
Conception,
Implementation and

Empirical Evaluation of a
Domain-Specific Language
for Multi-Agent Traffic and

Transport Simulations

by

BENJAMIN MANFRED HOFFMANN

A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier

University, for the award of

Doctor of Philosophy

School of Computing

Edinburgh Napier University

APRIL 2023

Dedication

To Waltraud Winkels, Christoph Roth, and Claudia Sauer.

i

Author’s declaration

I hereby declare that I, Benjamin Manfred Hoffmann, am the sole author
and composer of this thesis. Furthermore, I declare that all sources used
in researching and authoring this work are fully acknowledged by proper
identification of quotations and by provision of detailed references of said
sources.

I also declare that this thesis has not been submitted for any other degree
or professional qualification.

BENJAMIN MANFRED HOFFMANN, 12TH OF APRIL, 2023

ii

Abstract

Conception and implementation of agent-based simulation programs is a complex
task. One of the key problems is the requirement of technical agent-based software
engineering expertise on the one hand and professional knowledge of the application
domain on the other. Either skill set is rare and only few people possess adequate
knowledge of both domains. A joint development of software engineers and domain
experts is often impeded by inaccurate communication resulting from the incompat-
ible terminologies of the technical and the application domain. This is especially
problematic since every change commences a new development cycle based on inapt
communication. Domain-specific languages (DSLs) are a promising approach to
overcome this gap. A well-designed concrete syntax can serve as the communic-
ational basis. An expressive meta-model in combination with a concise concrete
syntax allows modelling on a more abstract level close to the application domain. Via
pre-defined transformations, executable simulation software can be generated from
DSL-models. DSLs thus have the potential to increase the quality of the software
and at the same time accelerate the entire development process. Realisation of this
potential demands a perfectly designed language which in turn renders a proper
language evaluation indispensable. However, this crucial step is often neglected by
DSL developers. Therefore, there is a general demand for further contributions in
this area of language engineering. This thesis presents the development of a DSL
for the domain of agent-based traffic simulation and vehicle-routing optimisation
together with a comprehensive empirical language evaluation. It depicts how an
expressive meta-model was developed and merged with a concise concrete textual
syntax. It also presents transformations that allow the generation of executable
software for different platforms. Most importantly, it provides empirical evidence
that language users with little programming knowledge as well as modellers with
advanced software development skills can benefit from the application of the DSL in
terms of software quality and development time.

iii

TABLE OF CONTENTS

DEDICATION i

AUTHOR’S DECLARATION ii

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF ACRONYMS xvii

LISTINGS xx

1 INTRODUCTION 1

1.1 Challenges of last mile logistics . 1

1.2 The need for simulation in last mile logistics 3

1.3 The Agent-based modelling approach 5

1.4 Traffic networks as complex adaptive systems 8

1.5 Problems to address . 9

1.6 Application of models to cope with high complexity 11

1.7 Aims and objectives of the research project 16

1.8 Research questions addressed in this thesis 17

1.9 Structure of the thesis . 19
iv

TABLE OF CONTENTS

2 RELATED WORK 21

2.1 Traffic and transport simulation . 21

2.1.1 Platforms, languages and tools 21

2.1.2 Simulation studies related to traffic and transport 34

2.2 Literature on empirical evaluations of DSLs 36

2.2.1 Systematic mapping studies on DSLs 36

2.2.2 DSL evaluation frameworks . 38

2.2.3 Evaluation studies on DSLs . 41

2.2.3.1 Evaluations related to the concrete syntax of DSLs . 41

2.2.3.2 Evaluation studies of specific DSLs 45

2.2.4 Discussion of evaluation frameworks and studies 61

2.3 Relation to this thesis . 65

3 THE LANGUAGE AND ITS ENVIRONMENT 69

3.1 The problem domain . 69

3.2 Domain analysis . 71

3.2.1 Analysis of three basic problems 71

3.2.1.1 The standard travelling salesman problem 71

3.2.1.2 The restricted multiple travelling salesman problem 76

3.2.1.3 The capacitated vehicle routing problem 77

3.2.2 Specialisation and generalisation 78

3.2.3 The vehicle routing problem with time windows 80

3.3 Declarative textual modelling with Athos 84

3.4 Athos by example . 86

3.4.1 Example 1: The VRPTW in Athos 86

3.4.2 Example 2 additional elements 91

3.4.2.1 From static to dynamic problems 91

3.4.2.2 Metrics tracked throughout the simulation 94

3.4.2.3 Altered visualisation of elements 95

3.4.2.4 An example result . 96

3.5 General architecture and usage of Athos 97

v

TABLE OF CONTENTS

4 THE SYNTAX AND SEMANTICS OF ATHOS 99

4.1 The abstract syntax . 99

4.1.1 Network related meta-model elements 99

4.1.2 Elements related to agent types and agent behaviour 101

4.1.3 In-place agent type specifications 104

4.2 The static semantics . 105

4.2.1 Constraints related to the network 107

4.2.2 Constraints related to the agent behaviour 109

4.2.3 Overview on currently active constraints 110

4.3 The concrete syntax . 112

4.3.1 Definition of nodes . 112

4.3.2 Agent type and behaviour related concrete syntax 118

5 TRANSFORMATIONS OF ATHOS INTO NETLOGO 124

5.1 The command dictionary . 125

5.2 General flow of control . 126

5.3 Overview on the Athos generator . 129

5.4 Utility classes used by the generator . 131

5.5 NetLogo utility commands . 133

5.6 Naming pattern for agent behaviour descriptions 134

5.7 Agent type transformations . 136

5.8 Generation of the command dictionary 140

5.9 Summary . 144

5.10 The optimisation library . 144

5.10.1 General structure and access . 145

5.10.2 Genetic optimisation algorithm 147

5.10.2.1 Process-centric explanation explanation 148

5.10.2.2 Data-centric explanation 152

5.10.3 Performance evaluation . 155

vi

TABLE OF CONTENTS

6 EMPIRICAL EVALUATION OF THE LANGUAGE 159

6.1 Terminology used in this section . 159

6.2 Selection of design evaluation method 160

6.3 Research questions and hypothesis . 162

6.4 Definition of evaluators profiles: demographic information 164

6.5 Obtainment of ethical clearance . 165

6.6 Definition of the protocol . 166

6.6.1 Data to be collected and metrics to apply 166

6.6.1.1 Data obtained for language evaluation 166

6.6.1.2 Data to be obtained on the study population 170

6.6.2 Empirical study method and evaluation usability type 171

6.6.2.1 General structure . 171

6.6.2.2 Statistical comparison of the obtained results 174

6.7 Definition of instruments to obtain the data 176

6.7.1 Selection of baseline language 176

6.7.2 Definition training material . 178

6.7.3 Definition of the survey tasks . 179

6.7.4 Inclusion and exclusion criteria 179

6.7.5 Study protocols . 180

6.7.5.1 Original evaluation study 180

6.7.5.2 Replication study . 181

7 EVALUATION RESULTS 183

7.1 Results of the original study . 183

7.1.1 Application of exclusion and inclusion criteria 184

7.1.2 Demographic data . 185

7.1.2.1 Demographic data Friedberg 2020 185

7.1.2.2 Demographic data Wetzlar 2020 187

7.1.3 Results in terms of correctness 189

7.1.3.1 Results from Friedberg 189

vii

TABLE OF CONTENTS

7.1.3.2 Results from Wetzlar 191

7.1.3.3 Between subjects hypothesis test 193

7.1.3.4 Within subjects hypothesis test 194

7.1.4 Results in terms of efficiency . 195

7.1.4.1 Results from Friedberg with first approach 196

7.1.4.2 Results from Friedberg with second approach 198

7.1.4.3 Results from Wetzlar with first approach 200

7.1.4.4 Results from Wetzlar with second approach 202

7.1.4.5 Between subjects hypothesis test 205

7.1.4.6 Within subjects hypothesis test 205

7.1.5 Results in terms of user satisfaction 206

7.1.5.1 User satisfaction in Friedberg 207

7.1.5.2 User satisfaction in Wetzlar 209

7.2 Results of the replication study . 210

7.2.1 Application of exclusion and inclusion criteria 210

7.2.2 Demographic data . 211

7.2.3 Results in terms of correctness 215

7.2.3.1 Results from Friedberg 215

7.2.3.2 Results from Wetzlar 217

7.2.3.3 Between subjects hypothesis test 217

7.2.3.4 Within subjects hypothesis test 218

7.2.4 Results in terms of efficiency . 219

7.2.4.1 Results from Friedberg with first approach 219

7.2.4.2 Results from Friedberg with second approach 222

7.2.4.3 Results from Wetzlar with first approach 223

7.2.4.4 Results from Wetzlar with second approach 224

7.2.4.5 Between subjects hypothesis test 226

7.2.4.6 Within subjects hypothesis test 227

7.2.5 Results in terms of user satisfaction 228

7.2.5.1 User satisfaction in Friedberg 228

viii

TABLE OF CONTENTS

7.2.5.2 User satisfaction in Wetzlar 230

7.3 Summary and conclusion . 231

7.4 Threats to validity . 233

7.4.1 Threats to construct validity . 233

7.4.2 Threats to internal validity . 236

7.4.3 Threats to external validity . 239

8 CONCLUSION 240

8.1 The Athos project in context of IS design science 240

8.1.1 Design as an artefact (Guideline 1) 240

8.1.2 Problem relevance (Guideline 2) 241

8.1.3 Design evaluation (Guideline 3) 242

8.1.4 Research contributions (Guideline 4) 243

8.1.5 Research rigor (Guideline 5) . 244

8.1.6 Design as a search process (Guideline 6) 245

8.1.7 Communication of research (Guideline 7) 247

8.2 Summary and addressed research questions 248

8.3 Future work . 249

8.3.1 Expressiveness of the language to be improved 250

8.3.2 Extensibility of the language to be matured 251

8.3.3 Extension of the static semantics of the language 252

8.3.4 Integration of user-definable solution constraints 252

8.3.5 Additional target platform to be addressed 253

8.3.6 Empirical studies to be conducted 253

8.3.6.1 Metrics and dynamic aspects of the language 253

8.3.6.2 Effects of alternative styles on the usability of Athos 254

8.3.6.3 Effects of a graphical editor on the usability 255

8.3.7 Application by domain experts in the field 256

BIBLIOGRAPHY 257

ix

TABLE OF CONTENTS

APPENDIX A THE ATHOS SYNTAX 276

A.1 The Xtext grammar definition . 276

APPENDIX B EVOLOTIONARY ALGORITHM 284

B.1 Implementation . 284

B.2 Invocation . 296

APPENDIX C SURVEY TASKS 298

C.1 Informed consent form . 299

C.2 Athos tasks . 300

Q01ATNW . 300

Q01ATAG . 301

Q03ATALL . 304

Q04ATNW . 308

Q04ATAG . 311

Q05ATNW . 314

Q05ATAG . 316

Q06ATNW . 318

Q07ATALL . 322

Q08ATALL . 324

Q09ATNW . 326

Q09ATAG . 328

Q10ATNW . 332

Q11ATALL . 334

C.3 JSprit tasks . 337

Q01JSNW . 337

Q01JSAG . 339

Q02JSAG . 340

Q03JSALL . 342

Q04JSNW . 350

Q04JSAG . 354

x

TABLE OF CONTENTS

Q05JSNW . 358

Q05JSAG . 361

Q06JSNW . 364

Q07JSALL . 371

Q08JSALL . 375

Q09JSNW . 379

Q09JSAG . 383

Q10JSNW . 388

Q11JSALL . 391

xi

LIST OF TABLES

TABLES Page

3.1 Elements and their relations found in the TSP 73

4.1 Summary of network-related meta-model elements of Athos 102

4.2 Summary of currently active constraints Athos 111

4.3 Summary of agent-related syntax elements in Athos 120

5.1 Utility classes for the generator . 131

6.1 Phases, steps, and activities of the Usa-DSL framework 161

6.2 Planning activities for language evaluation 163

7.1 Number of excluded cases in 2020 . 184

7.2 Mann-Whitney U test on achieved score for 2020 studies 193

7.3 Wilcoxon signed-rank test on scores achieved in 2020 194

7.4 Between subjects comparison of observed correctness 205

7.5 Wilcoxon signed-rank test on achieved PPM in 2020 206

7.6 Number of excluded cases in 2021 . 211

7.7 Mann-Whitney U test on scores achieved in the 2021 studies 218

7.8 Wilcoxon signed-rank test on scores achieved in 2021 218

7.9 Mann-Whitney U test on scores achieved in the 2021 studies 226

7.10 Wilcoxon signed-rank test on achieved PPM in 2021 227

xii

LIST OF TABLES

7.11 Summary of tests for correctness . 232

7.12 Summary of tests for efficiency . 233

C.1 Parameters of the point scheme. 298

xiii

LIST OF FIGURES

FIGURES Page

1.1 Components of the language application process 13

2.1 Capabilities offered by Athos, NetLogo and JSprit 67

3.1 Elements and their relations found in the TSP 74

3.2 Constrains of the TSP . 75

3.3 Generalisation relation between three basis routing problems 79

3.4 Concept map of the VRP taxonomy . 83

3.5 Athos’ modelling approach . 84

3.6 Graphical representation of the first example 87

3.7 3d-view of the modelled network . 90

3.8 Visualisation of the second example . 96

3.9 Architecture of the Athos development environment 97

4.1 Network-related abstract syntax elements of Athos 100

4.2 Excerpt of agent-behaviour related meta model 101

4.3 Agents as statemachines . 103

4.4 Example constraint violation . 106

4.5 Basic network constraints in OCL . 108

4.6 Demand constraint to prevent unrequested deliveries 109

4.7 Concrete syntax for the definition of nodes 113

4.8 Concrete syntax for the definition of a Nodish element 113

xiv

LIST OF FIGURES

4.9 Syntax diagram for the Sourcish rule fragment 114

4.10 Concrete syntax for SproutFunction . 116

4.11 Concrete syntax for individual route definition 117

4.12 Concrete syntax for agent type definition 119

4.13 Concrete syntax for agent behaviour specification 121

4.14 Concrete syntax for agent behaviour description 122

4.15 Concrete syntax for delivery behaviour . 123

5.1 The command processing infrastructure . 125

5.2 General flow of control . 127

5.3 Generator call stack . 130

5.4 Platform independent access to the library 146

5.5 Control flow of evolutionary algorithm . 154

5.6 Comparison of best solutions provided by Athos and JSprit 157

6.1 Metrics applied in the survey . 167

6.2 General survey conduction protocol . 171

6.3 Between-subjects and within subjects comparisons 175

6.4 Comparison of the capabilities of Athos and JSprit 177

6.5 Experiment protocol 2020 . 181

6.6 Experiment protocol 2021 . 182

7.1 Programming background of participants from the Friedberg 2020 study 186

7.2 Programming background of participants from the Wetzlar 2020 study . 188

7.3 Scores achieved in the 2020 Friedberg study 190

7.4 Scores achieved in the 2020 Wetzlar study 192

7.5 Scatter plot sector naming schema . 195

7.6 Score and time of both approaches as first in Friedberg, 2020 197

7.7 Score and time of both approaches as second in Friedberg, 2020 199

7.8 Score and time of both approaches as first in Wetzlar, 2020 201

7.9 Score and time of both approaches as second in Wetzlar, 2020 203

xv

LIST OF FIGURES

7.10 Overview on subjective perception, Friedberg 2020 207

7.11 Overview on subjective perception, Wetzlar 2020 209

7.12 Programming background of participants from the Friedberg 2020 study 212

7.13 Programming background of participants from the Wetzlar 2021 study . 214

7.14 Scores achieved in the 2020 Friedberg study 215

7.15 Scores achieved in the 2020 Friedberg study 216

7.16 Scores and times of both approaches as first in Friedberg, 2021 220

7.17 Scores and times of both approaches as second in Friedberg, 2021 221

7.18 Scores and times of both approaches as first in Wetzlar, 2021 223

7.19 Scores and times of both approaches as second in Wetzlar, 2021 225

7.20 Overview on subjective perception, Friedberg 2021 228

7.21 Overview on subjective perception, Wetzlar 2021 230

xvi

LIST OF ACRONYMS

ABM agent-based modelling

ABMS agent-based modelling and simulation

ATAP accelerating test automation platform

ABS agent-based simulation

ACS ant-colony system

AOSE agent-oriented software engineering

API application programming interface

ASL adaptive storyline language

AST abstract syntax tree

ATL adaptive topic language

B2B business-to-business

B2C business-to-consumer

BCRC best cost route crossover

BDI belief-desire-intention

CAGR compound annual growth rate

CAS complex adaptive system

COM component object model

CIM computationally independent model

CDNF cognitive dimensions of notations framework

CVRP capacitated vehicle routing problem

DES discrete event simulation

xvii

LIST OF FIGURES

EBNF extended Backus-Naur form

EMF Eclipse modeling framework

DMP data management plan

DSL domain-specific language

DSS decision support system

DSML domain-specific modelling language

EV electric vehicle

FQAD framework for qualitative assessment of DSLs

GIS geographic information systems

GPL general-purpose language

GUI graphical user interface

HTML hyper text markup language

IDE integrated development environment

ILP integer linear program

IS information systems

ITS intelligent transportation systems

LML last mile logistics

LOC line of code

MAS multi-agent system

MDSD model-driven software development

MOE measure of effectiveness

MTSP multiple travelling salesman problem

RMTSP restricted multiple travelling salesman problem

M2M model-to-model

M2T model-to-text

MTZ Miller-Tucker-Zemlin

OCL object constraints language

ODM origin-destination matrix

PDT Prometheus design tool

PIM platform independent model

xviii

LIST OF FIGURES

PML pedagogical modelling language

PPM points per minute

PRT pedagogical relationship type

PSM platform-specific model

PUR pedagogical update rule

PHEM passenger car and heavy-duty emission model

RCS rate correct score

SAR storyline adaptation rule

SD system dynamics

SLE software language engineer

SLR systematic literature review

SMS systematic mapping study

TAR topic adaptation rule

THM Technische Hochschule Mittelhessen

TSP travelling salesman problem

UML unified modelling language

UI user interface

V2X vehicle-to-everything

VAP vehicle-actuated programming

VLE virtual learning environment

VR virtual reality

VRP vehicle routing problem

VRPTW vehicle routing problem with time windows

ZEZ zero emission zone

xix

Listings

3.1 A VRPTW modelled in Athos . 87

3.2 A VRPTW modelled in Athos . 92

4.1 In-place vs. referencing agent type definition 104

4.2 Existing demand constraint . 110

5.1 Utility command for route initialisation 133

5.2 General command naming pattern for state machine code 134

5.3 Generation of state-machine commands 136

5.4 Condensed excerpt of switch expression 138

5.5 Boiler plate template for transitions . 139

5.6 Creation of the command dictionary infrastructure 141

5.7 Addition of a creation command for a depot 142

5.8 Template for the initialisation of an agent 143

5.9 Pseudocode of the evolutionary algorithm 149

8.1 An alternative source and demand definition 254

B.1 Implementation of Ombukis EA . 284

B.2 Invokation of Ombuki’s EA . 296

xx

; First Chapter <

Introduction

1.1 Challenges of last mile logistics

Last mile logistics (LML) has drawn considerable interest of researchers from

various fields. Though there is no universally agreed definition for the term (Boysen

et al., 2021), LML is widely understood to refer to the final sequence in a delivery

process (Lim et al., 2018). The great interest in this topic is easily understood by

looking at the global impact of LML – both from an economic and from and ecologic

point of view: in 2020, the value of the world-wide market for LML amounted to

USD 18.7 Bn and forecasts predict a further growth to USD 62.7 Bn by 2027 (All

the Research, 2021).

The already continuously rising demand for last mile deliveries received an

additional impetus by the outbreak of the SARS-CoV 19 pandemic in 2020 (WEF,

2021). The imposition of lockdowns as a means to curb the spread of the virus also

led to restricted access to brick and mortar shops and thus coerced consumers from

large parts of the world into shopping online (Quak and Kin, 2020). As revenues

grow, so do the demands of customers who do not only expect ever increasing delivery

speeds but also more influence on the parameters of their delivery (WEF, 2020; Quak

and Kin, 2020). A concrete example in this regard are delivery services offered by

supermarkets. While these services are becoming increasingly popular, they have to

meet time windows that leave less and less leeway for drivers to execute deliveries.

1

CHAPTER 1. INTRODUCTION

In a survey that asked 300 senior logistics and fulfilment executives for chal-

lenges in last mile delivery, increasing costs and a reliable fulfilment of customers’

orders were the two most frequently given answers (Statista, 2021). High costs are

a special problem of the last mile segment as it is usually regarded as the most

ineffective part of the delivery chain (Soti, 2020). However, passing on delivery costs

may make matters even worse: in a survey conducted among 2,000 Americans in

2019, 63 % of the respondents stated too high charges for delivery as a primary

reason for them to refrain from checking out their shopping cart (ForterTeam, 2019).

Another serious problem related to last mile deliveries is their substantially

negative impact on the environment. According to a report published by the World

Economic Forum, ‘delivery vehicles – both trucks and vans – add disproportionately

high amounts [of urban CO2 emissions] compared to passenger cars’ (WEF, 2020, p.

7). In the 100 biggest cities1, last mile deliveries emitted 19 Million tonnes of CO2 in

2019 (WEF, 2020). Without any changes to the underlying delivery infrastructure,

the number of delivery vehicles in these cities is predicted to rise from 5.3 Million

in 2019 to 7.2 Million in 2030, causing and additional six million tonnes of CO2

emissions and prolonging an average commuter trip from 53 minutes in 2019 to 64

minutes in 2030 (WEF, 2020).

To put it succinctly, practitioners in the field of LML are pressured to find and

apply the means to deliver an increasing amount of goods within ever tightening

time windows in a cost-effective and environmentally acceptable way while facing

the problem of increasing congestions in urban areas. Fortunately, there exist

several possible approaches towards these imminent challenges. Switching from

conventional delivery vehicles that rely on combustion engines to electric vans

and trucks is one approach to reduce CO2 emissions. While electric vehicles still

contribute to increased congestion, airborne delivery drones have the potential to be

environmentally friendly without causing additional road traffic.
1Note: the report speaks of ‘top 100 cities’ without further specification.

2

CHAPTER 1. INTRODUCTION

Shifting the paradigm of how deliveries on the last mile are performed is another

way that promises less CO2 emissions, reduced congestion and even considerable

cost reductions: Stationary pick-up points, lockers and micro-hubs have exhibited

promising results and are expected to be key interventions in the future of last

mile deliveries (Ballare and Lin, 2020; Quak and Kin, 2020). Another approach

to avoid unnecessary emissions is the calculation of optimal delivery routes for all

vehicles under consideration of aspects such as the current traffic situation (delivery

vehicles stuck in traffic jams only exacerbate the situation), labour times (parcels

not delivered due to the end of the driver’s shift cause additional emissions on the

next tour), or stipulated time windows (failed deliveries have to be returned and

performed on the next day). Unfortunately, lacking the ability to calculate adequate

delivery routes is among the major challenges the field of LML currently faces

(Skylar Ross, March 2021).

1.2 The need for simulation in last mile logistics

Even though technical and organisational interventions with the potential to allevi-

ate the aforementioned problems exist and are continuously refined and improved,

practitioners still need a way to analyse and evaluate the results that can be expec-

ted from applying these interventions in different contexts (each intervention on

its own or, perhaps even more interestingly, in combination with other approaches).

However, an approach in which interventions of interest are implemented and ob-

served in the field is often impractical due to a combination of imponderable risks,

unreasonably high monetary or temporal investments. In such situations, where

a system’s reaction to a treatment is of focal interest, but this reaction cannot be

directly observed because the application of the treatment is too dangerous, too

3

CHAPTER 1. INTRODUCTION

costly or not possible (with reasonable effort) for other reasons, simulation is the

approach of choice (Shannon, 1998). Shannon defines simulation as

‘[...] the process of designing a model of a real system and conduct-

ing experiments with this model for the purpose of understanding the

behaviour of the system and/or evaluating various strategies for the

operations of the system’ (Shannon, 1998, p. 7).

What is especially important about this definition is that it puts emphasis on

the fact that simulation comprises two important aspects: in the first step, an

appropriate model of the system of interest must be created, i.e. it must be decided,

which aspects of the system are relevant and which are not. The relevant attributes

together with their mutual relations will then find their way into the model. In the

second part, the model is then executed or applied to investigate the behaviour of

the system as it either evolves through the interactions of its constituting elements

or as it reacts (and also evolves) to a modification or external stimulus.

In recent decades, computer simulations have become a crucial and widespread

technique throughout many academic disciplines. Axelrod (1997) places simulation

next to induction and deduction as a ‘third way of doing science’ (Axelrod, 1997, p.

5). The potential of computer simulations in the field of traffic and transport ana-

lysis and optimisation has long since been recognised. Clark and Daigle (1997), for

example, discuss and exemplify how computer simulations support the evaluation

of alternative traffic design and control strategies in the field of intelligent trans-

portation systems (ITS). In their paper, the authors also provide a demonstration

of how computer simulations can be used as a sandbox environment that allows

for an innocuous experimental application of newly developed traffic management

algorithms and/or systems.

Though the presented simulation applications are shown to be valuable sup-

porting tools, their underlying software technologies, platforms and paradigms

considerably deteriorated in the course of recent years. The tools suffer from con-

siderable limitations in terms of maintainability and extensibility – especially in

4

CHAPTER 1. INTRODUCTION

light of the advent of more sophisticated modelling and simulation paradigms which

also promise further advantages with regard to their explanatory power. Similar

to the field of software development, the field of complex system simulation has

seen continuous development which brought about several different simulation

paradigms and technologies.

1.3 The Agent-based modelling approach

System dynamics (SD), discrete event simulation (DES), and agent-based modelling

and simulation (ABMS) are widely considered the three prevalent modelling and

simulation paradigms (Borshchev and Filippov, 2004; Maidstone, 2012). SD and DES

are generally viewed to be rather conventional or traditional approaches compared

to ABMS which is a comparatively new approach (Borshchev and Filippov, 2004;

Chan et al., 2010). What these three paradigms have in common is that they offer

means to represent both the present state of a system in terms of its constituting

entities (and their respective properties) and also a set of rules and principles that

apply to the entities and that determine the future state of the system (Borshchev

and Filippov, 2004). Each of the three approaches offers a unique set of benefits but

also comes with a certain number of deficiencies. The suitability of each of the three

paradigms solely depends on the system to be modelled (Borshchev and Filippov,

2004).

Of the three modelling methodologies, SD is the one that takes the most aggreg-

ated (or macro level) approach in order to represent and simulate a complex system

(Maidstone, 2012; Borshchev and Filippov, 2004). In SD, feedback loops which can

be either positive or negative illustrate the causal relations between variables; these

feedback loops are complemented by flows between stocks of objects. Flows between

stocks may be subject to delays which alter the dynamics of the system (Sterman,

2000). An important aspect of SD models is their deterministic behaviour, i.e. mul-

tiple simulation runs will yield the exact same result, so that multiple simulation

runs are not necessary (Maidstone, 2012). SD models can be very efficiently applied

5

CHAPTER 1. INTRODUCTION

for problems with a very high abstraction level, e.g. population dynamics, ecosystems

or macro traffic models; they are less suitable for problems that require a greater

level of detail (Borshchev and Filippov, 2004).

In DES a system is viewed as a network in which entities flow between queues

and servers which respectively collect and process these entities (Maidstone, 2012;

Borshchev and Filippov, 2004). Though there are several different ‘world-views’

like event-scheduling or state-machines associated with DES (Chan et al., 2010),

a common characteristic is that the progress of a DES simulation is driven by

the occurrence of various events like a new entity entering the simulation or the

completion of some process on an entity within a server. In general, entities modelled

in DES do not exhibit autonomous or proactive behaviour (Chan et al., 2010), they

are rather ‘passive’ (Maidstone, 2012) or ‘reactive’ (Chan et al., 2010).

ABMS is an appropriate approach to get insight into systems in which patterns

emerge from the interaction of several entities that exhibit complex and proactive

behaviour (Bandini et al., 2009; Chan et al., 2010; Borenstein, 2015). In ABMS these

entities are referred to as agents. Agents are capable of interacting with both their

environment and other agents in an attempt to bring about a state of the system

they regard as desirable or advantageous. Agent-based modelling (ABM) is applied

in a great number of research fields, e.g. stock and consumer market simulations

(Palmer et al., 1999; North et al., 2010; Farrenkopf et al., 2014), investigation of

predator-prey patterns (Mock et al., 2007), or analysis of behavioural patterns in

emergency situations (Carley et al., 2006; Pan et al., 2007).

This widespread adoption of ABMS in different academic fields might be the

main reason why there is neither a broad agreement on an exact definition of ABMS,

nor a universally accepted list of features that every agent must possess (Lind, 2001;

Macal and North, 2010; Borshchev and Filippov, 2004; Bandini et al., 2009; Chan et

al., 2010). According to the works of Lind (2001) and Wooldridge and Jennings (1995),

there are three notions of agency that differ in the requirements that an agent must

meet: the very weak notion does not impose any requirement and simply leaves it to

the modellers and stakeholders to decide what is to be considered an agent; the weak

6

CHAPTER 1. INTRODUCTION

notion (Wooldridge and Jennings, 1995) requires an agent to exhibit autonomous

(no human intervention is required), social (the agent interacts with other agents),

reactive (the agent adapts its behaviour upon changes in its environment) and

pro-active (the agent takes the initiative in order to achieve its goals) behaviour;

the stronger notion (based on works of Yoav Shoham (1993) and Dennett (1987))

extends the weak notion in that it requires an agent to own features that correspond

to cognitive properties found in human beings. The belief-desire-intention (BDI)

paradigm which is rooted in the works of Rao and Georgeff (1991) and Bratman

(1987) is an example that is based on agents that comply to the stronger notion of

agency.

Macal and North (2010) define agent-based models as a composition of three

essential components:

1. A set of agents with their respective features.

2. A topological definition on how the agents are related.

3. An environment within which the agents exist and perform their various

activities.

Within the scope of this thesis, the term ‘agent’ is used in assumption of the

weak notion of agency. The term ABMS is used for all simulation approaches that

leverage an agent-based model. In doing so, this thesis follows Macal and North

(2010) who note that agent-based simulation (ABS) is generally considered to focus

on modelling dynamic processes while ABM is the more general term that also covers

modelling for the purpose of optimisation. In this thesis, ABM is understood to refer

to modelling approaches centred around the agent concept in order to represent a

complex system. ABS, on the other hand, is understood as the proverbial second side

of the same medal, i.e. to subsume all approaches that use an agent-based model in

order to gain insight into further development of the modelled system.

In ABMS, no central authority dictates the behaviour of the agents in the system

(Borshchev and Filippov, 2004; Macal and North, 2010). Rather, the system is

7

CHAPTER 1. INTRODUCTION

supposed to result from the individual behaviour of every single agent. Borshchev

and Filippov (2004) note that this way ABMS allows modelling the entire system

from bottom to top so that modellers do not need to possess an a-priori knowledge of

the system behaviour at an aggregated level. Borshchev and Filippov (2004) and

Macal and North (2010) recommend the application of ABMS for the modelling of

systems in which autonomous entities interact, evolve and actively exhibit behaviour

that may lead to new and/or unexpected emergent phenomena at the system level.

Systems with these properties are referred to as complex adaptive systems (CASs).

1.4 Traffic networks as complex adaptive systems

Holland (1992) defines CASs as systems that are formed by a multitude of interde-

pendent parts which act and interact according to an individual set of rules. These

‘rule-based components’ are not only capable of adapting their internal rules based

on credit assignment and rule discovery but they also possess the ability of anticip-

ating changes in the system. As Holland (1992) explains, in CAS the aggregated

system behaviour cannot be predicted from merely looking at any single component

in isolation. Instead, the system behaviour emerges as a result from a complex

interplay of all components that constitute the system (Holland, 1992). For this

reason, top-down approaches (like SD) or approaches in which the entities of the

system are supposed to remain rather passive (as in DES) are less appropriate for

modelling and simulation of CAS (Macal and North, 2010).

The structures and processes found in urban traffic (or traffic in general) suggest

that trying to solve (real-world) traffic and transportation related problems is tan-

tamount to the aspiration of a deeper insight into CASs: in real-world urban traffic

scenarios vast numbers of participants follow their individual set of rules in an at-

tempt to reach a set of individual goals. Against this background, it is not surprising

that ABMS has attracted considerable interest within research approaches towards

traffic and transport optimisation (e.g. Davidsson et al., 2005; da Silva et al., 2006;

Bazzan and Klügl, 2014; Bazzan et al., 2015).

8

CHAPTER 1. INTRODUCTION

1.5 Problems to address

Development of simulation based decision support system (DSS) that assist policy

makers in the field of traffic and transportation management and optimisation is

a challenging task (Davidsson et al., 2005) that requires skills and expertise from

two distinct bodies of knowledge (c.f., e.g. Borenstein, 2015): Not only does it require

considerable knowledge and experience from the field of software development, but

in order for the DSS to be of real value to its users, it is key that expert knowledge

is sensibly incorporated into the system. However, only in the rarest of cases do

software developers also happen to be experts in the field of traffic and transportation

management. As a consequence, it is indispensable to the success of the development

process that experts from both domains cooperate. However, in practice, failure of

cooperation and communication between software and domain experts is one of the

major reasons for unsuccessful software projects (Ghosh, 2011a; Dalal and Chhillar,

2012). Inconsistent terminologies used by the different stakeholders is one of the

major problems that underlie the defective communication processes (Lu and Jin,

2000; Ghosh, 2011a). In addition to that, there are often diverging assumptions

concerning the allocation of competences (Segal, 2009).

The application of ABMS is a first step towards an improved mutual understand-

ing of software and domain experts: Macal (2016) points out that even without prior

expertise, most people possess an intuitive understanding of the general nature and

benefits of ABMS. The reason for this, according to Macal, is that the main task

of an agent-based modeller is very similar to the way we form our decisions in our

everyday life: imagining a given situation and then devising on possible courses of

action and assessing their respective outcomes including the reactions they might

invoke within our environment. However, even though ABMS is naturally related

to human actions, reactions and interactions, the development of an agent-based

application remains a highly challenging task with various intricacies (Parry, 2009;

Vendrov et al., 2014; Challenger et al., 2016).

9

CHAPTER 1. INTRODUCTION

Vendrov et al. (2014) point to the languages used for the specification of agent-

based models as a major source for the complexity of ABMS development: these

mostly imperative languages require developers and domain experts to think at a

very low level of abstraction; perhaps even worse, these languages mingle technical

implementational details with domain processes in a way that obfuscates the in-

tended domain-specific logic.. Obviously, such models do not provide a basis for an

improved communication between developers and domain experts. The fact that

the level of detail required in ABMS approaches is consistently increasing (Parry,

2009) and that the analysed domains are becoming ever more complex (Bazzan and

Klügl, 2014) are catalysts for failing communication between developers and domain-

experts which will inevitably lead to unsatisfactory results. For this reason, it is of

crucial importance that domain experts thoroughly understand the models created

by developers in order to provide informed and helpful feedback to developers (Ghosh,

2011a). Ideally, domain experts should even be able to create or at least modify such

agent-based models on their own or in cooperation with a model developer.

The crucial importance of domain experts’ ability to experiment with the models

was already emphasized in a 1992 paper by Holland (1992). In Holland’s vision,

domain-experts with little to no expertise in computer science were able to modify

system models without the need to deal with the implementational code. As this

vision has not yet been sufficiently realised by current ABMS frameworks, this is a

pressing issue that needs to be addressed in an appropriate way. North and Macal

(2009) discuss the implementation of appropriate interfaces which enable domain

experts to create and modify ABMS models as one of the key challenges in the field.

Macal (2016) also lists four key challenges in the field of ABMSs: first, the need to

increase the faith that stakeholders have in the models which requires less complex

and more concise models; second, the necessity to enhance the transparency of

models which is often negatively affected by the high complexity of current models;

third, the acquisition of a broader understanding of how to efficiently build and

10

CHAPTER 1. INTRODUCTION

apply ABMS to obtain insightful data; and fourth, the need for an increase in the

ease-of-use of tools designed for modellers so that the number of scientists that adopt

an ABMS approach continues to grow.

1.6 Application of models to cope with high com-

plexity

The field of model-driven software development (MDSD) offers powerful and auspi-

cious approaches to overcome this dilemma (Challenger et al., 2016). The MDSD

methodology places models as the driving artefacts that directly determine the

outcome of the development process (Brambilla et al., 2012). For this, every MDSD

approach requires the elicitation of relevant concepts, definition of appropriate nota-

tions, processes and rules as well the development of suitable tools (Brambilla et al.,

2012). Some MDSD approaches2 are centred around special languages known as

domain-specific languages (DSLs).

DSLs are languages which feature notations and abstractions that are tailored

and restricted towards a particular domain of application in order to offer increased

expressive power, enhanced ease of use and higher user productivity (van Deursen et

al., 2000; Mernik et al., 2005; Barišic et al., 2011; Barisic et al., 2012b). The domain

that a particular DSL is designed for is referred to as the problem domain or also

real-world domain (Barisic et al., 2012b). The set of technical tools, platforms and

languages to represent and explore the problem domain is referred to as the solution

domain (Barisic et al., 2012a) (or computation domain (Barisic et al., 2012b)). While

general-purpose languages (GPLs) (e.g. Java or C++) are (in most cases) close to

the computation domain (Barisic et al., 2012b), DSLs can be considered as a bridge

between the problem and the solution domain (Barišic et al., 2011; Barisic et al.,

2012a; do Nascimento et al., 2012). Based on this idea, Barisic et al. (2012b) define
2Völter and Benz (2013) refer to the development and application of domain-specific languages

(DSLs) as a ‘flavor’ of MDSD (p.32).

11

CHAPTER 1. INTRODUCTION

DSLs as human-computer user interfaces (UIs) that aim to allow their users to think

and express themselves in terms of ontological concepts taken from the problem

domain.

In addition to the aforementioned benefits, DSLs are associated with a variety of

positive impacts on software development projects: they are widely believed to im-

prove communication between software and domain experts (Ghosh, 2011b), reduce

the required programming skills (Barisic et al., 2012b; Barisic et al., 2012a), facilit-

ate the understanding of programs/models (do Nascimento et al., 2012; Poltronieri

Rodrigues et al., 2017), increase the level of abstraction (Iung et al., 2020), reduce

program/model complexity (do Nascimento et al., 2012), improve the quality of the

final product (Hermans et al., 2009; Poltronieri Rodrigues et al., 2017), and facilitate

maintenance of source models (Barisic et al., 2012a; Barisic et al., 2012b).

Every DSL (and every computer language in general) comprises the following

key components (c.f., e.g. Vangheluwe et al., 2007; Hahn, 2008; Cuadrado et al., 2013;

Völter and Benz, 2013): an abstract syntax that defines a structure of ontological

concepts (Atkinson and Kuhne, 2003) found in the problem domain. In other words,

the abstract syntax defines which elements are supported by the language and how

these are related to each other in the models3 written in the DSL. As the abstract

syntax defines the very ‘essence’ of its associated language (Vangheluwe et al., 2007),

it does not make any specifications with regard to the notation of the supported

elements. The definition of concrete notations used to instantiate the abstract

ontological concepts (in other words to create an actual model) is referred to as the

concrete syntax. While the abstract syntax already defines some rules concerning

the structure of the language elements, these rules are often not strict enough so

that they would allow for models that violate certain laws of the domain. To render
3From this point on, the term ‘model’ will be used for a program or model specified with a DSL,

whereas the term ‘program’ will be used for a program written in a GPL.

12

CHAPTER 1. INTRODUCTION

Translator
Interpreter

Reader

recognize

& build IR

Semantic analyzer

collect info,

annotate IR,

rewrite IR,

or execute

IR

Generator

generate
IRinput

model

output

model

Figure 1.1: Components of a computer language in the language application process
adapted from (Parr, 2011, p. 4).

these models invalid, most languages feature an additional set of constraints that

must hold true within a model. These constraints (together with the rules from the

abstract syntax) form the static semantics of the language.

The components mentioned so far allow the definition of models and a decision

on whether the defined models are valid or not. What is still missing is a translation

of models into computational activity. This computational activity that is expected

upon the execution of models defines the execution semantics (Völter and Benz, 2013,

p. 82) (also dynamic semantics) of a language. Consequently, the definition of a

language’s execution semantics requires the definition of a mechanism that maps

every valid language model to a specific computational behaviour. In the context

of this thesis, this mechanism will be provided by a generator. This generator

comprises a set of transformations that translate a valid model written in the DSL

into a valid model of a target platform that comprises one or several target languages

each with a properly defined execution semantics. The execution semantics of the

target languages then may again be defined by means of a set of transformations

or they may directly be interpreted in order to produce the desired computational

activity.

Figure 1.1 illustrates the interplay of all components in the language application

process: an input model written in the concrete syntax of the language is applied

to a reader (which often comprises a lexer and a parser (c.f., e.g. Parr, 2011)) that

seeks to recognize the structure defined by the abstract syntax of the language. At

this stage, a failing attempt to recognise the expected structure would result in a

13

CHAPTER 1. INTRODUCTION

compilation error. The reader builds an internal representation of the input model

which is an instance of the abstract syntax of the language, known as an abstract

syntax tree (AST). The AST is further processed by a semantic analyser. The actual

steps taken by the semantic analyser vary according to the language. It might just

cause the computer to perform various computational actions and thus interpret the

internal representation. It can also act as a validator by applying the constraints of

the static semantics. If the model is found to be valid, the internal representation is

passed on to the generator which applies its transformation in order to create an

output model. As was already mentioned, this output model might then be used as

an input model in another iteration of the depicted process.

A common distinction between DSLs is the distinction between textual and

graphical DSLs. Textual DSLs have a concrete syntax that is based on the use of

characters whereas the concrete syntax of a graphical DSL is defined in terms of

two-dimensional geometrical structures like rectangles, diamonds and circles (which

in most cases need to be annotated with textual elements). Another separation

can be made between external and internal DSLs: external DSLs are self-contained

languages with their own abstract and concrete syntax and static semantics (Ghosh,

2011b; Cuadrado et al., 2013). By contrast, internal DSLs rely on the language

infrastructure of a host language (Ghosh, 2011b). Especially functional languages

like Haskell are often used as host languages for internal DSLs (Kosar et al., 2016).

Some authors also refer to internal languages as embedded languages (Fowler and

Parsons, 2011). Generally, internal DSLs only use a particular subset of the host

language’s capabilities (Fowler and Parsons, 2011).

As is pointed out by Mernik et al. (2005), it is often a matter of opinion whether

a given language is close enough to a problem domain to be considered a proper

DSL. The authors explain that it is possible to establish an ordinal scale that ranks

various computer languages according to their specificity for a given problem do-

main. This way, it is up to the beholder where on this scale a computer language

must rank so they will consider it a DSL. At this point, it is worth noting that in

recent years authors have become more careful in this regard and now carefully

14

CHAPTER 1. INTRODUCTION

distinguish between DSLs and domain-specific modelling languages (DSMLs) (Kosar

et al., 2016). Challenger et al. (2016), for example, consider DSMLs as languages

that mostly feature a graphical concrete syntax with an even higher level of abstrac-

tion (or specificity) than DSLs. However, there are others, who do not make this

discrimination and use the terms interchangeably (Brambilla et al., 2012, c.f., e.g.).

Within the context of this thesis no distinction between the two terms will be made

and they will be used interchangeably.

The creation of DSLs is one of the key activities performed by software language

engineers (SLEs) (Barisic et al., 2012b). In order to create a self-contained, external

DSLs, language engineers must define an abstract and a concrete syntax, specify the

constraints for the static semantics, select the components of the solution space, i.e.

built the target platform, and devise and implement suitable model transformations.

The general process for this is summarised by Barisic et al. (2012b): in the first

step, the target domain is analysed in order to determine which concepts must find

their way into the language and how best to represent them. This step is referred

to as the domain analysis (Ghosh, 2011b) or as domain engineering (Mernik et al.,

2005). In the next step, the conceptual design of the language is devised. This step

involves the creation of a first version of the languages’ abstract syntax and static

semantics. In the next step, an actual implementation of the language is created.

This step has been considerably facilitated by ever more sophisticated language

workbenches (Fowler and Parsons, 2011; Völter and Benz, 2013) that automate

and/or support the creation of some of the important components of the language

application process. Modern language workbenches like Xtext4 also provide support

for the testing of the implemented languages (Bettini, 2016). Finally, it is crucial

to find out how the targeted users experience working with the new language. It

must be ensured that they are able to learn the language in an appropriate amount

of time and that the language enhances the productivity of its users.

While the first steps are demanding in their own right, it appears that it is espe-

cially the evaluation step that causes major problems among language developers.
4https://www.eclipse.org/Xtext/

15

https://www.eclipse.org/Xtext/

CHAPTER 1. INTRODUCTION

For a long time, support for the various claims of potential benefits associated

with the application of DSL based approaches has mostly been of anecdotal nature

(Barisic et al., 2012b; Kosar et al., 2012). Language engineers often neglected or

even completely omitted a rigorous quantitative language evaluation (Gabriel et al.,

2010; Barisic et al., 2012a). And even if they conducted formal evaluations, often

controvertible approaches were taken (Challenger et al., 2016). Kosar et al. (2016)

conducted a systematic mapping study in which they found that reports on language

evaluation were rather scarce. While recent years have seen an increased scientific

effort in the field of DSL evaluation (Kosar et al., 2018), there is still considerable

work to be done in order to create a reliable body of knowledge. More evaluations

from different fields are necessary to provide support to researchers and software

developers in the application and assessment of DSLs centred software development

approaches (Challenger et al., 2016). As is emphasized by Barišic et al. (2014), a

single evaluation study provides only limited informative value; in order to gain

real confidence, several evaluation studies with consistent findings are required. A

recent systematic literature review (SLR) study by Poltronieri et al., 2021 found that

DSL evaluation in terms of usability has generated an increased academic interest

that seeks to address some as of yet unresolved problems; these problems especially

concern the application of established evaluation frameworks and the reporting of

detected usability shortcomings.

1.7 Aims and objectives of the research project

The purpose of the research project presented in this thesis was the design, imple-

mentation and empirical evaluation of Athos. Athos is a DSL for the domain of

agent-based traffic and transport simulation and optimisation. Athos was designed

to support domain experts with an easily comprehensible language that allows

the specification of textual models from which executable agent-based traffic and

transport optimisation simulations can be generated. In general, these domain

experts only have limited knowledge in software development, so that Athos has

16

CHAPTER 1. INTRODUCTION

to meet higher standards in terms of learnability, perceivability and evolvability

compared to a general-purpose language (GPL) which is normally designed for use

by software development experts. In other words, the DSL must provide a moderate

learning curve and allow for domain experts to quickly read, understand and write

(or evolve) models. Ideally, the language measurably increases both the effectiveness

and efficiency with which its users create these models in comparison to alternative

approaches.

The contribution of this design-science study is thus twofold: in the sense of

design-science (Hevner et al., 2004) it provides innovative artefacts (constructs, mod-

els, methods, and instantiations) that address existing problems in the development

of complex agent-based simulation software. More precisely, it provides a novel DSL

(construct) that allows the creation of concise textual models based on appropriate

abstractions (models) for the domain of traffic and transport optimisation and simula-

tion. The language is implemented in a way that models are automatically validated

and transformed into executable simulations (instantiation) in which powerful op-

timisation algorithms are leveraged (methods). The second important contribution

is a thorough DSL evaluation that demonstrates how scientific evaluation protocols

and techniques can be rigorously applied and combined for an assessment of the

extent to which the newly created artefacts improve the current status quo. Thus,

the intended gains in effectiveness and efficiency were empirically evaluated and

the results are presented in this study. This way, the project did not only generate

evidence in support of claims on an enhanced productivity through application of

the DSL, it also provided a valuable contribution to the body of knowledge on formal

DSL evaluation.

1.8 Research questions addressed in this thesis

The development of a good DSL is considered an intricate task because it requires

knowledge from the field of software language engineering and at the same time a

thorough understanding of the problem domain (Mernik et al., 2005). This already

17

CHAPTER 1. INTRODUCTION

difficult task becomes even more involved, when the intended solution domain

requires additional knowledge that is rarely found among SLEs. Though there are

various tools known as language workbenches which facilitate some of the technical

aspects of DSL development (Völter and Benz, 2013), conception, implementation

and evaluation of a DSL that meets all of its intended purposes poses a set of

important questions that need to be researched and answered. In the course of

the underlying research project, the following research questions were raised and

answered:

RQ 1 What are the properties that a DSL for modelling agent-based vehicle routing

problems (VRPs) and traffic scenarios must possess?

RQ 1.1 Which elements and relations among them characterise the problem

domain?

RQ 1.2 Which elements and relations among them does the abstract syntax

of the language comprise?

RQ 1.3 Which elements are required to model agent behaviour in agent-based

routing simulations?

RQ 1.4 Which semantic constraints exist in the context of the meta-model of

the language?

RQ 1.5 What properties should the concrete syntax of the language possess?

RQ 1.6 Which elements and respective relations characterise the solution

domain of the language?

RQ 2 How can models written in the DSL be transformed into executable agent-

based vehicle-routing simulations?

RQ 2.1 How can transformations be elaborated that produce semantically

correct, executable simulations from DSL models?

RQ 2.2 How can methods for solving VRPs be implemented and how can they

sensibly be integrated into the simulation platform?

18

CHAPTER 1. INTRODUCTION

RQ 3 How does the usability of the DSL compare to traditional GPL based ap-

proaches?

RQ 3.1 Which general approach can be used to provide evidence for differ-

ences in the usability of the compared approaches?

RQ 3.2 How can possible differences in the usability of the compared ap-

proaches be quantified?

RQ 3.3 Which claims about the respective usability are supported by the

obtained data?

1.9 Structure of the thesis

The rest of this thesis is structured as follows: Chapter 2 places this thesis into

scientific context by discussing related work in terms of simulation based research

into last-mile logistics and vehicle-routing problems. Moreover, it discusses agent-

based modelling approaches related to this thesis and concludes with an overview

on empirical studies in which domain-specific languages were evaluated.

Chapter 3 presents Athos – the DSL developed in the context of the research

project from which this thesis results. In Section 3.1 and Section 3.2 the problem

domain of Athos is investigated and an answer to RQ 1.1 provided. The following

sections Section 3.3 and Section 3.4 further introduce Athos and its structure and

thus lay the foundations that facilitate access to the subsequent language-technology

oriented chapter.

Chapter 4 presents the defining language components of Athos. Section 4.1

introduces the abstract syntax of the language and hence produces answers to

RQ 1.2, and RQ 1.3. Subsequently, Section 4.2 shows some important constraints

discovered in the course of the aforementioned domain analysis. This way, RQ 1.4

is appropriately covered. Section 4.3 provides details on the characteristics of the

concrete syntax that was devised for Athos in order to answer RQ 1.5.

19

CHAPTER 1. INTRODUCTION

RQ 1.6 and RQ 2.1 are addressed in Chapter 5 which elaborates on the intricate

technical details that ensue in any attempt to answer the approached sub-questions.

In Section 5.10 the implementation and integration of an evolutionary algorithm as

part of Athos’ optimisation library is illustrated in order to address RQ 2.2.

The third research question RQ 3 is addressed in Chapter 6 that elaborates on the

preparations that were made in order to conduct a rigorous empirical evaluation of

the Athos DSL. With Section 6.2 to Section 6.7, it shows possible answers addressing

RQ 3.1 and item RQ 3.2. Finally, in Section 7.2.5 the results of the empirical study

are presented in great detail so that RQ 3.3 is thoroughly covered.

20

; Second Chapter <

Related work

The literature review presented in this chapter is divided according to the two

main contributions of this thesis: in the first part of the literature review, Sec-

tion 2.1 provides an overview of literature on ABMS platforms and other tools for

routing optimisation (Section 2.1.1). It also presents studies that use these plat-

forms and tools to answer questions from the of traffic and transport optimisation

domain(Section 2.1.2). In the second part of this literature review, Section 2.2 dis-

cusses research contributions from the field of formal DSL evaluation. It starts out

with the findings of some recent systematic mapping studies (SMSs) (Section 2.2.1)

before it focusses on existing DSL evaluation frameworks (Section 2.2.2). After that,

several reports on conducted DSL evaluations are presented (Section 2.2.3). The

evaluation frameworks and studies are then discussed in Section 2.2.4. Finally,

Section 2.3 displays how the presented literature is linked to this thesis.

2.1 Traffic and transport simulation

2.1.1 Platforms, languages and tools related to traffic and

transport simulation

NetLogo (Seth Tisue and Uri Wilensky, 2004) is the name of both an agent-based

modelling and simulation environment and the modelling language used within

this environment. As such, the NetLogo language is tailored for the application in

21

CHAPTER 2. RELATED WORK

the domain of agent-based modelling. The NetLogo language combines elements

burrowed from the programming languages Logo and Lisp. From the Logo language,

it takes the turtle concept that represents an acting entity capable of roaming the

environment. In contrast to Logo, NetLogo allows the definition of several thousands

of turtles. Turtles move on a grid formed of patches. Both turtles and patches are

considered agents that possess certain attributes and are capable of interaction with

other agents. The language supports the concept of agentsets that allows grouping

and addressing of agents based on arbitrary properties. In addition to that, the

language also features control flow constructs known from procedural programming,

e.g. loops or conditionals.

Seth Tisue and Uri Wilensky (2004) emphasise that a particular strength of the

NetLogo language is in the definition of complex systems that exhibit behavioural

patterns emerging from the actions and interactions of numerous different entities.

A special kind of agent, referred to as the observer, is responsible for conducting the

simulation process.

The NetLogo modelling and simulation environment allows for comfortable model

exploration: users can inspect the state of any agent at any given time. It is also

possible to track and observe the movements of turtles through the course of a

simulation. With its BehaviorSpace tool, the platform also enables users to test

how the model behaves under several different parameter settings. The interface

of the simulation environment is organised in tabs. In the code tab the NetLogo

model code is edited. The editor offers syntax highlighting capabilities that support

model comprehension. In the interface tab, modellers are presented a visualisation

of the NetLogo model. In this tab, modellers can also add additional elements like

buttons, sliders and displays that can be addressed in the NetLogo code and thus

allow monitoring the simulation of the model.

NetLogo is an open platform that offers various possibilities to exchange data

with other applications. It also offers an extension application programming in-

22

CHAPTER 2. RELATED WORK

terface (API) that can be used to extend the NetLogo language with new features

implemented in Java. Another feature of the NetLogo platform is its controlling API

that can be used to programmatically run simulations on NetLogo models.

Seth Tisue and Uri Wilensky (2004) claim that NetLogo offers an easy entry to

ABMS. The NetLogo language certainly facilitates access to several mechanisms

required in agent-based simulations, e.g. asking a set of agents with certain prop-

erties to perform a given action. However, modelling with the NetLogo language –

especially when defining more complex models like the routing of vehicles among

dynamically assigned paths – quickly becomes indistinguishable from common pro-

cedural programming which makes the language difficult to apply for users without

prior programming experience. A similar argument is made by Taillandier et al.

(2019b) who argue that NetLogo models can either only represent rather simple

real-world scenarios or are too complex to be appropriate for non-expert program-

mers. In (Hoffmann et al., 2019a) an Athos model is compared to a corresponding

NetLogo model (in fact the NetLogo code is the result of the transformations applied

by the Athos generator) and it is elaborated why the Athos model is considerably

less complex than its NetLogo equivalent.

MATSim (Balmer et al., 2009) is an agent-based traffic and transport simulation

tool that calculates traffic demand from individual agent plans. In MatSim, each

agent in the population possesses an individual schedule of activities. These activit-

ies take place at different locations in a network comprised of nodes and links. From

the intended activities of all agents the MATSim simulator derives plans that are

enacted, evaluated and modified. This way, the traffic demand of the entire agent

population is calculated based on the individual plans of its constituent parts.

The utility of a plan is defined by application of a utility function. A utility

function awards points to a plan for each performed activity and deducts points for

movements through the network or late arrivals. By application of a co-evolutionary

algorithm plan enactment, plan evaluation and plan modification are repeated until

an equilibrium state is achieved.

23

CHAPTER 2. RELATED WORK

The general process of setting up a MATSim simulation starts with the prepara-

tion of real-world data for the simulator. For this, MATSim provides the concept of

FUSION models that can be reused or newly implemented by modellers. FUSION

models parse real-world data and transform them so that they can be processed

by the MATSim simulator. In the next step, an initial individual demand module

(IIDM) calculates an initial traffic demand for each agent in the population based on

the data from the previous step which can be merged with additional survey data or

data from logit models. In the third phase, the iterative co-evolutionary algorithm

optimises the initial demand which will result in an equilibrium state in which the

average agent utility is stable. In each iteration, the plans are executed, attributed

a utility score and a subset of plans are re-planned.

Balmer et al. (2009) discuss a case study in which the daily traffic in Switzerland

is modelled and simulated with MATSim. The study comprises approximately

24,000 nodes and approximately 60,000 edges as well as 1.7 million facilities on

which up to five activities (home, work, education, shop, leisure) can be performed.

The population of the study consists of 7 million agents that create an aggregated

7 million trips. In the presented case study the MATSim simulator is run on a

machine with eight dual-core CPUs with a clock speed of 2.2 GHz and a memory

capacity of 22 GByte of RAM. With this hardware the MATSim simulator needs

approximately 70 minutes to simulate the traffic flow of an entire day.

VISSIM (Fellendorf and Vortisch, 2010) is a proprietary, micro-level, behaviour-

based traffic simulation software that applies a time-discrete approach. It focuses

on the simulation of urban traffic scenarios and offers an interface for data exchange

with external software applications. Among its intended users are domain-experts

such as traffic engineers and transport planners who are supported by an elabor-

ate graphical user interface (GUI). The software allows multi-modal simulations

including various vehicle types of private and public transport.

The VISSIM simulator is comprised of three plus one building blocks: the first

block contains all aspects related to the network infrastructure like lanes, connectors,

parking lots and traffic light posts; the second block features elements used to

24

CHAPTER 2. RELATED WORK

represent traffic demand, e.g. origin-destination matrices (ODMs) or routes that

vehicles take to get to their destinations; the third block encompasses elements

required to control the network traffic, e.g. the traffic light programs for the traffic

lights found in the first block. The additional building block is responsible for

information output which can take the form of a visualisation of the network or

textual representation of data / information on the state of the network and its

vehicles.

For the definition of the network, VISSIM relies on the concept of links that

are merged by connectors. Links represent roads and just like their real-world

equivalents they comprise a specified number of lanes. Connectors are applied to

join or split links (or their respective lanes). The network built from links and

connectors is further enriched by infrastructure objects like traffic lights (located

at a specific spot) or detectors (covering a given spatial area). For links, there are

mandatory attributes and optional attributes. Mandatory attributes are, for example,

an id or a geo-spatial location. Tolls charged for driving on the road represented by

the link is an example of an optional attribute.

In VISSIM various types of private transport like trucks and cars but also bikes

and pedestrians can be modelled. The system also supports the simulation of public

transport on pre-defined schedules. Each type of transport comes with its own

set of required and optional attributes. To govern the movement of all vehicles.

VISSIM uses micro-level right-of-way determination for which the exact rules are

provided by the modeller (e.g. priority-to-right in absence of yield signs or traffic

lights). Vehicle actuated signal control can be modelled with the vehicle-actuated

programming (VAP) language, a DSL for responsive signal control. The concrete

syntax of the language takes the form of graphical flow charts. VISSIM also supports

optimisation of signal programs.

The VAP language also allows to define dynamic routing for vehicles that adapt

their path through the network to the current traffic situation. To model this kind of

adaptive behaviour, VAP can be used to define conditional routing decision rules. In

addition to the dynamic routing behaviour, VISSIM also allows static association of

25

CHAPTER 2. RELATED WORK

predefined routes to vehicles. It is also possible to populate a simulation with both

vehicles that use dynamic routing and vehicles that follow a predefined route.

Traffic demand can be modelled through ODMs. For this, the network is divided

into several distinct zones and an ODM determines the number of vehicles that

travel from a source zone to a destination zone. The exact places within a zone at

which vehicles start and end their journeys are modelled with parking lots.

The software incorporates a micro-level car-following and lane-changing model

that considers tactical driving behaviour, i.e. drivers do not only base their behaviour

on what is about to happen in the immediate future and in their vicinity; instead they

plan their actions in a way that they deem likely to be beneficial in the intermediate

or long run. This, for example, enables drivers to exhibit zip-merge behaviour in

appropriate situations. Via a social force model, VISSIM also allows the simulation

of pedestrian movement that can also interact with motorised traffic.

VISSIM offers sophisticated visualisation features that allow two- and three-

dimensional model exploration. The level of detail of textures applied to the visu-

alised elements can be adapted as required. Visualisations can be persisted in

different formats. In addition to subjective model exploration, it is also possible to

use several metrics referred to as measures of effectiveness (MOEs). Travel time or

vehicle speed are two examples of commonly used MOEs. The granularity of these

MOEs can be determined by the modeller, from an individual vehicle, to a given type

to all vehicles in the simulation.

VISSIM uses Microsoft’s component object model (COM) as an interface to ad-

ditional applications. An example in which VISSIM interacts with other software

applications is presented in (Hirschmann et al., 2010). The work shows how VISSIM

can be used to supply data on vehicle speed trajectories to the passenger car and

heavy-duty emission model (PHEM) (Hausberger, 2003) in order to simulate vehicle-

emissions based on real-world emissions. The work also mentions an interaction

between an adaptive traffic control system (MOTION, cf., e.g. (Busch and Kruse,

2001)) and the VISSIM simulator.

26

CHAPTER 2. RELATED WORK

Krajzewicz et al. (2012) present an open-source suite for traffic simulation called

SUMO (Simulation of Urban MObility). The SUMO suite offers the possibility to

run traffic simulations at a microscopic level of detail. Development of this platform

started in 2001 with the intention to establish a platform capable of simulating

large-scale urban models. Due to considerable development effort SUMO today can

be considered a highly developed fully-fledged extensible traffic simulation suite.

The SUMO suite offers several applications (tools, scripts and plug-ins) that

enable or support the design, execution and exploration of traffic simulations. A

coarse overview on these tools and extensions as well as on projects that leverage

these tools is provided by the authors. At the heart of the SUMO suite is the sumo

application that enables users to actually simulate (execute) the traffic models built

with the support of the other SUMO plug-ins.

Based on the purpose of the respective application, the authors divide the applic-

ations provided by the SUMO platform into three different groups. The first group

consists of applications that support the creation of road networks; the second group

comprises applications leveraged to model traffic demand; the third group features

applications used to execute the modelled simulations.

In SUMO, traffic networks are represented as graphs built of nodes and arcs.

Nodes are used to represent intersections of a road network and edges are used

to represent the roads of the network. Among other attributes, edges also feature

right-of-way rules or traffic-lights. Edges comprise a number of lanes each with its

own specification of allowed vehicle types and vehicle speeds.

As SUMO allows traffic simulation at a microscopic level, each vehicle of a

simulation can be individually modelled and addressed. In order to model a vehicle,

SUMO requires the definition of a vehicle id, the specification of a route that the

vehicle follows, and the indication of a point in time at which the vehicle commences

the specified tour. It is also possible to provide information of a higher level of

granularity: SUMO allows an exact specification of the lanes to use on the roads of

the path. Moreover, SUMO supports the concept of vehicle types that can be assigned

to individual vehicle instances.

27

CHAPTER 2. RELATED WORK

SUMO also provides applications to create multi-modal traffic simulations. In

these simulations, persons perform a series of dependant trips. Each trip is associ-

ated with a certain mode of transportation so that the list of trips of a given person

can comprise several different transportation modes. The trips are dependant insofar

as delays in earlier trips affect the feasibility of successive trips. In other words, if

an event leads to delays that have a person missing a connection mode of transport,

it becomes stranded and cannot complete the list of trips. As the authors mention,

currently SUMO does not allow modelling of alternative (or fall-back) strategies for

persons who missed a connecting trip.

The specification of traffic demand which comprises tens of thousands of vehicles

is one problem a simulation suite like SUMO needs to address. An often used mean

to this end are ODMs. However, ODMs often are defined at a level of detail that is

insufficient for microscopic simulations. For this reason, SUMO offers several tools

that allow users to disassemble, modify and reassemble ODMs so that they feature

all the details necessary to be applied within a SUMO simulation. Another way to

specify traffic demands in SUMO is the definition of sources and sinks inside the

network. The authors emphasise that this approach is often necessary due to the

lack of publicly available data on real-world traffic demands.

SUMO runs simulations in discrete time steps. The sumo simulation application

uses a space continuous model that stores the lane a vehicle is currently traversing

together with the distance the respective vehicle has travelled on that lane. In

order to simulate vehicle movement, the authors state that a car-following model is

applied. Simulations can either be run with a GUI that visualises the simulation or

in a headless mode. SUMO’s GUI also offers some features for model exploration,

e.g. it is possible to manually change pre-defined traffic-light programs in the course

of a simulation run.

The SUMO software is applied to investigate several different problems within

the field of traffic research. According to the authors, current vehicle commu-

nications, or vehicle-to-everything (V2X) communication, is the most important

application area of SUMO. V2X is a term for technologies that allow communication

28

CHAPTER 2. RELATED WORK

of vehicles to other vehicles and acting entities within the network as well as the

infrastructure of the network. The authors state that in this line of application

SUMO requires the services of a middleware that links and synchronises SUMO

with software responsible for communication simulation. The authors emphasize

that SUMO offers the interfaces necessary for interoperability.

Another area in which SUMO is applied is route determination analysis in the

context of emerging congestion effects, a field that has gained additional interest

due to the increasing pervasion of routing devices capable of adapting to the current

traffic situation in a given road network. The evaluation of traffic light programs and

traffic surveillance systems are two more areas of application in which researchers

resort to running simulations on the SUMO platform.

The authors mention a series of features that were under development at the

time the article was written. Among these features is the integration of bicycles in

a way that they affect road traffic depending on the road infrastructure. Another

feature the authors aim to implement is a module for the integration of real world

time tables so that modelling of public transport is facilitated. The authors stress

that they intend to establish SUMO as a suite used in academia for the evaluation

and investigation of models and algorithms pertaining to traffic simulation and

traffic management.

Taillandier et al. (2019a) present GAMA, an ABMS platform. They especially

focus on GAML and how proficiently the GAMA platform handles spatial modelling

aspects. With GAML, GAMA possesses a DSL specifically developed for this platform.

GAMA is a complete integrated development environment (IDE) based upon the

Eclipse framework1 and consisting of several plug-ins and features that together

form a coherent simulation and modelling platform. The authors also point out

that with its GAML DSL the platform allows the integration, visualisation and

agentification (i.e. create agents from) numerous data persisted in several different

formats.
1https://www.eclipse.org/

29

https://www.eclipse.org/

CHAPTER 2. RELATED WORK

According to the authors, GAMA was invented to overcome the shortcomings of

other ABMS platforms like NetLogo2, Repast3 or CORMAS4. The authors claim that

these platforms either allow only the modelling of comparably small models without

too much detail or quickly become too intricate to be used by modellers who do not

have a solid background in the application of GPLs. Another problem the authors

point to is that many ABMS platforms offer only weak or even no support for the

integration of geographic information systems (GIS) data. In GAMA, the authors

emphasize, the integration (and agentification) of GIS data is well supported by the

platform.

The GAMA platform is supposed to combine the strengths of its competitors. For

example, the authors mention the capability of NetLogo to allow modellers to quickly

switch between a modelling and a simulation view. The authors express their view

that this is one of NetLogo’s key features since modellers receive immediate feedback

on the effects their changes to the model have on the simulation. GAMA also enables

modellers to quickly modify and execute models and it even surpasses NetLogo’s

capabilities by offering sophisticated features like multiple visualisations of the

same model or multi-simulations that allow to run and visualise several simulations

in parallel.

As the newest features introduced in the presented version (1.8) of GAMA, the

authors mention a set of newly introduced data types supported by the GAML

modelling language which drives the specification of models for the GAMA platform.

Other new features presented by the authors are the support of new data formats

as well as the support of additional agent architectures. The authors also note

that the platform now is capable of running different experiments, i.e. differently

parameterised simulations, in parallel.
2https://ccl.northwestern.edu/netlogo/
3https://repast.github.io/
4http://cormas.cirad.fr/indexeng.htm

30

https://ccl.northwestern.edu/netlogo/
https://repast.github.io/
http://cormas.cirad.fr/indexeng.htm

CHAPTER 2. RELATED WORK

The GAML DSL adopts an agent-oriented paradigm, i.e. every active element

in a simulation is an agent5. The language also borrows concepts from the object-

oriented paradigm. Two key concepts of GAML are agents and species which assume

similar roles as objects and classes do in object-oriented languages. Similar to what

classes do for their objects, species define certain properties that each agent of the

respective species possesses. Unlike classes, however, a species can also define

properties for the set of all its instances, i.e. a species can determine properties of

the population of its agents. A species can have a parent species that passes down its

properties to its children just like superclasses do to their subclasses. While object-

oriented languages also know the concept of nested classes (or inner classes), the

semantics of a species nested in another macro species is different, since it is closer

to the concept of aggregation (or composition) found in the object-oriented paradigm.

The authors also mention a resemblance of the modelling language adopted by the

NetLogo platform but stress that it introduces additional sophisticated programming

concepts like inheritance or the notion of nested agency that spans multiple levels.

Depending on the language the platform uses for the specification of agent-based

models, the authors group existing platforms for the specification and execution of

agent-based simulations into three different categories. The first category comprises

platforms that rely on GPLs for model specification (e.g. Repast6 or Jade7). The

second category features platforms whose models are specified by means of a textual

DSL tailored towards the agent-based simulation domain (e.g. the presented GAMA

platform). Finally, the third category offers platforms underpinned by graphical

DSLs (e.g. AgentSheets8).

Taillandier et al. (2019b) present a tool for the GAMA platform that allows

for a graphical definition of agent-based simulation models. With the presented

tool, the authors aim to integrate participatory modelling features into the GAMA
5Since GAML agentifies nearly all relevant aspects of a simulation, simulations themselves

are considered agents (i.e. instances) of the model species. Experiments are agents of the species
experiment plan which (quite confusingly) has an abstract parent species called experiment.

6https://repast.github.io/
7https://jade.tilab.com/
8https://agentsheets.com/

31

https://repast.github.io/
https://jade.tilab.com/

CHAPTER 2. RELATED WORK

platform. These participatory features are supposed to facilitate a collaborative

model development among several stakeholders. In the eyes of the authors, it is this

lack of stakeholder participation in the model-development and exploration process

that prevents ABM – despite offering a vast body of literature – from assuming a

more prominent role in decision-making processes of all kind.

The authors state that their objective was to design an easy-to-use graphical

modelling language for the definition of descriptive agent-based models. The authors

list four features that they consider key characteristics: availability of elements

common in the object-oriented paradigm like inheritance and composition, distinc-

tion between possible and intended behaviour, modelling of multiple environmental

layers (levels), and language elements that allow different visualisations of a model.

At the same time, they intended their conceptual language to remain close to

the implementational level. For this reason, the authors decided to leverage the

GAMA meta-model as the meta-model for their language. This also allows for

a bidirectional mapping between their graphical modelling language and GAML,

the textual language supporting the GAMA platform, so that their models can

automatically be transformed into GAML-models and vice versa. With the presented

tool, modellers first create a conceptual model with a concrete syntax whose elements

closely resemble those found in entity-relationship and unified modelling language

(UML) diagrams. Subsequently, the tool uses display dialogues to obtain further

information on the properties of the modelled elements.

The authors emphasize that the graphical representation of models provides

benefits in terms of communication among the various model stakeholders. They

also stress that their decision to base their graphical language on the GAMA meta-

model keeps the models close to the implementational level since GAML-models can

directly be executed within the GAMA platform which also entails the possibility

to directly execute and tests their models to see the actual effects of changes made

to the model. In addition to that, the authors claim that a transition from their

graphical models to the GAMA language and vice versa can be done with little

cognitive effort.

32

CHAPTER 2. RELATED WORK

In the final part of the paper, the authors shift their focus from participatory

modelling to participatory simulation, which they define as the final activity in the

modelling process in which stakeholders are given the chance to explore the model in

an interactive way. They explain how GAMA – the target platform of their modelling

language – supports visualisation, interaction, and connectivity which they deem

key requirements for sophisticated participatory simulation.

In terms of user interaction, GAMA possesses an event-layer which offers users

to interact with the simulation through mouse-movements and clicks in order to

modify different aspects of a running simulation. User-commands are pre-defined by

the modeller and activated by the user in the course of a running simulation. Based

on the support of various network protocols, simulations run on the GAMA platform

can exchange data with other programs (including other GAMA simulations run on

different machines).

Philip Welch (2017) discusses the challenges and possible solutions of solving

dynamic VRPs. The authors draw their experience from the development of a VRP

planning engine named ODL live. The fact that a dynamic VRP features one or more

aspects that are not known from the start (e.g. additional customers that demand

to be timely serviced when the driver/vehicle has already set out for the tour or

changing traffic conditions) requires computing a new solution whenever such new

information becomes known.

The authors stress that a naive recalculation from scratch is too time consuming

to be an acceptable approach for real-world systems that have to present solutions

for changed situations within seconds. Instead, the authors have taken an approach

that incrementally builds a solution for the new problem using the solution for the

old problem as a vantage point. The authors state that they modified Graphhopper9

and JSprit10 in a way that now allows to heuristically solve even larger problems

consisting of up to 1000 services within very few seconds. The presented approach is

based on effectively reusing obsolete solutions.
9https://www.graphhopper.com

10https://jsprit.github.io

33

https://www.graphhopper.com
https://jsprit.github.io

CHAPTER 2. RELATED WORK

The authors also explain that their approach converts a dynamic problem into a

static problem before applying the incremental optimisation approach. The authors

then go on to list a set of modifications they had to apply on the JSprit application

library in order to be able to obtain solutions for the underlying real-world problem

(e.g. softened time-window constraints, even-distribution of tasks among the fleet

of vehicles). They also report on a simulator they developed in order to test the

ODL Live planning engine. Based on historic data, the simulator emulates the

occurrence of new jobs throughout the given simulation period and also simulates

the vehicles’ actions and movements. The simulator uses the planning engine

to obtain solutions that include the new jobs under consideration of the current

simulation state (vehicle position, performed deliveries etc.). The authors place

special emphasis on the importance of the capability to perform realistic offline tests

on an optimisation system.

2.1.2 Simulation studies related to traffic and transport

Balmer et al. (2009) discuss a case study in which the daily traffic in Switzerland is

modelled and simulated with MATSim. The study comprises approximately 24,000

nodes and approximately 60,000 edges as well as 1.7 million facilities on which

up to five activities (home, work, education, shop, leisure) can be performed. The

population of the study consists of 7 million agents that create an aggregated 7

million trips. Executed on a machine with eight dual-core CPUs with a clock speed

of 2.2 GHz and a memory capacity of 22 GByte of RAM, the the MATSim simulator

needs approximately 70 minutes to simulate the traffic flow for for a whole in the

case study.

Quak and Kin (2020) investigated how different organisational strategies for last

mile deliveries might cope with the increased demands in 2030 in terms of number

of deployed vehicles, total distance covered, generated CO2 emissions, and incurred

costs. For their investigation, the authors processed real-world data from companies

dealing with the delivery of groceries or parcels (either business-to-consumer (B2C)

34

CHAPTER 2. RELATED WORK

or business-to-business (B2B)) in the area of Rotterdam – The Hague. In their

calculation on the future demand for delivery services, they assumed a compound

annual growth rate (CAGR) of 10 %.

The authors investigated four different scenarios in which delivery companies

incorporated current trends in LML to different extents. The base scenario assumed

the statutory implementation of zero emission zones (ZEZs) in the centres of larger

cities. In these zones, only electric vehicles (EVs) were allowed to perform deliveries.

However, outside of these ZEZs, the scenario presumed the deployment of conven-

tional delivery vehicles. Half of all parcel deliveries in city centres were brought

to collection points. In order to incorporate the benefits of technical advancements

(e.g. smart lockers), the authors also assumed a reduction of stopping time by 20 %.

The electrification scenario was nearly identical to the base scenario except that

all vehicles were electric. In the consolidation scenario the difference to the base

scenario was that all deliveries were brought to collection points from where they

were either fetched by customers or delivered by vehicles manned with a driver-

helper. The microhubs scenario also operated under the assumption that deliveries

were only made to collection points. However, in this scenario a greater number and

different types of collection points were premised.

The authors report that in the base scenario, an increase in CO2 emissions

could be observed. The authors explain that this was because the substitution

of conventional vehicles by EVs in city centres could not compensate the vastly

increased number of deliveries of which the vast majority was still carried out

by non-electric vehicles. In the electrification scenario, CO2 emissions induced by

delivery vehicles were reduced to zero. The deployment of only EVs brought about

an additional advantage: Since there were no more conventional vehicles that had

to travel extra-mileage in order to avoid city centres, the total distance covered by

all vehicles was reduced in the electrification scenario. The consolidation scenario

reduced the total distance covered to a minimum. The authors also report that this

scenario required less vehicles than the aforementioned scenarios, though they point

out that this scenario heavily relies on the usage of trucks that emit higher levels

35

CHAPTER 2. RELATED WORK

of CO2 than vans applied in the base scenario. The microhub scenario also showed

a reduction in CO2 emissions in comparison to the base scenario though the total

distance covered by all vehicles is higher than in the consolidation scenario. In this

scenario, the authors also compared the usage of trucks to the deployment of vans

for the delivery of parcels to the collection points.The authors found that trucks

proved to be more efficient than vans. However, the authors do not generalise this

result. Instead they emphasize that the more efficient vehicle type depends on the

quantity of parcels to be delivered.

Regarding the costs incurred in the different scenarios, the authors state that

for grocery deliveries the electrification and consolidation scenarios turned out to

be the most expensive approaches. For B2B parcel logistics, only small differences

in incurred costs are reported. For B2C parcel deliveries, the base scenario and the

electrification scenario are reported to result in the highest costs.

2.2 Literature on empirical evaluations of DSLs

2.2.1 Systematic mapping studies on DSLs

Do Nascimento et al. (2012) report on a SMS they conducted for an overview on the

state-of-the art in DSL development. Their focus was on identifying the domains

and the extent to which DSLs are applied. Moreover, they investigated which

tools, processes, methods and techniques were most often applied in the process of

DSL development. Finally, they also categorize publications according to different

facets. One facet was the research class of the publication, e.g. ‘validation research’

or ‘solution proposals’. A very interesting finding of the study is that while 1142

publications were considered ‘Solution Proposals’ only 215 and 201 publications

were classified as ‘evaluation research’ and ‘validation research’, respectively. This

is in line with claims of insufficient (and idiosyncratic) efforts in terms of evaluating

proposed DSLs. A general finding of the study is that from 2005 to 2010 the number

of publications reporting on a DSL related topic dramatically increased.

36

CHAPTER 2. RELATED WORK

A very current study is presented by Poltronieri et al. (2021). The authors present

a SLR in which they investigate whether usability evaluation approaches are still

a topic of interest to SLEs. Therefore, the authors set out to update a previously

conducted SLR on the topic (Poltronieri Rodrigues et al., 2017). In their study, they

considered papers published from June 2016 to September 2020 that dealt with the

evaluation of DSLs.

The authors find that usability evaluation of DSLs is a topic that draws con-

siderable interest among SLEs. The importance of a proper usability evaluation

was stressed in numerous studies investigated in the presented SLR. The authors

state that in comparison to the prior SLR interest among researchers in the area

even appears to have increased. Regarding the techniques employed by evaluation

conductors, the number of studies who reported on the usage of quantitative data

was nearly identical to those who stated to have used qualitative data. Quite a few

studies even used both quantitative and qualitative data. The authors also report

that most of the considered evaluation studies used a questionnaire based approach

to obtain the data of interest. Only a few studies applied instruments such as logs

or audio/video recordings.

The authors state that the usability evaluation of a DSL can serve to reveal

problems which end users of the language might experience upon application of the

language. Thus, a thorough usability evaluation can help to improve a DSL and

ensure user acceptance and in conjunction the success of the language. However,

the authors found that reports on research studies only scarcely broach the topic of

discovered deficiencies of the language or problems encountered in the course of the

applied evaluation process.

The authors summarise that in the period covered by their SLR usability eval-

uation even appeared to have drawn a substantially increased amount of interest

among DSL researchers. One of the main shortcomings identified by the authors

is that most of the inspected publications bypassed on a thourough investigation

of limitations of their DSLs in terms of usability. On a similar note, many studies

elided a discussion on the shortcomings observed during language evaluation. The

37

CHAPTER 2. RELATED WORK

authors stress that even though evaluation conductors showed an increased interest

in formal and standardised evaluation techniques, this topic remains one of the

issues that demand further investigation since there are still no definitive standards

that provide guidance to SLEs in the evaluation of their languages. The authors also

point out that most evaluation studies do not apply existing usability evaluation

frameworks.

2.2.2 DSL evaluation frameworks

Barišic et al. (2014) present a meta-model for the domain of empirical DSL evalu-

ation. The authors thus define the core concepts and relations of the empirical DSL

evaluation domain. The meta-model can be instantiated in order to analyse or pre-

pare a DSL evaluation in a systemised way. The main contribution of the presented

work is that by instantiation of the the meta-model SLEs are enabled to build a

coherent body of knowledge. Drawing general conclusions from the accumulated

knowledge gathered in this body of knowledge rather than from single studies allows

for stronger claims and increased confidence in the obtained results.

To demonstrate the instantiation of their meta-model, the authors present an

example in which they instantiate their meta-model to classify an evaluation study

conducted by Kosar et al. In addition, they present an overview of three addi-

tional empirical evaluations and discuss some possible conclusions supported by

commonalities of the presented studies.

Kahraman and Bilgen (2015) postulate a qualitative evaluation framework that

evaluates a DSL in terms of its achieved success among its stakeholders. Their

presented framework for qualitative assessment of DSLs (FQAD) was conceived

to provide guidance for DSL developers towards a rigorous qualitative language

assessment that determines the success of the language in consideration of what

stakeholders deem beneficial.

In a first step, the authors extract from the literature (most prominently the

ISO/IEC 25010:2011 standard) a set of 11 language quality characteristics which

38

CHAPTER 2. RELATED WORK

might be desirable for various stakeholders. The authors also partition every char-

acteristic into several sub-characteristics or quality measures11 and provide a com-

prehensive description for all (sub-)characteristics. It is important to note that

the authors acknowledge the possible existence of trade-offs between various (sub-

)characteristics and thus point out the impracticality of developing a language that

completely fulfils every single (sub-)characteristic.

Based on these characteristics, the authors define a formal DSL evaluation

process. In this process, various stakeholders can assume the role of language

evaluators. Each evaluator assigns an importance degree to each of the quality

characteristics. The importance degree assigned to a quality characteristic determ-

ines the minimum support level its associated quality measures must fulfil. The

evaluator then goes on and evaluates the language by attributing an actual support

level to all quality measures associated to characteristics that were rated mandatory

or desirable. Finally, the evaluator compares the minimum required support level

to the actual support level of these quality measures. Depending on whether the

language exceeds, fulfils or fails to fulfil these minimum requirements, the success

level of the language is determined as either incomplete, satisfactory or effective.

The work also features two case studies in which the FQAD framework was

applied to evaluate two different DSLs from a military domain. In both case studies,

participants were asked to perform an evaluation of the respective DSL. Subsequent

to the application of FQAD, participants were asked whether they 1) were able

to sensibly use the FQAD framework, 2) found the framework beneficial in the

assessment of a DSL, and 3) considered the framework an improvement over hitherto

existing approaches. The authors explain that the first case study was of exploratory

nature and its main purpose was to gain the necessary information to establish a

stable12 set of quality characteristics. In the second case study the authors performed

the actual validation of the first stable version of their framework.
11While in Kahraman and Bilgen (2015) the authors mostly use the terms characteristic and

sub-characteristic, Alaca et al. (2021) who adopt large part of this framework use the terms quality
characteristic and quality measure. This thesis follows Alaca et al. (2021) since the former terminology
better conveys the function the respective concepts have in the framework.

12The authors speak of finalizing the set of quality characteristics, however, even the finalized
version is subjected to further optimisation and thus change.

39

CHAPTER 2. RELATED WORK

The authors summarise that the five participants of the first case study did not

report on encountering any major problems in the application of the framework. In

general, participants deemed the framework useful and an improvement over their

current method of evaluation. The first study led to the introduction of spreadsheets

to support DSL assessment and also some changes in the terminology and more

precise descriptions of quality measures. The resulting stable version was then used

in the second case study. The presented results show that the three participants

provided positive feedback on the applicability of the framework and its usefulness

but also provided constructive criticism that motivated the authors to restructure

some quality characteristics and quality measures. Following a participant’s sug-

gestion, the authors also discuss the benefits of applying the framework at the very

beginning of the DSL development process to help language developers focussing on

those language aspects that are important to their language’s stakeholders.

Challenger et al. (2016) present a language evaluation framework specifically

designed for DSLs from the domain of multi-agent systems (MASs). The presented

framework features three dimensions: a language dimension and an execution

dimension that are both of quantitative nature and also a quality dimension which

evaluates a language in a qualitative manner. Each dimension comprises two sub-

dimensions in which evaluation criteria are defined. The language dimension, for

example, is divided into the language elements and model transformations sub-

dimensions. The former defines the number of abstract and concrete syntax elements

as well as the number of constraints (static semantics) as evaluation criteria while the

evaluation criteria of the latter is the respective number of model-to-model (M2M)

and model-to-text (M2T) transformations.

The framework of Challenger et al. (2016) is further refined and extended by

the AgentDSM-Eval framework presented by Alaca et al. (2021). At the heart of

this framework is an online evaluation tool which offers a series of features that

support language evaluation. To evaluate their language, MAS DSML developers

have to register their language and provide a description of its meta model. This

40

CHAPTER 2. RELATED WORK

meta-model is then semi-automatically matched against a reference meta-model.

From this data the tool can provide insight on the domain coverage of the evaluated

language.

DSL developers are required to develop a set of case studies and upload a

description for each case study. MAS developers who assume the role of language

evaluators then download and work through each case study. It is important that

evaluators track the time they require for each development phase. At the end of

each case study, evaluators upload the measured times together with their DSML

programs, the code generated from these programs, and the final code which was

completed by manual code additions that could not be generated. To allow for a

qualitative evaluation, evaluators have to rate several quality measures (partly

adopted from the FQAD framework of Kahraman and Bilgen (2015)) on a five-point

Likert scale.

Based on the provided data, the tool automatically calculates the values for the

measures defined in the AgentDSM-Eval framework. Via its graphical interface,

the tool provides averaged information on the time participants required for each

development phase, the ratio of generated to manually written code, and the ratings

received for the quality measures. As a unique feature, the tool also offers insight on

how often each meta-model element was actually used by MAS developers. Each of

these results is presented on a per-case study and also on an overall basis.

2.2.3 Evaluation studies on DSLs

2.2.3.1 Evaluations related to the concrete syntax of DSLs

Meliá et al. (2016) conducted a quasi experiment among 86 participants in order

to determine how graphical and textual concrete syntaxes for a domain-modelling

language differ in their impact on developers’ effectiveness, efficiency, and conten-

tedness with the language in the context of maintenance tasks. Participants were

third-year software developers enrolled at the University of Alicante. The authors

41

CHAPTER 2. RELATED WORK

centred their experiment around the analysability and maintainability of models.

According to the authors, these are the aspects the chosen type of concrete syntax

has the most direct impact on.

For their experiment, the authors defined domain models for two different applic-

ations (a course-managing and a ticket-selling system). The domain models of the

two applications were defined both with a textual and a graphical concrete syntax

that were based on the exact same meta-model (abstract syntax). Participants were

supposed to perform two different types of tasks: analysability tasks, in which they

had to identify and correct errors in the domain model and modification tasks, in

which participants had to adapt the domain-model according to given instructions.

For each domain the authors defined five analysability tasks and five modifiability

tasks for each notation type . Every participant was assigned to one of these two

domains. In both domains, half of the participants started with the graphical nota-

tion and finished with the textual notation while the other half used the notations

in reverse order.

The authors used the OOH4RIA (Meliá et al., 2008) approach which offers both a

textual as well as a graphical concrete syntax for the same abstract syntax. Both

concrete syntaxes are supported by a similar tooling. The authors took care that in

their experiment the support offered by the IDE was nearly identical. This way, the

authors were able to ensure that deviations in the results for each type of notation

were grounded in the nature of the respective type of syntax and not in some external

factor.

In their results, the authors report on two metrics with a statistically significant

deviation in participants’ performance that both are in favour of the textual syntax:

in terms of analysability coverage (i.e. the portion of errors that a participant

correctly identified), participants detected 73.1 % of all errors with the textual

concrete syntax compared to 65.9 % with the graphical notation. The other metric in

which participants exhibited a significantly better performance was modifiability

efficiency (i.e. the number of correctly solved modification tasks per hour): with the

textual syntax, participants (in theory) were able to solve 20.39 modification tasks

42

CHAPTER 2. RELATED WORK

in an hour, with the graphical syntax participants (in theory) could only execute

14.59 modification tasks per hour. The authors also note that the numbers for all

other metrics related to participants’ objective performance were also in favour of

the textual notation, though not statistically significant and in some cases only

marginally.

In the study, participants were also asked to assess their own performance with

the two different notations. Pertaining to participants’ perceived performance, the

results do not show any metric for which participants indicated in a statistically sig-

nificant way that their own performance was better with either of the two approaches.

The authors also measured participants’ satisfaction with the two notations. The

authors found that even though the actual performance with the textual syntax

was better, participants showed a slightly higher satisfaction with the graphical

approach.

From their results, the authors conclude that even though the textual notation

showed to be advantageous in some objectively measured aspects, the observed

benefits might not warrant the cost and effort caused by a change of the concrete

syntax of a language used in a software project. The authors also stress that this

is especially true in light of the higher level of satisfaction that is likely to be

concomitant with the graphical notation.

Cachero et al. (2019) report on a study they conducted to compare the effect of a

graphical and a textual concrete syntax on programmers’ effectiveness, efficiency

and productivity. For this, the authors conducted a quasi-experiment among 127

participants from which four groups were formed. Each group was assigned a

distinct combination of concrete syntax to use and task to perform. It is important

to note that the authors chose a modelling language that offered both a textual and

also a graphical concrete syntax to encode a domain model. This way, the authors

were able to ensure that differences in the outcome were not rooted in differences

of the meta-models represented/encoded by the compared concrete syntaxes. The

authors measured the percentage of several correctly defined domain-model elements

43

CHAPTER 2. RELATED WORK

like attributes, relations, or cardinality definitions (effectiveness). In addition, the

authors also counted the time participants required to complete their respective

task (efficiency) and also put both in relation (productivity).

With their results, the authors are able to statistically prove that programmers’

performance significantly depends on the applied form of concrete syntax. Their

presented analysis of the merged data obtained for both tasks reveals that pro-

grammers were significantly more efficient in all subcategories (correctly defined

attributes, operations, relations, and cardinalities) with the graphical concrete syn-

tax. Moreover, participants that leveraged the graphical syntax were significantly

faster than their peers who used the textual syntax. However, the authors also

conclude that their results cannot be generalised to notations different from the

ones they compared and that the decision of whether to use a graphical or a textual

concrete syntax must always be made in consideration of the task to be addressed

by the language.

Finally, the authors embark on explaining their results in the context of the

cognitive dimensions of notations framework (CDNF). In a first step, they determine

a subset of dimensions that are strongly affected by the concrete syntax of a language.

Having presented the respective dimensions, they discuss how the two types of

concrete syntaxes applied in their experiments affected each of the relevant cognitive

dimensions. The authors consider the graphical notation to be advantageous in

four out of seven relevant dimensions. In two dimensions they do not see distinct

advantages for either of the two notations and in one dimension they deem the

textual notation preferable.

One of the key dimensions the authors consider responsible for their results is

hard mental operations. The authors explain that the graphical notation causes

considerably less effort when determining the relations of various entities in a model

than its textual counterpart which actually hampers recognition of these relations.

The authors also present error proneness as a dimension with substantial impact on

their results. In this dimension, the graphical syntax has the advantage of being an

extension to UML class diagrams that are familiar to most software developers. By

44

CHAPTER 2. RELATED WORK

contrast, the textual syntax was new to the study participants and hence they were

more likely to introduce mistakes with the textual syntax. The only dimension the

authors regard as being in favour of the textual syntax is secondary notation since

the graphical notation also relies on some textual elements whereas the textual

model is completely self-sufficient.

2.2.3.2 Evaluation studies of specific DSLs

Ewais and de Troyer (2014) present an empirical evaluation on three coherent

graphical DSLs for the specification of adaptive three-dimensional virtual learning

environments (VLEs). The three languages define different aspects of a VLE: The

pedagogical modelling language (PML) is used to define the relations among the

pedagogical entities of the targeted learning topic. For this purpose, PML features

pedagogical relationship types (PRTs) to define a directed relation between two

learning concepts. PRTs comprise pedagogical update rules (PURs) that are triggered

when the user accesses the source learning concept of the PRT and a set of modelled

conditions is met. PRTs are used to modify user model data as well as attributes of

the learning concepts. Learning concepts are grouped in topics.

The adaptive storyline language (ASL) is used to model a path of topics that the

learner is supposed to follow throughout the VLE. Storyline adaptation rules (SARs)

are the linking elements used to define a directed relation between two topics. SARs

allow the definition of a condition that must be met to advance from the source topic

to the target topic. They also allow the definition of adaptations that modify learning

concepts related to the respective target topic.

The adaptive topic language (ATL) is used to model adaptations within a given

topic. In order to do so, ATL provides topic adaptation rules (TARs) as a directed

link between two learning concepts. TARs are activated upon the occurrence of a

specific event defined by the modeller. When a TAR has been activated, a guard

condition must be met in order to execute the action part of the TAR in which the

adaptations of the target learning concepts are specified.

45

CHAPTER 2. RELATED WORK

In their pivot evaluation study, the authors intended to evaluate the usability and

learnability of the three graphical modelling languages. The authors also emphasise

their interest in the reception of feedback on how to improve the language. The

study was conducted among 14 participants with a background in computer science.

Though most participants had experience with some kind of software modelling

technique, most participants were unfamiliar with the domain of 3D or virtual

reality (VR) applications. Participants first were given an introduction to the three

languages. After that, participants were asked to model a 3D VLE with the three

languages. It is important to note that participants had to perform this task with

pen and paper only, i.e. they did not have any language editor support. Finally,

participants filled in a questionnaire that featured demographical questions as well

as open and closed questions on their experience with and opinion on the three

modelling languages. Closed questions were to be answered with a five-point Likert

scale.

Closed questions that targeted similar language aspects were grouped into

categories, e.g. questions regarding the appropriateness of the languages or the

languages’ ease of use. Based on the obtained answers, the authors associated

each question with a final result that could either be ‘good’, ‘medium’ or ‘poor’.

The authors report to have obtained mostly positive and some neutral feedback

from study participants. According to the authors, participants expressed that they

regarded the languages as appropriate for the definition of 3D VLEs and felt that

their expectations were met. Most participants also regarded the languages as

‘self descriptive’ and ‘easy-to-use’. The authors also report that questions in regard

to the languages’ ‘suitability for learning’ achieved only a ‘neutral’ result. The

understandability of the predefined PRTs used in the PMLs is reported to be a major

concern among participants. In their report on the acceptability of the languages,

the authors report that four of seven questions concerned with the ‘perceived ease of

use’ received a ‘good’ score, whereas three questions received a ‘neutral’ score.

With regard to the open questions, the authors state that participants welcomed

that the modelling approach used three different languages for the definition of

46

CHAPTER 2. RELATED WORK

VLEs. It is also reported that participants expressed their appreciation for the

languages’ ‘ease of use’ and ‘consistency’. Regarding specific language features, eight

participants lauded that storyline adaptation rules (SARs) of the adaptive storyline

language (ASL) facilitated the modelling of the storyline and four participants

emphasised their appreciation for the mechanisms of the topic adaptation rules

(TARs). On the other hand, there were also four participants who disliked how

TARs were to be applied. Six participants are reported to depreciate the distinction

between the adaptive story line (to be modelled with the ASL) and adaptive topics

(to be modelled with the ATL). Finally, the authors report that they received both

valuable feedback on how to improve the languages and various suggestions on how

to implement the tooling for the languages.

In (de Sousa and da Silva, 2018), de Sousa and da Silva present a usability

evaluation on DSL3S. DSL3S is a DSML designed for the development of spatial

simulations. The language is part of an MDSD approach that generates executable

agent-based simulations from DSL3S models. The implementation of the language

was done by definition of a UML profile which adapts the UML for application in

specific domains. DSL3S hence is a set of stereotypes and associated tag definitions

for core concepts from the domain of spatial simulations (e.g. spatial variable,

animat, or operation). DSL3S is supported by a tool stack which features Papyrus13

as an editor, Acceleo14 as a model-to-code transformation framework, and MASON15

as the core library of the target platform.

At the heart of the evaluation study were two distinct artefacts: the first artefact

was a guide that comprised 34 steps which resulted in the creation of a rudimentary

predator-prey simulation. The steps started with a description of how to install

the tools and then went on to show the set up of a project and the creation of the

model for the simulation. The second artifact was a questionnaire which comprised

three categories each featuring four questions. The first category dealt with DSL3s,

the second category focused on the tool stack, and the third category targeted the
13https://www.eclipse.org/papyrus/
14https://www.eclipse.org/acceleo/
15https://cs.gmu.edu/~eclab/projects/mason/

47

https://www.eclipse.org/papyrus/
https://www.eclipse.org/acceleo/
https://cs.gmu.edu/~eclab/projects/mason/

CHAPTER 2. RELATED WORK

general MDSD approach. All questions asked for a rating using a five-point Likert

scale. The authors also tracked the profiles of the participants (e.g. knowledge in

computer science or previous experience in the field of computer simulations) and

the progress made within a 50-minute time window.

The authors received mixed results regarding the number of concepts used in

DSL3S. The notation of the language was viewed positively but still not top-rated.

The ease of learning, however, was highly appreciated by the participants. Asked for

the suitability of the language for its domain, the participants again chose to only

give mediocre marks. The tool stack was highly rated: Participants gave high marks

to the development environment of the language (i.e. Eclipse and the plug-ins), the

usability of the graphical editor and the development process in general. Especially

high ratings were given to the way the language generates executable code from a

model.

In the matter of how useful participants deemed the applied MDSD approach in

general, participants again gave mediocre marks when asked to what extent DSL3S

can support domain experts with no programming skills in the creation of their own

prototypes. More participants saw potential in the language (or a similar approach)

to improve communication of models to stakeholders. Users seemed not entirely

convinced that DSL3S or generally an MDSD approach might form the basis for a

new standard for spatial simulation modelling. Participants also appeared reluctant

to apply DSL3S or a similar approach for their own projects.

De Sousa and da Silva also searched for deviation in the ratings based on either

a deeper knowledge in the field of computer science or on being more experienced

in the field of simulation. For this, the authors created a sub-group of those who

stated to have received training in computer science and a subgroup of those who did

not. Analogously, they created sub-groups from participants with and without prior

experience in the field of simulation. Between the first sub-groups the only question

that showed significant divergence was the question on whether DSL3S or MDSD

in general could serve as a basis for a standard language for spatial simulations.

Participants who received training in computer science seemed to be more open to

48

CHAPTER 2. RELATED WORK

this idea than those who had not been trained in this field. Between the other two

subgroups this question again exhibited significant divergence. Here, participants

without prior experience in simulations appeared to be somewhat more appreciative

towards a DSML as a new standard language for spatial simulations. Interestingly,

in the question on the impression on the general development process, it was the

group of participants with prior experience in simulation who consistently viewed

the process more positively than the group of inexperienced participants who gave

more diverse ratings in this matter.

The authors interpreted their findings in a way that suggests that missing

experience with MDSD might be the reason for a negative stance towards the

general MDSD approach. They also surmise that the fact that participants with

prior experience in simulations took a somewhat sceptical stance on DSL3S (or

MDSD) as a basis for a standard language for spatial simulations might be due to

concerns of becoming constrained or losing control when relying on a DSML. The

authors also point to the fact that even though experienced participants remained

sceptical in the question of DSL3S as the basis for a standard language, they also

appreciated the general development process that came with the language. Da

Sousa and da Silva believe this to be an indication that the scepticism is more due

to subjective aversion rather than factual hindrances.

In their conclusion, the authors state that participants appreciated DSL3S in

general and especially its ease of learning. At the same time, the authors also note

that participants appeared to remain slightly sceptical of the MDSD approach in

general.

Kosar et al. (2010) showed that DSLs can significantly improve program/model

understanding compared to the widespread adoption of application libraries for

GPLs. The authors designed two questionnaires with tasks of comparable com-

plexity: one questionnaire with tasks to be solved using a DSL (XAML) and one

with tasks to be solved using an application library of a GPL (C# forms). All tasks

stemmed from the domain of graphical user interface development. The tasks were

designed in a way that tested how efficiently study participants could a) learn the

49

CHAPTER 2. RELATED WORK

notation b) perceive the programs c) evolve given programs/models of the respective

approach. The authors conducted their study with 36 participants. Participants

received an introduction to the problem domain and training in both approaches.

After participants answered the questionnaires, the authors calculated the parti-

cipants’ success rate for all the questions. The authors then calculated the mean

success rate, standard deviation and standard error for each of the two approaches

and performed a t-test on their results. The results show a significant success-rate

improvement for the DSL-related tasks.

Another early and important contribution to the field of empirical DSL evaluation

was made by Kosar et al. (2012) who presented a set of three structurally related

experiments. These experiments were placed in three different domains (feature dia-

grams, graph description and GUIs) and each of these experiments compared a DSL

to an application library or API for a given GPL. The authors investigated whether

DSLs had a positive impact on participants’ program comprehension in terms of

correctness and efficiency. To determine participants’ comprehension correctness,

the authors calculated the percentage of correctly answered questions. Comprehen-

sion efficiency, was defined as the ratio of the percentage of correct answers to the

amount of time required to answer the set of questions.

For each of the three domains the authors defined four application domains and

for each application domain the authors developed a set of eleven questions. The

questions for two application domains were set up to test participants’ program

comprehension using the DSL and the other two tested the same for the respective

API/GPLs combination. Thus, the application domains of the DSLs were different

from those of the GPLs. To ensure a structural similarity among all these question

sets, the authors created a question template that all concrete question implementa-

tions were based on. The authors also asked participants for their prior experience

with the respective language and inquired on how difficult participants perceived

the tasks for a given application domain.

The authors defined this study using a within-subjects approach: for each domain,

they defined two distinct groups that answered the questions from all four applica-

50

CHAPTER 2. RELATED WORK

tion domains. The first group started with the DSL questions and then continued

with the questions for the respective GPL. The second group started with the GPL

questions and finished with the DSL questions. The results of both groups were

combined and tested with a parameterless test for dependent samples (Wilcoxon

signed-rank test).

Their results show that in all three domains application of the DSL led to signi-

ficantly higher percentages in terms of comprehension correctness, i.e. effectiveness.

Moreover, in all three domains participants were also significantly more efficient

when using the DSLs than they were using the GPLs. In two of three domains

participants had little experience with both languages and in one domain (GUI)

participants were significantly more experienced using the GPL based approach.

The authors express their own surprise that (despite the evidently improved results

ensuing from DSL usage) on average participants perceived the use of DSLs as

only slightly less complex than the use of GPLs. However, a look at the perceived

simplicity separated and grouped by domain shows that in the two domains where

participants had equally little prior knowledge of both approaches, DSLs where

perceived as considerably simpler.

The authors provide statistical evidence which shows that in each of the three

domains participants achieved significantly better results in terms of program

comprehension correctness and program comprehension efficiency. Their results

leave no doubt that in the domains explored by the experiments, DSLs have the

potential to considerably enhance user performance. However, it is difficult to

generalise these findings to other domains. It might even be possible that the test

outcome is markedly different when performed by a study group with a different

experience profile. For this reason, conduction of further empirical studies that

either corroborate/fortify or contradict/question these findings is highly important.

Only in the GUI domain, where participants were already acquainted with the GPL

did participants not appear to regard either approach to be simpler than the other.

In (Kosar et al., 2018) the authors replicated a modified version of their family of

experiments. The first major modification of their original study was that instead of

51

CHAPTER 2. RELATED WORK

pen and paper participants were allowed the use of IDEs for solving the tasks of the

study. The second major modification was that participants no longer solved both

the DSL and GPL tasks but either of the two. In other words, the authors changed

from a within-subjects design, by which they compared the GPL and DSL results of

the same participants, to a between subjects design, by which the results of different

individuals using different approaches were compared. Another modification of the

study design is directly connected to the IDEs allowed in the modified version: in

the replication, the authors also asked for the exact IDE tools participants used in

order to solve each task.

The replication study kept the approach of comparing a DSL to an appropriate

GPL (supported by a library) for three different domains (feature diagrams, graph

description, and GUIs). For each domain an experiment was set up in which par-

ticipants had to solve a set of tasks using either the respective DSL or the GPL.

As was already noted, the design of the replication study was modified and every

participant was to solve either the DSL or GPL tasks for a given domain. The

authors did not modify the two dependent variables: the study again investigated

participants’ correctness and efficiency with the respective approach.

The results show a positive effect of IDEs on the correctness and efficiency of all

participants – whether they used a DSL or a GPL. The results of the replication

study are consistent with the results of the original study: Throughout all three

domains, the overall results indicate that participants who used the respective DSL

were both significantly more effective and significantly more efficient than their

peers who used the respective GPL. However, a more detailed analysis reveals

that it was mainly one specific sub-category of questions that lead to these overall

results: in the evolve question category (i.e. questions that test how well a language

allows the evolution of existing programs) the DSLs significantly outperformed the

GPLs in all three domains. The results for the other two question categories were

less distinct (e.g. in the GUI domain the DSL did not significantly outperform the

GPL in the learn and understand category). This is an important difference to the

original study in which DSL users achieved significantly better results throughout

52

CHAPTER 2. RELATED WORK

all question categories in all three domains. Kosar et al. attribute this to the IDE

support which seems to benefit the GPLs more than the DSLs. Finally, the authors

found that DSL users applied different IDE tools than GPL users. However, since

there was no clear pattern in the way tool usage of the two groups differed, this

might still merit further investigation.

Johanson and Hasselbring (2017) conducted an online survey that featured an

integrated controlled experiment to evaluate their Sprat Ecosystem DSL. Sprat is a

language for the specification of simulations of maritime ecosystems. The primary

aim of the presented study was to analyse and compare domain experts’ performance

in the creation of a maritime simulation with a conventional GPL and the Sprat

DSL. In their online survey, 3616 participants performed parameterisation and

data recording tasks with both C++ and the Sprat DSL so that their effectiveness

(correctness) and efficiency (time required) could be measured. Participants were

students and graduate experts in the marine ecology domain. Most participants had

only very limited knowledge in the use of programming languages like Java and

C++.

The study was conducted using a within-subjects design. In order to mitigate

effects from learning and exhaustion, the order in which a participant was to use

the two approaches was randomised so that 52.8 % of the participants started the

survey with the DSL as a first approach17. The authors recommended completing

the tasks in around four minutes but no hard deadline was set so that (barring a

30 second minimum time barrier to remove non-attempts) participants could freely

choose how much time they spent solving the tasks. At any time, participants could

ask the system to inform them on whether their current solution was correct. There

was no explicit learning phase. Instead, participants were presented with detailed

descriptions and learning examples on how to apply the language for problems

similar to the respective task.
16Number of participants after filtering participants who worked in domains not related to

ecological simulations and after removing non-attempts.
17The authors claim this to be a bias against their hypothesis since they consider learning effects

to outweigh effects from exhaustion. As the results from the evaluation of Athos will show, this is an
appropriate assumption.

53

CHAPTER 2. RELATED WORK

The authors state that participants produced significantly more correct artefacts

when using the DSL. They report on a correctness increase of 61 % and 63 % for

parameter specification and data recording tasks, respectively. At the same time,

participants were also substantially faster with the DSL compared to when they

used the GPL. The authors also present a qualitative analysis of the language in

which participants stated preferring the use of the DSL over the traditional GPL

approach. Participants rated the Sprat Ecosystem DSL higher in terms of the offered

abstraction level, ease of use, comprehensibility, transparency of technical details,

and maintainability.

As an exploratory sub-experiment, participants were asked to modify the lan-

guage environment via a Java configuration file. Though the file was written in

Java, the authors note that the style was not following the usual Java conventions

but rather resembled a DSL embedded into Java. Despite the fact that participants

claimed to have only limited knowledge in Java development, most of them were

able to complete this task successfully.

The authors conclude from their study that their Sprat Ecosystem DSL offers an

appropriate level of abstraction in combination with a comprehensible and concise

syntax that aptly mirrors the language of the ecosystem simulation domain. The

authors also claim that the use of their DSL increases the maintainability of the

simulation software.

Challenger et al. (2016) present an example application of their MAS DSL eval-

uation framework. The authors demonstrate the application of the framework by

evaluation of their own SEA_ML language. For the abstract syntax of SEA_ML, they

state (amongst other facts) that the meta-model features eight different viewpoints

that assemble 67 different classes with a total of 83 attributes and 38 associations.

The authors note that these numbers can also be determined for any other MAS

related DSL in order to be compared to those of SEA_ML. They argue that the

language with more elements is likely to be more expressive and allows for more

detailed modelling.

54

CHAPTER 2. RELATED WORK

In order to evaluate the other two dimensions, a multi-case study approach was

applied. In this study, MASs for four different domains had to be developed by a

study group and a control group. Each group member had to perform a complete

development cycle (analysis, modelling, implementation, testing, maintenance) on

four different case studies. Members of the study group used SEA_ML. Members of

the control group were allowed an arbitrary combination of general-purpose model-

ling notations (e.g. UML), agent-development methodologies (e.g. Tropos (Bresciani

et al., 2004)) and manual code development for an appropriate multi-agent platform

(JADEX (Pokahr et al., 2013) or JACK (Winikoff, 2005)).

By analysing the results of the case studies, the authors were able to find the

data for the evaluation criteria defined for the execution dimension of the framework.

For example, for the development time criterion, which belongs to the development

sub-dimension, the authors averaged the time participants required in each phase

of each case study. They also calculated an average of the number of diagrams

created by participants as well as the average number of model elements used in

these diagrams (input MAS Model criterion, modelling input/output sub-dimension),

averaged the number of generated files and lines of code (LOCs) (generated MAS

artefacts criterion, modelling input/output subdimension), and they also calculated

the ratio of generated elements to manually developed elements (overall (output)

performance ratio criterion, development sub-dimension).

Their results show, that on average, 81 % of the code could be generated from the

DSL models which the authors claim to be a considerable reduction in the complex-

ity of MAS development. Regarding the development time, the study shows that

application of SEA_ML accelerates the development process: on average, the study

group members required only around 3.5 hours per case study, whereas members

of the control group required around 6.25 hours. The DSL excelled especially in

the implementation phase: where SEA_ML participants finished this phase in an

average of 37 minutes, by contrast, members of the control group required nearly

four times as much time (2 hours and 19 minutes). Members of the study group

also outperformed control group members in the testing phase as well as in the

55

CHAPTER 2. RELATED WORK

maintenance phase. Both of these phases were finished in roughly half the time the

control group required (testing: 17 vs. 34 minutes, maintenance: 26 vs. 50 minutes).

As part of the qualitative evaluation, members of the study group on average

rated the extent to which SEA_ML facilitated development with four out of five

points. Asked for the main benefits of the language, study group members lauded

the ease of use due to the graphical concrete syntax, the accelerated development

speed and the support for performing brainstorming that results from language

concepts that are close to the problem domain. The main point of criticism was that

manually added code could not be automatically transferred to the original DSL

model.

The evaluation framework of Challenger et al. (2016) is applied by Kardas et al.

(2018) who introduce DSML4BDI, a DSML for the model-driven development of BDI

MAS. The authors note that their language not only allows to model the internal

structure of one single agent, it also enables users to model the entire system in

which multiple agents of possibly different types interact. With the abstractions

introduced by the language, the authors seek to address the complexity of BDI-based

MAS development.

The authors implemented the metamodel in Ecore18 (Steinberg, 2009) and used

the Sirius framework19 to provide a concrete syntax for the language. Model in-

stances are transformed into Jason code via M2T transformations implemented with

the Acceleo20 transformation specification language. The Sirius framework was also

used to define a set of tools that features four different types of BDI MAS diagrams

(MAS, Agent, Plan, and Logical Expression)

The authors applied the evaluation framework of Challenger et al. to determine

the benefits obtainable by basing BDI MAS development on DSML4MAS. The

authors conducted a comparative evaluation study in which their language was

compared to manual code development. To this end, they formed two evaluator

groups each consisting of four evaluators (participants). Both groups had to develop
18https://www.eclipse.org/modeling/emf/
19https://www.eclipse.org/sirius/
20https://www.eclipse.org/acceleo/

56

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/sirius/
https://www.eclipse.org/acceleo/

CHAPTER 2. RELATED WORK

an MAS based on a case study designed by the authors. Members of one group

used DSML4MAS to develop this MAS and members of the other group followed a

traditional approach centred around manual implementation.

The authors claim that their results provide evidence that DSML4MAS allows for

substantial gains in development efficiency. As concerns the generation performance,

the language is shown to be capable of generating considerable portions of the final

system: on average, the four participants who applied DSML4MAS were able to

generate 89 per cent of the LOCs of the final system. The authors emphasize that

one participant successfully applied the language to generate the entire target code

from the DSML4MAS input model. Regarding the development time performance,

members of the DSML group required slightly more time in the modelling phase but

were considerably faster in the implementation and test phases so that in the end,

they were nearly three times faster than members of the other group. The authors

report on mostly positive feedback in the qualitative evaluation together with some

constructive criticism which they turned into improvements of the language and its

tools.

Finally, Kardas et. al emphasize that their conducted language evaluation based

on Challenger’s framework is a distinguishing factor to similar DSMLs that have

not yet been evaluated in a systematic way. They also claim that the formally proved

benefits of the language might further the adoption of their language and thus

adoption of agent-oriented software engineering (AOSE) techniques in general.

To exemplify how to use the AgentDSM-Eval framework and its online tool,

Alaca et al. (2021) demonstrate how they used the framework for an evaluation of

the Prometheus design tool (PDT) which features an MAS DSML to support the

Prometheus (Padgham and Winikoff, 2005) AOSE methodology. For their empirical

evaluation they developed two different case studies that were completed by 16

evaluators. Participants developed the multi-agent systems (MASs) defined in the

case study twice: once with PDT and once with a GPL. The results show that

evaluators completed the case study in less time with the usage of PDT. Despite

falling behind in the modelling & design stage (PDT users spent an average of 56.1

57

CHAPTER 2. RELATED WORK

minutes whereas GPL developers only spent an average of 35.3 minutes in this

phase), this early investment of time paid off in the ensuing phases in which PDT

users were considerably faster (implementation: 62 minutes vs. 113 minutes, testing:

21. minutes vs. 55.8 minutes). Regarding the performance of the generator, 38 per

cent of the final software were generated code derived from the information in the

PDT models. In the qualitative evaluation, PDT achieved an average score of 3.21

from a maximum of 5 (average of all developers, all case studies all quality criteria).

The authors interpret this as an indicator for a general satisfaction of evaluators

with PDT.

Ingibergsson et al. (2018) conducted a randomised controlled experimental study

based on guidelines provided in the literature. The authors’ intention was to provide

evidence for a better readability of a DSL from the domain of robotics. Among the

guidelines the authors took from the literature are the conducting of pilot studies,

which they used to improve their DSL (and also to evaluate the study material) and

dry runs that they applied to ensure the maturity of the material.

The authors defined three types of tasks: firstly, so-called matching tasks, in

which participants were presented a textual natural language description of an

element of functionality. From a set of possible choices, participants were supposed

to select the fraction of code corresponding to the description. Secondly, so called

"two-way" bug detection tasks in which participants were prompted to find bugs

in either a DSL or GPL program. Thirdly, the authors designed what they refer to

as "one-way" debugging tasks in which participants were asked to detect bugs in a

GPL program that could not occur in a program written in the DSL. This way, they

intended to find out whether the DSL provided an implicit improvement of usability

by preventing end-users from introducing the respective type of bugs.

The study was conducted among a group of 20 participants. The group was rather

heterogeneous regarding participants’ vocational background: among the members

of the group were industrial programmers, professors and also students. The only

prerequisite for participation was a certain amount of experience in C++.

58

CHAPTER 2. RELATED WORK

As to the results, the authors state that with regard to the matching questions,

the DSL results were slightly better than those obtained for the GPL. Conversely,

in the two-way debugging questions, the DSL was outperformed by the GPL. The

authors explain this with one particular question in which the results for the DSL

were extremely poor. For the third question type, participants had to detect two

distinct bugs in a C++ program. Ten participants found one bug and three different

participants found the other, no participant was able to spot both.

The authors report on a pattern that had participants becoming faster with every

question for the DSL. No such pattern could be recognised for the GPL. In the

summary of their results, the authors only go so far as to claim that participants

could solve the tasks with both approaches nearly equally well. At this point, they

emphasize that participants had no prior experience with the DSL and learned the

language via natural programming questions during the study. The authors state

that together with several possible improvements revealed by the evaluation, their

DSL has the potential to increase program readability compared to programs written

in a GPL, even though they did not obtain any statistically significant results for

this claim from the presented study. Though participants did not prefer any of the

two approaches, the authors interpret this as an indicator that their DSL may well

find acceptance among developers.

Dwarakanath et al. (2017) introduce their accelerating test automation platform

(ATAP), a tool that aims to facilitate the creation of automation test scripts for

web-based systems. ATAP is driven by a DSL that features an English-like syntax.

Test scripts written in the DSL are automatically transformed into Java code that

uses Selenium WebDriver21 for automated testing of web-based systems. The DSL

also features a scoping mechanism (see, e.g. (Bettini, 2016, pp. 237 – 284), or

(Völter and Benz, 2013, pp. 234)) that supports ATAP users in the definition of

valid models. As an example, consider a situation where an ATAP user entered

keywords that indicate that an object that can be clicked on is to follow. The scoping-

mechanism automatically excludes all ‘TextboxType’ elements. In the underlying
21http://www.seleniumhq.org/projects/webdriver/

59

http://www.seleniumhq.org/projects/webdriver/

CHAPTER 2. RELATED WORK

framework itself, such elements would be accepted at compile time but would result

in run-time exceptions. On the one hand, the DSL complements the framework

with additional constraints, on the other hand, the DSL would not be executable

without the underlying framework. Thus, ATAP can be considered an example of

the claim made by van Deursen (1997) that there are mutual benefits between DSLs

and object-oriented frameworks.

Moreover, the authors claim that this symbiosis is implemented in such a way,

that the end-user never has to leave the DSL level. This means the user does not

only use the DSL as a mere vehicle to create Java code. Programs in the DSL can be

executed directly (though in the background Java code is transparently generated)

and run-time errors are linked back to the corresponding code in the DSL. It could

be argued that this is just a technical detail. However, as this DSL is intended for

use by domain-experts (manual testers), it is very likely that this mechanism highly

benefits the DSL’s usability and quality in use (Barišic et al., 2011).

The authors also describe how they validated ATAP’s performance in an indus-

trial context. For this, eight project scenarios were created. These scenarios were

then dealt with by three different groups of users: i) ATAP developers (tool experts),

ii) automation engineers (framework experts), and iii) manual testers (domain ex-

perts). Neither automation engineers nor manual testers had any prior experience

with ATAP. It was then measured how many of the scenarios could be solved by each

group using ATAP. Additionally, the required time was measured. It was found that

both tool experts and automation engineers could solve all of the provided scenarios

while manual testers could cover the scenarios to 71 percent on average. Finally, the

required time for each project was compared to an estimated time that automation

engineers would need when using the framework directly. This comparison was

done for automation engineers, since manual developers could not completely cover

all scenarios. It was found that the time required by automation engineers was

averagely 25 percent lower than the time estimated for completion of the task using

the framework directly.

60

CHAPTER 2. RELATED WORK

The authors report on some qualitative feedback given by members of the par-

ticipating groups. One interesting aspect is that manual users felt overstrained

and/or intimidated by the powerful yet hard-to-grasp Eclipse IDE. Analysis of the

effects of the development environment on the (perceived) quality of use of a DSL

is a highly interesting topic. What is more, manual testers reported that they had

problems using the DSL for verification tasks. The authors assumed that one pos-

sible reason for this might be that manual testers were confronted with too many

options suggested by the IDE for such tasks. This coincides with the findings of

Cuadrado et al. (2013) who observed that internal DSL users who were unfamiliar

with the respective host language felt intimidated even though RubyTL only requires

rudimentary knowledge of its host language. For this reason, Dwarakanath et al.

tried to mitigate the problem by splitting verification statements into several levels,

each with its own (smaller) set of options. The authors did not provide an assessment

of the effects of this remedy.

2.2.4 Discussion of the presented DSL evaluation frameworks

and studies

Kosar et al. Kosar et al. (Kosar et al. (2010), Kosar et al. (2012) and Kosar et al.

(2018)) made several important contributions to the field of DSL evaluation. The

approach of comparing a DSL to an alternative baseline application library for a

GPL holds merit, especially in cases where there is no alternative DSL to which

a given DSL could be sensibly compared. Focussing on how effective and efficient

modellers can apply two alternative approaches in a series of different tasks that

aim at a language’s learnability, understandability and changeability appears to be

a very promising approach towards a reliable assessment of any novel DSL.

In all of their studies, either a within-subjects or a between-subjects design was

applied. For the within-subjects design, two groups were formed that used the

compared approaches in reversed order. The intention was to mitigate effects on the

results caused by the order in which participants used the approaches. Learning

61

CHAPTER 2. RELATED WORK

effects, for example, might have a positive effect on the results achieved with the

second approach. The problem is that in their results, the authors do not report on

the exact number of participants in each group, only on the total number of both

groups. This might pose a threat to the validity of the presented results if one group

consisted of considerably more participants than the other. For example, if the group

that started with the GPL questions (and finished with the DSL questions) consisted

of substantially more participants than the complementary group, learning effects

might bias the results towards a favourable outcome for the DSL. Another problem

is that there is no information on the profile of participants in each subgroup. If one

of the two subgroups consists of more experienced participants than the other, this

may also have an effect on the outcome.

With their replication study, Kosar et al. (2018) made another valuable contribu-

tion to the field of DSL evaluation. Not only does the presented study substantiate

the claim that DSLs have the potential to reduce programming/modelling errors

and increase the efficiency of their users, the study also shows that IDEs can benefit

both DSLs and GPLs. However, while there is no doubt that the topic of IDE support

merits further investigation, the study conducted within the scope of this thesis

deliberately did not allow IDE usage. The reason for this decision was that the lan-

guage evaluation was to focus on Athos’ abstract and concrete syntax and how both

compare to those of an appropriate baseline language. Allowing the use of an IDE

would (as the study of Kosar et al. clearly demonstrates) have led to other factors

impacting the results. For example, since nearly all IDE support constraint checks,

allowing the use of IDE would have led to the static semantics of the languages being

part of the evaluation.

The work presented by Challenger et al. (2016) is an important contribution to

the field of DSL development. The presented framework provides criteria for the as-

sessment of a wide range of DSL components. The language elements sub-dimension,

for example, aims to define criteria that allow an assessment of the expressiveness

of the language by analysing the number of elements (classes, attributes, nodes,

references, links, etc.) of the meta-model, concrete syntax and static semantics of

62

CHAPTER 2. RELATED WORK

a language. The development sub-dimension, on the other hand, seeks to evaluate

the degree to which the DSL under evaluation contributes to the reduction of de-

velopment complexity. To this end, it defines metrics, that give insight on the ratio

of generated to manually added code. The development sub-dimension also takes

into account the time required for each phase in the development process and thus

allows an assessment of the added value in terms of efficiency.

Even though the presented framework certainly is among the most sophisticated

approaches in DSL evaluation, it is tailored towards the evaluation of graphical

DSLs and thus only of limited suitability for the evaluation of textual DSLs. Both

the study and the framework seem to operate under the assumption that language

users do mostly create syntactically and semantically correct models due to the

support of a languages’ static semantics. While it seems reasonable to argue that

graphical DSLs are generally less prone to syntactical mistakes than their textual

counterparts, it would still be interesting to gain some insight on the number or

percentage of mistakes made by new language users. Other than the time required

for the respective development phase, the framework seems to pay only scarce

attention to the learnability and perceivability of the evaluated language.

It is also quite surprising that the study only views the number of meta-model

elements in one direction when viewing a large number of meta-model elements as

an indicator for a high language expressiveness. Neither does the framework seek to

investigate the appropriateness and necessity of the meta-model elements nor does

it take into consideration that at some point each additional meta-model element

might reduce both the learnability and perceivability of a language. Although the

qualitative dimension of the framework might provide qualitative evidence from

which statements on the perceivability and learnability might be deducible, it would

be desirable if the framework provided some quantitative criteria to this end.

With AgentDSM-Eval, Alaca et al. (2021) presented a sensible advancement of

the framework presented by Challenger et al. Especially the online tool with its

numerous capabilities that support the analysis of obtained data is a convincing

addition. However, other than this technical advancement, the framework’s main

63

CHAPTER 2. RELATED WORK

contribution seems to be the addition of several quality measures that allow for a

refined qualitative language analysis. Hence, regarding the quantitative evaluation

of a language, AgentDSM-Eval has similar shortcomings as Challenger’s framework:

the quantitative evaluation measures do not necessarily allow for a statement on the

expressive or generative power of the evaluated language nor do they provide a deep

insight on a languages impact on a user’s comprehension correctness. For example,

the percentage of generated code can be raised by using verbose transformations

instead of transformations that result in succinct programming code. While more

verbose transformations will increase the amount of generated code, they do not

increase the expressive or generative power of the language.

Unfortunately, the article does not discuss how it is ensured that the solutions

submitted by language evaluators are completely correct. Since the presented data

provides information on the time spent for testing, it can be assumed that the case

studies contain a set of pre-defined tests the implemented MAS must pass before the

case study can be submitted. However, even if these pre-defined tests are provided,

these do not necessarily ensure that the developed solution is absolutely correct.

Moreover, it would be interesting, if the framework gathered some data on modelling

mistakes made by participants in order to gain further insight into the effect a

language has on the correctness of end users. While the calculated times for each

development phase might allow for statements on user’s efficiency, it might also be

interesting if the framework provided some insight on the relation of failed tests (or

implementation correctness) to the time spent developing the system.

The validation presented by Dwarakanath et al. (2017) is an example of an

idiosyncratic (Challenger et al., 2016) and hardly reproducible approach: first of all,

the authors do not provide sufficient information on how coverage within a scenario

was measured. This means, it can only be guessed what the coverage percentage for

a given scenario (e.g. scenario 3 was covered to 60 percent by manual testers) means.

What is more, the authors do not explicitly state whether automation engineers and

64

CHAPTER 2. RELATED WORK

manual testers received any training on how to use ATAP. Another problem is the

fact that the authors compared the actual required times for a scenario to estimated

times. This poses a massive threat to validity since estimations are hardly exact nor

completely unbiased.

It would have been highly interesting to more deeply analyse the actual influence

of the IDE on the performance of DSL users. One possibility would have been to

compare coverage results when performing the scenarios offline, i.e. with pen and

paper (c.f. (Kosar et al., 2012)) and compare those results to a control group that

uses the IDE. In addition, it would have been interesting to learn more about the

effects of splitting the verification statements into several levels, so that end-users

have to choose from less options when performing verification tasks.

2.3 Relation to this thesis

Section 2.1 presented literature related to the simulation and optimisation of traffic

and transport problems. Section 2.1.1 focused on platforms on which such simula-

tions can be performed. It also presented languages and tools for the creation of the

models to be executed on the respective platforms. The work of Taillandier et al.

(2019a) emphasised the need for an approach that enables domain experts to actively

participate in the creation of the simulated models. Section 2.1.2 exemplified the

practical relevance of using the presented platforms in the domain of traffic and

transport simulation.

Athos is a language that intends to facilitate the creation of models that can

be executed on a given simulation platform in order to support decision making

processes. To be applied in its target domain, Athos does not have to offer the

entire set of capabilities and features offered by the presented simulation platforms.

Instead, it is sufficient to focus on a certain set of problems that users must be

able to model with the language. The Athos generator can then automatically

transform these models into models of a given target platform. Each simulation

platform presented in the literature review is a potential target platform for the

65

CHAPTER 2. RELATED WORK

Athos generator. An important problem now is to determine the exact capabilities

that Athos must offer and which target platform should be chosen to implement

these capabilities. One example for such capabilities that the language must offer

is given by Krajzewicz et al. (2012) who explain how sources and sinks are used

in SUMO for the population of the network with traffic in the absence of data on

real-world traffic demands. Athos also allows the definition of sources and sinks

in the network. It is also possible to model every vehicle instance individually. For

sources it is also possible to specify probabilistic distributions that the source applies

when creating new vehicles (e.g. 7 % of newly created vehicles will be of type bus,

65 % will be of type car, etc.).

The transformations of the Athos generator currently transform Athos models

into NetLogo models. In other words, at the time of writing this thesis, NetLogo is

the (primary) target platform of Athos. The most important reason for the selection

of NetLogo was the fact that at the time the research project set out, other projects

in the research group of the author were also based on NetLogo which promised

the chance of synergetic effects among the researchers. NetLogo’s capability of fast

prototyping and its capabilities for model visualisation and inspection were also

aspects that strengthened the decision to define it as the target platform for Athos.

While currently NetLogo is a fitting target platform for Athos, transformations to

additional target platforms are part of future work to be performed (see Section 8.3

in Chapter 8).

The introduction explained how the reduction of costs and emissions together

with an improved reliability of delivery services is one of the most pressing problems

to be solved in the field of LML. At the core of these distribution optimisation

problem lies a family of (theoretical) academic problems known as vehicle routing

problems (VRPs) (Cordeau et al., 2007). Various types from the family of VRPs are

shown in Figure 2.1. The figure illustrates how Athos and NetLogo have overlap-

ping capabilities like the definition of agents and their states or the definition of

visualisation aspects. However, the problems of the VRPs family are not directly

supported by NetLogo and would require some sophisticated programming skills

66

CHAPTER 2. RELATED WORK

Athos NetLogo

JSprit

• Agentbehaviour
• Agentstates
• Agent visualisation
• Environment

visualisation

• Dynamic TSP
• Dynamic CVRP
• Dynamic VRPTW

• TSP
• CVRP
• VRPTW

• Agents/Vehicles
• Length
• Time

• Progession of time
• Dynamic events
• etc.

• VRPMTW
• etc.

Figure 2.1: Capabilities offered by Athos, NetLogo and JSprit with NetLogo as Athos’
target platform and potential support by JSprit.

to be modelled and solved in pure NetLogo. Athos itself also requires the support

of a library of VRP algorithms (e.g. JSprit as shown in the figure) that are capable

of solving these problems. By combining algorithms from the library with NetLogo

through the transformations of the Athos generator, Athos cannot only be used to

describe VRPs but it can actually provide solutions for the modelled problems. It

can even introduce dynamism to the family of otherwise static VRPs.

Chapter 3 will start out with some additional literature and explanations on

some important members of the VRP family (Section 3.1 and Section 3.2). It will

then discuss how Athos is supposed to enable domain experts to participate in the

creation of models via a declarative modelling approach (Section 3.3). Next, two

illustrative examples will show how Athos is used to model problems from the VRP

(Section 3.4) domain. The general architecture of Athos together with its target

platform and supporting optimisation library will be explained in Section 3.5.

Chapter 4 will then go into full detail on implementational aspects of the most

important language components. The abstract syntax of Athos is illustrated in Sec-

tion 4.1 before its static semantic Section 4.2 and concrete syntax will be explained

Section 4.3. Chapter 5 will focus on the Athos generator and provide very detailed

explanations on how Athos models are transformed into models of the NetLogo

platform. Section 5.10 focusses on how Athos can leverage implementations of

optimisation algorithms.

67

CHAPTER 2. RELATED WORK

The second part of the literature review dealt with the formal evaluation of

DSLs. After the necessity for further insight on academic DSLs evaluation was

carved out in Section 2.2.1, Section 2.2.2 and Section 2.2.3 presented DSL evaluation

frameworks and their applications in DSL evaluation studies. The discussion in

Section 2.2.4 foregrounded the approach presented by Kosar et al. (Kosar et al.

(2010), Kosar et al. (2012) and Kosar et al. (2018)) as one of the most promising DSL

evaluation approaches in the current literature on the topic. Hence, Chapter 6 will

elaborate on how the approach of Kosar et al. was adopted, modified and applied in

two rigorous evaluation studies centred around Athos. The results of both studies

are presented in Chapter 7. Chapter 8 concludes this thesis and informs on future

work on Athos.

68

; Third Chapter <

The language and its environment

This chapter discusses Athos in full detail. It starts with an analysis of the problem

domain in Section 3.1 and Section 3.2. Section 3.3 then describes the general

approach that Athos takes to model the problems of interest from the underlying

domain. Section 3.4 then presents two concrete Athos models that provide insightful

examples by which it will be discussed how Athos models are built in practice. This

chapter is concluded by an architectural overview on the key components of the

language and its environment.

3.1 The problem domain

The limited area of interest for which a DSL is designed is referred to as its problem

domain (or also problem area, e.g. in (Völter and Benz, 2013; Cuadrado et al.,

2013)). Problem domains can be defined from a technical or from a business point

of view or even both (Stahl, 2007, p. 28)1. The problem domain encompasses all

relevant concepts like entities and processes (Ghosh, 2011b, p.4). In order to tailor

a language for a specific problem domain, it is key that this domain be thoroughly

analysed before language development commences. The domain analysis seeks

an understanding of the ‘ontology’ (Völter and Benz, 2013, p. 162) of the analysed
1As this is a reference to a German book, here the original sentence along with a direct translation:

‘Domänen können sowohl technisch als auch fachlich sein, wenn man diese Unterscheidung überhaupt
treffen will.’ (Domains can either be technical domains or business domains, if one wants to make
this distinction at all).

69

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

problem domain. The outcome of such a domain analysis is a domain analysis model.

This model is what eventually drives the implementation of the problem domain

within the means provided by the solution domain (Ghosh, 2011b; Völter and Benz,

2013).

As part of the domain analysis, the scope of the problem domain has to be defined

(Mernik et al., 2005). Even though the above definition of a problem domain implies

the existence of boundaries, in practice, there will often be some ‘gray area’ (Visser,

2008, p. 3) – especially in the fringe areas of the targeted domain. Visser (2008)

points out that this ‘typically leads to pressure for the DSL to grow beyond its

(original) domain’ (p. 3). Cleaveland (1988) emphasises the importance of foresight

at this step and suggests ‘to adopt an evolutionary approach and require that the

features and the specification language be extensible’ (p. 29). He emphasises that

the definition of an optimal ‘domain width’ (p. 29) is of vital importance: if the

domain comprises too many elements, the DSL (or its underlying generator) dilutes

and will not provide any benefits over a GPL; however, if the domain is defined too

narrowly, this is likely to benefit the languages’ ‘domain leverage’ (p. 29), but almost

guaranteed to render several problems unsolvable for the respective DSL.

The domain for Athos is the domain of traffic simulation and vehicle-routing

and transport optimisation problems. In order to not define the intended domain

too broadly or narrowly, the author of the language reserves the right to adapt the

precise implementation of this rather general domain definition in a flexible dynamic

way. In the current state, the language focusses on static academic vehicle-routing

problems to which it allows the addition of dynamic elements like the simulation of

congestion effects.

70

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

3.2 Domain analysis

3.2.1 Analysis of three basic problems

3.2.1.1 The standard travelling salesman problem

Arguably one of the most widely known routing problems is the travelling salesman

problem (TSP). It is also one of the oldest routing problems: according to Larrañaga

et al. (1999) its history dates back to the year 1759 when Swiss mathematician

Leonard Euler documented the TSP. Considerable academic interest was directed

towards this problem by Dantzig et al. (1954) and Flood (1956). The TSP belongs to

the class of NP-hard problems and it has been studied more often than any other

routing problem (Korte, 2008). Due to its popularity and its inherent properties,

the TSP is an ideal starting point for a deeper analysis of the domain of VRPs. It

features only a comparatively small set of variables and constraints, albeit being a

computationally demanding problem that features the core concepts found in every

vehicle routing problem (Larrañaga et al., 1999).

As is shown in (Miller et al., 1960), the TSP can be defined by means of a natural

language formulation or as an integer programming problem. Using the natural

language approach, the problem can be defined as follows:

A salesman seeks to find the shortest possible tour that starts at location

0 and visits each location from a set of locations indexed 1 to n exactly

once before returning to the start location 0.

Let 0 be the index of the starting location (also referred to as the depot). Let V

be the entire set of n+1 locations V = {0,1, . . . ,n}, and let V ′ be the set of locations

different from the depot, i.e. V ′ =V \{0}. Let the distance between any two nodes

be ci j, (i, j ∈ V , i ̸= j), and let subsequent stops at locations i and j be written as

xi j = 1 (xi j = 0 is used to state that location j is not directly visited after location

i). Finally, let ui (i = 1, . . . ,n) be arbitrary positive integers. The equivalent integer

programming formulation (cf. Miller et al., 1960) can then be written as follows:

71

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

minimise
∑

i, j∈V
ci jxi j (1.1)

s.t. xi, j ∈ {0,1} ∀i, j ∈V (1.2)∑
i∈V
i ̸= j

xi j = 1 ∀ j ∈V (1.3)

∑
j∈V
j ̸=i

xi j = 1 ∀i ∈V (1.4)

ui −u j +nxi j ≤ n−1 1≤ i ̸= j ≤ n (1.5)

Objective 1.1 defines the shortest feasible tour as the optimal solution to the

problem. Constraint 1.2 states that the decision variables can either be zero or one.

Constraint 1.3 ensures that each location has exactly one predecessor in the tour

whereas Constraint 1.4 requires that every node of the tour has exactly one successor

location. Constraint 1.5 was introduced by Miller et al. (1960) and is thus known as

the Miller-Tucker-Zemlin (MTZ) constraint. It requires the tour to start and end at

location 0. This way, disjoint subtours are rendered infeasible (cf. Papadimitriou and

Steiglitz, 2013). Finally, it is to be noted that the presented formulation is only one

of several different integer program models to represent the TSP. A total of eight of

such formulations is presented in (Orman and Williams, 2007).

From the analysis of the TSP a first sketch for the meta-model (which will

determine the languages’ abstract syntax) and several keyword candidates (which

will form the languages concrete syntax) can be obtained. Table 3.1 presents the

entities and their relations found in the literature on the TSP. The first column

shows the term from which keywords for the DSL should be derived. The second

column presents alternative (or synonymous) terms used in the VRP domain to refer

to the respective entity. The third column provides an explanation of the attributes

and relations of the respective entity.

The TSP is the root element in the analysed part of the vehicle-routing domain.

The problem is defined on a complete Network which is comprised of places and

72

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

Table 3.1: Elements and their relations found in the TSP.

Element Alternative names Description

TSP - The problem to be modelled and the containing root
element of all other entities.

Network Graph, Map The structure formed by all Nodes and Edges of
the network. The TSP is normally defined on a
complete network in which all nodes are mutually
connected by edges.

Node Location, City, Place A location with an integer id number that an Agent

(the salesman) is supposed to visit.

Depot Terminal point (Dantzig
and Ramser, 1959),

A location from which the Agent starts and where
it is supposed to finish its Tour.

Edge Road, Distance, Arc A path between two Nodes. Features a length at-
tribute.

Agent Salesman, Salesperson,
Vehicle, Driver

The acting entity that is supposed to visit every
Node once in the shortest possible Tour.

Tour Solution, Cycle, Trip
(Junjie and Dingwei,
2006)

An ordered list of Nodes. It is optimal for which the
accumulated sum of connecting edges is minimal.

their connections. In the DSL, the places to be visited will be referred to as Nodes

and the links between nodes will be defined using the Edge keyword. The acting

entity of the problem will be referred to as an Agent. One reason why the term

‘agent’ was preferred to alternatives like ‘vehicle’ or ‘driver’ was the fact that the

models (or programs written in the DSL) are to be transformed into various models

running on different ABMS platforms for which the term agent represents the core

concept. The other reason is that the word is succinct and its etymological meaning

precisely matches the intended semantics of an entity that performs various actions.

Figure 3.1 shows a graphical representation of the entities and their relations.

The root element is the TSP class. It comprises exactly one Agent instance (the

salesman) and a Network built from Nodes and Edges. The TSP is considered

symmetric if and only if the distance between any two nodes ni and n j (ni ̸= n j)

is the same in either direction. In a complete network, there is an edge (with an

associated length) in both directions between any two nodes in the network. The

agent has access to the network. It is also associated with a tour of nodes that

determines the sequence in which the nodes of the network are to be visited. The

73

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

1 1

nodes1..* 1..*edgestour1
nodes{sequence}

1..*
start

1

end

1

network

1

TSP

symmetric:boolean

Agent Network

complete:boolean

Node

name:String

isDepot:boolean

Edge

length:real

Tour

/isOptimal:boolean

length():real

Figure 3.1: Elements and their relations found in the TSP.

tour has an associated length which is defined as the sum of the edge length of two

subsequent nodes of the tour. The tour is optimal if all other feasible tours are at

least as long as the optimal tour.

A formal codification of the constraints (some of which have been informally

specified in the previous paragraph) that apply to the TSP is presented in Figure 3.2.

The constraints are defined in the object constraints language (OCL) (cf. OMG,

2014; Cabot and Gogolla, 2012a) which allows for a precise definition of additional

information on UML models such as the definitions of invariants, i.e. constraints

that a model instance must adhere to in order to be considered valid.

Firstly, invariant positiveLength allows only edges with a length greater than

zero. Invariant noSelfTransitions states that for each Edge the start and end

node must be different – in other words no node is linked to itself via an edge.

Invariant completeNetwork ensures that if the complete attribute of the Network

is set to true, then for any two nodes ni and n j with n1 ̸= n2 in the network, there

must be an edge from ni to n j. In order to ensure that there can be no more than

one edge between two different nodes, invariant onlyOneLink was defined. The

exactlyOneDepot invariant states that each valid TSP must feature exactly one

depot.

Invariant visitAllCities ensures that the tour comprises all Nodes in the

Network so that the Agent visits every city of the network. Invariant onlyOneVisit

74

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

context Edge
inv positiveLength length > 0

context Edge
inv noSelfTransitions: start <> end

context Network
inv completeNetwork: complete implies nodes->forAll(n1, n2 |

self.edges->exists(e|e.start = n1 and e.end = n2))

context Network
inv onlyOneLink edges->forAll(e1,e2 |

e1 <> e2 implies e1.end1 <> e2.end1 or e1.end2 <> e2.end2)

context Network
inv exactlyOneDepot nodes->select(n | n.isDepot)->size() = 1

context Agent
inv visitAllCities network.nodes->forAll(n | self.tour.nodes->includes(n))

context Tour
inv onlyOneVisit nodes->reject(n | isDepot).forAll(n | self.nodes.count(n) = 1)

context Tour
inv startAndEndAtDpt nodes->first().isDepot and nodes->last().isDepot

context TSP
inv symmetric if symmetric then

edges.forAll(e1 | edges.exists(e2 | e1.start = e2.end
and e1.end = e1.start and e1.length = e2.length

endif

context Tour::length() : real
body let outgoingEdges = nodes.outEdge

outgoingEdges.remove(outgoingsEdges->last()).length->sum()

context Tour::isOptimal : boolean
derive Tour::allInstances()->forAll(t | t <> self

implies t.length() >= self.length)

Figure 3.2: Constraints of the TSP modelled with the OCL.

then ensures that with the exception of the depot node, every node is visited only

once. Invariant startAndEndAtDpt requires the agent to start and finish the tour at

the depot node. The final invariant symmetric stipulates that in a symmetric TSP

two nodes must be connected in both directions by edges of equal length.

The second to last element in Figure 3.2 is an operation body expression2 that

defines the length of a tour as the sum of all edges between the nodes of the tour.

The final element is an expression that is to be used in order to determine whether a

tour’s isOptimal attribute is true or false. The expression states that the value is

set to true only if all other tour instances have an equal or even longer length than

the tour for which the attribute value is to be determined.
2cf., e.g., Section 7.3.6 in (OMG, 2014)

75

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

The advantage of the constraint definition via OCL over the mathematical integer

program approach is that it is closer to the software development domain and thus

reduces the gap between formal constraint definition and the implementation of

mechanisms that ensure that models comply to all defined constraints.

3.2.1.2 The restricted multiple travelling salesman problem

Miller et al. (1960), present a TSP variant in which the single tour of the salesman is

split into exactly t (with t ∈N) different tours that all start and end at the depot node

0. Neither of the t tours may visit more than p nodes different from the depot, yet

all nodes must be visited exactly once. This variant closely resembles the multiple

travelling salesman problem (MTSP) (c.f., e.g. Al-Furhud and Ahmed, 2020) except

for the limitation in the number of nodes on a given tour. With the denotations

defined in Section 3.2.1.1 this variant – which here is referred to as the restricted

multiple travelling salesman problem (RMTSP) – can be defined as follows:

minimise
∑

i, j∈V
ci jxi j (2.1)

s.t. xi, j ∈ {0,1} ∀i, j ∈V (2.2)∑
i∈V
i ̸= j

xi j = 1 ∀ j ∈V ′ (2.3)

∑
j∈V
j ̸=i

xi j = 1 ∀i ∈V ′ (2.4)

∑
i∈V

xi0 = t (2.5)

∑
j∈V

x0 j = t (2.6)

ui −u j + pxi j ≤ p−1 ∀i, j ∈V ′, i ̸= j (2.7)

1≤ ui ≤ p ∀i ∈V ′ (2.8)

The Objective 2.1 of the RMTSP is directly adopted from the objective function of

the TSP. Constraint 2.2, Constraint 2.3, and Constraint 2.4 are also direct adoptions

of the respective TSP constraints with a slight but very important modification

76

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

concerning the latter two constraints: In Constraint 2.3 the depot is excluded from

the set of of nodes that have to be the target of exactly one visiting agent, and analog-

ously the depot is also excluded in Constraint 2.4 from the set of nodes from which

exactly one agents sets out to visit a subsequent node. This exclusion is obviously

necessary since there are exactly t tours that start and end at the depot, which is

specified in Constraint 2.5 and Constraint 2.6, respectively3. The MTZ constraint

was also taken from the TSP and adapted to fit the RMTSP. Constraint 2.7 on its

own still ensures that there are no disjunct subtours that do not start and end at

the depot. Constraint 2.7 and Constraint 2.8 together ensure that none of the tours

consists of more than p nodes (different from the depot).

3.2.1.3 The capacitated vehicle routing problem

Toth and Vigo (2002) present an integer program formulation for the capacitated

vehicle routing problem (CVRP) which builds upon the RMTSP. The only change is

that in the CVRP every node i ∈V ′ has a demand di ∈R+ (for a product or a service)

and the agent has a capacity C that must not be exceeded by the accumulated

demands of the nodes on any of the t tours. The integer linear program (ILP)

formulation is as follows:
3It is to be noted that one of the constraints 2.3, 2.4, 2.5, or 2.6 could be omitted as it is an

implication of the remaining three constraints (Toth and Vigo, 2002).

77

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

minimise
∑

i, j∈V
ci jxi j (3.1)

s.t. xi, j ∈ {0,1} ∀i, j ∈V (3.2)∑
i∈V
i ̸= j

xi j = 1 ∀ j ∈V ′ (3.3)

∑
j∈V
j ̸=i

xi j = 1 ∀i ∈V ′ (3.4)

∑
i∈V

xi0 = t (3.5)

∑
j∈V

x0 j = t (3.6)

ui −u j +Cxi j ≤ C−d j ∀i, j ∈V ′, i ̸= j,di +d j ≤ C (3.7)

di ≤ ui ≤ C ∀i ∈V ′ (3.8)

For the CVRP the Objective 3.1 and Constraint 3.2 – Constraint 3.6 are identical

to the RMTSP. The only differences can be found in Constraint 3.7 and Con-

straint 3.8. Constraint 3.7 can be rearranged4 to u j−ui ≥ d j−C(1−xi j). If the agent

starts at node i to visit node j, xi j is set to 1 which yields u j −ui ≥ d j or u j ≥ ui +d j.

Therefore, ui is interpreted as the accumulated demand met by the vehicle after

visiting node i with i ∈V ′. Constraint 3.7 on its own eliminates subtours that do not

start at the depot and it also ensures that the demand of every customer is satisfied.

Constraint 3.8 asserts that the capacity C of the agent is not exceeded.

3.2.2 Specialisation and generalisation

The previous sections have shown that there is a distinct relation between the three

presented problems. Throughout the literature on VRPs, this relation is referred

to as generalisation (cf., e.g. Laporte and Nobert, 1987). Informally, a problem B

generalises a problem A if it provides an additional facet that was not of explicit

relevance in the generalised problem or extends the range of values allowed for an
4see also:

https://how-to.aimms.com/Articles/332/332-Miller-Tucker-Zemlin-formulation.html

78

https://how-to.aimms.com/Articles/332/332-Miller-Tucker-Zemlin-formulation.html

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

existing facet. In turn, the generalised problem A can be considered a specialisation

of the more general problem B in which the ‘missing’ facets implicitly assume a

given value (or a value for which a given condition holds).

This way, the CVRP can be considered a generalisation of the RMTSP, as it

explicitly adds the facets of customer demands and agent capacities. However, the

RMTSP constraint which enforces that neither of the t tours contains more than p

nodes can also be interpreted in terms of the added facets: if every customer i has a

demand of 1, i.e. di = 1∀i ∈ V ′, and the agent has a capacity of p, i.e. C = p, then

the CVRP is equivalent to the RMTSP. In the formal ILP definition, Constraint 3.7

becomes Constraint 2.7 and Constraint 3.8 becomes Constraint 2.7.

The RMTSP is a generalisation of the of the TSP: if the number of tours to

be performed is set to 1 and the number of nodes allowed on a tour is set to n,

then the RMTSP becomes the standard TSP. This is because for t = 1 and p = n,

Constraint 2.5 and Constraint 2.3 can be combined which yields Constraint 1.3

and the combination of Constraint 2.6 and Constraint 2.4 results in Constraint 1.4.

Constraint 2.7 becomes Constraint 1.5 and Constraint 2.8 can be omitted as the

number of nodes (different from the depot) equals the number of nodes (different

from the depot) allowed on the single tour.

≪generalizes≫

≪generalizes≫

Travelling Salesman Problem

Restricted Multiple TSP

Capacitated Vehicle Routing Problem

Figure 3.3: Generalisation relation between three basis routing problems.

Figure 3.3 illustrates the generalisation relation among the three problems

that were discussed in the previous sections. It is important to note two aspects

regarding the presented generalisation relation. Firstly, the generalisation relation

is a transitive relation, i.e. the CVRP is also a generalisation of the TSP. And,

perhaps even more importantly, the usage of the term ‘generalisation’ is in direct

79

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

opposition to how the term is usually used in the object oriented paradigm. Here,

the RMTSP would be considered an extension or specialisation of the TSP, as

its set of facets is a proper superset of the feature set of the TSP. In order to

use the prevalent terminology of the analysed domain, the figure introduces the

generalises stereotype that provides the semantics discussed in this section to the

inheritance notation.

There are two important implications to the generalisation relation. The first

implication is that if the DSL allows the creation of models that represent a certain

target problem type, the DSL can also be used to model every problem type gen-

eralised by the targeted problem type. Moreover, as the DSL is also supposed to

be transformed into a model of an appropriate solution domain, it is important to

know that an algorithm from the solution domain that is capable of solving a given

target problem type can also be applied to obtain solutions for problem types that

are generalised by this target problem type.

3.2.3 The vehicle routing problem with time windows

In the course of the domain analysis several more publications on vehicle routing

problems were searched for important concepts that needed to find their way into the

abstract syntax of the Athos language. These concepts were visualised in a concept

map that was created with the CmapTools software5. The resulting concept map is

illustrated in Figure 3.4. The concept map was built in an attempt to visualise the

ontology of the domain of vehicle routing problems. At some point, it was decided

that a ‘vantage problem’ was to be chosen based on which the language was to be

implemented. From the generalisation relation specified in the previous section it

follows that if Athos was capable of adequate representation and simulation of this

vantage problem, it would implicitly also be capable to represent and simulate all
5https://cmap.ihmc.us/

80

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

problems that were generalised by this problem. The vehicle routing problems with

time windows (VRPTWs) then was selected as a problem suited to built the vantage

point for further language extensions.

The definition of the VRPTW based on which Athos was implemented and that

was also used in the training material for the evaluation study (see Chapter 6) was

derived from the works of (Ombuki et al., 2006; Baldacci et al., 2008). Especially the

work of (Ombuki et al., 2006) was also of crucial importance for the implementation

of an algorithm found in the optimisation library that is part of Athos’ solution

domain (see Section 5.10).

Let G = (N, A) be a complete directed graph with N = {0, . . . ,n} a set of n+1 nodes

and A a set of (directed) arcs. The node with index 0 represents a depot node. The

nodes N ′ = {N \0} represent customers. The arcs represent connections between

the nodes. Every customer i ∈ N ′ has a demand of qi units of a product, a time

window [ai,bi] within which the customer must be serviced, and a service time ui

that indicates how long the process of servicing the customer takes.

The depot hosts an infinite set of vehicles from which any number of vehicles

can be deployed to service the customers. Every vehicle of the fleet has the same

capacity Q. Every edge between two nodes i und j (i, j ∈ N ′) is assigned a distance

ci j ≥ 0 as well as a travelling duration ti j ≥ 0 that the vehicle requires to traverse

the given edge.

A route or tour R is a sequence of nodes R = (i1, i2, . . . , i|R|), in which the first and

the last node is the depot and which contains any customer exactly once or not at all

(i1 = i|R| = 0 and {i2, . . . , i|R|−1}⊆ N ′). A route is feasible, if the accumulated demand

of the customers on the tour do not exceed the vehicle capacity Q, i.e.
∑|R|−1

h=2 qih ≤Q,

and the point in time sih , at which the vehicle arrives at the customer ih is before

the time window of this customer closes, i.e. sih < bih , (sih =max{sih−1 ,bih−1}+uih−1+
tih−1 ih and s0 = 0).

A feasible solution is comprised of a set of feasible routes R = {R1, . . . ,Rn}, that

have any customer as part of exactly one feasible route.The cost or distance of a

route R = (i0, . . . , i|R|) is defined as c(R)=∑|R|
h=1 cih−1 ih .

81

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

Then the objective function can be defined as

µ · |R|+ν · ∑
R∈R

c(R)−→min!,

with µ and ν being the weights for the number of tours (and thus the number

of deployed vehicles) and the accumulated distance, respectively. Note how this

corresponds to the Athos model represented in Section 3.4.1. Also see how the

algorithm presented in Section 5.10.2 solves problems that comply to the given

definition.

82

C
H

A
P

T
E

R
3.

T
H

E
L

A
N

G
U

A
G

E
A

N
D

IT
S

E
N

V
IR

O
N

M
E

N
T

Figure 3.4: Concept map of the VRP taxonomy. text represents static problems, text represents adoptable constraints, text represents
abstract static problems, text represents stochastic problems, text represents objective functions, text represents problem entities,
represents generalisations, represents transitive (indirect) generalisation, represents generalisations, represents adaptation
of constraints, is used for any other kind of relation.

83

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

Conceptual
Model

Athos
Model

Athos
Meta-Model

re
pr

es
en

ta
tio

n derivative

instance

Athos Generator

NetLogo
Model

Repast
Model

CIM

PIM

PSMverification

Figure 3.5: The modelling approach applied with Athos (adapted from (Hoffmann
et al., 2018b)): at the top are computationally independent models (CIMs), the most
abstract model type. Most often, Athos model are platform-specific models (PSMs)
(because they contain some computational instructions) which are transformed to
platform-specific models (PSMs) for the NetLogo (or Repast) simulation platform.

3.3 Declarative textual modelling with Athos

Athos is a DSL that was designed to support domain experts in the development of

agent-based traffic and transport optimisation simulations. For this the main focus

of the language is on scenarios that involve vehicles (agents) that exhibit individual

behaviour (e.g. finding shortest routes, replenishing stocks, etc.).

An Athos model can be comprised of a multitude of agents each of which seeking

to solve one (or several) individual-level optimisation problems and acting accord-

ingly. This way, every single agent affects its environment, i.e. the global system.

Models for these simulation scenarios are defined declaratively. Thus, users do not

have to think in computational (e.g. imperative) terms. Because of an increased

level of abstraction, users are enable to focus on what to simulate rather than how

to simulate it (c.f. Vendrov et al., 2014; Borenstein, 2015).

Figure 3.5 depicts the defining language components together with how they

are related. The vantage point of the approach adopted by Athos is a conceptual

model derived from the domain analysis. The conceptual model reflects the ontology

of the traffic and transport modelling and optimisation domain. The conceptual

model is implemented as a meta-model that represents the abstract syntax of Athos.

84

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

By instantiating elements from this meta model Athos models are built. These

models represent traffic or transport optimisation problems as they are found in the

underlying domain.

Athos models allow the representation of aspects that are relevant in the domain

(e.g., the location of a particular depot, or the capacity of roads in a given area

or the extent to which a particular vehicle type contributes to road congestion).

Though most Athos models are in some way related to optimisation problems (e.g.,

because they feature agents that need to find the fastest tour in which to visit a

given set of clients), Athos only requires a declarative specification of the problem

for which an optimal (or near optimal) solution is required. Athos models do not

require any information on computational details on how to actually solve the given

problem. Most Athos models can thus be considered computationally independent

models (CIMs) (Kardoš and Drozdová, 2010, p. 90). However, Athos also features

language elements that grant modellers access to the computational level (e.g. by

allowing users to define parameters for a particular algorithm that is to be applied

to solve a given problem; see in Section 4.3 the rules for AgentStaticTourOptimi-

sationBehaviour and AgentStaticTourEAOptimisationBehaviour). While these

model elements (and by extension the models that apply them) are more specific than

their CIM level ancestors/relatives, they still do not allow any assumptions on the

implementation platform. Models on this level are said to be platform independent

models (PIMs) (Kardoš and Drozdová, 2010, p. 90). Every Athos model thus is a PIM

(or even a CIM). Since the Athos meta-model was directly derived from the domain of

traffic and routing optimisation problems (see Section 3.2 and also Section 4.1), each

Athos PIM represents a concise model of the traffic and transportation optimisation

domain.

The Athos generator comprises a set of transformations (see Chapter 5) that

turn an Athos model into a model for a specific simulation platform like NetLogo6

or Repast7. In order to be executable, these models require information that is
6https://ccl.northwestern.edu/netlogo/
7https://repast.github.io/

85

https://ccl.northwestern.edu/netlogo/
https://repast.github.io/

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

specific to the respective target platform which is why they are referred to as PSMs.

The platform-specific details are stored in the transformations from which the

generator is built. The current main target platform for Athos is NetLogo, though

there is also a set of proof-of-concept transformations that can be used to transform

Athos models into PSMs for the Repast Simphony platform. While Athos models

remain declarative, NetLogo models are based on a procedural paradigm whereas

Repast Simphony models are object-oriented. As is discussed by Sansores and Pavón

(2005, p. 245), the capability to execute a model on different platforms (even though

indirectly via transformations) brings about a crucial benefit: by ensuring that the

results obtained on the different target platforms are equivalent, one important step

towards model (and transformation) validation can be taken.

3.4 Athos by example

Athos is intended to be a straightforward DSL with a moderate learning curve that

is manageable for software engineers and domain experts with no programming

knowledge alike. As such, it appears to be a prudent approach to introduce the

language with two upfront examples that highlight different aspects of the language.

The first example presented in Section 3.4.1 is also the very example that was

used throughout the introduction scenario and learning material of the evaluation

study (see Chapter 6) and is based on the definition given in the previous section.

The problem modelled in this example is a straightforward instance of a vehicle

routing problems with time windows (VRPTWs). The second example presented

in Section 3.4.2 demonstrates several additional features that the Athos language

offers to turn static academic VRPs into their dynamic version while being capable

of tracking measures of interest.

3.4.1 Example 1: The VRPTW in Athos

The example model in Listing 3.1 presents a basic VRPTW. Line 1 of the example

is referred to as the preamble. The preamble is usually just one line in which the

86

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

15 (31)

12 (6)

16 (16)

20 (20)

8 (4)

16 (8)

6 (6)

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

10

00
e: 0
l: 300
c: 200

01

d: 15
e: 30
l: 45
s: 3

02
d: 10
e: 30
l: 60
s: 7

03
d: 15
e: 15
l: 30
s: 12

04

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n navigation node

n
customer or
navigation node

FastWay
duration: 0.5 · length

NormalWay
duration: 1 · length

SlowWay
duration: 2 · length+1

Figure 3.6: Graphical representation of the first example.

Listing 3.1: A VRPTW modelled in Athos.
1 model WetterauOrders1
2 products
3 foo weight 1.0
4 functions
5 durationFunction fastWayFunction 0.5 * length
6 durationFunction normalWayFunction length
7 durationFunction slowWayFunction 2 * length + 1
8 network
9 nodes

10 n0 at (3, -4) isDepot foo sprouts bar customers n1, n2, n3 at 0 latestTime 300
11 n1 at (-6, 8) hasDemand foo units 15 earliestTime 30 latestTime 45 serviceTime 3
12 n2 at (-8, -8) hasDemand foo units 10 earliestTime 30 latestTime 60 serviceTime 7
13 n3 at (11, -3) hasDemand foo units 15 earliestTime 15 latestTime 30 serviceTime 12
14 n4 at (-12, 8)
15 edges
16 s1 from n0 to n1 function slowWayFunction
17 group normalWayGroup function normalWayFunction members
18 w1 from n1 to n4
19 w2 from n1 to n2
20 w3 from n1 to n3
21 group fastWayGroup function fastWayFunction members
22 f1 from n0 to n2
23 f2 from n0 to n3
24 f3 from n2 to n4
25 agentTypes
26 agentType bar maxWeight 200
27 behaviour awt awaitTour when finished do die
28 behaviour die vanish

name of the model is defined. Athos does not require the name of the model to be

identical to the name of the file that it is saved in. At this point it is to be mentioned

that Athos is white space agnostic so that line breaks and indentations are only

relevant to the modeller’s convenience.

Line 2 and Line 3 form the product section. This section is used to define

the products that agents can deliver within the network. Each product must be

87

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

associated with a weight value which is required so that Athos can calculate how

many units of a given product an agent with a given capacity can actually transport.

This way Athos can ensure that capacity constraints are not being violated by

solutions provided by its underlying optimisation library (see Section 5.10).

The functions section ranges from Line 4 to Line 7. This section specifies expres-

sions that can later be associated with edges (or entire groups thereof) to determine

the amount of time it takes an agent to traverse the respective edge. Though cur-

rently not supported, later versions will also allow expression in terms of speed

(instead of time) through the specification of speedFunctions8.

The area from Line 8 to Line 24 is the network section (see Section 4.1.1). In

Athos, the network is the environment in which the agents are embedded and within

which they exhibit their behaviour. A network comprises an arbitrary number of

nodes that are connected via edges. Nodes are specified in the node section (Line 9 to

Line 14) and edges are modelled in the edge section (Line 15 to Line 24).

The node section in this example is composed of three different types of nodes.

Line 10 defines a depot that stores an unlimited quantity of product foo9 and

hosts an unlimited fleet of bar agents (discussed below). The depot is supposed to

deliver its product to customers n1, n2, n3 that are specified as demand nodes in

Line 11, Line 12, and Line 13, respectively. Each of these demand nodes specifies

the demanded product, the demanded quantity, a time window (composed of an

earliestTime and a latestTime), and a serviceTime that determines the amount

of time the agent will need to remain at a particular customer node to complete the

delivery. Since node n4 does neither serve as source from which agents populate

the network nor as a customer / demand node, it serves only as a joint between two

edges. In this thesis these kind of nodes are referred to as navigation nodes (also see

Figure 3.6).
8These functions are defined in Athos’ abstract and concrete syntax, but the generator currently

does not support these type of functions.
9As it is common practice throughout many programming languages, the metasyntactic variables

‘foo’ and ‘bar’ will be used in the examples of this thesis.

88

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

Line 16 defines a single edge that connects nodes n0 and n1. This edge is

associated with the slowWayFunction that was defined in Line 7. The semantic of

the expression is that the time that an agent requires to traverse the edge is equal

to two times the length of the road plus an additional unit of time. As the common

atomic unit of time used in agent-based simulation is a tick, this term will also be

used in this thesis. Figure 3.6 illustrates that the length of the edge from n0 to n1 is

1510 so it follows that an agent that seeks to travel from n0 to n1 via edge s1 will

require 31 ticks to do so.

In the agent section which ranges from Line 25 to Line 28, the types of agents

that will populate the network are defined. In this example, there is only one single

type of agent: the vehicles agent type is defined to be able to carry a cargo of 200

weight units11 (Line 26). Subsequently, Line 27 and Line 28 define the behaviour of

that agent type in terms of behaviour states (see Section 4.1.2). It is to be noted here

that the first behaviour specification always represents the starting behaviour state

of the agent. In order for an agent to switch to another behaviour state, a condition

must be met that triggers a transition into the new state. In the given example, the

agent type is defined to wait at a depot until it is assigned a tour. When the tour is

completed, i.e. the current state is finished, the agent is modelled to simply leave

the simulation.

In this example, the duration an agent travels on an associated edge depends

solely on the length of the edge. This implies that the agents will not mutually effect

each other in terms of travel times, i.e. the traversal duration for any given edge will

be independent of the number or type of agents currently moving on that edge. As

was mentioned in the introduction of this thesis, it is a characteristic feature of agent-

based models (and of the complex adaptive systems that they represent) that agents

can exert influence on each other. In a traffic network, the most important way in

which agents mutually affect each other is through the occurrence of congestion
10All values in the illustration are rounded to the nearest integer, though in the given example

the length of the edge that connects n0 and n1 located at (3,−4) and (−6,8) is exactly 15.
11The reason for the usage of ‘maxWeight’ instead of ‘capacity’ as a keyword here is that later

versions are planned to also support volume limitations which would render the term ‘capacity’
ambiguous.

89

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

Figure 3.7: Three-dimensional view of the generated platform-specific NetLogo
model.

effects. If too many agents travel on a given edge, they have to move more slowly. To

model this, functions can be modified to feature a congestion factor that slows the

movements of agents on the respective edge.

Line 17 to Line 20 define an edge group. Edge groups are a language element

used for convenience purposes and to create more concise network models: they allow

to form groups of edges that share one or several features. The common features

then need only be assigned to the group (instead of every single edge). If necessary,

it is possible to override any feature for a single edge even when it is a member of

an edge group.

Figure 3.7 presents a screenshot taken from the NetLogo simulation that the

Athos generator generates from the presented program. The middle part of the figure

shows the three-dimensional view that is NetLogo’s visualisation of the generated

platform-specific NetLogo model. Though the edges cannot be differentiated since

they are all represented as grey lines (with an attached arrow head to indicate their

direction), the structure of the network clearly resembles the structure depicted in

Figure 3.6.

90

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

The left hand side of Figure 3.7 shows a property view for the edge connecting

n0 and n1. It is to be noted here that (if not specified otherwise), Athos generates

two diametrical, directed edges for every edge modelled in the Athos program.

The properties view also shows that the edge’s associated durationFunction is a

slowWayFunction and that the edge has a linm (length) of 15 units from which a

currenttravelduration of 31 ticks results.

The right hand side of Figure 3.7 shows the properties view of the agent that

currently travels on the edge that was just discussed. It can also be seen that this

agent has a capacity of 200 units, its current state is not finished and that it is

of type bar. Other than bar there was no type defined in the example program and

no actual instances were defined. The underlying optimisation algorithm applied

by Athos for the modelled problem (see Section 5.10.2) provided a solution that

suggested the deployment of two agents. This is why there are two agent instances

to be seen in the illustration. The one whose properties were just discussed, and

another agent in the bottom right-hand corner servicing node n3.

3.4.2 Example 2 additional elements

3.4.2.1 From static to dynamic problems

The previous example modelled a static VRPTW in which customers were to be

serviced within a given time-window by a fleet of agents. The model was completely

static since there were no additional agents exerting influence on the vehicles. And

even if there would have been additional agents, they would not have affected each

other as there were no congestion factors considered in the durationFunctions

defined for the edges of the network. To lay the foundations for a more dynamic

model, this is now done for the functions defined in Listing 3.2. The function in

Line 6, Line 7, and Line 8 now feature an accCongestionFactor element. Together

with the new agent types baz and qux defined in the agent section starting at

Line 38, agents that are on the same edge will now affect one another in that

91

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

Listing 3.2: A VRPTW modelled in Athos.
1 model example1Revisited [xmin -12 xmax 12 ymin -10 ymax 10]
2 products
3 foo weight 1.0
4 fred weight 2.0
5 functions
6 durationFunction fastWayFunction length + 9 * accCongestionFactor
7 durationFunction normalWayFunction 2 * length + accCongestionFactor^2
8 durationFunction slowWayFunction 4 * (length + accCongestionFactor)^3
9 durationFunction noCongestion length

10 network
11 nodes
12 n0 at (3, -4) isDepot foo sprouts bar customers n1, n2, n3 latestTime 135
13 n1 at (-6, 8) hasDemand foo units 15, fred units 4
14 earliestTime 30 latestTime 45 serviceTime 3
15 n2 at (-8, -8) hasDemand foo units 10 timeWindow 30, 60 serviceTime 7
16 n3 at (11, -3) hasDemand foo units 15 earliestTime 15 latestTime 30 serviceTime 12
17 n4 at (-12, 8) sprouts qux route for rte n3, n1, n2 probability 50
18 orr baz route for rte n5, n2, n1 probability 50
19 frequency 1 every 2 until 20
20 n5 at (4, -3) sprouts 1 qux route for rte n3, n1, n2 probability 50
21 orr qux route for rte n5, n2, n1 probability 50 at 1
22 n6 at (-10, -10) sprouts 1 baz route for rte n1, n3, n0 at 2
23 n7 at (-9, -9) sprouts 1 qux at 3
24 edges
25 s1 from n0 to n1 function slowWayFunction [type3, ultraThin, red]
26 group normalWayGroup function normalWayFunction members [type2, ultraThin, lightBlue]
27 w1 from n1 to n4
28 w2 from n1 to n2
29 w3 from n1 to n3
30 group fastWayGroup function fastWayFunction members [thin, darkBlue, type3]
31 f1 from n0 to n2
32 f2 from n0 to n3
33 f3 from n2 to n4
34 group slipRoadGroup function noCongestion members [thin, lightGreen, type1]
35 -> sr1 from n5 to n0
36 -> sr2 from n6 to n2
37 -> sr3 from n7 to n2
38 agentTypes
39 agentType bar maxWeight 200
40 behaviour awt awaitTour when finished do die
41 behaviour die vanish
42 agentType baz congestionFactor 0 maxWeight 150
43 behaviour rte route perInstance when finished do leave
44 behaviour leave idle for 300 when finished do van
45 behaviour van vanish
46 agentType qux congestionFactor 10 maxWeight 150
47 behaviour goToDepot route n0 when finished do loadStock
48 behaviour loadStock loadCargo fred units 100 when finished do deliverGoods
49 behaviour deliverGoods deliver n1 products fred when finished do rte
50 behaviour rte route n2 n3 n1 repeat 4 times when finished do leave
51 behaviour leave vanish
52 metrics updateRate 10
53 for bar
54 individual metric intendedRoute when notYetSet? set intendedTour
55 class metric distanceCovered when isAtCustomer?
56 add distanceTo last customer
57 class metric ticksEarly when isAtCustomer? and earliestTime > currentTime
58 add earliestTime - currentTime
59 class metric ticksLate when isAtCustomer? and latestTime < currentTime
60 add currentTime - latestTime
61 class metric windowsViolated when isAtCustomer? and latestTime < currentTime add 1
62 class metric windowsMet when isAtCustomer? and currentTime <= latestTime add 1
63 for baz
64 individual metric bazRoute when notYetSet? set intendedTour
65 for qux
66 individual metric quxRoute when notYetSet? set intendedTour

92

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

they will reduce their movement speed. In this context, it is also shown that

Athos allows the definition of several mathematical expressions in its function

definitions, the accCongestionFactor in Line 7 was squared before12 it was added

to the result of multiplying the length with a factor of two. Because of the brackets,

the accCongestionFactor in Line 8 is first added to the length, then the sum is

cubed before the result is multiplied by four.

The additional agents are now sprouted at different nodes in the network. Node

n4 in Line 17 will continuously sprout agents into the simulation. More precisely,

it will sprout 113 agent every 2 ticks until 20 ticks have passed. There is also a

random element with regard to what agent will be created. With a 50 percent chance

will the created agent be a qux agent visiting the nodes n3, n1, n2. Alternatively, the

created agent will be a baz agent headed for nodes n5, n2, and n1. Note that because

of the route behaviour, agents of type baz do only follow a tour without carrying

out any deliveries. Also note that the agents of type qux can only deliver fred to

customer n1 if they first go to depot no and fill their stock of fred.

Node n5 in Line 20 will sprout a qux agent, but the route the sprouted agent will

take is randomised. This node will also only sprout exactly one agent at tick 1. Node

n6 in line Line 22 will sprout an additional baz agent at tick 2. Finally, at tick 3

node n7 will sprout a qux agent that delivers fred to n1. From the definition of the

qux agent that spans from Line 46 to Line 51 it can also be seen that all instances of

this agent will start an additional route when their first route is finished.

The edges are mostly unchanged with respect to the first example. From Line 34

to Line 37, however, a new group of edges was defined. These are used to connect

some of the new source nodes to the network and their associated durationFunction

is not subject to any congestion effects (Line 9. With the ‘->’ symbol used in Line 35,

Line 36, and Line 37 the edges are specified as being directed edges or arcs.
12Athos respects the common operator precedence.
13The frequency keyword is somewhat confusing here and will be replaced in a future version of

the language.

93

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

3.4.2.2 Metrics tracked throughout the simulation

From Line 52 to Line 66 a metrics section has been added to the program. This

feature has been presented in (Hoffmann et al., 2019b). The metrics section allows

to define either individual or class metrics. The former is used to track data

for every single agent of the respective agent class. The latter are used to track

and accumulate data for the entire agent class. As their definition is not explained

at great length in Chapter 4, they shall be briefly discussed in the context of this

example.

The metric section must always define an updateRate at which the current

values calculated for the defined metrics are to be output to the simulation console

and written to the simulation log file. The definition of frequent metric updates

might negatively affect the the speed at which the simulation runs, so if users are

only interested in the results at the end of a simulation, a high update rate should be

set here14. Having set the update rate, the actual metrics are to be defined. Metrics

are always defined for specific types of agents.

Every metric definition is comprised of three parts that answer a specific question:

what agent level is the metric supposed to be calculated for, when must a calculation

be performed and what calculation is to be performed. For every metric the level

(individual or class) must be specified to answer the first question. After that,

a name must be provided for the metric. Next, a boolean expression must be

provided to define when the calculation is to take place. Currently, these expressions

should always contain either the expression isAtCustomer? to indicate that the

calculation is to be performed when the agent arrives at a customer or notYetSet?

to indicate that the metric is to be calculated when the agent is born. Finally,

the exact calculation to be performed is specified with an expression that follows

either the add or set keyword. With add a cumulative metric is specified, with set

it is specified that the value of the metric is updated to the value the respective

expression evaluates to.
14Future versions might introduce the keyword ‘summary’ here, so that the metrics are only

output at the very end of a simulation.

94

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

As an example, the metrics defined for the bar agent from Line 53 to Line 62

provide the following information to the language user when the simulation is

executed: the individual intendedRoute metric will display the sequence of nodes

the agent intends to visit. The class metric distanceCovered defined in Line 55 and

Line 56 provides information on the total accumulated mileage of all bar agents.

The agents update this value whenever they arrive at a customer in their list.

Of special interest are the metrics related to time windows defined from Line 57 to

Line 62. These are also updated whenever a bar agent arrives at a customer. Which

metric is updated how depends on the circumstances under which the respective

agent arrives at a customer. For example, if an agent arrives before the time window

of the customer commenced, then the metrics ticksEarly and windowsMet are

updated. For the ticksEarly metric, the difference between the tick at which the

time window of the customer opens and the tick at which the agent arrived at the

customer is added to the current value of the metric. For the windowsMet metric,

the current value (which by default starts at 0) is increased by one so that this

metric acts as a counter. The metrics ticksLate and windowsViolated are updated

analogously should the agent arrive at the customer after the time window was

closed.

3.4.2.3 Altered visualisation of elements

The last notable difference to the program of example 1 is that in this second example,

there are several parts in the program at which appearance specifications are defined.

Appearance specifications are used to alter the standard design of different elements

in the simulation. They are always specified within a pair of square brackets to

emphasize that they do not alter the behaviour but only the visualisation of the

generated simulation. The appearance specification in Line 1, for example, extends

the borders of the generated simulation. The appearance specifications in Line 25,

Line 26, Line 30, and Line 34 are used so that the generated edges can easily be

distinguished by the way they are visualised in the generated simulation.

95

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

Figure 3.8: Visual representation of the NetLogo simulation generated from the
second example.

3.4.2.4 An example result

Figure 3.8 presents a screenshot in which the changes applied in the second example

can be seen. The first thing to notice is that the simulation now encompasses a

larger number of agents. The edges now appear in different colours and drawing

styles that correspond to the applied appearance specifications. The right side of the

picture shows the console output that ensues from the definition of the metrics in

the metric section. The lower part shows, that the fleet of bar agents had to wait an

accumulated seven ticks so far serving one customer in time and missing one time

window due to the unexpected occurrence of traffic on the streets which at the point

in time the optimal routes were calculated was not present.

A close look at the format of the routes of the baz agents shows that these routes

merely consist of a sequence of cities. For state-car 8, the format is a little different:

here, the routes consist of a city together with a boolean value. This is required since

Athos needs to insert stopovers between two customers of a tour that are not directly

connected by an edge. The boolean value then is used so that bar agents can tell a

simple stopover node from an actual customer they need to service15.
15Note that for the qux agent the route is printed as a 0 value. Metrics need to be implemented

for all AgentBehaviourDescriptions in the generator and updates to the language necessitate the
update of the transformations, which sometimes leads to broken output. See Section 4.1.2, Section 5.6,
and Section 5.7, and also Section 8.3.

96

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

3.5 General architecture and usage of Athos

Athos Editor

Syntax
Color

Validator

Athos
Model

Athos Generator

Transformations
Others

NetLogo

Other
Models

NetLogo
Program

NetLogo
Platform

Extension API

Athos Extension

NetLogoGraphExtension
Adapter 1 Adapter n

Athos Opt. Lib.

Algorithm Algorithm

creates processes

executes

generates

usescalls

affects

Figure 3.9: Architecture of the Athos development environment.

Figure 3.9 provides an overview on the Athos architecture and how it is used.

Athos was implemented using the Xtext16 language development framework. The

reason why Xtext was chosen as the language workbench for this research project

was the positive experience the author of this thesis made using the framework in

different projects throughout his Bachelor’s and Masters’ studies. In the conception

phase for this project, the author was certain that Xtext provided every feature ne-

cessary for the implementation of Athos. This experience with the Xtext framework

and additional experience with some of its key components (e.g. the Eclipse modeling

framework (EMF) and ANTLR (Parr, 2011)) turned the balance towards the usage

of Xtext without detailed consideration and comparison of alternative approaches

like Spoofax17 A formal comparison of the capabilities offered by different language

workbenches can be found in (Johnsson and Olsson, 2016). With the capabilities of

the Xtext framework, Athos is implemented as an Eclipse plug-in that integrates

a dedicated Athos editor into the Eclipse environment. This editor features func-

tionalities such as syntax highlighting, code completion, outline view etc. It also

has an integrated validator that checks that no constraints of the language’s static

semantics are violated.
16https://www.eclipse.org/Xtext/
17https://www.spoofax.dev/

97

https://www.eclipse.org/Xtext/
https://www.spoofax.dev/

CHAPTER 3. THE LANGUAGE AND ITS ENVIRONMENT

With the editor, Athos models can be created. The Athos model in the editor is

internally stored as an instance of Athos’ abstract syntax encoded in an EMF (Stein-

berg, 2009) model. This EMF model is processed by the generator (see Chapter 5)

that transforms the Athos models into executable NetLogo simulations (other plat-

forms can be supported as well which has been shown by means of a a proof of

concept (Hoffmann et al., 2018b)). The generated NetLogo code is run on the Net-

Logo target platform. This platform also offers an extension API. Via this API, the

Athos optimisation library is integrated into the illustrated architecture. However,

as will be explained in Section 5.10.1, the classes created for the NetLogo extension

API do not run the code directly but rely on several adapter classes so the actual

algorithms of the Athos optimisation library are decoupled from any target platform.

98

; Fourth Chapter <

The syntax and semantics of Athos

This section focuses the syntactical elements of which Athos is comprised together

with their respective semantics and notation. The abstract and concrete syntax as

well as the static and dynamic semantics are the constituting elements of every

(domain-specific) computer language (cf., e.g. Vangheluwe et al., 2007; Cuadrado

et al., 2013; Völter and Benz, 2013). Section 4.1 starts out by presenting an overview

on the abstract syntax of Athos: the elements and their relations are presented

together with their respective semantics. Section 4.2 discusses some interesting

constraints each Athos model is subjected to in order to be considered valid1.

4.1 The abstract syntax

4.1.1 Network related meta-model elements

Figure 4.1 provides an overview of those Athos meta-model elements that are related

to the network and the functions required to determine movement speeds within

the network. Both the Function and the Network element are direct children of

the Model root element. The Network comprises Nodes and Edges. Edges can be

composed to EdgeGroups. Edges are specialised by FunctionalEdges which have
1At this point it should be noted that the abstract syntax of a language together with the

semantical constraints or the static semantics of a language form its meta-model. However, in this
thesis the terms ‘meta model’ and ‘abstract syntax’ are used interchangeably.

99

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

1..* 1

1..*1..*

1

1..*

node 1

from
1

edges

1..*

appearance 0..1

to
1

0..1 function

1
function

Model

Function

name:EString

expression:Expression

Network

EdgeGroup

name:EString

AppearanceSpec

Edge

name:EString

Node

name:EString

x:int

y:int
EdgeFunctionAgentFunction

DurationFunction

FunctionalEdge

length:int

cfactor:int

path:int

≪interface≫
Sourcish

Source SourceNd DemandNd SimpleNd

SproutFct

AgentProb

pobability:int

ContainingAP ReferringAP

AgentType

Figure 4.1: The network-related abstract syntax elements of Athos and their rela-
tions.

an associated EdgeFunction. These functions are used to determine the movement

speed of agents on the respective edge. Each edge has exactly one from and one to

Node.

In Athos, there are three different kinds of nodes: SourceNd nodes that sprout

agents into the network, DemandNodes that represent customers in the network.

And SimpleNodes that mostly serve for navigational purposes so that the geometry

of certain streets can be modelled with corners or even bends (through usage of a

multitude of nodes that are connected by edges). Nodes that sprout agents into

the network implement the Sourcish interface which establishes the relation to

a SproutFunction (also see Section 4.3.1). Functions that sprout agents into the

network are not directly associated with an Agent or an AgentType. Instead they

are composed of a set of AgentProbabilites which build the connection to the

AgentType. This way it is possible to model probabilistic sprout functions.

In order for Athos to allow two different types of specifications of Agents to be

sprouted, there are ContainingAgentProbabilities and ReferencingAgentProba-

bilities. The former are used for an in-place specification of an AgentType to be

sprouted, the latter are used to refer to an AgentType defined in the agent section of

100

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

1
behaviour

states1..*

0..1 refState0..1 conState

0..*
transitions

1
description

AgentType

-name:ID

-congestionFactor:double

-maxVolume:double

-maxWeight:double

AgentBehaviourBlock

AgentBehaviourState

+name:String

AgentBehaviourTransition

condtion:Expression

AgentBehaviourDescription

AgentTourOptimisationBehaviour

AgentAwaitTourFromDepotBehaviour

AgentStaticTourAntOptimisationBehaviour

{xor}

Figure 4.2: Excerpt of the meta-model of Athos depicting elements used to represent
agent behaviour (based on (Hoffmann et al., 2019b)).

an Athos model. This is the kind of reference that was used in the presented example

programs in Section 3.4.1 and Section 3.4.2. This mechanism is further explained

in Section 4.1.3. Athos programs also allow the specification of a special source

section. In this section, sources are defined by providing a reference to a node from

the network section together with the definition of a (probabilistic) sprout function.

This way a simple navigation node can become a node capable of sprouting agents.

In the last few years, Athos has been under constant development. As such, this

feature is mainly kept for reasons of backwards compatibility to prior states of the

language thatsince early version of Athos only used this source section mechanism

(cf. (Hoffmann et al., 2018b)).

4.1.2 Elements related to agent types and agent behaviour

RQ 1.1 asked for the elements required to model agents together with the behaviour

they exhibit during the simulation of vehicle-routing scenarios. As is depicted in

Figure 4.2, the meta-model of Athos defines a set of five meta-model classes (with

various subclasses) that represent agent behaviour. In Athos, every AgentType

is associated with exactly one AgentBehaviourBlock that comprises an arbitrary

number of AgentBehaviourStates. These behaviour states are similar to the states

found in deterministic finite automatons in that there is an initial state and a set of

transitions that allow an agent to change its current state.

101

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

Table 4.1: Summary of network-related meta-model elements of Athos together
with the keyword initiating the instantiation of the element in an Athos model
and a description of the semantics for each element. Abstract elements cannot be
instantiated and thus have no associated keyword.

Element Keyword Semantics

Model model Root element of every Athos model. Also contains
information on spatial boundaries.

Edge vintage A directed or undirected connection between to nodes.
Actually treated as an abstract class but instantiable
for reasons of backwards compatibility.

Function – Abstract element. Represents most functions in
Athos models that assign numerical values to other
elements based on the current state of the simula-
tion.

EdgeFunction – Abstract element. Represents functions that determ-
ine the amount of time in which or the speed by
which agents can traverse edges.

DurationFunction durationFunction A function which expects an expression that determ-
ines the amount of time an agent requires to traverse
an edge associated with the function.

SpeedFunction speedFunction A function which expects an expression that determ-
ines the speed (measured in units per tick) by which
an agent can traverse an edge associated with the
function.

Network network The graph-structure comprised of nodes and edges
on which the agents/vehicles operate.

Edge edge An element that represents any kind of thoroughfare
between two nodes (e.g. streets, highways, etc.).

Node – Abstract element. A distinct place of interest inside
the network (e.g. a customer, a depot, etc.)

SourceNd source A node that generates agents that participate in the
simulation.

Each AgentBehaviourState is associated with exactly one AgentBehaviour-

Description that represents the behaviour that the agent exhibits while being

in the respective state. Each AgentBehaviourState is also associated with a set

of AgentBehaviourTransitions. These transitions define the stimuli that trigger

an agent’s state transition together with the respective target state the agent is

supposed to transition to.

As an example for an interplay of these elements consider an agent that is in

a state in which it serves the customers defined in a tour (behaviour description).

102

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

do/load

loadVehicle

do/load

loadVehicle

do/wait

waitAWeeBit

do/wait

waitAWeeBit

do/deliver

deliverGoods

do/deliver

deliverGoods

do/return

return2

do/return

return2

return1return1load2load2idle2idle2

entry/retrieveL

do/goToNode

resume_dG

entry/retrieveL

do/goToNode

resume_dG

when finished after 500 ticks

when soap<20 || towels < 10

when finished

when finished

when finishedwhen finishedafter 200 ticks

instance of
AgentBehaviourTransition
instance of
AgentBehaviourTransition

instance of
AgentBehaviourDescription
instance of
AgentBehaviourDescription

instance of
AgentBehaviourState
instance of
AgentBehaviourState

Figure 4.3: State-machine based behaviour of an exemplary delivery agent and its
association to the Athos metamodel (adapted from (Hoffmann et al., 2019a)).

In case that the agent’s supplies of a given product fall below a certain threshold

(condition of a transition), a transition triggers a state-change (state) and the agent

returns to a depot and replenishes its stock (behaviour description) and continues in

its prior state to serve the remaining customers on the tour (behaviour description).

After some time, the simulation clock exceeds a predefined number of temporal units

(ticks) which triggers another state change (transition). This time, however, the

visible behaviour of the agent does not change (behaviour description) as the agent

simply continues to deliver products. However, as the new state of the agent is

associated with a different set of transitions, the next time its supplies fall below a

given threshold (which might also have changed, condition of transition) the agent

does not replenish its stock but returns back to its origin depot where it was sprouted

and continues the tour on the next working day (target state of transitions with

associated behaviour description).

Figure 4.3 illustrates another example state-machine-based behavioural pro-

gram for a delivery agent and how it leverages the meta-model elements depic-

ted in Figure 4.2. Each state is an instance of the AgentBehaviourState meta-

model element. The actual behaviour performed by the agent is represented by

the illustrated entry and state behaviours which in Athos are instances of the

AgentBehaviourDescription element. The transitions between states are instances

of the AgentBehaviourTransition element.

103

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

Listing 4.1: In-place vs. referencing agent type definition.
1 ...
2 n0 at (-3, -4)
3 isDepot unit sprouts
4 agentType inPlaceAgentType maxWeight 200
5 behaviour awt awaitTour when finished do die
6 behaviour die vanish
7 customers n3, n4 at 0 latestTime 800
8 n1 at (-6, 8)
9 isDepot unit sprouts referencedAgentType customers n3, n4

10 ...
11 agentTypes
12 agentType referencedAgentType maxWeight 200
13 behaviour awt awaitTour when finished do die
14 behaviour die vanish

The agent program modelled in Figure 4.3 defines an agent that starts with

loading its cargo space before transitioning into an idling state. After exactly 500

ticks, the agent starts its tour and delivers the loaded goods. In case that the number

of available units of the product ‘soap’ drops below 20 or the available units of ‘towels’

fall below 10, the agent transitions into a Return state2 that has the agent returning

to the nearest depot where it replenishes its stocks before it retrieves the next

location to go to and resumes the delivery state and behaviour. When the agent has

serviced all customers on its tour, it transitions into a state that has it returning to

its destination depot where it leaves the simulation.

4.1.3 In-place agent type specifications

At this point it is important to mention that the presented meta-model currently

allows in-place definitions of agent-types. This means that agent types can be defined

in the agent type section or even directly inside a sprout function. As is depicted

in Section 4.1, a SproutFct (sprout function) contains an AgentProb which can be

either a ContainingAP or a ReferringAP. The former contains an AgentType wheras

the latter references an AgentType. Thus, the ContainingAP is used for in-place

agent type definitions and the ReferringAP is used to reference an agent type that

is defined in the agent type section in an Athos model.

Both possibilities are exemplified in Listing 4.1. The depot defined in lines 2

– 7 uses a sprout function with an in-place agent definition. The depot defined in
2The entry and state behaviours where omitted in the illustration for reasons of brevity.

104

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

lines 8 – 9 uses a sprout function that references an agent type defined in the agent

types section. This example shows that the referencing approach allows for a better

separation of concerns, while the in-place approach mingles the definition of the

network structure with the definition of the agent population.

Another drawback of the in-place agent definition is that it considerably increases

the complexity of the underlying grammar. This results in situations where additions

or changes to the grammar lead to ambiguous grammars in which the parser has

multiple alternatives to parse certain parts of an Athos model. These situations

are often difficult to retrace even with the support of parsing generator tools. The

reason why Athos still allows both ways of defining the type of agents to be created

is that it might be more convenient for some users to define an agent type at the

exact position in the code where it is needed. Just as Java leaves it up to the user to

use either named classes or anonymous classes at different places in the code, Athos

was intended to grant users some degrees of freedom so that they can design the

structure of their models in a way they deem most appropriate. However, should

further empirical studies show that this flexibility does not meet the approval of

the language users or even lead to confusion, the in-place agent type definitions will

be discarded in the future. Finding out whether users demand for the discussed

flexibility or not is part of the future work (see Section 8.3.6.2).

4.2 The static semantics

The success of any DSL is – partially or entirely – determined by the amount of

acceptance it gains among its targeted user group. One key prerequisite for a DSL

to find wide acceptance is that it supports users in the creation of valid models

(Johanson and Hasselbring, 2017, p. 2210). One of the major advantages DSLs have

over application libraries for GPLs, is that they can be enriched with constraints

that notify end-users whenever they specify models that violate certain assumptions

under which the modelling language operates (Dwarakanath et al., 2017, p. 464).

Therefore, Athos can potentially support and guide its users in the creation of valid

105

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

Figure 4.4: Example constraint violation in the editor. The affected parts of the
model code are correctly highlighted and a sensible explanation on the violated
constraint is given to the user together with an appropriate quick fix.

and executable models in ways that a GPL-based application library (e.g. JSprit3)

cannot achieve.

These constraints form the static semantics of a language. For DSLs like Athos,

they are implemented in a validator that continuously observes the abstract rep-

resentation of the model (the AST) in the editor and validates it against its set of

constraints. If a constraint is violated, the validator can render the model invalid

and thus prevent it from being processed by the generator. In addition, the modeller

is informed on the respective issue at compile time. Frameworks like Xtext4 (which

was applied for the implementation of Athos) even allow the implementation of

automated repair mechanisms known as quick fixes.

Figure 4.4 displays an almost trivial but all the more important example: in a

moment of inattention a modeller swapped the values for the opening and the closing

of the time window in which a customer expects to be serviced. An application library

for a GPL cannot detect this mistake and issue a warning about it at compile time.

Only at runtime will the library be able to recognise the inconsistency and inform

the user by means of an appropriate exception. As can be seen in the screenshot,

a DSL like Athos can detect the inconsistency at compile time and thus prevent

execution of an inconsistent model. The editor can not only inform the modeller on

the problem but highlight the exact places in the textual model that are inconsistent.

It can even offer one or several automated repair mechanisms that the user only

needs to click on to fix the problem.
3https://jsprit.github.io/
4https://www.eclipse.org/Xtext/

106

https://jsprit.github.io/
https://www.eclipse.org/Xtext/

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

The next two sections present some examples of additional constraints imple-

mented in the validator of the Athos language. Section 4.2.1 presents some simple

examples of constraints related to the network section of an Athos model and Sec-

tion 4.2.2 discusses an example related to the (delivery) behaviour definable in an

Athos model. Though the Athos validator is written in the Xtend5 language, the

constraints in the next sections are presented in OCL which is the de-facto stand-

ard language in MDSD for the definition of model constraints (Cabot and Gogolla,

2012b). This way, the formal specifications should address a more general audience

than the corresponding implementation in Xtend. However, Section 4.2.2 gives an

illustrative example of how the constraint implementation in Xtend corresponds to

the specification in OCL.

Please note that the sole purpose of the presented examples is the definition

of compulsory constraints that an Athos model must fulfil in order to be valid and

executable. It is also important to note that at this point, the static semantics

of Athos is a part of the language that requires further work. Recognising and

implementing sensible constraints thus is an important part of future work to

be done on the language (see Section 8.3.3). Currently, Athos does not feature

language elements and associated mechanisms that would enable Athos users to

define additional constraints that the optimal solution for a given VRP has to fulfil.

This is also part of work to be done in the future (see Section 8.3.4).

4.2.1 Constraints related to the network

Especially with regard to the definition of the network in an Athos model, there

are several constraints that are comparatively simple but nonetheless important

(especially for the generator which operates under the assumption that these con-

straints are fulfilled). Some of these constraints are presented in Figure 4.5. Here,

the first constraint specifies that two different nodes must not have the same co-

ordinates in a simulation. The second constraint ensures that there are no negative
5https://www.eclipse.org/xtend/

107

https://www.eclipse.org/xtend/

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

start
1

end
1

Network

Edge

FunctionalEdge

length : Double

lenExp : Boolean

Node

x : Double

y : Double

DemandNode

earliestTime : Integer

latestTime: Integer

EdgeGroup

context Node
inv: Node::allInstances()

->forAll(n | n <> self implies not (n.x == self.x and n.y== self.y)

context FunctionalEdge
inv: self.length > 0

context DemandNode
inv: DemandNode::allInstances()

->forAll(n | n <> self implies n.earliestTime < n.latestTime)

context FunctionalEdge::length : Double
derive: if not lenExp then

sqrt(pow(self.start.x - self.end.x,2) + pow(self.start.y - self.end.y,2))
endif

Figure 4.5: Constraints in OCL that (1) ensure that nodes are not linked to them-
selves, (2) every edge has a positive length, (3) a time window opens before it closes;
together with a specification that determines that if no explicit length is specified,
the length of an edge is the Euclidean distance of the nodes it connects.

lengths in the definition of edges. The third OCL expression is a formal definition of

the example given in the introduction to this section: it states that the time upon

which a customer’s time window opens must be before the time the time window

ends. In other words, the vehicle must be given a period in time of at least one tick

in which it may serve the customer.

The last OCL expression in Figure 4.5 is not an actual constraint but the defini-

tion of a semantic rule (or assumption) applied by the generator: it states that in

case that no length for an edge is explicitly set (as was the case in the presented

examples in Section 3.4.1 and Section 3.4.2), the length of the edge is by default

the Euclidean distance of the nodes it connects. The codification of this rule as an

108

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

OCL expression was done for presentational purposes only. As was already said, the

actual implementation of this rule was done in the transformations of the Athos

generator,

4.2.2 Constraints related to the agent behaviour

products1..*

product
1

node 1

route
1..*

demandDefinition1..*

demandDefinition
1..*

AgentStrictDeliveryBehaviour

ProductAndQuantityAbsolute

quantity:Double

Demand DemandNode

Node

Product

AgentBehaviourDescription

context AgentStrictDeliveryBehaviour
inv: self.route->forAll(n | self.products

->exists(p | n.demandDefinition->map(product)->contains(p)))
and
Demand.allInstances().select(d | self.route->contains(d.node))

->forAll(d | self.products
->exists(p | d.demandDefinition->map(product)->contains(p)))

Figure 4.6: Constraint which ensures that customers have a demand for the good
delivered by the agent.

As Listing 3.1 and Listing 3.2 in Section 3.4 have shown, one of the most common

modelling tasks in Athos is the assignment of customers to depots. In complex

simulations with large numbers of agents and depots, a common mistake is the

assignment of customers to the wrong depot. Through the definition of constraints

that form Athos’ static semantics, Athos can prevent such modelling mistakes

through its validator. Figure 4.6 gives an example for such a constraint. It shows

how the Athos validator ensures that a customer that is referred to in the route

list of an agent is of type DemandNode (which is a necessary condition). Moreover, it

is also ensured that the customer actually has a demand for the product that the

respective agent intends to deliver.

As was mentioned at the beginning of this section, OCL is the quasi standard

language for the definition of additional constraints for (UML) models – especially

109

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

Listing 4.2: Constraint that ensures that customers demand for delivered product.

1 @Check
2 def checkForUnmatchingProducts(AgentStrictDeliveryBehaviour asdb){
3 if(!asdb.everything){
4 for (Node n : asdb.route.filter(DemandNode)){
5 if (!asdb.products
6 .exists[p | (n as DemandNode).demandDefinition.map[product].contains(p)])
7 warning(’’’Node «n.name» has no demand for any of the delivered products.’’’,
8 asdb,Athos5Package.eINSTANCE.agentRoutingBehaviour_Route,
9 asdb.route.indexOf(n), DELIVERY_TO_NODE_WITHOUT_DEMAND

10)
11 }
12 val model = asdb.getContainerOfType(Model)
13 for (Node n: asdb.route){
14 val demandForNode = model.network.demands.filter[node == n]
15 if(!demandForNode.nullOrEmpty &&
16 !asdb.products
17 .exists[p | demandForNode.map[demandDefinition]
18 .flatten.map[product].toSet.contains(p)]
19)
20 warning(’’’Node «n.name» has no demand for any of the delivered products.’’’,
21 asdb,Athos5Package.eINSTANCE.agentRoutingBehaviour_Route,
22 asdb.route.indexOf(n), DELIVERY_TO_NODE_WITHOUT_DEMAND
23)
24 }
25 }
26 }

for those models applied in an MDSD process. The introduction also mentioned that

for the Athos validator, the actual implementation of all constraints was done with

the Xtendhttps://www.eclipse.org/xtend/ programming language. In order to

convey an impression of the actual implementation, Listing 4.2 shows how the OCL

constraint from Figure 4.6 is implemented in the Athos validator.

4.2.3 Overview on currently active constraints

Table 4.2 summarises the constraints that are currently active in the Athos validator.

The first column of the table gives the name of the constraint (or more precisely:

the issue code that is raised upon violation of the respective constraint). The second

column states whether an error or a warning is issued when a model violates the

respective constraint. When an error is raised, the generator will not process the

model and thus the model cannot be executed. Errors are raised for constraint

violations that will definitely lead to breakdowns at runtime. There are also cases in

which a modelling decision is not guaranteed but highly likely to cause problems

if modellers do not exactly know what they are doing. For these kind of issues,

110

https://www.eclipse.org/xtend/

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

Table 4.2: Summary of currently active constraints in the Athos validator. Errors prevent
a model from execution; warnings inform on model elements that are likely to cause
problems at runtime.

Constraint Type Model section Description

AMBIGOUS_
NODE_
COORDINATES

Error Network Ensures that two different nodes do not share
the same coordinates. This constraint might
be dropped in later versions; currently, the
generated code cannot handle different nodes
with identical coordinates.

NEGATIVE_
EDGE_LENGTH

Error Network Ensures that all edges have a positive length.
If the length of an edge is set to zero, the
Euclidean distance of the nodes connected by
the edge is assumed to be the edge’s length.

UNDEFINED_
DISTRIBUTION

Error Network Ensures that for each agent type in a probab-
ility distribution the model contains a value
greater than zero.

WRONGLY_
WEIGHTED_
DISTRIBUTION

Error Network Ensures that the probability values of a prob-
ability distribution add up to 100.

UNNECESSARY_
PROBABILITY_
DEFINED

Warning Network Informs the modeller that a probability dis-
tribution with only one vehicle type should be
replaced by a simple agent type specification
(an agent of this type is then guaranteed to
be created).

DELIVERY_
TO_NODE_
WITHOUT_
DEMAND

Warning Behaviour Warns the modeller that the respective node
appears in the list of customers of an agent
even though it does not have a demand spe-
cified for any of the products delivered by the
agent.

DELIVERY_TO_
NAVIGATION_
NODE

Warning Behaviour Warns the modeller that the respective node
appears in the list of customers of an agent,
even though it is not a customer node (i.e. no
demand was defined for the node).

WRONG_
PARAMETER_
NAME_STATED

Warning Network (External) Used for Athos’ extension mechanism to en-
sure that certain agents which an external
algorithm assumes to be created by a source,
the network defines a corresponding sprout-
ing function (cf. (Hoffmann et al., 2020)).

warnings are raised that inform modellers on modelling decisions that require extra

attention. The last column describes the intention (semantics) of the respective

constraint.

As can be seen from the table, the number of currently active constraints is

somewhat limited. This is because of the limited experience with Athos in practical

111

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

application. In order to define and implement sensible constraints, i.e. constraints

that prevent modelling mistakes which many users are inclined to make, it is

crucial to receive feedback from actual language users. Therefore, the definition and

implementation of more constraints (see Section 8.3.3) together with application of

Athos by practitioners (see Section 8.3.4) will be part of future work to be done.

4.3 The concrete syntax

This section discusses some parts of the concrete syntax of Athos. This is done in

order to provide some insight on how the language actually looks and feels when

used to model traffic simulation and transport optimisation scenarios. For reasons

of brevity, only a selection of the most interesting and most important parts of the

concrete syntax are presented and discussed. The complete definition of the concrete

syntax in Xtext’s EBNF-based notation is provided in Appendix A.

4.3.1 Definition of nodes

Figure 4.7 illustrates the concrete syntax of Athos for the definition of the three

different types of nodes. The illustration shows both a graphical ‘rail road diagram’

and also the textual extended Backus-Naur form (EBNF) dialect used in the Xtext

framework. A special characteristic of the Xtext-EBNF notation is that it also

requires the specification of attributes in which the respective elements are stored (in

Figure 4.7, demandDefinition, product, and quantity are such attributes). This is

because the framework derives the meta-model of the language from these grammar

rules, i.e. all meta-model classes together with their attributes and references.

The derived meta-model is implemented by means of the EMF (Steinberg, 2009).

The official website discusses the details of how the meta-model is derived from

the grammar rules at great length6. For this section, the following, somewhat

oversimplified explanation is sufficient: grammar rules are translated into EClasses

with the specified EAttributes. References to other EClasses are specified by using
6https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html

112

https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

Node:

Nodish*

Nodish* hasDemand PrdQtyAbs

earliestTime · · ·

timeWindow · · ·

· · ·
Nodish* Sourcish

Simple

Demand

Source

Node: SimpleNode | DemandNode | SourceNode;

SimpleNode: Nodish;

DemandNode: Nodish ’hasDemand’ demandDefinition=PrdQtyAbs
(’earliestTime’ ... | ’timeWindow’ ... | ...)

SourceNode: Nodish Sourcish;

PrdQtyAbs:

Product units Double

PrdQtyAbs: product=[Product] ’units’ quantity=Double

Figure 4.7: Concrete syntax for the definition of simple nodes, demand nodes and
source nodes and the specification of absolute product quantities.

the name of another grammar rule in square brackets (e.g. [Product] in Figure 4.7 is

such a reference). The usage of a string within curly braces results in the generation

of another EClass that has the EClass generated for the rule in which the curly

braces have been used as a superclass see Figure 4.10.

Nodish*:

ID at (DOUBLE , DOUBLE)

Nodish: name=ID ’at’? ’(’ x=DOUBLE ’,’? y=DOUBLE ’)’?

Figure 4.8: Concrete syntax for the definition of a Nodish element.

113

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

Sourcish:

isDepot Product , Product

q0 sprouts INT SproutFunction

r0

frequency DOUBLE every INT until INT

NTOB at INT maxAgents INT latestTime INT

at INT

Sourcish:
(isDepot?=’isDepot’ products+=[Product] (’,’? products+=[Product])*)?
’sprouts’ factor=INT? sproutFunction=SproutFunction

(’frequency’ frequency=DOUBLE (’every’ every=INT)? (’until’ until=INT) |
tourOptimisation=NTOB (’at’ at=INT)?

(’maxAgents’ maxAgentsINT)? (’latestTime’ latestTime=INT)? |
simpleStart?=’at’ at=INT)

Figure 4.9: Syntax diagram for the Sourcish rule fragment that is used for nodes
from which agents are generated. For the meta-model of the language, rules that
use the Sourcish fragment are translated into EClasses that inherit from the class
Sourcish.

As was already mentioned, there are three different types of nodes in Athos

(see Section 4.1.1). The concrete syntax for the definition of all three node types

starts with a rule fragment (a reusable container for syntactical structures (see, e.g.,

(Bettini, 2016, pp. 208–209))) named Nodish. The grammar stored in this fragment

is shown in Figure 4.8. As can be seen, the specification of all three node types

begins with the definition of a mandatory identifier followed by the coordinates of

the node. Optionally, brackets and a comma can be used for the specification of

coordinates7. For the definition of a SimpleNode the syntactical elements specified
7A closer look at this rules reveals that it allows the usage of a closing bracket without a

corresponding opening bracket. Alternatively, two paths could be defined, one that mandates the
usage of both brackets and one that does without any brackets. On the other hand, there is no harm
in allowing users to specify coordinates with only closing brackets (see Figure 4.10).

114

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

in the Nodish rule fragment are sufficient because a simple node requires nothing

but an identifier and a pair of coordinates.

The characteristic element in the specification of a DemandNode is the keyword

(or terminal rule in EBNF terminology) hasDemand. Subsequent to this keyword,

a reference to a product specified in the product section together with a quantity

(double value) must be provided. This is expressed via the call to the non-terminal

rule PrdQtyAbs8 (product and quantity absolute)9. The next element is an optional

definition of a time window. This time window can be defined in two syntactically

different (yet semantically equivalent) ways: A longer version that explicitly uses

the keywords earliestTime and latestTime each followed by a double value that

specifies the respective tick for the opening and closing of the time window. Altern-

atively, a more concise version that uses the keyword timeWindow followed by two

double values (optionally separated by a comma) can be used. Future versions of

Athos might opt to deprecate and remove one of the two ways (see Section 8.3.6.2).

The definition of a SourceNode introduces yet another rule fragment. The

Sourcish rule fragment is used to specify depots for a set of products as well as for

the specification of nodes from which agents are generated (or ‘sprouted’, in NetLogo

terms) into the simulation. As can be seen, in contrast to the Nodish rule fragment,

there is no asterisk used in the Sourcish rule fragment. The asterisk notation is

borrowed from the Xtext framework (see, e.g., (Bettini, 2016, pp. 208–209)): the

Nodish fragment is merely a reference to the respective syntax elements and was

only defined for the purpose of reusability. By contrast, in the meta-model of the

language the Sourcish fragment will become the super class of every class derived

from a grammar rule that uses this fragment (see Section 4.1.1). In other words, in

the Athos meta model a SourceNode is a specialisation of a Sourcish element (see

Figure 4.1 in Section 4.1.1).
8The grammar also supports the definition of relative quantities. Relative quantities are, however,

currently not supported by the generator. They are part of the language because in future versions it
will be possible to define that a delivery agent is to deliver 50 per cent of its cargo to customer A and
25 per cent each to customers B and C.

9The name was abbreviated so as to fit it into the graphic. In the complete grammar presented in
Appendix A the long form ProductAndQuantityAbsolute is used.

115

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

The concrete syntax subsumed under the Sourcish fragment is illustrated in

Figure 4.9. As can be seen in the railroad diagram, it begins with the terminal

rule isDepot. This defines the isDepot keyword that is used for the definition of

depots (see node n0 in Line 10 shown in the introductory example in Listing 3.1). The

Sourcish rule defines the specification of the isDepot keyword as optional. However,

if this keyword is used, it mandates the specification of at least one reference to a

product defined in the product section. After that the mandatory sprouts keyword

is to be used followed by an integer value. The meaning of this integer is that it

defines how many agents are to be sprouted into the network.

SproutFunction:

AgentProb orr AgentProb

SproutFunction:
agentProbabilities+=AgentProb (’orr’ agentProbabilities+=AgentProb)*

AgentProb:

AgentType route InstanceRoute probability INT

AgentType probability INT

AgentProb:
{ReferringAgentProb}
(agentReference=[AgentType]
(instanceRoutes?=’route’ setOfInstanceRoutes+=InstanceRoute+)?
(’probability’ probability=INT)?)

|
{EncapsulatingAgentProb}
(agentContainment=AgentType (’probability’ probability=INT)?)

Figure 4.10: Concrete syntax for the definition of SproutFunctions and AgentProbs
in Athos.

The SproutFunction rule that is referenced next is illustrated in Figure 4.10. A

SproutFunction allows the definition of and/or reference to one or more AgentTypes

116

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

InstanceRoute:

for AgentBehaviourState

q0

(Node , Node)

Node , Node

InstanceRoute: ’for’ state=[AgentBehaviourState]
(’(’ route+=[Node] (’,’? route+=[Node])* ’)’ |

route+=[Node] (’,’? route+=[Node])*)

Figure 4.11: Concrete syntax for the definition of an individual route for an
AgentType sprouted at a source.

(also see Section 4.1.3) separated by the keyword orr10 that are sprouted with a

given probability11.

As can be seen from the upper railroad in Figure 4.10, for cross-referenced

AgentTypes, it is possible to define a route for the agents to be sprouted individually

for the respective source. This is referred to as an InstanceRoute. This way,

different sources can sprout the same AgentType (in other word reuse the AgentType)

with different routes. This was shown in Listing 3.2 of Section 3.4.2 where nodes n4

and n5 both sprout the same baz agent but assign different routes to it. The concrete

syntax for the definition of such an InstanceRoute is illustrated in Figure 4.11. It

requires the keyword for followed by a reference to an AgentBehaviourState which

currently must be the first AgentBehaviourState defined for an agent12. After that,

a sequence of Nodes that form the route is to be specified.
10The spelling with a double r is necessary to distinguish this orr from the or used in logical

expressions that can be used in AgentBehaviourTransitions.
11The static semantics of Athos defines a constraint that ensures that these probabilities are in

the interval [0,100], are not negative, and add up to 100.
12The intention here is that an AgentType can comprise many different AgentBehaviour-

States with associated AgentBehaviourDescriptions. For a complete reusability of such Agent-
Types, the routes for all AgentBehaviourStates (more precisely their associated AgentBehaviour-
Descriptions) must be definable individually for each source that is to sprout this AgentType.

117

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

There are different ways in which agents can be sprouted into the network (also

see Listing 3.2 of Section 5.2 in this regard). Which one is used is determined by

which rail is taken after the definition of the SproutFunction. This, is shown in

the lower part of Figure 4.9. The keyword frequency is used to recognise that the

upper rail is to be taken. This path is used to define sources that continuously sprout

agents into the network. In Listing 3.2 of Section 3.4.2 this is done by node n4. The

lower rail is recognised by the keyword at. This way one-time sprouts are defined as

can be seen with node n7 in Listing 3.2.

The middle-rail in Figure 4.9 refers to yet another non-terminal rule NodeTourOp-

timisationBehaviour (abbreviated NTOB) which is not illustrated here. It is a very

simple non-terminal rule that calls one of three different non-terminal rules each of

which begins with the keyword customers followed by a sequence of nodes (see page

279 in Appendix A). Notice how then the keyword customers is used to recognise

that the middle rail is to be taken and how the property tourOptimisation is set to

true. This kind of sprout function defines depots that are associated with a fleet of

vehicles that wait for the depot to assign them a tour to service. This mechanism

was used for node n0 in both introductory examples Listing 3.1 in Section 3.4.1 and

Listing 3.2 in Section 3.4.2.

4.3.2 Agent type and behaviour related concrete syntax

One of the most important aspects of Athos is that it allows for the definition of

agents and their respective behavioural patterns within the simulation. Section 4.1.2

introduced the meta-model elements Athos features for this purpose. It also presen-

ted an exemplary use-case in which the meta-model elements were instantiated to

model a delivery agent. This section presents the concrete syntax of Athos that is

used to specify agent types and their behaviour in Athos models (and thus to actually

perform the discussed meta-model instantiations).

118

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

AgentType:

agentType ID congestionFactor DOUBLE maxVolume DOUBLE

q0 maxWeight DOUBLE AttributeAssignment AgentBehaviourBlock

r0 optimises AgentFunction

{AgentType} ’agentType’ name=ID (’congestionFactor’ congestionFactor=Double)?
(’maxVolume’ maxVolume=Double)? (’maxWeight’ maxWeight=Double)?
(attributeAssignments+=AttributeAssignment)* behaviour=AgentBehaviourBlock
(individualOptimizsation?=’optimises’ function[AgentFunction])? ;

Figure 4.12: Railroad diagram describing the concrete syntax of Athos for the
definition of an agent type.

As is depicted in Figure 4.12, the definition of an AgentType starts with the

agentType keyword followed by a name for the agent type that is about to be defined.

Subsequently, a congestion factor, a maximum volume and maximum weight can

optionally be specified for the agent type. The semantics of these syntactical elements

is given in Table 4.3. In addition to these natively supported specifications, additional

attributes and their respective values can be defined for the agent type. After that,

the AgentBehaviourBlock – the centrepiece for behavioural specifications – has to

be defined. Finally, the agent type can be assigned an AgentFunction which serves

as an objective function that the agent seeks to optimise.

119

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

Table 4.3: Summary of agent-related syntax elements in Athos and a description
of their respective semantics.

Element Keyword Semantics

AgentType agentType [EClass] – A certain agent type (or agent class) whose
instances share a defined set of (built-in) properties
and additional attributes (and their values)

Congestion
factor

congestionFactor [EAttribute] –: The value of this property represents
the extent to which the respective agent type contrib-
utes to congesting the current road. Road functions
can use a built-in primitive that represents the accu-
mulated congestion factors of all vehicles currently
located at the respective road.

Maximal volume maxVolume [EAttribute] – The maximal loading space the vehicle
is able to carry (if specified together with the max-
Weight of a vehicle, the more restrictive value will
apply).

Maximal weight maxWeight [EAttribute] – The admissible total weight the vehicle
can transport

Attribute assign-
ment

[Subrule] – References an attribute declared in the
agent attributes section and assigns a specific value
or value distribution to this attribute.

Agent function [EReference] – References an agent function specified
in the function section of an Athos program. This
function is an individual objective function for this
type of agent.

120

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

AgentBehaviourBlock:

agentBehaviourState

{AgentBehaviourBlock} (agentBehaviourStates+=AgentBehaviourState)+;

AgentBehaviourState:

behaviour ID AgentBehaviourDescription

p20 AgentBehaviourTransition

’behaviour’ name=ID description=AgentBehaviourDescription
(transition+=AgentBehaviourTransition)*;

AgentBehaviourTransition:

when Expression do AgentBehaviourState resume

’when’ condition=Expression ’do’ refState=[AgentBehaviourState]
(resume?=’resume’)?;

Figure 4.13: Concrete syntax for the definition of agent behaviour in Athos.

Figure 4.13 shows that the AgentBehaviourBlock rule is just a delegation rule

without any token consumption. The fact that this non-terminal rule calls the

AgentBehaviourState rule multiple times (but at least once) results in the Agent-

BehaviourBlock being a container element for a non-empty set of AgentBehaviour-

States. An AgentBehaviourState is introduced with the keyword behaviour fol-

lowed by a name for the respective AgentBehaviourState. Next, the actual Agent-

BehaviourDescription – which will be discussed in more detail in a moment– is to

be defined before a set of AgentBehaviourTransitions concludes the specification

of the agent’s behaviour.

As can be seen in the third part of Figure 4.13, a transition is specified with

the keyword when together with an expression that must evaluate to true in order

to trigger the respective transition. Subsequent to the transition expression, the

keyword do precedes a reference to the state that the agent is to transition into.

Optionally, the keyword resume can be used to indicate that the agent is supposed

121

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

to memorise where the target state was previously left and to start from there. As

an example, an agent might transition from a state in which it processes a set of

customers to a state where it returns to a nearby depot to replenish its stock. After

reloading, the agent can return to the delivery state. To indicate that the agent is to

continue its tour where it was suspended, the resume keyword must be used.

AgentBehaviourDescription:

deliver · · ·

route · · ·

idle · · ·

awaitTour

AgentStrictDeliveryBehaviour

AgentExactTourFollowingBehaviour

AgentIdlingBehaviour

AgentAwaitTourFromDepotBehaviour

AgentBehaviourDescription:
AgentStrictDeliveryBehaviour | AgentExactTourFollowingBehaviour |
AgentIdlingBehaviour | AgentAwaitTourFromDepotBehaviour| ... ;

Figure 4.14: Railroad diagram depicting an excerpt of keywords for different Agent-
BehaviourDescriptions.

As was said earlier, the actual behaviour that an agent exhibits is determined

by which subclass of AgentBehaviourDescription is instantiated and associated

with the AgentBehaviourState. It was also said that the keyword after the name

of the AgentBehaviourState indicates which exact AgentBehaviourDescription

to use. This is depicted in Figure 4.14. For example, the keyword delivery indic-

ates that an instance of AgentStrictDeliveryBehaviour is to be associated with

the AgentBehaviourState. This behaviour description has the agent perform a

pre-defined set of deliveries to customers in the network. The illustration also

gives a few more examples for possible behaviour descriptions, e.g. a behaviour

description that has the agent just visit (not service) a set of nodes in a predefined-

order (AgentExactTourFollowingBehaviour indicated by the keyword route), a

behaviour description that has the agent do nothing for a given amount of time

122

CHAPTER 4. THE SYNTAX AND SEMANTICS OF ATHOS

(AgentIdlingBehaviour indicated by the keyword idle), or a behaviour descrip-

tion that has the agent wait at a depot until it is assigned a tour by the depot

(AgentAwaitTourFromDepotBehaviour indicated by the keyword awaitTour).

AgentStrictDeliveryBehaviour:

deliver Node , Node

q0

everything

products Product , Product

AgentStrictDeliveryBehaviour:
’deliver’ route+=[Node] (’,’? route+=[Node])*

(everythins?=’everything’) |
(’products’+=[Product] (’,’? products+=[Product])*)

Figure 4.15: Concrete syntax for the specification of an AgentStrictDelivery-
Behaviour.

The complete concrete syntax for the specification of an AgentStrictDelivery-

Behaviour is shown in Figure 4.15: after the aforementioned deliver keyword, one

or more nodes to be serviced must be specified (optionally separated by a comma).

The agent can either deliver every product the customer demands (indicated by the

keyword everything) or only a certain set of products (indicated by the keyword

product).

123

; Fifth Chapter <

Transformation of Athos into NetLogo

simulations

This chapter discusses the definition of Athos’ execution semantics (also dynamic

semantics). The execution semantics of Athos are defined by its generator (see

(Völter and Benz, 2013, pp. 82–83)) that comprises a set of transformations which

map Athos models to executable textual NetLogo models. The Xtext framework that

was used to implement Athos refers to these transformations as template methods1,

so these terms will be used interchangeably throughout this chapter. The aim of

this chapter is to provide a general insight on the implementational details that

ensure the correct transformation of descriptive Athos models into procedural agent-

based NetLogo simulations. In order to do so, this chapter is bound to present some

technical details that require a basic understanding of the functionalities of the Xtext

framework. Though the author of this thesis took care to provide the background

information necessary for understanding the contents of this chapter, the referenced

resources can be helpful to get an even deeper insight into the technicalities of the

Xtext framework.

The rest of this chapter is organised as follows: Section 5.1 introduces a mechan-

ism designed to schedule the creation of agents in the NetLogo simulation according

to the specifications given in the underlying Athos model. Section 5.2 then continues
1https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html#templates

124

https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html#templates

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

with a discussion of the general flow of control that the generator establishes for

every NetLogo simulation. This is not only important for a comprehensive presenta-

tion of the mechanics found in every generated NetLogo model, but also provides

the necessary context for subsequent sections that present the detailed generation

mechanisms. Section 5.3 then presents the internal structure of the Athos generator.

It starts out with a general overview which is followed by a detailed presentation of

the transformations of the nodes and agents of an Athos model into their respective

representational elements in the NetLogo simulation model.

5.1 The command dictionary

commandDictionary

1

Simulation

- nextExecutionTime : Integer

- currentExecutionList : List<Command>

+ processCommandDictionary()

+ addCmdToDictWORecalc(time:Integer,c:Command)

+ addCmdToDictionary(time:Int,c:Commmand)

- recalculateCommandInfrastructure()

- updateCommandInfrastructure()

Table<Integer,List<Command»

- keys:Integer[0..*]

- values:List<Command>[0..*]

+ hasKey(tk:Integer):boolean

+ put(k:Integer, v:List<Command>)

+ remove(value:List<Command>)

Figure 5.1: The command processing infrastructure of every generated NetLogo
simulation.

Every NetLogo simulation created by the Athos generator features two mechan-

isms by which Agents are sprouted into the simulation. For those source nodes for

which a continuous or cyclic function was defined in the Athos model, a mechanism

based on two distinct functions is applied. These will be discussed in Section 5.2.

For depot tours and for agents that are modelled to commence at a specific tick

a command processing infrastructure centred around a command dictionary data

structure is used for the implementation of these agent generations.

This mechanism is illustrated in Figure 5.1. The commandDictionary is a table

that uses integers as keys and lists (of Command instances) as values. The integers

represent the exact tick at which the set of commands in the associated list have to

be executed. The command processing infrastructure provides a similar execution

logic like those found in DES: the global variable nextExecutionTime stores the

125

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

exact tick at which the next batch of commands must be processed. In contrast to

most DES simulations, the generated NetLogo ABM simulation does not discretely

jump along these execution times. Instead, every tick is simulated and in each tick

the simulation checks whether there are commands to be executed. This polling is

done via the processCommandDictionary() method2.

In case that the simulation’s tick counter value is below the value stored in

the nextExecutionTime variable, or in case that there is a negative value in said

variable (meaning that the command list is empty), there are no commands to

be executed and the simulation can continue to ask all agents to perform their

next steps according to their current states. In case that the time for the next

commands has come, the list of commands is executed. After that the list of

executed commands is removed and the next point in time at which commands

are to be executed is to be determined together with the actual list of commands

to be executed. This is done via the recalculateCommandInfrastructure() and

updateCommandInfrastructure() methods.

5.2 General flow of control

The UML sequence diagram presented in Figure 5.23 illustrates the control flow

of every generated NetLogo simulation. The user must initiate the setup process

of the simulation model by pressing the ‘setup button’ of the generated simulation

interface. When the user presses this button, the observer agent (the main controller

of the simulation) executes the setup command which triggers the execution of

the setup-cities and setup-links command. The former instantiates all the city

agents (which were derived from Athos nodes) whereas the latter instantiates the

DRoads (directed roads or links) (derived from Athos edges) that connect the cities.
2The correct term here would be ‘Command’ since NetLogo does not provide the concept of

‘methods.’ However, in this subsection, the term method is used in order to avoid confusion with the
Commands in the CommandDictionary.

3Note that the presented diagram is for illustrative purposes only. Though it follows the general
syntax and semantics defined for UML sequence diagrams, it is not intended to be in full compliance
to any UML 2.x specification.

126

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

setup

create
1.1 setup-cities

create
1.2 setup-links

1 setup

go

create2 process-command-dict

3 run cmdICTP

4 run creationFunction
create

5 carsToProd = carsToProd - 1

6 checkOutAndIn
0

7.1 updateSpeed

0

7 updateVehileSpeeds

8 clearOverflowCnt

9 run currentState

User Observer

Cities

DRoads

SCars

alt

[cmdICTP!=null]

loop

[carsToProd>=1]

loop

[!finished]

Figure 5.2: General flow of control in a NetLogo simulation created from an Athos
model.

When the simulation is initialised, another user interaction is required for the

simulation to commence. With the activation of the ‘go button’ in the simulation

interface, the user triggers the simulation process. The commands in the command

dictionary scheduled for direct execution are processed first. The previous section

discussed how this is done via the command dictionary. As can be seen in the

diagram, the execution of these commands normally results in the creation of

various vehicles or state car (SCar) agents.

At this point, it must be noted that there are two general mechanisms that

sprout state car agents into a simulation’s network. The first mechanism is the

command dictionary which was already discussed. The commands in the diction-

ary result from the definition of those SourceNodes that sprout agents only once

127

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

at a specified point in time. As was discussed in Section 4.3.1, Athos also allows

the definition of SourceNodes that continuously sprout agents into the network.

Syntactically, these nodes can be distinguished from their peers via the frequency

keyword (see Figure 4.8). The definitions of these Sourcish elements for which a

frequency different from zero is defined does not result in the generation of a com-

mand for the command dictionary. Instead, for these SourceNodes two anonymous

commands4 are generated: Running the first of these commands5 (referenced by the

variable commandIncreaseCarsToProduce) increases the carsToProduce counter of

the SourceNode by the specified frequency value; this is done every n-th tick until

a pre-defined point in time (see Figure 4.8). The carsToProduce value determines

the number of cars that the source is to sprout into the simulation. In case this

value is greater than one, the second anonymous command is run. This command

(referenced by the creationFunction variable) creates an SCar of the defined type

and decreases the value in the carsToProduce variable by one. This is repeated

until the value in the carsToProduce variable is less than one.

In the generated NetLogo simulation, every DRoad has a list of all SCars currently

traversing it. For this mechanism to work, it is crucial that SCars de-register

themselves with the road they leave and register themselves with the one they enter,

if necessary. This process always takes place when an SCar arrives at a node of its

route. Every tick, DRoads recalculate their traversal speed and impose it on every

vehicle in their list6.

Another mechanism present in the NetLogo simulation is the overflow calcula-

tion. The name of this mechanism may be somewhat misleading. Its purpose is to

reduce the chance of two different SCar agents occupying the same spot on a road. If

more two or more agents are sprouted with the same destination, this is detected

via a DRoad’s overflow counter and one of the agents is nudged a few spatial units

in front of the other. This counter must be reset in every tick.
4https://ccl.northwestern.edu/netlogo/docs/programming.html#anonymous-procedures
5https://ccl.northwestern.edu/netlogo/docs/dictionary.html#run
6In the actual code this behaviour is slightly more complex.

128

https://ccl.northwestern.edu/netlogo/docs/programming.html#anonymous-procedures
https://ccl.northwestern.edu/netlogo/docs/dictionary.html#run

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

The final step of the simulation loop is the observer agent asking every SCar agent

to run its current state. To understand this mechanism, it is important to know that

agent behaviours which in Athos were modelled by means of AgentBehaviourStates

with associated AgentBehaviourDescriptions (see Section 4.1.2 and Section 4.3.2)

are translated into a set of NetLogo commands. This set of commands is based on

the behaviour found in UML state machines. According to the UML specification,

state machines exhibit an entry behaviour upon assumption of a new state, a do

behaviour while being in a given state and an exit behaviour prior to leaving a state

(OMG, 2017, pp. 320–321). To mimic this mechanism, every AgentBehaviourState

of an Athos model is transformed into three commands in which the SCar’s entry,

do and exit behaviour is encoded. Each SCar possesses a currentState variable in

which an anonymous command is stored that when run invokes one of these state

machine commands. Section 5.6 will provide some further technical information on

this mechanism before the transformations (code templates) are presented in the

subsequent sections.

5.3 Overview on the Athos generator

Figure 5.3 illustrates a simplified and condensed call hierarchy of the template

Methods used in the Athos generator. The entry point for the generator is the

compile() method that requires the Model (see Section 4.1.1) root element as a

parameter. Before the generator starts the actual code generation process, it needs

to reset and initialise various utility class instances that are required during the

generation process (this is depicted by the letter U in the illustration). These utility

classes are presented in Section 5.4.

The first lines of NetLogo code produced by the generator represent static (boil-

erplate) infrastructure (I) code, i.e. these lines are (mostly) the same for every

generated NetLogo simulation. For example, every NetLogo simulation requires a

‘model head’ in which the Athos optimisation extension (see Section 5.10) is loaded,

the different breeds of agents and links are specified and global variables are de-

129

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

R Compile(Model)

U resetUtilityInstances()

I createModelHead()

I createSetupCommand()

N createSetupCitiesCommand(m.network.nodes, m.network.sources)

N generateAddSourceFunctionsCode(Sourcish)

N processVehicleProbabilitiesIteratively(List<AgentProbability>,boolean,Sourcish)

N createCommandDictionaryInfrastructure(Model)

N createAddCommandToDictionaryForDepot(Source)

N createAddCommandToDictionaryForDepotInternal(Source)

N generateContentForAskingStateCarToInitialise(AgentProb, String, boolean)

N createAddCommandToDictionaryForSource(Source)

N processVehicleProbabilitiesIteratively(List<AgentProbability>,boolean,Sourcish)

A createStateMachineForAgentType(AgentType)

A generateCodeForAgentBehaviourState(AgentBehaviourState)

Figure 5.3: Transformations call stack of the Athos generator. The hierarchy
presents the root template method (R), template methods that generate static
infrastructural code (I), network-related code (N), and code for the implementation
of agent behaviour (A).

clared. Another static command is the setup command. This command is what is

executed when the setup button of the generated simulation is pressed. While the

setup command is the same for every generated simulation, the implementation of

the (sub-)commands invoked within the setup command varies as these commands

use the information stored in the Athos model. Among the boiler plate code generated

for every NetLogo simulation there are also NetLogo utility commands. Section 5.5

briefly discusses one such utility command to provide some deeper understanding of

the generated NetLogo simulation models.

The template methods that are highly dependent on the information provided in

the Athos models are those concerned with the creation of the commands that map

the Athos network section to NetLogo commands which built an equivalent network

infrastructure in the NetLogo model. Another set of highly dynamic transformations

comprises those template methods that implement the agent’s exhibited behaviour.

Section 5.7 presents the details on how AgentTypes are used to derive appropriate

130

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Table 5.1: Description of the most important utility classes used in the transform-
ations together with their respective identifier.

Class Id Description

CityYellowPages cyp Provides a bidirectional mapping between the name
of a node in the Athos model and its who number in
NetLogo.

AgentTypeYellowPages aty Supports the creation of state-machine command
names from AgentTypes.

GeneratorUtil gu Provides various generator methos especially for the
genration of routing lists.

CoordinateConverter cc Transforms any coordinate system into one that has
its origin at (0, 0) and only uses positive coordinates.

state machine commands. Section 5.8 discusses some selected template methods

that are used to generate the command dictionary infrastructure with a focus on the

commands created for depots of VRPTW simulations.

5.4 Utility classes used by the generator

To cope with the complexity of the transformation process, the Athos generator

relies on the functionalities provided by a set of utility classes. These classes were

developed to encapsulate the functionality required by different transformations. As

is common in object-oriented languages, most of these functionalities are accessed

via reference viariables that point to an instance of the utility class. The respective

identifiers and their type are summarised in Table 5.1. For a better comprehension of

the transformations presented in subsequent sections, this table might be a valuable

help. It is, however, important to note that not all utility methods are accessed

via this traditional approach, since the Xtend language allows for creation of static

extension methods7 so that in the presented transformations some meta-model

elements will appear to offer generation utility functions by themselves.

Table 5.1 provides an overview of the most important utility classes used in the

listings presented in this section. For every utility class, the table lists the identifier
7https://www.eclipse.org/xtend/documentation/202_xtend_classes_members.html#extension-methods

131

https://www.eclipse.org/xtend/documentation/202_xtend_classes_members.html#extension-methods

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

by which it is referred to in the listings. The table also provides a summary of how

each of these classes support the code generation process.

CityYellowPages is a class that allows storage and retrieval of the information

on how each Athos node is referenced in the generated NetLogo model. While in the

Athos model every node has a unique identifier (e.g., n1, n2, etc.), in the generated

NetLogo model the who8 numbers of the nodes are used. It is important to note

here, that in the NetLogo model, the nodes are referred to as cities (in other words,

Athos nodes are transformed into NetLogo agents that belong to a breed9 called

cities). The CityYellowPages class allows a mapping in both directions, i.e. the

Athos identifier can be used for retrieval the correct who number and vice versa.

AgentTypeYellowPages is a utility class that supports the transformation of

AgentTypes, AgentBehaviourStates and AgentBehaviourDescriptions (see Sec-

tion 4.1.2) into NetLogo commands10 that allow agents to apply a state-machine

mechanism for the implementation of their different behaviours. The naming pat-

terns of these commands is implemented in a way that they are independent of

the AgentStateBehaviour names used in the Athos model. This data structure

stores the internal command names and allows their retrieval. For this, it creates

a command name composed of the name of the AgentBehaviourDescription, the

internal ‘machine number’ associated with the AgentType instance and the internal

number associated with the AgentBehaviourState (see Section 5.7). This utility

class will be discussed in more detail together with the generation of agent behaviour

in Section 5.6.

GeneratorUtil is a utility class that supports various helpful functionalities.

One example is that it can be used to determine whether a given AgentBehaviour-

Description expects a simple list of nodes as a routing list or a list consisting

of tuples. One such tuple comprises a node and a boolean value that indicates

whether the agent is supposed to service or just pass through the node. It can also
8see https://ccl.northwestern.edu/netlogo/docs/dictionary.html#who
9see https://ccl.northwestern.edu/netlogo/docs/dictionary.html#breed

10There are two kinds of procedures in NetLogo: commands that contain a set of statements and
do not return a value and reporters that can also contain several statements but must report a value.

132

https://ccl.northwestern.edu/netlogo/docs/dictionary.html#who
https://ccl.northwestern.edu/netlogo/docs/dictionary.html#breed

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Listing 5.1: Utility command used for route list initialisation.
1 ;; caller: state-car
2 to initialise-car-with-list-auto-completion [_listOfNodes]
3 let resList []
4 let finished false
5 let i 0
6 if current-city != item 0 _listOfNodes [
7 set _listOfNodes fput current-city _listOfNodes
8]
9 while [not finished] [

10 ifelse are-connected? (item i _listOfNodes) (item (i + 1) _listOfNodes)
11 [
12 set resList lput (item i _listOfNodes) resList
13]
14 [
15 set resList sentence resList
16 graphextension:fastest-path cities droads (item i _listOfNodes) (item (i + 1) _listOfNodes)
17 set resList but-last resList
18]
19 set i (i + 1)
20 if (i + 1) = (length _listOfNodes) [
21 set resList lput (item i _listOfNodes) resList
22 set finished true
23]
24]
25 initialise-car-with-list resList
26 end

produce the required NetLogo code from a list of AgentProbs (see Section 4.3.1). The

CoordinateConverter is a utility class applied in the transformation of coordinates.

While the Athos model allows the application of any two-dimensional Cartesian

coordinate system, the coordinate system in the generated simulation assumes a

coordinate system with only non-negative coordinates.

5.5 NetLogo utility commands

As was mentioned at the beginning of this section, there are various static tem-

plate methods defined for the Athos generator. The purpose of these boilerplate

transformations is the provision of a general simulation infrastructure. This con-

cerns information on the breeds of agents used in the simulation and their respective

attributes. But there is also a need for utility-commands that are crucial during the

simulation process.

Listing 5.1 shows one such important utility method that is used by several

state machine commands. The presented command is used for initialisation of an

agent’s routeOfNodes list. This list contains the exact sequence of nodes an agent

will visit. It is important that two consecutive nodes in this list are connected by

133

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Listing 5.2: General command naming pattern for state machine code.
1 to <BehvrName>-M<#>-B<#>-entry
2 set currentStateFinished false
3 <more initialisation code>
4 transStateAndRun [-> <BehvrName>M<#>-B<#>-main]
5 end
6
7 to <BehvrName>-M<#>-B<#>
8 <Activities for behaviour>
9 if <everything done>[set curStateFin true]

10 if <condition> [
11 transStateAndRun[
12 <BehvrName−M<#>-B<#>-exit [newStateName-M<#>-B<#>-entry]
13]
14]
15 <Activities for behaviour>
16 if curStateFin [
17 transStateAndRun[
18 <BehvrName−M<#>-B<#>-exit[newStateName-M<#>-B<#>-entry]
19]
20]
21 end
22
23 to <BehvrName>-M<#>-B<#>-exit [nextState]
24 <cleaning statements>
25 <write data to tables>
26 transStateAndRun nextState
27 end

an an edge or arc. Without such a connection, an agent should not be able to move

from one node to the other. For modellers it would be inconvenient to be compelled

to specify movement behaviours in terms of coherent routing lists. For this reason,

modellers can simply specify a list of nodes that do not have to be connected by

edges. For two consecutive nodes the presented method calculates the necessary

intermediary nodes by means of Dijkstra’s algorithm which is implemented in the

Athos’ optimisation library. This mechanism was also discussed in (Hoffmann et al.,

2018a, pp. 263–264).

5.6 Naming pattern for agent behaviour descrip-

tions

Each AgentType of the Athos model is translated into a set of NetLogo commands

(Hoffmann et al., 2019a, p. 4) . More precisely, each AgentBehaviourState is trans-

lated into three commands which the agent executes via an anonymous command

(lambda) stored in its currentState variable. This anonymous command invokes the

generated state machine commands. While this mechanism is rather straightforward

134

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

in the final code, it is somewhat more intricate to define the template methods

that generate it. Especially the generation of matching command definitions and

command invocations is a potential source of problems.

The internally generated command names for each agent state are independent

of the names given to the AgentBehaviourState in the Athos model. The main

reason for this is the avoidance of errors resulting from incompatibilities between

valid names for agent behaviours in the Athos model and the rules of valid command

names in NetLogo. Therefore, the generator uses an abstract naming pattern that

is shown in Listing 5.2. For every AgentBehaviourState in the Athos model three

NetLogo commands are created representing the aforementioned entry, do, and

exit behaviours for each state. Each AgentType has an internal number that is

inserted after the capitalised ‘M’ in the displayed command name pattern. Every

AgentBehaviourState defined for an AgentType also has an internal number that

is inserted after the ‘B’ in the naming pattern. Together with a preceding string that

represents the associated AgentBehaviourDescription the machine number and be-

haviour number define the name of the generated NetLogo command. The generated

command name for the do behaviour of the bar agent’s entry state in Listing 3.1 in

Section 3.4.1, for example, is perform-agent-await-tour-from-depot-behaviour-

-STATE-M1-B1.

To store information on the correct name for each AgentBehaviourState associ-

ated with an agent, the services provided by the utility class AgentTypeYellowPages

are used: this class allows storage and retrieval of the correct command names using

a two-level key structure in which the first key is the AgentType instance and the

second key the AgentBehaviourState. Both keys are required to store and retrieve

the correct command name. For convenience, the AgentTypeYellowPages class

can also directly produce the entire state-machine string as can be seen in Line 6,

Line 21, and Line 63, of Listing 5.4.

135

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Listing 5.3: Template methods that create the state-machine commands in NetLogo.

1 def createStateMachineForAgentType(AgentType agentType)’’’
2 ;; ~~~~~~ MACHINE «aty.getAgentNumber(agentType)» ~~~~~~~~~~~~~~~
3 «FOR a : agentType.behaviourStates»
4 «a.generateCodeForAgentBehaviourState»
5 «ENDFOR»
6 ’’’
7
8 def generateCodeForAgentBehaviourState(AgentBehaviourState abs){
9 var AgentBehaviourDescription description = abs.description

10 switch description {
11 AgentAwaitTourFromDepotBehaviour:’’’
12 /* TEMPLATE CODE FOR STATE-MACHINE COMMANDS
13 OMITTED FOR BREVITY */
14 ’’’
15 /* Agent-behaviours specified in the agent types */
16 AgentExactTourFollowingBehaviour: ’’’ /* OMITTED FOR BREVITY */ ’’’
17 AgentVanishingBehaviour: ’’’ /* OMITTED FOR BREVITY */ ’’’
18 ...
19 }
20 }

5.7 Agent type transformations

The createStateMachineForAgentType() and the generateCodeForAgentBe-

haviourState() methods are responsible for the creation of the state-machine

commands used in the NetLogo simulation. Both template methods are presented

in Listing 5.3: the former method (Line 1 to Line 6) processes an AgentType and

contains a loop that iteratively calls the latter method (Line 8 to Line 20) for every

AgentBehaviourState defined for the given AgentType.

In Xtend, everything inside a template expression, i.e. everything between the

three opening apostrophes and the three closing apostrophes (”’), will be interpreted

as a string (or sequence) of characters. In Listing 5.3 this is the case for half of

Line 2. These characters are displayed in blue colour. Inside a string template it is

also possible to place additional code to be processed. For this, a pair of ‘guillemets’

(«») is used. In Listing 5.3, Line 2 calls the AgentTypeYellowPages (referenced by

aty) to provide the name for the agent type. As can be seen from Line 2 to Line 6, it

is also possible to place specific control structures like loops inside such guillemets11.

The generateCodeForAgentBehaviourState() template method is at the heart

of the AgentBehaviourState to state-machine commands transformation mechan-
11A detailed explanation of template expressions can be found at https://www.eclipse.org/

xtend/documentation/203_xtend_expressions.html#templates.

136

https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html#templates
https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html#templates

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

ism. In Line 9, the method first obtains the AgentBehaviourDescription asso-

ciated with the state that is currently being processed. It then utilises a switch

expression1213 to determine the dynamic type of the obtained behaviour description.

Depending on this dynamic type, a different set of NetLogo state-machine commands

(entry, do, exit) is generated.

Listing 5.4 lists a condensed excerpt of the switch-expression that transforms

instances of AgentAwaitTourFromDepotBehaviour (a subclass of AgentBehaviour-

Description) into NetLogo state-machine code. The lines in which the aforemen-

tioned naming pattern is relevant are highlighted in the presented listing. Note

that the code displayed in blue is the NetLogo code that is generated. The code

inside the guillemets («») is Xtend code, that calls other Xtend template methods

which then again produce NetLogo code. The important aspect to note in the listing

is that in Line 6, the name for the entry-behaviour command associated with the

AgentBehaviourDescription is generated. Analogously, Line 21 creates the name

for the NetLogo command that represents the do-behaviour, and finally Line 63

generates the name of the NetLogo command for the exit-behaviour. Line 58 to

Line 63 generate the NetLogo code by which the respective agent performs its state

transitions. The generated code must call the correct entry-behaviour command

names for the state transitions to work.

Line 1 is the entry into the presented case of the switch-expression, i.e. the code

in the listing is generated whenever the generateCodeForAgentBehaviourState()

is passed an instance of AgentAwaitTourFromDepotBehaviour. The comments in

Line 2 to Line 5 indicate another mechanism used in the state-machine meth-

ods: every state-car agent features a set of descUtil variables that the state-

commands can use to store data for their state specific purposes. This means

that the meaning of the data stored in these variables changes with the state

the agent is currently in. For the state-commands generated for instances of

AgentAwaitTourFromDepotBehaviour descUtil1 and descUtil2 are used to store
12This is no mistake: in Xtend everything is an expression (see Bettini, 2016, pp. 63–64).
13https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html#switch-expression

137

https://www.eclipse.org/xtend/documentation/203_xtend_expressions.html#switch-expression

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Listing 5.4: Condensed excerpt of switch expression.

1 AgentAwaitTourFromDepotBehaviour: ’’’
2 ;; For this state:
3 ;; descUtil1: boolean : if true, the agent is in a blocked mode that simulates
4 ;; the agent servicing a customer
5 ;; descUtil2: int : counts the ticks the agent has been in servicing mode */
6 to «description.nameForBehaviourDescription»-entry ;; entry-behaviour
7 set currentStateFinished false
8 set descUtil1 false
9 set lastCity nextCity

10 set drvCnt 1
11 set nextCity (item 0 (item (drvCnt mod (length routeOfNodes)) routeOfNodes))
12 set currentRoadSCarAttr (droad [who] of lastCity [who] of nextCity)
13 ask currentRoadSCarAttr [(run updateFunction myself 1)]
14 face nextCity
15 set overflow ([overflowCounter] of currentRoadSCarAttr * 0.2 *
16 ([link-length] of currentRoadSCarAttr / [linm] of currentRoadSCarAttr))
17 ask currentRoadSCarAttr [set overflowCounter (overflowCounter + 1)]
18 change-state-to-and-run [-> «description.nameForBehaviourDescription»]
19 end
20
21 to «description.nameForBehaviourDescription» ;; s-car-STATE
22 if is-in-city nextCity
23 [
24 set outputUpdateRequired true
25 ifelse nextCity = (item 0 (last routeOfNodes))
26 AND (item 1 (item (drvCnt mod (length routeOfNodes)) routeOfNodes))
27 [
28 set lastCity nextCity
29 set currentStateFinished true
30]
31 [;; level 0 then
32 if (item 1 (item (drvCnt mod (length routeOfNodes)) routeOfNodes))
33 AND descUtil2 = 0
34 [
35 set descUtil1 (NOT descUtil1)
36]
37 if NOT descUtil1
38 [
39 perform-statistics-update
40 increase-drvCnt
41 set-next-city-of-tour-statically-lol
42 update-tour-completion-statistics
43]
44]
45]
46 ifelse NOT descUtil1
47 [
48 update-my-current-speed-behaviour
49 move-car
50]
51 [
52 set descUtil2 (descUtil2 + 1)
53 if descUtil2 >= [serviceTime] of nextCity
54 [
55 set descUtil2 0
56]
57]
58 «IF abs.transition !== null && !abs.transition.isEmpty»
59 «generateTransitionConditions(0,abs.transition.toList)»
60 «ENDIF»
61 end
62
63 to «description.nameForBehaviourDescription»-exit [nextState]
64 change-state-to-and-run nextState
65 end
66 ’’’

138

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Listing 5.5: Boiler plate template for state transitions.

1 def createCodeForTransitions()’’’
2 ;;*******************************
3 ;; TRANSITIONS
4 ;;*******************************
5
6 to change-state-to[newState]
7 set currentState newState
8 end
9

10 to change-state-to-and-run[newState]
11 set currentState newState
12 run currentState
13 end
14
15 to run-current-state
16 run currentState
17 end
18 ’’’

information necessary to simulate an agent servicing a customer. In the generated

simulation, the agent will halt its movements for the amount of time specified as the

serviceTime of the customer.

Line 6 creates the state-behaviour entry command. To ensure that the command

name adheres to the naming pattern discussed earlier, the nameForBehaviour-

Description() extension method14 provided by the AgentTypeYellowPages (see

Table 5.1) is used. When the initial preparations are made, the entry behaviour

is finished and the actual do behaviour can be executed as can be seen in Line 18.

The generated call of the change-state-to-and-run command relies on another

NetLogo utility command created by a boilerplate template method (i.e., a method

that statically produces the same string whenever it is called) shown in Listing 5.5

(it is called once for every generated NetLogo simulation). Its purpose is updating

the currentState variable of the state-car and subsequently run the state passed

as an anonymous-command.

Line 21 marks the beginning of the do-behaviour state-machine command that

is invoked when the anonymous command stored in a state-car’s currentState

variable is run. As was previously explained, agents are asked by the observer agent

to run their current behaviour in every iteration of the simulation loop. The code

in Line 58 to Line 60 maps the AgentBehaviourTransitions (see Section 4.1.2) of
14https://www.eclipse.org/xtend/documentation/202_xtend_classes_members.html#extension-methods

139

https://www.eclipse.org/xtend/documentation/202_xtend_classes_members.html#extension-methods

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

an Athos model to a nested if-ifelse-else structure in the generated NetLogo

model. In order to get the syntax of this construct right, the generator must keep

track on the number of the transition it currently processes and the number of total

transitions so the else part is created correctly for the last transition.

5.8 Generation of the command dictionary

This section presents the template methods that generate the command dictionary

infrastructure which is one of two mechanisms by which agents are created into

the generated NetLogo simulations. To provide some insight on how the command

dictionary works and how it is linked to the sources defined in a NetLogo network,

this section will discuss the createCommandDictionaryInfrastructure() method

and follow the call hierarchy that was elaborated on in Section 5.3.

The createCommandDictionaryInfrastructure() template method in Listing 5.6

creates the static NetLogo code necessary for the command dictionary to work as

described in Section 5.1. Especially the boilerplate code from Line 15 to Line 61 is

responsible for the implementation of this functionality.

The loops from Line 4 to Line 11 are relevant for the generation of the commands

that sprout agents into the simulation. The loop from Line 8 to Line 11 is used

for simple one-time agent creations like the baz agent in Section 3.4.2 that is once

sprouted at node n4 at tick 0 (default) and once at node n5 at tick 1.

Agents that start as part of a fleet at a depot from which they await to be assigned

a tour are sprouted from commands created in the loop from Line 4 to Line 7. The

method createAddCommandToDictionaryForDepot() called in Line 6 generates the

code that adds the necessary command for the creation of the vehicle fleet to the

command dictionary.

Listing 5.715 shows the implementation of the create-Add-Command-To-Dictio-

nary-For-Depot() template method. In Line 2, the command for the addition of
15The presented code was slightly simplified in comparison to the code found in the actual Athos

generator.

140

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Listing 5.6: Creation of the command dictionary infrastructure.

1 def createCommandDictionaryInfrastructure(Model m)’’’
2 to setup-command-dictionary
3 set commandDictionary table:make
4 «FOR depot : m.network.sources.filter[it -> it.tourOptimisation !== null]
5 + m.network.nodes.filter(SourceNode).filter[tourOptimisation !== null]»
6 «depot.createAddCommandToDictionaryForDepot»
7 «ENDFOR»
8 «FOR source : m.network.sources.filter[it | it.simpleStart]
9 + m.network.nodes.filter(SourceNode).filter[simpleStart]»

10 «source.createAddCommandToDictionaryForSource»
11 «ENDFOR»
12 recalculate-command-processing-infrastructure
13 end
14
15 to add-command-to-command-dictionary-without-recalculation[executionTime command]
16 ifelse table:has-key? commandDictionary executionTime
17 [
18 let listOfCommands table:get commandDictionary executionTime
19 set listOfCommands lput command listOfCommands
20 table:put commandDictionary executionTime listOfCommands
21]
22 [
23 table:put commandDictionary executionTime (list command)
24]
25 end
26
27 to add-command-to-command-dictionary[executionTime command]
28 add-command-to-command-dictionary-without-recalculation executionTime command
29 recalculate-command-processing-infrastructure
30 end
31
32 to recalculate-command-processing-infrastructure
33 set currentExecutionTimeList table:keys commandDictionary
34 ifelse not empty? currentExecutionTimeList
35 [
36 set currentExecutionTimeList sort-by < currentExecutionTimeList
37 update-currentExecutionTime-currentExecutionTmeLst-currentCmdLst-commandDictionary
38]
39 [
40 set currentExecutionTimeList (list)
41 set nextExecutionTime -1
42]
43 end
44
45 to update-currentExecutionTime-currentExecutionTmeLst-currentCmdLst-commandDictionary
46 if not empty? currentExecutionTimeList
47 [
48 set nextExecutionTime first currentExecutionTimeList
49 set currentExecutionTimeList remove-item 0 currentExecutionTimeList
50 set currentCommandList table:get commandDictionary nextExecutionTime
51 table:remove commandDictionary nextExecutionTime
52]
53 end
54
55 to process-command-dictionary
56 if nextExecutionTime >= 0 AND ticks = nextExecutionTime
57 [
58 foreach currentCommandList [x -> run x]
59 update-currentExecutionTime-currentExecutionTmeLst-currentCmdLst-commandDictionary
60]
61 end
62 ’’’

141

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Listing 5.7: Addition of a creation command for a depot.

1 def createAddCommandToDictionaryForDepot(Sourcish source)’’’
2 add-command-to-command-dictionary-without-recalculation «source.at» [
3 [] -> ask city «cyp.getCityNumber(source.sourcishName)»
4 [
5 let carLengthRelativeToStreet 0
6 if newCarPipeline = 0 [set newCarPipeline (turtle-set)]
7
8 let customersOfRoute_ownedByCity
9 (list

10 «FOR node : (source.tourOptimisation.route)»
11 city «cyp.getCityNumber(node.name)»
12 «ENDFOR»
13)
14
15 let listOfTours graphextension:pareto-capacitated-lol-vrptw
16 cities droads (city «cyp.getCityNumber(source.sourcishName)»)
17 customersOfRoute_ownedByCity
18 «source.sproutFunction.agentProbabilities
19 .head.agentTypeForAgentProb.maxWeight»
20 «if(b.popsize!=0){b.popsize}else{’’’20’’’}»
21 «if(b.simplePermuProb!=0){b.simplePermuProb}else{’’’0.9’’’}»
22 «if(b.maxDistance!=0){b.maxDistance}else{’’’4’’’}»
23 «if(b.generations != 0){b.generations}else{’’’80’’’}»
24 «if(b.weightNoOfTours!=0){b.weightNoOfTours}else{’’’100’’’}»
25 «if(b.weightTotalDistance!=0){b.weightTotalDistance}else{’’’0.001’’’}»
26 «if(b.tournamentSize!=0){b.tournamentSize}else{’’’4’’’}»
27 «if(b.takeBestProb!=0){b.takeBestProb}else{’’’0.8’’’}»
28 «if(b.mutationProb!=0){b.mutationProb}else{’’’0.1’’’}»
29 (city «cyp.getCityNumber(source.sourcishName)»)
30
31 foreach listOfTours [
32 tour -> ask patch-here
33 [
34 sprout-state-cars 1
35 [
36 «generateContentForAskingStateCarToInitialise(
37 source.sproutFunction.agentProbabilities.head,"tour",true)»
38
39]
40]
41] ;; end foreach
42]
43]
44 ’’’

anonymous commands to the dictionary is invoked and passed two parameters: the

time at which the command is to be executed and the command itself which spans

from Line 2 to Line 43.

The generated command asks the depot at which the fleet of vehicles is located

to execute the code in the brackets that open in Line 4 and are closed in Line 42.

From Line 8 to Line 13 the depot saves its list of customers in a local variable. This

list is then used in a call to the Athos optimisation library accessed via NetLogo’s

extension mechanism. The algorithm that is invoked in Line 15 is presented in

great detail in the next section. The algorithm from Athos’ optimisation library is

an evolutionary algorithm that needs to be passed several parameters related to the

142

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Listing 5.8: Template for the initialisation of an agent.

1 def generateContentForAskingStateCarToInitialise(AgentProb ap,
2 String routeString, boolean listOfLists)’’’
3 «var AgentType at = ap.agentTypeForAgentProb»
4 set agentType "«at.name»"
5 set congestionFactor «at.congestionFactor»
6 set capacity «at.maxWeight»
7 set cityOfOrigin current-city
8 perform-mandatory-computations
9 «IF at.attributeAssigments !== null»

10 «FOR attrib : at.attributeAssigments»!
11 set «attrib.attribute.name» «attrib.value»
12 «ENDFOR»!
13 «ENDIF»
14 «IF at.individualOptimization»set individualFunction [!
15 [] -> ask droads [«at.function.name» myself]]
16 «ENDIF»!
17 «IF listOfLists»
18 initialise-car-with-list-lol «routeString»
19 «ELSE»
20 initialise-car-with-list-auto-completion «routeString»
21 «ENDIF»
22 change-state-to-and-run[->
23 «aty.getEntryNameForBehaviourDescription(
24 at.behaviour.agentBehaviourStates.head.description)»]
25 ’’’

problem to be solved such as the set of all cities in the network and the connecting

edges, the list of customers, or the maximum capacity of the vehicle. It also requires

several parameters that affect the execution of the algorithm such as the number of

iterations (number of generations) or the probability for mutations to occur.

The algorithm returns a list of tours, i.e. a list in which lists of tuples are stored.

Each of these tuples consists of a node that the agent must navigate to, together with

a boolean value that indicates whether this node is a customer to be serviced or just

a pass-through node. The list of tours is stored in the local variable listOfTours in

Line 15. It is then used in the code from Line 31 to Line 41. For every tour in the

list of tours an agent is created that will service the respective tour. This is done in

the generateContentForAskingStateCarToInitialise() method in Line 36 and

Line 37.

The generateContentForAskingStateCarToInitialise() is presented in List-

ing 5.8. Here, Line 3 to Line 16 represent code that is used to initialise various

attributes of the created agent (such as the congestionFactor). Agents can also have

individual attributes and optimisation functions that they intend to optimise, for

which the code from Line 10 to Line 12 and Line 14 to Line 16 is necessary. Of special

143

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

importance are Line 22 to Line 24: with the invocation of the change-state-to-

-and-run command, the agent is programmed to store an anonymous command in its

currentState variable that when run will invoke the entry state-machine command

which is associated to the first AgentBehaviourState (entry state) defined for the

agent in the agent type section of the Athos program. In the given example, this is

the state-machine command generated for the AgentAwaitTour instance discussed

in Section 5.7. It is implemented by the code given in Listing 5.4.

5.9 Summary

This section has shown how Athos models are transformed into executable NetLogo

simulations. Section 5.1 introduced the command dictionary that is used to store

and execute agent creation commands. Section 5.2 then gave insight into the general

flow of control that governs the execution of any NetLogo model generated from

Athos. After that Section 5.3 gave an overview on a selected set of template methods

in the Athos generator that transform Athos models into NetLogo code. To facilitate

comprehension of these template methods, the most important utility classes used

in the template methods were introduced in Section 5.4. An example for a utility

command that is used in the NetLogo code was given in Section 5.5. Section 5.6

then elaborated on the naming pattern for state-machine commands that are used

in the generated NetLogo simulations to implement agents’ behaviour. A concrete

example how these state-machine commands are derived from Athos models was

then discussed in Section 5.7. Section 5.8 concluded this section by showing how

optimal tours are determined by calling Athos’ optimisation library via a NetLogo

extension and how the provided solution is further processed in the NetLogo code.

5.10 The optimisation library

This section presents Athos’ optimisation library that features algorithms related

to the optimisation of vehicle routing problems (VRPs). In order to provide some

144

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

comprehensible insight into the problems the algorithms in this library deal with, a

solution algorithm for vehicle routing problems with time windows (VRPTWs) will

be discussed. The algorithm implemented for Athos is based on the work of Ombuki

et al. (2006) and was also presented in (Hoffmann et al., 2019a) and (Hoffmann et al.,

2019b). The implementation is based on the work of Ombuki et al. (2006) because

Ombuki et al. provide a clear and comprehensible explanation that enabled the

author of this thesis to implement the algorithm in Java. Compared to the usage of

pre-implemented algorithms, this allows for additional flexibility required in later

versions of Athos that might allow definitions of further restrictions for the desired

solutions (see 8.3.4). However, the Athos architecture also allows to use pre-defined

third-party algorithms.

Although this section focuses on the evolutionary algorithm for the solution

of VRPTWs, it is not the only algorithm created for the optimisation library. In

(Hoffmann et al., 2018a) an implementation of ant-colony system (ACS) (Dorigo

and Gambardella, 1997) is discussed. In (Hoffmann et al., 2020), an extension

mechanism found in the Athos library was presented. This mechanism can be used

to model additional, not natively supported problems with Athos. It is however

not presented here, as it renders the resulting programs comparatively difficult to

create, read and understand. The definition of the language elements enabling this

mechanism are part of the concrete syntax presented in Appendix A.

5.10.1 General structure and access

In Section 3.3, it was explained that Athos is a language intended to be platform-

independent and thus transformable to arbitrary solution domains. For this to

work, it is important that the optimisation algorithms be decoupled from any target

platform. The approach taken by Athos to achieve this decoupling is shown in

Figure 5.4 for the evolutionary algorithm that solves instances of the VRPTW. The

implementation uses three template parameters V, E and C. V represents the nodes

of the network. In NetLogo, these nodes are specialisations of Turtles. E represents

145

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

athos.general.optimisation org.netlogo.api

athos.nlxt.optimisation

≪bind≫

VRPTWSolverOmbuki

report(

allNodes : List<V>, allEdges:List<E>,

startNode : V, tourNodes : List<V>, endNode : V,

demandFunction : Function<V, Double>

earliestTimeFunction : Function<V, Double>,

latestTimeFunction : Function<V, Double>,

serviceTimeFunction : Function<V, Double> ,

startNodeFunction: Function<E, V> ,

endNodeFunction :Function<E, V> ,

edgeLengthFunction : Function<E, Double> ,

edgeTimeFunction : Function<E, Double> ,

rtf : Function<List<List<Pair<V, Boolean»>, C> ,

double vehicleCapacity, int populationSize,

double probabilityForGreedy,

double maxDistance, int generations, double weightNoOfTours,

double weightTotalDistance, int tournamentSize,

double takeBestFromTournamentProb, double mutationProb,

double latestAtDepot) : C

V, E, C
Reporter

+ getSyntax() : Syntax

+ report(

args[0..*] : Argument,

context:Context

)

NetLogoVRPTWOmbuki

V->Turtle, E->Link, C->LogoList

Figure 5.4: Platform independent access to the optimisation library.

the edges between nodes. In NetLogo the edges are implemented as Links. Finally,

C represents the list data structure that stores the solution of the algorithm and

thus is the type of object the algorithm returns. For NetLogo this is a LogoList.

In order to leverage NetLogo’s extension mechanism16, an implementation

of NetLogos Reporter interface was created. This way, the implementing class

NetLogoVRPTWOmbuki is passed the Turtle and Link instances of the simulation

together with an array of additional parameters. The generated NetLogo command

that invokes the reporter implementation was shown in Listing 5.7 of Section 5.8.

NetLogoVRPTWOmbuki then calls the platform-independent report method of

VRPTWSolverOmbuki and binds the template parameters to its Link,Turtle and

LogoList classes. In order for the algorithm in VRPTWSolverOmbuki to make sense

of these classes, NetLogoVRPTWOmbuki has to provide several additional Functions,

the algorithm can use to extract the necessary data from NetLogos data types. This

approach provides the necessary flexibility for further development of the algorithms
16https://ccl.northwestern.edu/netlogo/docs/extensions.html

146

https://ccl.northwestern.edu/netlogo/docs/extensions.html

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

in future versions of Athos. It also grants access to additional agent properties by a

simple provision of an additional function. The actual implementation code is given

in Appendix B both for the implementation of the algorithm in Section B.1 and also

for the invocation in Section B.2.

5.10.2 Genetic optimisation algorithm

This section discusses how the evolutionary algorithm processes the data provided

via the extension mechanism in order to find an optimal solution for a VRPTW.The

general process by which the algorithm tries to find an optimal solution can be

outlined as follows:

1. Built the data structures (network, adjacency matrices).

2. Create initial sequence of nodes (partly randomly, partly heuristically).

3. Derive actual tours from the initial node sequence.

4. While not number of iterations performed.

a) Stratify (calculate Pareto ranks of) the population.
b) Find best individual in the population and add it to the next generation.
c) Built the mating population.
d) Add child from parents in the mating population to the next generation.

5. Return the best individual.

The next sections will go into detail on how exactly the outlined steps are

performed. The explanation is done with two complementary approaches. Sec-

tion 5.10.2.1 provides a walk-through for a process-centric pseudo-code formulation

that is based on the one presented in (Hoffmann et al., 2019a). Section 5.10.2.2 puts

a stronger focus on the data flow during the execution of the algorithm.

The algorithm starts out with a set of randomly generated sequences in which

the customers are ordered. It then partitions each sequence into a set of feasible

tours (if this is possible) and then performs a pre-defined number of iterations in

which successively new generations of tours are built. The best individual of each

generation is guaranteed to be present in the next generation. Otherwise, the new

generation is built from combining two parents from the previous generation. Finally,

the best individual from the most recent generation is returned.

147

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

5.10.2.1 Process-centric explanation explanation

Lines 1 – 3 The algorithm processes a graph G(V ,E) composed of a node set V

and a set of edges E. V comprises both the set of all customers C ⊂ V and the

depot d, i.e. V = C ∪̇ {d} . Function d f assigns a spatial distance to each edge in E.

Function t f assigns a temporal distance to each edge in E (representing the time

that the vehicle requires to traverse the respective edge). Every customer node has

to be visited exactly once by an arbitrary agent of a homogeneous set of agents who

all have a maximum capacity of cmax. All agents start their tour at the depot d.

Customer nodes possess a demand assigned to them by the function h f . In addition,

functions e f and l f are used to assign an earliest time (e f) and a latest time (l f) to

the customers. This way every customer is assigned a time window in which the

visit of the agent must commence. Note that l f also assigns a latest time to the

depot that represents the point in time until which all vehicles must have returned

to the depot. Finally, s f is a function that assigns a service time to every customer

in C.

Lines 5 – 6: The distance and time functions d f and t f are used together with

Dijkstra’s algorithm to calculate the shortest spatial and temporal distances between

any two customer nodes of the graph. These distances are stored in a timeMatrix

and a distanceMatrix, respectively. Note that in complete graphs the temporal and

spatial distance between any two customer nodes are equal to the values that d f

and t f yield for the edge connecting the respective customers. In incomplete graphs,

Dijkstra’s algorithm must be applied to determine the shortest and fastest route

between nodes that are not directly connected.

Lines 7 – 26: Having created the time and distance matrices, the initial population

of chromosomes is to be created. The size of the population is determined by the

parameter popSize. Two different strategies for the creation of chromosomes are

implemented. The first strategy simply creates a random permutation of all customer

nodes to visit (start and end node are always fixed and determined via parameters).

148

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Listing 5.9: Pseudocode of the evolutionary algorithm.
1 Input : G(V ,E), d f : E →R, t f : E →R, C ⊂V , d ∈V \ C, cmax ∈R
2 h f : C →R, e f : C →R, s f : C →R, l f : C∪d →R

3 Output: List of routes RTours
4 begin
5 Derive distance matrix D i j , i, j ∈ C∪d using Dijkstra ’ s and d f
6 Derive time matrix Ti j , i, j ∈ C∪d using Dijkstra ’ s and t f .
7 let P :=; ; // Create initial population P
8 while |P| < popSize
9 if rand(0,1) < simplePermuProb

10 create a random permutation p of elements in C and add p to P ;
11 else
12 set Ccopy ← C ;
13 in i t p as empty chromosome;
14 set i ← 0
15 while Ccopy ̸= ; do
16 set p[i] ← getAndRemoveRandomElement(Ccopy);
17 while ∃c ∈ Ccopy : Dp[i],c < maxDistance do
18 set cnearest ← take customer from Ccopy with min{Dp[i],customer };
19 set i ← i+1
20 set p[i] ← cnearest ;
21 od
22 set i ← i+1
23 od
24 add p to P
25 fi
26 od
27 set Ω←;
28 foreach p ∈ P do // transform every chromosome into a list of tours!
29 set R tours ←; // the list of tours
30 add R tours to Ω
31 set r[]← newEmptyTour // next tour to derive
32 add r[] to R tours
33 for i ← 0 to |p| − 1 do
34 if customer p[i] can be visited without violation of any constraint
35 add p[i] to r[]
36 else if costomer p[i] can’ t be reached and r [] i s empty
37 ⇒ infeasible problem
38 else
39 set r[]← newEmptyTour // start a new tour
40 add r[] to R tours
41 set i ← i−1
42 continue // check whether customer can be visited as first customer
43 fi
44 od
45 od
46 foreach R tours ∈Ω do
47 Try to improve total distance by adding last customer of route r i[] to route r i+1[].
48 od
49 for i ← 0 to generations − 1 do
50 foreach R tours ∈Ω do
51 calculate pareto rank for R tours ;
52 set wΣ(R tours)← w1 · |R tours|+w2 · totalDistance(R tours)
53 od
54 set MMating ←; ; TTournament ←; ; ΩNextGen
55 add R tours from Ω to ΩNextGen with min{rank(R tours) then wΣ(R tours)} // champion
56 while |MMating| < 2 · (popsize−1) do
57 set TTournament ← randomly select tournamentSize R tours from Ω
58 if rand(0,1) < takeBestProb
59 add R tours from TTournament to MMating with min{rank(R tours) then wΣ(R tours)}
60 else
61 add a l l TTournament to MMating
62 fi
63 od
64 while |MMating| > 0
65 offspring ← take 2 R tours from |MMating| and perform pairwise BCRC crossing
66 if rand(0,1) < mutationProb do mutate(offspring) od
67 add offspring to ΩNextGen
68 od
69 set Ω←ΩNextGen
70 od
71 return R tours from Ω to MMating with min{rank(R tours) then wΣ(R tours)}
72 end

149

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

The second strategy selects a random customer as the first gene in the chromosome.

If there is at least one customer that has not yet been visited (i.e. is not yet part

of the chromosome to be created) and whose distance to the last customer (i.e. the

one most recently added to the chromosome) is below the maxDistance threshold,

the customer with the minimal distance is added to the chromosome. If none of

the remaining customers’ distance is below the maxDistance threshold, a random

customer is added to the chromosome and the greedy search for the next customer

to be added starts anew. This process is repeated until there is no customer left to

be added to the chromosome.

Lines 27 – 48 Each chromosome p of the initial population P is now transformed

into a list of tours R tours in which every tour r i[] represents a list of customers. The

set of all lists of tours is denoted as Ω. To transform a chromosome into a list of

tours, the customers in this chromosome are processed in sequential order. At the

beginning, an empty tour is created. For each customer it is checked, whether it

can be visited within the defined constraints given the current state of the current

tour. If a visit within the defined constraints is possible, the customer is added to

the current tour. If a visit cannot be performed without violating one or several

constraints, the current tour is closed and a new empty tour is created. It is then

checked whether the customer can be visited as the first customer of the tour. If no

customer can be visited at the very beginning of a tour, the problem is infeasible:

if a vehicle cannot arrive in time when the customer is the first on its tour, it is

simply not possible for any vehicle at the depot to visit the customer within the

defined constraints. The same holds true for the demand that any vehicle can meet.

After all chromosome have been transformed into a list of tours, a second phase

starts. This phase attempts to improve on the accumulated distance covered by

all vehicles of the list of tours. To this end, the last customer of tour r i[] is placed

as the first customer of the subsequent tour r i+1. If this results in a reduction of

distance without constraint violation, the customer movement is made permanent.

Otherwise the movement of the customer is undone.

150

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Lines 49 – 70 Each iteration of the main loop of the algorithm generates a new

generation of lists of tours R tours. The exact number of generations is defined by

the generations parameter. In Line 51) the current generation of lists of tours is

stratified by calculation of a Pareto rank for every list of tour R tours in the current

generation Ω. The stratification process is done by filtering for all non-dominated

lists of tours in the current generation. A list of tours is non-dominated if there

is no other list of tours in the current generation that contains a lower (or equal)

number of tours with a lower (or equal) total distance (with either the number of

tours or the distance being actually lower). (see (Ombuki et al., 2006, p. 22)). Every

list of tours in this filtered set is assigned rank 1 and the set is then removed from

the ranking space. This process is repeated with ascending rank numbers (lists

of the next filtered set are assigned rank 2 and so on) until the ranking space is

empty. Having assigned a rank to each list of tours, Line 52 calculates a weighted

sum wΣ for each list of tours. Parameter w1 determines the weight of the number

of tours and parameter w2 determines the weight of the total distance of the tours.

Hence, the weighted sum wΣ is defined as the sum of w1 multiplied by the number

of tours (w1 ·cntTours(R tours)) and w2 multiplied by the total distance of all tours

(w2 ·totalDistance(R tours).

Lines 54 – 63: This section prepares the creation of the next generation of list of

tours ΩNextGen. The first step is the selection of the champion (determined by rank

and then by weighted sum value wΣ) of the current generation. This champion

is directly added to the next generation (Line 55). Next, a set of mating lists of

tours is initialised. To populate this set, a tournament selection mechanism is

applied. This mechanism randomly selects tournamentSize (e.g. 4) elements to

form the tournament set TTournament. A random number then determines whether

all members of TTournament are added to the mating population MMating or only the

best element in TTournament (again determined by rank and then by weighted sum

value wΣ) is selected for reproduction. The outcome of this randomised decision can

be influenced via the takeBestProb parameter (Line 58). This tournament selection

151

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

and randomised addition is repeated until the number of elements in the mating

population exceeds popsize−2 elements (lists of tours).

Lines 65 – 71: Finally, two lists of tours RTours at a time are taken from the mating

set MMating and crossed by means of the best cost route crossover (BCRC) operator

(Ombuki et al., 2006) (also see Appendix B). This crossing of two parent lists of

tours results in an offspring list of tours o. Based on the outcome of another random

experiment (influenced by the parameter mutationProb), a mutation process (see

Ombuki et al., 2006) might be imposed on offspring o. The current implementation of

this evolutionary algorithm yields the champion of the last generation (determined

by wΣ as the optimal solution.

5.10.2.2 Data-centric explanation

Figure 5.5 presents the algorithm with a stronger focus on the data flow. The figure

shows how the first action is the creation of a bidirectional mapping between the

customer object and an integer that represents the customer in the algorithm. This

bidirectional map is represented as a data store. In order to pass its data to actions,

its linked to connector A. Another bidirectional map stores data on the customer such

as the time window and the service time (B). The nodes and edges that are passed

to the algorithm as parameters (depicted on the left hand side on the edge of the

box) are used to create a graph structure (C). Together with the bidirectional id map,

this graph is used to built a distance map (D) and a time map (E). After that, the

creation of the chromosome population is performed. For this step, the population

size (popSize) and two parameters that affect if (simpleProb) and how (maxDist)

the chromosomes are created with a greedy approach, or a random ordering. The

created chromosome population is kept in another data store (F).

The start node and end node parameter (those were not part of the chromosome

creation process as their position as the first and last element are fixed), the data on

the customer, and the distance and time matrix are used to turn the chromosome

152

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

population into a list of tours17. For each list of tours the accumulated length of all

its tours is stored in the ToursLengthMap (H). The lists of tours are then stratified by

calculation of Pareto ranks based on the total tour length and the number of vehicles

applied. The stratification result can be accessed via the data store associated with

connector (I).

In the next action, a weighted value is calculated based on the weight (wghtDist)

that was ascribed to the number of tours (P4) and the weight ascribed to the covered

distance (wghtDist). For each tour its weighted sum is also saved in a data store

(J). In the next step, the mating population is prepared and filled. For this, the rank

(value obtained in the stratification process) is used together with the weighted sum

of the tour.

A tournament group of a size determined by the tournament size parameter

trnmtSize is created by random selection of tournament participants. Then, it is

randomly decided whether all tournament participants or only the best enter the

mating population. The threshold for this randomised decision can be controlled

with the takeBest variable. In casewhere the best list of tours is to be selected,

the data from the stratification and weighting process (J) are used. The mating

population (L) is then used to breed a new generation. Some of the new offspring list

of tours will be subjected to a mutation process. The chance by which this mutation

process is carried out depends on the value of the mutProb parameter. This process

is repeated until the number of generations specified via the noGens parameter are

created. The best list of tours (based on the ranks and weighted sum value) is the

champ. The list of tours is modified in a way so that it is turned in to a sequence of

nodes in which two subsequent nodes are always connected by an edge. The modified

champion is the result of the algorithm.
17Due to the limited space, the illustration only uses the term ‘tours’ instead of the more appropri-

ate ‘list of tours’.

153

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Customers

AllEdges

AllNodes

StartNode P1

EndNode P2

wghtTours P3

wghtDist P4

mutProp P5

noGens P6

Create customer
data maps

Create
Graph

Create dis-
tance matrix

A
C

Create time
matrix

A
C

Random
Creation

Greedy
Creation

[rnd>prob4Grdy] [rnd≤prob4Grdy]

!fi
ni

sh
ed

finished

popSize

simpleProb

maxDist

Derive tours f.
chromosomes

DBAP1

FEP2

Calculate
length of tours

Rank tours f.
stratification

G
H

Create weighted
tour mapH

P3P4

Pick
contestants

Add best

J
I

Add All

[rnd<=takeBest] [else]

trnmtSize

tkBstProb

Breed new Gen

Induce mutations

P6

LJ

P5

Calculate
optimum

JI

Complete
optimum Completed optimum

«DataStore»
DualMap

<Customer,Integer>
A

«DataStore»
Map

<Customer,Data>
B

«DataStore»
Graph C

«DataStore»
Distance matrix D

«DataStore»
Time matrix E

«DataStore»
Chromosomes F

«DataStore»
Tours population G

«DataStore»
ToursLengthMap

<Tour,Double>
H

«DataStore»
Stratified tours I

«DataStore»
WeightedSumSortedMap J

«DataStore»
WghtOrdrdSumSrtdList K

«DataStore»
MatingPopulation L

A

E

Figure 5.5: The control flow of the evolutionary algorithm implemented in the Athos
optimisation library. The control and data flow is based on the work of (Ombuki
et al., 2006).

154

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

Appropriate values for the presented control parameters must be discovered by

empirical observations. Ombuki et al. (2006) state the following value for the control

constants:

• popSize: 300

• simplePermuProb: 0.9

• maxDistance: to be empirically decided

• generations: 350

• takeBestProb: 0.8

• tournamentSize: 4

• mutationProb 0.1

It is to be noted that the WghtOrdrdSumSrtdList (K) is currently not used. Its

purpose was the provision of insight and support for further analysis of the solution

space. For an accelerated runtime-behaviour of the algorithm, the creation and

updating of this data structure can be removed.

5.10.3 Performance evaluation

This section briefly discusses the performance of the algorithm in terms of the qual-

ity of the obtained solutions and the number of iterations required to obtain the

respective solution. In order to evaluate the presented algorithm, it is compared to

another evolutionary algorithm as a baseline approach. A well-known and widely

applied algorithm for the solution of VRPTWs can be found in the JSprit optimisa-

tion library18. The two algorithms are compared by an analysis of the solutions

they produce on a selection of benchmark problems. The analysis will focus on a

comparison of the best solution produced by the algorithms in each iteration.

For the comparison of the algorithms, the Solomon’s benchmark problems for

VRPTWs will be used. Both algorithms will assume an objective function that

weighs the number of deployed vehicles with a factor of 10 whereas the travelled

distance is weighted with a factor of 0.1. The decision for these values seems sensible

as each additional vehicle certainly results in considerably higher costs than an
18https://jsprit.github.io/index.html

155

https://jsprit.github.io/index.html

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

additional unit of distance to be travelled. However, the exact values of 10 and 0.1

were arbitrary and are not based on any scientific standard.

Other than the weight values for the objective function and the setting of the

‘FAST_REGRET’ parameter to true (which is supposed to reduce computation time)

no additional parameterisation was done for the JSprit algorithm. The values for

the control variables of the Athos algorithm are those proposed by Ombuki et al.

(2006) given in the previous section. The maxDistance control variable was set to

90. Both algorithms performed exactly 125 iterations on the Solomon C101, C201

and the RC201 problems that feature exactly 100 customers each. The former two

problems feature clusters of customers, i.e. areas in which many customers are close

to each other. The latter problem features both clusters of customers and customers

randomly dispersed over the respective map19. After each iteration, the objective

value produced by the best known individual in the respective solution space was

recorded. For each problem instance this was done 25 times.

Figure 5.6 presents the results of the performed experiments. Each of the six

plots features three graphs: one graph representing the minimal objective value

found among the 25 executions in the respective iteration, one for the analogous

maximum value and one for the average. The dashed blue line drawn in each of

the six plots shows the objective value of the best known solution for the respective

problem20.

What can be clearly seen from the graph is that both the Athos and the JSprit

algorithm converge towards the optimal solution so that after 125 iterations both

algorithms provide solutions that are either optimal or near optimal. However, it

must also be noted that the JSprit algorithm produces very stable results, i.e. the

results for each of the 125 iterations were similar among the 25 executions. Moreover,

it can also be seen that the JSprit algorithm requires less iterations to achieve a

near optimal or optimal solution. Two additional problems with the algorithm
19This is also explained on the website of the creator of the problems: http://web.cba.neu.edu/

~msolomon/problems.htm
20This value was taken from https://www.sintef.no/projectweb/top/vrptw/100-customers/.

Note that the objective value is to be calculated by multiplying the number of vehicles with a factor
of 10 to which the distance divided by ten is to be added.

156

http://web.cba.neu.edu/~msolomon/problems.htm
http://web.cba.neu.edu/~msolomon/problems.htm
https://www.sintef.no/projectweb/top/vrptw/100-customers/

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

25 50 75 100 125
0

100

200

300

400

500

600

700

Iteration

O
bj

ec
ti

ve
fu

nc
ti

on
va

lu
e

Athos C101

25 50 75 100 125
0

100

200

300

400

500

600

700

Iteration

O
bj

ec
ti

ve
fu

nc
ti

on
va

lu
e

JSprit C101

25 50 75 100 125
0

100

200

300

400

500

600

700

Iteration

O
bj

ec
ti

ve
fu

nc
ti

on
va

lu
e

Athos C201

25 50 75 100 125
0

100

200

300

400

500

600

700

Iteration

O
bj

ec
ti

ve
fu

nc
ti

on
va

lu
e

JSprit C201

25 50 75 100 125
0

100

200

300

400

500

600

700

Iteration

O
bj

ec
ti

ve
fu

nc
ti

on
va

lu
e

Athos RC201

25 50 75 100 125
0

100

200

300

400

500

600

700

Iteration

O
bj

ec
ti

ve
fu

nc
ti

on
va

lu
e

JSprit RC201

Figure 5.6: Per-iteration comparison of the best solutions produced for a selection
of Solomon’s VRPTW benchmark problems by Athos’ and JSprit’s respective evolu-
tionary algorithm implementations each executed 25 times on each selected problem
(objective function: z = 10v+0.1d, v representing the number of deployed vehicles
and d representing the total distance covered by all vehicles).

157

CHAPTER 5. TRANSFORMATIONS OF ATHOS INTO NETLOGO

implementation currently used by Athos were also unearthed in the course of the

evaluation experiments: the JSprit algorithm does not only require less iteration

steps to yield near optimal solutions, it’s runtime performance is also superior to the

one exhibited by the algorithm Athos relies upon. To this end, some performance

tweaks like resorting to other data structures were applied. To further accelerate

the runtime behaviour, the stratification step was modified so that it did no longer

stratify the solution population but dichotomise it by only distinguishing between

dominated and non-dominated solutions. However, the runtime-performance still

remains something that must be improved in the near future. It must also be said

that on some occasions the self-implemented algorithm produced infeasible solutions

which disappeared after a few more iterations so that the executions produced a

feasible near-optimal solution. The data presented in this section, however, are not

affected by this. In any case, even though the Athos algorithm produced near-optimal

or optimal solutions after 125 iterations, the implementation requires re-inspection

and optimisation.

158

; Sixth Chapter <

Empirical evaluation of the language

This section elaborates on the empirical evaluation that was conducted to evaluate

the parts of the Athos language related to the modelling of static vehicle routing

problems with time windows (VRPTWs). The scope of the evaluation comprised

those language elements that were presented in the first example in Section 3.4.1

(also see Section 6.7.1). The additional elements presented in the second example

in Section 3.4.2 were not part of the presented evaluation and thus leave room for

future work (see Section 8.3). The presented controlled experiment as well as the

obtained data of the original study are to be published in (Hoffmann et al., 2022).

6.1 Terminology used in this section

In this section, a terminology will be used that is in some parts slightly different

from the standard terminology used in the field of software engineering experiments.

Athos, as the language the described study intends to evaluate will be referred

to as an approach instead of the term treatment which is generally used in such

experiments (Sjoeberg et al., 2005). The study was conducted among students

enrolled at Technische Hochschule Mittelhessen (THM) campuses in Friedberg

and Wetzlar. These students will be referred to as language evaluators and (far

more often) as participants instead of the more common term subjects. The applied

research method was a controlled experiment – or one argues that all participants

had to apply Athos only at different points in the study (see below) then the applied

159

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

research method was a quasi experiment (see Sjoeberg et al., 2005, p. 734). Some

parts in the following discussion just use the terms study or survey instead of the

more precise term ‘controlled experiment’. Finally, in the general terminology the

subjects apply the treatments in various tasks. In the presentation of this study,

participants applied the approaches to answer questions that consisted of one or

more tasks.

6.2 Selection of design evaluation method

In order to conduct a systematic and rigorous evaluation of the language (Hevner

et al., 2004, p. 80), three frameworks/templates were considered: The Usa-DSL

evaluation framework1 (Poltronieri et al., 2018) was designed to assess the usability

of domain-specific languages (DSLs). Based on the works of Barisic et al. (2012b)

and Barišic et al. (2014), the framework regards DSLs as a user interface for human-

computer interaction. The framework focuses on the usability of DSLs defined as

an important part of the quality in use of a system. (BSI, 2011, p. 3). The Usa-DSL

framework provides abstract guidelines for the evaluation process (Poltronieri et al.,

2021, p. 301). It does, however, not make mandatory prescriptions on how exactly

specific activities are to be put into effect. Rather, the framework makes sensible

suggestions on various alternatives to be taken or intentionally leaves it up to the

experiment conductor, to decide on how to implement certain activities.

Several DSL evaluation studies presented by Kosar et al. (Kosar et al. (2010),

Kosar et al. (2012) and Kosar et al. (2018)) served as a template to determine

the concrete implementation of the abstract guidelines provided by the Usa-DSL

framework. Finally, the entire research project in which Athos was developed was

guided by the design-science framework presented by Hevner et al. (2004). While

the previous chapters dealt with the building of innovative artefacts, this chapter

focuses on the evaluation of the language which completes a first major iteration of

the build-and-evaluate loop (Hevner et al., 2004, p. 78).
1https://github.com/Ildevana/Usa-DSL/wiki

160

https://github.com/Ildevana/Usa-DSL/wiki

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

Table 6.1: Phases, steps and associated activities defined in the Usa-DSL evaluation
framework (Poltronieri et al., 2018).

Phases
Steps

Planning Execution Analysis Reporting
1.
Evaluators
Profiles

P1 Define
evaluators profiles

E1 Apply
instruments to
identify profiles

A1 Analyse
evaluator profiles

R1 Report
evaluator profiles

2. Ethical
and legal
responsib-
ilities

P2 Define
informed consent
form

E2 Introduce form,
collect signatures
of participants

R2 Report
subjects number
and form used

3. Data
type

P3 Define data
type

4.
Empirical
study
method
(SE)

P4 Define
empirical study
method

E4 Develop and
conduct protocol

A4 Analyse the
development
protocol

R4 Report the
development
protocol

5.
Evaluation
method
(HCI)

P5 Define
evaluation
usability type

E5 Prepare the
evaluation

R5 Report
conduction
evaluation

6. Metrics
P6 Define metrics
for language
validation

7.
Gathering
instru-
ments

P7 Define
instruments of
data gathering

E7 Data collection A7 Analyse
collected data

R7 Report data
analysis

8.
Evaluation
instruc-
tions

P8 Def. instrum.
of instruction and
training

E8 Introduce instr.
of instrc. and
conduct training

R8 Report
instruments

9.
Evaluation
conduc-
tion

P9 Define
execution place

E9 Exec. of tasks
and evaluation
conduction

A9 Analyse
performed tasks

R9 Report task
analysis

10. Data
packaging

P10 Define data
storage

E10 Store data
obtained

11.
Evaluation
reporting

P11 Define study
reporting

A11 Analyse
documentation

R11 Rprt results
and analysed
inform.

161

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

The structure of the the framework is depicted in Table 6.1: the framework

divides a usability evaluation into four phases that range from the planning and

execution to the analysis and reporting of the study and its results. Each phase

incorporates eleven steps that (barring few exceptions) are associated with an

activity to be performed in order to complete the step. As to the order in which the

steps are to be carried out, it is mandatory that for a given step the order of the

phases is adhered to. It is, however, not compulsory to take the steps in a specific

order nor do all steps of a phase have to be completed before a subsequent phase can

be entered. In general, it appears advisable to take the steps in the order implied by

their numbering.

Table 6.2 displays a summary of the outcome of the activities performed in the

planning phase: for example, the outcome of activity P1 define evaluation profiles

(which is associated with the evaluators profiles step in the planning phase) was the

decision to conduct the evaluation study among students from two different study

courses offered at two different campuses of Technische Hochschule Mittelhessen

(THM) in Germany. Students from the campus in Friedberg were enrolled in the

Information Systems study course and attended a module on operations management.

The curriculum stipulates that students attend this module in their second semester.

Students from the campus in Wetzlar were enrolled in the Software Technology

study course and had a module on MDSD which is stipulated to be heard in the

fourth semester. The next sections will further elaborate on the activities performed

in the course of the evaluation study.

6.3 Research questions and hypothesis

The works of Kosar et al. (2010), Kosar et al. (2012) and Kosar et al. (2018) were used

as a template that provided guidance on what evaluation method to use and how

to design it (Usa-framework P5). Consequently, the underlying research questions

presented in these works were adapted to form the basis of the controlled experiment:

162

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

Table 6.2: Planning activities for language evaluation.

Activity Description

P1 Students from Technische Hochschule Mittelhessen (THM).
Campus Friedberg: second semester students (according to curriculum), en-
rolled in information systems
Campus Wetzlar: fourth semester students (according to curriculum), en-
rolled in software engineering

P2 Consultation with the ethics committee of Technische Hochschule Mittel-
hessen and Napier University Edinburgh
Creation of informed consent form and incorporating the terms and informa-
tions obtained from ethics committees
Creation of data management plan
Submission of documents and reception of permission

P3 Quantitative data (mainly), qualitative data (free text for opinion)

P4 Experimental evaluation, controlled experiment (Hevner et al., 2004), com-
parison study in which tasks testing the learnability, perceivability and
evolvability of Athos and a baseline GPL must be solved (Kosar et al., 2010;
Kosar et al., 2012; Kosar et al., 2018)

P5 Usability testing: experimental determination of effectiveness and efficiency

P6 Test score, Time required, Points per minute

P7 Online questionnaire create using Novi Survey

P8 Presentation slides and oral communication in which students are asked to
solve the tasks for both approaches to the best of their knowledge an ability.
No communication with fellow students and usage of IDEs. Explanation on
how that would ruin the experiment.

P9 Pre-test taken by participants from research group. Presentation of learning
material. Online execution of experimental study.

P10 Learning material: Storage on certified cloud drive (tuev-saar.de/TK44291
and TrustedCloud Service 10044)
Raw data is only stored on servers hosted by Edinburgh Napier University
and on the local machine of the thesis author

P11 Report in journal article in the journal for empirical software engineering
Report in this thesis

EQ1 Does Athos facilitate comprehension of VRP models?

EQ2 Does Athos enhance efficiency in model comprehension and creation?

These research questions led to the following hypotheses:

H1 The use of Athos has a beneficial impact on the effectiveness (accuracy, cor-

rectness) of participants’ results.

H2 The use of Athos significantly impacts participants’ efficiency.

163

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

The next sections will provide more insight on the study population and the

nature of the obtained data based on which these hypotheses are tested.

6.4 Definition of evaluators profiles: demographic

information

With regard to the definition of the evaluator profiles (P1), the original intention

was to conduct the evaluation study among the intended target user group of Athos,

i.e. practitioners in the field of routing and traffic planning and optimisation. This

however, soon turned out to entail a number of problems that were deemed to pose

too great a risk for the evaluation to fail: a major obstacle was the fact that it was

hard to gather a sufficient number of professionals from the field who were able to

make a binding commitment on participation in a study of the intended scope. Thus,

having a population of active practitioners would have implied a very small sample

size limiting the statistical significance of the obtained results.

Though there were only few potential participants, it still appeared to be highly

difficult to find a date (let alone multiple dates if the study was to be split over the

course of several days) that would have suited every potential study participant.

Thus, every single participant would have had to be trained individually on both

Athos and the baseline application library that Athos was supposed to be compared

to (see Section 6.6). Finally, the overall intention of the study was to evaluate the

impact Athos has on users’ effectiveness and efficiency. As this impact was to be

evaluated by comparison to a baseline application library, study participants were

required to possess some basic knowledge on the Java programming language and

its underlying object-oriented paradigm. This was likely to further reduce the set of

potential participants so that it was decided to invite students to participate in the

study.

As was already elaborated on in Section 6.2, the study was conducted among

students enrolled in Information Systems (Friedberg) and Software Technology

164

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

(Wetzlar). From the curriculum of the respective study courses it could be deduced

that students from both study courses held the required minimum programming

experience. It was further assumed that, on average, students from Friedberg would

possess rather rudimentary knowledge in software development whereas students

from the co-op Software Technology course where expected to be somewhat more

experienced in the usage of the Java language. This is because according to the

respective curriculum, the majority of students from Friedberg should be in their

second semester whereas the majority of the Wetzlar students should be in their

fourth semester. In addition to that, the co-op students from Wetzlar participate in

industrial software-development projects in their respective company. The Friedberg

group was thus deemed a suitable representation of domain experts with limited

programming expertise whereas the Wetzlar group – at least to some extent – could

be regarded to represent (junior) application developers.

6.5 Obtainment of ethical clearance

The second step of the Usa-Eval framework concerns the consideration of ethical

and legal responsibilities of study conductors. Activity (P2) requires the definition of

an informed consent form. The informed consent form presented to students who

accepted the invitation to participate in the study can be found in Appendix C. A

data management plan (DMP) was devised and submitted to Edinburgh Napier

University. Ethical clearance was obtained from ethics committees of both Edinburgh

Napier University and Technische Hochschule Mittelhessen (THM).

It is important to note that participants did not receive any reward for participa-

tion in the study. Students were informed that participation in the study could be

regarded as a free training for the final exam where tasks on (modelling) VRPs were

likely to occur. It was, however, emphasised that all training materials would be

provided to every student independent of participation in the study. All data were

anonymised upon submission. This way it was ensured that it was not possible at

any time after submission to link a submitted dataset to an individual participant.

165

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

6.6 Definition of the protocol

The next activities required the definition of the type of (P3) data to collect, the

empirical study method and usability evaluation type applied to obtain the data

(P4), (P5) and the evaluation and the metrics to derive from the data (P6). These

activities are very closely related to their counterparts in the execution phase so

that these will all be discussed within this section. As regards the type of data, the

focus of the study was to obtain quantitative data as these have been reported to

be scarcely used in DSL evaluation approaches (Gabriel et al., 2010; Albuquerque

et al., 2015). Though quantitative data was to take priority in the study, it was also

decided to obtain qualitative data via free text fields that provided an opportunity for

participants to express their subjective impression on both Athos and the baseline

approach.

As to the study and evaluation method, the defined role-model approach of

Kosar et al. (2012) conducted a controlled experiment in order to test the language’s

usability. The decision on what data were to be collected in the course of the

evaluation was also based on the aforementioned works of Kosar et al. (Kosar et al.,

2010; Kosar et al., 2012; Kosar et al., 2018). Section 6.6.1 briefly discusses the actual

data collected in the course of the controlled experiment. It also briefly discusses the

language characteristics and properties (BSI, 2011, p. 2) to be evaluated based on

the collected data.

6.6.1 Data to be collected and metrics to apply

6.6.1.1 Data obtained for language evaluation

According to Hevner et al. (2004, p. 80) the ultimate goal of any design science

approach is the provision of utility through artefacts that meet the business needs

of stakeholders. In BSI (2011), this ‘degree to which the system satisfies the stated

and implied needs of its various stakeholders’ (p. 2) is defined as the ‘quality of a

system’ (p. 2). The quality in use model defines the quality of a system in terms

166

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

Usability

Effectiveness Efficiency Satisfaction

– Definition: extend to
which tasks were correctly
solved.

– Metric: score achieved in
the study.

– Definition: achieved
effectiveness related to
required time.

– Metric: achieved score
per minute.

– Definition: level of
perceived contentment.

– Metric: level of
agreement to statements
on five-point Likert scale.

Learn: test the languages’ proficiency to support users in learning its correct usage (BSI, 2001, p. 9;
BSI, 2011, p. 12)

Perceive: test the extend to which the language allows users assess its suitability for specific tasks (cf.
understandability BSI, 2001, p. 9; cf. maintainability BSI, 2011, p. 14)

Evolve: test the ability of the language to support users to perform appropriate modifications (cf.
changeability BSI, 2001, p. 10; cf. appropriatenes recognizability BSI, 2011, p. 12)

Figure 6.1: Definition of the metrics applied to evaluate the usability (BSI, 2011,
pp. 8, 12) of the languages compared in the study (effectiveness, efficiency, satisfac-
tion) together with the a set of characteristics by which the questions of the study
are grouped (learnability, perceivabiliy, evolveabiliy).

of five characteristics: effectiveness, efficiency, satisfaction, freedom from risk, and

context coverage (BSI, 2011, p. 3). The former three characteristics by themselves

define the usability of a system (BSI, 2011, pp. 8, 12).

Effectiveness of a system is defined as the ‘accuracy and completeness with

which users achieve specified goals’ (BSI, 2011, p. 8). Applied to a DSL like Athos,

effectiveness thus could be interpreted as the extent to which the language supports

the user in the creation of correct and complete models. According to the BSI (2011),

the efficiency of a system depends on the ‘resources expended in relation to the

accuracy and completeness with which users achieve goals’ (p. 8). Among the

expedient resources is the ‘time to complete the task’ (BSI, 2011, p. 8). Therefore,

the efficiency of a DSL can be defined as its effectiveness in the creation of models in

relation to the time required to build the model. Finally, satisfaction is defined as

the ‘degree to which user needs are satisfied when a product or system is used in a

specified context of use’ (BSI, 2011, p. 8). The satisfaction achieved by a DSL could

167

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

thus be regarded as the level of contentment users experience when using the DSL

to build models for the respective problem domain.

As is depicted in the upper part of Figure 6.1, the evaluation study was to provide

information on the usability of Athos, i.e. on how it affects users’ effectiveness,

efficiency and satisfaction. These three characteristics were thus defined as the

dependent variables of the study (see Kosar et al., 2012, p. 286). Moreover, a set

of questions was developed in which users where to perform one or several tasks.

The complete set of these questions is presented in Appendix C. Based on the study

template provided by Kosar et al., the questions were further distinguished into

three categories found in the product quality model which is also defined in (BSI,

2011, p. 2)2. The questions and their respective tasks aimed at three different

(cognitive) activities that users engage in when working with a computer language

(lower part of Figure 6.1): learn, perceive (understand) and evolve (see Kosar et al.,

2010, p. 251). Kosar et al. (2018, (p. 2741)) state that these activities are crucial in a

programmers’ comprehension process; to support this claim, the authors refer to a

study of Hevner et al. (2005) that found that software developers estimated that over

a quarter of their time was consumed by ‘reading and understanding the behaviours

of system development artefacts (e.g., specifications, architectures, designs, code,

test cases) written by themselves or others’ (p. 46).

In order to quantify the dependent variables, a set of metrics was defined. For

a quantitative evaluation of a participants’ effectiveness, points were awarded for

correct answers to the respective tasks (NB: partial/custom grading was applied, so

that participants would also be awarded points if an answer was not entirely correct,

see Section 6.7). The total score (in relation to the maximum of achievable points)

was then defined to represent the effectiveness achieved by the user when using

the evaluated language. In terms of effectiveness, a metric that put the exhibited
2It is to be noted that Kosar et al. (2012, pp. 282–283) reference BSI (2001) as the source for

the characteristics used in their study. Meanwhile, BSI (2001) was superseded by BSI (2011) which
introduced the product quality model and also replaced the ‘understandability’ characteristic with
the ‘appropriateness recognizability’ characteristic and the ‘modifiability’ characteristic represents
both ‘changeability’ and ‘stability’ (BSI, 2011, pp. 22–23). The study in this thesis, however, still
uses the characteristics suggested by Kosar et al. (2010, p. 251), Kosar et al. (2012, pp. 282–283), and
Kosar et al. (2018, p. 2736).

168

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

effectiveness in relation to the required time was needed. In behavioural research,

the rate correct score (RCS) (Woltz and Was, 2006, pp. 672–673; Vandierendonck,

2017, p. 654) metric serves exactly this purpose.

The definition of the RCS is as follows:

RCS = c∑
RT

(3.1)

In Equation 3.1, c represents the correct answers given by a participant and the

term in the denominator (
∑

RT) represents the reaction time, i.e. the time it took

the participant to complete all tasks. As is noted by Vandierendonck (2018, p. 2),

the RCS is equivalent to the ‘throughput’ measure which ‘is equal to the number of

correct responses on a task, divided by the cumulative reaction times [...]’ (Thorne,

2006, p. 569). If the correct answers are replaced by the total score achieved by

a participant and the required time is measured in minutes and assumed to be

‘discretionarily available’ (Thorne, 2006, p. 570) to the participant, the RCS can be

interpreted as the number of achieved points per minute3:

PPM =
∑n

i=1 SQ i∑
RTQ i (in mins)

(3.2)

In Equation 3.2, SQ i denotes the score achieved in the i-th question and RTQ i

denotes the time in minutes that the participant spent on this question. This

measure is also applied in Kosar et al. (2012) and Kosar et al. (2018). Evidently, the

higher a participant’s points per minute (PPM), the higher the exhibited efficiency:

If participant A scored 120 points within 45 minutes (RCS: .044, PPM: 2.667) is

compared to a participant B who required twice the time for the same score (RCS:

.083, PPM: 1.333), then it is safe to say that A solved the tasks considerably more

efficient than B did.

On the other hand, it is also important to note, that it is debatable (or dependant

on the context), whether 20 points scored within just 4 minutes by a participant C

(RCS: .083, PPM: 5) are to be considered more desirable than the results of A and B
3NB: the RCS is originally interpreted as ‘the number of correct responses produced per second

of activity’(Vandierendonck, 2018, p. 2).

169

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

– even though C’s efficiency is superior to both A’s and B’s. Hence, it is important to

consider both, participants’ effectiveness and also their efficiency with the respective

language.

To quantify users’ satisfaction with a language, they were presented several

statements on the evaluated language and they were asked to state their level of

agreement in terms of a five-point Likert scale. The Likert scale spanned from strong

disagreement and disagreement over to a neutral stance and then to agreement and

strong agreement. The propositions referred to how users subjectively assessed the

learnability, understandability and evolvability of the language.

6.6.1.2 Data to be obtained on the study population

In addition to the data required for the evaluation of the usability of a language, it

was also essential to obtain data on the participants of the study. It is important

to note here that these data were not person related and an attribution of a partic-

ular dataset to an individual participant was not possible. The sole purpose here

was to gain insight on a participants’ prior knowledge and interest in the field of

programming.

Participants were asked for how long they had been programming and what

languages they had been using so far. Participants were also asked to give a self

assessment of their programming skills in terms of a five-point Likert scale that

ranged from ‘very poor’ to ‘very good’. Finally, participants were queried on their

general interest in the field of programming for which another five-point Likert scale

was provided that ranged from ‘completely uninterested’ to ‘highly interested’.

The benefit of this information on the study population was two-fold: firstly, it

was necessary for the verification or falsification of the assumption that the average

programming experience among participants from the Friedberg study group was

less than the average experience that participants from the Wetzlar study group had.

This way it was possible to put the language evaluation results into perspective and

detect possible effects of participants’ prior experience on the measured usability of

the evaluated language. Secondly, these data allowed for an assessment of the degree

170

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

Introduction
to VRPTWs

Mathematical
approach

to VRPTWs

Introduction
1. to JSprit
2. to Athos

Conduction
of controlled
experiment

- Online
presentation

- 30 slides
- General terms
- Abstractions

- Online
presentation

- 6 slides
- Formal definition
- Concrete example

- Online
presentation

- JSprit: 25 slides
- Athos: 22 slides
- Same examples

- Questions in
online tool

- Two subgroups at
both campuses

- Screenshot and
Notepad allowed

Figure 6.2: General survey conduction protocol.

to which usability results from two different study groups were comparable: in case

that the average prior experience, assumed skill or general interest significantly

deviated, the usability results would not be comparable without consideration of the

unbalanced study groups.

6.6.2 Empirical study method and evaluation usability type

6.6.2.1 General structure

In accordance with the studies of Kosar et al. (2012), a controlled experiment (P4)

that comprised a usability testing (P5) section for both Athos and a baseline language

was conducted. The selected baseline language (see Section 6.7.1) was the application

library JSprit4 for the Java GPL. The results for both Athos and JSprit as a baseline

approach5 were then compared (see Section 6.6.2.2) to allow for some statistically

firm propositions on the usability of Athos. These statistically backed results are

crucial to demonstrate that Athos is not a mere ‘routine design’ but represents an IT

artefact (or set thereof) that allows to address existing ‘problems in more effective or

efficient ways’ (Hevner et al., 2004, p. 81).

Figure 6.2 depicts the general structure of the evaluation study: in the upper

part, the rectangles represent the performed steps in the correct chronological order.

Under every step is a text box that provides some summarized additional information
4https://jsprit.github.io/
5A note on terminology: according to Mernik et al. (2005, p. 317), the combination of a GPL and

a suitable application library like JSprit can also be considered a DSL. The terms ‘language’ and
‘apporach’ will thus be used interchangeably in reference to Athos and JSprit.

171

https://jsprit.github.io/

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

of relevance for the respective step. Though the initial intention was to conduct the

study on the ground at the respective THM campus, this was rendered infeasible due

to the emergence of the COVID-19 pandemic. Health and safety protocols enacted in

the course of the pandemic required lecturing via the Zoom6 online meeting software

which was then also used for the conduction of the study.

First, participants were given a general introduction to the vehicle routing

problem with time windows (VRPTW). This was done by means of a fictitious

example scenario in which a grocery retailer intended to set up a home delivery

service. Within this example, the objective function and the constraints of the

problem were elaborated on. Participants were also introduced to the ontological

concepts of the domain (e.g. depots, vehicles, products). The presentation also

demonstrated how to abstract concepts like roads and storage room and transform

them into mathematically processable structures.

In the second step, participants were presented a mathematical definition of the

problem with a formal notation of the objective function and the time and capacity

constraints. This definition was exemplified with the data from the case study. In a

final step, participants were also presented a preview on how the specific vocabulary

used in both JSprit and Athos in order to refer to concepts from the vehicle routing

domain (e.g. JSprit uses the terms ‘service’, ‘delivery’, or ‘job’ for what Athos refers

to as a ‘customer’).

After it was ensured that participants were familiar with the domain of VRPTWs,

they were given an introduction to the two languages that were about to be compared

in the controlled experiment. For both approaches it was shown how to apply them

in order to model the example scenario used in the introduction of VRPTWs. To

this end, a set of slides was prepared for each approach. It is to be noted here that

utmost care was taken to design the learning material in a way that the exact same

phenomena were presented in a structurally identical way, so as not to bias the study
6https://zoom.us/

172

https://zoom.us/

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

results by superior introductory material (see Section 7.4) for one of two approaches

(especially not in favour of Athos). Due to the different – and more verbose – concrete

syntax of JSprit, however, JSprit required three more slides than Athos.

As it was believed that the first presented approach was likely to benefit from

a higher level of participants’ ability to concentrate, JSprit was the first approach

to be introduced before Athos was presented second. This order was intended to

ensure that results were, if anything, biased in favour of the baseline language. On

the other hand, the second presented approach might benefit form learning effects

that facilitate comprehension. The order in which the two languages were presented

thus poses a possible threat to the validity of the study (see Section 7.4). Both

languages were introduced by the author of this study who did his best to present

both approaches with diligence and in an objective manner. However, it cannot be

completely ruled out that – even if only at a subconscious level – the presentation

biased the results in favour of one of the two approaches which constitutes another

threat to the validity of the study (see Section 7.4).

Participants of both study groups (Friedberg and Wetzlar) were randomly as-

signed to one of two subgroups for the respective study (so that there were two study

groups each with two subgroups which results in a total of four subgroups). In both

subgroups, participants would answer questions on both languages. However, one

of the subgroups would start with the set of Athos questions and then continue

with the set of JSprit questions. For Friedberg, this subgroup is referred to as the

FbAf subgroup (Friedberg, Athos first) and for the Wetzlar study the subgroup is

referred to as the WzAf (Wetzlar, Athos first) subgroup. Both studies also featured a

subgroup that was asked to answer the JSprit questions first and the Athos ques-

tions second. For Friedberg and Wetzlar these subgroups are referred to as FbJf

(Friedberg, JSprit first) and WzJf (Wetzlar, JSprit first), respectively.

This partitioning (or subdivision) of the two study groups was essential as

the questions (or tasks therein) for both Athos and JSprit were very similar (see

Section 6.7.3). Hence, the likely occurrence of learning effects constituted another

potential threat to the validity of the study as these effects were likely to bias results

173

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

in favour of the language evaluated second. By contrast, there might also occur

negative effects of mental enervation or fatigue by the time a participant starts to

answer the second set of questions. In terms of bias these exhaustion effects work

diametrically opposed to possible learning effects. However, as it was not possible to

reliably predict the degree to which each of these effects would occur, the decision to

spilt the study groups into the aforementioned subgroups was made.

On the other hand, by the time a participant started to solve the tasks of the

second approach, exhaustion effects might have started to negatively affect the

performance of the participant. Participants were then given the survey URL from

which they could access the survey with arbitrary browser software. After some final

words of explanation regarding the voluntary basis of participation, data protection

and the maximum time limit for either approach participants were asked to begin the

study. Participants had two example programs at their disposal. Participants were

also allowed to use Notepad++ or a comparable text editor for comparing text files.

Taking screenshots was also allowed. The usage of any IDE with specific support for

any of the two compared approaches was explicitly forbidden. The questions of the

controlled experiment had to be answered without the help of any third person.

6.6.2.2 Statistical comparison of the obtained results

With the selected study design results can be compared in two different ways which

are illustrated in Figure 6.3. Since the study groups were split into subgroups in

which both approaches had to be used in different order, the results can be compared

by conducting a between-subjects comparison and a within-subjects comparison. This

is illustrated in Figure 6.3. As is shown, both approaches can be compared when

they were used as first approaches, and when they were used as second approaches.

As an original study was performed in 2020 and a replication study in 2021 the

labels are also used with either an appended ‘20’ or ‘21’. This way, WzAf21 refers to

the Wetzlar study subgroup of the replication study that used Athos as the first and

Jsprit as the second approach.

174

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

Athos section

JSprit section

JSprit section

Athos section

be
tw

ee
n

su
bj

ec
ts

co
m

pa
ri

so
n

be
tw

ee
n

su
bj

ec
ts

co
m

pa
ri

so
n

within subjects
comparison

FbAf, WzAf FbJs, WzJs

FbJf, WzJf FbAs, WzAs

Comparison of
• Achieved Points (Score)
• Points per minute (PPM)
• Expressed satisfaction*

Comparison of independant samples:
• FbAf vs. FbJf
• FbAs vs. FbJs
• WzAf vs. WzJf
• WzAs vs. WzJs

Comparison of dependant samples:
• FbAf vs. FbJs
• FbJf vs. FbAs
• WzAf vs. WzJs
• WzJf vs. WzAs

Figure 6.3: Different comparisons of the obtained results: results obtained from two
independent samples (Athos first vs JSprit first and Athos second vs. JSprit second)
as well as two dependant samples (Athos first vs JSprit second and JSprit first vs
Athos second) were compared.

This perspective has the advantage, that learning and exhaustion effects were

identical for both approaches when they were used by participants. The disadvantage

of this way of comparing the approaches is that the results obtained by participants

might be highly dependant on the individual skill level of each participant. In the

worst case, the most talented participants all used one approach, and all participants

generally struggling with the application of computer languages were assigned to the

group using the other. This problem is addressed by comparing the data by a within-

subjects comparison. Here the results of the same individuals are compared and so

the distribution of talent among the different groups is only of reduced importance.

The advantage of the between-subjects comparison is the evident disadvantage of

the within-subjects comparison: learning and exhaustion effects are likely to affect

the results produced by participants to a certain extend.

Statistical comparisons were performed with the IBM SPSS Statistics software

Version 26.0.0.1 (64-Bit). In order to test the data for statistical significance two

non-parametrical tests were used. To test the within-subjects data for statistical

significance the Mann-Whitney U test (McKnight and Najab, 2010) for independent

samples was applied. For the within-subjects comparison the Wilcoxon singed rank

test (Woolson, 2007) for dependent samples was used.

175

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

6.7 Definition of instruments to obtain the data

The data were obtained with the NoviSurvey online survey tool. The tool was used

to define a set of questions that gave insight on a participant’s prior programming

knowledge and interest in the field of programming. Two sections with questions for

both compared approaches were defined with the NoviSurvey tool. These sections

contained questions in which participants had to check the correct check boxed in

order to answer the question, or select the correct option button. There were also

questions with free text fields in which participants had to enter program code.

The obtained data was processed in Excel. For multiple-choice answers a VBA

script was written to assign points (or partial points) depending on the radio-buttons

selected or the number of correctly ticked checkboxes. The questions together with

the correct answers can be found in Appendix C.

6.7.1 Selection of baseline language

The template study of Kosar et al. (2010) applied a comparative approach that

compared the usability of a DSL to the usability of an application library used

within a GPL. Hence, a suitable application library was to be selected and compared

to Athos. However, there was no language available that had an identical problem

domain and at the same time was appropriate for the intended participants of the

study (e.g. XML-based modelling approaches were not regarded as suitable baseline

languages to be applied by students in their second semester). For this reason

it was decided, that the baseline approach did not necessarily have to be exactly

equivalent to Athos in terms of its capabilities as long as it allowed for the modelling

of vehicle-routing related problems.

The JSprit7 application library was hence chosen as the most suitable baseline

approach for the evaluation study. JSprit was found to be an appropriate baseline

approach for two reasons: first, its underlying problem domain is similar to the
7https://github.com/graphhopper/jsprit

176

https://github.com/graphhopper/jsprit

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

Athos JSprit

• TSP
• VRPTW

• DynTSP
• DynVRPTW
• etc.

• VRPMTW
• MDVRPTW
• Pickup and Delivery
• etc.

• HVRP

Figure 6.4: Comparison of the capabilities of Athos and JSprit.

problem domain of Athos; second, as an application library for the Java language

it would not confound the study results with an underlying language that is alien

to the study participants. On the contrary, students of both study groups were

supposed to have prior experience with the Java language so that comprehension of

a Java-based API was a reasonable task to master.

Though the targeted domains of both Athos and JSprit are similar as both allow

the modelling of static vehicle-routing problems, they are not identical. With the

modelling of routing problems, both approaches have a similar problem domain at

their core. However, both approaches were defined for different purposes: Athos

is a DSL for modelling various different traffic and vehicle-routing scenarios in

which optimisation problems assume an important role. By contrast, JSprit is an

application library entirely focused on static vehicle-routing problems. Therefore,

Athos is capable of modelling dynamic aspects such as congestion factors. JSprit, on

the other hand, has a very broad range of different routing problems it can model

and solve. For this reason, it was important to confine the study tasks in a way that

they were covered by both approaches.

The Venn-Diagram in Figure 6.4 compares the features offered by Athos and

JSprit. Athos can be applied for modelling several static VRPs like the TSP or

VRPTWs. The generated simulation also allow insight into dynamic versions of

these problems (see Pillac et al., 2013, pp. 2–3), as those agents that calculated an

optimal solution can be affected by other agents that may slow them down and thus

alter the problem so that a recalculation of the optimal tour might become necessary.

177

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

JSprit does not offer these dynamic capabilities. However, it allows for modelling

various problems (e.g. pick-up and delivery problems) that currently cannot be

modelled in Athos directly.

Though JSprit supports modelling of several problems, that are not directly

supported by Athos, Athos offers an extension mechanism for the introduction of

additional information into an Athos model and map these to an annotated Java

algorithm. In Hoffmann et al., 2019a this feature was presented by adding additional

information to an Athos model so that a heterogeneous vehicle-routing problem with

vehicle type dependant routing costs could be modelled with Athos. For this reason,

the lower part of the intersection shown in Figure 6.4 represents problems that can

be mapped via this extension mechanism. The reason that this mechanism is not

discussed in more detail in this thesis is that its application yields models that are

considerably more difficult to comprehend than Athos programs which solely rely on

built-in mechanisms. Though it is a mechanism that offers user extensions (Atkinson

and Kuhne, 2003, p. 37) , additional research is required to ensure that extensibility

does not come at the cost of usability (see Section 8.3.2).

6.7.2 Definition training material

Before participants took part in the actual controlled experiment, they received

training for both approaches. To provide a general undrestanding for VRPTW, a

set of slides with general information on the topic was created. This set consisted

of 36 slides that presented a fictitious sample case in which a VRPTW was to be

solved. The slides present the process of abstraction from the real-world problem to

the formulation of a mathematical model.

For each of the two approaches a set of slides was created. Both sets explained

how the problem presented in the general set of slides was to be modelled with the

respective approach. Utmost cate was taken to present the exact same information

in both sets as to not bias the results through different training material. The set

of Athos slides featured 22 slides, the set of JSprit slides contained 25 slides since

178

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

some programs were more verbose in JSprit. For both approaches, participants

received two cheat-sheets that showed the example program iteratively created in

the slides as a whole as well as a variation of the program that was also addressed

in the slides.

6.7.3 Definition of the survey tasks

The survey tasks were centred around different questions on VRPTW and different

elements of the approaches used to model VRPTW. The respective topic of the

question or intention of the question was based on the question presented in the

template study of Kosar et al. (2010). The questions are provided in Appendix C.

It was highly important to define the questions in a way that made it most

unlikely that study results were biased by the design of the questions. Utmost care

was taken to not make the tasks for one approach more complex than for the other.

In order to do so, corresponding questions were always structurally similar. This

means that the tasks in two corresponding questions featured the same number

of elements, i.e. the same number of depots, nodes, edges and agents. While this

mitigates a threat of validity in terms of different levels of difficulty of the questions,

it increases the threat of validity due to learning effects (see Section 7.4).

6.7.4 Inclusion and exclusion criteria

The definition of inclusion and exclusion criteria was not a trivial task as it was

required to strike a balance between a larger population study that allows a greater

statistical representativeness and the prevention of biases through inclusion of cases

that were not representative. However, this raises the question to when exactly a

case is to be considered as a representative case. This was especially difficult to

decide with regard to the allowed number of unanswered questions before a case

was excluded from the study population. Another difficult question was at what

point a case was to be considered an outlier and thus to be removed from the study.

179

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

While the decisions made in regard to these questions may always be debated, they

were at clearly defined and consistently applied.

A dataset was to be removed from the population study, if

• in sum more than seven questions were

– opted-out of by selecting the n/a button provided for every question,

– no button was clicked at all (would also apply if not answered due to

90-minute cut-off),

– a text area was left blank,

– a text area contained text undoubtedly not intended to solve the task.

• the difference of time spent on answering the questions of the two approaches

were detected as an outlier in a stem-and-leaf analysis conducted with the stat-

istical analysis software. This analysis was performed within each subgroup

(FbAf, FbJf, WzAf, and WzJf).

• the difference of the obtained points for both approaches was detected as an

outlier in a stem-and leaf analysis conducted with the statistical analysis

software. This analysis was performed within each subgroup (FbAf, FbJf,

WzAf, and WzJf).

6.7.5 Study protocols

6.7.5.1 Original evaluation study

Figure 6.5 illustrates the study protocol of the studies conducted with the Friedberg

and Wetzlar. In Friedberg 118 students took part in the study (i.e. submitted a

data set for evaluation). 63 of the participants that submitted their answers were

members of the Athos first subgroup, 55 were assigned to the JSprit first group.

The study in Friedberg was conducted over a time span of eight days. There were

four days at which Zoom meetings took place. On the 17th of June participants

were introduced to the topic of vehicle-routing problems by means of a fictitious

180

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

Introduction
to VRPTWs

Mathematical
approach

to VRPTWs

Introduction
1. to JSprit
2. to Athos

Conduction
of survey

Friedberg all (n = 118), FbAf (n = 63), FbJf (n = 55)
90 min 2 days 90 min 5 days 180 min 1 day 220 min

Wetzlar all (n = 41), WzAf (n = 19), WzJf (n = 22)
≈ 555 min

Figure 6.5: Protocol for the controlled experiment conducted in 2020.

scenario that featured several real-world aspects that were abstracted and made

mathematically accessible. Two days later, the second part of the introduction was

conducted in which the mathematical definition presented in Section 3.2.3 was

elaborated on. Both of the introductory sessions were performed within a 90 minute

time frame. On the 24th of June, participants were introduced to both approaches.

The introduction started with JSprit and then Athos was introduced second. One

day later, on the 25th of June, the controlled experiment was conducted within a

time frame of 220 minutes.

Due to a very strict time table of participants from Wetzlar, the protocol with

these students had to be different. Here, introduction of the general topic, presenta-

tion of both approaches, as well as conduction of the controlled experiment all took

place on the 9th of July, 2020 within a time frame of ≈ 555 minutes.

6.7.5.2 Replication study

In order to validate the results from the original controlled experiment, a replication

of the controlled experiment was conducted. As in the year before, students were

enrolled at THM campuses in Friedberg and Wetzlar. The study with the Friedberg

students was again conducted over several days while the Wetzlar study again was

completed in a single day.

The introduction of participants from Friedberg to the topic of VRPs, the present-

ation and introduction of Athos and JSprit, and the execution of the controlled

experiment took place between 23rd of April and 7th of May. For the 2021 Wetzlar

181

CHAPTER 6. EMPIRICAL EVALUATION OF THE LANGUAGE

Introduction
to VRPTWs

Mathematical
approach

to VRPTWs

Introduction
1. to JSprit
2. to Athos

Conduction
of survey

Friedberg all (n = 110), FbAf (n = 61), FbJf (n = 49)
180 min 3 days 180 min 9 days 220 min

Wetzlar all (n = 39), WzAf (n = 20), WzJf (n = 19)
≈ 510 min

Figure 6.6: Protocol for the controlled experiment conducted in 2021.

study group, the experiment was conducted on the 15th of July. The times required

for the respective parts of the study (and the days between events) are shown in

Figure 6.6. Most participants participated in the controlled experiment for the first

time, though some already were among the participants from the original study (see

Section 7.4).

182

; Seventh Chapter <

Evaluation results

This section presents the results of the empirical language evaluation. Section 7.1.1

discusses the results obtained in the original evaluation study conducted among

students from Friedberg and Wetzlar in 2020. Section 7.2 presents the results

obtained in the replication study conducted among students from the same campuses

in 2021.

Both sections follow the same pattern in the presentation of the results. They

start out with a presentation of the overall numbers of obtained cases and the

number of included and excluded cases after application of the pre-defined criteria

(Section 7.1.1 and Section 7.2.1). After that both sections discuss the demographic

information obtained from the included cases (Section 7.1.2 and Section 7.2.2).

Subsequently the points achieved with both approaches will be presented in order to

discuss the results in terms of observed correctness (Section 7.1.3 and Section 7.2.3).

Next, these results will be discussed in light of the temporal dimension to gain insight

on the observed efficiency (Section 7.1.4 and Section 7.2.4). The presentation of the

results is concluded by a presentation of the results on observed user satisfaction

levels (Section 7.1.5 and Section 7.2.5).

7.1 Results of the original study

This section will present the results of the empirical language evaluations. It will

follow the structure presented at the beginning of the chapter. The aforementioned

183

CHAPTER 7. EVALUATION RESULTS

sections are always split into a subsection for the data obtained from Friedberg and

a subsection for the data obtained from Wetzlar. For example, Section 7.1.2.1 first

presents the demographics data of participants from Friedberg, and subsequently

Section 7.1.2.2 presents demographic data on participants from the THM campus in

Wetzlar.

7.1.1 Application of exclusion and inclusion criteria

Table 7.1: Number of cases excluded from and included in the analysis of the
2020 study.

Non-attempt filter

Subgroup Pre #NA_AT #NA_JS OR* AND OL_TME OL_SCR Included

FbAf20 63 16 23 24 15 4 0 35

FbJf20 55 16 14 17 13 0 0 38

WzAf20 19 1 2 2 1 0 2 15

WzJf20 22 1 0 1 0 1 2 18

Table 7.1 reports the number of cases originally obtained from each subgroup

in Friedberg and Wetzlar together with the number of cases that were removed

by the applied filters that were applied. The first column indicates the subgroup

for which the numbers are reported. The second column (prefiltered) indicates

the number of cases submitted via the online survey tool. The #NA_AT column

indicates the number of cases with more than seven non-attempts for Athos, and the

column #NA_JS indicates the number of cases with more than seven non-attempts

for JSprit. The OR column states how many cases had more than seven non attempts

for either of the two approaches and were thus removed from the study. The AND

column informs on how many data sets had more than seven non-attempts for both

approaches1 (cases with more than seven non-attempts for either Athos or JSprit).

OL_TME displays the number of cases that were removed due to a significant
1This column is presented to allow for further thoughts on whether Athos or JSprit might be the

reason for participants to opt for not answering more than seven questions.

184

CHAPTER 7. EVALUATION RESULTS

divergence in the time spent for one of the two approaches. OL_SCR reports on the

number of cases that were excluded due to an unreasonably high difference in the

score achieved with the two compared approaches.

As can be seen from the reported data, in Friedberg there were considerably

more cases removed because participants did not provide answers for more than

seven questions. This was to be expected as the study course in Friedberg is far less

organised like a school in comparison to the study course in Wetzlar. In Wetzlar,

students are subject to compulsory attendance so that it is likely that they felt

that they had to take part in the study and answer all the questions despite it was

mentioned on numerous occasions that participation in the study was completely

voluntary.

The data presented in the table also shows that the vast majority of cases

were removed by the first filter. After the application of the non-attempt filter, the

remaining filters only removed a small number of additional cases. In The Athos

first group in Friedberg, for example, 4 cases were removed as participants spent

considerably more time on answering the questions for one of the two approaches.

7.1.2 Demographic data

7.1.2.1 Demographic data Friedberg 2020

Figure 7.1 presents the results of questions that inquired on participants’ prior

programming knowledge. The bar charts compare the results from the two sub-

groups of the Friedberg 2020 study group. The questions asked participants on the

number of years they had been programming before participating in the study, the

number of programming languages they had used so far, how participants would

assess their own programming skills and how interested participants were in the

topic of programming in general.

As can be seen from the bar charts, both groups had a comparable overall

experience and interest in the topic of programming. As concerns the number of

years participants had been using programming languages, the bar charts show that

185

CHAPTER 7. EVALUATION RESULTS

< 1 1-2 2-3 4-5 > 5
0
2
4
6
8

10
12
14
16
18
20
22

Years of programming experience
1 2-3 4-5 > 5

0
2
4
6
8

10
12
14
16
18
20
22

Number of used prog. languages

Very
poor

Poor Fair Good Very
good

0
2
4
6
8

10
12
14
16
18
20
22

Self assessed progamming skills

Completely
unint.

Un-
interested

Neutral Interested Highly
interested

0
2
4
6
8

10
12
14
16
18
20
22

Interest in programming

N
um

be
r

of
pa

rt
ic

ip
an

ts

Athos first (FbAf) JSprit first (FbJf)

Figure 7.1: Comparison of participants’ prior programming experience, number
of programming languages used, self-assessed programming skills and general
programming interest between the Friedberg 2020 study group using Athos first
() and the Friedberg 2020 study group using JSprit first ().

participants in both groups were mostly beginners in the usage of programming

languages. Of the 35 participants from the Athos first subgroup, 27 had less than

two years of programming experience (≈ 77 %). In the JSprit first group, 27 of

all 38 participants (≈ 71 %) had not been programmers for more than two years.

Both groups only had a small proportion of participants that had already been

programming for more than four years with 5 participants (≈ 14.2 %) from the

Athos and 4 participants from the JSprit group (≈ 10.5 %) falling into this category.

There was a slightly larger number for JSprit in the group of participants with an

experience of around two to three years, but overall it can be said that the groups

were well balanced with respect to the number of years as a programmer.

186

CHAPTER 7. EVALUATION RESULTS

As to the number of used programming languages both groups mostly consisted

of participants that had not used more than 3 different computer languages2. In

the Athos group, 24 participants belonged to that category (≈ 69 %) and in the

JSprit group 30 participants from that category were present (≈ 79 %). Participants

from both groups gave a rather reluctant self-assessment of their own programming

skills. While in both groups most participants considered themselves to be ‘fair’

programmers, both groups also feature a substantial number of participants that

regarded their own skills as rather insufficient with a self-assessment of ‘poor’ or

even ‘very poor’ (Athos ≈ 31 %, JSprit ≈ 42 %). Though participants in the JSprit

group were slightly less confident, both groups can still be regarded as balanced in

that matter.

The majority of participants from both groups stated to be interested in the

topic of programming (Athos ≈ 60 %, JSprit ≈ 71 %). With 4 participants compared

two 2, there were slightly more participants in the Athos group who stated their

disinterest in the topic of programming. One participant even went so far as to

express a complete disinterest in the topic. Hence, there is a slight advantage with

regard to interest for the group that applied JSprit first. However, the advantage

is still within an acceptable scale so that the groups do not have to be regarded as

skewed in this respect.

7.1.2.2 Demographic data Wetzlar 2020

The results of the programming background questions obtained from the Wetzlar

study group in 2020 are illustrated in Figure 7.2. From the bar chart in the left upper

corner it can be seen that – in stark contrast to the Friedberg study groups – both

subgroups in Wetzlar only had a small number of participants that had only been

programming for a maximum of two years. In the Athos first group two participants

had a beginner’s number of years (≈ 13 %); in the JSprit first group 4 participants

had less than two years of programming experience (≈ 20 %) with one participant
2It has to be noted here that some participants considered mark-up languages such as HTML as

programming languages.

187

CHAPTER 7. EVALUATION RESULTS

< 1 1-2 2-3 4-5 > 5
0
2
4
6
8

10
12
14

Years of programming experience
1 2-3 4-5 > 5

0
2
4
6
8

10
12
14

Number of used prog. languages

Very
poor

Poor Fair Good Very
good

0
2
4
6
8

10
12
14

Self assessed progamming skills

Completely
unint.

Un-
interested

Neutral Interested Highly
interested

0
2
4
6
8

10
12
14

Interest in programming

N
um

be
r

of
pa

rt
ic

ip
an

ts

Athos first (WzAf20) JSprit first (WzJf20)

Figure 7.2: Comparison of participants’ prior programming experience, number
of programming languages used, self-assessed programming skills and general
programming interest between the Wetzlar 2020 study group using Athos first ()
and the Wetzlar 2020 study group using JSprit first ().

not even having one year of experience. Though slightly differently distributed, both

groups were also balance with regard to moderately experienced to well-experienced

programmers: the Athos group had 4 participants with 2 to 3 years of experience

(≈ 27%) whereas the JSprit group had 7 participants in this category (≈ 39%). The

Athos group had a considerably higher percentage of participants with 4 to 5 year of

experience (40 % vs. ≈11 %) but in the JSprit group there were substantially more

participants with a programming experience of more than 5 years (20 % for Athos

compared to ≈28% for JSprit). In total, this dispersion in programming knowledge

appears to be acceptable though the Athos group might have a slight advantage

here.

188

CHAPTER 7. EVALUATION RESULTS

With regard to the number of programming languages, both groups mainly

consisted of participants that had used four or more different languages. In the

Athos group 13 participants had some experience with four or more languages

(≈87 %), in the JSprit group 16 participants had applied this number of languages

(80 %). Also, the vast majority of participants from both group considered themselves

to be at least ‘fair’ or even ‘good’ programmers (Athos 100 %, JSprit ≈ 94%), though

no participant claimed to be a ‘very good’ programmer. Finally, both groups consisted

almost entirely of participants that were at least interested in programming (Athos

≈93%, JSprit ≈ 80 %.

Overall, there was no obvious skewness with regard to prior knowledge among

participants of both subgroups. Comparing the study groups from Friedberg and

Wetzlar, however, the expected difference in terms of prior knowledge can be observed

from the obtained data. In every single category, participants from the Wetzlar

study group were (on average) superior to participants from Friedberg. This means

participants from the Friedberg can be considered to represent language users with

limited programming experience such as domain experts in transport optimisation.

Participants from the Wetzlar group appear to be suitable to represent the software

developers in a development project who know various programming languages and

paradigms and have a considerable interest and experience in the application of

programming languages.

7.1.3 Results in terms of correctness

7.1.3.1 Results from Friedberg

The box-and-whisker plot in Figure 7.3 illustrates the results of the Friedberg study

group in terms of achieved correctness. A between-subjects comparison of the scores

both groups achieved with their respective first approach shows that the median

value in the Athos first group was a substantial 38 points higher than the median

score observed in the JSprit first group. The median score in the Athos group was

also 2.7 points above the upper quartile found for the JSprit group. The lower

189

CHAPTER 7. EVALUATION RESULTS

Athos
As first approach

JSprit
As first approach

Athos
As second approach

JSprit
As second approach

0
15
30
45
60
75
90

105
120
135
150

15.0

75.0

92.0

118.0

146.0

10.0

38.3

54.0

89.3

117.0

0.0

35.0

83.0

115.0

140.0

15.0

45.0

74.0

107.0

134.0

Sc
or

e

Figure 7.3: Boxplot showing the distribution of the scores achieved by participants
of the study conducted in Friedberg in 2020 (nFbAf20 = 35,nFbJf20 = 38).

quartile for Athos was 75.0 and thus a marked 21.0 points above the median score

from the JSprit first group. Though both subgroups produced similar minimum

scores, the highest score achieved with Athos was substantially higher than the

highest score in the JSprit group. Finally, it is to be noted that the upper quartile

observed in the Athos group is also one point above the maximum score for the

JSprit group.

A between subjects comparison of the results when the approaches were used

second shows that the median score with Athos was 9.0 points above the median

score achieved with JSprit. The maximum score with Athos was also 6 points above

the maximum score in the JSprit group. However, the lower quartile in the JSprit

group was at 45.0 points and thus 10 points above the lower quartile of the Athos

group. The interquartile range with Athos was 80 points and thus the scores in this

group were more dispersed than those in the JSprit group where the interquartile

range was 62.0 points.

A within subjects comparison for the Friedberg group that used Athos first and

JSprit second also shows favourable results for Athos. With Athos, the maximum

score was a considerable 12 points above the maximum score achieved with JSprit

as the second approach. The median dropped by 18 points from 92 points with Athos

first to 74 with JSprit second. The lower quartile for Athos first still is one point

190

CHAPTER 7. EVALUATION RESULTS

above the median observed for JSprit second. Both approaches had an identical

minimum score of 15 points.

A within subjects comparison among the group that used JSprit as their first

and Athos as their second approach shows that the observed results improved with

Athos. The median value increased by as many as 29.0 points from a mere 54.0

points to a respectable 83.0 points. The maximum score with JSprit first was 117.0

points and showed a substantial increase of 23.0 points when Athos was applied

second. The interquartile range also increased from 51 points with JSprit as a first

approach to 80 points with Athos used second.

In general, the observed scores are in favour of Athos. Not only do both between-

subjects comparison show that participants produced a higher average score with

Athos, but it can also be observed that the achieved points decrease when Athos is

used first and JSprit is used second. On the other hand, the average points achieved

increase when JSprit is used as a first and Athos is used as a second approach. In

the former case, JSprit does not appear to benefit from possible learning effects

when used as a second approach. In the latter case, the application of Athos as a

second approach ensues in a considerable increase of the average score that may

partly be explained by the occurrence of learning effects.

7.1.3.2 Results from Wetzlar

Figure 7.4 shows the study results produced by the subgroups of the Wetzlar study.

The first thing to notice is that throughout all datasets the data were considerably

less dispersed than the data from the Friedberg group. With the exception of a few

outliers (see Section 7.4), most of the observed scores were within close distance

which results in small interquartile ranges in all datasets.

Comparing the results for both approaches used first, the group that used JSprit

produced better results than the Athos group. The median for the JSprit group was

126.0 points which is 18.0 points above the median of the Athos group and in close

range to the upper quartile observed in the Athos group. The Athos group also had a

191

CHAPTER 7. EVALUATION RESULTS

Athos
As first approach

JSprit
As first approach

Athos
As second approach

JSprit
As second approach

0
15
30
45
60
75
90

105
120
135
150

2.0

102.0
108.0

128.0

148.0

74.0

115.3
126.0
134.0
148.0

82.0

123.3
134.0
143.3
150.0

15.0

98.0

127.0
135.0
139.0

Sc
or

e

Figure 7.4: Boxplot showing the distribution of the scores achieved by participants
of the study conducted in Wetzlar in 2020 (nFbAf20 = 15,nFbJf20 = 18).

significant outlier which places the lower whisker for the group at a very poor score

of 2.0 points.

When Athos and JSprit were used as second approaches, results are almost

diametrically different to when both approaches were applied as first approaches.

The median in the Athos group now was 7.0 points above the median in the JSprit

group and the lower quartile in the Athos group was 25.3 points above the one

observed in the JSprit group. The upper whisker in the Athos second plot shows

that there was at least one participant who scored a perfect 150 points which was

11 points above the best score found among the JSprit second participants. These

results may be considered as an indicator that participants of the JSprit first group

were generally more effective and efficient independent of the applied approach.

A within subjects comparison of the results produced by the Athos first group

shows that participants from that group performed better with JSprit as their second

approach. The median with Athos first increased from 108 to 127 points when JSprit

was used second. On the other hand, the maximum score declined from 148.0 points

to 139.0 with JSprit applied secondly. In the other group that started with the JSprit

questions and answered the Athos questions thereafter, there was also an increase

in the average number of achieved points. With JSprit first, the median was at 126.0

points and it was raised by 8 points to 134 poitns with Athos as a second approach.

192

CHAPTER 7. EVALUATION RESULTS

From these data no definite conclusion can be drawn. Some of the presented

comparisons are in favour of JSprit, whereas others suggest Athos as the superior

approach. It is highly likely that there were additional factors other than the applied

language which had a substantial effect on the final results.

7.1.3.3 Between subjects significance tests on observed correctness

To test the obtained results for statistical significance the Mann-Whithey U test was

applied. The results of the tests are shown in Table 7.4. The first line of the table

shows that participants in Friedberg scored a significantly higher number of points

(Mdn 92) with Athos then they did with JSprit (Mdn 54). With Athos as a second

approach, participants also scored a higher number of points when using Athos

(Mdn 83) then they did with JSprit (Mdn 74), however, this was not statistically

significant.

On a surprising note, participants in Wetzlar achieved a higher number of points

with JSprit as the first approach (Mdn 126) then they did with Athos (Mdn 108).

However, this results was also not statistically significant. As a second approach,

the scores achieved with Athos (Mdn 134) were higher than those achieved with

JSprit (Mdn 127) though also not statistically significant.

Though only one of the four tests was statistically significant, the results from

the Friedberg study group provide evidence that Athos can enhance the correctness

of users with little knowledge in the application of programming languages. The

results of two other compared data set were also in favour of Athos, though they

Table 7.2: Between subjects comparison of the achieved scores in 2020 studies
using the Mann-Whitney U test.

N MdnScore MdnRnk

Athos JSprit Athos JSprit Athos JSprit U Z p

Fb as first 35 38 92 54 46.130 28.590 345.5 −3.529 .000
Fb as second 38 35 83 74 38.040 35.870 625.5 −0.436 .663

Wz as first 15 18 108 126 14.300 19.250 214.5 −1.468 .142

Wz as second 18 15 134 127 19.220 14.330 95.0 −1.448 .148

193

CHAPTER 7. EVALUATION RESULTS

were not statistically significant. Since participants from Wetzlar had been using

programming languages like Java for a longer period of time than participants from

Friedberg, it was likely that they would produce somewhat better results with JSprit.

However, the observed difference in the medians was still somewhat surprising.

7.1.3.4 Within subjects siginificance tests on observed correctness

The results of the statistical significance tests that testet the within-subjects per-

spective for statistical significance are reported in Table 7.3. In the Friedberg study

the scores achieved were significantly higher with Athos as the first (Mdn 92.00)

than with JSprit as the second approach (Mdn 74). Participants also scored signi-

ficantly higher with Athos as their second approach (Mdn. 83) than they did with

JSprit used first (Mdn. 54).

In Wetzlar, participants scored higher with JSprit second (Mdn 127) then with

Athos first (Mdn 108). However, this result was not statistically significant. When

JSprit was used first (Mdn 126) participants scored significantly higher with Athos

as the second approach (Mdn 134).

With three out of four within-subjects comparisons providing statistically sig-

nificant evidence for a higher score achieved when using Athos, it is reasonable to

claim that the data from the study indicate that Athos has the potential to enhance

users’ correctness in the process of comprehending and creating models for vehicle

routing problems with time windows (VRPTWs). The group that achieved better

Table 7.3: Within subjects comparison of the scores achieved in the 2020 studies
using the Wilcoxon signed-rank test.

MdnScore

n Ties Athos JSprit W Z p

Fb Athos first 35 0 92.0 74.0 84.5 −3.776a .000
Fb JSprit first 38 1 83.0 54.0 135.0 −3.267a .001
Wz Athos first 15 0 108.0 127.0 38.5 −1.223b .221

Wz JSprit first 18 1 134.0 126.0 19.5 −2.701a .007
a Based on positive ranks
b Based on negative ranks

194

CHAPTER 7. EVALUATION RESULTS

30 60 90

25

50

75

100

125

150

IV V VI

IIIIII

Time (min)

Sc
or

e

Figure 7.5: General naming schema applied to the sectors of the scatter plot.

scores with JSprit as the second approach than with Athos first, however, can be

interpreted in a way that suggests that the improved correctness is also dependent

on the prior programming experience of the users. With programmers that are used

to a programming language, the positive effects potentially brought about by Athos

might be overruled by effects of being used to a certain programming style and po-

tential learning effects that likely occur when performing a similar task for a second

time. Nevertheless, the presented data gives reason to believe that the choosing

Athos for modelling vehicle-routing related problems is a worthwhile decision.

7.1.4 Results in terms of efficiency

This section will present the results from the studies conducted in Friedberg and

Wetzlar with the addition of the temporal dimension. For the visualising the achieved

scores of participants in relation to time scatter plots similar to the one shown in

Figure 7.5 will be used. The x-axis displays the time participants spent on answering

the questions on (or solving the tasks with) the respective approach. The x-axis is

cut off at the 90 minutes mark since the implemented survey timer would not allow

any participant to spent more than 90 minutes on answering the questions of either

of the two approaches. The axis is divided into three sections so that three intervals

[0,30), [30,60), [60,90] ensue. It is reasonable to assume that the lower the amount

of time required by a participant to obtain a particular number of points, the higher

195

CHAPTER 7. EVALUATION RESULTS

their efficiency in obtaining that score, in other words, it is desirable for an approach

to have as many data points as possible on the lower end of the x-axis.

The y-axis displays the number of points participants were awarded for their

answers. The maximum number of points to be awarded was 150. The y-axis is

split at the 75 points mark. This was done because it is common practice to devise

marking schemes that have participants pass an exam with at least 50 per cent of the

maximum score. However, it is important to note that since all the results obtained

from participants were anonymised, participants could actually neither pass nor fail

the in the controlled experiment and so they were not given any instruction that

any minimum score was required. For the sake of brevity, however, the discussions

in the next sections will refer to participants with at least 75 points as passing

participants whereas participants with less than 75 points will be said to have failed

the respective section.

Together, the lines used to part the x- and y-axis form six sectors (or sextants).

At some paragraphs the number shown in the illustration will be used to refer to a

particular sector. The presented counting schema was chosen as it reflects the usual

reading direction from left to right and top to bottom. However, a case could also be

made for that the numbers reflect on the desirability for a data point to be plotted in

the respective sector with I being the most and VI the least desirable3. Especially

for the study in Friedberg, comprehension and mental aggregation of the plotted

points can become rather difficult. For this reason, the illustrations in the following

sections will also present a table with the aggregated number of data points in each

sector.

7.1.4.1 Results from Friedberg with first approach

Figure 7.6 displays the results participants in Friedberg achieved with Athos and

JSprit as a first approach. With JSprit, 5 participants achieved considerably less

than 25 per cent of all points while spending less than 30 minutes. With Athos as
3Though sectors IV to VI can all comprise undesirably low results, those in sector VI also were

produced in a rather slow and inefficient manner.

196

CHAPTER 7. EVALUATION RESULTS

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(a) Scatter plot: Athos in FbAf20

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 3 24 27

< 75 1 1 6 8

Σ 1 4 30 35

(b) Cross table: Athos in FbAf20

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(c) Scatter plot: JSprit in FbJf20

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 1 14 15

< 75 5 4 14 23

Σ 5 5 28 38

(d) Cross table: JSprit in FbJf20

Figure 7.6: Score achieved in relation to survey time for Athos and JSprit used as a
first approach in Friedberg, 2020.

a first approach, there was only one participant who spent less than 30 minutes

answering the Athos questions. This participant scored 35 points which is a slightly

better result than those found in the JSprit group for participants that rushed their

answers. It can be assumed that participants in this group did not put in their best

effort to correctly solve the tasks and merely guessed the answers.

Both compared groups had nearly the same number of participants who spent

between 30 and 60 minutes on the tasks. For Athos, there were 4 participants in that

category, for JSprit 5 participants were recorded. An important difference, however,

is in the number of points that these participants scored: With Athos, 3 participants

achieved more than half of all points (92, 102, 116) and only one fell below this

threshold (61). With JSprit, on the other hand, there was only one participant who

197

CHAPTER 7. EVALUATION RESULTS

exactly scored 75 points whereas the other 4 participants fell below that mark (29,

30, 45, 48).

As concerns those participants that spent more than an hour on the respective

language section, the numbers of both groups were also practically identical: in

the Athos group 30 participants spent more than 60 minutes on the tasks and in

the JSprit group 28 participants did the same for the JSprit questions. Again, the

difference is in the score achieved by participants of both groups: With Athos, a

marked 24 participants managed to score more than 75 points. With JSprit this

number dropped to a mere 14 participants. With Athos, only 6 participants that

spent more than 60 minutes on the tasks scored less than half the points. With

JSprit, there were 14 participants that did not manage to score at least 50 per cent

of the points in more than 60 minutes.

There is also a difference in the top results achieved with either approach: with

Athos, the top five scores were 146, 136, 131, 130, and 129 points. With JSprit, the

five top-scoring participants achieved 117, 116, 115, 113, and 103 points. In other

words, even the highest score achieved with JSprit is 12 points less than the fifth

best score obtained with Athos.

7.1.4.2 Results from Friedberg with second approach

The results achieved by participants in Friedberg in 2020 with both Athos and JSprit

as a second approach is shown in Figure 7.7. The overall numbers of participants that

scored more than 75 points is rather similar: with Athos, 21 participants obtained

more than 75 points whereas 17 participants managed to pass this threshold with

JSprit. Though the number for Athos in this regards is slightly higher than the

number for JSprit, it also has to be considered that there were more participants

in the group that used Athos second. Hence, there is only a slight advantage for

Athos in regard to passing participants. Consequently, the number of participants

with less than 75 points is also somewhat similar with 17 participants failing the 75

points mark using Athos as the second approach and 18 participants short of this

mark with JSprit as the second approach.

198

CHAPTER 7. EVALUATION RESULTS

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(a) Scatter plot: Athos as second in FbJf20

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 1 16 4 21

< 75 8 6 3 17

Σ 9 22 7 38

(b) Cross table: Athos in FbJf20

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(c) Scatter plot: JSprit second in FbAf20

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 2 15 17

< 75 3 2 13 18

Σ 3 4 28 35

(d) Cross table: JSprit second in FbAf20

Figure 7.7: Score achieved in relation to survey time for Athos and JSprit used as a
second approach in Friedberg, 2020.

The obvious differences with both approaches is the time that participants spent

for achieving their respective score. While nearly all participants with a positive

result spent more than 60 minutes on the questions with JSprit, Athos users obtained

their positive result considerably faster: 16 out of 21 participants that scored well

were able to achieve their result in less than 60 minutes. With JSprit, only 2 out of

7 participants that finished in under 60 minutes passed the 75 points barrier and

there was not a single participant who collected above or equal to 75 points in less

than 30 minutes. With Athos, on the other hand, there was one participant that

made the 50 per cent mark in under 30 minute, though only barely (78 points in 19

minutes and 21 seconds).

199

CHAPTER 7. EVALUATION RESULTS

Though this participant was very efficient in obtaining the 75 points, the resulting

4.03 points per minute only suffice for the second place in the top five list of PPM

achieved in this Athos second group (4.07, 4.03, 3.90, 3.87, 3.69). The top PPM value

in the Athos group result from a participant who scored 136 points in 33 minutes

and 24 seconds. The top five values with regard to PPM achieved with JSprit were

(3.43, 2.22, 2.00, 1.75, 1.73). The best PPM score being produced by a participant

who collected 54 points in just 15 minutes and 44 seconds. Though producing the

score in an efficient manner, it still is a failing score and the participant barely

achieved a third of all available points. The second best PPM score on this list was

produced by a participant who scored 122 points in 55 minutes and 4 seconds.

What is striking to note is that for Athos there were as many as 8 participants

who spent only little time on the test and achieved a result of less than 75 points.

Compared to that only 3 participants who used JSprit as the second approach rushed

to a result of less than 75 points. There are several possible reasons that may have

led to this result. It is possible that these 8 participant disliked Athos and thus

decided to not put too much effort in answering the questions. It may have also been

the case that the shorter programs in Athos given them a false impression of security

so that they answered the question with less focus and without double-checking their

answers. It may also be the case that JSprit as a first approach was more exhausting

than the other way round so that by the time participants took the second set of

questions they did not feel motivated enough to spend a considerable amount of time

in answering the questions correctly. Most likely, a mix of all these potential reasons

is responsible for the observed outcome.

7.1.4.3 Results from Wetzlar with first approach

In Figure 7.8 the results for both approaches applied as a first approach in the

Wetzlar 2020 study are depicted. Most obviously, in each group all but one participant

passed the mark of 75 points. The failing participant of the Athos group merely

200

CHAPTER 7. EVALUATION RESULTS

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(a) Scatter plot: Athos as first in WzAf20

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 9 5 14

< 75 1 0 0 1

Σ 1 9 5 15

(b) Cross table: Athos as first in WzAf20

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(c) Scatter plot: JSprit first in WzJf20

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 0 17 17

< 75 0 0 1 1

Σ 0 0 18 18

(d) Cross table: JSprit first in WzJf20

Figure 7.8: Score achieved in relation to survey time for Athos and JSprit used as a
first approach in Wetzlar, 2020 (Note: two participants scored exactly 108 points in
the full 90 minutes, thus the graphic shows only four diamonds in the respective
sextant).

scored 2 points in exactly 9 minutes.4 In the JSprit group, the failing participant

was only one single point short of scoring half of all points. While this participant

did not perform as well as their5 peers, it was most likely not for lack of trying since

the participant spent the maximum allowed time of 90 minutes on solving the tasks

(see also Section 7.4).

The plotted data points also indicate that there was a noticeable difference in

the time required by participants to obtain their scores. With JSprit, all 17 passing

participants required more than 60 minutes to finish the questions. The fastest
4Inclusion of this participant results from the fact that the pre-defined inclusion criteria (see

Section 6.7.4) were designed to allow for a broad population of participants that were only required
to try to answer the questions and show a comparable effort in doing so for both approaches.

5The usage of the ‘singular they’ is intentional here.

201

CHAPTER 7. EVALUATION RESULTS

participant in the JSprit group spent around 65 minutes on the task awarding them

119 points. By contrast, with Athos there were 9 passing participants who completed

the questions in less than 60 minutes. The fastest participant even finished the

Athos question in 34 minutes and 44 seconds scoring as many as 124 points. A look

at the top five values for PPM in both groups further indicates that Athos might

have a positive effect on participants’ efficiency. For Athos, 3.57, 3.29, 2.58, 2.44, and

2.38 were the top five PPM values. for JSprit the top five values in this regard were

1.97, 1.94, 1.83, 1.80, 1.75. With Athos, the most efficient participant succeeded in

scoring an impressive 148 points in 44 minutes and 57 seconds. With JSprit, the

highest PPM value was produced by a participant who also achieved an exceptional

148 points in 84 minutes and 42 seconds.

Though PPM seems to be in favour of Athos, the data also show that the best

participants of each group achieved higher scores with JSprit. A brief look on the

top five scores confirms this visual impression (148, 133, 126, 126, 124 for Athos

and 148, 141, 139, 134, 134) for JSprit. In conclusion it can be said, that in these

two groups in which the approaches were compared as first approaches, the overall

scores obtained are in favour of JSprit. However, it can also be observed that Athos

has the potential to increase participants efficiency by reducing the time required to

finish semantically/structurally similar problems.

7.1.4.4 Results from Wetzlar with second approach

Figure 7.9 details the results participants from Wetzlar produced with both ap-

proaches applied second. As can be seen in the plots, participants from both groups

did reasonably well. All but one participants succeeded in scoring at least 75 points.

The failing participant is the same participant who also produced a very low score

with Athos as their first approach, though the achieved score showed a slight im-

provement in comparisonto the result with Athos as a first approach6. In both groups
6From 2 points with Athos first to 15 points with JSprit second. However, given that the

participant spent only 2 minutes on the tasks, it is likely that the participant merely guessed the
answers of most tasks. Different in-/exclusion rules, would likely have eliminated this case from the
set of results. With the defined rules, however, the case was to be included (see Section 7.4).

202

CHAPTER 7. EVALUATION RESULTS

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(a) Scatter plot: Athos as second in WzJf20

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 1 15 2 18

< 75 0 0 0 0

Σ 1 15 2 18

(b) Cross table: Athos as second in WzJf20

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(c) Scatter plot: JSprit second in WzAf20

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 12 2 14

< 75 1 0 0 1

Σ 1 12 2 15

(d) Cross table: JSprit second in WzAf20

Figure 7.9: Score achieved in relation to survey time for Athos and JSprit used as a
second approach in Wetzlar, 2020.

participants were able to score a substantial number of points within a relatively

small amount of time. With Athos, 16 participants scored above 75 points in less

than an hour, and one participant even managed to score 129 points in less than

30 minutes (29 minutes and 56 seconds). Though no participant from the JSprit

group finished before the 30 minutes mark, the participants who used JSprit as a

second approach still were rather efficient. 12 of 14 successful participants required

less than 60 minutes to provide their answers. Two participants required more than

an hour to finish, though both came quite close to the 60 minute mark (around 64

minutes each).

In the Athos first group one participant managed the feat of scoring a perfect 150

points. For this, the participant required 45 minutes and 31 seconds results in 3.3

PPM. Two more participants nearly also managed the perfect score with 148 points

203

CHAPTER 7. EVALUATION RESULTS

each. One of these participants required 46 minutes and seven seconds for this score

and the other participant even achieved the score in 38 minutes and 10 seconds.

In the JSprit group, two participants tied for the best score at 139 points. Both

participants also achieved this score in a virtually identical amount of time (47m

56s and 48m 32s). The third best-scoring participant in this group was awarded 138

points for which they spent 53 minutes and 54 seconds on the questions.

As regards the efficiency of participants, the top five participants from the Athos

group scored 4.31, 3.88, 3.82, 3.77 and 3.59 PPM; for JSprit, the top five PPM

achieved were 7.5, 3.34, 2.90, 2.86, and 2.82. The outlying 7.5 PPM result from

the participant who spent only about two minutes on answering the questions

because the participant managed to score 15 points in that time. Though this skews

subsequent significance tests, the skewing occurs against Athos and would thus not

pose a threat to the validity of a finding that showed an overall better efficiency for

Athos (also see Section 7.4). Except for this special case, the observed top five PPM

values are all in favour of Athos which indicates again that Athos might enhance

users’ efficiency.

The observed results also require a brief discussion on the different results when

used as a first or second approach: Especially JSprit as a second approach, when

compared to the group that applied JSprit as a first approach (see Figure 7.8), shows

a markedly improved efficiency. For Athos as a second approach there was no such

obvious acceleration in time required to solve the questions. However, for Athos

as a second approach it appears that the achieved correctness increased compared

to the group that applied Athos as a first approach. This can partly be explained

with the language application skills of the respective group members. But it should

also be considered an indicator for learning effects that must be considered when

interpreting the results of within-subjects comparisons.

204

CHAPTER 7. EVALUATION RESULTS

7.1.4.5 Between subjects significance test on observed efficiency

The between-subjects comparison of the observed efficiency measured in PPM was

tested for statistical significance using the Mann-Whitney U test. Table 7.4 reports

on the results obtained from these tests. In Friedberg, the group that used Athos

first achieved significantly higher PPM with Athos (Mdn 1.22) than they did with

JSprit (Mdn 0.87). Participants that used Athos second (Mdn 1.81) also obtained

significantly higher PPM than with JSprit (Mdn 1.12). In Wetzlar, the group that

used Athos first (Mdn 1.88) achieved a higher PPM than the JSprit first (Mdn 1.44)

group, but the result was not statistically significant. Athos as a second approach

in Wetzlar (Mdn 3.04) also resulted in a higher efficiency than with JSprit second

(2.39) though not at a statistically significant level.

These results indicate that Athos is the approach that enables users to be more

efficient at comprehending and creating VRPTW models. Out of four conducted

between-subjects comparisons two showed with statistical significance that Athos

users were able to achieve a higher value in PPM than participants that used the

baseline approach.

7.1.4.6 Witin subjects siginificance test on observed efficiency

In addition to the between-subjects comparison presented in the previous paragraph,

the obtained data were also used to conduct a within-subject comparison. Table 7.5

reports on the results obtained with Wilcoxon’s signed rank test. Participants from

Table 7.4: Between subjects comparison of observed correctness using the Mann-
Whitney U test.

N MdnScore MdnRnk

Athos JSprit Athos JSprit Athos JSprit U Z p

Fb as first 35 38 1.22 0.87 45.370 29.290 372.0 −3.235 .001
Fb as second 38 35 1.81 1.12 44.170 29.210 392.5 −3.009 .003
Wz as first 15 18 1.88 1.44 20.070 14.440 89.0 −1.663 .096

Wz as second 18 15 3.04 2.39 19.890 13.530 83.0 −1.880 .060

205

CHAPTER 7. EVALUATION RESULTS

Friedberg who used Athos first (Mdn 1.22) produced significantly more PPM then

with JSprit second (Mdn 1.12). When Athos was used second (Mdn 1.81) the scored

PPM were also significantly higher than with JSprit first (Mdn 0.87). In Wetzlar,

with JSprit as a second approach (Mdn 2.39) participants obtained significantly

more PPM than with Athos (1.88). The other group that started out with JSprit

(Mdn 1.44) scored significantly more points per minute when using Athos second

(Mdn 3.04).

With one test significantly in favour of JSprit and three tests significantly favour-

ing Athos, these results can safely be interpreted as evidence for Athos’ potential to

enhance users’ efficiency. As was already discussed in Section 7.1.3.4, the results also

indicate that an application library might still be a sensible approach for software

developers that are experienced and satisfied with the underlying GPL. However,

it is to be noted that with the second approach there might also be learning effects

affecting the results for both approaches.

7.1.5 Results in terms of user satisfaction

This section presents the evaluation results in terms of user satisfaction (see Sec-

tion 6.6.1.1). To gain insight into this aspect on the usability of the compared

approaches, participants were presented five positive statements on different lan-

guage characteristics. For both Athos and JSprit, participants were then asked to

state their level of agreement to these statements applied to the respective approach.

Table 7.5: Within subjects comparison of the achieved PPM using Wilcoxon signed-
rank test.

MdnScore

n Ties Athos JSprit W Z p

Fb Athos first 35 0 1.22 1.12 152.00 −2.670a .008
Fb JSpirt first 38 0 1.81 0.87 41.00 −4.778a .000
Wz Athos first 15 0 1.88 2.39 21.00 −2.215b .027
Wz JSprit first 18 0 3.04 1.44 0.00 −3.724a .000
a Based on positive ranks
b Based on negative ranks

206

CHAPTER 7. EVALUATION RESULTS

80 % 60 % 40 % 20 % 0 %

JSprit (65)

Athos (66)

JSprit (67)

Athos (67)

JSprit (67)

Athos (67)

JSprit (70)

Athos (69)

JSprit (69)

Athos (70)

20 % 40 % 60 % 80 %

Strongly disagree Disagree Agree Strongly Agree

The approach is easy to learn

The programs / models are easy to read and understand

Program creation with the approach is easy and causes little effort

The approach supports fast and efficient modelling of VRPs

The approach helps to avoid programming / modelling mistakes

Figure 7.10: Overview on how participants from Frieberg in 2020 perceived working
with Athos and JSprit by expressing their level of agreement to positive statements
about both approaches.

The statements concerned the perceived learnability, the understandability, the

convenience experienced in the creation of models, the ensuing speed of development

and the support in the creation of correct models. Participants could express their

degree of agreement by means of a five-point Likert scale. Section 7.1.5.1 presents

the results obtained from the Friedberg study group, Section 7.1.5.2 then provides

an overview on the results from the Wetzlar study.

7.1.5.1 User satisfaction in Friedberg

Figure 7.10 illustrates the level of agreement that participants from Friedberg

provided on five positive statements on different language characteristics. The bars

that extend to the left illustrate the proportions of participants who disagreed or

strongly disagreed to the respective statement. The bars extending to the right rep-

207

CHAPTER 7. EVALUATION RESULTS

resent agreement or strong agreement. The percentages were calculated based on the

number of participants who provided a definitive statement so that opt-out answers

were not considered. The percentage of participants who took a neutral stance to-

ward the respective statements is thus the missing difference between accumulated

displayed percentages to the full one hundred percent. For both approaches, the

absolute number of participants who provided an answer to the respective statement

is indicated in brackets on the left side of the illustration.

The statement that Athos was easy to learn was accepted by the vast majority

of participants (≈ 82%). More than one-third of the provided answers indicated

agreement (≈ 37.1%), and more than 40 % even expressed strong agreement to this

statement on Athos. Only a small number of participants rejected this statement

by expressing either disagreement (≈ 5.7%) or strong disagreement (≈ 5.7%). By

contrast, with the same statement made on JSprit, not even one in four participants

would agree. Around 42 % percent of all participants even would explicitly disagree

(≈ 34.%) or even state strong disagreement (≈ 7.2 %).

The results on the other statements were very similar. Nearly 80% agreed to

the statement that Athos models were easy to read and understand whereas for

JSprit this statement was rejected by more than half of all participants (≈ 52.9 %).

Athos had its weakest result when participants were asked whether they would

agree that Athos models can be easily created. However, still nearly 2 out of 3

participants would support this claim (≈ 65.7% with either agreement or strong

agreement). For JSprit, only around 15 % of all participants were willing to agree to

this statement and nearly 2 out of 3 participants would deny that JSprit allows for

easy VRP modelling (disagreement ≈ 44.8 %, strong disagreement ≈ 17.9 %).

The presented data undoubtedly show that Athos was the approach subjectively

favoured by participants of the Friedberg study. The overwhelming majority re-

cognised Athos as an approach that supported them in the modelling of VRPTWs

through a moderate learning curve, conveniently readable and writeable models,

and a syntax that made the introduction of modelling mistakes less likely.

208

CHAPTER 7. EVALUATION RESULTS

80 % 60 % 40 % 20 % 0 %

JSprit (31)

Athos (33)

JSprit (33)

Athos (31)

JSprit (33)

Athos (33)

JSprit (33)

Athos (33)

JSprit (33)

Athos (33)

20 % 40 % 60 % 80 %

Strongly disagree Disagree Agree Strongly Agree

The approach is easy to learn

The programs / models are easy to read and understand

Program creation with the approach is easy and causes little effort

The approach supports fast and efficient modelling of VRPs

The approach helps to avoid programming / modelling mistakes

Figure 7.11: Overview on how participants from Wetzlar in 2020 perceived working
with Athos and JSprit by expressing their level of agreement to positive statements
about both approaches.

7.1.5.2 User satisfaction in Wetzlar

For participants in the Wetzlar study, Figure 7.11 summarises their level of agree-

ment to the presented statements. As can be seen from the graphic, Athos un-

doubtedly met with the approval of these more experienced users (see Section 7.1.2).

While the statement on easy and effortless program creation was the one users from

the Friedberg study were most reluctant to agree to, in Wetzlar an overwhelming

94 % assented to that statement (agree ≈ 45.5%, strong agree ≈ 48.5%). The state-

ment that Athos provides support for fast and efficient modelling of VRPs found

similar strong approval among participants from Wetzlar: around 32.3 % of the

participants agreed to it and over 60 % even expressed their strong agreement.

Statements on easy learnability and understandability resonated similarly well

among Wetzlar participants. Around 90 % of all participants agreed or strongly

209

CHAPTER 7. EVALUATION RESULTS

agreed that Athos is easy to learn and its models are easy to read (≈ 90.9%, and

≈ 87.9%, respectively). The lowest level of agreement was observed for the statement

on Athos’ support in the creation of correct models. Though the level of agreement

to this statement is somewhat short of those observed for the other statements, 3

out of 4 participants would affirm this claim (agreement ≈ 45.5 %, strong agreement

≈ 30.3 %).

The results for JSprit, on the other hand, were considerably less supportive. The

highest level of agreement was achieved with the statement on easy learnability.

More than 1 in 3 participants perceived JSprit to be as rather simple to learn

(agreement ≈ 27.3 %, strong agreement ≈ 9.1 %). The only other statement that

found agreement among upward of 25% of all participants was the statement that

JSprit helped users avoid modelling mistakes. Especially the statement that JSprit

was easy and convenient to use was refused by a large number of participants

(disagree ≈ 45.5 %, strong disagree ≈ 6.1 %).

The data obtained from the Wetzlar study also are strongly in favour of claims

that Athos provides a high level of usability in terms of user satisfaction. The

obtained results show that participants consider Athos to be the superior approach

in all characteristics they were asked on. Though it is possible that there are

additional language aspects that were not covered by the questions in the survey, the

presented questions do cover the important characteristics of learnability, readability

and applicability. Therefore, the data can be considered to provide strong evidence

for a high level of user satisfaction brought about by the Athos approach.

7.2 Results of the replication study

7.2.1 Application of exclusion and inclusion criteria

Table 7.6 provides a report on the number of original cases as well as on the number

of cases that were excluded by one of the filters applied. The meaning of the table

columns was discussed in Section 7.1.1.

210

CHAPTER 7. EVALUATION RESULTS

Table 7.6: Number of cases excluded from and included in the analysis of the
2021 study.

Non-attempt filter

Subgroup Pre #NA_AT #NA_JS OR* AND OL_TME OL_SCR Included

FbAf21 61 12 27 27 12 1 0 33

FbJf21 49 17 11 18 10 1´ 0 30

WzAf21 20 5 6 6 5 1 1 12

WzJf21 19 4 2 4 2 0 0 15

Similar to the 2020 study, the Friedberg study group produced a larger absolute

number of cases that hat to be excluded from the study. What was different in the

2021 study is that participants from Wetzlar also submitted a substantial number

of cases in which more than seven questions remained unanswered. Especially in

relation to the smaller number of participants from Wetzlar the comparatively high

number of removals was somewhat surprising. A possible explanation might be

that they were told by participants from the 2020 study that participation in the

study was indeed not a mandatory requirement to pass the exam at the end of the

semester.

7.2.2 Demographic data

The graphs shown in Figure 7.12 show a summary of the answers participants from

the Friedberg 2021 study group gave on their prior programming knowledge. They

are structurally similar to those graphs discussed for the 2020 study groups (see

Section 7.1.2.2 and Section 7.1.2.1) so that they provide insight on the number of

years of programming experience, the number of languages they had used until

then, a self-assessment of their programming skills and a statement on their general

interest in programming.

A comparison of participants’ years as programmers shows that participants in

the Athos group were moderately more experienced than their peers: 9 of the 31

(≈ 29%) participants had been programming for more than two years; in the JSprit

group only 3 out of 29 participants had been programming for this long. However,

211

CHAPTER 7. EVALUATION RESULTS

< 1 1-2 2-3 3-4 4-5 > 5
0
2
4
6
8

10
12
14
16
18
20
22

Years of programming experience
1 2-3 4-5 > 5

0
2
4
6
8

10
12
14
16
18
20
22

Number of used prog. languages

Very
poor

Poor Fair Good Very
good

0
2
4
6
8

10
12
14
16
18
20
22

Self assessed progamming skills

Completely
unint.

Un-
interested

Neutral Interested Highly
interested

0
2
4
6
8

10
12
14
16
18
20
22

Interest in programming

N
um

be
r

of
pa

rt
ic

ip
an

ts

Athos first (FbAf21) JSprit first (FbJf21)

Figure 7.12: Comparison of participants’ prior programming experience, number
of programming languages used, self-assessed programming skills and general
programming interest between the Friedberg 2021 study group using Athos first
() and the Friedberg 2021 study group using JSprit first ().

on a broad scale, participants from both groups were still rather inexperienced so

that both groups should still be regarded to be comparable. Participants from both

groups had contact with a similar number of computer languages. In both groups,

most participants had not used more than three programming languages (Athos

≈ 77 %, JSprit ≈ 86 %).

The bar chart on the lower left of the figure shows that members from both

groups had similar confidence in their programming skills though participants

from the Athos group appeared to have a slight advantage in this category. In the

Athos group, around 29 % of all participants doubted their skills. With around

55%, the number of participants that rated themselves ‘poor’ or even ‘very poor’

212

CHAPTER 7. EVALUATION RESULTS

programmers was moderately higher. The largest difference between both groups

could be observed in terms of programming interest. In the Athos group, around

85 % of all participants claimed to be interested or highly interested in programming.

Among the participants of the JSprit group this number was considerably lower as

there only around 57% of all participants stated their interest in the topic.

In general, it can be said that based on the answers to the questions on parti-

cipants’ programming background those participants that used Athos as their first

approach might have had a slight to moderate advantage. However, given the mostly

subjective nature of these answers the observed differences here should not render a

comparison of both groups skewed or pointless.

Figure 7.13 summarises the answers on prior knowledge for the Wetzlar study

group. From all study groups, the Wetzlar 2021 study group shows the greatest

imbalance in terms of years of prior programming experience. In the Athos first

group, only around 17 % of the participants had less than two years of programming

experience. By contrast, around 43 % of all participants from the JSprit first group

had been programming for less than two years. This is a considerable difference that

is likely to have an impact on the when discussing the results of the between-subjects

comparisons.

Though the Athos first group consisted of more experienced programmers, par-

ticipants in both groups had worked with a relatively large number of different

computer languages. In the Athos group, 83 % of all participants had used four

or more different languages. In the JSprit group, even nearly all participants had

used at least four different languages (≈92.9 %). It has to be noted, though, that the

Athos first group had a larger number of participants who had applied upwards of

five different computer languages.

As concerns self-assessments in terms of skills and interest, results obtained

from both groups were virtually identical. In both groups, the vast majority of

participants considered themselves to be ‘fair’ or even ‘good’ programmers (Athos

91.7 %, JSprit 92.9 %). As for general interest in programming, nearly 92 % of all

participant in the Athos group stated to be‘interested’ or even ‘highly interested’

213

CHAPTER 7. EVALUATION RESULTS

< 1 1-2 2-3 3-4 4-5 > 5
0
2
4
6
8

10
12
14

Years of programming experience
1 2-3 4-5 > 5

0
2
4
6
8

10
12
14

Number of used prog. languages

Very
poor

Poor Fair Good Very
good

0
2
4
6
8

10
12
14

Self assessed progamming skills

Completely
unint.

Un-
interested

Neutral Interested Highly
interested

0
2
4
6
8

10
12
14

Interest in programming

N
um

be
r

of
pa

rt
ic

ip
an

ts

Athos first (WzAf21) JSprit first (WzJf21)

Figure 7.13: Comparison of participants’ prior programming experience, number
of programming languages used, self-assessed programming skills and general
programming interest between the Wetzlar 2021 study group using Athos first ()
and the Wetzlar 2021 study group using JSprit first ().

in programming. In the JSprit group, around 87 % of all participants made these

claims.

The difference in years of experience warrants some consideration when compar-

ing the results of both groups in terms of correctness and efficiency. It cannot be

ruled out that the higher number of years that participants from the Athos group

had been writing programs might affect the obtained results in some way. It is also

to be noted that participants from Wetzlar were again more interested, experienced,

and confident in the application of programming languages than participants from

Friedberg. However, in the 2021 studies the gap in the categories ‘years of experi-

ence’ and ‘interest’ became smaller in comparison to the gap observed between the

214

CHAPTER 7. EVALUATION RESULTS

Athos
As first approach

JSprit
As first approach

Athos
As second approach

JSprit
As second approach

0
15
30
45
60
75
90

105
120
135
150

0.0

26.0

78.0

124.0

142.0

0.0

44.3

68.0

88.5

122.0

10.0

64.3

99.0

124.6

148.0

5.0

23.5

68.0

97.0

140.0

Sc
or

e

Figure 7.14: Boxplot showing the distribution of the scores achieved by participants
of the study conducted in Friedberg in 2021 (nFbAf21 = 33,nFbJf21 = 30).

2020 study groups. This somewhat waters down the view in which participants

from Friedberg represent domain experts and participants from Wetzlar represent

experienced software developers. Though the prior knowledge in both study groups

was not as markedly different as in 2020, they were still participants with more

experience and enthusiasm towards the application of programming languages.

7.2.3 Results in terms of correctness

7.2.3.1 Results from Friedberg

Figure 7.14 shows the scores obtained in the subgroups of the Friedberg study

group. Starting with a comparison of the results for both Athos and JSprit as first

approaches, it is to be noted that the median of the Athos group was 10 points above

the median of the JSprit first group. It can also be observed that the interquartile

range with Athos was substantially wider than the one observed among participants

of the JSprit group. This indicates that with Athos several users were very proficient

whereas several others did not do well with the language. With Athos, the maximum

score was 142 points compared to a maximum score of 122 points achieved with

JSprit as a first approach. Though the wide dispersion among Athos users warrants

further investigation (see Section 7.2.4), these results still are in favour of Athos as

a first approach.

215

CHAPTER 7. EVALUATION RESULTS

Athos
As first approach

JSprit
As first approach

Athos
As second approach

JSprit
As second approach

0
15
30
45
60
75
90

105
120
135
150

47.0

117.3
132.0
138.5
150.0

35.0

60.0

90.0

116.0

137.0

22.0

79.0

120.0
128.0

149.0

5.0

97.3
113.0

134.3
136.0

Sc
or

e

Figure 7.15: Boxplot showing the distribution of the scores achieved by participants
of the study conducted in Wetzlar in 2021 (nWzAf21 = 12,nWzJf21 = 15).

A comparison of both approaches used second even more clearly points to Athos

as the preferable approach. With Athos a median score of 99 points was achieved

which is 31 points above the median achieved with JSprit. The maximum score with

Athos was 148 points which is very close to the perfect 150. With JSprit the best

score was 140 points and thus 8 points below the top score in the Athos group.

With Athos first and JSprit second the average score dropped by 10 points from

78 points to 68 points and the best score was reduced by 2 points. With Athos first

the upper quartile was at 124 points and with JSprit second it was at 97 points.

On the other hand, when JSprit was the first and Athos the second approach, the

median increased by a marked 31 points from 68 to 99. With Athos second, the

maximum score also increased by as many as 26 points from 122 to 148.

These data indicate that Athos enabled participants to increase the correctness of

their answers. Both, the between subjects and the within subjects comparisons hint

at Athos being the the superior approach in terms of correctness. In all discussed

comparisons the average scores obtained with Athos showed to be superior to those

obtained with JSprit.

216

CHAPTER 7. EVALUATION RESULTS

7.2.3.2 Results from Wetzlar

Figure 7.15 displays the scores participants from the Wetzlar study group achieved

with Athos and JSprit. When participants used Athos as the first approach, the

median was at 132 points which is a considerable 42 points above the median of the

group that used JSprit first. The median of the Athos group was only 5 points below

the maximum score found in the JSprit group. The highest-score in the JSprit group

was 137 points. In the Athos group the highest score was a perfect 150 points. From

the box-and-whisker plots for both approaches as a first approach it is evident that

the data are in favour of Athos as the first approach.

As a second approach, the median for Athos was also above the median observed

for JSprit. Here, the difference between the medians of the two groups was 7 points.

The best score achieved with a second approach was produced in the Athos group

with a near-perfect 149 points.

The usage of Athos as a first and JSprit as a second approach led to a decline in

the average and maximum scores achieved. The median dropped by a marked 19

points and the highest score reduced from 150 points to 136 points. When JSprit

was used as the first and Athos as the second approach, the median rose sharply

from 90 to 120 points and the best observed score also increased from 137 to 149

points.

The data observed in the Wetzlar subgroup are clearly in favour of Athos. These

data strongly hint at Athos being the approach that enables users to produce sub-

stantially better results in terms of correctness. Either the within subjects and the

between subjects comparisons in this group leave little doubt that Athos was the

approach to be preferred in order to produce markedly better results.

7.2.3.3 Between subjects significance tests on observed correctness

In analogy to the original study (see Section 7.1.3.3), significance tests on the

between-subjects data were conducted the results of which are summarised in

Table 7.7. With Athos first, participants from Friedberg on average scored higher

(Mdn 78) than they did with JSprit (Mdn 68). This result, however was not statistic-217

CHAPTER 7. EVALUATION RESULTS

Table 7.7: Between subjects comparison of the achieved scores in the 2021
studies using the Mann-Whitney U test.

N MdnScore MdnRnk

Athos JSprit Athos JSprit Athos JSprit U Z p

Fb as first 33 30 78 68 33.920 29.880 431.5 −0.874 .382

Fb as second 30 33 99 68 36.900 27.550 348.0 −2.024 .043
Wz as first 12 15 132 90 19.040 9.970 29.5 −2.955 .003
Wz as second 15 12 120 113 13.630 14.460 84.5 −0.269 .788

ally significant. Used as a second approach, the scores obtained with Athos (Mdn 99)

were significantly higher than the scores produced with JSprit (Mdn 68).

Observations from Wetzlar show a significantly higher score for the group that

used Athos as a first approach (Mdn 132) than the group that used JSprit first (Mdn

90). Applied as a second approach, the scores for Athos (Mdn 120) were also higher

than those for JSprit (Mdn 113) though not at a statistically significant level.

Just as in the original study, these data show that Athos can enhance the

correctness of modellers in the specification and comprehension of VRPTW. Two out

of four tests showed a significant advantage for Athos in this regard. Two additional

comparisons were also in favour of Athos, though not statistically significant.

7.2.3.4 Within subjects significance tests on observed correctness.

Table 7.8: Within subjects comparison of the scores achieved in the 2021 studies
using the Wilcoxon signed-rank test.

MdnScore

n Ties Athos JSprit W Z p

Fb Athos first 33 0 78.0 68.0 138.5 −2.538a .011
Fb JSpirt first 30 1 99.0 68.0 39.0 −3.861a .000
Wz Athos first 12 0 132.0 113.0 8.0 −2.434a .015
Wz JSprit first 15 0 120.0 90.0 13.0 −2.670a .008
a Based on positive ranks
b Based on negative ranks

218

CHAPTER 7. EVALUATION RESULTS

The results from the statistical tests that used the obtained data on achieved

scores for a within-subjects comparison are presented in Table 7.8. In Friedberg,

the group that used Athos first (Mdn 78) achieved significantly higher scores with

this approach than they did when they used JSprit as their second approach (Mdn

68). The other group that began with the JSprit approach (Mdn 68) also achieved

significantly higher scores with Athos (Mdn 99).

The data from Wetzlar present a similar picture. Using Athos first (Mdn 132)

participants scored significantly higher than with JSprit second (Mdn 68). The other

subgroup that used the approaches in the opposite order also achieved siginificantly

higher scores with Athos (Mdn 120) than with JSprit (Mdn 90).

These data provide conclusive evidence that Athos aids participants in correct

model comprehension and creation. With all four conducted tests showing significant

advantages for Athos users, a strong claim for its application in the domain of

VRPTW related problems can be made.

7.2.4 Results in terms of efficiency

7.2.4.1 Results from Friedberg with first approach

Figure 7.16 reports the results for both Athos and JSprit used as a first approach in

the study conducted in Friedberg in 2021. Both plots show a rather broad dispersion

of the data points. A first notable fact the high number of data points for Athos

in sector III. There were 6 participants who scored relatively low and spent less

than 30 minutes on answering the questions. The JSprit plot, by contrast, shows

only three plot points in Sector III. Another striking result in the Athos group was

produced by a participant who spend 64 minutes on the questions without scoring a

single point.

Both approaches had a comparable number of participants who spent more than

60 minutes on the questions but managed to obtain more than 75 points. The plot for

Athos has 16 data points in Sector III and the plot for JSprit exhibits 14 data points

219

CHAPTER 7. EVALUATION RESULTS

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(a) Scatter plot: Athos as first in FbAf21

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 1 16 17

< 75 6 3 7 16

Σ 6 4 23 33

(b) Cross table: Athos as first in FbAf21

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(c) Scatter plot: JSprit first in FbJf21

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 0 14 14

< 75 3 3 10 16

Σ 3 3 24 30

(d) Cross table: JSprit first in FbJf21

Figure 7.16: Scores achieved in relation to survey time for Athos and JSprit used as
a first approach in Friedberg, 2021.

in that sector. Another remarkable observation is the high number of participants

from the JSprit group that used the entire 90 minutes on answering the JSprit

questions. 12 Participants from the JSprit group did not leave the question section

on their own but had to be stopped by the maximum allowed time. With Athos, only

2 participants went the full temporal distance.

From the plot it can also be seen that top-scores for Athos were moderately

higher than those of the JSprit group. The top five participants from the Athos

group achieved 142, 136, 133, 133, and 129 points (with 73m 32s, 67m 38s, 58m 53s,

63m 53s, and 78m 42s being the respective times). The five highest scores observed

in the JSprit group were 122, 121, 115, 110, and 94 (81m 40, 63m 55s, 90m, 78m

39s, 90m). This result again is in favour of Athos as it allowed for the highest scores

220

CHAPTER 7. EVALUATION RESULTS

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(a) Scatter plot: Athos as second in FbJf21

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 14 8 22

< 75 7 0 1 8

Σ 7 14 9 30

(b) Cross table: Athos as second in FbJf21

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(c) Scatter plot: JSprit second in FbAf21

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 4 8 12

< 75 8 9 4 21

Σ 8 13 12 33

(d) Cross table: JSprit second in FbAf21

Figure 7.17: Scores achieved in relation to survey time for Athos and JSprit used as
a second approach in Friedberg, 2021.

in the two compared groups. As concerns the efficiency of both approaches, the top

5 PPM scores for Athos were 2.26, 2.08, 2.06, 2.01, and 2.00. The top five results

for JSprit were 1.89, 1.49, 1.40, 1.28 and 1.27. For Athos, the top PPM result came

from a participant who scored 133 points in 58 minutes and 53 seconds. For JSprit,

a participant who scored 121 points in 63 minutes and 55 seconds contributed the

top PPM result. Thus, in conclusion it can be said that Athos results were superior

in terms of the top scores in correctness and efficiency, but on the downside, Athos

had twice the number of participants who scored very low in a short amount of time.

221

CHAPTER 7. EVALUATION RESULTS

7.2.4.2 Results from Friedberg with second approach

Figure 7.17 provides an overview on the results obtained from the Friedberg replica-

tion study when Athos and JSprit were used as second approaches. On a general

note it can be observed that the plot points for JSprit are substantially more dis-

persed than those in the Athos plot. A striking difference between the two plots is

the fact that the JSprit plot shows 9 plot points in Sector IV whereas in the Athos

plot this sector is completely empty. Similarly, Sector VI in the JSprit plot shows 4

data points whereas for the Athos plot there is only one points in this sector that

barely missed the border to Sector III.

For both approaches, there is a similar number of participants whose did not

score at least half of all points but who also spent less than 30 minutes on answering

the questions. These data suggest that the usage of Athos might enhances users’

correctness to a satisfactory level provided that they are willing to spend a certain

minimum effort into the application of the language. This conjecture is also backed

by the fact that with Athos upwards of two in three participants achieved at least 75

points while with JSprit the number of successful participants dropped to 36 per

cent.

As regards the efficiency observed in this group, with Athos there were three

participants that nearly achieved a perfect score in less than 60 minutes. The most

efficient of these three participants scored 148 points in only 39 minutes and 12

seconds resulting in 3.78 PPM. For JSprit, the top scores in terms of PPM result

from participants whose results are located in Sector IV of the plot (4 of the top five

PPM results are located in Sector IV). The only top five PPM value not failing the 75

points mark was a participant who scored 92 points in 31 minutes and 47 seconds.

In conclusion it can be said that the data observed in this study group suggest

that Athos has the potential to positively affect users’ effectiveness and efficiency

provided that they are willing to exert themselves to produce correct results. Not only

does it have the potential to support average users to achieve at least satisfactory

results, it might even boost the efficiency of already productive users.

222

CHAPTER 7. EVALUATION RESULTS

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(a) Scatter plot: Athos as first in WzAf21

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 4 7 11

< 75 1 0 0 1

Σ 1 4 7 12

(b) Cross table: Athos as first in WzAf21

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(c) Scatter plot: JSprit first in WzJf21

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 2 8 10

< 75 0 4 1 5

Σ 0 6 9 15

(d) Cross table: JSprit first in WzJf21

Figure 7.18: Scores achieved in relation to survey time for Athos and JSprit used as
a first approach in Wetzlar, 2021.

7.2.4.3 Results from Wetzlar with first approach

Figure 7.18 summarises the results for both approaches used as a first approach in

the Wetzlar 2021 study group. Generally, the plot for JSprit shows a wider spread

among the data points in comparison to the Athos plot. This results partly from a

marked difference in the scores of those participants who spent 30 to 60 minutes

on the respective questions. With JSprit, 4 out of 6 of these participants failed to

score more than 75 points. While one of these participants only barely missed the

75 points mark by scoring 74 points, there was another participant who only just

passed this mark by scoring 77 points. By contrast, with Athos, every participant

who spent at least 30 minutes on the questions passed the 50 per cent threshold by

a comfortable margin.

223

CHAPTER 7. EVALUATION RESULTS

In terms of efficiency, with Athos the most efficient participant was also the most

effective with a perfect score of 150 points in 46 minutes and 53 seconds thus scoring

3.2 PPM. The most efficient participant from the JSprit group scored 2.1 PPM by

achieving 108 points in 51 minutes and 32 seconds. For JSprit, the highest scoring

participant with 137 points in 83 minutes and 42 seconds ranks third in terms of

efficiency with 1.64 PPM.

Generally, the data from this group also support the claim that Athos allows to

effectively and efficiently address problems related to the modelling of VRPTW. The

data also indicate that even though a certain minimum effort is required with the

language, this effort is rewarded with satisfactory and even formidable results.

7.2.4.4 Results from Wetzlar with second approach

Figure 7.19 shows a summary of the results for Athos and JSprit as a second

approach from the Wetzlar 2021 study group. Overall, it can be said that participants

from both groups produced acceptable results. With JSprit, only one participant

failed to score at least 75 points. With Athos, there were 3 participants who did

not pass the 50 per cent threshold. Hence, it must be concluded that the number of

failing participants of the compared groups is slightly in favour of JSprit. However,

it is also to be noted that 2 of the 3 failing participants with Athos spent less than

30 minutes on the tasks (16m 54s and 17m 2s) and the third participant came very

close to the 50 per cent mark with a score of 73 points.

In terms of successful participants, those participants who used Athos as the

second approach appeared to have a slight advantage in terms of time required to

finish the questions. With JSprit, three participants required more than 60 minutes

to complete the questions, though 2 of these participants were very close to finishing

within an hour (61m 3s and 62m 18s). By contrast, all participants from the Athos

group managed to submit their answers before the 60 minutes mark.

In terms of efficiency the most efficient participants from the respective group had

similar results: the most efficient participant from the Athos group scored 143 points

224

CHAPTER 7. EVALUATION RESULTS

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(a) Scatter plot: Athos as second in WzJf21

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 1 11 0 12

< 75 2 1 0 3

Σ 3 12 12 15

(b) Cross table: Athos as second in WzJf21

30 60 90

25

50

75

100

125

150

Time (min)

Sc
or

e

(c) Scatter plot: JSprit second in WzAf21

Time

< 30 [30,60) ≥ 60 Σ

Pts
≥ 75 0 8 3 11

< 75 0 1 0 1

Σ 0 9 3 12

(d) Cross table: JSprit second in WzAf21

Figure 7.19: Scores achieved in relation to survey time for Athos and JSprit used as
a second approach in Wetzlar, 2021.

in 35 minutes and 35 seconds which equals 4.02 PPM. The most efficient participant

from the JSprit group scored a close 3.64 PPM with 136 points in 37 minutes and

23 seconds. In the Athos group there were 2 more participants who scored an

exceptional 149 points (44m 16s) and 147 points (44m 23s), which equals 3.37 and

3.31 PPM, respectively. In the JSprit group, there were two more participants who

also scored 136 points one requiring 50 minutes and 18 seconds and the other 50

minutes and 39 seconds which amounts to 2.7 and 2.69 PPM, respectively.

From the data observed in these two groups it can be concluded that the results

were not as distinct as those observed in the other groups. It must be stated that

users in the JSprit group produced results that indicate an overall efficiency which

is similar to the efficiency observed within the Athos group. However, there still

225

CHAPTER 7. EVALUATION RESULTS

appears to be a slight advantage for users that apply Athos to problems related to

the modelling of VRPTW, though it might be less distinctive.

7.2.4.5 Between subjects significance tests on observed efficiency

Table 7.9: Between subjects comparison of the scores achieved in the 2021 studies
using the Mann-Whitney U test.

N MdnScore MdnRnk

Athos JSprit Athos JSprit Athos JSprit U Z p

Fb as first 33 30 1.24 0.87 37.500 25.950 313.5 −2.498 .012
Fb as second 30 33 1.86 1.56 37.070 27.390 343.0 −2.092 .036
Wz as first 12 15 2.20 1.41 20.670 8.670 10.0 −3.904 .000
Wz as second 15 12 2.73 2.04 16.600 10.750 51.0 −1.903 .057

The results of the between-subjects statistical tests in terms of observed efficiency

measured in PPM are reported in Table 7.9. A comparison of both approaches used

first in the Friedberg study group reveals that participants that used Athos (Mdn

1.24) were significantly more efficient than those that used JSprit first (Mdn 0.87).

With Athos as a second approach, participants were also significantly more efficient

(Mdn 1.86) than their peers who applied JSprit as the second approach (Mdn 1.56).

In the Wetzlar study group, the subgroup that used Athos first (Mdn 2.2) were

significantly more efficient than the participants from the other subgroup that

applied JSprit as their first approach (Mdn 1.41). When the approaches were used

second, the achieved efficiency with Athos (Mdn 2.73) was higher than the efficiency

produced with JSprit (Mdn 2.04) yet barely missed a significance level of 0.05

(p-value was 0.057).

Three of four conducted test provided significant evidence for the claim that

Athos has the potential to boost users’ efficiency. A fourth test also hinted at an

improved efficiency ensuing from the usage of Athos but was only very close to being

statistically significant. The conclusion drawn from the presented data is that there

are very good arguments for the application of Athos to achieve high efficiency in

tasks related to the modelling of VRPTWs.

226

CHAPTER 7. EVALUATION RESULTS

7.2.4.6 Within subjects siginificance test on observed efficiency

Table 7.10: Among subjects comparison of the achieved PPM in 2021 using the
Wilcoxon signed-rank test.

MdnScore

n Ties Athos JSprit W Z p

Fb Athos first 33 0 1.2 1.6 158.0 −2.189b .029
Fb JSpirt first 30 0 1.9 0.9 2.0 −4.741a .000
Wz Athos first 12 0 2.2 2.0 31.0 −0.628a .530

Wz JSprit first 15 0 2.7 1.4 0.0 −3.409a .001
a Based on positive ranks
b Based on negative ranks

The results of the statistical tests for the within-subjects comparison of the

observed efficiency measured in PPM are reported in Table 7.10. In Friedberg, the

group that started with Athos (Mdn 1.2) was significantly more efficient with JSprit

as their second approach (Mdn 1.6). However, the parallel group that used the

approaches in reverse order was more efficient with Athos (Mdn 1.9) as their second

approach than they were with JSprit as their first (Mdn 0.9).

As to the Wetzlar study group, here the group that started with Athos (Mdn 2.2)

was slightly more efficient with Athos than they were with JSprit as their second

approach (Mdn 2.0). This result, however, was nowhere near being statistically

significant. When Athos was used as a second approach (Mdn 2.7) after JSprit was

applied first (Mdn 1.4), users however showed to be significantly more efficient.

At first sight, these results convey a somewhat mixed picture on which approach

is to be favoured. Two tests were significantly in favour of Athos, whereas one was

significantly in favour of JSprit. However, it is to be noted here that the observed

Z-scores indicate a very strong result in the tests where Athos was significantly

superior, whereas the observed Z-score for the test where JSprit was significantly

superior is a little weaker. Given that two tests favoured Athos and only one was in

favour of JSprit, the data as a whole are still to be regarded to support Athos as the

recommended approach for efficient modelling of VRPTWs.

227

CHAPTER 7. EVALUATION RESULTS

80 % 60 % 40 % 20 % 0 %

JSprit (56)

Athos (56)

JSprit (56)

Athos (56)

JSprit (57)

Athos (58)

JSprit (55)

Athos (56)

JSprit (58)

Athos (58)

20 % 40 % 60 % 80 %

Strongly disagree Disagree Agree Strongly Agree

The approach is easy to learn

The programs / models are easy to read and understand

Program creation with the approach is easy and casuses little effort

The approach supports fast and efficient modelling of VRPs

The approach helps to avoid programming / modelling mistakes

Figure 7.20: Overview on how participants from Friedberg in 2021 perceived working
with Athos and JSprit by expressing their level of agreement to positive statements
about both approaches.

7.2.5 Results in terms of user satisfaction

This section presents the results of the survey questions related to user satisfac-

tion. Just as in the original study, participants were asked to state their level of

agreement to five positive statements on different language characteristics (see

Section 7.1.5.1). Section 7.2.5.1 presents and discusses the results of the Friedberg

study and Section 7.2.5.2 does the same for the results obtained from Wetzlar.

7.2.5.1 User satisfaction in Friedberg

In Figure 7.20 the degrees to which participants of the Friedberg study agreed to

the different statements on both approaches are summarised. On a first note, the

results where similarly positive for Athos as were those in the 2020 Study conducted

228

CHAPTER 7. EVALUATION RESULTS

among students from Friedberg (see 7.1.5.1). Especially with regard to the perceived

learnability, participants from Friedberg appear to be content with Athos. More

than 4 out of 5 participants agreed that Athos could easily be learned (agreement

≈ 31 %, strong agreement ≈ 50 %). Only around 14 % of all participants expressed

their doubts about this claim (disagreement ≈ 10.3 %, strong disagreement ≈ 3.4 %).

The vast majority of participants also ascribed a high readability to the Athos

DSL. Nearly half of all participants strongly agreed that Athos models were easy

to read and another 26 % stated their agreement to such a statement (agreement

≈ 26.8 %, strong agreement ≈ 48.2 %). The statements on easy program creation,

efficient modelling and avoidance of bugs all were agreed to or even strongly agreed

to by more than 60 %.

Also resembling the results from the 2020 study in Friedberg, participants did

mostly not agree to the presented statements when these were applied to the JSprit

approach. The best result for JSprit came with the statement on learnability. In

this regard, around 14 % agreed and nearly 4.0 % strongly agreed to that statement.

However, considerably more than 1 in 3 participants expressed their disagreement

here (disagreement ≈ 29.3 %, strong disagreement ≈ 13.8 %). With the other a

similarly high percentage refused to concur. The highest level of disagreement was

observed for the statement on easy program creation. This statement was disagreed

by nearly half of all participants (≈ 45.6 %) and strongly disagreed by another 21 %.

The presented results confirm the high levels of user satisfaction that were

observed in the prior Friedberg study. In both surveys, participants clearly stated

their preference for the Athos approach for the modelling of VRPs. JSprit as the

baseline approach did not receive levels of appreciation that where anywhere near

those received by Athos. Therefore, it can safely be concluded that user satisfaction

with Athos was clearly superior to the user satisfaction brought about by JSprit.

229

CHAPTER 7. EVALUATION RESULTS

80 % 60 % 40 % 20 % 0 %

JSprit (27)

Athos (27)

JSprit (24)

Athos (26)

JSprit (27)

Athos (27)

JSprit (26)

Athos (27)

JSprit (27)

Athos (27)

20 % 40 % 60 % 80 %

Strongly disagree Disagree Agree Strongly Agree

The approach is easy to learn

The programs / models are easy to read and understand

Program creation with the approach is easy and casuses little effort

The approach supports fast and efficient modelling of VRPs

The approach helps to avoid programming / modelling mistakes

Figure 7.21: Overview on how participants from Wetzlar in 2021 perceived working
with Athos and JSprit by expressing their level of agreement to positive statements
about both approaches.

7.2.5.2 User satisfaction in Wetzlar

The levels of agreement participants from the Wetzlar study expressed are depicted

in Figure 7.21. Similar to the 2020 study (see Section 7.1.5), for Athos these levels

where somewhat higher among this study group than those observed in the Friedberg

study group. However, the number of participants who concurred with the statement

that Athos allows for easy program creation decreased moderately. Though this was

the statement that found the least amount of agreement among participants, Athos

still managed to convince 2 out of 3 participants in this regard (agreement ≈ 25.9 %,

strong agreement ≈ 40.7 %).

Nearly 75 % expressed support for the claim that Athos helped them to avoid

modelling mistakes. The other three statements were supported by upward of 80%.

The strongest support came for the perceived ease with which Athos could be learned.

230

CHAPTER 7. EVALUATION RESULTS

Around 40 % of all participants agreed and 48.1 % strongly agreed to the claim that

Athos was easy to learn.

The JSprit approach, by contrast, was again not well appreciated by participants.

Even the statement with the highest level of agreement was only supported by 1 in

4 participants. Around 23 % agreed that JSprit could easily be learned and 3.7 %

were in strong agreement with this statement. On the negative side however, 37 %

disagreed to this statement and 3.7 % indicated strong disagreement in this matter.

The statement that met with most scepticism was the one that claimed that JSprit

supported fast and efficient modelling. This claim was disagreed by almost half of

the study population from Wetzlar (≈ 48.1 %) and strong disagreement was brought

forward by 18.5 %.

These data provide additional evidence for claims on a high level of satisfaction

that user experience when using Athos compared to alternative approaches. Parti-

cipants from this study group clearly favour Athos over modelling with the JSprit

alternative. While users appeared to generally appreciate modelling with Athos,

they showed an especially high appreciation for the learnability and readability of

Athos.

7.3 Summary and conclusion

This section provides a summary of the results obtained from the original and the

replication study. The results are briefly discussed in terms of the statistical evidence

found that regards how the approaches affected users’ correctness and efficiency. It

also considers the findings on the levels of satisfaction that users expressed for both

approaches.

The findings of the original and the replication studies are summarised in

Table 7.11 and Table 7.12. Both tables have a similar structure and show the

approach of comparison taken (within-subjects vs. among-subjects) together with

the year in which the tested data were collected (2020 vs 2021). Subsequent columns

then show the number of tests that yielded a statistically significant advantage

231

CHAPTER 7. EVALUATION RESULTS

for Athos (AT Sig) and the number of significance tests that proved a statistically

significant advantage for JSprit (JS sig). The table also lists the number of those

datasets that were not found to be statistically significant but in in which the ob-

served average determined by the median was either in favour of Athos (Mdn A) or

JSprit (Mdn JS).

Table 7.11: Summary of the results of all tests for correctness.

Correctness Test A Sig JS Sig Mdn A Mdn JS

Between-subjects Pts 2020 (Section 7.1.3.3) 1 0 2 1

Within-subjects Pts 2020 (Section 7.1.3.4) 3 0 0 1

Between-subjects Pts 2021 (Section 7.2.3.3) 2 0 2 0

Within-subjects Pts 2021 (Section 7.2.3.4) 4 0 0 0

Total 10 0 4 2

Table 7.11 summarises the number of statistical significance tests that analysed

the scores obtained by study participants in both the original and the replication

study. From 16 conducted statistical significance tests on the data obtained in the two

studies, 10 yielded a statistically significant result in favour of Athos. No statistically

significant evidence could be found in support of JSprit being the superior approach

in terms of correctness. Of the remaining comparisons, the average user correctness

was favoured Athos in 4 and JSpirt in 2 cases.

In summary, these data show clear support for Athos as the approach that enables

superior results in terms of user correctness. The results that users produced when

using Athos for tasks related to the learning about and perception of VRPTW models

as well as modification of these models show that Athos can provide considerable

support to users that enables them to achieve a higher level of correctness. For this

reason, the first hypothesis H1 made at the beginning of the last chapter is to be

accepted.

Table 7.12 shows a summary of the number of statistical significance tests that

showed significantly better results for either of the two approaches. It also shows the

number of comparisons in which no statistical significance was observed but in which

the average efficiency was higher for either Athos or JSprit. From 16 comparisons,

232

CHAPTER 7. EVALUATION RESULTS

Table 7.12: Summary of the results of all tests for efficiency.

Efficiency Test A Sig JS Sig Mdn A Mdn JS

Between-subjects PPM 2020 (Section 7.1.4.5) 2 0 2 0

Within-subjects PPM 2020 (Section 7.2.4.6) 3 1 0 0

Between-subjects PPM 2021 (Section 7.2.4.5) 3 0 1 0

Within-subjects PPM 2021 (Section 7.2.4.6) 3 0 1 0

Total 11 1 4 0

11 yieled statistically significant evidence that Athos enhanced the efficiency with

which users learned, perceived and modified important part of models that represent

VRPTWs. One of these tests showed a statistically significant advantage for JSprit

users. All of the comparisons that were not statistically significant showed median

values that were higher for Athos.

In total, these data show that Athos also enables users to learn, perceive and

modify VRPTW models with significantly enhanced efficiency. The data show that

Athos merits serious consideration for tasks that require efficient comprehension

and creation of VRPTW models. The second hypothesis H2 made at the beginning of

the last chapter hence is to be accepted.

Both studies also revealed substantially higher levels of user satisfaction parti-

cipants perceived when working with Athos to solve the presented tasks. In all four

studygroups, i.e. Friedberg 2020, Wetzlar 2020, Friedberg 2021, and Wetzlar 2021,

the answers left no doubt that participants experienced Athos as the language that

was easier to learn, read and comprehend, apply, and maintain.

7.4 Threats to validity

7.4.1 Threats to construct validity

All participants of the study knew a-priori that Athos was a language developed

by the lecturer of the respective module in the course of which the evaluation was

conducted. For this reason there is the threat that participants guessed the intended

233

CHAPTER 7. EVALUATION RESULTS

hypothesis of the study was to prove that Athos was easier to use than the baseline

approach. Under these circumstances, it cannot be ruled out that some participants

might have felt the obligation to please the study conductor by working harder when

using Athos as an approach. In order to mitigate this threat, participants were

assured that data were collected in a completely anonymised fashion so that it was

impossible to track any result back to a particular individual. Moreover, participants

were encouraged to just answer the question for both approaches with their best

effort. They were openly told that the results would be compared but that even a

discovered superiority of the baseline approach would provide valuable scientific

insights.

As the study was carried out remotely with an online survey tool, there was

no reasonable way to ensure that participants actually used their time to work on

the tasks of the question. While it would have been possible to ask participants

to turn on their web cams while working participating in the study, this would

have meant a severe intrusion into their privacy and be incommensurate with a

voluntary participation in a DSL usability study. The fact that participants were

sure to be unsupervised while solving the task poses the threat that different sources

of distraction negatively affect the results of participants. It can’t be ruled out that

participant did not fully concentrate on the task due to other activities that they

performed in parallel.

The best way to mitigate this threat was a clear and honest communication

with participants. It was emphasised that participation would provide important

scientific data on the language and that any non-standard behaviour would run the

risk of distorting these data. Moreover, utmost care was taken to not pressure any

student into participation. Instead, it was repeatedly emphasised that participation

was on a voluntary basis and that those who only wished to inspect the questions

(in preparation of the examination at the end of the semester) were free to do so.

Students were told that they could opt out of any question if they did not intend to

seriously try to solve the tasks presented in the questions. Based on experience, the

vast majority of students respect clear and honest communication in conjunction with

234

CHAPTER 7. EVALUATION RESULTS

the fair rules they were asked to adhere to. This way, only malevolent participants

would actually derogate the value of the obtained data by the provision of answers

without any interest in these answers being correct. The exclusion and inclusion

criteria also somewhat mitigate these threatss cases are likely to be excluded if a

participant answered the questions for one approach with considerably more focus

than they spent on the other approach.

The threat to the validity that was detected concerns the creation of the questions.

Even though considerable effort was put into the design of the questions with the

online-survey tool, and in spite of a review of the questions by members of the

research group, some faults in the formulation of the questions remained. In the

second task of Q09ATAG, in the original study the code that was intended to be

modified already included the correct solution. For this reason, the subtask was

removed from the evaluation of the study and the first task was weighted 10 points

on its own. To balance the evaluation, the second subtask of the respective JSprit

question was also not used in the evaluation of the original study and the weight of

the first task increased to 10 points. In the original study conducted in Friedberg,

in Q03JSALL the same correct solution for the JSprit task could be spotted in the

name of the class. It was still kept in the evaluation for three reasons. The first

reason the question was not removed was that it biased the result of the study

against Athos and favoured the baseline approach. The second reason was that

the task still required a thorough read of the JSprit code and was easy to overlook.

The third was that the mean score of all 73 participants considered in the study

(including those who did not provide an answer for this question) was 3.97 and thus

only slightly higher than the 3.33 points expectancy value that would have resulted

if all participants had blindly guessed the answer (question type was multiple choice

with three options and one correct answer).

235

CHAPTER 7. EVALUATION RESULTS

7.4.2 Threats to internal validity

A major threat to the validity of the study is that it was conducted as a remote study

via the Zoom meeting software. This offers various possibilitites to participants to

answer the questions in an illicit way, e.g. by using IDEs, communicating with each

other or using additional sources to answer the questions. This threat could not be

mitigated on a technical level. However, the applied incentive can be considered of a

way to address this problem: students did not receive a direct benefit for participation

in the study. They were not awarded any points that would have altered the final

mark they received for the respective study course module nor were they promised

any other incentive that would have motivated them to take illicit measures in

order to increase their score. On the contrary, the only communicated incentive

was that they were told that the final exam would also encompass questions on

vehicle-routing problems and that participation in the study could be regarded a

bona fide training towards the question in the final exam. They were also told that

application of additional measures would only hurt their own training effect. Finally,

they were told that the data were for an important scientific study and that they

would run the risk of damaging this study by not adhering to the specified rules.

While this certainly does not ensure that there were not participants who infringed

the defined rules of participation, it reduces the motivation to such behaviour to a

minimum.

Another possible threat to the validity of the results stems from the applied

inclusion and exclusion criteria. These criteria allowed for inclusion of results

even in cases where these were significantly above or below results produced by

participants of the same group. The study was intended to provide an impression on

how various different users were able to cope with the language. For this reason, it

was decided to only remove a case if the participant simply did not bother to answer

the majority of the questions and in cases were the participant showed substantially

different levels of effort with either of the two compared approaches. This way, the

inclusion of results could skew the results of between subjects comparisons to the

236

CHAPTER 7. EVALUATION RESULTS

detriment of the group the low performing participant was part of. The extent of

this threat is mitigated by the application of a rank-based significance test. Through

these tests the actual distance in points is dropped and only the low rank of the

respective participant is considered. It is also to be noted here, that the actual

number of evident outliers in the study was very low. With regard to within-subjects

comparisons, the inclusion of low performers should not skew the study results as

the inclusion exclusion criteria ensured that the difference of results produced for

both approaches did not show unreasonable divergence.

Another threat to the internal validity of the study was that the threat that the

difficulty of the tasks might be skewed. This way the results would be affected as

the score for the approach with the simpler questions would most likely be higher.

This threat was eliminated by taking utmost care to construct the questions in a

way that they would be of identical complexity. for this reason, it was ensured that

corresponding questions comprised the exact same number of entities, i.e. the same

number of nodes, roads, etc. If possible, it was also ensured that the same number of

possible answers was given. This was possible if a certain number of programs that

contained mistakes were to be found by participants. In these cases, the number

of options were identical for both approaches. However, in cases were participants

should select a checkbox that indicated which line in the respective code contained

an error, the number of presented checkboxes could not be made equal as JSprit

programs are inherently more verbose than Athos programs. This however, is not a

flaw in the construction of the question, but a characteristic of the language that

this study intended to evaluate in terms of usability.

The study conductor (the author of this thesis) is another threat to the validity of

the study as he was the one who introduced participants to both approaches. On the

one hand, this way it could be ensured that differences in the way the approaches

were presented to the students were identical for every study group. However,

given that there was no pre-recorded script, the style and enthusiasm shown on

the different days that the presentations were held are subject to variation which

potentially affects the study results. A threat that arises from the fact that the lead

237

CHAPTER 7. EVALUATION RESULTS

developer of Athos also conducted the introduction to both approaches is undeniable.

Though the author put his best effort into presenting both approaches in the most

objective way possible, there is no way to rule out that on an unconscious level a

preference for Athos was signalled so this threat was not eliminated.

The time given to participants was another threat to the validity. This threat

was eliminated by presenting both approaches on the same day and starting the

presentation with JSprit so that – if only slightly – the time given to learn the

approaches was slightly higher for JSprit and thus the bias was against Athos. As

an additional measure of security, participants were also asked whether they felt

that they were given more time for one of the two approaches. In 2020 91 of 101

participants stated that the time granted for both approaches was equal, 8 stated

that they were given more time to learn the JSprit approach and 2 stated they were

granted more time to get learn Athos. In the 2021 study, 68 of 84 participants stated

that the time was identical and for each approach there were 8 participants that

stated that Athos was given more time to be learned and another 8 that stated the

same for JSprit.

On a similar note, the quality of the learning material could have posed a threat

to the internal validity of the study. If the slides for one of the two approaches were

made in a way that one approach could be learned easily while the other set of slides

were hard to comprehend, this would greatly impact the results of the study. This

threat was eliminated by having both sets of slides following the same structure

in which the approaches were taught. Both sets dealt with the same problem and

showed the same steps of how to model the problem. To further ensure that the

results were not skewed by unequal learning material, participants were asked to

state whether they felt that the learning material had similar quality. In the 2020

study, 88.7 % felt that the quality of the learning material was identical, 94 of 100

participants that provided an answer felt that the quality was identical, whereas 5

participants thought the Athos material to be superior and 1 participant preferred

the quality of the JSprit slides. In the 2021 study, 69 of 86 participants stated

that the quality was identical, 15 preferred the quality of the Athos slides and 2

238

CHAPTER 7. EVALUATION RESULTS

considered the JSprit slides to be of higher quality. It would be interesting to further

analyse as to what caused the higher percentage of participants preferring the Athos

slides in the 2021 study since both slide sets were identical to the ones used in 2020.

A final threat to the internal validity concerns the the replication study in

Friedberg. This study featured seven participants who had already participated a

year earlier. This poses a threat to the internal validity of the study as they had

considerable learning effects on their side. These participants were still included

since – by chance – they were as equally distributed among the two subgroups as was

possible for an odd number of students: four were assigned to the FbJf21 subgroup

and three were part of the FbAf21 subgroup. Given the rank based statistical tests

applied in the study and the applied filters of among-subject outliers, together with

the four-to-three distribution ratio, the inclusion of these participants should – if at

all – only slightly bias the between-subjects comparison.

7.4.3 Threats to external validity

The study population consisted entirely of students of THM from its campuses

in Friedberg and Wetzlar. Though conducting of empirical evaluations among

such populations of students is a common approach in the software engineering

discipline (Sjoeberg et al., 2005, p. 738), it poses a threat to the external validity

of the study. It is therefore not claimed that the obtained results can be directly

generalised to domain experts in the field of last mile logistics and transport planning

and optimisation. However, by consideration of the academic background and the

investigation on the prior programming knowledge of the study population, the study

provides the necessary meta information of its population. This meta information

can be applied in attempts to sensibly generalise the finding of the study to the

target population of professionals in the field of transport optimisation.

239

; Eighth Chapter <

Conclusion

8.1 The Athos project in context of information sys-

tems design science

8.1.1 Design as an artefact (Guideline 1)

The first guideline postulated in the information systems (IS) design science frame-

work of Hevner et al. (2004) demands that a design science research project yield

an artefact that is both pioneering and useful. The artefact must either provide a

solution to a relevant and hitherto unresolved problem, or it must improve on an

existing solution to a relevant problem. Hevner et al. also point out that a valuable

design science artefact does not necessarily have to be brought to perfection upon its

first deployment, but may also be of prototypical nature with room for improvement

that may well be brought about by ensuing research endeavours. The framework

also emphasises, that the design scientist must provide a description for the artefact

that facilitates an implementation and application in the intended domain.

Constructs are one specific type of artefact that a design science project can

conceive. Constructs form languages or notations for the codification of a problem

of interest together with its associated solution space. In this sense, the main con-

tribution of this research project are the constructs that form and constitute Athos,

that is, the constructs found in the meta-model of Athos as well as their concrete

240

CHAPTER 8. CONCLUSION

representations which were presented in Section 4.1 and Section 4.3, respectively.

The intended additional value to be brought about by the language was an increased

usability in the simulation of traffic and transport related (optimisation) problems

as they frequently occur in the business of LML.

It is important to note that Athos was not only conceived and defined in theory.

Instead it was actually implemented by application of the language development

framework Xtext1, anchored in the foundational knowledge base for rigorous DSLs

implementation. The Xtext framework generated the scaffold for (or in some cases

entire) tools that built the language. The generator generated by the framework,

for example, requires the implementation of the transformations to the respective

target platform. The actual implementation of these transformations was discussed

in Section Chapter 5. In terms of the IS design science framework, these transforma-

tions are instantiations. These instantiations demonstrate the feasibility of mapping

Athos to agent-based simulation platforms.

8.1.2 Problem relevance (Guideline 2)

The second guideline defines the objective of design science research as the acquis-

ition of skills and knowledge that put researchers in a position where they can

develop novel solutions for a given problem domain. The necessity for such novel

tools in the domain of simulation modelling has been described by Taillandier et al.

(2019b) who emphasize the need for modelling tools that enable ‘participatory mod-

elling’. By this, the authors mean a modelling approach that views domain experts

as active creators of the models that drive the simulation studies.

The second guideline also stresses the importance of an active community behind

the artefact produced. Though Athos has not yet been presented to a community

of field practitioners, the formal evaluation presented and discussed in this thesis

clearly indicates that the DSL is on the right way by being comparatively easy to

learn and apply. This way, the language is highly likely to meet the approval of
1https://www.eclipse.org/Xtext/

241

https://www.eclipse.org/Xtext/

CHAPTER 8. CONCLUSION

experts with scarce programming knowledge but plenty of valuable know-how in the

domain of traffic and transport optimisation.Athos then becomes a highly relevant

artefact as such persons can rely on its high usability and expressiveness.

8.1.3 Design evaluation (Guideline 3)

Hevner et al. (2004) stress the importance of a rigorous evaluation of the designed

artefact. In the preparation of the evaluation, scientists have to select (and probably

adapt) appropriate evaluation methodologies together with expressive measures

from the knowledge base. The authors also list several design evaluation methods

together with a subsuming category. They note, that evaluation methods, applied

measures, and the evaluated artefact have to be compatible in order to conduct

high-quality evaluation research.

As was shown in Chapter 6, evidence for the utility created by Athos was provided

by conducting a controlled experiment. In this experiment, Athos was compared to

JSprit2, an alternative approach to model and solve VRPs based on the Java GPL.

The applied evaluation methodology was based on the work of Kosar et al. (2010),

Kosar et al. (2012) and Kosar et al. (2018) and additional planned and executed

under consideration of the process laid out in the Usa-DSL evaluation framework

(Poltronieri et al., 2018). Athos and JSprit were compared in terms of how they

affected participants’ efficiency and effectiveness in learning, perceiving and evolving

the languages and models/programs written in the respective language.

The performed evaluation also considered qualitative aspects of the languages.

Participants were asked for an assessment on the complexity of learning and ap-

plying the respective languages and whether they felt that the respective language

helped them to avoid programming mistakes. Participants were also given the

chance to state their general opinion on both approaches. This way, the evaluation
2https://jsprit.github.io/

242

https://jsprit.github.io/

CHAPTER 8. CONCLUSION

also complies with the request to also evaluate the style of the designed artefact.

Especially in the open-ended questions participants expressed their opinion on what

can be considered the style of the two compared languages.

The comparative approach showed that Athos is a necessary artefact as parti-

cipants clearly stated their preference on using Athos instead of JSprit. Moreover,

especially participants with only basic Java experience were highly more effective

and efficient when using Athos instead of JSprit. According to Hevner et al. (2004),

the creation of new or improved artefacts together with a formal proof of their

(higher) utility is at the heart of design science.

8.1.4 Research contributions (Guideline 4)

Hevner et al. (2004) state that there are three different ways in which a design

science research project can make a significant contribution. Firstly, for many design

science projects, the contribution is the utility the designed artefact provides to

the targeted community of researchers and or practitioners. Secondly, a scientific

contribution can be made by means of an enhancement of the foundations of the

knowledge base that is used by researchers for the creation of relevant artefacts.

And thirdly, innovative application and enhancement of evaluation methodologies

from the knowledge base also constitutes a valuable contribution to the scientific

body of knowledge.

This research project contributes in each of these three ways. First of all, Athos

as a holistic system (i.e. the language and its supporting development tools together

with its generator) can be proficiently applied by a community of traffic and transport

researchers and practitioners. In addition to that, Athos can also be regarded as

a construct that scientists can use to create innovative simulation instantiations.

Especially its built-in extension mechanism enables researchers to leverage Athos in

the creation of novel simulation artefacts or in the development and evaluation of

routing optimisation algorithms (Hoffmann et al., 2020). Finally, as was discussed

in Chapter 6, Athos was subjected to a rigorous evaluation approach based on

243

CHAPTER 8. CONCLUSION

established evaluation methodologies that were slightly enhanced in order to obtain

proper evidence for the utility provided by Athos.

8.1.5 Research rigor (Guideline 5)

This research project adhered to the fifth guideline (‘research rigour’) by the ap-

plication of well developed and well understood technologies and approaches for

the development, implementation and evaluation of DSLs. For the development

and implementation of the language, the well-known Xtext language development

framework3 was used.

In the iterative and incremental DSL development process, guidelines presented

in (Karsai et al., 2014) were considered in the implementation of the language. For

example, Karsai et al. (2014) advise in Guideline 22 to take an convention over

configuration approach, i.e. assume sensible defaults that relieve end users from

having to specify every single detail of the model. This guideline was followed on

multiple occasions, e.g. edges are assumed to be undirected unless explicitly specified

as directed arcs, the first behaviour specified for an agent is always the behavioural

entry state of an agent, etc. Another example in that direction is that Athos takes a

computationally independent approach, i.e. users do not need to specify how agents

calculate an optimal tour for a set of nodes – if the model does not explicitly specify a

specific optimisation algorithm or specific parameters for a given algorithm, sensible

default values are used (Hoffmann et al., 2018b).

The 21st guideline presented by Karsai et al. (2014) recommends to design a

language’s concrete syntax in a way that a given style is used consistently throughout

the entire language. To also provide a descriptive concrete syntax (Guideline 15)

as well as organisational structure (Guideline 19), the following rule regarding the

usage of commas in Athos models was introduced: whenever elements are listed in

an Athos model, commas can optionally be used. A recommendation to users is to
3https://www.eclipse.org/Xtext/

244

https://www.eclipse.org/Xtext/

CHAPTER 8. CONCLUSION

either consistently use commas for the separation of listed elements or not at all.

However, this recommendation is not enforced by the validator.

As was discussed in Section 8.1.3, an elaborate controlled experiment based on

the knowledge shared by scientists who are well-recognised for their expertise in

language evaluation Kosar et al. (2010), Kosar et al. (2012) and Kosar et al. (2018)

and Poltronieri et al. (2018) were followed. Their published works greatly affected

the general nature of the performed evaluation (a controlled experiment that com-

pared Athos and and alternative approach), the language aspects considered in the

evaluation (learnability, perceivability, evolvability), the metrics used to determine

the languages’ performance in the different aspects to consider (effectiveness and

efficiency), and also the way data for these metrics was obtained (different questions

aiming at different aspects of the language in different ways). By relying on well-

known evaluation approaches, it was ensured that rigorous results were obtained

that allowed a qualified statement on the languages’ provided utility.

However, it is also important to note, that an exaggerated concentration on

rigour may hamper the relevance of the research Hevner et al., 2004. The authors

emphasise that whether a design science project succeeds or fails is determined by

the ability of the researchers to beneficially apply the knowledge base throughout

the project. Similarly, (Karsai et al., 2014) also note that their presented guidelines

are not to be understood as an exact recipe to follow in the pursuit of a perfect

language. On the contrary, the authors stress that there are trade-offs between

some of the guidelines and that it is the task of the language developer to carefully

consider the given domain and application context to determine which guideline

takes precedence over the other(s).

8.1.6 Design as a search process (Guideline 6)

In the sixth guideline of their design science framework, Hevner et al. (2004) de-

scribe how design science often has to apply an iterative incremental approach that

addresses a complex problem by breaking it down into and solving its constituent

245

CHAPTER 8. CONCLUSION

sub-problems. Though it may be necessary to recursively break down and solve the

sub-problems, at some point a sensible starting point will be found. As is emphasised

by the authors, this process might result in a starting-point problem whose solution

contributes only little to the underlying real-world problem. However, through iter-

ative incrementation of the problem scope and development of appropriate solutions

a continuous progress is achieved until finally the original problem is solved.

This is what has been done in the course of this research project. The domain

of traffic and transport simulation and optimisation was broken down into several

sub-problems that were either analysed and solved or broken down further until a

starting point was found. The first capabilities of Athos were the representation of

networks in which sources of agents of different types could be defined and edges

could be associated with mathematical functions that determined the time an agent

required to traverse the respective edge depending on the traffic on that edge. After

that, the TSP as the first member of the family of VRPs was addressed followed by

the VRPTW. Each of these steps comprised several sub-problems, like the defini-

tion of appropriate language elements to represent the problem, the definition of

suitable transformation to the NetLogo (or Repast) platform, or the implementation

of algorithms to obtain (near) optimal solutions for modelled problems. Through

a process of iteratively increasing the languages functionality, the DSL and its

supporting tools were brought to a state of maturity.

Hevner et al. (2004) also point out that having a finished design science artefact

which provides a solution to a targeted problems, poses the challenge of an informed

assessment on how well the artefact actually handles the problem. In order to evalu-

ate the quality of the provided solution, the authors propose a comparison between

the developed artefact and alternative solutions developed by recognised experts in

the respective field. This is what has been done for Athos. Several usability aspects

of Athos (e.g. effectiveness and efficiency) were compared to those offered by the

JSprit4 application library for the Java language. As a result of this comparison

it could be shown that especially participants who had little programming exper-
4https://jsprit.github.io/

246

https://jsprit.github.io/

CHAPTER 8. CONCLUSION

ience achieved far better results in effectiveness and efficiency when using Athos

than when using the application library. Moreover, from programming novices to

experienced programmers, most participants preferred using Athos over JSprit.

Even at this point, Athos is not a completely finished modelling system. There

are still several iterations possible to increase the power of Athos. Currently, an

additional viewer plug-in is being developed. This plug-in visualises the textually

modelled network. Moreover, it is also possible to edit the network in the plug-in.

The plug-in viewer is synchronised with the Athos editor so that changes in one

of both are recognised and adopted in the other. A first prototype of this plug-in

has been created by a student of THM in his Master’s project. However, the tool

still needs some bug fixes and modifications before it can be fully integrated into

the Athos environment. Though Athos possesses an extension mechanism so that

additional vehicle routing problems can be represented in the language and solved

by appropriate algorithms, the language should be extended in order to natively

support additional problems of the VRP family. Another way to improve the Athos

might be the development of new transformation that create simulations for an even

more powerful simulation platform that NetLogo. The Gama platform appears to

be a promising platform that might offer even deeper insights into the modelled

problems than NetLogo does, due to its advanced exploration capabilities.

8.1.7 Communication of research (Guideline 7)

The design science research framework demands that research artefacts and evalu-

ation results be communicated to both experts in the technological aspects of the

research and those concerned with the managerial implications of the designed

artefact. This previous section described how new functionality was added to Athos

in an iterative incremental way. With each iteration, Athos reached a new level of

maturity and the new functionality was presented at pertinent conferences and de-

scribed in the respective proceedings. The detailed results of the elaborate empirical

evaluation study were submitted to the Empirical Software Engineering journal.

247

CHAPTER 8. CONCLUSION

All publications should be of interest to both technical and management experts.

Though most articles featured a technical explanation of one or several new func-

tionalities implemented in the course of the respective development cycle, they also

featured a small case study with a focus on how to use the newly introduced features.

The papers also discussed the respective benefits provided by the respective feature.

This way, researchers in the technicalities could learn on how features were imple-

mented whereas application oriented readers gained insight on how the feature

could be used.

8.2 Summary and addressed research questions

Athos as an innovative construct illustrated the properties that a DSL which is to

enable users to correctly and efficiently produce models of agent-based VRPs must

have (RQ 1). It was shown which elements from the domain of (academic) vehicle-

routing problem were most relevant (RQ 1.1) so that they needed to be mapped to

the abstract syntax of the language (RQ 1.2). It was also shown how the abstract

syntax was to be devised to allow for a representation of dynamic agent behaviour

(RQ 1.3). For these behaviour elements it was explained how and to what target

elements in the solution domain they needed to be mapped in order to bring about

the intended execution semantics (RQ 1.6) and (RQ 2.1). This was also done for the

static elements that form the environment within which the agents act and interact

(RQ 1.4) and (RQ 1.6) .

To support modellers in the development of semantically correct models, an

example for a concise yet expressive concrete syntax was illustrated (RQ 1.5). To

further support ensure that the created models are valid an initial set of constraints

that form the static semantics of the language was built (RQ 1.4). It was also demon-

strated how methods can be implemented that allow to derive optimal solutions and

how these could be linked to the language environment and simulation environment

(RQ 2.2).

248

CHAPTER 8. CONCLUSION

The final part of this thesis gave a summary of a method to reveal and compare

innate usability characteristics of different modelling approaches (RQ 3.1) and how

to quantitatively represent the disclosed differences (RQ 3.2). From the quantified

differences a set of claims concerning increased correctness, efficiency and user

satisfaction associated with the application of Athos was shown to be supported by

substantial statistic evidence (RQ 3.3).

8.3 Future work

As was already mentioned at the beginning of this thesis, the Athos research project

made two major contributions: a novel DSL for the specification of traffic and

transport simulation and optimisation scenarios and a rigorous empirical evaluation

of this language. According two these two major contributions, the future work can

be split into two distinct stacks of work that has to be done:

• Future work on the Athos language

– Improvement of the language’s expressiveness by introduction of

new language elements supported by the generator and the targeted

simulation platform.

– Improvement of the language’s extension mechanisms by making

the language extensible without the need to access and recompile the

meta-model definition of the language.

– Introduction of language elements for user-defined constraints

for problem solutions.

– Introduction of additional target platform to which Athos models

can be transformed.

• Future empirical work centred around Athos

– Comparative evaluation studies to evaluate (new or improved) lan-

guage elements like metrics or dynamic VRPs.

249

CHAPTER 8. CONCLUSION

– Effects that several ways to achieve the same goal in a language

have on users’ satisfaction and confidence with a language.

– Effects of modern browser-based tooling on the usability of the

language.

– Evaluative application by real domain-experts to increase the gen-

eralisability to the targeted user group.

These aspects will be discussed in more detail in the following sections.

8.3.1 Expressiveness of the language to be improved

The current traffic flow model applied in the generated agent-based simulations is a

plain and straightforward model to simulate the movements of entities in a network.

On the one hand, it considers every agent in the network an individual and thus

microscopic level, on the other hand, the way agents affect one another is mainly

dealt with at a macro level (see, e.g., (Barceló, 2010, p. 15)). Though the simplicity of

the applied model brings about benefits in terms of simulation performance, it must

be assumed that there exist different emergent real-world phenomena that cannot

sufficiently be modelled with the applied traffic flow model. It thus necessitates

further investigation how the language and the transformations can be extended

to dynamically allow a finer-grained simulation approach. It appears desirable to

enhance Athos in a way that the level of granularity can be implicitly defined by the

modeller through the language elements applied in a model.

This requires the language to be extended by behavioural language elements that

allow a fine-grained description of an agent’s general behaviour. These meta-model

elements could, for example, allow expressions of circumstances under which the

agent moves a given percentage faster or slower than the average travelling speed

on the current edge. Evidently, these extensions of the language require an adoption

of the generated traffic-flow model that needs to be adapted accordingly. Attempts

in these directions have been made but have not yet reached a level of maturity that

allowed them to be integrated into the main development branch.

250

CHAPTER 8. CONCLUSION

The concrete syntax for the metrics defined in the metrics section of an Athos pro-

gram will be further refined. This requires additional research into what syntactical

structures allow to concisely convey the intended semantics of the defined metric

and can conveniently be specified by the user. For this, additional studies (e.g. field

studies or additional controlled experiments (Hevner et al., 2004, p. 86)) are required

to determine how users can be best supported in the definition of the metrics to

monitor throughout a simulation. In order to be able to perform a comparative

controlled experiment like those presented in this thesis, an appropriate baseline

language to which Athos can be compared must be found. JSprit might well be an

appropriate language with regard to the evaluation of a language’s metric definition

capabilities. However, JSprit itself focusses on static problems and will thus not be

a suitable baseline approach when it comes to the evaluation of dynamic aspects of

Athos.

8.3.2 Extensibility of the language to be matured

In Hoffmann et al., 2019a it was presented how Athos offers a mechanism that

allows users to include additional information into Athos models and provide these

to Java algorithms. This mechanism was supposed to provide the possibility of user

extensions (Atkinson and Kuhne, 2003, p. 37). While this mechanism can be helpful

in certain circumstances, it reduces the readability and understandability of Athos

models.

Future research will investigate on how additional information can be included

into Athos models in a user friendly way. Currently, Athos allows the definition

of additional agent and edge attributes. Future versions should enable users to

extend any aspect of an Athos model to their needs. However, it has to be taken care

that these extensions are implemented in a way that preserves the domain-specific

nature of Athos programs.

251

CHAPTER 8. CONCLUSION

8.3.3 Extension of the static semantics of the language

In Section 4.2, Table 4.2 on 111 gave an overview on the currently active static se-

mantics for Athos. As can be seen from the table, there is still room for improvement

with regard to this languague apsect. Especially concerning the definition of agent

behaviour, the language currently lacks a strong set of constraints that prevent

users from time and cost intensive modelling mistakes. For example, there will have

to be constrains that automatically recognise if an agent is modelled to perform a

delivery without the agent having loaded the necessary cargo. With regard to the

network, there must be a constraint that ensures that a customer node is connected

to the network so that the agent can serve the customer.

While modelling mistakes like the aforementioned links are highly likely to

occur, it will also be an interesting task to find out which constraints are actually

helpful for users and which constraints will be considered annoying. This might

pose another opportunity for a controlled experiment targeted at finding out which

preventable modelling mistakes users make most often and for which they would

appreciate to be guided by the static semantics of the language.

8.3.4 Integration of user-definable solution constraints

While Section 4.2 showed how pre-defined constraints can help users to avoid mod-

elling mistakes, it would also be highly interesting and helpful to add language

elements for the specification of user-defined constraints. These are constraints

that target the solution of the modelled VRPs. For example, Athos could offer the

syntactical elements to specify that in the optimal valid solution vehicle A must

visit customer a, b, and c directly after one another and that customer z may not

be in the same tour as customer b. This would increase the practical applicability

of the language as domain-experts then can introduce real-world constraints in the

academic solutions providers.

252

CHAPTER 8. CONCLUSION

8.3.5 Additional target platform to be addressed

NetLogo currently is the primary target platform for Athos. It might, however, be

interesting to implement transformations to alternative platforms as well. While

NetLogo is an appropriate target platform for the current state of Athos, considering

aspects as runtime performance and scalability are likely to necessitate a target

platform suitable for very large numbers of nodes, edges and most importantly

agents. Besides, targeting two alternative platform can even increase confidence in

the results drawn from generated simulations if they are identical on every targeted

simulation platform (cf. (Hoffmann et al., 2018b)).

8.3.6 Empirical studies to be conducted

8.3.6.1 Metrics and dynamic aspects of the language

The empirical evaluation presented in this thesis focused on the static modelling

of VRPTWs. Future evaluations are required to focus on Athos’ capability to model

dynamic problems by inclusion of questions that feature tasks in which additional

agent-sprouting mechanisms are to be used. These tasks then should also encompass

the modelling of complex agent behaviour and behaviour transitions.

As was already mentioned it is also necessary to evaluate the currently present

metric definitions. This is necessary to obtain valuable information on how to

extend and further develop Athos’ capabilities in this regard. This could be achieved

through the inclusion of tasks in which users have to formulate the correct metrics,

i.e. the correct aggregation level, calculation trigger, and calculation expressions

(see Section 3.4.2.2) to track various data on phenomena occurring in a simulation.

There is also additional empirical research required that evaluates how the Athos’

IDE plug-in affects its usability. To this end, it would also be highly interesting

to gain deeper insight into the extent to which this plug-in affects the observed

253

CHAPTER 8. CONCLUSION

Listing 8.1: An alternative source and demand definition.
8 network
9 nodes

10 n0 at (3, -4) // isDepot foo sprouts bar customers n1, n2, n3 at 0 latestTime 300
11 n1 at (-6, 8) // hasDemand foo units 15 earliestTime 30 latestTime 45 serviceTime 3

.

.

.
25 sources
26 n0 isDepot product sprouts vehicles customers n1, n2, n3 at 0 latestTime 300
27 demands
28 n2 hasDemand product units 10 earliestTime 30 latestTime 60 serviceTime 7

correctness, efficiency and user satisfaction. Similar additions to the original study

presented by Kosar et al. (2010) were made in the replication study presented by

Kosar et al. (2018).

8.3.6.2 Effects of alternative styles on the usability of Athos

The current version of Athos features some language parts that can be defined

in several different ways. For example, Section 4.1.3 discussed how an agent type

can be defined in an ad-hoc manner at a position in a program where an agent type

is required (in-place agent type specification) or in the agent section of an Athos

program where it can be referenced from places in the program where an agent type

is required. Another example was discussed in Section 4.3.1 where it was shown

that there are two alternative concrete ways to specify a time window for a demand

note. A third example is depicted in the definition of source nodes and demand for

nodes in a network: these are normally defined together with the specification of

the node in the network section of the program (see Figure 3.6). An alternative way

is depicted in Listing 8.1. The program in this listing is a modification of the first

example from the introduction. The comments show the original approach used for

the definition of sources and demands. The alternative is the definition of a source

and demand section in which nodes from the network section can be referenced to

define them as source nodes or demand nodes. This alternative stems from prior

versions of the language and was kept for user who might consider this separation

of concern preferable.

An interesting question in this regard is whether these alternative approaches

support or hamper users in learning how to define correct programs. While at first

254

CHAPTER 8. CONCLUSION

it might appear that an alternative will certainly not negatively affect learnability.

However, it might well be possible that too many design alternatives can cause

confusion among language learners. It might also prevent them from memorising

one approach to model an aspect as they to remember both valid approaches (and end

up forgetting both). Another difficulty here is that it might negatively affect commu-

nication between different language users in case both prefer different approaches

and are unable to reach an agreement on which style to apply in the future. In the

worst case, such a situation might even risk the benefit of improved communication

between software and domain experts (for whom the chance of having dissenting

style preference might be especially high). Another aspect in this regard is the

support provided by auto-completion tools which might also be weakened in case

that too many suggestions clutter the IDE at a particular point in the program.

For these reasons it seems worthwhile to empirically investigate on the effects

the existence of synonymous modelling approaches has on the usability of a language.

With such an investigation it would be possible to answer the question of a) whether

such alternatives have an innate negative effect on the learnability of a language,

and b) whether this effect is extenuated or even exacerbated by the application of

modern IDEs that provide code completion mechanics. Finally, it would be highly

interesting to investigate on possibly negative effects on cooperation. To this end, an

experiment could be conducted, in which two different groups are introduced to the

language. Both groups are taught different approaches. In a controlled experiment,

a given modelling task is to be solved for which participants have to work in teams

with some teams being formed of members from the same group and some teams

with members from the two different groups. It will then be investigated whether

the teams formed of members from the same learning group perform better than

those formed of participants from two different learning groups.

8.3.6.3 Effects of a graphical web-editor on the usability of the language

As of writing this thesis, a student from THM is currently working on his Master’s

thesis in which he aims at the creation of a web-editor with graphical modelling

255

CHAPTER 8. CONCLUSION

elements based on the Athos meta-model. This approach is similar to the one

presented by Taillandier et al. (2019a) in which GAMA is based on the meta-model

of the textual GAML language. The thesis also aims at carving-out an approach to

formally evaluate the benefits brought about by the graphical modelling capabilities.

The thesis is in a very early stage and it will have to be seen to what extend Athos

will benefit from the achieved results.

8.3.7 Application by domain experts in the field

The two controlled experiments conducted in the scope of this thesis were performed

with a population of students. While this is in fact a common practice found in most

controlled experiments conducted in the domain of empirical software engineering

(Sjoeberg et al., 2005), Athos will have to be tried and tested by real domain experts

from the field of traffic simulation and transport optimisation. Being able to gather a

sample population of at least 10 to 15 domain experts from all over the world would

increase the generalisability of obtained results to the targeted user group of Athos.

As domain experts cannot be expected to have too much free time at their disposal,

the survey to which real domain experts will be invited will have to be considerably

shorter than the ones this thesis reported on. Most likely, these surveys will also

have to be conducted online. As was mentioned in Section 8.3.6.3, there is currently

a student working on his Master’s thesis which aims at developing a concept for a

browser-based survey on the usability of Athos among experts from the domain of

traffic and transportation optimisation. However, the student just recently set out to

develop the necessary tools to make Athos operate in a browser-based environment

which may then be modified in order to conduct online experiments.

256

Bibliography

Alaca, Omer Faruk, Baris Tekin Tezel, Moharram Challenger, Miguel Goulão, Vasco

Amaral and Geylani Kardas (2021). ‘AgentDSM-Eval: A framework for the evalu-

ation of domain-specific modeling languages for multi-agent systems’. In: Com-

puter Standards & Interfaces 76, p. 103513. DOI: 10.1016/j.csi.2021.103513.

Albuquerque, Diego, Bruno Cafeo, Alessandro Garcia, Simone Barbosa, Silvia Ab-

rahão and António Ribeiro (2015). ‘Quantifying usability of domain-specific lan-

guages: An empirical study on software maintenance’. In: Journal of Systems

and Software 101, pp. 245–259. DOI: 10.1016/j.jss.2014.11.051.

All the Research (2021). Last Mile Delivery Market: by Vehicle (Light Duty Vehicle,

Medium Duty Vehicle, Heavy Duty Vehicle), by Cargo (Dry Goods, Postal, Liquid

Goods), by End User (Chemical, Pharmaceutical and Healthcare, FMCG, E-

Commerce) by Region (North America, Europe, Asia-pacific, Rest of the World):

Global Forecasts 2021 To 2027. Ed. by All the Research. URL: https://www.

alltheresearch.com/report/755/last-mile-delivery-market (visited on

17/09/2021).

Atkinson, C. and T. Kuhne (2003). ‘Model-driven development: a metamodeling

foundation’. In: IEEE Software 20.5, pp. 36–41. DOI: 10.1109/MS.2003.1231149.

Axelrod, Robert (1997). ‘Advancing the art of simulation in the social sciences’. In:

Simulating Social Phenomena. Ed. by Rosaria Conte, Rainer Hegselmann and

Pietro Terna. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 21–40. DOI:

10.1007/978-3-662-03366-1_2.

257

https://doi.org/10.1016/j.csi.2021.103513
https://doi.org/10.1016/j.jss.2014.11.051
https://www.alltheresearch.com/report/755/last-mile-delivery-market
https://www.alltheresearch.com/report/755/last-mile-delivery-market
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1007/978-3-662-03366-1_2

BIBLIOGRAPHY

Baldacci, Roberto, Maria Battarra and Daniele Vigo (2008). ‘Routing a Heterogen-

eous Fleet of Vehicles’. In: The Vehicle Routing Problem: Latest Advances and

New Challenges. Ed. by Bruce Golden, S. Raghavan and Edward Wasil. Vol. 43.

Operations Research/Computer Science Interfaces. Boston, MA: Springer US,

pp. 3–27. DOI: 10.1007/978-0-387-77778-8_1.

Ballare, Sudheer and Jane Lin (2020). ‘Investigating the use of microhubs and

crowdshipping for last mile delivery’. In: Transportation Research Procedia 46.6,

pp. 277–284. DOI: 10.1016/j.trpro.2020.03.191.

Balmer, Michael, Marcel Rieser, Konrad Meister, David Charypar, Nicolas Lefebvre

and Kai Nagel (2009). ‘MATSim-T’. In: Multi-Agent Systems for Traffic and

Transportation Engineering. Ed. by J. Davim, Ana Bazzan and Franziska Klügl.

Advances in Mechatronics and Mechanical Engineering. IGI Global, pp. 57–78.

DOI: 10.4018/978-1-60566-226-8.ch003.

Bandini, Stefania, Sara Manzoni and Giuseppe Vizzari (2009). ‘Agent Based Model-

ing and Simulation: An Informatics Perspective’. In: Journal of Artificial Societies

and Social Simulation 12.4, p. 4. ISSN: 1460-7425. URL: http://jasss.soc.

surrey.ac.uk/12/4/4.html.

Barceló, Jaume (2010). ‘Models, Traffic Models, Simulation, and Traffic Simulation’.

In: Fundamentals of Traffic Simulation. Ed. by Jaume Barceló. New York, NY:

Springer New York, pp. 1–62. DOI: 10.1007/978-1-4419-6142-6_1.

Barisic, Ankica, Vasco Amaral and Miguel Goulao (2012a). ‘Usability Evaluation

of Domain-Specific Languages’. In: 2012 Eighth International Conference on

the Quality of Information and Communications Technology (QUATIC). Ed. by

João Pascoal Faria. Piscataway, NJ: IEEE, pp. 342–347. DOI: 10.1109/QUATIC.

2012.63.

Barisic, Ankica, Vasco Amaral, Miguel Goulao and Bruno Barroca (2012b). ‘How

to reach a usable DSL? Moving toward a Systematic Evaluation: Electronic

Communications of the EASST, Volume 50: Multi-Paradigm Modeling 2011’. In:

Electronic Communication of The European Association of Software Science and

Technology 50. DOI: 10.14279/tuj.eceasst.50.741.

258

https://doi.org/10.1007/978-0-387-77778-8_1
https://doi.org/10.1016/j.trpro.2020.03.191
https://doi.org/10.4018/978-1-60566-226-8.ch003
http://jasss.soc.surrey.ac.uk/12/4/4.html
http://jasss.soc.surrey.ac.uk/12/4/4.html
https://doi.org/10.1007/978-1-4419-6142-6_1
https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.14279/tuj.eceasst.50.741

BIBLIOGRAPHY

Barišic, Ankica, Vasco Amaral, Miguel Goulao and Bruno Barroca (2011). ‘Quality

in use of dsls: Current evaluation methods’. In: Proceedings of the 3rd INForum-

Simpósio de Informática (INForum2011).

Barišic, Ankica, Vasco Amaral, Miguel Goulão and Bruno Barroca (2014). ‘Evaluating

the usability of domain-specific languages’. In: Software Design and Development:

Concepts, Methodologies, Tools, and Applications. IGI Global, pp. 2120–2141. DOI:

10.4018/978-1-4666-4301-7.ch098.

Bazzan, Ana L. C. and Franziska Klügl (2014). ‘A review on agent-based technology

for traffic and transportation’. In: The Knowledge Engineering Review 29.3,

pp. 375–403. DOI: 10.1017/S0269888913000118.

Bazzan, Ana L.C., Milton Heinen and Maicon de Brito do Amarante (2015). ‘ITSUMO:

An Agent-Based Simulator for Intelligent Transportation Systems’. In: Advances

in Artificial Transportation Systems and Simulation. Boston: Academic Press,

pp. 1–20. DOI: 10.1016/B978-0-12-397041-1.00001-7.

Bettini, Lorenzo (2016). Implementing domain-specific languages with Xtext and

Xtend: Learn how to implement a DSL with Xtext and Xtend using easy-to-

understand examples and best practices. Community experience distilled. Birm-

ingham: Packt Publishing. ISBN: 9781786464965. URL: http://lib.myilibrary.

com/detail.asp?ID=951754.

Borenstein, David Bruce (2015). ‘Nanoverse: A constraints-based declarative frame-

work for rapid agent-based modeling’. In: Proceedings of the 2015 Winter Simula-

tion Conference. Ed. by Levent Yilmaz. IEEE, pp. 206–217. DOI: 10.1109/WSC.

2015.7408165.

Borshchev, Andrei and Alexei Filippov (2004). ‘From system dynamics and discrete

event to practical agent based modeling: reasons, techniques, tools’. In: Proceed-

ings of the 22nd international conference of the system dynamics society. Vol. 22,

pp. 25–29.

Boysen, Nils, Stefan Fedtke and Stefan Schwerdfeger (2021). ‘Last-mile delivery

concepts: a survey from an operational research perspective’. In: OR Spectrum

43.1, pp. 1–58. DOI: 10.1007/s00291-020-00607-8.

259

https://doi.org/10.4018/978-1-4666-4301-7.ch098
https://doi.org/10.1017/S0269888913000118
https://doi.org/10.1016/B978-0-12-397041-1.00001-7
http://lib.myilibrary.com/detail.asp?ID=951754
http://lib.myilibrary.com/detail.asp?ID=951754
https://doi.org/10.1109/WSC.2015.7408165
https://doi.org/10.1109/WSC.2015.7408165
https://doi.org/10.1007/s00291-020-00607-8

BIBLIOGRAPHY

Brambilla, Marco, Jordi Cabot and Manuel Wimmer (2012). Model-driven software

engineering in practice. Vol. #1. Synthesis lectures on software engineering. [San

Rafael, Calif.]: Morgan & Claypool. ISBN: 9781608458820.

Bratman, Michael (1987). Intention, plans, and practical reason. Cambridge, Mass.

Harvard University Press. ISBN: 0674458184.

Bresciani, Paolo, Anna Perini, Paolo Giorgini, Fausto Giunchiglia and John Mylo-

poulos (2004). ‘Tropos: An Agent-Oriented Software Development Methodology’.

In: Autonomous Agents and Multi-Agent Systems 8.3, pp. 203–236. DOI: 10.1023/

B:AGNT.0000018806.20944.ef.

BSI (2001). Information technology. Software product quality. London. DOI: 10.3403/

02304484.

BSI, (2011). Systems and software engineering. Systems and software quality require-

ments and evaluation (SQuaRE). System and software quality models. London.

DOI: 10.3403/30215101.

Busch, F. and G. Kruse (2001). ‘MOTION for SITRAFFIC - a modern approach

to urban traffic control’. In: ITSC 2001. 2001 IEEE Intelligent Transportation

Systems. Proceedings (Cat. No.01TH8585), pp. 61–64. DOI: 10.1109/ITSC.2001.

948630.

Cabot, Jordi and Martin Gogolla (2012a). ‘Object Constraint Language (OCL): A

Definitive Guide’. In: Formal Methods for Model-Driven Engineering: 12th Inter-

national School on Formal Methods for the Design of Computer, Communication,

and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced

Lectures. Ed. by Marco Bernardo, Vittorio Cortellessa and Alfonso Pierantonio.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 58–90. DOI: 10.1007/978-3-

642-30982-3_3.

Cabot, Jordi and Martin Gogolla (2012b). ‘Object Constraint Language (OCL): A

Definitive Guide’. In: Formal Methods for Model-Driven Engineering: 12th Inter-

national School on Formal Methods for the Design of Computer, Communication,

and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced

Lectures. Ed. by Marco Bernardo, Vittorio Cortellessa and Alfonso Pierantonio.

260

https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.3403/02304484
https://doi.org/10.3403/02304484
https://doi.org/10.3403/30215101
https://doi.org/10.1109/ITSC.2001.948630
https://doi.org/10.1109/ITSC.2001.948630
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3

BIBLIOGRAPHY

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 58–90. DOI: 10.1007/978-3-

642-30982-3_3.

Cachero, Cristina, Santiago Meliá and Jesús M. Hermida (2019). ‘Impact of model

notations on the productivity of domain modelling: An empirical study’. In:

Information and Software Technology 108, pp. 78–87. DOI: 10.1016/j.infsof.

2018.12.005.

Carley, K. M., D. B. Fridsma, E. Casman, A. Yahja, N. Altman, Li-Chiou Chen, B.

Kaminsky and D. Nave (2006). ‘BioWar: Scalable agent-based model of bioattacks’.

In: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and

Humans 36.2, pp. 252–265. DOI: 10.1109/TSMCA.2005.851291.

Challenger, Moharram, Geylani Kardas and Bedir Tekinerdogan (2016). ‘A system-

atic approach to evaluating domain-specific modeling language environments

for multi-agent systems’. In: Software Quality Journal 24.3, pp. 755–795. DOI:

10.1007/s11219-015-9291-5.

Chan, Wai Kin Victor, Young-Jun Son and Charles M. Macal (2010). ‘Agent-based

simulation tutorial - simulation of emergent behavior and differences between

agent-based simulation and discrete-event simulation’. In: Proceedings of the

2010 Winter Simulation Conference. IEEE, pp. 135–150. DOI: 10.1109/WSC.2010.

5679168.

Clark, Jim and Gene Daigle (1997). ‘The importance of simulation techniques in

ITS research and analysis’. In: Proceedings of the 29th conference on Winter

simulation - WSC ’97. Ed. by Sigrún Andradóttir, Kevin J. Healy, David H.

Withers and Barry L. Nelson. New York, New York, USA: ACM Press, pp. 1236–

1243. DOI: 10.1145/268437.268766.

Cleaveland, J. C. (1988). ‘Building application generators’. In: IEEE Software 5.4,

pp. 25–33. DOI: 10.1109/52.17799.

Cordeau, Jean-François, Gilbert Laporte, Martin W.P. Savelsbergh and Daniele

Vigo (2007). ‘Chapter 6 Vehicle Routing’. In: Transportation. Vol. 14. Handbooks

in Operations Research and Management Science. Elsevier, pp. 367–428. DOI:

10.1016/S0927-0507(06)14006-2.

261

https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1016/j.infsof.2018.12.005
https://doi.org/10.1016/j.infsof.2018.12.005
https://doi.org/10.1109/TSMCA.2005.851291
https://doi.org/10.1007/s11219-015-9291-5
https://doi.org/10.1109/WSC.2010.5679168
https://doi.org/10.1109/WSC.2010.5679168
https://doi.org/10.1145/268437.268766
https://doi.org/10.1109/52.17799
https://doi.org/10.1016/S0927-0507(06)14006-2

BIBLIOGRAPHY

Cuadrado, Jesús Sánchez, Javier Luis Cánovas Izquierdo and Jesús Garc\’\ia

Molina (2013). ‘Comparison between internal and external DSLs via RubyTL

and Gra2MoL’. In: Formal and Practical Aspects of Domain-Specific Languages:

Recent Developments: Recent Developments, pp. 109–131. DOI: 10.4018/978-1-

4666-2092-6.ch005.

Dalal, Sandeep and Rajender Singh Chhillar (2012). ‘Case Studies of Most Common

and Severe Types of Software System Failure’. In: International Journal of

Advanced Research in Computer Science and Software Engineering 2.8, pp. 341–

347. ISSN: 2277 128X.

Dantzig, G. B. and J. H. Ramser (1959). ‘The Truck Dispatching Problem’. In:

Management Science 6.1, pp. 80–91. ISSN: 00251909, 15265501. URL: http:

//www.jstor.org/stable/2627477.

Dantzig, George, Ray Fulkerson and Selmer Johnson (1954). ‘Solution of a large-

scale traveling-salesman problem’. In: Journal of the Operations Research Society

of America 2.4, pp. 393–410.

Da Silva, Bruno Castro, Ana L. C. Bazzan, Gustavo K. Andriotti, Filipe Lopes and

Denise de Oliveira (2006). ‘ITSUMO: An Intelligent Transportation System for

Urban Mobility’. In: Innovative Internet Community Systems: 4th International

Workshop, IICS 2004, Guadalajara, Mexico, June 21-23, 2004. Revised Papers.

Ed. by Thomas Böhme, Victor M. Larios Rosillo, Helena Unger and Herwig

Unger. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 224–235. DOI: 10.

1007/11553762_22.

Davidsson, Paul, Lawrence Henesey, Linda Ramstedt, Johanna Törnquist and Fre-

drik Wernstedt (2005). ‘Agent-Based Approaches to Transport Logistics’. In:

Applications of Agent Technology in Traffic and Transportation. Ed. by Franziska

Klügl, Ana Bazzan and Sascha Ossowski. Basel: Birkhäuser Basel, pp. 1–15. DOI:

10.1007/3-7643-7363-6_1.

Dennett, D. C. (1987). The Intentional Stance. A Bradford book. MIT Press. ISBN:

9780262040938. URL: https://books.google.de/books?id=MXbenQEACAAJ.

262

https://doi.org/10.4018/978-1-4666-2092-6.ch005
https://doi.org/10.4018/978-1-4666-2092-6.ch005
http://www.jstor.org/stable/2627477
http://www.jstor.org/stable/2627477
https://doi.org/10.1007/11553762_22
https://doi.org/10.1007/11553762_22
https://doi.org/10.1007/3-7643-7363-6_1
https://books.google.de/books?id=MXbenQEACAAJ

BIBLIOGRAPHY

De Sousa, Luís Moreira and Alberto Rodrigues da Silva (2018). ‘Usability evaluation

of the domain specific language for spatial simulation scenarios’. In: Cogent

Engineering 5.1. Ed. by Stefania Tomasiello, p. 1436889. DOI: 10.1080/23311916.

2018.1436889.

Do Nascimento, Leandro Marques, Daniel Leite Viana, Paulo Silveira Am Neto,

Dhiego A. O. Martins, Vinicius Cardoso Garcia and Silvio R. L. Meira (2012).

‘A systematic mapping study on domain-specific languages’. In: Proceedings of

the 7th International Conference on Software Engineering Advances (ICSEA’12),

pp. 179–187.

Dorigo, M. and L. M. Gambardella (Apr. 1997). ‘Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem’. In: IEEE Transactions

on Evolutionary Computation 1.1, pp. 53–66. DOI: 10.1109/4235.585892.

Dwarakanath, Anurag, Dipin Era, Aditya Priyadarshi, Neville Dubash and Sanjay

Podder (2017). ‘Accelerating Test Automation through a Domain Specific Lan-

guage’. In: 2017 IEEE International Conference on Software Testing, Verification

and Validation (ICST), pp. 460–467. DOI: 10.1109/ICST.2017.52.

Ewais, Ahmad and Olga de Troyer (2014). ‘A Usability Evaluation of Graphical Mod-

elling Languages for Authoring Adaptive 3D Virtual Learning Environments’.

In: Proceedings of the 6th International Conference on Computer Supported Edu-

cation - Volume 1. CSEDU 2014. Setubal, PRT: SCITEPRESS - Science and

Technology Publications, Lda, pp. 459–466. DOI: 10.5220/0004947204590466.

Farrenkopf, Thomas, Michael Guckert, Benjamin Hoffmann and Neil Urquhart

(2014). ‘AGADE’. In: Multiagent System Technologies. Ed. by JörgP. Müller,

Michael Weyrich and AnaL.C Bazzan. Vol. 8732. Lecture Notes in Computer

Science. Springer International Publishing, pp. 234–250. DOI: 10.1007/978-3-

319-11584-9_16.

Fellendorf, Martin and Peter Vortisch (2010). ‘Microscopic Traffic Flow Simulator

VISSIM’. In: Fundamentals of Traffic Simulation. Ed. by Jaume Barceló. Vol. 145.

International Series in Operations Research & Management Science. New York,

NY: Springer New York, pp. 63–93. DOI: 10.1007/978-1-4419-6142-6_2.

263

https://doi.org/10.1080/23311916.2018.1436889
https://doi.org/10.1080/23311916.2018.1436889
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/ICST.2017.52
https://doi.org/10.5220/0004947204590466
https://doi.org/10.1007/978-3-319-11584-9_16
https://doi.org/10.1007/978-3-319-11584-9_16
https://doi.org/10.1007/978-1-4419-6142-6_2

BIBLIOGRAPHY

Flood, Merrill M. (1956). ‘The Traveling-Salesman Problem’. In: Operations Research

4.1, pp. 61–75. URL: http://www.jstor.org/stable/167517.

ForterTeam (2019). Shopping Cart Second Thoughts: A new study of 2,000 Americ-

ans found... Ed. by Forter. URL: https://www.forter.com/blog/infographic-

customers-wont-tolerate-friction-filled-checkout/ (visited on 22/09/2021).

Fowler, Martin and Rebecca Parsons (2011). Domain-specific languages. A Mar-

tin Fowler signature book. Upper Saddle River, NJ, Boston and Indianapolis:

Addison-Wesley. ISBN: 9780321712943.

Al-Furhud, Maha Ata and Zakir Hussain Ahmed (2020). ‘Genetic algorithms for the

multiple travelling salesman problem’. In: International Journal of Advanced

Computer Science and Applications (IJACSA) 11.7, pp. 553–560. DOI: 10.14569/

IJACSA.2020.0110768.

Gabriel, Pedro, Miguel Goulão and Vasco Amaral (2010). ‘Do Software Languages

Engineers Evaluate their Languages?’ In: Proceedings of the XIII Congreso

Iberoamericano en "Software Engineering" (CIbSE’2010) abs/1109.6794. DOI:

10.48550/arXiv.1109.6794.

Ghosh, Debasish (2011a). ‘DSL for the uninitiated’. In: Communications of the ACM

54.7, pp. 44–50. DOI: 10.1145/1965724.1965740.

Ghosh, Debasish (2011b). DSLs in action. Greenwich, Conn: Manning. ISBN: 9781935182450.

Hahn, Christian (2008). ‘A Domain Specific Modeling Language for Multiagent Sys-

tems’. In: Proceedings of the 7th International Joint Conference on Autonomous

Agents and Multiagent Systems - Volume 1. AAMAS ’08. Richland, SC: Interna-

tional Foundation for Autonomous Agents and Multiagent Systems, pp. 233–240.

DOI: 10.5555/1402383.1402420.

Hausberger, Stefan (2003). Simulation of real world vehicle exhaust emissions: Zugl.:

Graz, Univ., Habil.-Schr., 2003. Vol. 82. VKM-THD Mitteilungen. Graz: Verl. der

Techn. Univ. ISBN: 3901351744.

Hermans, Felienne, Martin Pinzger and Arie van Deursen (2009). ‘Domain-Specific

Languages in Practice: A User Study on the Success Factors’. In: Model Driven

Engineering Languages and Systems. Ed. by Andy Schürr and Bran Selic. Berlin,

264

http://www.jstor.org/stable/167517
https://www.forter.com/blog/infographic-customers-wont-tolerate-friction-filled-checkout/
https://www.forter.com/blog/infographic-customers-wont-tolerate-friction-filled-checkout/
https://doi.org/10.14569/IJACSA.2020.0110768
https://doi.org/10.14569/IJACSA.2020.0110768
https://doi.org/10.48550/arXiv.1109.6794
https://doi.org/10.1145/1965724.1965740
https://doi.org/10.5555/1402383.1402420

BIBLIOGRAPHY

Heidelberg: Springer Berlin Heidelberg, pp. 423–437. DOI: 10.1007/978-3-642-

04425-0_33.

Hevner, A. R., S. T. March, J. Park and S. Ram (2004). ‘Design Science in Information

Systems Research’. In: MIS Quarterly 28.1, pp. 75–105. ISSN: 02767783.

Hevner, Alan R., Richard C. Linger, Rosann W. Collins, Mark G. Pleszkoch, Stacy

J. Prowell and Walton Gwendolyn H. (2005). The impact of function extraction

technology on next-generation software engineering. Tech. rep. CMU/SEI-2005-TR-

015. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.

DOI: 10.1184/R1/6585140.v1.

Hirschmann, Karin, Michael Zallinger, Martin Fellendorf and Stefan Hausberger

(2010). ‘A new method to calculate emissions with simulated traffic conditions’.

In: 13th International IEEE Conference on Intelligent Transportation Systems,

pp. 33–38. DOI: 10.1109/ITSC.2010.5625030.

Hoffmann, B., M. Guckert, T. Farrenkopf, K. Chalmers and N. Urquhart (2018a). ‘A

Domain-Specific Language For Routing Problems’. In: ed. by Lars Nolle, Alexan-

dra Burger, Jens Werner Christoph Tholen and Jens Wellhausen. 32nd European

Conference on Modelling and Simulation, Wilhelmshaven, Germany, May 22nd –

May 265h, 2018. European Council for Modeling and Simulation, pp. 262–268.

DOI: 10.7148/2018-0262.

Hoffmann, Benjamin, Kevin Chalmers, Neil Urquhart, Thomas Farrenkopf and Mi-

chael Guckert (2018b). ‘Towards Reducing Complexity of Multi-agent Simulations

by Applying Model-Driven Techniques’. In: Advances in Practical Applications

of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. Ed. by

Yves Demazeau, Bo An, Javier Bajo and Antonio Fernández-Caballero. Cham:

Springer International Publishing, pp. 187–199. DOI: 10.1007/978-3-319-

94580-4_15.

Hoffmann, Benjamin, Kevin Chalmers, Neil Urquhart and Michael Guckert (2019a).

‘Athos - A Model Driven Approach to Describe and Solve Optimisation Prob-

lems: An Application to the Vehicle Routing Problem with Time Windows’. In:

Proceedings of the 4th ACM International Workshop on Real World Domain

265

https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.1184/R1/6585140.v1
https://doi.org/10.1109/ITSC.2010.5625030
https://doi.org/10.7148/2018-0262
https://doi.org/10.1007/978-3-319-94580-4_15
https://doi.org/10.1007/978-3-319-94580-4_15

BIBLIOGRAPHY

Specific Languages. RWDSL ’19. New York, NY, USA: ACM, pp. 1–10. DOI:

10.1145/3300111.3300114.

Hoffmann, Benjamin, Michael Guckert, Kevin Chalmers and Neil Urquhart (2019b).

‘Simulating Dynamic Vehicle Routing Problems With Athos’. In: ECMS 2019 Pro-

ceedings edited by Mauro Iacono, Francesco Palmieri, Marco Gribaudo, Massimo

Ficco. ECMS, pp. 296–302. DOI: 10.7148/2019-0296.

Hoffmann, Benjamin, Neil Urquhart, Kevin Chalmers and Michael Guckert (2020).

‘Athos: An Extensible DSL for Model Driven Traffic and Transport Simulation’.

In: Modellierung 2020. Ed. by Dominik Bork, Dimitris Karagiannis and Heinrich

C. Mayr. Bonn: Gesellschaft für Informatik e.V, pp. 141–156.

Hoffmann, Benjamin, Neil Urquhart, Kevin Chalmers and Michael Guckert (2022).

‘An empirical evaluation of a novel domain-specific language – modelling vehicle

routing problems with Athos’. In: Empirical software engineering 27.7, p. 180.

DOI: 10.1007/s10664-022-10210-w.

Holland, John H. (1992). ‘Complex adaptive systems’. In: Daedalus 121.1, pp. 17–30.

URL: http://www.jstor.org/stable/20025416.

Ingibergsson, Johann Thor Mogensen, Stefan Hanenberg, Joshua Sunshine and

Ulrik Pagh Schultz (2018). ‘Experience Report: Studying the Readability of a

Domain Specific Language’. In: Proceedings of the 33rd Annual ACM Symposium

on Applied Computing. SAC ’18. New York, NY, USA: Association for Computing

Machinery, pp. 2030–2033. DOI: 10.1145/3167132.3167436.

Iung, Aníbal, João Carbonell, Luciano Marchezan, Elder Rodrigues, Maicon Bern-

ardino, Fabio Paulo Basso and Bruno Medeiros (2020). ‘Systematic mapping

study on domain-specific language development tools’. In: Empirical Software

Engineering 25.5, pp. 4205–4249. DOI: 10.1007/s10664-020-09872-1.

Johanson, Arne N. and Wilhelm Hasselbring (2017). ‘Effectiveness and efficiency of

a domain-specific language for high-performance marine ecosystem simulation: a

controlled experiment’. In: Empirical Software Engineering 22.4, pp. 2206–2236.

DOI: 10.1007/s10664-016-9483-z.

266

https://doi.org/10.1145/3300111.3300114
https://doi.org/10.7148/2019-0296
https://doi.org/10.1007/s10664-022-10210-w
http://www.jstor.org/stable/20025416
https://doi.org/10.1145/3167132.3167436
https://doi.org/10.1007/s10664-020-09872-1
https://doi.org/10.1007/s10664-016-9483-z

BIBLIOGRAPHY

Johnsson, Mikael and Alexancer Olsson (2016). ‘Xtext language-based editor’. In:

Project in Computer Science - EDAN70. URL: https://fileadmin.cs.lth.se/

cs/Education/edan70/CompilerProjects/2015/Reports/JohnssonOlsson.

pdf.

Junjie, Pan and Wang Dingwei (2006). ‘An ant colony optimization algorithm for

multiple travelling salesman problem’. In: First International Conference on

Innovative Computing, Information and Control-Volume I (ICICIC’06). Vol. 1,

pp. 210–213. DOI: 10.1109/ICICIC.2006.40.

Kahraman, Gökhan and Semih Bilgen (2015). ‘A framework for qualitative as-

sessment of domain-specific languages’. In: Software & Systems Modeling 14.4,

pp. 1505–1526. DOI: 10.1007/s10270-013-0387-8.

Kardas, Geylani, Baris Tekin Tezel and Moharram Challenger (2018). ‘Domain–

specific modelling language for belief–desire–intention software agents’. In: IET

Software 12.4, pp. 356–364. DOI: 10.1049/iet-sen.2017.0094.

Kardoš, Martin and Matilda Drozdová (2010). ‘Analytical method of CIM to PIM

transformation in Model Driven Architecture (MDA)’. In: Journal of information

and organizational sciences 34.1, pp. 89–99.

Karsai, Gabor, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler

and Steven Völkel (2014). ‘Design Guidelines for Domain Specific Languages’. In:

ArXiv abs/1409.2378, pp. 7–13.

Korte, B. (2008). ‘The Traveling Salesman Problem’. In: Combinatorial Optimization:

Theory and Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 527–

562. DOI: 10.1007/978-3-540-71844-4_21.

Kosar, Tomaž, Sudev Bohra and Marjan Mernik (2016). ‘Domain-Specific Languages:

A Systematic Mapping Study’. In: Information and Software Technology 71,

pp. 77–91. DOI: 10.1016/j.infsof.2015.11.001.

Kosar, Tomaž, Sašo Gaberc, Jeffrey C. Carver and Marjan Mernik (2018). ‘Program

comprehension of domain-specific and general-purpose languages: replication of a

family of experiments using integrated development environments’. In: Empirical

Software Engineering 23.5, pp. 2734–2763. DOI: 10.1007/s10664-017-9593-2.

267

https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2015/Reports/JohnssonOlsson.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2015/Reports/JohnssonOlsson.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2015/Reports/JohnssonOlsson.pdf
https://doi.org/10.1109/ICICIC.2006.40
https://doi.org/10.1007/s10270-013-0387-8
https://doi.org/10.1049/iet-sen.2017.0094
https://doi.org/10.1007/978-3-540-71844-4_21
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1007/s10664-017-9593-2

BIBLIOGRAPHY

Kosar, Tomaž, Marjan Mernik and Jeffrey C. Carver (2012). ‘Program comprehension

of domain-specific and general-purpose languages: comparison using a family

of experiments’. In: Empirical Software Engineering 17.3, pp. 276–304. DOI:

10.1007/s10664-011-9172-x.

Kosar, Tomaž, Nuno Oliveira, Marjan Mernik, Maria João Pereira, Matej Crepinsek,

Daniela Cruz and Pedro Henriques (2010). ‘Comparing general-purpose and

domain-specific languages: An empirical study’. In: ComSIS–Computer Science

an Information Systems Journal 7.2, pp. 247–264. DOI: 10.2298/CSIS1002247K.

Krajzewicz, Daniel, Jakob Erdmann, Michael Behrisch and Laura Bieker (2012).

‘Recent development and applications of SUMO-Simulation of Urban MObility’.

In: International Journal on Advances in Systems and Measurements 5.3, pp. 128–

138.

Laporte, Gilbert and Yves Nobert (1987). ‘Exact algorithms for the vehicle routing

problem’. In: North-Holland Mathematics Studies. North-Holland Mathematics

Studies 132. Ed. by Silvano Martello, Gilbert Laporte, Michel Minoux and Celso

Ribeiro, pp. 147–184. DOI: 10.1016/S0304-0208(08)73235-3.

Larrañaga, P., C.M.H. Kuijpers, R. H. Murga, I. Inza and S. Dizdarevic (1999).

‘Genetic Algorithms for the Travelling Salesman Problem: A Review of Repres-

entations and Operators’. In: Artificial Intelligence Review 13.2, pp. 129–170.

DOI: 10.1023/A:1006529012972.

Lim, Stanley Frederick W.T., Xin Jin and Jagjit Singh Srai (2018). ‘Consumer-

driven e-commerce’. In: International Journal of Physical Distribution & Logistics

Management 48.3, pp. 308–332. DOI: 10.1108/IJPDLM-02-2017-0081.

Lind, Jürgen (2001). ‘Issues in agent-oriented software engineering’. In: AOSE

2000. Lecture Notes in Computer Science. Ed. by Paolo Ciancarini and Michael J.

Wooldridge. Vol. 1957. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 45–58.

DOI: 10.1007/3-540-44564-1_3.

Lu, Ruqian and Zhi Jin (2000). ‘Domain modeling-based software engineering: a

formal approach’. In: vol. 8. Springer Science & Business Media, p. 123. ISBN:

9781461544876.

268

https://doi.org/10.1007/s10664-011-9172-x
https://doi.org/10.2298/CSIS1002247K
https://doi.org/10.1016/S0304-0208(08)73235-3
https://doi.org/10.1023/A:1006529012972
https://doi.org/10.1108/IJPDLM-02-2017-0081
https://doi.org/10.1007/3-540-44564-1_3

BIBLIOGRAPHY

Macal, C. M. (2016). ‘Everything you need to know about agent-based modelling

and simulation’. In: Journal of Simulation 10.2, pp. 144–156. DOI: 10.1057/jos.

2016.7.

Macal, C. M. and M. J. North (2010). ‘Tutorial on agent-based modelling and simula-

tion’. In: Journal of Simulation 4.3, pp. 151–162. DOI: 10.1057/jos.2010.3.

Maidstone, Robert (2012). ‘Discrete event simulation, system dynamics and agent

based simulation: Discussion and comparison’. In: System 1.6, pp. 1–6.

McKnight, Patrick E. and Julius Najab (2010). ‘Mann-Whitney U Test’. In: The

Corsini Encyclopedia of Psychology. Ed. by Irving B. Weiner and W. Edward

Craighead. Vol. 18. Hoboken, NJ, USA: John Wiley & Sons, Inc, p. 50. DOI:

10.1002/9780470479216.corpsy0524.

Meliá, Santiago, Cristina Cachero, Jesús M. Hermida and Enrique Aparicio (2016).

‘Comparison of a textual versus a graphical notation for the maintainability of

MDE domain models: an empirical pilot study’. In: Software Quality Journal

24.3, pp. 709–735. DOI: 10.1007/s11219-015-9299-x.

Meliá, Santiago, Jaime Gómez, Sandy Pérez and Oscar Díaz (2008). ‘A Model-

Driven Development for GWT-Based Rich Internet Applications with OOH4RIA’.

In: 2008 Eighth International Conference on Web Engineering, pp. 13–23. DOI:

10.1109/ICWE.2008.36.

Mernik, Marjan, Jan Heering and Anthony M. Sloane (2005). ‘When and How to

Develop Domain-specific Languages’. In: ACM Comput. Surv. 37.4, pp. 316–344.

DOI: 10.1145/1118890.1118892.

Miller, Clair E., Albert W. Tucker and Richard A. Zemlin (1960). ‘Integer program-

ming formulation of traveling salesman problems’. In: Journal of the ACM

(JACM) 7.4, pp. 326–329. DOI: 10.1145/321043.321046.

Mock, Kenrick J, J. Ward Testa, Cameron Taylor, Heather Koyuk, Jessica Coyle, Rus-

sell Waggoner and Kelly Newman (2007). ‘Final Report: An Agent-Based Model of

Predator-Prey Relationships Between Transient Killer Whales and Other Marine

Mammals: University of Alaska Anchorage, Anchorage’. In: URL: http://www.

269

https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1057/jos.2010.3
https://doi.org/10.1002/9780470479216.corpsy0524
https://doi.org/10.1007/s11219-015-9299-x
https://doi.org/10.1109/ICWE.2008.36
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/321043.321046
http://www.cse.uaa.alaska.edu/~urps/files/136/Mock_Testa_MMCFinalReport.pdf
http://www.cse.uaa.alaska.edu/~urps/files/136/Mock_Testa_MMCFinalReport.pdf

BIBLIOGRAPHY

cse.uaa.alaska.edu/~urps/files/136/Mock_Testa_MMCFinalReport.pdf

(visited on 10/06/2017).

North, Michael J. and Charles M. Macal (2009). ‘Agent Based Modeling and Com-

puter Languages’. In: Encyclopedia of Complexity and Systems Science. Ed.

by Robert A. Meyers. New York, NY: Springer New York, pp. 131–148. DOI:

10.1007/978-0-387-30440-3_8.

North, Michael J. et al. (2010). ‘Multiscale agent-based consumer market modeling’.

In: Complexity 15.5, pp. 37–47. DOI: 10.1002/cplx.20304.

Ombuki, Beatrice, Brian J. Ross and Franklin Hanshar (2006). ‘Multi-Objective

Genetic Algorithms for Vehicle Routing Problem with Time Windows’. In: Applied

Intelligence 24.1, pp. 17–30. DOI: 10.1007/s10489-006-6926-z.

OMG (2014). Object Constraint Language: Version 2.4. Ed. by Object Management

Group. URL: http://www.omg.org/spec/OCL/2.4.

OMG (2017). OMG Unified Modeling Language. URL: https://www.omg.org/spec/

UML/2.5.1/PDF.

Orman, A. J. and H. P. Williams (2007). ‘A Survey of Different Integer Programming

Formulations of the Travelling Salesman Problem’. In: Optimisation, Econometric

and Financial Analysis. Ed. by Erricos John Kontoghiorghes and Cristian Gatu.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 91–104. DOI: 10.1007/3-

540-36626-1_5.

Padgham, Lin and Michael Winikoff (2005). ‘Prometheus’. In: Agent-Oriented Meth-

odologies. Ed. by Brian Henderson-Sellers and Paolo Giorgini. IGI Global, pp. 107–

135. DOI: 10.4018/978-1-59140-581-8.ch005.

Palmer, R. G., W. Brian Arthur, John H. Holland and Blake LeBaron (1999). ‘An

artificial stock market’. In: Artificial Life and Robotics 3.1, pp. 27–31. DOI: 10.

1007/BF02481484.

Pan, Xiaoshan, Charles S. Han, Ken Dauber and Kincho H. Law (2007). ‘A multi-

agent based framework for the simulation of human and social behaviors during

emergency evacuations’. In: AI & SOCIETY 22.2, pp. 113–132. DOI: 10.1007/

s00146-007-0126-1.

270

http://www.cse.uaa.alaska.edu/~urps/files/136/Mock_Testa_MMCFinalReport.pdf
http://www.cse.uaa.alaska.edu/~urps/files/136/Mock_Testa_MMCFinalReport.pdf
http://www.cse.uaa.alaska.edu/~urps/files/136/Mock_Testa_MMCFinalReport.pdf
https://doi.org/10.1007/978-0-387-30440-3_8
https://doi.org/10.1002/cplx.20304
https://doi.org/10.1007/s10489-006-6926-z
http://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1007/3-540-36626-1_5
https://doi.org/10.1007/3-540-36626-1_5
https://doi.org/10.4018/978-1-59140-581-8.ch005
https://doi.org/10.1007/BF02481484
https://doi.org/10.1007/BF02481484
https://doi.org/10.1007/s00146-007-0126-1
https://doi.org/10.1007/s00146-007-0126-1

BIBLIOGRAPHY

Papadimitriou, Christos H. and Kenneth Steiglitz (2013). Combinatorial Optimiza-

tion: Algorithms and Complexity. Dover Books on Computer Science. Newbury-

port: Dover Publications. ISBN: 9780486402581.

Parr, Terence (2011). Language implementation patterns: Create your own domain-

specific and general programming languages. P3.0 printing, Version: 2011-7-13.

The pragmatic programmers. Raleigh, NC: The Pragmatic Bookshelf. ISBN:

9781934356456.

Parry, Hazel R. (2009). ‘Agent Based Modeling, Large Scale Simulations’. In: Encyc-

lopedia of Complexity and Systems Science. Ed. by Robert A. Meyers. New York,

NY: Springer New York, pp. 148–160. DOI: 10.1007/978-0-387-30440-3_9.

Philip Welch (2017). Developing a commercial dynamic vehicle routing system - a

case study. DOI: 10.13140/RG.2.2.14915.30247.

Pillac, Victor, Michel Gendreau, Christelle Guéret and Andrés L. Medaglia (2013). ‘A

review of dynamic vehicle routing problems’. In: European Journal of Operational

Research 225.1, pp. 1–11. DOI: 10.1016/j.ejor.2012.08.015.

Pokahr, Alexander, Lars Braubach and Kai Jander (2013). ‘The Jadex Project: Pro-

gramming Model’. In: Multiagent Systems and Applications: Volume 1:Practice

and Experience. Ed. by Maria Ganzha and Lakhmi C. Jain. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 21–53. DOI: 10.1007/978-3-642-33323-1_2.

Poltronieri, Ildevana, Allan Christopher Pedroso, Avelino Francisco Zorzo, Maicon

Bernardino and Marcia de Borba Campos (2021). ‘Is Usability Evaluation of

DSL Still a Trending Topic?’ In: Human-Computer Interaction. Theory, Methods

and Tools. Ed. by Masaaki Kurosu. Vol. 12762. Cham: Springer International

Publishing, pp. 299–317. DOI: 10.1007/978-3-030-78462-1_23.

Poltronieri, Ildevana, Avelino Francisco Zorzo, Maicon Bernardino and Marcia de

Borba Campos (2018). ‘Usa-DSL: Usability Evaluation Framework for Domain-

Specific Languages’. In: Proceedings of the 33rd Annual ACM Symposium on

Applied Computing. SAC ’18. New York, NY, USA: Association for Computing

Machinery, pp. 2013–2021. DOI: 10.1145/3167132.3167348.

271

https://doi.org/10.1007/978-0-387-30440-3_9
https://doi.org/10.13140/RG.2.2.14915.30247
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1007/978-3-642-33323-1_2
https://doi.org/10.1007/978-3-030-78462-1_23
https://doi.org/10.1145/3167132.3167348

BIBLIOGRAPHY

Poltronieri Rodrigues, Ildevana, Márcia de Borba Campos and Avelino F. Zorzo (2017).

‘Usability Evaluation of Domain-Specific Languages: A Systematic Literature

Review’. In: Human-Computer Interaction. User Interface Design, Development

and Multimodality. Ed. by Masaaki Kurosu. Cham: Springer International

Publishing, pp. 522–534. DOI: 10.1007/978-3-319-58071-5_39.

Quak, Hans and Bram Kin (2020). ‘The impact of future delivery models in last-mile

home deliveries’. In: Green Cities 2020 – 4th International Conference – Green

Logistics for Greener Cities. Szczecin, Poland.

Rao, Anand S. and Michael P. Georgeff (1991). ‘Modeling rational agents within a

BDI-architecture’. In: KR’91 91, pp. 473–484.

Sansores, Candelaria and Juan Pavón (2005). ‘Agent-Based Simulation Replication:

A Model Driven Architecture Approach’. In: MICAI 2005: Advances in Artificial

Intelligence. Ed. by Alexander Gelbukh, Álvaro de Albornoz and Hugo Terashima-

Marín. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 244–253. DOI: 10.

1007/11579427_25.

Segal, Judith (2009). ‘Software Development Cultures and Cooperation Problems:

A Field Study of the Early Stages of Development of Software for a Scientific

Community’. In: Computer Supported Cooperative Work (CSCW) 18.5, p. 581.

DOI: 10.1007/s10606-009-9096-9.

Seth Tisue and Uri Wilensky (2004). ‘Netlogo: A simple environment for modeling

complexity’. In: Proceedings of the Fifth International Conference on Complex

Systems ICCS 2004, pp. 16–21.

Shannon, Robert E. (1998). ‘Introduction to the Art and Science of Simulation’. In:

Proceedings of the 30th Conference on Winter Simulation. WSC ’98. Los Alamitos,

CA, USA: IEEE Computer Society Press, pp. 7–14. DOI: 10.1109/WSC.1998.

744892.

Sjoeberg, D.I.K., J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-K.

Liborg and A. C. Rekdal (2005). ‘A survey of controlled experiments in software

engineering’. In: IEEE Transactions on software Engineering 31.9, pp. 733–753.

DOI: 10.1109/TSE.2005.97.

272

https://doi.org/10.1007/978-3-319-58071-5_39
https://doi.org/10.1007/11579427_25
https://doi.org/10.1007/11579427_25
https://doi.org/10.1007/s10606-009-9096-9
https://doi.org/10.1109/WSC.1998.744892
https://doi.org/10.1109/WSC.1998.744892
https://doi.org/10.1109/TSE.2005.97

BIBLIOGRAPHY

Skylar Ross (March 2021). Seven Last-Mile Delivery Challenges, and How to Solve

Them. URL: https://www.supplychainbrain.com/blogs/1-think-tank/

post/32800-last-mile-delivery-challenges-and-how-to-solve-them

(visited on 22/09/2021).

Soti (2020). The last mile sprint: State of mobility in transportation and logist-

ics. Ed. by Soti Inc. URL: https://soti.net/lp/state-of-mobility-in-

transportation-and-logistics/ (visited on 23/09/2021).

Stahl, Thomas (2007). Modellgetriebene Softwareentwicklung: Techniken, Engineer-

ing, Management. 2., aktualisierte und erw. Aufl. Heidelberg: Dpunkt-Verl. ISBN:

9783898644488.

Statista (2021). Biggest challenges for logistics providers in last mile delivery in the

United States in 2020 [Graph]. Ed. by Statista. URL: https://www.statista.

com/statistics/816884/last-mile-delivery-logistics-providers-challenges/

(visited on 14/09/2021).

Steinberg, Dave (2009). EMF: Eclipse Modeling Framework. 2nd ed., Rev. and

updated. The eclipse series. Upper Saddle River, NJ: Addison-Wesley. ISBN:

9780321331885.

Sterman, John D. (2000). Business dynamics: Systems thinking and modeling for a

complex world. [Nachdr.] Boston: Irwin/McGraw-Hill. ISBN: 007238915X.

Taillandier, Patrick, Benoit Gaudou, Arnaud Grignard, Quang-Nghi Huynh, Nic-

olas Marilleau, Philippe Caillou, Damien Philippon and Alexis Drogoul (2019a).

‘Building, composing and experimenting complex spatial models with the GAMA

platform’. In: GeoInformatica 23.2, pp. 299–322. DOI: 10.1007/s10707-018-

00339-6.

Taillandier, Patrick, Arnaud Grignard, Nicolas Marilleau, Damien Philippon, Quang-

Nghi Huynh, Benoit Gaudou and Alexis Drogoul (2019b). ‘Participatory Modeling

and Simulation with the GAMA Platform’. In: Journal of Artificial Societies and

Social Simulation 22.2, p. 3. DOI: 10.18564/jasss.3964.

273

https://www.supplychainbrain.com/blogs/1-think-tank/post/32800-last-mile-delivery-challenges-and-how-to-solve-them
https://www.supplychainbrain.com/blogs/1-think-tank/post/32800-last-mile-delivery-challenges-and-how-to-solve-them
https://soti.net/lp/state-of-mobility-in-transportation-and-logistics/
https://soti.net/lp/state-of-mobility-in-transportation-and-logistics/
https://www.statista.com/statistics/816884/last-mile-delivery-logistics-providers-challenges/
https://www.statista.com/statistics/816884/last-mile-delivery-logistics-providers-challenges/
https://doi.org/10.1007/s10707-018-00339-6
https://doi.org/10.1007/s10707-018-00339-6
https://doi.org/10.18564/jasss.3964

BIBLIOGRAPHY

Thorne, David R. (2006). ‘Throughput: a simple performance index with desirable

characteristics’. In: Behavior Research Methods 38.4, pp. 569–573. DOI: 10.3758/

BF03193886.

Toth, Paolo and Daniele Vigo (2002). ‘Models, relaxations and exact approaches for

the capacitated vehicle routing problem’. In: Discrete Applied Mathematics 123.1,

pp. 487–512. DOI: 10.1016/S0166-218X(01)00351-1.

van Deursen, Arie (1997). ‘Domain-specific languages versus object-oriented frame-

works: A financial engineering case study’. In: Smalltalk and Java in Industry

and Academia, STJA’97, pp. 35–39.

van Deursen, Arie, Paul Klint, Joost Visser et al. (2000). ‘Domain-specific languages:

An annotated bibliography’. In: ACM Sigplan Notices 35.6, pp. 26–36.

Vandierendonck, André (2017). ‘A comparison of methods to combine speed and

accuracy measures of performance: A rejoinder on the binning procedure’. In:

Behavior Research Methods 49.2, pp. 653–673. DOI: 10.3758/s13428-016-0721-

5.

Vandierendonck, André (2018). ‘Further Tests of the Utility of Integrated Speed-

Accuracy Measures in Task Switching’. In: Journal of cognition 1.1, p. 8. DOI:

10.5334/joc.6.

Vangheluwe, Hans, Ximeng Sun and Eric Bodden (2007). ‘Domain-Specific Modelling

With Atom3’. In: ICSOFT (PL/DPS/KE/MUSE), pp. 298–304.

Vendrov, Ivan, Christopher Dutchyn and Nathaniel D. Osgood (2014). ‘Frabjous: A

Declarative Domain-Specific Language for Agent-Based Modeling’. In: Social

Computing, Behavioral-Cultural Modeling, and Prediction. Ed. by William G.

Kennedy, Nitin Agarwal and Shanchieh Jay Yang. Vol. 8393. Lecture notes in

computer science Information systems and application, incl. Internet/web and

HCI. Berlin: Springer International Publishing, pp. 385–392. DOI: 10.1007/978-

3-319-05579-4_47.

Visser, Eelco (2008). ‘WebDSL: A case study in domain-specific language engineering’.

In: Generative and Transformational Techniques in Software Engineering II. Ed.

274

https://doi.org/10.3758/BF03193886
https://doi.org/10.3758/BF03193886
https://doi.org/10.1016/S0166-218X(01)00351-1
https://doi.org/10.3758/s13428-016-0721-5
https://doi.org/10.3758/s13428-016-0721-5
https://doi.org/10.5334/joc.6
https://doi.org/10.1007/978-3-319-05579-4_47
https://doi.org/10.1007/978-3-319-05579-4_47

BIBLIOGRAPHY

by Ralf Lämmel, Joost Visser and João Saraiva. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 291–373. DOI: 10.1007/978-3-540-88643-3_7.

Völter, Markus and Sebastian Benz (2013). DSL engineering: Designing, imple-

menting and using domain-specific languages. [S.l.]: CreateSpace Independent

Publishing Platform. ISBN: 9781481218580.

WEF (2020). The Future of the Last-Mile Ecosystem: Transition Roadmaps for Public-

and Private-Sector Players. Ed. by World Economic Forum. Report. URL: http:

//www3.weforum.org/docs/WEF_Future_of_the_last_mile_ecosystem.pdf

(visited on 19/09/2021).

WEF (2021). Pandemic, Parcels and Public Vaccination: Envisioning the NExt Nor-

mal for the Last-Mile Ecosystem. Ed. by World Economic Forum. URL: http://

www3.weforum.org/docs/WEF_Pandemic_Parcels_and_Public_Vaccination_

report_2021.pdf (visited on 20/09/2021).

Winikoff, Michael (2005). ‘Jack™ Intelligent Agents: An Industrial Strength Plat-

form’. In: Multi-Agent Programming: Languages, Platforms and Applications.

Ed. by Rafael H. Bordini, Mehdi Dastani, Jürgen Dix and Amal El Fallah

Seghrouchni. Boston, MA: Springer US, pp. 175–193. DOI: 10.1007/0-387-

26350-0_7.

Woltz, Dan J. and Christopher A. Was (2006). ‘Availability of related long-term

memory during and after attention focus in working memory’. In: Memory &

Cognition 34.3, pp. 668–684. DOI: 10.3758/BF03193587.

Wooldridge, Michael and Nicholas R. Jennings (1995). ‘Intelligent agents: Theory

and practice.’ In: The Knowledge Engineering Review 10.2, pp. 115–152. DOI:

10.1017/S0269888900008122.

Woolson, R. F. (2007). ‘Wilcoxon Signed-Rank Test’. In: Wiley Encyclopedia of Clinical

Trials. Ed. by Ralph B. D’Agostino, Lisa Sullivan and Joseph Massaro. Vol. 62.

Hoboken, NJ, USA: John Wiley & Sons, Inc. DOI: 10.1002/9780471462422.

eoct979.

Yoav Shoham (1993). ‘Agent-oriented programming’. In: Artificial Intelligence 60.1,

pp. 51–92. DOI: 10.1016/0004-3702(93)90034-9.

275

https://doi.org/10.1007/978-3-540-88643-3_7
http://www3.weforum.org/docs/WEF_Future_of_the_last_mile_ecosystem.pdf
http://www3.weforum.org/docs/WEF_Future_of_the_last_mile_ecosystem.pdf
http://www3.weforum.org/docs/WEF_Pandemic_Parcels_and_Public_Vaccination_report_2021.pdf
http://www3.weforum.org/docs/WEF_Pandemic_Parcels_and_Public_Vaccination_report_2021.pdf
http://www3.weforum.org/docs/WEF_Pandemic_Parcels_and_Public_Vaccination_report_2021.pdf
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.3758/BF03193587
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1002/9780471462422.eoct979
https://doi.org/10.1002/9780471462422.eoct979
https://doi.org/10.1016/0004-3702(93)90034-9

; Appendix A <

The Athos syntax

A.1 The Xtext grammar definition

grammar de.thm.mnd.wbm.Athos5 with org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore
import "http://www.thm.de/mnd/wbm/graph" as graph

generate athos5 "http://www.thm.de/mnd/wbm/Athos5"

Model:
’model’ name=ID
(world = World)?
(productDefinitions=ProductDefinitions)?
functions = Functions
network = Network
(agentAttributes = AgentAttributes)?
(agentTypes = AgentTypes)?
(metricSection = MetricSection)? ;

World:
’[’{World} (’xmin’ xmin=Double)? (’xmax’ xmax=Double)?

(’ymin’ ymin=Double)? (’ymax’ ymax=Double)? ’]’ ;

Functions:
’functions’ {Functions}
functions += Function (’,’? functions+=Function)* ;

Function returns Function:
EdgeFunction | AgentFunction ;

EdgeFunction:
{DurationFunction} ’durationFunction’ name=ID

expression=Expression (default?=’default’)? |
{SpeedFunction} ’speedFunction’ name=ID

expression=Expression (default?=’default’)? ;

AgentFunction:’agentFunction’ name=ID expression=Expression ;

276

APPENDIX A. THE ATHOS SYNTAX

ProductDefinitions:
’products’ products+=Product (’,’? products+=Product)* ;

Product: name=ID (’weight’weight=Double)?
(’volume’ volume=Double)? (’profit’ profit=Double)? ;

AgentAttributes:
’agentAttributes’ agentAttributes += AgentAttribute

(’,’? agentAttributes += AgentAttribute)* ;

AgentAttribute:
name=ID ;

AgentTypes:
’agentTypes’ agentTypes += AgentType+ ;

AgentType:
{AgentType} ’agentType’ name=ID (’congestionFactor’ congestionFactor=Double)?

(’maxVolume’ maxVolume=Double)? (’maxWeight’ maxWeight=Double)?
(attributeAssigments += AttributeAssignment)*
behaviour = AgentBehaviourBlock
(individualOptimization ?= ’optimises’ function=[AgentFunction])? ;

AgentBehaviourBlock:
{AgentBehaviourBlock} (agentBehaviourStates+=AgentBehaviourState)+ ;

AgentBehaviourState:
’behaviour’ name=ID description=AgentBehaviourDescription

(transition+=AgentBehaviourTransition)* ;

AgentBehaviourTransition:
’when’ (condition=Expression) ’do’ refState=[AgentBehaviourState]

(resume?=’resume’)? ;

AgentBehaviourDescription:
AgentLoadingBehaviour |
AgentIdlingBehaviour |
AgentStaticDestinationBehaviour |
AgentReturnToDepotBehaviour |
AgentResumeStaticDeliveryBehaviour |
AgentVanishingBehaviour |
AgentAwaitTourFromDepotBehaviour |
AgentAwaitTourFromDepotExternalBehaviour|
NodeExtendedOptimisationBehaviour|
AgentRoutingBehaviour ;

AgentRoutingBehaviour:
AgentStrictDeliveryBehaviour |
AgentExactTourFollowingBehaviour ;

NodeTourOptimisationBehaviour:
NodeStaticTourOptimisationBehaviour |
NodeStaticTourAntOptimisationBehaviour |
NodeStaticTourEAOptimisationBehaviour ;

277

APPENDIX A. THE ATHOS SYNTAX

// BEGIN: Experimental feature: Extension mechanism via algorihm extensions

AgentExtendedOptimisationBehaviour:
’extended’ name=ID ((keys+=ID) (values+=ValueList))* ;

ValueList:
StringValue | StringList | StringListList | DoubleValue | DoubleList |

DoubleListList | (=>IntegerValue) | (=>IntegerList)|(=>IntegerListList) |
NodeValue | NodeList | NodeListList ;

StringValue:
stringValue=STRING ;

StringList:
’(’stringList+=STRING (’,’ stringList+=STRING)* ’)’ ;

StringListList:
’(’outerStringList+=StringList (’,’ outerStringList+=StringList)*’)’ ;

DoubleValue:
doubleValue=Double ;

DoubleList:
’(’ doubleList+=Double (’,’ doubleList+=Double)* ’)’ ;

DoubleListList:
’(’ outerDoubleList+=DoubleList (’,’ outerDoubleList+=DoubleList)* ’)’ ;

IntegerValue:
integerList=INT ;

IntegerList:
’(’ integerList+=INT (’,’ integerList+=INT)* ’)’ ;

IntegerListList:
’(’ outerIntegerList+=IntegerList (’,’ outerIntegerList+=IntegerList)* ’)’ ;

// END: Experimental feature: Extension mechanism via algorihm extensions

NodeValue:
nodeValue=[graph::Node] ;

NodeList:
’(’ nodeList+=[graph::Node] (’,’ nodeList+=[graph::Node])* ’)’ ;

NodeListList:
’(’ outerNodeList+=NodeList (’,’ outerNodeList+=NodeList)* ’)’ ;

AgentVanishingBehaviour:
{AgentVanishingBehaviour} ’vanish’ ;

AgentAwaitTourFromDepotBehaviour:
{AgentAwaitTourFromDepotBehaviour} ’awaitTour’ ;

AgentAwaitTourFromDepotExternalBehaviour:
{AgentAwaitTourFromDepotExternalBehaviour} ’awaitTourExternal’ ;

AgentResumeStaticDeliveryBehaviour:
AgentResumeStaticDeliveryBehaviourAtLast |
AgentResumeStaticDeliveryBehaviourAtNext ;

278

APPENDIX A. THE ATHOS SYNTAX

AgentResumeStaticDeliveryBehaviourAtLast:
’resume’ targetState=[AgentBehaviourState] ’at’ ’last’ ;

AgentResumeStaticDeliveryBehaviourAtNext:
’resume’ targetState=[AgentBehaviourState] ’at’ ’next’ ;

AgentIdlingBehaviour:
’idle’ ’for’ idleTime=Expression ;

AgentReturnToDepotBehaviour:
’returnToDepot’ (nearest?=’nearest’|node=[graph::Node]) ;

AgentLoadingBehaviour:
’loadCargo’ cargo+=ProductAndQuantity (’,’ cargo+=ProductAndQuantity)* ;

AgentStrictDeliveryBehaviour:
’deliver’ route+=[graph::Node] (’,’? route+=[graph::Node])*

(everything?=’everything’ |
’products’ products+=[Product] (’,’? products+=[Product])*) ;

AgentExactTourFollowingBehaviour:
’route’ route+=[graph::Node] (’,’ route+=[graph::Node])*

(repeat ?= ’repeat’ repetitions=INT ’times’)? ;

NodeStaticTourOptimisationBehaviour:
’customers’ route+=[graph::Node] (’,’? route+=[graph::Node])* ;

NodeStaticTourEAOptimisationBehaviour:
’customers’ ’ea’ route+=[graph::Node] (’,’? route+=[graph::Node])*

((’popSize’ popsize=INT)? & (’simplePermuProb’ simplePermuProb=Double)? &
(’maxDistance’ maxDistance=Double)? &
(’generations’ generations=INT)? &
(’weightNoOfTours’ weightNoOfTours=Double)? &
(’weightTotalDistance’ weightTotalDistance=Double)? &
(’tournamentSize’ tournamentSize=INT)? &
(’takeBestProb’ takeBestProb=Double)? &
(’mutationProb’ mutationProb=Double)?) ;

NodeStaticTourAntOptimisationBehaviour:
’customers’ ’ant’ ’(’ route+=[graph::Node]
(’,’ route+=[graph::Node])* ’)’
(’repeat’ repetitions=INT ’times’)
((’ants’ numberOfAnts=INT)? &
(’t0’ t0=Double)? &
(’alpha’ alpha=Double)? &
(’q0’ q0=Double)? &
(’beta’ beta=Double)? &
(’rho’ rho=Double)? &
(’iterations’ iterations=INT)?) ;

AgentStaticDestinationBehaviour:
’destination’ node=[graph::Node] ;

AttributeAssignment:
’attr’ attribute = [AgentAttribute] value = Double ;

279

APPENDIX A. THE ATHOS SYNTAX

Network:
({Network}(complete?= ’complete’)? ’network’

(’edgeAttributes’ edgeAttributes+=EdgeAttribute
(’,’? edgeAttributes+=EdgeAttribute)*)?

’nodes’ nodes += Node (’,’? nodes+=Node)*
(’edges’ (edges+=Edge (’,’? edges+=Edge)*)?

(edgeGroups+=EdgeGroup (’,’? edgeGroups+=EdgeGroup)*)?)?
(’sources’ sources+=Source (’,’? sources+=Source)*)?
(’demands’ demands+=Demand (’,’? demands+=Demand)*)?

) ;

EdgeAttribute: name=ID;

EdgeAttributeAssignment:
’attr’ attribute=[EdgeAttribute] value=Double ;

Node returns graph::Node:
SimpleNode | DemandNode | SourceNode ;

SimpleNode:
Nodish ;

DemandNode:
Nodish
’hasDemand’ demandDefinition+=ProductAndQuantityAbsolute
(’,’? demandDefinition+=ProductAndQuantityAbsolute)*
(
(’timeWindow’ ealiestTime=INT (’,’? latestTime=INT)?) |
(’earliestTime’ ealiestTime=INT) (’latestTime’ latestTime=INT)?

)?
(’serviceTime’ serviceTime=INT)? ;

SourceNode:
Nodish Sourcish ;

fragment Nodish * : name=ID ’at’? ’(’? x=Double ’,’? y=Double ’)’?;

fragment Sourcish :
(isDepot?=’isDepot’ products+=[Product] (’,’? products+=[Product])*)?
(’sprouts’ ("quantity" factor=INT)? sproutFunction=SproutFunction)
(
(’frequency’ frequency=Double (’every’ every=INT)? (’until’ until=INT)?) |
(tourOptimisation=NodeTourOptimisationBehaviour (’at’ at=INT)?
(’maxAgents’maxAgents=INT)?) (’latestTime’ latestTime=INT)? |
(simpleStart?=’at’ at=INT)

) ;

Edge returns graph::Edge:
{graph::Edge} ’vintage’ name=ID
(
’from’ from=[graph::Node] ’to’ to=[graph::Node] |
’(’from=[graph::Node] ’,’ to=[graph::Node] ’)’

) |
{FunctionalEdge} (directed?=(’directed’|’->’) |
undirected?=(’undirected’|’<->’))? (name=ID)?
(
’from’ from=[graph::Node] ’to’ to=[graph::Node] |
’(’from=[graph::Node] ’,’ to=[graph::Node] ’)’

)

280

APPENDIX A. THE ATHOS SYNTAX

(
edgeAttributeAssignments+=EdgeAttributeAssignment
(’,’? edgeAttributeAssignments+=EdgeAttributeAssignment)*

)?
(lenExp ?= ’length’ length=Double)? (’cfactor’ cfactor=Double)?
(’path’ path=STRING)? (’baseSpeed’ baseSpeed=Double)?
(’function’ function=[EdgeFunction])?
(appearance=AppearanceSpecification)? ;

EdgeGroup:
’group’ (name=ID)
(directed?=(’directed’|’->’) | undirected?=(’undirected’|’<->’))?
(edgeAttributeAssignments+=EdgeAttributeAssignment
(’,’? edgeAttributeAssignments+=EdgeAttributeAssignment)*)?
(’cfactor’ cfactor=Double)?
(’path’ path=STRING)? (’baseSpeed’ baseSpeed=Double)?
(’function’ (function=[EdgeFunction] | containedFunction=EdgeFunction))?
’members’ (appearance=AppearanceSpecification)?
edges+=Edge (’,’? edges+=Edge)* ;

AppearanceSpecification:
’[’ {AppearanceSpecification}
(
(
type= (
’type1’ | ’type2’ | ’type3’

) (’,’)?
)? &
(color=(

’lightRed’ | ’red’ | ’darkRed’ |
’lightBlue’ | ’blue’ | ’darkBlue’ |
’lightGreen’ | ’green’ | ’darkGreen’

)(’,’)?
)? &
(thickness=(

’ultraThin’ | ’thin’ |
’normal’ |
’thick’ | ’ultraThick’

)(’,’)?)?
)

’]’ ;

ProductAndQuantity:
ProductAndQuantityAbsolute | ProductAndQuantityRelative;

ProductAndQuantityAbsolute:
product=[Product] (’units’) quantity=Double ;

ProductAndQuantityRelative:
product=[Product] (’percent’) quantity=Double ;

Source: {Source} node=[graph::Node]Sourcish;

// BEGIN: ---- METRICS ---------------------------

MetricSection:
’metrics’ {MetricSection}
’updateRate’ updateRate=INT agentMetrics+=AgentMetric* ;

AgentMetric:

281

APPENDIX A. THE ATHOS SYNTAX

’for’ agentType=[AgentType] metrics+=Metric* ;

Metric:
(individualOrClass=(’individual’ | ’class’))
’metric’ name = ID ’when’ condition=Expression
aggregationKind=(’set’ | ’add’) metricFunction=Expression ;

// END: ----- METRICS -----------------------------

Demand:
node=[graph::Node] ’hasDemand’
demandDefinition+=ProductAndQuantityAbsolute
(’,’? demandDefinition+=ProductAndQuantityAbsolute)*

(
(’timeWindow’ ealiestTime=INT (’,’ latestTime=INT)?) |
(’earliestTime’ ealiestTime=INT) (’latestTime’ latestTime=INT)?

)?
(’serviceTime’ serviceTime=INT)? ;

// later it must be possible to define car types and routes
// separately and combine them!
SproutFunction:
agentProbabilities+= AgentProb
(’orr’ agentProbabilities += AgentProb)* ;

AgentProb:
{ReferringAgentProb} agentReference = [AgentType]
(instanceRoutes ?=’route’ (setOfInstanceRoutes+=InstanceRoute)+)?
(’probability’ probability=INT)? |

{EncapsulatingAgentProb}
agentContainment = AgentType (’probability’ probability=INT)? ;

InstanceRoute:
’for’ state=[AgentBehaviourState] (
’(’route+=[graph::Node] (’,’? route+=[graph::Node])* ’)’ |

route+=[graph::Node] (’,’? route+=[graph::Node])*
) ;

Double returns ecore::EDouble:
(’-’)? INT (’.’ INT)? ;

exDouble returns ecore::EDouble:
INT ’.’ INT ;

Expression:
Or;

Or returns Expression:
And ({Or.left=current} ’or’ right=And)* ;

And returns Expression:
Equality ({And.left=current} ’and’ right=Equality)* ;

Equality returns Expression:
Comparison ({Equality.left=current}
op=(’!=’ | ’==’) right=Comparison)* ;

Comparison returns Expression:
PlusOrMinus ({Comparison.left=current}
op=(’<=’|’>=’|’>’|’<’) right=PlusOrMinus)* ;

282

APPENDIX A. THE ATHOS SYNTAX

PlusOrMinus returns Expression:
MulOrDiv ({PlusOrMinus.left = current} op=(’+’ | ’-’) right=MulOrDiv)* ;

MulOrDiv returns Expression:
Power ({MulOrDiv.left=current} op=(’*’|’/’) right=Power)* ;

Power returns Expression:
Primary ({Power.base=current} ’^’ exponent=Primary)? ;

Primary returns Expression:
{BracketedExpression} ’(’expression = Expression’)’ |
BuiltInFunction ;

BuiltInFunction returns Expression :
{NormalDistributionFunction} "normallyDistributed"

"mean" mean=Double "standardDeviation" stdDev=Double |
Atomic ;

Atomic returns Expression:
{IntConstant} => value = INT |
{DoubleConstant} value = exDouble |
{BuiltInIntValue} value= (

’number’ | ’currentTime’
) |

{BuiltInDoubleValue} value=(
’accCongestionFactor’ |’avgCongestionFactor’ |
’length’| ’cfactor’ | ’baseSpeed’ | ’accTime’

) |
{AttributeReference} value=[AgentAttribute] |
{DistanceToExpression} ’distanceTo’
(fixedExpression?=’last’(who=(’customer’ | ’node’)) |node=[graph::Node]) |

{QuantityOfExpression} ’quantityOf’ product=[Product] |
{IsAtCustomerExpression} ’isAtCustomer?’ |
{EarliestTimeExpression} ’earliestTime’ |
{LatestTimeExpression} ’latestTime’ |
{CreatedNewTourExpression} ’createdNewTour?’|
{IntendedTourExpression} ’intendedTour’ |
{IsAtNodeExpression} ’isAt?’ node = [graph::Node] |
{MetricRefExpression} ’metric’ metric=[Metric] |
{FinishedStateExpression}’finished’ |
{LastVisitedNode} ’lastVisitedNode’ |
{LastVisitedCustomer} ’lastVisitedCustomer’|
{NotYetSetExpression} ’notYetSet?’ |
{ColorConstant}value=(
’red’|’darkred’|’lightred’ |
’blue’|’darkblue’|’lightblue’ |
’green’ | ’darkgreen’ | ’lightgreen’

) ;

283

; Appendix B <

Evolotionary Algorithm

B.1 Implementation

Listing B.1: Implementation of Ombukis EA.
1 /* @author Benjamin Hoffmann (based on the work of Ombuki et al.)
2 *
3 * @param <V>
4 * Node (Vertex) type used by the external simulation platform.
5 * @param <E>
6 * Edge (Arc) type used by the external simulation platform.
7 * @param <C>
8 * Collection type for the storage of the list of used by the external
9 * simulation platform.

10 *
11 * This class provides an evolutionary algorithm for the vehicle routing problem
12 * with time windows (VRPTW) based on the work of Ombuki et al., 2006.
13 *
14 * Ombuki, B., Ross, B. J. y Hanshar, F. (2006). Multi-Objective Genetic Algorithms
15 * for Vehicle Routing Problem with Time Windows. Applied Intelligence, 24(1), 17-30.
16 * https://doi.org/10.1007/s10489-006-6926-z */
17 public class VRPTWSolverOmbuki<V, E, C> {
18 /* The VRPTW comprises a directed grap G=(C,A) where C is the set of customers
19 * (Turtles) and A the set of arcs (Links). */
20 private DirectedSparseMultigraph<V, E> graph2;
21
22 /* Each Turtle is represented by exactly one number and each number is
23 * associated with exactly one turtle.*/
24 private BidiMap<V, Integer> agentIntegerBidiMap2;
25 private HashMap<Integer, Double> integerEarliestTimeMap2;
26 private HashMap<Integer, Double> integerLatestTimeMap2;
27 private HashMap<Integer, Double> integerServiceTimeMap2;
28 private HashMap<Integer, Double> integerDemandMap2;
29
30 /* Each vehicle of the homogeneous fleet has a given capacity which is
31 * represented by this value.*/
32 private double vehicleCapacity;
33
34 /* Each path that connects two agents of the tour is associated with a cost.
35 * This two dimensional array represents the cost matrix c_ij */
36 private double[][] costMatrix2;
37
38 /* Each path that connects two agents of the tour is associated with a time.
39 * This two dimensional array represents the time matrix t_ij */
40 private double[][] timeMatrix2;
41
42 /** Each chromosome is associated with a total length. */
43 private Map<ArrayList<ArrayList<Integer>>, Double> toursTotalLength2;
44

284

APPENDIX B. EVOLOTIONARY ALGORITHM

45 /** The city from which each tour must start */
46 private V startCity2;
47
48 /** The city in which each tour must end */
49 private V endCity2;
50
51
52 /* The initial population of chromosomes - will be transformed into a list of
53 * lists of tours */
54 Integer[][] chromosomes2;
55
56 /* The list of lists of tours the initial population is transformed into and
57 * that evolves throughout the runtime of the algorithm */
58 private ArrayList<ArrayList<ArrayList<Integer>>> population2;
59
60 /** PARETO. Used in the "rankChromosomes()"-method */
61 private Map<ArrayList<ArrayList<Integer>>, Integer> rankOfTours2;
62
63 /* Based on the number of deployed vehicles and the total distance covered, each
64 * list of tours is assigned a weighted sum. In this list, the lists of tours
65 * are sorted according to this sum in an ascending order. */
66 private ArrayList<ArrayList<ArrayList<Integer>>> weightOrderedSumSortedList2;
67
68 /* Based on the number of deployed vehicles and the total distance covered, each
69 * list of tours is assigned a weighted sum. Via this list, it is possible to
70 * obtain this sum for every list of tours. */
71 private Map<ArrayList<ArrayList<Integer>>, Double> weightedSumSortedMap;
72
73 /** Set in method ’generateMatingPopulation()’ */
74 private ArrayList<ArrayList<ArrayList<Integer>>> matingPopulation;
75
76 /* @param allEdges
77 * The complete set of all nodes of the graph that underlies the problem.
78 * @param allEdges
79 * The complete set of all edges of the graph that underlies the problem.
80 * @param startNode
81 * The node (normally the depot) at which the agent starts.
82 * @param tourNodes
83 * The set of nodes the agent is supposed to visit.*/
84 public C report(List<V> allNodes, List<E> allEdges, V startNode,
85 List<V> tourNodes, V endNode, Function<V, Double> demandFunction,
86 Function<V, Double> earliestTimeFunction,
87 Function<V, Double> latestTimeFunction,
88 Function<V, Double> serviceTimeFunction, Function<E, V> startNodeFunction,
89 Function<E, V> endNodeFunction, Function<E, Double> edgeLengthFunction,
90 Function<E, Double> edgeTimeFunction,
91 Function<ArrayList<ArrayList<Pair<V, Boolean>>>, C> resultTourFunction,
92 double vehicleCapacity, int populationSize, double probabilityForGreedy,
93 double maxDistance, int generations, double weightNoOfTours,
94 double weightTotalDistance, int tournamentSize,
95 double takeBestFromTournamentProb, double mutationProb,
96 double latestAtDepot) throws ExtensionException, LogoException {
97
98 try {
99

100 startCity2 = startNode;
101
102 this.vehicleCapacity = vehicleCapacity;
103 this.endCity2 = endNode;
104
105 createAgentIntegerBidiMaps2(tourNodes, demandFunction, earliestTimeFunction,
106 latestTimeFunction, serviceTimeFunction);
107 createGraph2(allNodes, allEdges, startNodeFunction, endNodeFunction);
108
109 createCostMatrix2(edgeLengthFunction);
110
111 createTimeMatrix2(edgeTimeFunction);
112
113 generateInitialPopulation2(populationSize, probabilityForGreedy,
114 maxDistance);
115
116 // cf. Section 3.7 (Ombuki et al., 2006)
117 deriveRoutesFromChromosome2(latestAtDepot);
118

285

APPENDIX B. EVOLOTIONARY ALGORITHM

119 for (int i = 0; i < generations; i++) { /*Begin: main loop */
120 // cf. Section 2.2 (Ombuki et al., 2002)
121 rankChromosomes2();
122
123 // cf. Section 3.2.1 (Ombuki et al., 2006)
124 createWeightedSumSortedList2(weightNoOfTours, weightTotalDistance);
125
126 // cf. Section 3.4 (Ombuki et al., 2006)
127 generateMatingPopulation2(2 * (populationSize - 1), tournamentSize,
128 takeBestFromTournamentProb);
129
130 // cf. Section 3.4 (elite model) and Section 3.5 (Recombination phase)
131 // in (Ombuki et al., 2006)
132 generateNewPopulation2(latestAtDepot);
133
134 // cf. Section 3.6 (Ombuki et al., 2006):
135 mutatePhenotypes2(mutationProb, latestAtDepot);
136
137 // utility
138 updateChromosomeDataStructures2(latestAtDepot);
139 }
140 // cf. Section 2.2 (Ombuki et al., 2002)
141 rankChromosomes2();
142
143 // cf. Section 3.2.1 (Ombuki et al., 2006)
144 createWeightedSumSortedList2(weightNoOfTours, weightTotalDistance);
145
146 return createReturnRoutes(edgeLengthFunction, startNodeFunction,
147 endNodeFunction, resultTourFunction);
148 } catch (Exception e) {
149 System.err.println("Something bad happened!");
150 }
151 return null;
152 }
153
154 private C createReturnRoutes(Function<E, Double> edgeLengthFunction,
155 Function<E, V> startNodeFunction, Function<E, V> endNodeFunction,
156 Function<ArrayList<ArrayList<Pair<V, Boolean>>>, C> resultTourFunction) {
157 Transformer<E, Double> edgeCostTransformer = l -> edgeLengthFunction.apply(l);
158
159 DijkstraShortestPath<V, E> dijkstra =
160 new DijkstraShortestPath<V, E>(graph2, edgeCostTransformer);
161
162 ArrayList<ArrayList<ArrayList<Integer>>> allTours =
163 new ArrayList<ArrayList<ArrayList<Integer>>>(population2);
164
165 allTours.sort((c1, c2) -> {
166 int rankComparison = Integer.compare(rankOfTours2.get(c1),
167 rankOfTours2.get(c2));
168 if (rankComparison != 0)
169 return rankComparison;
170 return Double.compare(weightedSumSortedMap.get(c1),
171 weightedSumSortedMap.get(c2));
172 });
173
174 ArrayList<ArrayList<Integer>> bestSolution = allTours.get(0);
175
176 ArrayList<ArrayList<V>> bestSolutionOriginal = new ArrayList<ArrayList<V>>();
177 ArrayList<V> bestSolutionTourOriginal = null;
178 for (ArrayList<Integer> integerTour : bestSolution) {
179 bestSolutionTourOriginal = new ArrayList<V>();
180 for (Integer i : integerTour) {
181 bestSolutionTourOriginal.add(agentIntegerBidiMap2.getKey(i));
182 }
183 bestSolutionOriginal.add(bestSolutionTourOriginal);
184 }
185
186 ArrayList<ArrayList<Pair<V, Boolean>>> bestSolutionWithStopIndication
187 = new ArrayList<ArrayList<Pair<V, Boolean>>>();
188
189 ArrayList<Pair<V, Boolean>> bTourWithStopIndication = null;
190
191 Pair<V, Boolean> customerWithStopIndication = null;
192

286

APPENDIX B. EVOLOTIONARY ALGORITHM

193 for (ArrayList<V> bTour : bestSolutionOriginal) {
194 bTourWithStopIndication = new ArrayList<Pair<V, Boolean>>();
195 V previousV = startCity2;
196 for (V v : bTour) {
197 List<E> routeOfEs = dijkstra.getPath(previousV, v);
198 V end1 = null;
199 for (E e : routeOfEs) {
200 end1 = startNodeFunction.apply(e);
201 if (end1.equals(previousV) && !end1.equals(startCity2))
202 customerWithStopIndication = new Pair<V, Boolean>(end1, true);
203 else
204 customerWithStopIndication = new Pair<V, Boolean>(end1, false);
205 bTourWithStopIndication.add(customerWithStopIndication);
206 }
207 previousV = v;
208 }
209 List<E> routeOfLinks = dijkstra.getPath(previousV, endCity2);
210 for (E e : routeOfLinks) {
211 V end1 = startNodeFunction.apply(e);
212 if (end1.equals(previousV))
213 customerWithStopIndication = new Pair<V, Boolean>(end1, true);
214 else
215 customerWithStopIndication = new Pair<V, Boolean>(end1, false);
216 bTourWithStopIndication.add(customerWithStopIndication);
217 }
218 customerWithStopIndication = new Pair<V, Boolean>(endCity2, true);
219 bTourWithStopIndication.add(customerWithStopIndication);
220 bestSolutionWithStopIndication.add(bTourWithStopIndication);
221 }
222 C res = resultTourFunction.apply(bestSolutionWithStopIndication);
223 return res;
224 }
225
226 private void createAgentIntegerBidiMaps2(List<V> tourNodes,
227 Function<V, Double> demandFunction,
228 Function<V, Double> earliestTimeFunction,
229 Function<V, Double> latestTimeFunction,
230 Function<V, Double> serviceTimeFunction) throws Exception {
231 agentIntegerBidiMap2 = new DualHashBidiMap<>();
232 if (!tourNodes.contains(startCity2)) {
233 agentIntegerBidiMap2.put(startCity2, 0);
234 for (int i = 0; i < tourNodes.size(); i++) {
235 agentIntegerBidiMap2.put(tourNodes.get(i), i + 1);
236 }
237 } else {
238 for (int i = 0; i < tourNodes.size(); i++) {
239 agentIntegerBidiMap2.put(tourNodes.get(i), i);
240 }
241 }
242
243 integerEarliestTimeMap2 = new HashMap<>();
244 integerLatestTimeMap2 = new HashMap<>();
245 integerServiceTimeMap2 = new HashMap<>();
246 integerDemandMap2 = new HashMap<>();
247 for (V node : agentIntegerBidiMap2.keySet()) {
248
249 Integer nodeIndex = agentIntegerBidiMap2.get(node);
250
251 this.integerEarliestTimeMap2.put(nodeIndex,
252 earliestTimeFunction.apply(node));
253 this.integerLatestTimeMap2.put(nodeIndex, latestTimeFunction.apply(node));
254 this.integerServiceTimeMap2.put(nodeIndex, serviceTimeFunction.apply(node));
255 this.integerDemandMap2.put(nodeIndex, demandFunction.apply(node));
256 }
257 }
258
259 private void createGraph2(List<V> allNodes, List<E> allEdges,
260 Function<E, V> startNodeFunction, Function<E, V> endNodeFunction) {
261 graph2 = new DirectedSparseMultigraph<V, E>();
262 Iterator<V> nodeIterator = allNodes.iterator();
263 while (nodeIterator.hasNext())
264 graph2.addVertex(nodeIterator.next());
265 Iterator<E> edgeIterator = allEdges.iterator();

287

APPENDIX B. EVOLOTIONARY ALGORITHM

266 while (edgeIterator.hasNext()) {
267 E edge = edgeIterator.next();
268 graph2.addEdge(edge, startNodeFunction.apply(edge),
269 endNodeFunction.apply(edge));
270 }
271 }
272
273 private void createCostMatrix2(Function<E, Double> linkLengthFunction) {
274 costMatrix2 = new double[agentIntegerBidiMap2.keySet()
275 .size()][agentIntegerBidiMap2.keySet().size()];
276 Transformer<E, Double> edgeCostTransformer = l -> linkLengthFunction.apply(l);
277 DijkstraShortestPath<V, E> dijkstra = new DijkstraShortestPath<V, E>(graph2,
278 edgeCostTransformer);
279
280 for (V srcNode : agentIntegerBidiMap2.keySet()) {
281 Map<V, Number> costMap = dijkstra.getDistanceMap(srcNode,
282 new ArrayList<V>(agentIntegerBidiMap2.keySet()));
283 for (V tgtNode : costMap.keySet()) {
284 if (agentIntegerBidiMap2.containsKey(tgtNode)) {
285 costMatrix2[agentIntegerBidiMap2.get(srcNode)][agentIntegerBidiMap2
286 .get(tgtNode)] = costMap.get(tgtNode).doubleValue();
287 }
288 }
289 }
290 }
291
292 private void createTimeMatrix2(Function<E, Double> linkTimeFunction) {
293 timeMatrix2 = new double[agentIntegerBidiMap2.keySet()
294 .size()][agentIntegerBidiMap2.keySet().size()];
295 Transformer<E, Double> edgeTimeTransformer = l -> linkTimeFunction.apply(l);
296 DijkstraShortestPath<V, E> dijkstra = new DijkstraShortestPath<V, E>(graph2,
297 edgeTimeTransformer);
298 for (V srcNode : agentIntegerBidiMap2.keySet()) {
299 Map<V, Number> costMap = dijkstra.getDistanceMap(srcNode,
300 new ArrayList<V>(agentIntegerBidiMap2.keySet()));
301 for (V tgtNode : costMap.keySet()) {
302 if (agentIntegerBidiMap2.containsKey(tgtNode)) {
303 timeMatrix2[agentIntegerBidiMap2.get(srcNode)][agentIntegerBidiMap2
304 .get(tgtNode)] = costMap.get(tgtNode).doubleValue();
305 }
306 }
307 }
308 }
309
310 /**
311 * IMPORTANT: A negative value represents an infeasible tour
312 *
313 * @return The length of the tour. A negative value indicates an infeasible
314 * tour.
315 */
316 private double getLengthOfTour2(ArrayList<Integer> tour, double latestAtDepot) {
317 double length = costMatrix2[agentIntegerBidiMap2.get(startCity2)][tour.get(0)];
318 double arrival = timeMatrix2[agentIntegerBidiMap2.get(startCity2)][tour.get(0)];
319 double leave = 0.0;
320 double currentCapacityUsage = integerDemandMap2.get(tour.get(0));
321 double customerEarliestArrival = integerEarliestTimeMap2.get(tour.get(0));
322 double customerLatestArrival = integerLatestTimeMap2.get(tour.get(0));
323 double customerServiceTime = integerServiceTimeMap2.get(tour.get(0));
324 double timeBackToEndDepot = timeMatrix2[tour.get(0)][agentIntegerBidiMap2.get(endCity2)];
325
326 double timeBackAtEndDepot = Math.max(arrival, customerEarliestArrival)
327 + customerServiceTime + timeBackToEndDepot;
328
329 if ((customerLatestArrival > 0.001 && arrival > customerLatestArrival)
330 || currentCapacityUsage > vehicleCapacity
331 || timeBackAtEndDepot > latestAtDepot)
332 return -1.0; // tour is infeasible
333
334 if (arrival < customerEarliestArrival) // then the vehicle has to wait
335 arrival = customerEarliestArrival;
336
337 leave = arrival + customerServiceTime;
338

288

APPENDIX B. EVOLOTIONARY ALGORITHM

339 for (int i = 1; i < tour.size(); i++) {
340 length = length + costMatrix2[tour.get(i - 1)][tour.get(i)];
341 arrival = leave + timeMatrix2[tour.get(i - 1)][tour.get(i)];
342 customerEarliestArrival = integerEarliestTimeMap2.get(tour.get(i));
343 customerLatestArrival = integerLatestTimeMap2.get(tour.get(i));
344 currentCapacityUsage = currentCapacityUsage
345 + integerDemandMap2.get(tour.get(i));
346 timeBackToEndDepot = timeMatrix2[tour.get(i)][agentIntegerBidiMap2
347 .get(endCity2)];
348 timeBackAtEndDepot = Math.max(arrival, customerEarliestArrival)
349 + customerServiceTime + timeBackToEndDepot;
350
351 if ((customerLatestArrival > 0.001 && arrival > customerLatestArrival)
352 || currentCapacityUsage > vehicleCapacity
353 || timeBackAtEndDepot > latestAtDepot) {
354 return -1.0d; // tour is infeasible
355 }
356 if (arrival < customerEarliestArrival) {
357 arrival = customerEarliestArrival;
358 }
359 leave = arrival + customerServiceTime;
360 }
361
362 length = length + costMatrix2[tour.get(tour.size() - 1)][agentIntegerBidiMap2
363 .get(endCity2)];
364 return length;
365 }
366
367 /**
368 * Utility method.
369 *
370 * @return The total distance covered by all vehicles. IMPORTANT: A negative
371 * value represents an infeasible tour.
372 */
373 private double getTotalLengthForTours2(ArrayList<ArrayList<Integer>> tours,
374 double latestAtDepot) {
375 double totalLength = 0.0;
376 double tourLength = 0.0;
377 for (ArrayList<Integer> tour : tours) {
378 tourLength = getLengthOfTour2(tour, latestAtDepot);
379 if (tourLength < 0)
380 return -1;
381 else
382 totalLength = totalLength + tourLength;
383 }
384 return totalLength;
385 }
386
387 private void updateChromosomeDataStructures2(double latestAtDepot) {
388 for (ArrayList<ArrayList<Integer>> tours : population2)
389 toursTotalLength2.put(tours, getTotalLengthForTours2(tours, latestAtDepot));
390 }
391
392 /** cf. Section 2.2 (Ombuki et al., 2006) */
393 private void rankChromosomes2() {
394 rankOfTours2 = new HashMap<ArrayList<ArrayList<Integer>>, Integer>();
395 ArrayList<ArrayList<ArrayList<Integer>>> populationCopy
396 = new ArrayList<ArrayList<ArrayList<Integer>>>(population2);
397 int currentRank = 1;
398 double currentToursLength;
399 double currentToursVehicles;
400 double otherToursLength;
401 double otherToursVehicles;
402 ArrayList<ArrayList<ArrayList<Integer>>> toursOfCurrentRank = new ArrayList<>();
403
404 while (!populationCopy.isEmpty()) {
405 for (ArrayList<ArrayList<Integer>> currentTours : populationCopy) {
406 boolean dominated = false;
407 currentToursLength = toursTotalLength2.get(currentTours);
408 currentToursVehicles = currentTours.size();
409 Iterator<ArrayList<ArrayList<Integer>>> checkSet = populationCopy.iterator();
410 ArrayList<ArrayList<Integer>> otherTours;

289

APPENDIX B. EVOLOTIONARY ALGORITHM

411 while (!dominated && checkSet.hasNext()) {
412 otherTours = checkSet.next();
413 otherToursLength = toursTotalLength2.get(otherTours);
414 otherToursVehicles = otherTours.size();
415
416 dominated = otherToursLength < currentToursLength
417 && otherToursVehicles <= currentToursVehicles
418 || otherToursLength <= currentToursLength
419 && otherToursVehicles < otherToursVehicles;
420 }
421 if (!dominated) {
422 rankOfTours2.put(currentTours, currentRank);
423 toursOfCurrentRank.add(currentTours);
424 }
425 }
426 populationCopy.removeAll(toursOfCurrentRank);
427 toursOfCurrentRank.clear();
428 currentRank++;
429 }
430 }
431
432 /** cf. Section 3.1 (Ombuki et al., 2006) */
433 private void generateInitialPopulation2(int populationSize,
434 double probabilityForGreedy, double maxDistance) throws ExtensionException {
435
436 ArrayList<Integer> originalTourNodes = new ArrayList<>(
437 agentIntegerBidiMap2.values());
438 ArrayList<Integer> copyTourNodes;
439
440 if (originalTourNodes.contains(agentIntegerBidiMap2.get(startCity2)))
441 originalTourNodes.remove(agentIntegerBidiMap2.get(startCity2));
442
443 chromosomes2 = new Integer[populationSize][originalTourNodes.size()];
444
445 for (int i = 0; i < populationSize; i++) {
446 if (Math.random() > probabilityForGreedy) {
447 copyTourNodes = new ArrayList<>(originalTourNodes);
448 for (int j = 0; j < originalTourNodes.size(); j++)
449 chromosomes2[i][j] = copyTourNodes
450 .remove((int) (Math.random() * copyTourNodes.size()));
451 } else {
452 copyTourNodes = new ArrayList<>(originalTourNodes);
453 int ci = 0;
454 chromosomes2[i][ci] = copyTourNodes
455 .remove((int) (Math.random() * copyTourNodes.size()));
456 while (ci < originalTourNodes.size() - 1) {
457 double currentDistance = Double.MAX_VALUE;
458 for (Integer node : copyTourNodes) {
459 double distanceTo_node = costMatrix2[chromosomes2[i][ci]][node];
460 if (distanceTo_node < maxDistance
461 && distanceTo_node < currentDistance) {
462 currentDistance = distanceTo_node;
463 chromosomes2[i][ci + 1] = node;
464 }
465 }
466 if (chromosomes2[i][ci + 1] != null) { // found a node within the node barrier
467 copyTourNodes.remove(chromosomes2[i][ci + 1]);
468 } else {
469 chromosomes2[i][ci + 1] = copyTourNodes
470 .remove((int) (Math.random() * copyTourNodes.size()));
471 }
472 ci = ci + 1;
473 }
474 }
475 }
476 }
477

290

APPENDIX B. EVOLOTIONARY ALGORITHM

478 /** // cf. Section 3.7 (Ombuki et al., 2006) */
479 private void deriveRoutesFromChromosome2(double latestAtDepot) {
480 population2 = new ArrayList<ArrayList<ArrayList<Integer>>>();
481 toursTotalLength2 = new HashMap<ArrayList<ArrayList<Integer>>, Double>();
482
483 try {
484 for (int i = 0; i < chromosomes2.length; i++) {
485 double length = 0.0;
486 double arrivalTime = 0.0;
487 double leaveTime = 0.0;
488 double currentCapacityUsage = 0.0;
489 int numberOfCustomersOfCurrentTour = 0;
490
491 ArrayList<ArrayList<Integer>> listOfTours = new ArrayList<>();
492 population2.add(listOfTours);
493 ArrayList<Integer> currentTour = null;
494
495 for (int j = 0; j < chromosomes2[i].length; j++) {
496 if (numberOfCustomersOfCurrentTour == 0) { // we’re dealing with the
497 // first customer of a tour
498 currentTour = new ArrayList<>();
499 listOfTours.add(currentTour);
500 length = length + costMatrix2[agentIntegerBidiMap2
501 .get(startCity2)][chromosomes2[i][j]];
502
503 arrivalTime = timeMatrix2[agentIntegerBidiMap2
504 .get(startCity2)][chromosomes2[i][j]];
505
506 double customerDemand = integerDemandMap2.get(chromosomes2[i][j]);
507 double customerEarliestTime = integerEarliestTimeMap2
508 .get(chromosomes2[i][j]);
509 double customerLatestTime = integerLatestTimeMap2
510 .get(chromosomes2[i][j]);
511 double customerServiceTime = integerServiceTimeMap2
512 .get(chromosomes2[i][j]);
513
514 double timeBackToEndDepot
515 = timeMatrix2[chromosomes2[i][j]][agentIntegerBidiMap2.get(endCity2)];
516
517 double timeBackAtEndDepot = Math.max(arrivalTime,
518 customerEarliestTime) + customerServiceTime
519 + timeBackToEndDepot;
520
521 if ((customerLatestTime > 0.001
522 && arrivalTime > customerLatestTime)
523 || customerDemand > vehicleCapacity) {
524 throw new RuntimeException("Problem infeasible");
525 } else if (timeBackAtEndDepot > latestAtDepot) {
526 throw new RuntimeException("Problem infeasible");
527 } else {
528 LOG.trace("Problem is not infeasible.");
529 currentTour.add(chromosomes2[i][j]);
530 numberOfCustomersOfCurrentTour++;
531 currentCapacityUsage = customerDemand;
532 if (arrivalTime < customerEarliestTime)
533 arrivalTime = customerEarliestTime;
534 leaveTime = arrivalTime + customerServiceTime;
535 }
536 } else { // we’re not dealing with the first customer of a tour (i.e.
537 // we’re in the middle of a tour)
538
539 double customerDemand = integerDemandMap2.get(chromosomes2[i][j]);
540
541 currentCapacityUsage = currentCapacityUsage + customerDemand;
542 arrivalTime = leaveTime
543 + timeMatrix2[chromosomes2[i][j - 1]][chromosomes2[i][j]];
544
545 double customerEarliestArrival = integerEarliestTimeMap2.get(chromosomes2[i][j]);
546
547 double customerLatestArrival = integerLatestTimeMap2.get(chromosomes2[i][j]);
548
549 double serviceTime = integerServiceTimeMap2.get(chromosomes2[i][j]);
550
551 double timeBackToEndDepot =
552 timeMatrix2[chromosomes2[i][j]][agentIntegerBidiMap2.get(endCity2)];
553

291

APPENDIX B. EVOLOTIONARY ALGORITHM

554 double timeBackAtEndDepot = Math.max(arrivalTime, customerEarliestArrival)
555 + serviceTime + timeBackToEndDepot;
556
557 if ((customerLatestArrival > 0.001
558 && arrivalTime > customerLatestArrival)
559 || currentCapacityUsage > vehicleCapacity
560 || timeBackAtEndDepot > latestAtDepot) {
561 length = length
562 + costMatrix2[chromosomes2[i][j - 1]][agentIntegerBidiMap2.get(endCity2)];
563 j = j - 1;
564 numberOfCustomersOfCurrentTour = 0;
565 } else {
566 length = length
567 + costMatrix2[chromosomes2[i][j - 1]][chromosomes2[i][j]];
568 currentTour.add(chromosomes2[i][j]);
569 numberOfCustomersOfCurrentTour++;
570 if (arrivalTime < customerEarliestArrival)
571 arrivalTime = customerEarliestArrival;
572 leaveTime = arrivalTime + serviceTime;
573 }
574 }
575 if (j == chromosomes2[i].length - 1) {
576 length = length
577 + costMatrix2[chromosomes2[i][j]][agentIntegerBidiMap2
578 .get(endCity2)];
579 toursTotalLength2.put(listOfTours, length);
580 }
581 }
582 } // end of phase 1 of derivement lists of routes from chromosomes
583 } catch (Exception e) { }
584
585 for (ArrayList<ArrayList<Integer>> tours : population2) {
586 Iterator<ArrayList<Integer>> iterator = tours.iterator();
587 ArrayList<Integer> firstTour = iterator.next();
588 while (iterator.hasNext()) {
589 ArrayList<Integer> secondTour = iterator.next();
590 Double lengthOfFirst = getLengthOfTour2(firstTour, latestAtDepot);
591 Double lengthOfSecond = getLengthOfTour2(secondTour, latestAtDepot);
592 if (lengthOfFirst < 0 || lengthOfSecond < 0)
593 throw new RuntimeException(
594 "Should not happen, since tours were ensured to be feasible");
595 Double sumFirst = lengthOfFirst + lengthOfSecond;
596
597 // switch customer according to the rules stated by (Ombuki et al., 2006)
598 if (firstTour.size() > 1)
599 secondTour.add(0, firstTour.remove(firstTour.size() - 1));
600 else
601 continue;
602 lengthOfFirst = getLengthOfTour2(firstTour, latestAtDepot);
603 lengthOfSecond = getLengthOfTour2(secondTour, latestAtDepot);
604 Double sumSecond = lengthOfFirst + lengthOfSecond;
605
606 if (lengthOfFirst < 0 || lengthOfSecond < 0 || (sumSecond > sumFirst))
607 firstTour.add(secondTour.remove(0));
608 else
609 toursTotalLength2.put(tours,
610 getTotalLengthForTours2(tours, latestAtDepot));
611 firstTour = secondTour;
612 }
613 }
614 }
615 /** cf. Section 3.2.1 (Ombuki et al. 2006) */
616 private void createWeightedSumSortedList2(double weightNumberOfTours,
617 double weightTotalDistance) {
618 weightedSumSortedMap = new HashMap<ArrayList<ArrayList<Integer>>, Double>();
619 weightOrderedSumSortedList2 = new ArrayList<>(population2);
620 weightOrderedSumSortedList2.forEach(it -> {
621 weightedSumSortedMap.put(it, weightNumberOfTours * it.size()
622 + weightTotalDistance * toursTotalLength2.get(it));
623 });
624 weightOrderedSumSortedList2.sort((c1, c2) -> {
625 return Double.compare(weightedSumSortedMap.get(c1),
626 weightedSumSortedMap.get(c2));
627 });
628 }
629

292

APPENDIX B. EVOLOTIONARY ALGORITHM

630 /** cf. Section 3.4 (Ombuki et al., 2006) */
631 private void generateMatingPopulation2(int matingPopulationSize,
632 int tournamentSize, double takeBestOfTournamentProb) {
633
634 this.matingPopulation = new ArrayList<ArrayList<ArrayList<Integer>>>();
635 ArrayList<ArrayList<ArrayList<Integer>>> tournamentSet = new ArrayList<>();
636
637 while (matingPopulation.size() < matingPopulationSize) {
638 while (tournamentSet.size() < tournamentSize) {
639 ArrayList<ArrayList<Integer>> participant = population2
640 .get((int) (Math.random() * population2.size()));
641 tournamentSet.add(participant);
642 }
643 if (Math.random() < takeBestOfTournamentProb) {
644 tournamentSet.sort((c1, c2) -> {
645 int rankResult = Integer.compare(rankOfTours2.get(c1),
646 rankOfTours2.get(c2));
647 if (rankResult != 0)
648 return rankResult;
649 return Double.compare(weightedSumSortedMap.get(c1),
650 weightedSumSortedMap.get(c2));
651 });
652 matingPopulation.add(tournamentSet.get(0));
653 } else {
654 tournamentSet.forEach(it -> matingPopulation.add(it));
655 }
656 tournamentSet.clear();
657 }
658 }
659
660 /* cf. Section 3.4 (elite model) and Section 3.5 (Recombination phase) in
661 * (Ombuki et al., 2006) */
662 private void generateNewPopulation2(double latestAtDepot) {
663 ArrayList<ArrayList<ArrayList<Integer>>> populationNextGen
664 = new ArrayList<ArrayList<ArrayList<Integer>>>();
665 ArrayList<ArrayList<ArrayList<Integer>>> allTours = new ArrayList<>(
666 population2);
667 allTours.sort((c1, c2) -> {
668 int rankResult = Integer.compare(rankOfTours2.get(c1),
669 rankOfTours2.get(c2));
670 if (rankResult != 0)
671 return rankResult;
672 return Double.compare(weightedSumSortedMap.get(c1),
673 weightedSumSortedMap.get(c2));
674 });
675 ArrayList<ArrayList<Integer>> theChampion = allTours.get(0);
676 populationNextGen.add(theChampion);
677
678 while (matingPopulation.size() > 2) {
679 ArrayList<ArrayList<Integer>> parent1 = matingPopulation.remove(0);
680 ArrayList<ArrayList<Integer>> parent2 = matingPopulation.remove(0);
681
682 ArrayList<ArrayList<Integer>> toursForParent1 = new ArrayList<>();
683 for (ArrayList<Integer> tourList : parent1)
684 toursForParent1.add(new ArrayList<>(tourList));
685
686 ArrayList<ArrayList<Integer>> toursForParent2 = new ArrayList<>();
687 for (ArrayList<Integer> tourList : parent2)
688 toursForParent2.add(new ArrayList<>(tourList));
689
690 ArrayList<Integer> removeTourOfParent1 = new ArrayList<>(
691 toursForParent1.get((int) (Math.random() * toursForParent1.size())));
692 ArrayList<Integer> removeTourOfParent2 = new ArrayList<>(
693 toursForParent2.get((int) (Math.random() * toursForParent2.size())));
694
695 for (int i = 0; i < removeTourOfParent1.size(); i++)
696 for (int j = 0; j < toursForParent2.size(); j++)
697 if (toursForParent2.get(j).contains(removeTourOfParent1.get(i)))
698 toursForParent2.get(j).remove(removeTourOfParent1.get(i));
699 // remove empty tours
700 Iterator<ArrayList<Integer>> toursOfParent2Iterator = toursForParent2
701 .iterator();
702 while (toursOfParent2Iterator.hasNext())
703 if (toursOfParent2Iterator.next().isEmpty())
704 toursOfParent2Iterator.remove();
705

293

APPENDIX B. EVOLOTIONARY ALGORITHM

706 for (int i = 0; i < removeTourOfParent2.size(); i++)
707 for (int j = 0; j < toursForParent1.size(); j++)
708 if (toursForParent1.get(j).contains(removeTourOfParent2.get(i)))
709 toursForParent1.get(j).remove(removeTourOfParent2.get(i));
710 // remove empty tours
711 Iterator<ArrayList<Integer>> toursOfParent1Iterator = toursForParent1.iterator();
712 while (toursOfParent1Iterator.hasNext())
713 if (toursOfParent1Iterator.next().isEmpty())
714 toursOfParent1Iterator.remove();
715
716 // Now the removed customers are to be replaced at the optimal places
717 while (!removeTourOfParent1.isEmpty()) {
718 Integer customer2BeInserted = removeTourOfParent1
719 .remove((int) (Math.random() * removeTourOfParent1.size()));
720 int best_i = -1; // best tour to place the customer
721 int best_j = -1; // best spot inside the tour
722 double shortestKnownPossibleTour = Double.MAX_VALUE;
723 for (int i = 0; i < toursForParent2.size(); i++) {
724 ArrayList<Integer> currentTour = toursForParent2.get(i);
725 int currentTourSize = currentTour.size();
726 for (int j = 0; j < currentTourSize; j++) {
727 currentTour.add(j, customer2BeInserted);
728 double totallengthOfCurrentTours = getTotalLengthForTours2(
729 toursForParent2, latestAtDepot);
730 if (totallengthOfCurrentTours > 0 // negative length indicates infeasible tour
731 && totallengthOfCurrentTours < shortestKnownPossibleTour) {
732 best_i = i;
733 best_j = j;
734 shortestKnownPossibleTour = totallengthOfCurrentTours;
735 }
736 currentTour.remove(j);// perhaps we’ll find a(n even) better place
737 }
738 }
739 if (best_i == -1) // customer could not be inserted anywhere
740 toursForParent2.add(new ArrayList<Integer>(Arrays.asList(customer2BeInserted)));
741 else
742 toursForParent2.get(best_i).add(best_j, customer2BeInserted);
743
744 populationNextGen.add(toursForParent2);
745 }
746 // Now the removed customers are to be replaced at the optimal places
747 while (!removeTourOfParent2.isEmpty()) {
748 Integer customer2BeInserted = removeTourOfParent2
749 .remove((int) (Math.random() * removeTourOfParent2.size()));
750 int best_i = -1; // best tour to place the customer
751 int best_j = -1; // best spot inside the tour
752 double shortestKnownPossibleTour = Double.MAX_VALUE;
753 for (int i = 0; i < toursForParent1.size(); i++) {
754 ArrayList<Integer> currentTour = toursForParent1.get(i);
755 int currentTourSize = currentTour.size();
756 for (int j = 0; j < currentTourSize; j++) {
757 currentTour.add(j, customer2BeInserted);
758 double lengthOfCurrentTour = getTotalLengthForTours2(
759 toursForParent1, latestAtDepot);
760 // negative length indicates infeasible tour
761 if (lengthOfCurrentTour > 0
762 && lengthOfCurrentTour < shortestKnownPossibleTour) {
763 best_i = i;
764 best_j = j;
765 shortestKnownPossibleTour = lengthOfCurrentTour;
766 }
767 // perhaps we’ll find a(n even) better place :-D
768 currentTour.remove(j);
769 }
770 }
771 if (best_i == -1) // could customer could not be inserted anywhere
772 toursForParent1.add(
773 new ArrayList<Integer>(Arrays.asList(customer2BeInserted)));
774 else
775 toursForParent1.get(best_i).add(best_j, customer2BeInserted);
776
777 populationNextGen.add(toursForParent1);
778 }
779 }
780 population2 = populationNextGen;
781 }

294

APPENDIX B. EVOLOTIONARY ALGORITHM

782 /** // cf. Section 3.6 (Ombuki et al., 2006): */
783 private void mutatePhenotypes2(double chanceForMutation, double latestAtDepot) {
784 for (ArrayList<ArrayList<Integer>> tours : population2) {
785 if (Math.random() < chanceForMutation) {
786 ArrayList<Integer> tourToBeMutated = tours
787 .get((int) (Math.random() * tours.size()));
788 int mutationIndex = (int) (Math.random() * tourToBeMutated.size());
789 if ((mutationIndex + 1) < tourToBeMutated.size()) {
790 Integer customerToBeSwapped = tourToBeMutated.remove(mutationIndex);
791 tourToBeMutated.add(mutationIndex + 1, customerToBeSwapped);
792 if (getLengthOfTour2(tourToBeMutated, latestAtDepot) < 0)
793 tourToBeMutated.add(mutationIndex,
794 tourToBeMutated.remove(mutationIndex + 1));
795 }
796 }
797 }
798 }
799 }

295

APPENDIX B. EVOLOTIONARY ALGORITHM

B.2 Invocation

Listing B.2: Invocation of Ombukis evolutionary algorithm.
1 // V -> node type (vertices)
2 // E -> edge type
3 // C -> Collection type for return collection
4 public class NetLogoVRPTWOmbuki implements Reporter {
5
6 public Syntax getSyntax() {
7 return SyntaxJ.reporterSyntax(new int[] {
8 Syntax.TurtlesetType(), // args[0] // cities
9 Syntax.LinksetType(), // args[1] edges

10 Syntax.TurtleType(), // args[2] startCity
11 Syntax.ListType(), // args[3] cities of the tour
12 Syntax.NumberType(), // args[4] HERE: vehicle capacity!
13 Syntax.NumberType(), // args[5] populationSize
14 Syntax.NumberType(), // args[6] probabilityForGreedy
15 Syntax.NumberType(), // args[7] maxDistance
16 Syntax.NumberType(), // args[8] generations
17 Syntax.NumberType(), // args[9] weigthNoOfTours
18 Syntax.NumberType(), // args[10] weightTotalDistance
19 Syntax.NumberType(), // args[11] tournamentSize
20 Syntax.NumberType(), // args[12] takeBestFromTournament
21 Syntax.NumberType(), // args[13] mutationProb
22 Syntax.TurtleType() // args[14] endCity
23 }, Syntax.ListType());
24 }
25
26 public Object report(Argument args[], Context context)
27 throws ExtensionException, LogoException {
28
29 org.nlogo.agent.Turtle startTurtle = (org.nlogo.agent.Turtle) args[2].getTurtle();
30
31 org.nlogo.agent.World aWorld = (org.nlogo.agent.World) startTurtle.world();
32 HashMap<String, Integer> breedsOwnCache = aWorld.breedsOwnCache();
33
34 NetLogoToAthosVRPTWNode adaptedStartTurtle = new NetLogoToAthosVRPTWNode(startTurtle);
35
36 VRPTWSolverOmbuki<Turtle, Link, LogoList> ombukiSolver = new VRPTWSolverOmbuki<>();
37
38 // 0
39 org.nlogo.agent.AgentSet cities = (org.nlogo.agent.AgentSet) args[0].getAgentSet();
40 List<Turtle> allCities = new ArrayList<>();
41 AgentIterator turtleIterator = cities.iterator();
42 while (turtleIterator.hasNext()) {
43 allCities.add((Turtle) turtleIterator.next());
44 }
45
46 // 1
47 org.nlogo.agent.AgentSet links = (org.nlogo.agent.AgentSet) args[1].getAgentSet();
48 List<Link> allEdges = new ArrayList<>();
49 AgentIterator linkIterator = links.iterator();
50 while (linkIterator.hasNext()) {
51 allEdges.add((Link) linkIterator.next());
52 }
53
54 // 2
55 org.nlogo.agent.Turtle startCity = (org.nlogo.agent.Turtle) args[2]
56 .getTurtle();
57
58 // 3
59 LogoList customersToServe = args[3].getList();
60 List<Turtle> tourCustomers = new ArrayList<>();
61 scala.collection.Iterator<Object> tourTurtleIterator = customersToServe
62 .iterator();
63 while (tourTurtleIterator.hasNext()) {
64 tourCustomers.add((Turtle) tourTurtleIterator.next());
65 }
66
67 // 4
68 Turtle endCity = args[14].getTurtle();
69 // 5

296

APPENDIX B. EVOLOTIONARY ALGORITHM

70 Function<Turtle, Double> demandFunction = (Turtle t) -> Double
71 .parseDouble(t.getVariable(25).toString());
72
73 // 6
74 Function<Turtle, Double> earliestTimeFunction = (Turtle t) -> Double
75 .parseDouble(t.getVariable(22).toString());
76
77 // 7
78 Function<Turtle, Double> latestTimeFunction = (Turtle t) -> Double
79 .parseDouble(t.getVariable(23).toString());
80
81 // 8
82 Function<Turtle, Double> serviceTimeFunction = (Turtle t) -> Double
83 .parseDouble(t.getVariable(24).toString());
84
85 // 9
86 Function<Link, Turtle> startNodeFunction = (Link l) -> l.end1();
87
88 // 10
89 Function<Link, Turtle> endNodeFunction = (Link l) -> l.end2();
90
91 // 11
92 Function<Link, Double> edgeLengthFunction = (Link l) -> Double
93 .parseDouble(l.getVariable(13).toString());
94
95 // 12
96 Function<Link, Double> edgeTimeFunction = (Link l) -> Double
97 .parseDouble(l.getVariable(16).toString());
98
99 // 13

100 Function<ArrayList<ArrayList<Pair<Turtle, Boolean>>>, LogoList> resultListFunction = (
101 ArrayList<ArrayList<Pair<Turtle, Boolean>>> sourceList) -> {
102 LogoListBuilder outerMap = new LogoListBuilder();
103 LogoListBuilder innerMap = null;
104 LogoListBuilder tuple = null;
105 for (ArrayList<Pair<Turtle, Boolean>> tour : sourceList) {
106 innerMap = new LogoListBuilder();
107 for (Pair<Turtle, Boolean> pair : tour) {
108 tuple = new LogoListBuilder();
109 tuple.add(pair.getFirst());
110 tuple.add(pair.getSecond());
111 innerMap.add(tuple.toLogoList());
112 }
113 outerMap.add(innerMap.toLogoList());
114 }
115 return outerMap.toLogoList();
116 };
117
118 double vehicleCapacity = args[4].getDoubleValue();
119 int populationSize = args[5].getIntValue();
120 double probabilityForGreedy = args[6].getDoubleValue();
121 double maxDistance = args[7].getDoubleValue();
122 int generations = args[8].getIntValue();
123 double weightNoOfTours = args[9].getDoubleValue();
124 double weightTotalDistance = args[10].getDoubleValue();
125 int tournamentSize = args[11].getIntValue();
126 double takeBestFromTournamentProb = args[12].getDoubleValue();
127
128 double mutationProb = args[13].getDoubleValue();
129 double latestAtDepot = Double.parseDouble(endCity.getVariable(23).toString());
130 latestAtDepot = latestAtDepot == 0 ? Double.MAX_VALUE : latestAtDepot;
131
132 return ombukiSolver.report(allCities, allEdges, startCity, tourCustomers,
133 endCity, demandFunction, earliestTimeFunction, latestTimeFunction,
134 serviceTimeFunction, startNodeFunction, endNodeFunction,
135 edgeLengthFunction, edgeTimeFunction, resultListFunction,
136 vehicleCapacity, populationSize, probabilityForGreedy, maxDistance,
137 generations, weightNoOfTours, weightTotalDistance, tournamentSize,
138 takeBestFromTournamentProb, mutationProb, latestAtDepot);
139
140 }
141 }

297

; Appendix C <

Survey tasks

This section provides material from the controlled experiments discussed in Chapter 6

and Chapter 7. Section C.1 shows the informed consent form that all participants

agreed to. Section C.2 and Section C.3 show the tasks participants had to solve with

Athos and JSprit, respectively. For each task the correct solution is given together

with the number of points awarded for correct answers as well as the number of

points deducted for wong and missing answers. The parameters of the point scheme

applied to each question are explained in Table C.1.

Table C.1: Parameters of the point scheme.

Parameter Description

Answer Cell Indicates whether this question was evaluated automatically with a VBA
script that evaluates a given answer stored in a table cell.

CorAnswersString Indicates whether this question was evaluated automatically with a VBA
script that compares a given answer to an expected string of correct answers.

Points Number of points awarded for a correct answer (for many questions multiple
correct answers exist).

WrgAnswersString Indicates whether there is a set of wrong answers that when given by a
participant lead to the deduction of points.

NegPointsP Number of points deducted for a) a missing correct answer, b) a wrong
answer found in the WrgAnswersString

WrongAnswAllowed Number of wrong answers that are allowed without deduction of points.
MissingAnswAllowed Number of missing answers that are allowed without deduction of points.
MaxPointsToGet The maximum number of points awarded for the respective task.

The material was provided in the form of HTML encoded pages created with the

NoviSurvey software1. The design from the survey was adapted to the format of this

thesis. The texts and tasks were adopted from the survey without changes.
1https://novisurvey.net/

298

https://novisurvey.net/

APPENDIX C. SURVEY TASKS

C.1 Informed consent form

Task: Informed consent form

Informed consent

Edinburgh Napier University requires that all persons who participate in research studies
give their written consent to do so. Please read the following and sign it if you agree with
what it says.

1. I freely and voluntarily consent to be a participant in this study that evaluates the
domain-specific language (DSL) Athos. Athos is a language designed for the domain of traffic
and transport simulation and optimisation. The study is conducted by Benjamin Hoffmann, a
postgraduate student at Edinburgh Napier University.

2. The broad goal of this research study is to gain insight into several language aspects
(e.g. learnability, perceivability, evolvability). This study is conducted among students from
THM enrolled for the <NAME OF THE STUDY COURSE>. I will be asked to provide a
brief overview on my educational background and my prior programming experience before
solving a set of tasks from the domain of vehicle routing problems. I understand that these
information are only used for scientific purpose (e.g. to gain insight on how prior knowledge
affects the learnability of Athos). In order to solve these tasks I am supposed to use both
the aforementioned DSL and a GPL together with an application library called "JSprit".
Completion of the survey should take no longer than 60 minutes.

3. I understand that results from this study may likely be published in various forms of
scientific literature (journal articles, conference papers, PhD thesis, etc.).

4. I have been told that my responses will be anonymised. My name will not be linked with
the research materials, and I will not be identified or identifiable in any report subsequently
produced by the researcher.

5. I understand that if at any time during the survey I feel unable or unwilling to continue, I
am free to leave. That is, my participation in this study is completely voluntary, and I may
withdraw from it without negative consequences. However, I understand that I submit my
answers anonymously. Therefore, once I press the "submit answers button" it is not possible
to remove any of my answers from the set of collected answers.

6. Should I not wish to answer any particular question or questions, I am free to decline. For
this purpose, each question features an op-out answer (e.g. "not applicable") which I may
select without provision of further explanation.

7. I have been given the opportunity to ask questions regarding the survey and my questions
have been answered to my satisfaction.

8. I have read and understand the above and consent to participate in this study. My
agreement (given by checking the agreement checkbox and clicking the "start button") is not a
waiver of any legal rights. Furthermore, I understand that I will be handed a copy of the
informed consent form for my records upon request.

Do you agree with these terms and conditions?

□ I agree with these terms and conditions.

299

APPENDIX C. SURVEY TASKS

C.2 Athos tasks

Task: Q01ATNW

Introduction

In this task you are given a program that contains a few syntactical mistakes.Your task is to
spot and report these mistakes.

Task

□ Line 1 □ Line 2 □ Line 3 □ Line 4
□ Line 5 □ Line 6 □ Line 7 □ Line 8
□ Line 9 □ Line 10 □ Line 11 □ Line 12
□ Line 13 □ Line 14 □ Line 15 □ Line 16
□ Line 17 □ Line 18

1 model q1nw
2 products
3 stuff ("quantity") 1.0
4 functions
5 calculate roadFunction 4 * length + 4
6 durationFunction highwayFunction 2 * length + 2
7 network
8 nodes
9 n0 at (5, 1)

10 n1 locatedAt (10, 9)
11 n2 at (12, 1)
12 edges
13 group beltway function highwayFunction members
14 b1 from n0 to n1
15 from n0 to n2
16 group road function roadFunction members
17 r1 starts at node n1 ends at node n2
18 r2 from n2 to n1

Correct solution

□✓Line 3, □✓Line 5, □✓Line 10, □✓Line 15, □✓Line 17

Evaluation 2020

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 2
WrgAnswersString No (default) MaxPointsToGet 10 (default)

Evaluation 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

300

APPENDIX C. SURVEY TASKS

Task: Q01ATAG

Introduction

In this task you are given a program that contains a few syntactical mistakes.Your task is to
spot and report these mistakes.

Task

□ Line 1 □ Line 2 □ Line 3 □ Line 4
□ Line 5 □ Line 6 □ Line 7 □ Line 8
□ Line 9 □ Line 10

1 agentTypes
2 agentType delivery1 maxWeight 360
3 behaviour awt awaitTourExternal when finished do die
4 behaviour die disappear
5 agentType delivery 2 maxWeight 360
6 behaviour awt awaitTourExternal when finished do die
7 behaviour die vanish
8 agent delivery3 maxWeight 360
9 behaviour awt awaitTourExternal when finished do "die"

10 behaviour die vanish

Correct solution

□✓Line 4, □✓Line 5,□✓Line 8, □✓Line 9

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

301

APPENDIX C. SURVEY TASKS

Task: Q02ATAG (1/2)

Introduction

In this task you will find a program with a gap. Additionally, you are presented four code
snippets that can be used to fill the gap. However, some of these snippets do not make sense
(either for themselves or in the completed program). It is your task to find the nonsensical
snippets and report them.

Task

Below you see a VRPTW modelled with Athos. In line 35, the definition of a depot is required.
Which of the proposed snippets given at the bottom of this page are semantically incorrect (in
other words: which of the four snippets do not make complete sense)?

□ Snippet 1 □ Snippet 2 □ Snippet 3 □ Snippet 4

1 model newModel
2 products
3 stuff weight 30.0
4 functions
5 durationFunction roadFunction length + cfactor
6 network
7 nodes
8 n0 (1.0, 1.0)
9 n1 (1.0, 8.0) hasDemand stuff units 30.0

10 n2 (2.0, 11.0) hasDemand stuff units 30.0
11 n3 (4.0, 6.0)
12 n4 (5.0, 12.0) hasDemand stuff units 30.0
13 n5 (8.0, 11.0) hasDemand stuff units 30.0
14 n6 (8.0, 7.0) hasDemand stuff units 30.0
15 n7 (13.0, 12.0)
16 n8 (9.0, 5.0)
17 n9 (13.0, 1.0)
18 edges
19 group lcfgroup cfactor 2.0 function roadFunction members
20 el01 from n0 to n1
21 el02 from n1 to n2
22 el03 from n2 to n4
23 el04 from n4 to n5
24 el05 from n6 to n5
25 el06 from n7 to n4
26 el07 from n7 to n9
27 el08 from n9 to n0
28 el09 from n9 to n8
29 el10 from n8 to n6
30 el11 from n5 to n7
31 group hcfgroup cfactor 4.0 function roadFunction members
32 eh01 from n5 to n3
33 eh02 from n3 to n0
34 sources
35 // code to be added
36 agentTypes
37 agentType myDeliveryType congestionFactor 0 maxWeight 180
38 behaviour awt awaitTour when finished do die
39 behaviour die vanish

302

APPENDIX C. SURVEY TASKS

Task: Q02ATAG (2/2)

Task (continuation)

Snippet1:

35 n1 isDepot stuff sprouts myDeliveryType customers n0, n2, n4, n5, n6 at 0

Snippet 2:

35 n0 isDepot stuff sprouts myDeliveryType customers n0, n2, n4, n5, n6 at 0

Snippet 3:

35 n0 isDepot stuff sprouts myDeliveryType customers n1, n2, n3, n5, n6 at 0

Snippet 4:

35 n0 isDepot stuff sprouts myDeliveryType customers n1, n2, n4, n5, n6 at 0

Correct solution

□✓Snippet 1, □✓Snippet 2, □✓Snippet 3

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

303

APPENDIX C. SURVEY TASKS

Task: Q03ATALL (1/4)

Introduction

In this task you see the illustration of a Network (comprised of customers, demands, roads /
highways etc.). In addition, the illustration also shows optised vehicle routes for a VRP based
on the illustrated network.Your task is to determine which of the three models / programs
corresponds to the illustrated network.

Task

Q1 – Which of the three programs corresponds to the illustration?

Program 1 Program 2 Program 3

1 2

1
2

34

5

5

4 3

2
1

1 2

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

10

00

e: 0
l: 800
c: 200

04

01
d: 200
e: 10
l: 200
s: 10

07
d: 200
e: 10
l: 200
s: 10

02
d: 100
e: 10
l: 100
s: 10

03
d: 50
e: 50
l: 140
s: 9

06

d: 100
e: 10
l: 100
s: 10

05
d: 50
e: 50
l: 140
s: 9

08e: 0
l: 800
c: 200

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n navigation node

n delivers to
(orangeStuff)

n

n delivers to
(purpleStuff)

n

highway
duration: 2 · length+2
road
duration: 4 · length+4

304

APPENDIX C. SURVEY TASKS

Task: Q03ATALL (2/4)

Task (continuation)

Program 1

1 model q11AllStartState
2 products
3 orngStuff weight 1.0
4 prplStuff weight 1.0
5 functions
6 durationFunction roadFunction 4 * length + 4
7 durationFunction highwayFunction 2 * length + 2
8 network
9 nodes

10 n0 at (-9, 1) isDepot orngStuff sprouts orngVehis customers n1, n2, n3 at 0 latestTime 800
11 n1 at (-9, 8) hasDemand orngStuff units 200 earliestTime 10 latestTime 200 serviceTime 10
12 n2 at (6, 9) hasDemand orngStuff units 100 earliestTime 10 latestTime 100 serviceTime 10
13 n3 at (9, 4) hasDemand orngStuff units 50 earliestTime 50 latestTime 140 serviceTime 9
14 n4 at (-2, 0)
15 n5 at (9, -4) hasDemand prplStuff units 50 earliestTime 50 latestTime 140 serviceTime 9
16 n6 at (6, -9) hasDemand prplStuff units 100 earliestTime 10 latestTime 100 serviceTime 10
17 n7 at (-9, -8) hasDemand prplStuff units 200 earliestTime 10 latestTime 200 serviceTime 10
18 n8 at (-9, -1) isDepot prplStuff sprouts prplVehis customers n7, n6, n5 at 0 latestTime 800
19 edges
20 group roadGroup function roadFunction members
21 h1 from n2 to n4
22 h2 from n3 to n4
23 h3 from n6 to n4
24 h4 from n5 to n4
25 group highwayGroup function highwayFunction members
26 r1 from n0 to n1
27 r2 from n0 to n4
28 r3 from n1 to n2
29 r4 from n2 to n3
30 r5 from n8 to n7
31 r6 from n8 to n4
32 r7 from n7 to n6
33 r8 from n5 to n6
34 agentTypes
35 agentType orngVehis congestionFactor 0 maxWeight 200
36 behaviour awt awaitTour when finished do die
37 behaviour die vanish
38 agentType prplVehis congestionFactor 0 maxWeight 200
39 behaviour awt awaitTour when finished do die
40 behaviour die vanish

305

APPENDIX C. SURVEY TASKS

Task: Q03ATALL (3/4)

Task (continuation)

Program 2

1 model q11AllStartState
2 products
3 orngStuff weight 1.0
4 prplStuff weight 1.0
5 functions
6 durationFunction roadFunction 4 * length + 4
7 durationFunction highwayFunction 2 * length + 2
8 network
9 nodes

10 n0 at (-9, 1) isDepot orngStuff sprouts orngVehis customers n1, n2, n3 at 0 latestTime 800
11 n1 at (-9, 8) hasDemand orngStuff units 200 earliestTime 10 latestTime 200 serviceTime 10
12 n2 at (6, 9) hasDemand orngStuff units 100 earliestTime 10 latestTime 100 serviceTime 10
13 n3 at (9, 4) hasDemand orngStuff units 50 earliestTime 50 latestTime 140 serviceTime 9
14 n4 at (-2, 0)
15 n5 at (9, -4) hasDemand prplStuff units 50 earliestTime 50 latestTime 140 serviceTime 9
16 n6 at (6, -9) hasDemand prplStuff units 100 earliestTime 10 latestTime 100 serviceTime 10
17 n7 at (-9, -8) hasDemand prplStuff units 200 earliestTime 10 latestTime 200 serviceTime 10
18 n8 at (-9, -1)isDepot prplStuff sprouts prplVehis customers n7, n6, n5 at 0 latestTime 800
19 edges
20 group roadGroup function roadFunction members
21 r1 from n0 to n1
22 r2 from n0 to n4
23 r3 from n1 to n2
24 r4 from n2 to n3
25 r5 from n8 to n7
26 r6 from n8 to n4
27 r7 from n7 to n6
28 r8 from n5 to n6
29 group highwayGroup function highwayFunction members
30 h1 from n2 to n4
31 h2 from n3 to n4
32 h3 from n6 to n4
33 h4 from n5 to n4
34 agentTypes
35 agentType orngVehis congestionFactor 0 maxWeight 200
36 behaviour awt awaitTour when finished do die
37 behaviour die vanish
38 agentType prplVehis congestionFactor 0 maxWeight 200
39 behaviour awt awaitTour when finished do die
40 behaviour die vanish

306

APPENDIX C. SURVEY TASKS

Task: Q03ATALL (4/4)

Task (continuation)

Program 2

1 model q11AllStartState
2 products
3 orngStuff weight 1.0
4 prplStuff weight 1.0
5 functions
6 durationFunction roadFunction 4 * length + 4
7 durationFunction highwayFunction 2 * length + 2
8 network
9 nodes

10 n0 at (-9, 1) isDepot prplStuff sprouts prplVehis customers n7, n6, n5 at 0 latestTime 800
11 n1 at (-9, 8) hasDemand orngStuff units 200 earliestTime 10 latestTime 200 serviceTime 10
12 n2 at (6, 9) hasDemand orngStuff units 100 earliestTime 10 latestTime 100 serviceTime 10
13 n3 at (9, 4) hasDemand orngStuff units 50 earliestTime 50 latestTime 140 serviceTime 9
14 n4 at (-2, 0)
15 n5 at (9, -4) hasDemand prplStuff units 50 earliestTime 50 latestTime 140 serviceTime 9
16 n6 at (6, -9) hasDemand prplStuff units 100 earliestTime 10 latestTime 100 serviceTime 10
17 n7 at (-9, -8) hasDemand prplStuff units 200 earliestTime 10 latestTime 200 serviceTime 10
18 n8 at (-9, -1) isDepot orngStuff sprouts orngVehis customers n1, n2, n3 at 0 latestTime 800
19 edges
20 group roadGroup function roadFunction members
21 r1 from n0 to n1
22 r2 from n0 to n4
23 r3 from n1 to n2
24 r4 from n2 to n3
25 r5 from n8 to n7
26 r6 from n8 to n4
27 r7 from n7 to n6
28 r8 from n5 to n6
29 group highwayGroup function highwayFunction members
30 h1 from n2 to n4
31 h2 from n3 to n4
32 h3 from n6 to n4
33 h4 from n5 to n4
34 agentTypes
35 agentType orngVehis congestionFactor 0 maxWeight 200
36 behaviour awt awaitTour when finished do die
37 behaviour die vanish
38 agentType prplVehis congestionFactor 0 maxWeight 200
39 behaviour awt awaitTour when finished do die
40 behaviour die vanish

Correct solution

Program 2

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

307

APPENDIX C. SURVEY TASKS

Task: Q04ATNW (1/3)

Introduction

In this task you are shown a program and four different graphical networks. One of these
networks is exactly described (modelled) by the program. For the other three networks the
program is not completely right. It is your task to find and report the exactly modelled
network.

Task

Which of the above networks results from the given Athos model?

Network A Network B Network C Network D

1 model q04atnw
2 products
3 stuff weight 1.0
4 functions
5 durationFunction highwayFunction 1.5 * length
6 durationFunction roadFunction 4 * length + 5
7 network
8 nodes
9 n0 at (0, -6) isDepot stuff sprouts vhcls customers n1, n2, n3, n5, n6 at 0 latestTime 500

10 n1 at (-9, 4) hasDemand stuff units 15 earliestTime 15 latestTime 120 serviceTime 5
11 n2 at (7, -9) hasDemand stuff units 20 earliestTime 10 latestTime 130 serviceTime 7
12 n3 at (8, 5) hasDemand stuff units 50 earliestTime 20 latestTime 90 serviceTime 10
13 n4 at (2, 0)
14 n5 at (-2, -1) hasDemand stuff units 25 earliestTime 90 latestTime 250 serviceTime 10
15 n6 at (-8, -6) hasDemand stuff units 25 earliestTime 90 latestTime 270 serviceTime 5
16 edges
17 group roadGroup function roadFunction members
18 road1 from n0 to n5
19 road2 from n0 to n4
20 road3 from n5 to n4
21 road4 from n4 to n3
22 road5 from n5 to n1
23 road6 from n0 to n6
24 group highwayGroup function roadFunction members
25 highway1 from n1 to n3
26 highway2 from n3 to n2
27 highway3 from n2 to n6
28 highway4 from n6 to n1
29 agentTypes
30 agentType vhcls congestionFactor 0 maxWeight 180
31 behaviour awt awaitTour when finished do die
32 behaviour die vanish

308

APPENDIX C. SURVEY TASKS

Task: Q04ATNW (2/3)

Introduction

In this task you are shown a program and four different graphical networks. One of these
networks is exactly described (modelled) by the program. For the other three networks the
program is not completely right. It is your task to find and report the exactly modelled
network.

Task (continuation)

Network A

-12 -8 -4 0 4 8 12
-10

-8

-6

-4

-2

0

2

4

6

8

00
e: 0
l: 430
c: 120

01

02

d: 20
e: 10
l: 130
s: 7

03

d: 50
e: 20
l: 90
s: 10

04
05

d: 25
e: 90
l: 250
s: 10

06
d: 25
e: 90
l: 270
s: 5

n depot node

n
e: earliest time
l: latest time
c: capacity of vehicles

n navigation node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

highway
duration: 2 · length+2

road
duration: 4 · length+5

Network B

-12 -8 -4 0 4 8 12
-10

-8

-6

-4

-2

0

2

4

6

8

00
e: 0
l: 500
c: 180

01

d: 15
e: 15
l: 120
s: 5

02

d: 20
e: 10
l: 130
s: 7

03

d: 50
e: 20
l: 90
s: 10

04
05

d: 25
e: 90
l: 250
s: 10

06
d: 25
e: 90
l: 270
s: 5

n depot node

n
e: earliest time
l: latest time
c: capacity of vehicles

n navigation node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

highway
duration: 1.5 · length

road
duration: 4 · length+5

309

APPENDIX C. SURVEY TASKS

Task: Q04ATNW (3/3)

Task (continuation)

Network C

-12 -8 -4 0 4 8 12
-10

-8

-6

-4

-2

0

2

4

6

8

04

01

02

d: 20
e: 10
l: 130
s: 7

03

d: 50
e: 20
l: 90
s: 10

00 e: 0
l: 500
c: 18005

d: 10
e: 80
l: 150
s: 20

06
d: 25
e: 90
l: 270
s: 5

n depot node

n
e: earliest time
l: latest time
c: capacity of vehicles

n navigation node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

highway
duration: 1.5 · length

road
duration: 4 · length+5

Network D

-12 -8 -4 0 4 8 12
-10

-8

-6

-4

-2

0

2

4

6

8

00
e: 0
l: 500
c: 180

01

d: 15
e: 15
l: 120
s: 5

02

d: 20
e: 10
l: 130
s: 7

03

d: 50
e: 20
l: 90
s: 10

04
05

d: 10
e: 80
l: 150
s: 20

06
d: 25
e: 90
l: 270
s: 5

n depot node

n
e: earliest time
l: latest time
c: capacity of vehicles

n navigation node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

highway
duration: 1.5 · length

road
duration: 3 · length+3

Correct solution

Network B

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

310

APPENDIX C. SURVEY TASKS

Task: Q04ATAG (1/3)

Introduction

In this task you are shown a program and four graphical networks on which four different
tours are depicted. One of these networks shows a tour that is exactly described (modelled) by
the program. For the other three tours the program is not completely right. It is your task to
find and report the exactly modelled tour.

NOTE: If a tour step connects two nodes that do not share an edge, this means that the actual
path from the start node to the target node of the respective step is not important. However,
only nodes of the drawn tour are serviced!

Task

Which of the presented tours for a vehicle may result from the program given below?

Tour 1 Tour 2 Tour 3 Tour 4

1 functions
2 durationFunction highwayFunction length
3 durationFunction roadFunction 3 * length + 5
4 network
5 nodes
6 n0 at (-10, -8) isDepot stuff sprouts vehicles customers n2, n3, n5, n6 at 0 latestTime 500
7 n1 at (-8, -4)
8 n2 at (-11, 2) hasDemand stuff units 20 earliestTime 10 latestTime 130 serviceTime 7
9 n3 at (-5, 4) hasDemand stuff units 50 earliestTime 20 latestTime 90 serviceTime 10

10 n4 at (-8, 7)
11 n5 at (2, 0) hasDemand stuff units 25 earliestTime 90 latestTime 250 serviceTime 10
12 n6 at (2, 7) hasDemand stuff units 25 earliestTime 90 latestTime 250 serviceTime 10
13 n7 at (6, 5)
14 n8 at (11, 3)
15 n9 at (2, -8)
16 n10 at (8, -6)
17 n11 at (6, -9)
18 edges
19 group roadGroup function roadFunction members
20 road1 from n0 to n1
21 road2 from n2 to n4
22 road3 from n2 to n3
23 road4 from n4 to n3
24 road5 from n3 to n6
25 road6 from n6 to n7
26 road7 from n7 to n8
27 road8 from n8 to n10
28 road9 from n10 to n11
29 road10 from n11 to n9
30 group highwayGroup function highwayFunction members
31 highway1 from n1 to n2
32 highway2 from n1 to n3
33 highway3 from n1 to n5
34 highway4 from n5 to n6
35 highway5 from n5 to n7
36 highway6 from n5 to n10
37 highway7 from n5 to n9
38 highway8 from n9 to n0
39 agentTypes
40 agentType vehicles maxWeight 180
41 behaviour awt awaitTour when finished do die
42 behaviour die vanish

311

APPENDIX C. SURVEY TASKS

Task: Q04ATAG (2/3)

Introduction

Task (continuation)

Tour 1

1

2

3

4

5

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

02

03

04

05

06

07

08

09

10

11

n depot node

n navigation node

n customer node

highway

road

n
tour

Tour 2

1

2

3

4

5

6

7

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

02

03

04

05

06

07

08

09

10

11

n depot node

n navigation node

n customer node

highway

road

n
tour

312

APPENDIX C. SURVEY TASKS

Task: Q04ATAG (3/3)

Introduction

Task (continuation)

Tour 3

1

2

3

4 5

6

6
7

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

02

03

04

05

06

07

08

09

10

11

n depot node

n navigation node

n customer node

highway

road

n
tour

Tour 4

1

2

3

4

5

6

7

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

02

03

04

05

06

07

08

09

10

11

n depot node

n navigation node

n customer node

highway

road

n
tour

Correct solution

□✓Tour 4

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

313

APPENDIX C. SURVEY TASKS

Task: Q05ATNW (1/2)

Introduction

In this task you will find a program and two networks. The first of the two networks is
described by the program. If some of the lines of the program are changed, the program is a
description of the second network. It is your task to find these lines and report them.

Task

The Athos model below represents network 1 . What lines of the Athos model would have to

be changed if you wanted to model network 2 (multiple answers possible)?

□ Line 1 □ Line 2 □ Line 3 □ Line 4 □ Line 5 □ Line 6
□ Line 7 □ Line 8 □ Line 9 □ Line 10 □ Line 11 □ Line 12
□ Line 13 □ Line 14 □ Line 15 □ Line 16 □ Line 17 □ Line 18
□ Line 19 □ Line 20 □ Line 21 □ Line 22 □ Line 23 □ Line 24
□ Line 25 □ Line 26 □ Line 27 □ Line 28 □ Line 29 □ Line 30
□ Line 31 □ Line 32 □ Line 33 □ Line 34 □ Line 35 □ Line 36

1 model q5nw
2 products stuff weight 1.0
3 functions
4 durationFunction roadFunction 4 * length + 5
5 durationFunction highwayFunction 1.5 * length + 2
6 network
7 nodes
8 n0 at (-2, -2) isDepot stuff sprouts vehicles customers n2, n3, n4, n6 at 0 latestTime 500
9 n1 at (-8, -4)

10 n2 at (-8, -1) hasDemand stuff units 20 earliestTime 10 latestTime 130 serviceTime 7
11 n3 at (-5, 4) hasDemand stuff units 50 earliestTime 20 latestTime 90 serviceTime 10
12 n4 at (-2, -6) hasDemand stuff units 25 earliestTime 90 latestTime 250 serviceTime 10
13 n5 at (2, 0)
14 n6 at (4, 5) hasDemand stuff units 25 earliestTime 90 latestTime 250 serviceTime 10
15 edges
16 group roadGroup function roadFunction
17 members
18 road1 from n0 to n4
19 road2 from n0 to n5
20 road3 from n0 to n1
21 road4 from n0 to n3
22 road5 from n4 to n5
23 group highwayGroup function highwayFunction
24 members
25 highway1 from n1 to n2
26 highway2 from n2 to n3
27 highway3 from n3 to n6
28 highway4 from n6 to n5

314

APPENDIX C. SURVEY TASKS

Task: Q05ATNW (2/2)

Task (continuation)

Network 1 (currently modelled)

30.3

22.9

21.0

31.8

6.5

10.7

15.6

10.1

33.8

-10 -8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

00

01

02

03

04

05

06 n depot node

n navigation node

n customer node

d highway
duration: 1.5 · length+2

d road
duration: 4 · length+5

Network 2 (target state)

30.3

22.9

21.0

31.8

5.1

8.5

12.4

8.0

33.8

-10 -8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

00

01

02

03

04

05

06 n depot node

n navigation node

n customer node

d highway
duration: 1.2 · length+1.5

d road
duration: 4 · length+5

Correct solution

□✓Line 5

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

315

APPENDIX C. SURVEY TASKS

Task: Q05ATAG (1/2)

Introduction

In this task, you will find the graphical representation of a network together with a program.
The network shows two tours. The program describes the network and a problem for which
one of the tours is likely to be optimal. By changing some lines of the program, the program
describes a problem for which the other tour is likely to be optimal. It is your task to find and
report these lines.

Task

In the picture below, the red tour is a likely result from the problem modelled in the Athos
code given at the bottom. What lines of the Athos model have to be changed so that the green
tour is likely to result from the model?

□ Line 1 □ Line 2 □ Line 3 □ Line 4 □ Line 5 □ Line 6
□ Line 7 □ Line 8 □ Line 9 □ Line 10 □ Line 11 □ Line 12
□ Line 13 □ Line 14 □ Line 15 □ Line 16 □ Line 17 □ Line 18
□ Line 19 □ Line 20 □ Line 21 □ Line 22 □ Line 23 □ Line 24
□ Line 25 □ Line 26 □ Line 27 □ Line 28 □ Line 29 □ Line 30
□ Line 31

1

2 3

451

2

3
4

-10 -8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

00

01

02

03

04

05

06 n depot node

n customer or navigation node

highway
duration: 2 · length+2

road
duration: 4 · length+4

n
current tour

n target tour

316

APPENDIX C. SURVEY TASKS

Task: Q05ATAG (2/2)

Task (continuation)

1 model q5ag
2 products
3 stuff weight 1.0
4 functions
5 durationFunction roadFunction 4 * length + 4
6 durationFunction highwayFunction 2 * length + 2
7 network
8 nodes
9 n0 at (-2, -2) isDepot stuff sprouts vehicles customers n4, n5, n6 at 0 latestTime 20000

10 n1 at (-8, -4) hasDemand stuff units 20 earliestTime 0 latestTime 20000 serviceTime 7
11 n2 at (-8, -1) hasDemand stuff units 20 earliestTime 0 latestTime 20000 serviceTime 7
12 n3 at (-5, 4) hasDemand stuff units 50 earliestTime 0 latestTime 20000 serviceTime 10
13 n4 at (-2, -6) hasDemand stuff units 25 earliestTime 0 latestTime 20000 serviceTime 10
14 n5 at (2, 0) hasDemand stuff units 25 earliestTime 0 latestTime 20000 serviceTime 10
15 n6 at (4, 5) hasDemand stuff units 25 earliestTime 0 latestTime 20000 serviceTime 10
16 edges
17 group roadGroup function roadFunction members
18 road1 from n0 to n4
19 road2 from n0 to n5
20 road3 from n0 to n1
21 road4 from n0 to n3
22 road5 from n4 to n5
23 group highwayGroup function highwayFunction members
24 highway1 from n1 to n2
25 highway2 from n2 to n3
26 highway3 from n3 to n6
27 highway4 from n6 to n5
28 agentTypes
29 agentType vehicles congestionFactor 0 maxWeight 180
30 behaviour awt awaitTour when finished do die
31 behaviour die vanish

Correct solution

□✓Line 9

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

317

APPENDIX C. SURVEY TASKS

Task: Q06ATNW (1/4)

Introduction
In this task, you see a program that describes a network for a VRPTW. In addition, you see
four more programs. Some of these programs describe the exact same network as the first
program, even though they syntactically deviate from the first program. It is your task to find
and report these equivalent programs.

Task

Look at the "Program to match" below. One or more of the four possible matches produce an
equivalent network. Tick the respective boxes!

□ Possible match 01 □ Possible match 02 □ Possible match 03 □ Possible match 04

Program to match

1 functions
2 durationFunction roadFunction 2 * length + 4
3 durationFunction highwayFunction 4 * length + 2
4 durationFunction specialFunction 3 * length + 3
5 network
6 nodes
7 n0 at (-2, -2)
8 n1 at (-8, -4)
9 n2 at (-8, -1)

10 n3 at (-5, 4)
11 n4 at (-2, -6)
12 n5 at (2, 0)
13 n6 at (4, 5)
14 edges
15 group roadGroup function roadFunction members
16 road1 from n0 to n4
17 road2 from n0 to n5 function specialFunction
18 road3 from n0 to n1
19 road4 from n0 to n3
20 road5 from n4 to n5
21 group highwayGroup function highwayFunction members
22 highway1 from n1 to n2
23 highway2 from n2 to n3
24 highway3 from n3 to n6 function specialFunction
25 highway4 from n6 to n5

318

APPENDIX C. SURVEY TASKS

Task: Q06ATNW (2/4)

Task (continuation)

Matching option 1

1 functions
2 durationFunction roadFunction 2 * length + 4
3 durationFunction highwayFunction 4 * length + 2
4 durationFunction specialFunction 3 * length + 3
5 network
6 nodes
7 n0 at (-2, -2)
8 n1 at (-8, -4)
9 n2 at (-8, -1)

10 n3 at (-5, 4)
11 n4 at (-2, -6)
12 n5 at (2, 0)
13 n6 at (4, 5)
14 edges
15 group roadGroup function roadFunction members
16 road1 from n0 to n4
17 road2 from n0 to n5
18 road3 from n0 to n1
19 road4 from n0 to n3
20 road5 from n4 to n5 function specialFunction
21 group highwayGroup function highwayFunction members
22 highway1 from n1 to n2
23 highway2 from n2 to n3 function specialFunction
24 highway3 from n3 to n6
25 highway4 from n6 to n5

Matching option 2

1 functions
2 durationFunction roadFunction 2 * length + 4
3 durationFunction highwayFunction 4 * length + 2
4 durationFunction specialFunction 3 * length + 3
5 network
6 nodes
7 n0 at (-2, -2)
8 n1 at (-8, -4)
9 n2 at (-8, -1)

10 n3 at (-5, 4)
11 n4 at (-2, -6)
12 n5 at (2, 0)
13 n6 at (4, 5)
14 edges
15 group roadGroup function roadFunction members
16 road1 from n0 to n4
17 road3 from n0 to n1
18 road4 from n0 to n3
19 road5 from n4 to n5
20 group highwayGroup function highwayFunction members
21 highway1 from n1 to n2
22 highway2 from n2 to n3
23 highway4 from n6 to n5
24 group fastwayGroup function specialFunction members
25 fastway1 from n0 to n5
26 fastway2 from n3 to n6

319

APPENDIX C. SURVEY TASKS

Task: Q06ATNW (3/4)

Task (continuation)

Matching option 3

1 functions
2 durationFunction roadFunction 2 * length + 4
3 durationFunction highwayFunction 4 * length + 2
4 durationFunction specialFunction 3 * length + 3
5 network
6 nodes
7 n0 at (-2, -2)
8 n1 at (-8, -4)
9 n2 at (-8, -1)

10 n3 at (-5, 4)
11 n4 at (-2, -6)
12 n5 at (2, 0)
13 n6 at (4, 5)
14 edges
15 group roadGroup function roadFunction members
16 road1 from n0 to n4
17 road3 from n0 to n1
18 road4 from n0 to n3
19 road5 from n4 to n5
20 group highwayGroup function highwayFunction members
21 highway1 from n1 to n2
22 highway3 from n3 to n6
23 highway4 from n6 to n5
24 group fastwayGroup function specialFunction members
25 fastway2 from n0 to n5 function highwayFunction
26 fastway1 from n2 to n3 function specialFunction

Matching option 4

1 functions
2 durationFunction roadFunction 2 * length + 4
3 durationFunction highwayFunction 4 * length + 2
4 durationFunction specialFunction 3 * length + 3
5 network
6 nodes
7 n0 at (-2, -2)
8 n1 at (-8, -4)
9 n2 at (-8, -1)

10 n3 at (-5, 4)
11 n4 at (-2, -6)
12 n5 at (2, 0)
13 n6 at (4, 5)
14 edges
15 road1 from n0 to n4 function roadFunction
16 road2 from n0 to n5 function specialFunction
17 road3 from n0 to n1 function roadFunction
18 road4 from n0 to n3 function roadFunction
19 road5 from n4 to n5 function roadFunction
20 highway1 from n1 to n2 function highwayFunction
21 highway2 from n2 to n3 function highwayFunction
22 highway3 from n3 to n6 function specialFunction
23 highway4 from n6 to n5 function highwayFunction

320

APPENDIX C. SURVEY TASKS

Task: Q06ATNW (4/4)

Task (continuation)

Correct solution

□✓Possible match 2, Possible match 4

Evaluation 2020

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 1 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

Evaluation 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 1 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

321

APPENDIX C. SURVEY TASKS

Task: Q07ATALL (1/2)

Introduction
In this task, you first see a complete program. After that, you are shown excerpts from this
program and you are asked to associate the correct semantics (meaning) with the language
elements shown in the excerpt. Thus, it is your task to associate the correct semantics to
pre-selected language elements.

Task

1 model q6nw
2 products
3 stuff weight 1.0
4 functions
5 durationFunction roadFunction 2.5 * length + 3.2
6 durationFunction highwayFunction 1.2 * length + 1.3
7 network
8 nodes
9 n0 at (-2, -2) isDepot stuff sprouts vehicles customers n1, n2, n4, n5 at 0 latestTime 850

10 n1 at (3, -4) hasDemand stuff units 20 earliestTime 10 latestTime 300 serviceTime 7
11 n2 at (0, -3) hasDemand stuff units 20 earliestTime 20 latestTime 250 serviceTime 7
12 n3 at (-5, 4) hasDemand stuff units 50 earliestTime 0 latestTime 140 serviceTime 10
13 n4 at (-2, -6) hasDemand stuff units 25 earliestTime 0 latestTime 120 serviceTime 10
14 n5 at (2, 0) hasDemand stuff units 25 earliestTime 0 latestTime 140 serviceTime 10
15 edges
16 group roadGroup function roadFunction members
17 road1 from n0 to n4
18 road2 from n0 to n5
19 road3 from n0 to n2
20 road4 from n0 to n3
21 road5 from n1 to n2
22 road6 from n1 to n4
23 group highwayGroup function highwayFunction members
24 highway3 from n3 to n5
25 highway4 from n2 to n5
26 agentTypes
27 agentType vehicles congestionFactor 0 maxWeight 180
28 behaviour awt awaitTour when finished do die
29 behaviour die vanish

1st Element

4 functions
5 durationFunction roadFunction 2.5 * length + 3.2

Which description of the sematics of the the durationFunction element is the most appropriate?

It is used for single customers (Services). Together with an expression that
refers to the respective customer it determines how long the time window of this
customer is opened.
It is used for single vehicles (agents). Together with an expression it determines
the costs that occur upon deployment of the respective vehicle (agent).
It is used for single edges, that is the connection between two customers. Together
with an expression it determines how long it takes a vehicle (agent) to travel the
respective edge.
It is used for single depots. Together with an expression it determines the capacity
of the vehicles (agents) starting from that depot.

322

APPENDIX C. SURVEY TASKS

Task: Q07ATALL (2/2)

Task (continuation)

2nd Element

15 edges
16 group roadGroup function roadFunction members

Which explanation concerning the meaning of the depicted group element in combination with
the ensuing definition of edges in the context of the complete program is most appropriate?

It allows to group agents (vehicles) that will then jointly travel the respective
edge
All edges (connections between two nodes) must be associated with a group
because only via a group it is possible to set the duration function of an edge.
Edges of a given group automatically constitute a path and thus share the same
congestionFactor.
They are an optional language element that may facillitate the definition of edges.
Especially in cases in which a large number of edges are assigned the same
(duration) function.

Correct solution

1st Element

It is used for single edges, that is the connection between two customers. Together
with an expression it determines how long it takes a vehicle (agent) to travel the
respective edge.

2nd Element

They are an optional language element that may facillitate the definition of edges.
Especially in cases in which a large number of edges are assigned the same
(duration) function.

Evaluation 2020, 2021

Non-attempt iff both tasks were not answered.

1st Element

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 5 (default)

2nd Element

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 5 (default)

323

APPENDIX C. SURVEY TASKS

Task: Q08ATALL (1/2)

Introduction
In this task, you first see a complete program. The program features some comments. These
comments represent TODOs, i.e. future programming tasks. In addition, you’ll find some
questions that ask for the elements, that will be affected by these TODOs. Your task is to
answer these questions correctly.a

Task

1 model q08all
2 products
3 sp weight 1.0
4 pp weight 1.0
5 functions
6 durationFunction roadFunction 2.5 * length + 3.2
7 durationFunction highwayFunction 1.2 * length + 1.3
8 network
9 // TODO: The customer with the longest service time must be added as a customer to the

10 // respective depot
11 nodes
12 n0 at (2,4) isDepot sp sprouts vehicles customers n1, n4, n6 at 0 latestTime 850
13 n1 at (3,-4) hasDemand sp units 20 earliestTime 10 latestTime 300 serviceTime 7
14 n2 at (0,-3) hasDemand sp units 20, pp units 10 earliestTime 20 latestTime 250 serviceTime 7
15 n3 at (-5,4) hasDemand sp units 50 earliestTime 0 latestTime 140 serviceTime 30
16 n4 at (-2,-6) hasDemand sp units 25 earliestTime 0 latestTime 120 serviceTime 10
17 n5 at (2,0) hasDemand sp units 30, pp units 40 earliestTime 0 latestTime 140 serviceTime 10
18 n6 at (-2,-2) hasDemand sp units 60, pp units 70 earliestTime 0 latestTime 150 serviceTime 10
19 n7 at (-5,-2) hasDemand pp units 20 earliestTime 20 latestTime 220 serviceTime 8
20 n8 at (-5,-6) isDepot pp sprouts vehicles customers n5, n6, n7 at 0 latestTime 500
21 edges
22 group roadGroup function roadFunction members
23 road01 from n0 to n4
24 road02 from n0 to n5
25 road03 from n3 to n6
26 road04 from n0 to n3
27 road05 from n1 to n2
28 road06 from n1 to n4
29 road07 from n3 to n0
30 road08 from n5 to n0
31 road09 from n3 to n7
32 road10 from n7 to n8
33 road11 from n6 to n2
34 road12 from n8 to n4
35 group highwayGroup function highwayFunction members
36 // TODO: two more highways will later be modelled here:
37 // one going from the soap depot to the customer with the highes demands in both soap
38 // and paper. The other going from the customer with the highest soap and
39 // paper demands to the paper depot.
40 highway3 from n3 to n5
41 highway4 from n2 to n5
42 agentTypes
43 agentType vehicles congestionFactor 0 maxWeight 180
44 behaviour awt awaitTour when finished do die
45 behaviour die vanish

1. Which customer must be added?
Read the comment in lines 09 and 10. Which customer must be added to the respective depot
according to the comment?
Note: Some of the provided answers might not be customers.

n0 n1 n2
n3 n4 n5
n6 n7 n8

aCoordinates were originally specified with a blank space after the comma. Original
product names were ‘soap’ and ‘paper’.

324

APPENDIX C. SURVEY TASKS

Task: Q08ATALL (2/2)

Task (continuation)

2. Which is the correct depot?
Read the comment in lines 09 and 10. To which depot must the customer be added to?
Note: Some of the provided answers might not be depots.

n0 n1 n2
n3 n4 n5
n6 n7 n8

3. Which nodes are affected?
Read the comment that spans from lines 36 to line 39. What are the three nodes this comment
refers to?
Note: Some of the provided answers might not be customers.

□ n0 □ n1 □ n2
□ n3 □ n4 □ n5
□ n6 □ n7 □ n8

Correct solution

1. n3
2. n0
3. □✓n0, □✓n6, □✓n8

Evaluation 2020, 2021

Non-attempt iff all three tasks were not answered.

1.

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 2
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 2 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 2

2.

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 2
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 2 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 2

3.

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 2
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 2 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 6

325

APPENDIX C. SURVEY TASKS

Task: Q09ATNW (1/2)

Introduction
In this task you’ll find a graphical representation of a network. The network comprises a set of
customers with demands, time windows and service times. Further below is the corresponding
program. However, the program still shows some gaps. The gaps can also be seen in the
illustration: they correspond to the elements drawn using green color. Your task is to fill in
the gaps so that the program describes the complete network.

Task

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

e: 0
l: 500
c: 300

01d: 20
e: 10
l: 80
s: 5

02

03

04
d: 70
e: 5
l: 200
s: 30

05

d: 30
e: 15
l: 125
s: 5

06
d: 50
e: 40
l: 150
s: 10

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n navigation node

to be added
to network

highway
duration: 2 · length+2
road
duration: 4 · length+4

1 model q9nw
2 products
3 stuff weight 1.0
4 functions
5 durationFunction roadFunction 4 * length + 4
6 durationFunction highwayFunction 2 * length + 2
7 network
8 nodes
9 n0 at (2, 0) isDepot stuff sprouts vehicles customers n1, n4, n5 at 0 latestTime 500

10 n1 at (0, -3) hasDemand stuff units 20 earliestTime 10 latestTime 80 serviceTime 5
11 n2 at (4, 5)
12 n3 at (-8, 2)
13 n4 at (-2, -8) hasDemand stuff units 70 earliestTime 5 latestTime 200 serviceTime 30
14 n5 at (-5, 6) hasDemand stuff units 30 earliestTime 15 latestTime 125 serviceTime 5
15 // TASK 1: SOME TEXT TO BE ADDED HERE
16 edges
17 group roadGroup function roadFunction members
18 road1 from n0 to n1
19 road2 from n0 to n2
20 road3 from n0 to n3
21 road4 from n1 to n4
22 road5 from n3 to n5
23 // TASK 2: SOME TEXT TO BE ADDED HERE
24 group highwayGroup [type1 ultraThin green] function highwayFunction members
25 highway1 from n5 to n2
26 highway2 from n3 to n2
27 highway3 from n3 to n1
28 highway4 from n3 to n4
29 // TASK 3: SOME TEXT TO BE ADDED HERE
30 agentTypes
31 agentType vehicles congestionFactor 0 maxWeight 180
32 behaviour awt awaitTour when finished do die
33 behaviour die vanish

326

APPENDIX C. SURVEY TASKS

Task: Q09ATNW (2/2)

Task (continuation)

Task 1: In the following text area, enter the code (one or more lines) that should replace the
comment "TASK 1: SOME TEXT TO BE ADDED HERE" in the complete program above.

Enter answer here

Task 2: In the following text area, enter the code (one or more lines) that should replace the
comment " TASK 2: SOME TEXT TO BE ADDED HERE " in the complete program above.

Enter answer here

Task 3: In the following text area, enter the code (one or more lines) that should replace the
comment " TASK 3: SOME TEXT TO BE ADDED HERE " in the complete program above.

Enter answer here

Correct solution

Task 1:

15 n6 at (8, -6) hasDemand stuff units 50 earliestTime 40 latestTime 150 serviceTime 10

Task 2:

23 road6 from n0 to n6

Task 3:

29 highway5 from n1 to n6
30 highway6 from n2 to n6

Evaluation 2020, 2021

Non-attempt iff three tasks were not answered.

Task 1: 6 Points.
Task 2: 2 Points.
Task 3: 2 Points.

327

APPENDIX C. SURVEY TASKS

Task: Q09ATAG (1/4)

Introduction
In this task, you’ll find an incomplete program together with a visual representation of the
network represented by this program. Complete the program in a way so that the target
network and agent behaviour visualised at the bottom of the page result. Note that the
modelled behaviour, i.e. the tour, must be a likely outcome of the agent behaviour that you
modelled in the program.
Note: In this task, there are some nodes for which demands, time windows, and service times are to be defined even

though the vehicle must not service them! Navigation nodes (as well as those customer not supposed to be serviced)

can be visited by the agent (vehicle) but they will not receive a delivery. Find a way to program this.

Task

1 model q09atag
2 products
3 stuff weight 1.0
4 functions
5 durationFunction roadFunction 4 * length + 4
6 durationFunction highwayFunction 2 * length + 2
7 network
8 nodes
9 // TASK 1 BEGINNING

10 n0 at (2, 0)
11 n1 at (-2, -8) hasDemand stuff units 30 earliestTime 10 latestTime 90 serviceTime 5
12 n2 at (8, -6)
13 n3 at (-10, -6)
14 n4 at (-4, -2)
15 n5 at (-5, 6)
16 n6 at (7, 4)
17 // TASK 1 END
18 edges
19 group roadGroup function roadFunction members
20 road1 from n0 to n6
21 road2 from n0 to n1
22 road3 from n0 to n4
23 road4 from n0 to n2
24 road5 from n1 to n2
25 road6 from n4 to n5
26 group highwayGroup function highwayFunction members
27 highway1 from n3 to n5
28 highway2 from n1 to n3
29 highway3 from n1 to n4
30 highway4 from n4 to n3
31 highway5 from n6 to n5
32 highway6 from n6 to n2
33 agentTypes
34 // TASK 2 BEGINNING
35 agentType vehicles
36 behaviour awt awaitTour when finished do die
37 behaviour die vanish
38 // TASK 2 END

328

APPENDIX C. SURVEY TASKS

Task: Q09ATAG (2/4)

Task (continuation)

Current state

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

0203

04

05

06

n
depot node or
customer node or
navigation node

highway
duration: 2 · length+2

road
duration: 4 · length+4

Target state

1
2

3

4 5

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

e: 0
l: 440
c: 250

01d: 30
e: 10
l: 90
s: 5

02
d: 30
e: 30
l: 160
s: 10

03

d: 80
e: 5
l: 190
s: 25

04

05

d: 20
e: 10
l: 135
s: 10

06

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n navigation node

highway
duration: 2 · length+2

road
duration: 4 · length+4

n
tour

329

APPENDIX C. SURVEY TASKS

Task: Q09ATAG (3/4)

Task (continuation)

Task 1: From the listing above, copy and paste the code betweenthe comment "TASK 1 :
BEGINNING" and the comment "TASK 1 END". Complete the copied code for the network
(including depot and customer definitions) so that it conforms to the target state depicted in
the illustration.

Enter answer here

Task 2: From the listing above, copy and paste the code betweenthe comment "TASK 2 :
BEGINNING" and the comment "TASK 2 END". Complete the copied code for the network
(including depot and customer definitions) so that it conforms to the target state depicted in
the illustration.

Enter answer here

Correct solution

Task 1:

10 n0 at (2, 0) isDepot stuff sprouts vehicles customers n1, n5 at 0 latestTime 440
11 n1 at (-2, -8) hasDemand stuff units 30 earliestTime 10 latestTime 90 serviceTime 5
12 n2 at (8, -6) hasDemand stuff units 30 earliestTime 30 latestTime 160 serviceTime 10
13 n3 at (-10, -6) hasDemand stuff units 80 earliestTime 5 latestTime 190 serviceTime 25
14 n4 at (-4, -2)
15 n5 at (-5, 6) hasDemand stuff units 20 earliestTime 10 latestTime 135 serviceTime 10
16 n6 at (7, 4)

Task 2:

33 agentType vehicles congestionFactor 0 maxWeight 250
34 behaviour awt awaitTour when finished do die
35 behaviour die vanish

330

APPENDIX C. SURVEY TASKS

Task: Q09ATAG (4/4)

Evaluation 2020

Due to a mistake in the creation of the question, the intended answer for the second task, i.e.
the addition of ‘maxWeight 250’ was already given in the text. For this reason, the second
part of this question was removed from the evaluation of the study for both Athos and JSprit.

Task 1: 10 Points.
Task 2: Not evaluated

Evaluation 2022

Non-attempt iff Task1 was not answered.

Task 1: 8 Points. Wrong depot definition and missing customers -4 P. (but +1 Point, if
latestTime + value correctly specified, i.e. in total - 3 P.); Wrong depot definition but correc
product and correct agent type -3 P. (cannot be combined with latest time +1!); wrong product
name -2 P.; completely missing depot definition -4 P.; wrong customer declaration (too many,
too few) -2 P.; wrong product and wrong customer declaration -3 P.; wrong code -8 P.; wrong
value for demand or time -1 P.; completely wrong demand specification -4 P.; wrong demand
specification (one demand specificatoon completely right) -2 P.; syntax error -1 P.; blank space
missing (syntax error) -1 P.; missing latest time -2 P.; missing code -1 P.

Task 2: 2 Points. Missing maxWeight -2 P.; wrong maximum weight value -1 P.; syntax error
-1 P. (-2 P. max.),; completely wrong code -2 P.; missing code, e.g. behaviour (but maxWeight
specificaiton correct) 1 P.; changed agent name (no deduction) (-0 P.); wrong keyword (-1 P.);
superfluous code -1 P.

331

APPENDIX C. SURVEY TASKS

Task: Q10ATNW (1/2)

Introduction
In this task, you will find an illustration of a network comprised of highways, roads, navigation
and customer nodes. In addition, you will find a program that corresponds to this illustration.In
the illustration, some elements (e.g. nodes, demands, highways, etc.) are drawn in red color.
These are the elements that are to be removed from the program.
Note: At the bottom of the page is a text area. Copy and paste the code that corresponds to
the elements that need to be deleted into this text area. The order in which you paste the
elements is not important.

Task

-12 -10 -8 -6 -4 -2 0 2 4 6 8
-10

-8

-6

-4

-2

0

2

4

6

00e: 0
l: 740
c: 160

01
d: 30
e: 5
l: 95
s: 10

02

d: 30
e: 30
l: 160
s: 10

03
d: 10
e: 30
l: 250
s: 20

04

05
d: 40
e: 50
l: 150
s: 20

06

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n navigation node

to be removed
from network

highway

road

1 model q6nw [xmin -15 xmax 25 ymin -10 ymax 10]
2 products
3 stuff weight 1.0
4 functions
5 durationFunction roadFunction 4 * length + 4
6 durationFunction highwayFunction 2 * length + 2
7 network
8 nodes
9 n0 at (-8, -7) isDepot stuff sprouts vehicles latestTime 740

10 n1 at (4, 6) hasDemand stuff units 30 earliestTime 5 latestTime 95 serviceTime 10
11 n2 at (-3, 4) hasDemand stuff units 30 earliestTime 30 latestTime 160 serviceTime 10
12 n3 at (4, -4) hasDemand stuff units 10 earliestTime 30 latestTime 250 serviceTime 20
13 n4 at (-10, 2)
14 n5 at (3, -8) hasDemand stuff units 40 earliestTime 50 latestTime 150 serviceTime 20
15 n6 at (-2, -4)
16 edges
17 group roadGroup function roadFunction members
18 road1 from n0 to n4
19 road2 from n0 to n2
20 road3 from n0 to n6
21 road4 from n0 to n5
22 group highwayGroup function highwayFunction members
23 highway1 from n4 to n2
24 highway2 from n2 to n1
25 highway3 from n1 to n3
26 highway4 from n6 to n3
27 highway5 from n3 to n5
28 agentTypes
29 agentType vehicles maxWeight 160
30 behaviour awt awaitTour when finished do die
31 behaviour die vanish

332

APPENDIX C. SURVEY TASKS

Task: Q10ATNW (2/2)

Task (continuation)

From above Athos model, copy those lines that need to be deleted and paste them in the
following text area (in an arbitrary order).

Enter answer here

Correct solution

14 n5 at (3, -8) hasDemand stuff units 40 earliestTime 50 latestTime 150 serviceTime 20
21 highway5 from n3 to n5
27 road4 from n0 to n5

Evaluation 2020, 2021

Scheme: 10 Points. Missing removal (of either customer, road or highway): -5 Points.

333

APPENDIX C. SURVEY TASKS

Task: Q11ATALL (1/3)

Introduction
In this task, you will find two graphical representations of networks that are comprised of
highways, roads, navigation nodes and customer nodes.
In the first graphical representation you will find one depot together with seven cus-
tomer nodes. The customer nodes are visited by two different tours.
After the two graphical network representations, you will find a program that corresponds to
the first graphical network representation (i.e. it describes this representation).
The second graphical network representation displays the target state in which you are to
transform the program: One of the customer nodes was transformed into a depot from which a
new product is delivered to some of the customers. These customers only have a demand for
the new product and do no longer require the old one (in other words, they are only supplied
by one depot).
The program features comments that mark the beginning and the end of program sections
that must be modified in order to transform the program into the target state. At the end of
the page, there are corresponding text areas, in which you copy, paste and modify the original
code in a suitable way.

Task

1

2

3

4

1

2

3

4

5

6

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

10

00
e: 0
l: 800
c: 200

01

d: 50
e: 5
l: 95
s: 11

02
d: 45
e: 10
l: 99
s: 12

03
d: 30
e: 30
l: 230
s: 15

04

d: 35
e: 20
l: 290
s: 7

05

d: 50
e: 50
l: 140
s: 9

06
d: 60
e: 10
l: 210
s: 10

07
d: 20
e: 10
l: 740
s: 10

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n delivers to
(classicStuff)

n

highway
duration: 2 · length+2

road
duration: 4 · length+4

n tour
vehicle 1

n tour
vehicle 2

1

2

3

4

5

1

2
3

4
5

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

10

00
e: 0
l: 800
c: 200

01

d: 50
e: 5
l: 95
s: 11

02
d: 45
e: 10
l: 99
s: 12

03

d: 30
e: 30
l: 230
s: 15

04

d: 35
e: 20
l: 290
s: 7

05

d: 50
e: 50
l: 140
s: 9

06
d: 60
e: 10
l: 210
s: 10

07
e: 0
l: 740
c: 160

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n delivers to
(classicStuff)

n

n delivers to
(newStuff)

n

highway
duration: 2 · length+2
road
duration: 4 · length+4

334

APPENDIX C. SURVEY TASKS

Task: Q11ATALL (2/3)

Task (continuation)

1 model q11AllStartState
2 products
3 p0 weight 1.0
4 p1 1.0
5 functions
6 durationFunction roadFunction 4 * length + 4
7 durationFunction highwayFunction 2 * length + 2
8 network
9 nodes

10 // TASK 1 BEGINNING
11 n0 at (-2,-8) isDepot p0 sprouts vDepot0 customers n1,n2,n3,n4,n5,n6,n7 at 0 latestTime 800
12 n1 at (2, 0) hasDemand p0 units 50 earliestTime 5 latestTime 95 serviceTime 11
13 n2 at (8, -8) hasDemand p0 units 45 earliestTime 10 latestTime 99 serviceTime 12
14 n3 at (-10, -6) hasDemand p0 units 30 earliestTime 30 latestTime 230 serviceTime 15
15 n4 at (-4, -2) hasDemand p0 units 35 earliestTime 20 latestTime 290 serviceTime 7
16 n5 at (-5, 6) hasDemand p0 units 50 earliestTime 50 latestTime 140 serviceTime 9
17 n6 at (7, 1) hasDemand p0 units 60 earliestTime 10 latestTime 210 serviceTime 10
18 n7 at (10, 8) hasDemand p0 units 20 earliestTime 10 latestTime 740 serviceTime 10
19 // TASK 1 END
20 edges
21 group roadGroup function roadFunction members
22 road1 from n5 to n7
23 road2 from n4 to n5
24 road3 from n4 to n1
25 road4 from n0 to n1
26 road5 from n0 to n2
27 road6 from n1 to n2
28 group highwayGroup function highwayFunction members
29 highway1 from n3 to n5
30 highway2 from n3 to n4
31 highway3 from n0 to n3
32 highway4 from n0 to n4
33 highway5 from n1 to n5
34 highway6 from n2 to n6
35 highway7 from n1 to n6
36 highway8 from n1 to n7
37 agentTypes
38 // TASK 2 BEGINNING
39 agentType vDepot0 congestionFactor 0 maxWeight 200
40 behaviour awt awaitTour when finished do die
41 behaviour die vanish
42 // TASK 2 END

Task 1: From the listing above, copy and paste the code betweenthe comment "TASK 1 :
BEGINNING" and the comment "TASK 1 END". Complete / modify the copied code for the
network (including depot and customer definitions) so that it conforms to the target state
depicted in the illustration.

Enter answer here

335

APPENDIX C. SURVEY TASKS

Task: Q11ATALL (3/3)

Task (continuation)

Task 2: From the listing above, copy and paste the code betweenthe comment "TASK 2 :
BEGINNING" and the comment "TASK 2 END". Complete / modify the copied code for the
network (including depot and customer definitions) so that it conforms to the target state
depicted in the illustration.

Enter answer here

Correct solution

Task 1:

11 n0 at (-2, -8) isDepot p0 sprouts vDepot0 customers n2, n3, n4 at 0 latestTime 800
12 n1 at (2, 0) hasDemand p1 units 50 earliestTime 5 latestTime 95 serviceTime 11
13 n2 at (8, -8) hasDemand p0 units 45 earliestTime 10 latestTime 99 serviceTime 12
14 n3 at (-10, -6) hasDemand p0 units 30 earliestTime 30 latestTime 230 serviceTime 15
15 n4 at (-4, -2) hasDemand p0 units 35 earliestTime 20 latestTime 290 serviceTime 7
16 n5 at (-5, 6) hasDemand p1 units 50 earliestTime 50 latestTime 140 serviceTime 9
17 n6 at (7, 1) hasDemand p1 units 60 earliestTime 10 latestTime 210 serviceTime 10
18 n7 at (10, 8) isDepot p1 sprouts vDepot1 customers n1, n5, n6 at 0 latestTime 740

Task 2:

42 agentType vDepot1 congestionFactor 0 maxWeight 160
43 behaviour awt awaitTour when finished do die
44 behaviour die vanish

Evaluation 2020

Non-attempt iff both tasks were not answered.

Task 1: 6 Points.
Task 2: 4 Points.

Evaluation 2021

Non-attempt iff both tasks were not answered.

The attribution of points was modified. For Athos, the second task required considerably
less effort and participants could make less mistakes compared to the first task. With the
corresponding JSprit question, both tasks were of similar difficulty.

Task 1: 7 Points.
Task 2: 3 Points.

336

APPENDIX C. SURVEY TASKS

C.3 JSprit tasks

Task: Q01JSNW (1/2)

Introduction
In this task you are given a program that contains a few syntactical mistakes. Your task is to
spot and report these mistakes.

Task

□ Line 1 □ Line 2 □ Line 3 □ Line 4
□ Line 5 □ Line 6 □ Line 7 □ Line 8
□ Line 9 □ Line 10 □ Line 11 □ Line 12
□ Line 13 □ Line 14 □ Line 15 □ Line 16
□ Line 17 □ Line 18 □ Line 19 □ Line 20
□ Line 21

1 public class Q01JSNW {
2
3 private int final static STUFF = 0;
4
5 public static void main(String[] args){
6 Location n0 = create Location(5, 1);
7 Location n1 = Location.newInstance(10, 9);
8 Location n2 = Location.createCustomerAt("12,1");
9

10 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance;
11
12 costMatrixBuilder.addTransportTime(n0,n1, 2 * EuclideanDistanceCalculator
13 .calculateDistance(n0.getCoordinate(),n1.getCoordinate()) + 2);
14 costMatrixBuilder.addTransportTime(n0, n2, 2 * EuclideanDistanceCalculator
15 .calculateDistance(n0.getCoordinate(),n2.getCoordinate() + 2);
16 costMatrixBuilder.addTransportTime(n1, n2, 4 * EuclideanDistanceCalculator
17 .calculateDistance(n1.getCoordinate(),n2.getCoordinate())+ 4);
18 costMatrixBuilder.addTransportTime(n2 n1, 4 * EuclideanDistanceCalculator
19 .calculateDistance(n2.getCoordinate(),n1.getCoordinate())+ 4);
20 }
21 }

337

APPENDIX C. SURVEY TASKS

Task: Q01JSNW (2/2)

Correct solution

□✓Line 6, □✓Line 8, □✓Line 10, □✓Line 15, □✓Line 18

Evaluation 2020

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 2
WrgAnswersString No (default) MaxPointsToGet 10 (default)

Evaluation 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

338

APPENDIX C. SURVEY TASKS

Task: Q01JSAG

Introduction
In this task you are given a program that contains a few syntactical mistakes. Your task is to
spot and report these mistakes.

Task

□ Line 1 □ Line 2 □ Line 3 □ Line 4
□ Line 5 □ Line 6 □ Line 7 □ Line 8
□ Line 9

1 VehicleType type1 = VehicleTypeImpl.Builder
2 .newInstance(type1).addCapacityDimension(0, 130)
3 .build();
4 VehicleType type2 = VehicleTypeImpl.Builder
5 .newInstance("type2").addCapacityDimension(0, 140)
6 .instantiate();
7 VehicleType type3 = VehicleTypeImpl.Builder
8 .newInstance("type3").addCapacityDimension(150)
9 .build();

Correct solution

□✓Line 2, □✓Line 6, □✓Line 8

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

339

APPENDIX C. SURVEY TASKS

Task: Q02JSAG (1/2)

Introduction
In this task you will find a program with a gap. Additionally, you are presented four code
snippets that can be used to fill the gap. However, some of these snippets do not make sense
(either for themselves or in the context of the completed program). It is your task to find the
nonsensical snippets and report them.

Task

Below you see a VRPTW modelled with JSprit. In lines 92 – 95, the definition of a depot is
required. Which of the proposed snippets given at the bottom of this page are semantically
incorrect (in other words: which of the four snippets do not make complete sense)?

□ Snippet 1 □ Snippet 2 □ Snippet 3 □ Snippet 4

1 public class Q02JSAG {
2 public static int STUFF = 0;
3
4 public static void main(String[] args) {
5 VehicleRoutingProblem.Builder vrpBuilder
6 = VehicleRoutingProblem.Builder.newInstance();
7
8 Location n0 = Location.newInstance(1,1);
9

10 Service n1 = Service.Builder.newInstance("n1")
11 .setLocation(Location.newInstance(1, 8))
12 .addSizeDimension(STUFF, 30)
13 .build();
14
15 Service n2 = Service.Builder.newInstance("n2")
16 .setLocation(Location.newInstance(2, 11))
17 .addSizeDimension(STUFF, 30)
18 .build();
19
20 Location n3 = Location.newInstance(4, 6);
21
22 Service n4 = Service.Builder.newInstance("n4")
23 .setLocation(Location.newInstance(5, 12))
24 .addSizeDimension(STUFF, 30)
25 .build();
26
27 Service n5 = Service.Builder.newInstance("n5")
28 .setLocation(Location.newInstance(8, 11))
29 .addSizeDimension(STUFF, 30)
30 .build();
31
32 Service n6 = Service.Builder.newInstance("n6")
33 .setLocation(Location.newInstance(8, 7))
34 .addSizeDimension(STUFF, 30)
35 .build();
36
37 Location n7 = Location.newInstance(13, 12);
38
39 Location n8 = Location.newInstance(9, 5);
40
41 Location n9 = Location.newInstance(13, 1);
42

340

APPENDIX C. SURVEY TASKS

Task: Q02JSAG (2/2)

Task (continuation)

43 IncompleteCostMatrix.Builder costMatrix = IncompleteCostMatrix.Builder.newInstance();
44
45 Set<RelationKey> lcfgroup = new HashSet<>();
46 lcfgroup.add(RelationKey.newKey(n0, n1));
47 lcfgroup.add(RelationKey.newKey(n1, n2));
48 lcfgroup.add(RelationKey.newKey(n2, n4));
49 lcfgroup.add(RelationKey.newKey(n4, n5));
50 lcfgroup.add(RelationKey.newKey(n6, n5));
51 lcfgroup.add(RelationKey.newKey(n7, n4));
52 lcfgroup.add(RelationKey.newKey(n7, n9));
53 lcfgroup.add(RelationKey.newKey(n9, n0));
54 lcfgroup.add(RelationKey.newKey(n9, n8));
55 lcfgroup.add(RelationKey.newKey(n8, n6));
56 lcfgroup.add(RelationKey.newKey(n5, n7));
57
58 for(RelationKey key : lcfgroup)
59 costMatrix.addTransportTime(key.from, key.to, roadFunction(key.from, key.to, 2.0));
60
61 Set<RelationKey> hcfgroup = new HashSet<>();
62 hcfgroup.add(RelationKey.newKey(n5, n3));
63 hcfgroup.add(RelationKey.newKey(n3, n0));
64
65 for(RelationKey key : hcfgroup)
66 costMatrix.addTransportTime(key.from, key.to, roadFunction(key.from, key.to, 4.0));
67
68 costMatrix.completeTransportTimeMatrix();
69
70 IncompleteCostMatrix cm = costMatrix.build();
71 vrpBuilder.setRoutingCost(cm);
72
73 VehicleType deliverType = VehicleTypeImpl.Builder.newInstance("vehicles00")
74 .addCapacityDimension(0, 180)
75 .build();
76
77 Vehicle vehicle = VehicleImpl.Builder.newInstance("vehicle")
78 .setType(deliverType).setStartLocation(n0).build();
79 vrpBuilder.addVehicle(vehicle);
80 vrpBuilder.addAllJobs(Arrays.asList(n1, n2, n4, n5, n6));
81
82 VehicleRoutingProblem vrp = vrpBuilder.build();
83 }
84
85 public static double roadFunction(Location end1, Location end2, Double cfactor) {
86 return EuclideanDistanceCalculator
87 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + cfactor;
88 }
89 }

Correct solution

□✓Snippet 1, □✓Snippet 2, □✓Snippet 3

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

341

APPENDIX C. SURVEY TASKS

Task: Q03JSALL (1/8)

Introduction
In this task you see the illustration of a Network (comprised of customers, demands, roads
/ highways etc.). In addition, the illustration also shows optimised vehicle routes for a VRP
based on the illustrated network. Your task is to determine which of the three models /
programs corresponds to the illustrated network.

Task

Which of the three programs corresponds to the illustration?
Wrong answers may feature incorrect customer, depot, road / street, or vehicle definitions.

Program 1 Program 2 Program 3

1 2

1
2

34

5

5

4 3

2
1

1 2

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

10

00

e: 0
l: 800
c: 200

04

01
d: 200
e: 10
l: 200
s: 10

07
d: 200
e: 10
l: 200
s: 10

02
d: 100
e: 10
l: 100
s: 10

03
d: 50
e: 50
l: 140
s: 9

06

d: 100
e: 10
l: 100
s: 10

05
d: 50
e: 50
l: 140
s: 9

08e: 0
l: 800
c: 200

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n navigation node

n delivers to
(orangeStuff)

n

n delivers to
(purpleStuff)

n

highway
duration: 2 · length+2
road
duration: 4 · length+4

342

APPENDIX C. SURVEY TASKS

Task: Q03JSALL (2/8)

Task (continuation)

Program 1

1 public class Q03JSALLProgram1 {
2 public static final int ORANGE_STUFF = 0;
3 public static final int PURPLE_STUFF = 1;
4
5 public static void main(String[] args) {
6 VehicleRoutingProblem.Builder vrpBuilder
7 = VehicleRoutingProblem.Builder.newInstance();
8
9 // Network

10 // --- Nodes
11 Location n0 = Location.newInstance(-9, 1);
12
13 Delivery n1 = Delivery.Builder.newInstance("n1")
14 .setLocation(Location.newInstance(-9, 8))
15 .addSizeDimension(ORANGE_STUFF, 200)
16 .setTimeWindow(TimeWindow.newInstance(10, 200))
17 .setServiceTime(10)
18 .build();
19
20 Delivery n2 = Delivery.Builder.newInstance("n2")
21 .setLocation(Location.newInstance(6, 9))
22 .addSizeDimension(ORANGE_STUFF, 100)
23 .setTimeWindow(TimeWindow.newInstance(10, 100))
24 .setServiceTime(10)
25 .build();
26
27 Delivery n3 = Delivery.Builder.newInstance("n3")
28 .setLocation(Location.newInstance(9, 4))
29 .addSizeDimension(ORANGE_STUFF, 50)
30 .setTimeWindow(TimeWindow.newInstance(50, 140))
31 .setServiceTime(9)
32 .build();
33
34 Location n4 = Location.newInstance(-2, 0);
35
36 Delivery n5 = Delivery.Builder.newInstance("n5")
37 .setLocation(Location.newInstance(9, -4))
38 .addSizeDimension(PURPLE_STUFF, 50)
39 .setTimeWindow(TimeWindow.newInstance(50, 140))
40 .setServiceTime(9)
41 .build();
42
43 Delivery n6 = Delivery.Builder.newInstance("n6")
44 .setLocation(Location.newInstance(6, -9))
45 .addSizeDimension(PURPLE_STUFF, 100)
46 .setTimeWindow(TimeWindow.newInstance(10, 100))
47 .setServiceTime(10)
48 .build();
49
50 Delivery n7 = Delivery.Builder.newInstance("n7")
51 .setLocation(Location.newInstance(-9, -8))
52 .addSizeDimension(PURPLE_STUFF, 200)
53 .setTimeWindow(TimeWindow.newInstance(10, 200))
54 .setServiceTime(10)
55 .build();
56
57 Location n8 = Location.newInstance(-9, -1);
58
59 vrpBuilder.addAllJobs(Arrays.asList(n1, n2, n3, n5, n6, n7));
60

343

APPENDIX C. SURVEY TASKS

Task: Q03JSALL (3/8)

Task (continuation)

61 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
62 // --- roads
63 Set<RelationKey> roads = new HashSet<>();
64 roads.add(RelationKey.newKey(n2, n4));
65 roads.add(RelationKey.newKey(n3, n4));
66 roads.add(RelationKey.newKey(n6, n4));
67 roads.add(RelationKey.newKey(n5, n4));
68
69 for(RelationKey key : roads)
70 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
71
72 // --- highways
73 Set<RelationKey> highways = new HashSet<>();
74 highways.add(RelationKey.newKey(n0, n1));
75 highways.add(RelationKey.newKey(n0, n4));
76 highways.add(RelationKey.newKey(n1, n2));
77 highways.add(RelationKey.newKey(n2, n3));
78 highways.add(RelationKey.newKey(n8, n7));
79 highways.add(RelationKey.newKey(n8, n4));
80 highways.add(RelationKey.newKey(n7, n6));
81 highways.add(RelationKey.newKey(n5, n6));
82
83 for(RelationKey key : highways)
84 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
85
86 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
87 vrpBuilder.setRoutingCost(cm);
88
89 // Vehicle type definition
90 VehicleType orangeStuffType = VehicleTypeImpl.Builder.newInstance("orangeStuffType")
91 .addCapacityDimension(ORANGE_STUFF, 200).build();
92 VehicleType purpleStuffType = VehicleTypeImpl.Builder.newInstance("purpleStuffType")
93 .addCapacityDimension(PURPLE_STUFF, 200).build();
94
95 // Vehicle instance definition
96 VehicleImpl orangeStuffInstance = VehicleImpl.Builder.newInstance("orangeStuffInstance")
97 .setType(orangeStuffType)
98 .setStartLocation(n0)
99 .build();

100 VehicleImpl purpleStuffInstance = VehicleImpl.Builder.newInstance("purpleStuffInstance")
101 .setType(purpleStuffType)
102 .setStartLocation(n8)
103 .build();
104
105 // Add vehicle instance to the problem
106 vrpBuilder.addVehicle(orangeStuffInstance);
107 vrpBuilder.addVehicle(purpleStuffInstance);
108
109 VehicleRoutingProblem vrp = vrpBuilder.build();
110 }
111
112 public static double highwayFunction(Location end1, Location end2) {
113 return 2 * EuclideanDistanceCalculator
114 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 2;
115 }
116
117 public static double roadFunction(Location end1, Location end2) {
118 return 4 * EuclideanDistanceCalculator
119 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 4;
120 }
121 }

344

APPENDIX C. SURVEY TASKS

Task: Q03JSALL (4/8)

Task (continuation)

Program 2

1 public class Q03JSALLProgram2 {
2 public static final int ORANGE_STUFF = 0;
3 public static final int PURPLE_STUFF = 1;
4
5 public static void main(String[] args) {
6 VehicleRoutingProblem.Builder vrpBuilder
7 = VehicleRoutingProblem.Builder.newInstance();
8
9 // Network

10 // --- Nodes
11 Location n0 = Location.newInstance(-9, 1);
12
13 Delivery n1 = Delivery.Builder.newInstance("n1")
14 .setLocation(Location.newInstance(-9, 8))
15 .addSizeDimension(ORANGE_STUFF, 200)
16 .setTimeWindow(TimeWindow.newInstance(10, 200))
17 .setServiceTime(10)
18 .build();
19
20 Delivery n2 = Delivery.Builder.newInstance("n2")
21 .setLocation(Location.newInstance(6, 9))
22 .addSizeDimension(ORANGE_STUFF, 100)
23 .setTimeWindow(TimeWindow.newInstance(10, 100))
24 .setServiceTime(10)
25 .build();
26
27 Delivery n3 = Delivery.Builder.newInstance("n3")
28 .setLocation(Location.newInstance(9, 4))
29 .addSizeDimension(ORANGE_STUFF, 50)
30 .setTimeWindow(TimeWindow.newInstance(50, 140))
31 .setServiceTime(9)
32 .build();
33
34 Location n4 = Location.newInstance(-2, 0);
35
36 Delivery n5 = Delivery.Builder.newInstance("n5")
37 .setLocation(Location.newInstance(9, -4))
38 .addSizeDimension(PURPLE_STUFF, 50)
39 .setTimeWindow(TimeWindow.newInstance(50, 140))
40 .setServiceTime(9)
41 .build();
42
43 Delivery n6 = Delivery.Builder.newInstance("n6")
44 .setLocation(Location.newInstance(6, -9))
45 .addSizeDimension(PURPLE_STUFF, 100)
46 .setTimeWindow(TimeWindow.newInstance(10, 100))
47 .setServiceTime(10)
48 .build();
49
50 Delivery n7 = Delivery.Builder.newInstance("n7")
51 .setLocation(Location.newInstance(-9, -8))
52 .addSizeDimension(PURPLE_STUFF, 200)
53 .setTimeWindow(TimeWindow.newInstance(10, 200))
54 .setServiceTime(10)
55 .build();
56
57 Location n8 = Location.newInstance(-9, -1);
58
59 vrpBuilder.addAllJobs(Arrays.asList(n1, n2, n3, n5, n6, n7));
60

345

APPENDIX C. SURVEY TASKS

Task: Q03JSALL (5/8)

Task (continuation)

61 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
62 // --- roads
63 Set<RelationKey> roads = new HashSet<>();
64 roads.add(RelationKey.newKey(n0, n1));
65 roads.add(RelationKey.newKey(n0, n4));
66 roads.add(RelationKey.newKey(n1, n2));
67 roads.add(RelationKey.newKey(n2, n3));
68 roads.add(RelationKey.newKey(n8, n7));
69 roads.add(RelationKey.newKey(n8, n4));
70 roads.add(RelationKey.newKey(n7, n6));
71 roads.add(RelationKey.newKey(n5, n6));
72
73 for(RelationKey key : roads)
74 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
75
76 // --- highways
77 Set<RelationKey> highways = new HashSet<>();
78 highways.add(RelationKey.newKey(n2, n4));
79 highways.add(RelationKey.newKey(n3, n4));
80 highways.add(RelationKey.newKey(n6, n4));
81 highways.add(RelationKey.newKey(n5, n4));
82
83 for(RelationKey key : highways)
84 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
85
86 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
87 vrpBuilder.setRoutingCost(cm);
88
89 // Vehicle type definition
90 VehicleType orangeStuffType = VehicleTypeImpl.Builder.newInstance("orangeStuffType")
91 .addCapacityDimension(ORANGE_STUFF, 200).build();
92 VehicleType purpleStuffType = VehicleTypeImpl.Builder.newInstance("purpleStuffType")
93 .addCapacityDimension(PURPLE_STUFF, 200).build();
94
95 // Vehicle instance defintion
96 VehicleImpl orangeStuffInstance = VehicleImpl.Builder.newInstance("orangeStuffInstance")
97 .setType(orangeStuffType)
98 .setStartLocation(n8)
99 .build();

100 VehicleImpl purpleStuffInstance = VehicleImpl.Builder.newInstance("purpleStuffInstance")
101 .setType(purpleStuffType)
102 .setStartLocation(n0)
103 .build();
104
105 // Add vehicle instance to the problem
106 vrpBuilder.addVehicle(orangeStuffInstance);
107 vrpBuilder.addVehicle(purpleStuffInstance);
108
109 VehicleRoutingProblem vrp = vrpBuilder.build();
110 }
111
112 public static double highwayFunction(Location end1, Location end2) {
113 return 2 * EuclideanDistanceCalculator
114 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 2;
115 }
116
117 public static double roadFunction(Location end1, Location end2) {
118 return 4 * EuclideanDistanceCalculator
119 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 4;
120 }
121 }

346

APPENDIX C. SURVEY TASKS

Task: Q03JSALL (6/8)

Task (continuation)

Program 3

1 public class Q03JSALLProgram3 {
2 public static final int ORANGE_STUFF = 0;
3 public static final int PURPLE_STUFF = 1;
4
5 public static void main(String[] args) {
6 VehicleRoutingProblem.Builder vrpBuilder
7 = VehicleRoutingProblem.Builder.newInstance();
8
9 // Network

10 // --- Nodes
11 Location n0 = Location.newInstance(-9, 1);
12
13 Delivery n1 = Delivery.Builder.newInstance("n1")
14 .setLocation(Location.newInstance(-9, 8))
15 .addSizeDimension(ORANGE_STUFF, 200)
16 .setTimeWindow(TimeWindow.newInstance(10, 200))
17 .setServiceTime(10)
18 .build();
19
20 Delivery n2 = Delivery.Builder.newInstance("n2")
21 .setLocation(Location.newInstance(6, 9))
22 .addSizeDimension(ORANGE_STUFF, 100)
23 .setTimeWindow(TimeWindow.newInstance(10, 100))
24 .setServiceTime(10)
25 .build();
26
27 Delivery n3 = Delivery.Builder.newInstance("n3")
28 .setLocation(Location.newInstance(9, 4))
29 .addSizeDimension(ORANGE_STUFF, 50)
30 .setTimeWindow(TimeWindow.newInstance(50, 140))
31 .setServiceTime(9)
32 .build();
33
34 Location n4 = Location.newInstance(-2, 0);
35
36 Delivery n5 = Delivery.Builder.newInstance("n5")
37 .setLocation(Location.newInstance(9, -4))
38 .addSizeDimension(PURPLE_STUFF, 50)
39 .setTimeWindow(TimeWindow.newInstance(50, 140))
40 .setServiceTime(9)
41 .build();
42
43 Delivery n6 = Delivery.Builder.newInstance("n6")
44 .setLocation(Location.newInstance(6, -9))
45 .addSizeDimension(PURPLE_STUFF, 100)
46 .setTimeWindow(TimeWindow.newInstance(10, 100))
47 .setServiceTime(10)
48 .build();
49
50 Delivery n7 = Delivery.Builder.newInstance("n7")
51 .setLocation(Location.newInstance(-9, -8))
52 .addSizeDimension(PURPLE_STUFF, 200)
53 .setTimeWindow(TimeWindow.newInstance(10, 200))
54 .setServiceTime(10)
55 .build();
56
57 Location n8 = Location.newInstance(-9, -1);
58
59 vrpBuilder.addAllJobs(Arrays.asList(n1, n2, n3, n5, n6, n7));
60

347

APPENDIX C. SURVEY TASKS

Task: Q03JSALL (7/8)

Task (continuation)

61 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
62 // --- roads
63 Set<RelationKey> roads = new HashSet<>();
64 roads.add(RelationKey.newKey(n0, n1));
65 roads.add(RelationKey.newKey(n0, n4));
66 roads.add(RelationKey.newKey(n1, n2));
67 roads.add(RelationKey.newKey(n2, n3));
68 roads.add(RelationKey.newKey(n8, n7));
69 roads.add(RelationKey.newKey(n8, n4));
70 roads.add(RelationKey.newKey(n7, n6));
71 roads.add(RelationKey.newKey(n5, n6));
72
73 for(RelationKey key : roads)
74 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
75
76 // --- highways
77 Set<RelationKey> highways = new HashSet<>();
78 highways.add(RelationKey.newKey(n2, n4));
79 highways.add(RelationKey.newKey(n3, n4));
80 highways.add(RelationKey.newKey(n6, n4));
81 highways.add(RelationKey.newKey(n5, n4));
82
83 for(RelationKey key : highways)
84 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
85
86 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
87 vrpBuilder.setRoutingCost(cm);
88
89 // Vehicle type definition
90 VehicleType orangeStuffType = VehicleTypeImpl.Builder.newInstance("orangeStuffType")
91 .addCapacityDimension(ORANGE_STUFF, 200).build();
92 VehicleType purpleStuffType = VehicleTypeImpl.Builder.newInstance("purpleStuffType")
93 .addCapacityDimension(PURPLE_STUFF, 200).build();
94
95 // Vehicle instance defintion
96 VehicleImpl orangeStuffInstance = VehicleImpl.Builder.newInstance("orangeStuffInstance")
97 .setType(orangeStuffType)
98 .setStartLocation(n0)
99 .build();

100 VehicleImpl purpleStuffInstance = VehicleImpl.Builder.newInstance("purpleStuffInstance")
101 .setType(purpleStuffType)
102 .setStartLocation(n8)
103 .build();
104
105 // Add vehicle instance to the problem
106 vrpBuilder.addVehicle(orangeStuffInstance);
107 vrpBuilder.addVehicle(purpleStuffInstance);
108
109 VehicleRoutingProblem vrp = vrpBuilder.build();
110 }
111
112 public static double highwayFunction(Location end1, Location end2) {
113 return 2 * EuclideanDistanceCalculator
114 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 2;
115 }
116
117 public static double roadFunction(Location end1, Location end2) {
118 return 4 * EuclideanDistanceCalculator
119 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 4;
120 }
121 }

348

APPENDIX C. SURVEY TASKS

Task: Q03JSALL (8/8)

Correct solution

Program 3

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

349

APPENDIX C. SURVEY TASKS

Task: Q04JSNW (1/4)

Introduction
In this task you are shown a program and four different graphical networks. One of these
networks is exactly described (modelled) by the program. For the other three networks the
program is not completely right. It is your task to find and report the exactly modelled network.

Task

Which of the above networks results from the given JSprit model?

Network A Network B Network C Network D

1 public class Q04JSNW {
2 public static int STUFF = 0;
3
4 public static void main(String[] args) {
5 VehicleRoutingProblem.Builder vrpBuilder
6 = VehicleRoutingProblem.Builder.newInstance();
7
8 Location n0 = Location.newInstance(0, -6);
9

10 Service n1 = Service.Builder.newInstance("n1")
11 .setLocation(Location.newInstance(-9,4))
12 .addSizeDimension(STUFF, 15)
13 .setTimeWindow(TimeWindow.newInstance(15, 120))
14 .setServiceTime(5)
15 .build();
16
17 Service n2 = Service.Builder.newInstance("n2")
18 .setLocation(Location.newInstance(7,-9))
19 .addSizeDimension(STUFF, 20)
20 .setTimeWindow(TimeWindow.newInstance(10,130))
21 .setServiceTime(7)
22 .build();
23
24 Service n3 = Service.Builder.newInstance("n3")
25 .setLocation(Location.newInstance(8,5))
26 .addSizeDimension(STUFF, 50)
27 .setTimeWindow(TimeWindow.newInstance(20,90))
28 .setServiceTime(10)
29 .build();
30
31 Location n4 = Location.newInstance(2,0);
32
33 Service n5 = Service.Builder.newInstance("n5")
34 .setLocation(Location.newInstance(-2, -1))
35 .addSizeDimension(STUFF, 10)
36 .setTimeWindow(TimeWindow.newInstance(80, 150))
37 .setServiceTime(20)
38 .build();
39
40 Service n6 = Service.Builder.newInstance("n6")
41 .setLocation(Location.newInstance(-8,-6))
42 .addSizeDimension(STUFF,25)
43 .setTimeWindow(TimeWindow.newInstance(90,270))
44 .setServiceTime(5)
45 .build();
46

350

APPENDIX C. SURVEY TASKS

Task: Q04JSNW (2/4)

Task (continuation)

47 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
48
49 costMatrixBuilder.addTransportTime(n0, n5.getLocation(),
50 roadFunction(n0, n5.getLocation()));
51
52 costMatrixBuilder.addTransportTime(n0,n4,roadFunction(n0,n4));
53
54 costMatrixBuilder.addTransportTime(n5.getLocation(), n4,
55 roadFunction(n5.getLocation(),n4));
56
57 costMatrixBuilder.addTransportTime(n0, n6.getLocation(),
58 roadFunction(n0,n6.getLocation()));
59
60 costMatrixBuilder.addTransportTime(n1.getLocation(), n3.getLocation(),
61 highwayFunction(n1.getLocation(),n3.getLocation()));
62
63 costMatrixBuilder.addTransportTime(n3.getLocation(), n2.getLocation(),
64 highwayFunction(n3.getLocation(), n2.getLocation()));
65
66 costMatrixBuilder.addTransportTime(n2.getLocation(), n6.getLocation(),
67 highwayFunction(n2.getLocation(), n6.getLocation()));
68
69 costMatrixBuilder.addTransportTime(n6.getLocation(), n1.getLocation(),
70 highwayFunction(n6.getLocation(), n1.getLocation()));
71
72 costMatrixBuilder.addTransportTime(n4, n3.getLocation(),
73 highwayFunction(n4,n3.getLocation()));
74
75 costMatrixBuilder.addTransportTime(n5.getLocation(), n1.getLocation(),
76 highwayFunction(n5.getLocation(), n1.getLocation()));
77
78 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
79 vrpBuilder.setRoutingCost(cm);
80
81 VehicleType deliverType = VehicleTypeImpl.Builder.newInstance("vehicles00")
82 .addCapacityDimension(0, 180)
83 .build();
84
85 Vehicle vehicle = VehicleImpl.Builder.newInstance("vehicle")
86 .setType(deliverType).setStartLocation(n0).setLatestArrival(500).build();
87 vrpBuilder.addVehicle(vehicle);
88 vrpBuilder.addAllJobs(Arrays.asList(n1, n2, n3, n5, n6));
89
90 VehicleRoutingProblem vrp = vrpBuilder.build();
91 }
92
93 public static double highwayFunction(Location end1, Location end2) {
94 return 1.5 * EuclideanDistanceCalculator
95 .calculateDistance(end1.getCoordinate(), end2.getCoordinate());
96 }
97
98 public static double roadFunction(Location end1, Location end2) {
99 return 3 * EuclideanDistanceCalculator

100 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) * + 3;
101 }
102 }

351

APPENDIX C. SURVEY TASKS

Task: Q04JSNW (3/4)

Task (continuation)

Network A

-12 -8 -4 0 4 8 12
-10

-8

-6

-4

-2

0

2

4

6

8

00
e: 0
l: 480
c: 200

01

d: 15
e: 15
l: 120
s: 5

02

d: 20
e: 10
l: 130
s: 7

03

d: 50
e: 20
l: 90
s: 10

04
05

d: 25
e: 90
l: 250
s: 10

06
d: 25
e: 90
l: 270
s: 5

n depot node

n
e: earliest time
l: latest time
c: capacity of vehicles

n navigation node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

highway
duration: 1.5 · length

road
duration: 4 · length+5

Network B

-12 -8 -4 0 4 8 12
-10

-8

-6

-4

-2

0

2

4

6

8

04

01

02

d: 20
e: 10
l: 130
s: 7

03

d: 50
e: 20
l: 90
s: 10

00 e: 0
l: 500
c: 18005

d: 10
e: 80
l: 150
s: 20

06
d: 25
e: 90
l: 270
s: 5

n depot node

n
e: earliest time
l: latest time
c: capacity of vehicles

n navigation node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

highway
duration: 1.5 · length

road
duration: 4 · length+5

352

APPENDIX C. SURVEY TASKS

Task: Q04JSNW (4/4)

Task (continuation)

Network C

-12 -8 -4 0 4 8 12
-10

-8

-6

-4

-2

0

2

4

6

8

00
e: 0
l: 500
c: 180

01

d: 15
e: 15
l: 120
s: 5

02

d: 20
e: 10
l: 130
s: 7

03

d: 50
e: 20
l: 90
s: 10

04
05

d: 10
e: 80
l: 150
s: 20

06
d: 25
e: 90
l: 270
s: 5

n depot node

n
e: earliest time
l: latest time
c: capacity of vehicles

n navigation node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

highway
duration: 1.5 · length

road
duration: 3 · length+3

Network D

-12 -8 -4 0 4 8 12
-10

-8

-6

-4

-2

0

2

4

6

8

00
e: 0
l: 500
c: 180

01

02

d: 20
e: 10
l: 130
s: 7

03

d: 50
e: 20
l: 90
s: 10

04
05

d: 25
e: 90
l: 250
s: 10

06
d: 25
e: 90
l: 270
s: 5

n depot node

n
e: earliest time
l: latest time
c: capacity of vehicles

n navigation node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

highway
duration: 1.5 · length

road
duration: 3 · length+3

Correct solution

Network C

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

353

APPENDIX C. SURVEY TASKS

Task: Q04JSAG (1/4)

Introduction
In this task you are shown a program and four graphical networks on which four different
tours are depicted. One of these networks shows a tour that is exactly described (modelled) by
the program. For the other three tours the program is not completely right. It is your task to
find and report the exactly modelled tour.

NOTE: If a tour step connects two nodes that do not share an edge, this means that the actual
path from the start node to the target node of the respective step is not important. However,
only nodes of the drawn tour are serviced!

Task

Which of the presented tours for a vehicle may result from the program given below?

Tour 1 Tour 2 Tour 3 Tour 4

1 public class Q04JSAG {
2 public static int STUFF = 0;
3
4 public static void main(String[] args) {
5 VehicleRoutingProblem.Builder vrpBuilder
6 = VehicleRoutingProblem.Builder.newInstance();
7
8 Location n0 = Location.newInstance(-10, -8);
9 Location n1 = Location.newInstance(-8,-4);

10 Service n2 = Service.Builder.newInstance("n2")
11 .setLocation(Location.newInstance(-11,2))
12 .addSizeDimension(STUFF, 20)
13 .setTimeWindow(TimeWindow.newInstance(10, 130))
14 .setServiceTime(7)
15 .build();
16 Location n3 = Location.newInstance(-5,4);
17 Service n4 = Service.Builder.newInstance("n4")
18 .setLocation(Location.newInstance(-8,7))
19 .addSizeDimension(STUFF, 50)
20 .setTimeWindow(TimeWindow.newInstance(20,90))
21 .setServiceTime(10)
22 .build();
23 Service n5 = Service.Builder.newInstance("n5")
24 .setLocation(Location.newInstance(2,0))
25 .addSizeDimension(STUFF, 25)
26 .setTimeWindow(TimeWindow.newInstance(90,250))
27 .setServiceTime(10)
28 .build();
29 Service n6 = Service.Builder.newInstance("n6")
30 .setLocation(Location.newInstance(2,7))
31 .addSizeDimension(STUFF, 25)
32 .setTimeWindow(TimeWindow.newInstance(90,250))
33 .setServiceTime(10)
34 .build();
35 Location n7 = Location.newInstance(6, 5);
36 Location n8 = Location.newInstance(11, 3);
37 Location n9 = Location.newInstance(2,-8);
38 Location n10 = Location.newInstance(8,-6);
39 Location n11 = Location.newInstance(6,-9);
40

354

APPENDIX C. SURVEY TASKS

Task: Q04JSAG (2/4)

Task (continuation)

41 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
42 costMatrixBuilder.addTransportTime(n0, n1, roadFunction(n0, n1));
43 costMatrixBuilder.addTransportTime(n2.getLocation(), n4.getLocation(),
44 roadFunction(n2.getLocation(), n4.getLocation()));
45 costMatrixBuilder.addTransportTime(n2.getLocation(), n3,
46 roadFunction(n2.getLocation(), n3));
47 costMatrixBuilder.addTransportTime(n4.getLocation(), n3,
48 roadFunction(n4.getLocation(), n3));
49 costMatrixBuilder.addTransportTime(n3, n6.getLocation(),
50 roadFunction(n3, n6.getLocation()));
51 costMatrixBuilder.addTransportTime(n6.getLocation(), n7,
52 roadFunction(n6.getLocation(), n7));
53 costMatrixBuilder.addTransportTime(n7, n8, roadFunction(n7, n8));
54 costMatrixBuilder.addTransportTime(n8, n10, roadFunction(n8, n10));
55 costMatrixBuilder.addTransportTime(n10, n11, roadFunction(n10, n11));
56 costMatrixBuilder.addTransportTime(n11, n9, roadFunction(n11, n9));
57
58 costMatrixBuilder.addTransportTime(n1, n2.getLocation(),
59 highwayFunction(n1, n2.getLocation()));
60 costMatrixBuilder.addTransportTime(n1, n3, highwayFunction(n1, n3));
61 costMatrixBuilder.addTransportTime(n1, n5.getLocation(),
62 highwayFunction(n1, n5.getLocation()));
63 costMatrixBuilder.addTransportTime(n5.getLocation(), n6.getLocation(),
64 highwayFunction(n5.getLocation(), n6.getLocation()));
65 costMatrixBuilder.addTransportTime(n5.getLocation(), n7,
66 highwayFunction(n5.getLocation(), n7));
67 costMatrixBuilder.addTransportTime(n5.getLocation(), n10,
68 highwayFunction(n5.getLocation(), n10));
69 costMatrixBuilder.addTransportTime(n5.getLocation(), n9,
70 highwayFunction(n5.getLocation(), n9));
71 costMatrixBuilder.addTransportTime(n9, n0, highwayFunction(n9, n0));
72
73 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
74 vrpBuilder.setRoutingCost(cm);
75
76 VehicleType deliverType = VehicleTypeImpl.Builder.newInstance("vehicles00")
77 .addCapacityDimension(0, 180)
78 .build();
79
80 Vehicle vehicle = VehicleImpl.Builder.newInstance("vehicle")
81 .setType(deliverType).setStartLocation(n0).setLatestArrival(500).build();
82 vrpBuilder.addVehicle(vehicle);
83 vrpBuilder.addAllJobs(Arrays.asList(n2, n4, n5, n6));
84
85 VehicleRoutingProblem vrp = vrpBuilder.build();
86 }
87
88 public static double highwayFunction(Location end1, Location end2) {
89 return EuclideanDistanceCalculator
90 .calculateDistance(end1.getCoordinate(), end2.getCoordinate());
91 }
92
93 public static double roadFunction(Location end1, Location end2) {
94 return 3 * EuclideanDistanceCalculator
95 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 5;
96 }
97 }

355

APPENDIX C. SURVEY TASKS

Task: Q04JSAG (3/4)

Task (continuation)

Tour 1

1

2

3

4

5

6

7

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

02

03

04

05

06

07

08

09

10

11

n depot node

n navigation node

n customer node

highway

road

n
tour

Tour 2

1

2

3

4

5

6

6
7

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

02

03

04

05

06

07

08

09

10

11

n depot node

n navigation node

n customer node

highway

road

n
tour

356

APPENDIX C. SURVEY TASKS

Task: Q04JSAG (4/4)

Task (continuation)

Tour 3

1

2

3

4

5

6

7

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

02

03

04

05

06

07

08

09

10

11

n depot node

n navigation node

n customer node

highway

road

n
tour

Tour 4

1

2

3

4

5

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

02

03

04

05

06

07

08

09

10

11

n depot node

n navigation node

n customer node

highway

road

n
tour

Correct solution

Tour 3

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

357

APPENDIX C. SURVEY TASKS

Task: Q05JSNW (1/3)

Introduction
In this task you will find a program and two networks. The first of the two networks is
described by the program. If some of the lines of the program are changed, the program is a
description of the second network. It is your task to find these lines and report them.

Task

The JSprit model below represents network 1 . What lines of the JSprit model would have to
be changed if you wanted to model network 2 (multiple answers possible)?

□ Line 01 □ Line 02 □ Line 03 □ Line 04 □ Line 05 □ Line 06 □ Line 07
□ Line 08 □ Line 09 □ Line 10 □ Line 11 □ Line 12 □ Line 13 □ Line 14
□ Line 15 □ Line 16 □ Line 17 □ Line 18 □ Line 19 □ Line 20 □ Line 21
□ Line 22 □ Line 23 □ Line 24 □ Line 25 □ Line 26 □ Line 27 □ Line 28
□ Line 29 □ Line 30 □ Line 31 □ Line 32 □ Line 33 □ Line 34 □ Line 35
□ Line 36 □ Line 37 □ Line 38 □ Line 39 □ Line 40 □ Line 41 □ Line 42
□ Line 43 □ Line 44 □ Line 45 □ Line 46 □ Line 47 □ Line 48 □ Line 49
□ Line 50 □ Line 51 □ Line 52 □ Line 53 □ Line 54 □ Line 55 □ Line 56
□ Line 57 □ Line 58 □ Line 59 □ Line 60 □ Line 61 □ Line 62 □ Line 63
□ Line 64 □ Line 65 □ Line 66 □ Line 67 □ Line 68 □ Line 69 □ Line 70
□ Line 71 □ Line 72 □ Line 73 □ Line 74 □ Line 75 □ Line 76 □ Line 77
□ Line 78 □ Line 79 □ Line 80 □ Line 81 □ Line 82 □ Line 83 □ Line 84
□ Line 85 □ Line 86 □ Line 87 □ Line 88 □ Line 89 □ Line 90 □ Line 91
□ Line 92 □ Line 93

1 public class Q05JSNW {
2 // Products
3 public static int STUFF = 0;
4
5 public static void main(String[] args) {
6 VehicleRoutingProblem.Builder vrpBuilder
7 = VehicleRoutingProblem.Builder.newInstance();
8
9 // Network

10 // --- Nodes
11 Location n0 = Location.newInstance(-2, -2);
12
13 Location n1 = Location.newInstance(-8, -4);
14
15 Service n2 = Service.Builder.newInstance("n2")
16 .setLocation(Location.newInstance(-8,-1))
17 .addSizeDimension(STUFF, 20)
18 .setTimeWindow(TimeWindow.newInstance(10, 130))
19 .setServiceTime(7)
20 .build();
21
22 Service n3 = Service.Builder.newInstance("n3")
23 .setLocation(Location.newInstance(-5, 4))
24 .addSizeDimension(STUFF, 50)
25 .setTimeWindow(TimeWindow.newInstance(20, 90))
26 .setServiceTime(10)
27 .build();
28
29 Service n4 = Service.Builder.newInstance("n4")
30 .setLocation(Location.newInstance(-2, -6))
31 .addSizeDimension(STUFF, 25)
32 .setTimeWindow(TimeWindow.newInstance(90, 250))
33 .setServiceTime(10)
34 .build();
35
36 Location n5 = Location.newInstance(2, 0);

358

APPENDIX C. SURVEY TASKS

Task: Q05JSNW (2/3)

Task (continuation)

37
38 Service n6 = Service.Builder.newInstance("n4")
39 .setLocation(Location.newInstance(4, 5))
40 .addSizeDimension(STUFF, 25)
41 .setTimeWindow(TimeWindow.newInstance(90, 250))
42 .setServiceTime(10)
43 .build();
44
45 // --- Edges definition
46 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
47
48 // --- --- roads
49 costMatrixBuilder.addTransportTime(n0, n1, roadFunction(n0, n1));
50
51 costMatrixBuilder.addTransportTime(n0, n3.getLocation(),
52 roadFunction(n0,n3.getLocation()));
53
54 costMatrixBuilder.addTransportTime(n0,n5, roadFunction(n0,n5));
55
56 costMatrixBuilder.addTransportTime(n4.getLocation(), n5,
57 roadFunction(n4.getLocation(), n5));
58
59 // --- --- highways
60 costMatrixBuilder.addTransportTime(n1,n2.getLocation(),
61 highwayFunction(n1, n2.getLocation()));
62
63 costMatrixBuilder.addTransportTime(n2.getLocation(),n3.getLocation(),
64 highwayFunction(n2.getLocation(), n3.getLocation()));
65
66 costMatrixBuilder.addTransportTime(n3.getLocation(),n6.getLocation(),
67 highwayFunction(n3.getLocation(), n6.getLocation()));
68
69 costMatrixBuilder.addTransportTime(n5,n6.getLocation(),
70 highwayFunction(n5, n3.getLocation()));
71
72 costMatrixBuilder.addTransportTime(n1, n4.getLocation(),
73 highwayFunction(n1, n4.getLocation()));
74
75 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
76 vrpBuilder.setRoutingCost(cm);
77
78 vrpBuilder.addAllJobs(Arrays.asList(n2, n3, n4, n6));
79
80 // Vehicle type and vehicle and problem build omitted
81 }
82
83 public static double highwayFunction(Location end1, Location end2) {
84 return 1.5 * EuclideanDistanceCalculator
85 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 3;
86 }
87
88 public static double roadFunction(Location end1, Location end2) {
89 return 3 * EuclideanDistanceCalculator
90 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 5;
91 }
92
93 }

359

APPENDIX C. SURVEY TASKS

Task: Q05JSNW (3/3)

Task (continuation)

Network 1 (currently modelled)

24.0

18.4

12.5

29.2

7.5

12.5

18.0

11.1

26.6

-10 -8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

00

01

02

03

04

05

06 n depot node

n navigation node

n customer node

d highway
duration: 1.5 · length+3

d road
duration: 3 · length+5

Network 2 (target state)

22.7

16.8

12.5

28.3

7.5

12.5

18.0

11.1

25.6

-10 -8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

00

01

02

03

04

05

06 n depot node

n navigation node

n customer node

d highway
duration: 1.5 · length+3

d road
duration: 3.2 · length+2.5

Correct solution

□✓Line 89, □✓Line 90

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

360

APPENDIX C. SURVEY TASKS

Task: Q05JSAG (1/3)

Introduction
In this task, you will find the graphical representation of a network together with a program.
The network shows two tours. The program describes the network and a problem for which
one of the tours is likely to be optimal. By changing some lines of the program, the program
describes a problem for which the other tour is likely to be optimal. It is your task to find and
report these lines.

Task

In the picture below, the red tour is a likely result from the problem modelled in the JSprit
code given at the bottom. What lines of the JSprit model have to be changed so that the green
tour r is likely to result from the model?

□ Line 01 □ Line 02 □ Line 03 □ Line 04 □ Line 05 □ Line 06 □ Line 07
□ Line 08 □ Line 09 □ Line 10 □ Line 11 □ Line 12 □ Line 13 □ Line 14
□ Line 15 □ Line 16 □ Line 17 □ Line 18 □ Line 19 □ Line 20 □ Line 21
□ Line 22 □ Line 23 □ Line 24 □ Line 25 □ Line 26 □ Line 27 □ Line 28
□ Line 29 □ Line 30 □ Line 31 □ Line 32 □ Line 33 □ Line 34 □ Line 35
□ Line 36 □ Line 37 □ Line 38 □ Line 39 □ Line 40 □ Line 41 □ Line 42
□ Line 43 □ Line 44 □ Line 45 □ Line 46 □ Line 47 □ Line 48 □ Line 49
□ Line 50 □ Line 51 □ Line 52 □ Line 53 □ Line 54 □ Line 55 □ Line 56
□ Line 57 □ Line 58 □ Line 59 □ Line 60 □ Line 61 □ Line 62 □ Line 63
□ Line 64 □ Line 65 □ Line 66 □ Line 67 □ Line 68 □ Line 69 □ Line 70
□ Line 71 □ Line 72 □ Line 73 □ Line 74 □ Line 75 □ Line 76 □ Line 77
□ Line 78 □ Line 79 □ Line 80

1

2 3

4

1

2

3

4

-10 -8 -6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

00

01

02

03

04

05

06 n depot node

n customer or navigation node

highway
duration: 2 · length+2

road
duration: 4 · length+4

n
current tour

n target tour

361

APPENDIX C. SURVEY TASKS

Task: Q05JSAG (2/3)

Task (continuation)

1 public class Q05JSAG {
2 public static int STUFF = 0;
3
4 public static void main(String[] args) {
5 VehicleRoutingProblem.Builder vrpBuilder
6 = VehicleRoutingProblem.Builder.newInstance();
7 Location n0 = Location.newInstance(-2, -2);
8 Service n1 = Service.Builder.newInstance("n1")
9 .setLocation(Location.newInstance(-8,-4))

10 .addSizeDimension(STUFF, 20)
11 .setTimeWindow(TimeWindow.newInstance(0, 20000))
12 .setServiceTime(7).build();
13 Service n2 = Service.Builder.newInstance("n2")
14 .setLocation(Location.newInstance(-8,1))
15 .addSizeDimension(STUFF, 20)
16 .setTimeWindow(TimeWindow.newInstance(0, 20000))
17 .setServiceTime(7)
18 .build();
19 Service n3 = Service.Builder.newInstance("n3")
20 .setLocation(Location.newInstance(-5,4))
21 .addSizeDimension(STUFF, 50)
22 .setTimeWindow(TimeWindow.newInstance(0, 20000))
23 .setServiceTime(10)
24 .build();
25 Service n4 = Service.Builder.newInstance("n4")
26 .setLocation(Location.newInstance(-2,-7))
27 .addSizeDimension(STUFF, 25)
28 .setTimeWindow(TimeWindow.newInstance(0,20000))
29 .setServiceTime(10)
30 .build();
31 Service n5 = Service.Builder.newInstance("n5")
32 .setLocation(Location.newInstance(4,-4))
33 .addSizeDimension(STUFF, 25)
34 .setTimeWindow(TimeWindow.newInstance(0,20000))
35 .setServiceTime(10).build();
36 Service n6 = Service.Builder.newInstance("n6")
37 .setLocation(Location.newInstance(4,5))
38 .addSizeDimension(STUFF, 25)
39 .setTimeWindow(TimeWindow.newInstance(0,20000))
40 .setServiceTime(10)
41 .build();
42 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
43 costMatrixBuilder.addTransportTime(n0, n2.getLocation(),
44 roadFunction(n0, n2.getLocation()));
45 costMatrixBuilder.addTransportTime(n0, n1.getLocation(),
46 roadFunction(n0, n1.getLocation()));
47 costMatrixBuilder.addTransportTime(n1.getLocation(), n4.getLocation(),
48 roadFunction(n1.getLocation(), n4.getLocation()));
49 costMatrixBuilder.addTransportTime(n4.getLocation(), n5.getLocation(),
50 roadFunction(n4.getLocation(), n5.getLocation()));
51 costMatrixBuilder.addTransportTime(n5.getLocation(), n0,
52 roadFunction(n5.getLocation(), n0));
53 costMatrixBuilder.addTransportTime(n2.getLocation(), n3.getLocation(),
54 highwayFunction(n2.getLocation(), n3.getLocation()));
55 costMatrixBuilder.addTransportTime(n3.getLocation(), n6.getLocation(),
56 highwayFunction(n3.getLocation(), n6.getLocation()));
57 costMatrixBuilder.addTransportTime(n6.getLocation(), n0,
58 highwayFunction(n6.getLocation(), n0));
59 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
60 vrpBuilder.setRoutingCost(cm);
61 VehicleType deliverType = VehicleTypeImpl.Builder.newInstance("vehicles00")
62 .addCapacityDimension(0, 180)
63 .build();
64 Vehicle vehicle = VehicleImpl.Builder.newInstance("vehicle")
65 .setType(deliverType).setStartLocation(n0).setLatestArrival(20000).build();
66 vrpBuilder.addVehicle(vehicle);
67 vrpBuilder.addAllJobs(Arrays.asList(n1, n4, n5));
68 VehicleRoutingProblem vrp = vrpBuilder.build();
69 }
70 }

362

APPENDIX C. SURVEY TASKS

Task: Q05JSAG (3/3)

Task (continuation)

71 public static double highwayFunction(Location end1, Location end2) {
72 return 2 * EuclideanDistanceCalculator
73 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 2;
74 }
75
76 public static double roadFunction(Location end1, Location end2) {
77 return 4 * EuclideanDistanceCalculator
78 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 4;
79 }
80 }

Correct solution

□✓Line 67

Evaluation 2020, 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

363

APPENDIX C. SURVEY TASKS

Task: Q06JSNW (1/7)

Introduction
In this task, you see a program that describes a network for a VRPTW. In addition, you see
four more programs. Some of these programs describe the exact same network as the first
program, even though they syntactically deviate from the first program. It is your task to find
and report these equivalent programs.

Task

Look at the "Program to match" below. One or more of the four possible matches produce an
equivalent network. Tick the respective boxes!

□ Possible match 01 □ Possible match 02 □ Possible match 03 □ Possible match 04

Program to match

1 public class Q06JSNW {
2
3 public static void main(String[] args) {
4 VehicleRoutingProblem.Builder vrpBuilder
5 = VehicleRoutingProblem.Builder.newInstance();
6
7 // Network
8 // --- Nodes
9 Location n0 = Location.newInstance(-2, -2);

10 Location n1 = Location.newInstance(-8, -4);
11 Location n2 = Location.newInstance(-8, -1);
12 Location n3 = Location.newInstance(-5, 4);
13 Location n4 = Location.newInstance(-2, -6);
14 Location n5 = Location.newInstance(2, 0);
15 Location n6 = Location.newInstance(4, 5);
16
17 // --- Edges
18 // --- --- roads
19 Set<RelationKey> roads = new HashSet<>();
20 roads.add(RelationKey.newKey(n0, n4));
21 roads.add(RelationKey.newKey(n0, n1));
22 roads.add(RelationKey.newKey(n0, n3));
23 roads.add(RelationKey.newKey(n4, n5));
24
25 // --- --- highways
26 Set<RelationKey> highways = new HashSet<>();
27 highways.add(RelationKey.newKey(n1, n2));
28 highways.add(RelationKey.newKey(n2, n3));
29 highways.add(RelationKey.newKey(n6, n5));
30
31 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
32
33 for(RelationKey key : roads)
34 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
35
36 for(RelationKey key : highways)
37 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
38
39 costMatrixBuilder.addTransportTime(n0,n5, specialFunction(n0, n5));
40 costMatrixBuilder.addTransportTime(n3, n6, specialFunction(n3,n6));
41
42 // adding to vrpBuilder etc. omitted
43 }
44

364

APPENDIX C. SURVEY TASKS

Task: Q06JSNW (2/7)

Task (continuation)

45 public static double highwayFunction(Location end1, Location end2) {
46 return 1.5 * EuclideanDistanceCalculator
47 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 3;
48 }
49
50 public static double roadFunction(Location end1, Location end2) {
51 return 3 * EuclideanDistanceCalculator
52 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 5;
53 }
54
55 public static double specialFunction(Location end1, Location end2) {
56 return 3 * EuclideanDistanceCalculator
57 .calculateDistance(end1.getCoordinate(), end2.getCoordinate());
58 }
59 // RelationsKey class omitted for brevity
60 }

365

APPENDIX C. SURVEY TASKS

Task: Q06JSNW (3/7)

Task (continuation)

Matching option 1

1 public class Q06JSNW_PossibleMatch1 {
2
3 public static void main(String[] args) {
4 VehicleRoutingProblem.Builder vrpBuilder
5 = VehicleRoutingProblem.Builder.newInstance();
6
7 // Network
8 // --- Nodes
9 Location n0 = Location.newInstance(-2, -2);

10 Location n1 = Location.newInstance(-8, -4);
11 Location n2 = Location.newInstance(-8, -1);
12 Location n3 = Location.newInstance(-5, 4);
13 Location n4 = Location.newInstance(-2, -6);
14 Location n5 = Location.newInstance(2, 0);
15 Location n6 = Location.newInstance(4, 5);
16
17 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
18
19 // --- Edges
20 // --- --- highways
21 Set<RelationKey> highways = new HashSet<>();
22 highways.add(RelationKey.newKey(n1, n2));
23 highways.add(RelationKey.newKey(n2, n3));
24 highways.add(RelationKey.newKey(n6, n5));
25
26 for(RelationKey key : highways)
27 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
28
29 costMatrixBuilder.addTransportTime(n0,n5, specialFunction(n0, n5));
30 costMatrixBuilder.addTransportTime(n3, n6, specialFunction(n3, n6));
31
32 // --- --- roads
33 Set<RelationKey> roads = new HashSet<>();
34 roads.add(RelationKey.newKey(n0, n4));
35 roads.add(RelationKey.newKey(n0, n1));
36 roads.add(RelationKey.newKey(n0, n3));
37 roads.add(RelationKey.newKey(n4, n5));
38
39 for(RelationKey key : roads)
40 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
41
42 // adding to vrpBuilder etc. omitted
43 }
44
45 public static double highwayFunction(Location end1, Location end2) {
46 return 1.5 * EuclideanDistanceCalculator
47 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 3;
48 }
49
50 public static double roadFunction(Location end1, Location end2) {
51 return 3 * EuclideanDistanceCalculator
52 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 5;
53 }
54
55 public static double specialFunction(Location end1, Location end2) {
56 return 3 * EuclideanDistanceCalculator
57 .calculateDistance(end1.getCoordinate(), end2.getCoordinate());
58 }
59 // RelationsKey class omitted for brevity
60 }

366

APPENDIX C. SURVEY TASKS

Task: Q06JSNW (4/7)

Task (continuation)

Matching option 2

1 public class Q06JSNW_PossibleMatch2 {
2
3 public static void main(String[] args) {
4 VehicleRoutingProblem.Builder vrpBuilder
5 = VehicleRoutingProblem.Builder.newInstance();
6
7 // Network
8 // --- Nodes
9 Location n0 = Location.newInstance(-2, -2);

10 Location n1 = Location.newInstance(-8, -4);
11 Location n2 = Location.newInstance(-8, -1);
12 Location n3 = Location.newInstance(-5, 4);
13 Location n4 = Location.newInstance(-2, -6);
14 Location n5 = Location.newInstance(2, 0);
15 Location n6 = Location.newInstance(4, 5);
16
17 // --- Edges
18 // --- --- roads
19 Set<RelationKey> roads = new HashSet<>();
20 roads.add(RelationKey.newKey(n0,n4));
21 roads.add(RelationKey.newKey(n3, n6));
22 roads.add(RelationKey.newKey(n0, n3));
23 roads.add(RelationKey.newKey(n4, n5));
24
25 // --- --- highways
26 Set<RelationKey> highways = new HashSet<>();
27 highways.add(RelationKey.newKey(n1, n2));
28 highways.add(RelationKey.newKey(n2, n3));
29 highways.add(RelationKey.newKey(n6, n5));
30
31 // --- --- fastways
32 Set<RelationKey> fastways = new HashSet<>();
33 fastways.add(RelationKey.newKey(n0, n5));
34 fastways.add(RelationKey.newKey(n0, n1));
35
36 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
37
38 for(RelationKey key : roads)
39 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
40
41 for(RelationKey key : highways)
42 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
43
44 for(RelationKey key : fastways)
45 costMatrixBuilder.addTransportTime(key.from, key.to, specialFunction(key.from, key.to));
46
47 // adding to vrpBuilder etc. omitted
48 }
49
50 public static double highwayFunction(Location end1, Location end2) {
51 return 1.5 * EuclideanDistanceCalculator
52 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 3;
53 }
54
55 public static double roadFunction(Location end1, Location end2) {
56 return 3 * EuclideanDistanceCalculator
57 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 5;
58 }
59
60 public static double specialFunction(Location end1, Location end2) {
61 return 3 * EuclideanDistanceCalculator
62 .calculateDistance(end1.getCoordinate(), end2.getCoordinate());
63 }
64
65 // RelationsKey class omitted for brevity
66
67 }

367

APPENDIX C. SURVEY TASKS

Task: Q06JSNW (5/7)

Task (continuation)

Matching option 3

1 public class Q06JSNW_PossibleMatch3 {
2
3 public static void main(String[] args) {
4 VehicleRoutingProblem.Builder vrpBuilder
5 = VehicleRoutingProblem.Builder.newInstance();
6
7 // Network
8 // --- Nodes
9 Location n0 = Location.newInstance(-2, -2);

10 Location n1 = Location.newInstance(-8, -4);
11 Location n2 = Location.newInstance(-8, -1);
12 Location n3 = Location.newInstance(-5, 4);
13 Location n4 = Location.newInstance(-2, -6);
14 Location n5 = Location.newInstance(2, 0);
15 Location n6 = Location.newInstance(4, 5);
16
17 // --- Edges
18 // --- --- roads
19 Set<RelationKey> roads = new HashSet<>();
20 roads.add(RelationKey.newKey(n0, n4));
21 roads.add(RelationKey.newKey(n0, n1));
22 roads.add(RelationKey.newKey(n4, n5));
23
24 // --- --- highways
25 Set<RelationKey> highways = new HashSet<>();
26 highways.add(RelationKey.newKey(n1, n2));
27 highways.add(RelationKey.newKey(n3, n6));
28 highways.add(RelationKey.newKey(n0, n3));
29 highways.add(RelationKey.newKey(n6, n5));
30
31 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
32
33 for(RelationKey key : roads)
34 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
35
36 for(RelationKey key : highways)
37 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
38
39 costMatrixBuilder.addTransportTime(n0,n5, specialFunction(n0, n5));
40 costMatrixBuilder.addTransportTime(n2, n3, specialFunction(n2, n3));
41
42 // adding to vrpBuilder etc. omitted
43 }
44
45 public static double highwayFunction(Location end1, Location end2) {
46 return 1.5 * EuclideanDistanceCalculator
47 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 3;
48 }
49
50 public static double roadFunction(Location end1, Location end2) {
51 return 3 * EuclideanDistanceCalculator
52 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 5;
53 }
54
55 public static double specialFunction(Location end1, Location end2) {
56 return 3 * EuclideanDistanceCalculator
57 .calculateDistance(end1.getCoordinate(), end2.getCoordinate());
58 }
59
60 // RelationsKey class omitted for brevity
61
62 }

368

APPENDIX C. SURVEY TASKS

Task: Q06JSNW (6/7)

Task (continuation)

Matching option 4

1 public class Q06JSNW_PossibleMatch4 {
2
3 public static void main(String[] args) {
4 VehicleRoutingProblem.Builder vrpBuilder
5 = VehicleRoutingProblem.Builder.newInstance();
6
7 // Network
8 // --- Nodes
9 Location n0 = Location.newInstance(-2, -2);

10 Location n1 = Location.newInstance(-8, -4);
11 Location n2 = Location.newInstance(-8, -1);
12 Location n3 = Location.newInstance(-5, 4);
13 Location n4 = Location.newInstance(-2, -6);
14 Location n5 = Location.newInstance(2, 0);
15 Location n6 = Location.newInstance(4, 5);
16
17 // --- Edges
18 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
19
20 costMatrixBuilder.addTransportTime(n0, n4, roadFunction(n0, n4));
21 costMatrixBuilder.addTransportTime(n0, n5, specialFunction(n0, n5));
22 costMatrixBuilder.addTransportTime(n0, n1, roadFunction(n0, n1));
23 costMatrixBuilder.addTransportTime(n0, n3, roadFunction(n0, n3));
24 costMatrixBuilder.addTransportTime(n4, n5, roadFunction(n4, n5));
25 costMatrixBuilder.addTransportTime(n1, n2, highwayFunction(n1, n2));
26 costMatrixBuilder.addTransportTime(n2, n3, highwayFunction(n2, n3));
27 costMatrixBuilder.addTransportTime(n3, n6, specialFunction(n3, n6));
28 costMatrixBuilder.addTransportTime(n6, n5, highwayFunction(n6, n5));
29
30 // adding to vrpBuilder etc. omitted
31 }
32
33 public static double highwayFunction(Location end1, Location end2) {
34 return 1.5 * EuclideanDistanceCalculator
35 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 3;
36 }
37
38 public static double roadFunction(Location end1, Location end2) {
39 return 3 * EuclideanDistanceCalculator
40 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 5;
41 }
42
43 public static double specialFunction(Location end1, Location end2) {
44 return 3 * EuclideanDistanceCalculator
45 .calculateDistance(end1.getCoordinate(), end2.getCoordinate());
46 }
47
48 // RelationsKey class omitted for brevity
49
50 }

369

APPENDIX C. SURVEY TASKS

Task: Q06JSNW (7/7)

Task (continuation)

Correct solution

□✓Possible match 2, □✓Possible match 4

Evaluation 2020

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 10
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 10 MissingAnswAllowed 1 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

Evaluation 2021

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 1 (default)
WrgAnswersString No (default) MaxPointsToGet 10 (default)

370

APPENDIX C. SURVEY TASKS

Task: Q07JSALL (1/4)

Introduction
In this task, you first see a complete program. After that, you are shown excerpts from this
program and you are asked to associate the correct semantics (meaning) with the language
elements shown in the excerpt. Thus, it is your task to associate the correct semantics to
pre-selected language elements.

Task

1 public class Q07JSNW {
2
3 public static int STUFF = 0;
4
5 public static void main(String[] args) {
6 VehicleRoutingProblem.Builder vrpBuilder
7 = VehicleRoutingProblem.Builder.newInstance();
8
9 // Network

10 // --- Nodes
11 Location n0 = Location.newInstance(-2, -2);
12
13 Service n1 = Service.Builder.newInstance("n1")
14 .setLocation(Location.newInstance(3, -4))
15 .addSizeDimension(STUFF, 20)
16 .setTimeWindow(TimeWindow.newInstance(10, 300))
17 .setServiceTime(7)
18 .build();
19
20 Service n2 = Service.Builder.newInstance("n2")
21 .setLocation(Location.newInstance(0, -3))
22 .addSizeDimension(STUFF, 20)
23 .setTimeWindow(TimeWindow.newInstance(20, 250))
24 .setServiceTime(7)
25 .build();
26
27 Service n3 = Service.Builder.newInstance("n3")
28 .setLocation(Location.newInstance(-5, 4))
29 .addSizeDimension(STUFF, 50)
30 .setTimeWindow(TimeWindow.newInstance(0, 140))
31 .setServiceTime(10)
32 .build();
33
34 Service n4 = Service.Builder.newInstance("n4")
35 .setLocation(Location.newInstance(-2, -6))
36 .addSizeDimension(STUFF, 25)
37 .setTimeWindow(TimeWindow.newInstance(0, 120))
38 .setServiceTime(10)
39 .build();
40
41 Service n5 = Service.Builder.newInstance("n5")
42 .setLocation(Location.newInstance(2, 0))
43 .addSizeDimension(STUFF, 25)
44 .setTimeWindow(TimeWindow.newInstance(0, 140))
45 .setServiceTime(10)
46 .build();
47
48 vrpBuilder.addAllJobs(Arrays.asList(n1, n2, n3, n4, n5));
49
50 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
51
52 // --- Edges
53 // --- --- roads
54 Set<RelationKey> roads = new HashSet<>();
55 roads.add(RelationKey.newKey(n0, n4));
56 roads.add(RelationKey.newKey(n0, n5));
57 roads.add(RelationKey.newKey(n0, n2));
58 roads.add(RelationKey.newKey(n0, n3));
59 roads.add(RelationKey.newKey(n1, n2));
60 roads.add(RelationKey.newKey(n1, n4));
61

371

APPENDIX C. SURVEY TASKS

Task: Q07JSALL (2/4)

Task (continuation)

62 for(RelationKey key : roads)
63 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
64
65 // --- --- highways
66 Set<RelationKey> highways = new HashSet<>();
67 highways.add(RelationKey.newKey(n3, n5));
68 highways.add(RelationKey.newKey(n2, n5));
69
70 for(RelationKey key : highways)
71 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
72
73 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
74 vrpBuilder.setRoutingCost(cm);
75
76 // Vehicle type and instance
77 VehicleType deliverType = VehicleTypeImpl.Builder.newInstance("vehicles00")
78 .addCapacityDimension(0, 180)
79 .build();
80
81 Vehicle vehicle = VehicleImpl.Builder.newInstance("vehicle")
82 .setType(deliverType).setStartLocation(n0).setLatestArrival(850).build();
83
84 vrpBuilder.addVehicle(vehicle);
85
86 VehicleRoutingProblem vrp = vrpBuilder.build();
87 }
88
89 public static double highwayFunction(Location end1, Location end2) {
90 return 1.2 * EuclideanDistanceCalculator
91 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 1.3;
92 }
93
94 public static double roadFunction(Location end1, Location end2) {
95 return 2.5 * EuclideanDistanceCalculator
96 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 3.2;
97 }
98 }

372

APPENDIX C. SURVEY TASKS

Task: Q07JSALL (3/4)

Task (continuation)

1st Elementa

89 public static double highwayFunction(Location end1, Location end2) {
90 return 1.2 * EuclideanDistanceCalculator
91 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 1.3;
92 }

Which description of the sematics and usage of the the highwayFunction() method in the
program above is the most appropriate?

It is used for single customers (Services). Together with an expression that
refers to the respective customer it determines how long the time window of this
customer is opened
It is used for single vehicles. Together with an expression it determines the costs
that occur upon deployment of the respective vehicle.
It is used for single edges, that is the connection between two customers. To-
gether with an expression it determines how long it takes a vehicle to travel the
respective edge.
It is used for single depots. Together with an expression it determines the capacity
of the vehicles starting from that depot.

2nd Elementb

65 // --- --- highways
66 Set<RelationKey> highways = new HashSet<>();
67 highways.add(RelationKey.newKey(n3, n5));
68 highways.add(RelationKey.newKey(n2, n5));
69
70 for(RelationKey key : highways)
71 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));

Which explanation concerning the meaning of the depicted highways set in combination with
the ensuing loop in the context of the complete program is most appropriate?

It allows to group vehicles that will then jointly travel the respective edge.
All edges (connections between two locations) must be associated with a group
because only via a group it is possible to set the duration function of an edge.
All Service instances that are connected by edges of the same group are merged
to one single Service so that the vehicle only needs to visit one of these customers.
They are an optional program construct that may facillitate the definition of
edges. Especially in cases in which a large number of edges are assigned the
same (duration) function.

aElement missing in actual survey.
bElement missing in actual survey.

373

APPENDIX C. SURVEY TASKS

Task: Q07JSALL (4/4)

Task (continuation)

Correct solution

1st Element

It is used for single edges, that is the connection between two customers. To-
gether with an expression it determines how long it takes a vehicle to travel the
respective edge.

2nd Element

They are an optional program construct that may facillitate the definition of
edges. Especially in cases in which a large number of edges are assigned the
same (duration) function.

Evaluation 2020, 2021

1st Element

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 5 (default)

2nd Element

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 5 (default)
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 5 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 5 (default)

374

APPENDIX C. SURVEY TASKS

Task: Q08JSALL (1/4)

Introduction
In this task, you first see a complete program. The program features some comments. These
comments represent TODOs, i.e. future programming tasks. In addition, you’ll find some
questions that ask for the elements, that will be affected by these TODOs. Your task is to
answer these questions correctly.

Task

1 public class Q08JSALL2ND {
2 public static int SOAP = 0;
3 public static int PAPER = 1;
4
5 public static void main(String[] args) {
6 Examples.createOutputFolder();
7
8 VehicleRoutingProblem.Builder vrpBuilder
9 = VehicleRoutingProblem.Builder.newInstance();

10
11 // Network
12 // --- Nodes
13 /* TODO: The customer with the shortest service time must be added to the
14 * respective depot */
15 Location n0 = Location.newInstance(2, 4);
16 Location n1 = Location.newInstance(-5, -2);
17 Location n2 = Location.newInstance(0, -3);
18 Location n3 = Location.newInstance(-5, 4);
19 Location n4 = Location.newInstance(-2, -2);
20 Location n5 = Location.newInstance(2, 0);
21 Location n6 = Location.newInstance(-2, -6);
22 Location n7 = Location.newInstance(3, -4);
23
24 Delivery dn1soap = Delivery.Builder.newInstance("dn1soap")
25 .setLocation(n1)
26 .addSizeDimension(SOAP, 10)
27 .setTimeWindow(TimeWindow.newInstance(20,220))
28 .setServiceTime(8)
29 .build();
30
31 Delivery dn1paper = Delivery.Builder.newInstance("dn1paper")
32 .setLocation(n1)
33 .addSizeDimension(PAPER, 20)
34 .setTimeWindow(TimeWindow.newInstance(20,220))
35 .setServiceTime(8)
36 .build();
37
38 Delivery dn2soap = Delivery.Builder.newInstance("dn2soap")
39 .setLocation(n2)
40 .addSizeDimension(SOAP, 20)
41 .setTimeWindow(TimeWindow.newInstance(20, 250))
42 .setServiceTime(2)
43 .build();
44
45 Delivery dn3soap = Delivery.Builder.newInstance("dn3soap")
46 .setLocation(n3)
47 .addSizeDimension(SOAP, 50)
48 .setTimeWindow(TimeWindow.newInstance(0, 140))
49 .setServiceTime(30)
50 .build();
51
52 Delivery dn4soap = Delivery.Builder.newInstance("dn4soap")
53 .setLocation(n4)
54 .addSizeDimension(SOAP, 60)
55 .setTimeWindow(TimeWindow.newInstance(0, 150))
56 .setServiceTime(10)
57 .build();
58

375

APPENDIX C. SURVEY TASKS

Task: Q08JSALL (2/4)

Task (continuation)

59 Delivery dn4paper = Delivery.Builder.newInstance("dn4paper")
60 .setLocation(n4)
61 .addSizeDimension(PAPER, 70)
62 .setTimeWindow(TimeWindow.newInstance(0, 150))
63 .setServiceTime(10)
64 .build();
65
66 Delivery dn5soap = Delivery.Builder.newInstance("dn5soap")
67 .setLocation(n5)
68 .addSizeDimension(SOAP, 30)
69 .setTimeWindow(TimeWindow.newInstance(0, 140))
70 .setServiceTime(10)
71 .build();
72
73 Delivery dn5paper = Delivery.Builder.newInstance("dn5paper")
74 .setLocation(n5)
75 .addSizeDimension(PAPER, 40)
76 .setTimeWindow(TimeWindow.newInstance(0, 140))
77 .setServiceTime(10)
78 .build();
79
80 Delivery dn6soap = Delivery.Builder.newInstance("dn6soap")
81 .setLocation(n6)
82 .addSizeDimension(SOAP, 25)
83 .setTimeWindow(TimeWindow.newInstance(0, 120))
84 .setServiceTime(10)
85 .build();
86
87 Delivery dn7soap = Delivery.Builder.newInstance("dn7soap")
88 .setLocation(n7)
89 .addSizeDimension(SOAP, 20)
90 .setTimeWindow(TimeWindow.newInstance(10, 300))
91 .setServiceTime(7)
92 .build();
93
94 Location n8 = Location.newInstance(-5, -6);
95
96 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
97
98 // --- Edges
99 // --- --- roads

100 Set<RelationKey> roads = new HashSet<>();
101 roads.add(RelationKey.newKey(n0, n6));
102 roads.add(RelationKey.newKey(n0, n5));
103 roads.add(RelationKey.newKey(n3, n4));
104 roads.add(RelationKey.newKey(n0, n3));
105 roads.add(RelationKey.newKey(n7, n2));
106 roads.add(RelationKey.newKey(n7, n6));
107 roads.add(RelationKey.newKey(n3, n0));
108 roads.add(RelationKey.newKey(n5, n0));
109 roads.add(RelationKey.newKey(n3, n1));
110 roads.add(RelationKey.newKey(n1, n8));
111 roads.add(RelationKey.newKey(n4, n2));
112 roads.add(RelationKey.newKey(n8, n6));
113
114 for(RelationKey key : roads)
115 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
116
117 // --- --- highways
118 /* TODO: two highways will later be modelled here:
119 * one going from the soap depot to the customer with the highest demands in both soap
120 * and paper and the other going from the customer with the highest soap and
121 * paper demands to the paper depot. */
122 Set<RelationKey> highways = new HashSet<>();
123 highways.add(RelationKey.newKey(n3, n5));
124 highways.add(RelationKey.newKey(n2, n5));
125
126 for(RelationKey key : highways)
127 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
128

376

APPENDIX C. SURVEY TASKS

Task: Q08JSALL (3/4)

Task (continuation)

129 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
130 vrpBuilder.setRoutingCost(cm);
131
132 // Vehicle type and instance
133
134 VehicleType soapVehicle = VehicleTypeImpl.Builder.newInstance("soapVehicle")
135 .addCapacityDimension(SOAP, 180).build();
136
137 VehicleType paperVehicle = VehicleTypeImpl.Builder.newInstance("paperVehicle")
138 .addCapacityDimension(PAPER, 180).build();
139
140 VehicleImpl soapVehicleInstance = VehicleImpl.Builder.newInstance("soapVehicleInstance")
141 .setType(soapVehicle)
142 .setStartLocation(n0)
143 .build();
144
145 VehicleImpl paperVehicleInstance = VehicleImpl.Builder.newInstance("paperVehicleInstance")
146 .setType(paperVehicle)
147 .setStartLocation(n8)
148 .build();
149
150 vrpBuilder.addAllJobs(Arrays.asList(dn1paper, dn1soap, dn2soap, dn3soap, dn4paper, dn4soap,
151 dn5paper, dn5soap, dn6soap, dn7soap));
152 vrpBuilder.addVehicle(soapVehicleInstance);
153 vrpBuilder.addVehicle(paperVehicleInstance);
154
155 VehicleRoutingProblem vrp = vrpBuilder.build();
156 }
157 }

1. Which customer must be added?
Read the comment in lines 13 and 14. Which customer must be added to the respective depot
according to the comment?
Note: Some of the provided answers might not be customers.

n0 n1 n2
n3 n4 n5
n6 n7 n8

2. Which is the correct depot?
Read the comment in lines 13 and 14 . To which depot must the customer be added to?
Note: Some of the provided answers might not be depots.

n0 n1 n2
n3 n4 n5
n6 n7 n8

3. Which nodes are affected?
Read the comment that spans from lines 118 to line 121. What are the three nodes this
comment refers to?
Note: Some of the provided answers might not be customers.

□ n0 □ n1 □ n2
□ n3 □ n4 □ n5
□ n6 □ n7 □ n8

377

APPENDIX C. SURVEY TASKS

Task: Q08JSALL (4/4)

Task (continuation)

Correct solution

1. n2
2. n0
3. □✓n0, □✓n4, □✓n8

Evaluation 2020, 2021

1.

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 2
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 2 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 2

2.

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 2
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 2 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 2

3.

Parameter Value Parameter Value

Answer Cell Yes NegPointsP 2
CorAnswersString Yes WrongAnswAllowed 0 (default)
Points 2 MissingAnswAllowed 0 (default)
WrgAnswersString No (default) MaxPointsToGet 6

378

APPENDIX C. SURVEY TASKS

Task: Q09JSNW (1/4)

Introduction
In this task you’ll find a graphical representation of a network. The network comprises a set of
customers with demands, time windows and service times. Further below is the corresponding
program. However, the program still shows some gaps. The gaps can also be seen in the
illustration: they correspond to the elements drawn using green color. Your task is to fill in
the gaps so that the program describes the complete network.

Task

Explanation: Below is the illustration of a network. The network comprises a set of customers
with demands, time windows and service times.
Further below is the corresponding JSprit model. However, the model still has some gaps. The
gaps can also be seen in the illustration: they correspond to the elements drawn using green
color.
Fill in the gaps so that the JSprit model represents the complete network.

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

e: 0
l: 500
c: 300

01d: 20
e: 10
l: 80
s: 5

02

03

04
d: 70
e: 5
l: 200
s: 30

05

d: 30
e: 15
l: 125
s: 5

06
d: 40
e: 35
l: 155
s: 9

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n navigation node

to be added
to network

highway
duration: 2 · length+2
road
duration: 4 · length+4

1 public class Q09JSNW {
2 public static int STUFF = 0;
3
4 public static void main(String[] args) {
5
6 VehicleRoutingProblem.Builder vrpBuilder
7 = VehicleRoutingProblem.Builder.newInstance();
8
9 // Network

10 // --- Nodes
11 Location n0 = Location.newInstance(2, 0);
12
13 Service n1 = Service.Builder.newInstance("n1")
14 .setLocation(Location.newInstance(0,-3))
15 .addSizeDimension(STUFF, 20)
16 .setTimeWindow(TimeWindow.newInstance(10, 80))
17 .setServiceTime(5)
18 .build();
19
20 Location n2 = Location.newInstance(4,5);
21
22 Location n3 = Location.newInstance(-8, 2);
23

379

APPENDIX C. SURVEY TASKS

Task: Q09JSNW (2/4)

Task (continuation)

24 Service n4 = Service.Builder.newInstance("n4")
25 .setLocation(Location.newInstance(-2, -8))
26 .addSizeDimension(STUFF, 70)
27 .setTimeWindow(TimeWindow.newInstance(5, 200))
28 .setServiceTime(30)
29 .build();
30
31 Service n5 = Service.Builder.newInstance("n5")
32 .setLocation(Location.newInstance(-5, 6))
33 .addSizeDimension(STUFF, 30)
34 .setTimeWindow(TimeWindow.newInstance(15, 125))
35 .setServiceTime(5)
36 .build();
37
38 //TASK 1.1: SOME TEXT TO BE ADDED HERE
39
40 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
41
42 // --- Edges
43 // --- --- roads
44 Set<RelationKey> roads = new HashSet<>();
45 roads.add(RelationKey.newKey(n0, n2));
46 roads.add(RelationKey.newKey(n0, n3));
47 roads.add(RelationKey.newKey(n0, n1));
48 roads.add(RelationKey.newKey(n1, n4));
49 roads.add(RelationKey.newKey(n3, n5));
50 // TASK 2: SOME TEXT TO BE ADDED HERE
51
52 for(RelationKey key : roads)
53 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
54
55 // --- --- highways
56 Set<RelationKey> highways = new HashSet<>();
57 highways.add(RelationKey.newKey(n2, n5));
58 highways.add(RelationKey.newKey(n2, n3));
59 highways.add(RelationKey.newKey(n1, n3));
60 highways.add(RelationKey.newKey(n3, n4));
61 // TASK 3: SOME TEXT TO BE ADDED HERE
62
63 for(RelationKey key : highways)
64 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
65
66 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
67 vrpBuilder.setRoutingCost(cm);
68
69 // Vehicle type and instance
70
71 VehicleType vehicles = VehicleTypeImpl.Builder.newInstance("vehicles")
72 .addCapacityDimension(STUFF, 300)
73 .build();
74
75 VehicleImpl vehiclesInstance = VehicleImpl.Builder.newInstance("soapVehicleInstance")
76 .setType(vehicles)
77 .setStartLocation(n0)
78 .setLatestArrival(300)
79 .build();
80
81 vrpBuilder.addAllJobs(Arrays.asList(n1, n4, n5 /* TASK 1.2: SOME TEXT TO BE ADDED HERE */));
82
83 vrpBuilder.addVehicle(vehiclesInstance);
84
85 VehicleRoutingProblem vrp = vrpBuilder.build();
86
87 }
88

380

APPENDIX C. SURVEY TASKS

Task: Q09JSNW (3/4)

Task (continuation)

89 public static double highwayFunction(Location end1, Location end2) {
90 return 2 * EuclideanDistanceCalculator
91 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 2;
92 }
93
94 public static double roadFunction(Location end1, Location end2) {
95 return 4 * EuclideanDistanceCalculator
96 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 4;
97 }
98
99 // static class RelationKey (omitted for brevity)

100 }

Task 1: In the gap program above, you find comments that read "TASK 1.1: TEXT TO BE
ADDED HERE" and "TASK 1.2: TEXT TO BE ADDED HERE". Both comments mark places
in the program where you need to insert additional text (code) in order for the program to
comply with the network given in the illustration above. In the following two text areas, enter
the code (one or more lines) that should replace these comments in order to complete the
program.
Note: If necessary, please replace ’>’ with ’>’ and ’<’ with ’ <’ (or use ‹ ›)

Task 1.1: Enter answer here

Task 1.2: Enter answer here

Task 2: In the following text area, enter the code (one or more lines) that should replace the
comment " TASK 2: SOME TEXT TO BE ADDED HERE " in the complete program above.
Note: If necessary, please replace ’>’ with ’>’ and ’<’ with ’ <’ (or use ‹ ›)

Enter answer here

Task 3: In the following text area, enter the code (one or more lines) that should replace the
comment " TASK 3: SOME TEXT TO BE ADDED HERE " in the complete program above.
Note: If necessary, please replace ’>’ with ’>’ and ’<’ with ’ <’ (or use ‹ ›)

Enter answer here

381

APPENDIX C. SURVEY TASKS

Task: Q09JSNW (4/4)

Task (continuation)

Correct solution

Task 1.1:

38 Service n6 = Service.Builder.newInstance("n6")
39 .setLocation(Location.newInstance(8, -2))
40 .addSizeDimension(STUFF, 40)
41 .setTimeWindow(TimeWindow.newInstance(35, 155))
42 .setServiceTime(9)
43 .build();

Task 1.2:

81 vrpBuilder.addAllJobs(Arrays.asList(n1, n4, n5, n6));

Task 2:

50 roads.add(RelationKey.newKey(n2, n6));

Task 3:

61 highways.add(RelationKey.newKey(n0, n6));
62 highways.add(RelationKey.newKey(n4, n6));

Evaluation 2020, 2021

Task 1: 6 Points.
Task 2: 2 Points.
Task 3: 2 Points.

382

APPENDIX C. SURVEY TASKS

Task: Q09JSAG (1/5)

Introduction
In this task, you’ll find an incomplete program together with a visual representation of the
network represented by this program. Complete the program in a way so that the target
network and agent behaviour visualised at the bottom of the page result. Note that the
modelled behaviour, i.e. the tour, must be a likely outcome of the agent behaviour that you
modelled in the program.
Note: In this task, there are some nodes for which demands, time windows, and service times are to be defined even

though the vehicle must not service them! Navigation nodes (as well as those customer not supposed to be serviced)

can be visited by the agent (vehicle) but they will not receive a delivery. Find a way to program this.

Task

1 public class Q09JSAG {
2 public static int STUFF = 0;
3
4 public static void main(String[] args) {
5
6 VehicleRoutingProblem.Builder vrpBuilder
7 = VehicleRoutingProblem.Builder.newInstance();
8
9 /* TASK 1 BEGINNING */

10 // Network
11 // --- Nodes
12 Location l0 = Location.newInstance(2, 4);
13 Location l1 = Location.newInstance(-2, -8);
14 Location l2 = Location.newInstance(8, -6);
15 Location l3 = Location.newInstance(-10, -6);
16 Location l4 = Location.newInstance(-4, -2);
17 Location l5 = Location.newInstance(-5, 6);
18 Location l6 = Location.newInstance(7, 4);
19
20 Service n1 = Service.Builder.newInstance("n1")
21 .setLocation(l1)
22 .addSizeDimension(0, 30)
23 .setTimeWindow(TimeWindow.newInstance(10, 90))
24 .setServiceTime(5)
25 .build();
26
27 vrpBuilder.addAllJobs(Arrays.asList(n1));
28 /* TASK 1 END */
29
30 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
31
32 // --- roads
33 Set<RelationKey> roads = new HashSet<>();
34 roads.add(RelationKey.newKey(l0, l1));
35 roads.add(RelationKey.newKey(l0, l2));
36 roads.add(RelationKey.newKey(l0, l6));
37 roads.add(RelationKey.newKey(l0, l4));
38 roads.add(RelationKey.newKey(l4, l5));
39 roads.add(RelationKey.newKey(l1, l2));
40
41 for(RelationKey key : roads)
42 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
43
44 // --- highways
45 Set<RelationKey> highways = new HashSet<>();
46 highways.add(RelationKey.newKey(l2, l6));
47 highways.add(RelationKey.newKey(l6, l5));
48 highways.add(RelationKey.newKey(l3, l5));
49 highways.add(RelationKey.newKey(l1, l3));
50 highways.add(RelationKey.newKey(l3, l4));
51
52 for(RelationKey key : highways)
53 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
54
55 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
56 vrpBuilder.setRoutingCost(cm);
57

383

APPENDIX C. SURVEY TASKS

Task: Q09JSAG (2/5)

Task (continuation)

Task

58 /* TASK 2 BEGINNING */
59 // Vehicle type definition
60 VehicleType stuffVehicleType = VehicleTypeImpl.Builder.newInstance("stuffVehicleType")
61 .build();
62
63 // Vehicle instance defintion
64 VehicleImpl stuffVehicleInstance = VehicleImpl.Builder.newInstance("stuffVehicleInstance")
65 .setType(stuffVehicleType)
66 .setStartLocation(l0)
67 .build();
68 // Adding vehicle instance to the problem
69 vrpBuilder.addVehicle(stuffVehicleInstance);
70 /* TASK 2 END */
71
72 VehicleRoutingProblem vrp = vrpBuilder.build();
73 }
74 public static double highwayFunction(Location end1, Location end2) {
75 return 2 * EuclideanDistanceCalculator
76 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 2;
77 }
78
79 public static double roadFunction(Location end1, Location end2) {
80 return 4 * EuclideanDistanceCalculator
81 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 4;
82 }
83
84 //-- static class RelationKey omitted for brevity
85 }

Current state

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

01

0203

04

05

06

n
depot node or
customer node or
navigation node

highway
duration: 2 · length+2

road
duration: 4 · length+4

384

APPENDIX C. SURVEY TASKS

Task: Q09JSAG (3/5)

Task (continuation)

Task

Target state

1
2

3

4 5

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

00

e: 0
l: 440
c: 250

01d: 30
e: 10
l: 90
s: 5

02
d: 30
e: 30
l: 160
s: 10

03

d: 80
e: 5
l: 190
s: 25

04

05

d: 20
e: 10
l: 135
s: 10

06

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n navigation node

highway
duration: 2 · length+2

road
duration: 4 · length+4

n
tour

Task 1: From the listing above, copy and paste the code betweenthe comment "TASK 1 :
BEGINNING" and the comment "TASK 1 END". Complete the copied code for the network
(including depot and customer definitions) so that it conforms to the target state depicted in
the illustration.
Note: If necessary, please replace ’>’ with ’>’ and ’<’ with ’ <’ (or use ‹ ›)

Enter answer here

Task 2: From the listing above, copy and paste the code betweenthe comment "TASK 2 :
BEGINNING" and the comment "TASK 2 END". Complete the copied code for the network
(including depot and customer definitions) so that it conforms to the target state depicted in
the illustration. Hint: Take a good look! Something is missing!
Note: If necessary, please replace ’>’ with ’>’ and ’<’ with ’ <’ (or use ‹ ›)

Enter answer here

385

APPENDIX C. SURVEY TASKS

Task: Q09JSAG (4/5)

Task (continuation)

Correct solution

Task 1:

10 //Network
11 // --- Nodes
12 Location l0 = Location.newInstance(2, 4);
13 Location l1 = Location.newInstance(-2, -8);
14 Location l2 = Location.newInstance(8, -6);
15 Location l3 = Location.newInstance(-10, -6);
16 Location l4 = Location.newInstance(-4, -2);
17 Location l5 = Location.newInstance(-5, 6);
18 Location l6 = Location.newInstance(7, 4);
19
20 Service n1 = Service.Builder.newInstance("n1")
21 .setLocation(l1)
22 .addSizeDimension(0, 30)
23 .setTimeWindow(TimeWindow.newInstance(10, 90))
24 .setServiceTime(5)
25 .build();
26
27 Service n2 = Service.Builder.newInstance("n2")
28 .setLocation(l2)
29 .addSizeDimension(0, 30)
30 .setTimeWindow(TimeWindow.newInstance(30, 160))
31 .setServiceTime(10)
32 .build();
33
34 Service n3 = Service.Builder.newInstance("n3")
35 .setLocation(l3)
36 .addSizeDimension(0, 80)
37 .setTimeWindow(TimeWindow.newInstance(5, 190))
38 .setServiceTime(25)
39 .build();
40
41 Service n5 = Service.Builder.newInstance("n5")
42 .setLocation(l5)
43 .addSizeDimension(0, 20)
44 .setTimeWindow(TimeWindow.newInstance(10, 135))
45 .setServiceTime(10)
46 .build();
47
48 vrpBuilder.addAllJobs(Arrays.asList(n1,n5));

Task 2:

59 // Vehicle type definition
60 VehicleType stuffVehicleType = VehicleTypeImpl.Builder.newInstance("stuffVehicleType")
61 .addCapacityDimensions(STUFF, 50)
62 .build();
63
64 // Vehicle instance defintion
65 VehicleImpl stuffVehicleInstance = VehicleImpl.Builder.newInstance("stuffVehicleInstance")
66 .setType(stuffVehicleType)
67 .setStartLocation(l0)
68 .build();
69 // Adding vehicle instance to the problem
70 vrpBuilder.addVehicle(stuffVehicleInstance);

Evaluation 2020

Task 1: 10 Points.
Task 2: Not evaluated

386

APPENDIX C. SURVEY TASKS

Task: Q09JSAG (5/5)

Evaluation 2021

Task 1: 7 Points. Syntactical mistakes -1P; missing demand definitions (all) -4 P.; missing
demand definitions (one correctly present) -2 P.; missing lines of code -1 P.; wrong value for
demand or time -1 P. (max -2 P.); wrong or missing customer declaration -2 P.; wrong code (no
own code additions) -8 P.; wrong customer label (specified in constructor) -1 P.; superflous code
-1 P.; mixed-up customer (mistaken customer x for y) -1 P., wrong or incompatible asssigment
(-2 P.); wrong location -1 P.; unecessary changes to pre-defined customer (introduction of
mistakes) -1 P., missing call of build() method -1 P.
Task 2: 3 Points. Missing capacity dimension -2 P., Wrong product (only ‘STUFF’ and ‘0’ are
correct) -1P, Wrong value for either capacity dimension or latest time -1 P. (-2 P. max), missing
latest time -2 P.

387

APPENDIX C. SURVEY TASKS

Task: Q10JSNW (1/3)

Introduction
In this task, you will find an illustration of a network comprised of highways, roads, navigation
and customer nodes. In addition, you will find a program that corresponds to this illustration.In
the illustration, some elements (e.g. nodes, demands, highways, etc.) are drawn in red color.
These are the elements that are to be removed from the program.
Note: At the bottom of the page is a text area. Copy and paste the code that corresponds to
the elements that need to be deleted into this text area. The order in which you paste the
elements is not important.

Task

-12 -10 -8 -6 -4 -2 0 2 4 6 8
-10

-8

-6

-4

-2

0

2

4

6

00e: 0
l: 740
c: 160

01
d: 30
e: 5
l: 95
s: 10

02

d: 30
e: 30
l: 160
s: 10

03
d: 10
e: 30
l: 250
s: 20

04

05
d: 40
e: 50
l: 150
s: 20

06

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n navigation node

to be removed
from network

highway

road

1 public class Q10JSNW {
2
3 public static int STUFF = 0;
4
5 public static void main(String[]] args) {
6 VehicleRoutingProblem.Builder vrpBuilder
7 = VehicleRoutingProblem.Builder.newInstance();
8
9 Location n0 = Location.newInstance(-8, -7);

10
11 Service n1 = Service.Builder.newInstance("n1")
12 .setLocation(Location.newInstance(4, 6))
13 .addSizeDimension(STUFF, 30)
14 .setTimeWindow(TimeWindow.newInstance(5, 95))
15 .setServiceTime(10)
16 .build();
17
18 Service n2 = Service.Builder.newInstance("n2")
19 .setLocation(Location.newInstance(-3, 4))
20 .addSizeDimension(STUFF, 30)
21 .setTimeWindow(TimeWindow.newInstance(5, 95))
22 .setServiceTime(10)
23 .build();
24
25 Service n3 = Service.Builder.newInstance("n3")
26 .setLocation(Location.newInstance(4, -4))
27 .addSizeDimension(STUFF, 10)
28 .setTimeWindow(TimeWindow.newInstance(30, 250))
29 .setServiceTime(20)
30 .build();
31
32 Location n4 = Location.newInstance(-10, 2);
33

388

APPENDIX C. SURVEY TASKS

Task: Q10JSNW (2/3)

Task (continuation)

60 Service n5 = Service.Builder.newInstance("n5")
61 .setLocation(Location.newInstance(3, -8))
62 .addSizeDimension(STUFF, 40)
63 .setTimeWindow(TimeWindow.newInstance(50, 150))
64 .setServiceTime(20)
65 .build();
66
67 Location n6 = Location.newInstance(-2, -4);
68
69 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
70
71 // --- roads
72 Set<RelationKey> roads = new HashSet<>();
73 roads.add(RelationKey.newKey(n0, n4));
74 roads.add(RelationKey.newKey(n0, n2));
75 roads.add(RelationKey.newKey(n0, n6));
76 roads.add(RelationKey.newKey(n0, n5));
77
78 for(RelationKey key : roads)
79 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
80
81 // --- highways
82 Set<RelationKey> highways = new HashSet<>();
83 highways.add(RelationKey.newKey(n2, n4));
84 highways.add(RelationKey.newKey(n1, n2));
85 highways.add(RelationKey.newKey(n1, n3));
86 highways.add(RelationKey.newKey(n3, n5));
87 highways.add(RelationKey.newKey(n3, n6));
88
89 for(RelationKey key : highways)
90 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
91
92 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
93 vrpBuilder.setRoutingCost(cm);
94
95 VehicleType stuffVehicleType = VehicleTypeImpl.Builder.newInstance("stuffVehicleType")
96 .addCapacityDimension(STUFF, 160).build();
97
98 VehicleImpl stuffVehicleInstance = VehicleImpl.Builder.newInstance("stuffVehicleInstance")
99 .setType(stuffVehicleType)

100 .setLatestArrival(740)
101 .setStartLocation(n0)
102 .build();
103 // Adding vehicle instance to the problem
104 vrpBuilder.addVehicle(stuffVehicleInstance);
105
106 VehicleRoutingProblem vrp = vrpBuilder.build();
107 }
108
109 public static double highwayFunction(Location end1, Location end2) {
110 return 1.5 * EuclideanDistanceCalculator
111 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 3;
112 }
113
114 public static double roadFunction(Location end1, Location end2) {
115 return 3 * EuclideanDistanceCalculator
116 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 5;
117 }
118
119 }

389

APPENDIX C. SURVEY TASKS

Task: Q10JSNW (3/3)

Task (continuation)

From above JSprit program, copy those lines that need to be deleted and paste them in the
following text area (in an arbitrary order).
Note: If necessary, please replace ’>’ with ’>’ and ’<’ with ’ <’ (or use ‹ ›)

Enter answer here

Correct solution

60 Service n5 = Service.Builder.newInstance("n5")
61 .setLocation(Location.newInstance(3, -8))
62 .addSizeDimension(STUFF, 40)
63 .setTimeWindow(TimeWindow.newInstance(50, 150))
64 .setServiceTime(20)
65 .build();
76 roads.add(RelationKey.newKey(n0, n5));

Evaluation 2020, 2021

Scheme: 10 Points. Missing removal: -5 Points.

390

APPENDIX C. SURVEY TASKS

Task: Q11JSALL (1/5)

Introduction
In this task, you will find two graphical representations of networks that are comprised of
highways, roads, navigation nodes and customer nodes.
In the first graphical representation you will find one depot together with seven cus-
tomer nodes. The customer nodes are visited by two different tours.
After the two graphical network representations, you will find a program that corresponds to
the first graphical network representation (i.e. it describes this representation).
The second graphical network representation displays the target state in which you are to
transform the program: One of the customer nodes was transformed into a depot from which a
new product is delivered to some of the customers. These customers only have a demand for
the new product and do no longer require the old one (in other words, they are only supplied
by one depot).
The program features comments that mark the beginning and the end of program sections
that must be modified in order to transform the program into the target state. At the end of
the page, there are corresponding text areas, in which you copy, paste and modify the original
code in a suitable way.

Task

1

2

3

4

1

2

3

4

5

6

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

10

00
e: 0
l: 800
c: 200

01

d: 50
e: 5
l: 95
s: 11

02
d: 45
e: 10
l: 99
s: 12

03
d: 30
e: 30
l: 230
s: 15

04

d: 35
e: 20
l: 290
s: 7

05

d: 50
e: 50
l: 140
s: 9

06
d: 60
e: 10
l: 210
s: 10

07
d: 20
e: 10
l: 740
s: 10

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n delivers to
(classicStuff)

n

highway
duration: 2 · length+2

road
duration: 4 · length+4

n tour
vehicle 1

n tour
vehicle 2

1

2

3

4

5

1

2
3

4
5

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
-10

-8

-6

-4

-2

0

2

4

6

8

10

00
e: 0
l: 800
c: 200

01

d: 50
e: 5
l: 95
s: 11

02
d: 45
e: 10
l: 99
s: 12

03

d: 30
e: 30
l: 230
s: 15

04

d: 35
e: 20
l: 290
s: 7

05

d: 50
e: 50
l: 140
s: 9

06
d: 60
e: 10
l: 210
s: 10

07
e: 0
l: 740
c: 160

n depot node

n customer node

n
d: demand
e: earliest time
l: latest time
s: service time

n delivers to
(classicStuff)

n

n delivers to
(newStuff)

n

highway
duration: 2 · length+2
road
duration: 4 · length+4

391

APPENDIX C. SURVEY TASKS

Task: Q11JSALL (2/5)

Task (continuation)

1 public class Q11JSALL {
2 public static final int CLASSIC_STUFF = 0;
3 public static final int NEW_STUFF = 1;
4
5 public static void main(String[]] args) {
6 VehicleRoutingProblem.Builder vrpBuilder
7 = VehicleRoutingProblem.Builder.newInstance();
8
9 // Network

10 // --- Nodes
11 /* TASK 1 BEGINNING */
12 Location n0 = Location.newInstance(-2, -8);
13
14 Delivery n1 = Delivery.Builder.newInstance("n1")
15 .setLocation(Location.newInstance(2,0))
16 .addSizeDimension(CLASSIC_STUFF, 50)
17 .setTimeWindow(TimeWindow.newInstance(5, 95))
18 .setServiceTime(11)
19 .build();
20 Delivery n2 = Delivery.Builder.newInstance("n2")
21 .setLocation(Location.newInstance(8,-8))
22 .addSizeDimension(CLASSIC_STUFF, 45)
23 .setTimeWindow(TimeWindow.newInstance(10, 99))
24 .setServiceTime(12)
25 .build();
26 Delivery n3 = Delivery.Builder.newInstance("n3")
27 .setLocation(Location.newInstance(-10,-6))
28 .addSizeDimension(CLASSIC_STUFF, 40)
29 .setTimeWindow(TimeWindow.newInstance(10, 99))
30 .setServiceTime(12)
31 .build();
32 Delivery n4 = Delivery.Builder.newInstance("n4")
33 .setLocation(Location.newInstance(-4, -2))
34 .addSizeDimension(CLASSIC_STUFF, 35)
35 .setTimeWindow(TimeWindow.newInstance(20, 290))
36 .setServiceTime(7)
37 .build();
38 Delivery n5 = Delivery.Builder.newInstance("n5")
39 .setLocation(Location.newInstance(-5, 6))
40 .addSizeDimension(CLASSIC_STUFF, 50)
41 .setTimeWindow(TimeWindow.newInstance(50, 140))
42 .setServiceTime(9)
43 .build();
44 Delivery n6 = Delivery.Builder.newInstance("n6")
45 .setLocation(Location.newInstance(7, 1))
46 .addSizeDimension(CLASSIC_STUFF, 60)
47 .setTimeWindow(TimeWindow.newInstance(10, 210))
48 .setServiceTime(10)
49 .build();
50 Delivery n7 = Delivery.Builder.newInstance("n7")
51 .setLocation(Location.newInstance(10, 8))
52 .addSizeDimension(CLASSIC_STUFF, 20)
53 .setTimeWindow(TimeWindow.newInstance(10, 740))
54 .setServiceTime(10)
55 .build();
56
57 vrpBuilder.addAllJobs(Arrays.asList(n1, n2, n3, n4, n5, n6, n7));
58
59 /* TASK 1 END */
60
61 IncompleteCostMatrix.Builder costMatrixBuilder = IncompleteCostMatrix.Builder.newInstance();
62
63 // --- roads
64 Set<RelationKey> roads = new HashSet<>();
65 roads.add(RelationKey.newKey(n0, n2));
66 roads.add(RelationKey.newKey(n1, n2));
67 roads.add(RelationKey.newKey(n1, n4));
68 roads.add(RelationKey.newKey(n5, n7));
69

392

APPENDIX C. SURVEY TASKS

Task: Q11JSALL (3/5)

Task (continuation)

70 for(RelationKey key : roads)
71 costMatrixBuilder.addTransportTime(key.from, key.to, roadFunction(key.from, key.to));
72
73 // --- highways
74 Set<RelationKey> highways = new HashSet<>();
75 highways.add(RelationKey.newKey(n0, n3));
76 highways.add(RelationKey.newKey(n0, n4));
77 highways.add(RelationKey.newKey(n0, n3));
78 highways.add(RelationKey.newKey(n1, n5));
79 highways.add(RelationKey.newKey(n1, n6));
80 highways.add(RelationKey.newKey(n1, n7));
81 highways.add(RelationKey.newKey(n2, n6));
82
83 for(RelationKey key : highways)
84 costMatrixBuilder.addTransportTime(key.from, key.to, highwayFunction(key.from, key.to));
85
86 IncompleteCostMatrix cm = costMatrixBuilder.completeTransportTimeMatrix().build();
87 vrpBuilder.setRoutingCost(cm);
88
89 /* TASK 2 BEGINNING */
90 // Vehicle type definition
91 VehicleType classicStuffType = VehicleTypeImpl.Builder.newInstance("classicStuffType")
92 .addCapacityDimension(CLASSIC_STUFF, 200).build();
93
94 // Vehicle instance defintion
95 VehicleImpl classicStuffInstance = VehicleImpl.Builder.newInstance("classicStuffInstance")
96 .setType(classicStuffType)
97 .setStartLocation(n0)
98 .build();
99

100 // Add vehicle instance to the problem
101 vrpBuilder.addVehicle(classicStuffInstance);
102
103 /* TASK 2 END */
104
105 VehicleRoutingProblem vrp = vrpBuilder.build();
106 }
107
108 public static double highwayFunction(Location end1, Location end2) {
109 return 1.5 * EuclideanDistanceCalculator
110 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 3;
111 }
112
113 public static double roadFunction(Location end1, Location end2) {
114 return 3 * EuclideanDistanceCalculator
115 .calculateDistance(end1.getCoordinate(), end2.getCoordinate()) + 5;
116 }
117 }

Task 1: From the listing above, copy and paste the code betweenthe comment "TASK 1 :
BEGINNING" and the comment "TASK 1 END". Complete the copied code for the network
(including depot and customer definitions) so that it conforms to the target state depicted in
the illustration.

Enter answer here

393

APPENDIX C. SURVEY TASKS

Task: Q11JSALL (4/5)

Task (continuation)

Task 2: From the listing above, copy and paste the code betweenthe comment "TASK 2 :
BEGINNING" and the comment "TASK 2 END". Complete the copied code for the network
(including depot and customer definitions) so that it conforms to the target state depicted in
the illustration.

Enter answer here

Correct solution

Task 1:

12 Location n0 = Location.newInstance(2, 4);
13
14 Delivery n1 = Delivery.Builder.newInstance("n1")
15 .setLocation(Location.newInstance(2,0))
16 .addSizeDimension(NEW_STUFF, 50)
17 .setTimeWindow(TimeWindow.newInstance(5, 95))
18 .setServiceTime(11)
19 .build();
20
21 Delivery n2 = Delivery.Builder.newInstance("n2")
22 .setLocation(Location.newInstance(8,-8))
23 .addSizeDimension(CLASSIC_STUFF, 45)
24 .setTimeWindow(TimeWindow.newInstance(10, 99))
25 .setServiceTime(12)
26 .build();
27
28 Delivery n3 = Delivery.Builder.newInstance("n3")
29 .setLocation(Location.newInstance(-10,-6))
30 .addSizeDimension(CLASSIC_STUFF, 40)
31 .setTimeWindow(TimeWindow.newInstance(10, 99))
32 .setServiceTime(12)
33 .build();
34
35 Delivery n4 = Delivery.Builder.newInstance("n4")
36 .setLocation(Location.newInstance(-4, -2))
37 .addSizeDimension(CLASSIC_STUFF, 35)
38 .setTimeWindow(TimeWindow.newInstance(20, 290))
39 .setServiceTime(7)
40 .build();
41
42 Delivery n5 = Delivery.Builder.newInstance("n5")
43 .setLocation(Location.newInstance(-5, 6))
44 .addSizeDimension(NEW_STUFF, 50)
45 .setTimeWindow(TimeWindow.newInstance(50, 140))
46 .setServiceTime(9)
47 .build();
48
49 Delivery n6 = Delivery.Builder.newInstance("n6")
50 .setLocation(Location.newInstance(7, 1))
51 .addSizeDimension(NEW_STUFF, 60)
52 .setTimeWindow(TimeWindow.newInstance(10, 210))
53 .setServiceTime(10)
54 .build();
55
56 Location n7 = Location.newInstance(10, 8);
57
58 vrpBuilder.addAllJobs(Arrays.asList(n1, n2, n3, n4, n5, n6));

394

APPENDIX C. SURVEY TASKS

Task: Q11JSALL (5/5)

Correct solution (continuation)

Task 2:

100 // Vehicle type definition
101 VehicleType newStuffType = VehicleTypeImpl.Builder.newInstance("newStuffType")
102 .addCapacityDimension(NEW_STUFF, 160).build();
103
104 // Vehicle instance defintion
105 VehicleImpl newStuffInstance = VehicleImpl.Builder.newInstance("newStuffInstance")
106 .setType(newStuffType)
107 .setStartLocation(n7)
108 .build();
109
110 // Add vehicle instance to the problem
111 vrpBuilder.addVehicle(newStuffInstance);

Evaluation 2020, 2021

Task 1: 5 Points.
Task 2: 5 Points.

395

	Dedication
	Author's declaration
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Listings
	Introduction
	Challenges of last mile logistics
	The need for simulation in last mile logistics
	The Agent-based modelling approach
	Traffic networks as complex adaptive systems
	Problems to address
	Application of models to cope with high complexity
	Aims and objectives of the[id=Typo] presented research project[id=Typo]ed
	Research questions addressed in this thesis
	Structure of the thesis

	Related work
	Traffic and transport simulation
	Platforms, languages and tools
	Simulation studies related to traffic and transport

	Literature on empirical evaluations of DSLs
	Systematic mapping studies on DSLs
	DSL evaluation frameworks
	Evaluation studies on DSLs
	Evaluations related to the concrete syntax of DSLs
	Evaluation studies of specific DSLs

	Discussion of evaluation frameworks and studies

	Relation to this thesis

	The language and its environment
	The problem domain
	Domain analysis
	Analysis of three basic problems
	The standard travelling salesman problem
	The restricted multiple travelling salesman problem
	The capacitated vehicle routing problem

	Specialisation and generalisation
	The vehicle routing problem with time windows

	Declarative textual modelling with Athos
	Athos by example
	Example 1: The VRPTW in Athos
	Example 2 additional elements
	From static to dynamic problems
	Metrics tracked throughout the simulation
	Altered visualisation of elements
	An example result

	General architecture and usage of Athos

	The syntax and semantics of Athos
	The abstract syntax
	Network related meta-model elements
	Elements related to agent types and agent behaviour
	In-place agent type specifications

	The static semantics
	[id=Comment,comment=Some text was moved into this chapter which by mistake appeared in the next chapter.]Constraints related to the network
	Constraints related to the agent behaviour
	Overview on currently active constraints

	The concrete syntax
	Definition of nodes
	Agent type and behaviour related concrete syntax

	Transformations of Athos into NetLogo
	The command dictionary
	General flow of control
	Overview on the Athos generator
	Utility classes used by the generator
	NetLogo utility commands
	Naming pattern for agent behaviour descriptions
	Agent type transformations
	Generation of the command dictionary
	Summary
	The optimisation library
	General structure and access
	Genetic optimisation algorithm
	Process-centric explanation explanation
	Data-centric explanation

	Performance evaluation

	Empirical evaluation of the language
	Terminology used in this section
	Selection of design evaluation method
	Research questions and hypothesis
	Definition of evaluators profiles: demographic information
	Obtainment of ethical clearance
	Definition of the protocol
	Data to be collected and metrics to apply
	Data obtained for language evaluation
	Data to be obtained on the study population

	Empirical study method and evaluation usability type
	General structure
	Statistical comparison of the obtained results

	Definition of instruments to obtain the data
	Selection of baseline language
	Definition training material
	Definition of the survey tasks
	Inclusion and exclusion criteria
	Study protocols
	Original evaluation study
	Replication study

	Evaluation results
	Results of the original study
	Application of exclusion and inclusion criteria
	Demographic data
	Demographic data Friedberg 2020
	Demographic data Wetzlar 2020

	Results in terms of correctness
	Results from Friedberg
	Results from Wetzlar
	Between subjects hypothesis test
	Within subjects hypothesis test

	Results in terms of efficiency
	Results from Friedberg with first approach
	Results from Friedberg with second approach
	Results from Wetzlar with first approach
	Results from Wetzlar with second approach
	Between subjects hypothesis test
	Within subjects hypothesis test

	Results in terms of user satisfaction
	User satisfaction in Friedberg
	User satisfaction in Wetzlar

	Results of the replication study
	Application of exclusion and inclusion criteria
	Demographic data
	Results in terms of correctness
	Results from Friedberg
	Results from Wetzlar
	Between subjects hypothesis test
	Within subjects hypothesis test

	Results in terms of efficiency
	Results from Friedberg with first approach
	Results from Friedberg with second approach
	Results from Wetzlar with first approach
	Results from Wetzlar with second approach
	Between subjects hypothesis test
	Within subjects hypothesis test

	Results in terms of user satisfaction
	User satisfaction in Friedberg
	User satisfaction in Wetzlar

	Summary and conclusion
	Threats to validity
	Threats to construct validity
	Threats to internal validity
	Threats to external validity

	Conclusion
	The Athos project in context of IS design science
	Design as an artefact (Guideline 1)
	Problem relevance (Guideline 2)
	Design evaluation (Guideline 3)
	Research contributions (Guideline 4)
	Research rigor (Guideline 5)
	Design as a search process (Guideline 6)
	Communication of research (Guideline 7)

	Summary and addressed research questions
	Future work
	Expressiveness of the language to be improved
	Extensibility of the language to be matured
	Extension of the static semantics of the language
	Integration of user-definable solution constraints
	Additional target platform to be addressed
	Empirical studies to be conducted
	Metrics and dynamic aspects of the language
	Effects of alternative styles on the usability of Athos
	Effects of a graphical editor on the usability

	Application by domain experts in the field

	Bibliography
	The Athos syntax
	The Xtext grammar definition

	Evolotionary Algorithm
	Implementation
	Invocation

	Survey tasks
	Informed consent form
	Athos tasks
	Q01ATNW
	Q01ATAG
	Q03ATALL
	Q04ATNW
	Q04ATAG
	Q05ATNW
	Q05ATAG
	Q06ATNW
	Q07ATALL
	Q08ATALL
	Q09ATNW
	Q09ATAG
	Q10ATNW
	Q11ATALL

	JSprit tasks
	Q01JSNW
	Q01JSAG
	Q02JSAG
	Q03JSALL
	Q04JSNW
	Q04JSAG
	Q05JSNW
	Q05JSAG
	Q06JSNW
	Q07JSALL
	Q08JSALL
	Q09JSNW
	Q09JSAG
	Q10JSNW
	Q11JSALL

