RQ4)
e semantic information effectively, we pass the sequence of hidden states for the whole input sequence
each transformer model to a BiLSTM-based regressor layer on top as discussed in Section 3.2. BiLSTM
wo LSTM layer to process the input sentence forward and backward sequentially which help it learn
c dependency than the transformer models on the task-specific dataset. In order to enhance the learning
c knowledge, we incorporate a BiLSTM layer on top of each transformer model. To validate our selection,
xtensive experiments on our ITRM-LCP model utilizing other popular feature learning algorithms
rrent neural network (RNN), long short-term memory (LSTM) network, gated recurrent unit (GRU),
ression. Table 12 shows the experimental results which demonstrate that BiLSTM based ITRM-LCP
ormed the other settings thus validating our selection of BiLSTM module.
o demonstrate the impact of BiLSTM-based regressor on our ITRM-LCP model, we present the
erformances of each transformer model with and without using the BiLSTM-based regressor layer based
21 MWEs dataset in Figure 5. When removing the BiLSTM regressor, a fully connected layer is added on

sformer model to estimate the complexity score. Experimental findings demonstrate that the performance
RoBERTa, XLNet, and DistilBERT models improved by 5.36%, 3.53%, 2.75%, and 3.45%, respectively
e Pearson correlation score (RQ4). This deduced the importance of adding a BiLSTM-based regressor
f each transformer model.
e the significance of adding a BiLSTM-based regressor we also perform the token-based analysis in
P model (RQ4). In this regard, in Figure 6 we show the importance of every token in predicting the
ity score where we focus on three crucial breaking points of our ITRM-LCP model. We analyze the
er the BERT layer, (II) after the BERT with BiLSTM layer, and (III) after the final layer (i.e BERT
and max-pooling layer). We visualize the output of these model variants using the Captum library8

ut tokens are mapped to their corresponding scores and color gradients are used to visualize them. To
ttribution score we use the Integrated Gradients ( Sundararajan et al. (2017)) algorithm. In Figure 6, we
e attribution score of the first model (I) is significantly lower than the others which indicates the minimal
f only BERT embedding into the final prediction. Moreover, the first model (I) is limited to focusing
rds but model (II) and model (III) improve the attribution score and focus on the crucial words which
ectiveness of adding the BiLSTM-based regressor on top of the transformer model. Here, in example A,
findings for predicting the complexity score of the EU competitiveness token. Considering this context,

cial words is Europe. We see that model (II) and model (III) addressed this token importance whereas
only BERT embeddings failed to capture this context. Similarly, in examples B and C crucial words
b.com/pytorch/captum
ossain et al.: Preprint submitted to Elsevier Page 16 of 25
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e 5: Impact of BiLSTM-based regressor on transformer models using MWEs dataset of LCP-2021.

mbedding (I) BERT + BiLSTM Regressor(III)BERT + BiLSTM (II)

Token: EU competitiveness

Token: chief priests

Token: chief priests

lization of word contributions based on different settings and our proposed ITRM-LCP method for predicting
res.

ore and conspired, respectively, to predict the complexity score of token chief priests. Here, also we see
th BiLSTM-based regressor (model (III)) layer provides comparatively better attention on crucial words
e other two variants. Hence, this visual analysis validates the selection of adding the BiLSTM-based
r on top of each transformers in our ITRM-LCP model.
an our proposed approach detect domain-specific inherent meanings of tokens in phrasal texts?
ffective adaptation to domain-specific words, we fine-tune diverse transformer models. The correspond-
ils are available in the following Section 4.4.7.
ossain et al.: Preprint submitted to Elsevier Page 17 of 25
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Based Comparison (RQ5)
task, it is important to consider data from different domains including scientific, biomedical, political,

o ensure the generalizability of an LCP system (Shardlow et al. (2021b)). Hence, genre-based analysis is
this task (RQ5). Considering this, CWI-2018 shared task employed the genre-wise evaluation strategy.
-2021 shared task focused on single and multi-word evaluation, we conducted a genre-wise comparative
the LCP-2021 MWEs dataset. The experimental findings are illustrated in Figure 7. It shows that

btained the top performance for the Biomed genre though we didn’t employ any domain-specific
s for this genre. The performance for the Bible genre is also satisfactory. However, our model obtained
poor performance for the Europarl genre. Further observation revealed that in the Europarl genre, some
re chosen from the short form of the word(s) like EU (European Union). Besides, in some cases, context
speaker’s talk time in the European Parliament and the law number of the European Union constitution.
el failed to capture such context or was sometimes misled during the training phase.

0.8414

0.9316

0.6576

0.8727

0 0.2 0.4 0.6 0.8 1

Pearson Scores by Genres Category

All Europarl Biomed Bible

C
o
rp

u
s
e
s

mparative analysis among different genres of SemEval-2021 LCP MWEs dataset based on Pearson score.

R² = 0.7617

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

True Prediction

Comparison between System and True Prediction

System Prediction Point

e 8: Correlation score between system and true prediction using MWEs dataset of SemEval-2021.
ossain et al.: Preprint submitted to Elsevier Page 18 of 25
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elation matrix among the predictions of our proposed ITRM-LCP model and BERT, RoBERTa, XLNet, and
dividual transformer-based models on the MWEs task of LCP-2021 dataset.

ion
te the effectiveness of our ITRM-LCP model, we present a scatter plot diagram between the true
d the predictions of our system using the LCP-2021 MWEs dataset in Figure 8. It indicates that our

ly fits the LCP task because of a higher R2 value of 0.7617. Besides, from the scatter plot, we can observe
ted data points of our system are placed nearly to the linear line which indicates the usefulness of our

LCP task. In Figure 9, we depict the correlation among the BERT, RoBERTa, XLNet, DistilBERT, and
ITRM-LCP model’s predictions of the MWEs task. Here, the ITRM-LCP model highly correlates with
al transformer-based models whereas those models’ individual predictions are not so closely correlated.
the effectiveness of our proposed ensembling approach.

examine the aptness of our ITRM-LCP model, we perform the computation time analysis, feature
baseline system, research analysis, and error analysis. We use the LCP-2021 MWEs corpora dataset to
comparisons.

utation Time
discuss the computation time for training and testing of our proposed ITRM-LCP method. We used
’s (Bisong and Bisong (2019)) GPU machine to implement our method. The total training time for the

Es corpus of our ITRM-LCP method is 23.23 minutes. This indicates that our method is able to learn
ing data and optimize its parameters in a considerable amount of time. The prediction time for a single
oading base models (transformers with BiLSTM-based regressors), ITRM-LCP requires 45.94 seconds.

time for a single instance, when base models are already loaded into memory, is only 0.11 seconds. This
the computational cost of making predictions with the ITRM-LCP is relatively low once base models

e Analysis of the Baseline System
CF-based baseline system, we have extracted 162 features. The detailed description of these features
cribed in section 4.4.2. To analyze the contribution of these hand-engineered features on the LCP

ct a feature importance graph in Figure 10, where we plot the most important 15 out of 162 features
their F-score. We conducted this experiment using the LCP-2021 multi-word expressions (MWEs)
ure 10, we have seen that the contextual transformer features have the highest contribution to tackling

s of the LCP task. Besides, this plot also deduces that HCF-based features including the number of
us features, word frequency, and WordNet features have limited contributions to model performance.
ossain et al.: Preprint submitted to Elsevier Page 19 of 25
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Figure 10: Feature importance graph of HCFs based baseline model on MWEs train dataset.

s actually motivate us to shift from HCF feature-based baseline model and develop an effective LCP
exploiting an ensemble of the transformers model.

rch Analysis
4.4, we presented five research questions that drove this work. In the first question (RQ1), we focused
e integration techniques for leveraging four transformer models including BERT, RoBERTa, XLNet,
T to determine the final prediction. We showed the comparative performance between the arithmetic
ar regression techniques in Section 4.4.1 where the arithmetic mean Pearson score is on average ∼1%
e various blending integration techniques on the LCP-2021 dataset for our proposed method. Next,
question (RQ2), we provided a performance comparison of our ITRM-LCP method with other state-
hods (i.e. DAT, CAMB, DeepBlueAI etc.) as described in Sections 4.4.2 and 4.4.4. The comparative
on the CWI-2018 dataset showed that our proposed ITRM-LCP method achieved 10.2% improvement

orpus and 8.2% improvement on the Wikipedia corpus compared to the top-performing method. Besides,
h the top-performing method on the LCP-2021 dataset our proposed ITRM-LCP method led up to 1.5%
provement for single and multi-word complexity prediction tasks, respectively. The third question (RQ3)
d with capturing better contextual features from different corpus data. In this regard, we incorporated
er models for extracting diverse contextual features. The analysis results of Section 4.4.5 demonstrated

f exploiting diverse transformer models in the LCP task. Some prior LCP methods leveraged multiple
models and performed well to learn contextual information but are limited to learning the pair-wise
between sentence and token that hurt the performance. Considering this, we concentrate on the further
of the performance of the individual transformer model. We placed a BiLSTM-based regressor cap on top
ormer model which helped the model to take full advantage of the forward and backward input features
ter and intra-relational structure of the token-sentence pair (RQ4). The impact of BiLSTM-regressor
Section 4.4.6. Finally, the fifth question (RQ5) pertained to identifying domain-specific meaning from

-2021 dataset contains data from three different domains including Biomedical text, European parliament
and English bible translation where it is challenging for a method to equally address domain-specific
kens and sentences. In Section 4.4.7, we presented a genre-based analysis that demonstrated the efficacy
d ITRM-LCP method for capturing domain-specific contexts from token-sentence pairs.
ossain et al.: Preprint submitted to Elsevier Page 20 of 25
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nalysis of the predicted complexity score of the highlighted single word/multi-words in the corresponding
g BERT, RoBERTa, XLNet, DistilBERT, and our proposed ITRM-LCP system against the gold complexity
samples from both datasets (CWI-2018 and LCP-2021).

Sentence Genre Gold BERT RoBERTa XLNet DistilBERT ITRM-LCP

SWIs Example

I will not tear away all the kingdom; but I
be to your son, for David my servant’s sake,
m’s sake which I have chosen.

Bible .1875 .1703 .1995 .1944 .1955 .1899

with different sequences were generated
is problem, but these sites also underwent
ecombination, making RMCE efficient only
ent cassette contained a marker enabling
desired recombinant (7,9â€12).

Biomed .2236 .2154 .1857 .2306 .2626 .2236

ike, on behalf of the European Parliament,
ympathy to the parents and families of the

Europarl .1875 .2033 .1546 .1971 .1987 .1884

, they were met by gunfire and a standoff Wikinews .55 .6782 .0657 .7490 .6485 .5353

MWEs Example

nted in a good soil by many waters, that
orth branches, and that it might bear fruit,
e a goodly vine.

Bible .4375 .4757 .4949 .3299 .4939 .4486

ains on an HG background were created
osomal region outside of MMU2, while a
panel of overlapping strains with identical
on both B6 and HG backgrounds were
MU2.

Biomed .4 .3271 .4978 .4117 .3655 .4005

g innovation policy is crucial to EU com-
d our ability to keep good jobs in Europe.

Europarl .4285 .4530 .4515 .4023 .3961 .4257

Analysis
gate the efficacy of our ITRM-LCP model, we articulate some examples in Table 13. The examples are
the used corpora and from both the single and multi-word expressions (MWEs). We then presented the
plexity score of the highlighted single word/multi-words in the corresponding sentences using BERT,
Net, DistilBERT, and our proposed ITRM-LCP system. The comparative analysis of these estimated

ores against the gold score shows that the prediction from our proposed ITRM-LCP model is the closest
mpared to its other component variants.
Table 13 illustration, we observe a few reasons behind the erroneous prediction of the complexity score
components where our proposed ITRM-LCP model has predicted nearly the gold score. For instance, it

extract the contextual dimension from a short sentence as presented in E#4 and E#7. Besides, Biomed
ossain et al.: Preprint submitted to Elsevier Page 21 of 25
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