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An Incremental SAR Target Recognition
Framework via Memory-Augmented Weight
Alignment and Enhancement Discrimination

Heqing Huang, Fei Gao, Jun Wang, Amir Hussain, and Huiyu Zhou

Abstract—Synthetic Aperture Radar Automatic Target Recog-
nition (SAR ATR) is one of the most important research direc-
tions in SAR image interpretation. While much existing research
into SAR ATR has focused on deep learning technology, an
equally important yet underexplored problem is its deployment
in incremental learning scenarios. This letter proposes a new
benchmark approach, termed Memory augmented weights align-
ment and Enhancement Discrimination Incremental Learning
(MEDIL) algorithm to address this issue. Firstly, the attention
mechanism is employed as part of the benchmark. Next, we
discuss the problem of height deviation of weights at the fully
connected layer and design a more suitable alignment of weights
by guiding the memory module for contextual data processing.
In addition, we leverage the incremental progressive sampling
strategy to alleviate the imbalance between old and new classes
during the training period. Finally, we propose to enhance the
distinction among various classes with an angular penalty loss
function to ensure the diversity of incremental instances. The pro-
posed method is evaluated on MSTAR and OpenSARShip under
different experimental settings. Experimental results demonstrate
that our proposed approach can effectively solve catastrophic
forgetting in SAR multiclass recognition problems.

Index Terms—Synthetic aperture radar, automatic target
recognition, incremental learning, catastrophic forgetting.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active earth ob-
servation system, usually installed on aircraft or satellites.

Because of its remarkable ability to acquire high-resolution
microwave images of surface targets in any climatic condi-
tions, it has been widely used in urban planning [1] and
image cognitive learnin [2]. Analyzing target characteristics in
imaging is the focus of research on SAR image interpretation
[3], [4]. Among them, automatic target recognition (ATR) of
SAR plays a critical role.

Researchers have made significant progress in recent
decades based on different SAR ATR methods [5], [9]. When
new data constantly appears in the visual world, the common
deep learning paradigm usually uses methods such as transfer
learning to fine-tune the new data. The problem is that the
approach tends to lose the ability to generalize to old data,
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termed catastrophic forgetting. Meanwhile, the presence of
noise, doppler effect, and other interference signals in SAR
images and the unstable data quality pose additional challenges
for SAR target recognition and incremental recognition.

In the above context, incremental learning (IL) of SAR
ATR is worth discussing [6]–[8]. IL reasons that a model can
continuously learn new knowledge from new data and can
remember old knowledge that has been previously learned. Re-
cently, many incremental learning methods have been applied
to SAR ATR work. Dang et al. [10] proposed a class boundary
selection method based on local geometric and statistical
information, and introduced a data reconstruction method to
update the samples when new classes are added. Tang et al.
[11] trained multiple optimal models on the old tasks to correct
the cumulative errors and improve the efficiency of model
update by pruning. Despite the ideal performance achieved
by these methods, we consider that they have the following
drawbacks. 1) When using exemplars to store data of old
classes, the data of exemplars usually exhibit class imbalance
or long-tail data distribution. 2) The feature embedding cannot
be explicitly optimized to enhance the intra-class similarity
and inter-class inconsistency using the traditional classification
loss function.

Fig. 1. The framework of our proposed methodology.

Due to the above issues, this letter is concerned with the
class incremental learning model capability not only to make
the learning incremental, but also to make the incremental
model maintain the previous class recognition capability. The
overall framework is shown in Fig. 1. The model fixes the
number of sample sets for storing old classes in the incre-
mental process and uses knowledge distillation to make the
old model guide the current model to train the added classes.
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In addition to using an attention mechanism module [12]
to direct the output to correct predictions, the method also
includes three other components. i.e., weight alignment [13]
with memory addressing, incremental progressive sampling,
and a discrimination enhancement component. The former
can highlight the most representative representations in old
category samples, and balance the weight bias of old and new
categories. The latter maximizes old and new category separa-
bility to obtain highly discriminative features for incremental
SAR recognition. Overall, our contributions are summarized
as follows:

1) A memory enhancement module is proposed to extract
typical representations from old category weights. The weight
alignment using the learned representations balances the in-
ductive bias of the old and new category weights.

2) An incremental progressive sampling strategy is designed
to address the problem of long-tail data distribution that may
occur in a fixed number of exemplars.

3) Finally, we propose a hybrid loss function that guarantees
the plasticity-stability of incremental learning of SAR targets
through knowledge distillation and angular penalties.

II. PROPOSED METHOD

A. Benchmark Incremental Learning with Exemplars Replay

The incremental learning task consists of an original task
with base class training data and multiple incremental tasks
with new classes. Assume an m-base n-incremental IL task,
where m denotes the total number of classes of the old
data, and n denotes the total number of classes of the new
data. When there are n new data classes, the new model
can successfully classify m old and n new classes. Let the
base data as X =

{
X0

train , X
1
train , . . . , X

m
train

}
with the labels

{0, 1, . . . ,m} for training data. We denote the new data as
Xnew =

{
Xm+1

train , Xm+2
train , . . . , Xm+n

train

}
. The model first trains

a classifier in the base data X . Then the model selects a fixed
number of old samples in X as exemplars and combines them
with Xnew to train a new classifier. During the test, the model
can effectively classify all classes seen so far.

Fig. 2. The memory enhancement module.

Meanwhile, using attention mechanisms in incremental
learning tasks can assist the model in better reducing forgetting
old lessons and learning new ones. We add an attention module
to the feature extract network, which models the tuning of
channel relations to improve the network’s robustness. The
module is divided into two parts-compression and aggregation.
Specifically, compression is the scaling of features to the
spatial dimension. It represents the global correspondence

in the re-channel dimension. The reason for the model’s
poor performance when a new task arrives is that the new
category introduces a different loss optimization space. With
the attention mechanism, it is possible to change the model’s
focus on additional features, allowing it to manage knowledge
more flexibly in incremental learning. Specifically, a weight
is assigned to each category sample based on its importance,
and the more essential weights are then used to control the
loss optimization space of the model during training.

B. Weight Alignment Based on Memory Enhancement

As new tasks are introduced, the model tends to classify
objects into new classes. The model’s parameters will adapt
to new features, particularly in the fully connected layer.
However, the simple alignment method [13] is insufficient for
the SAR ATR incremental task. In addition, the essence of
ensuring model stability is to retain old knowledge by not
changing parameters as much as possible. Remembering the
most representative sample of old classes can alleviate the
catastrophic forgetting dilemma that occurs when the model
learns old knowledge over a fixed number of exemplars

Based on the above, we present a memory enhancement
module between the output of the model and the weighted
alignment. As shown in Fig. 2, this module provides richer
representational learning capabilities. For a given weight, the
memory enhancement module does not encode it directly for
weight alignment but instead retrieves the most relevant items
in memory as a query. By using the encoded representation
as a query, the memory module retrieves the most relevant
old category weights in memory employing an attention-
based addressing operator. These weights are then aggregated
and passed to the alignment module. This helps the model
treat the output of old and new classes more fairly. We
first define X to represent the data sampling domain and Ẑ
to represent the encoding domain of the feature extraction
network. Taking X as input, the encoder transforms it into
an encoded representation z ∈ Ẑ, using z to retrieve the
associated old class weights. Before the weight alignment,
we convert Ẑ to an in-memory query. Specifically, memory
is a matrix of constructed row vectors, each row vector m
representing a memory element with the dimensionality of
the model output features. The query Ẑ obtained through the
memory network can be represented as:

Ẑ = wM =

N∑
i=1

wimi (1)

next, the features’ attention coefficient vector w is calculated,
where d is the cosine similarity.

wi =
exp (d (Z,mi))∑N
j=1 exp (d (Z,mj))

(2)

d (Z,mi) =
ZmT

i

∥Z∥ ∥mi∥
(3)

We use this approach to remember the most representative
sample prototypes better, picking the most similar task weights
from the memory module for alignment. During the training
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phase, the memory module uses only a tiny number of
addressed memory items to record typical old sample weights.
Thus, memory supervision forces the memory to record the
most representative prototype patterns in the old class data.
When testing, both old and new class samples can index to
the class with the highest probability.

C. Incremental Progressive Sampling

Most of the incremental learning tasks suffer from data
long-tail distribution and class imbalance. In this study, the
number of exemplars is fixed at 200, i.e., the sum of the
samples stored in all old classes does not exceed 200. Typi-
cally, upon the arrival of the subsequent incremental lesson, a
conspicuous disparity arises in the number of samples between
the newly introduced classes and the pre-existing classes stored
in the exemplars. This conspicuous difference results in a
situation where the most recent data sets carry more weight
in determining the loss value and therefore, tend to dominate
the learning of the parameters.

To solve this problem, we design an incremental progressive
sampling strategy. A combination of the instance-balanced
and class-balanced sampling methods is performed. By giving
each training sample a sampling weight, this sampling weight
changes incrementally with the increase of epochs. As training
proceeds, the sample sampling weights of the exemplars are
incrementally increased, gradually transforming the data from
the original instance distribution to a balanced distribution.
Compared with random sampling, the incremental progressive
sampling strategy ensures that the data distribution in each
epoch matches the sample dataset of the old and new classes.
The general sampling approach can be expressed in the
following form:

pj =
nq
j∑C

i=1 n
q
i

(4)

there are four parameters. pj represents the sampling probabil-
ity of the j-th class, nj represents the total number of samples
in the j-th class. C represents the total number of classes for
all classes. q is a hyperparameter used to control the sampling
mode. The strategy for progressive sampling is given by the
following equation,

pPB
j (t) =

(
1− t

T

)
pIBj +

t

T
pCB
j (5)

where t and T denote the current epoch and the total number
of epochs, respectively. pIBj is the strategy obtained when q of
Eq. (4) is taken as 1, specifically, an increase in the number
of samples in a category, leads to a higher probability of
sampling. pCB

j is the strategy obtained when q of Eq. (4) is
taken as 0. At this point, the sampling probabilities pj of the
samples in the category are all equal to 1/C.

At the beginning of training, each training example has the
same probability of being selected. For incremental learning,
instance-balanced sampling causes the model parameters to
be more inclined to learn Xnew with an enormous amount of
data. Learning old categories in the exemplars is insufficient
to occupy a favorable position for updating the neural network

parameters. Incremental progressive sampling is used to mit-
igate this discrepancy. As learning proceeds, ”interpolation”
between the Xnew and exemplars is continuously performed.

D. Design of hybrid loss function

A certain level of stability-plasticity is required in an ideal
incremental learning environment. The model can overcome
catastrophic forgetting in previous tasks and acquire knowl-
edge in newly added tasks. The softmax activation function is
often post-connected to the last layer of the neural network
for the classification task. The benchmark uses softmax to
convert all predicted values into predicted probability values.
However, the new category requires a more expansive feature
space in incremental scenarios. When new data arrives, the
network will selectively catastrophically forget or not update
parameters for new classes if the feature space is insufficient.
The softmax loss function is shown as follows:

L1 = − 1

N

N∑
i=1

log
eyi∑n
j=1 e

yi
(6)

where n is the number of classes, and N is the batch size.
yi represents the output of the full connection. Inspired by
[14], the inner product/dot product of the feature vectors
contains information about the angle of the inter-vector pinch.
Therefore, we denote yi as:

yi = WT
i f = ∥Wi∥ ∥f∥ cos (θi) = cos (θi) , (7)

where f is the feature of the input image and W is the weight
parameter.

We employ the pinch angle information to add constraints
to the loss function, aiming to compress similar data into a
more compact space while widening the gap between different
classes. First, we use cosine similarity as a distance metric
to measure the similarity of the data and calculate the score.
It measures the angular similarity of an image toward its
class, which indicates the likelihood that the image belongs
to the class. Usually, cosine similarity prediction is used with
cross-entropy loss to separate features from dissimilarity by
maximizing the probability of ground truth. The final loss
function is:

LossAP = − 1

N

N∑
i=1

log
es(cos(yi+m))

es(cos(yi+m)) +
∑n

j=1,j ̸=yi
es cos θj

(8)
where θ is the angle between the weight W and the feature x,
m is an additive angular margin between the feature x and the
target weight W . s is used to re-scale the normalized features.
The proposed additive angle margin penalty enhances both
intra-class compactness and inter-class variability.

III. EXPERIMENTS

A. Implementation Details

Data sets: The data sets utilized in this letter are taken from
the MSTAR [15] and two classes of OpenSARShip database
[16]. A total of 10 types of military targets are collected
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in this database, which mainly includes trucks (ZIL131),
bulldozers (D7), cannons (ZSU234), armored cars (BTR70,
BTR60), tanks (T72, BMP2, T62), truck (BRDM2), cannon
(2S1). OpenSARShip is a database that can be used for SAR
image ship classification. We will select a portion of data from
two categories(tanker, cargo) to validate the model, and the
experiments will be conducted on a 12 class dataset jointly
constructed by MSTAR and OpenSARShip.

TABLE I
TOP-1 ACCURACY (%)↑ FOR EACH INCREMENTAL SESSION

0 1 2 3 4 5
iCaRL [17] 99.45 98.18 94.27 93.23 80.13 74.56

BiC [18] 99.64 97.46 88.36 88.42 82.35 85.27
WA [13] 99.45 98.55 89.14 82.19 73.13 77.49
DER [19] 99.45 97.13 97.39 92.34 90.41 85.19

PodNet [20] 99.64 98.35 93.99 91.05 87.11 82.13
Ours 99.96 98.81 97.73 96.83 93.28 91.51

TABLE II
HARMONIC ACCURACY (%)↑ FOR EACH INCREMENTAL SESSION

0 1 2 3 4 5
DER 0 99.32 98.23 94.13 90.74 87.38
Ours 0 99.63 98.60 95.57 93.91 92.60

Training details: The benchmark in this letter is described
in Section II. The experimental code is run on the Win10
operating system. Our approach is mainly built based on the
PyTorch deep learning library. The training is optimized using
an SGD optimizer with momentum. The number of training
epochs per incremental stage is uniformly 50, the learning
rate is 0.01, and the weight decay is 0.0005. Each session
training uses the batch size of 32. The temperature T used
to calculate the knowledge distillation loss is set to 2. The
number of exemplars storing samples of old classes is 200. In
the specific experiments, we developed two settings: 1-base
1-incremental/ 2-base 2-incremental.

Evaluation protocol: The average incremental precision is
used as one of this letter’s incremental learning evaluation
metrics. This metric reflects the overall precision of the old
and new classes identified. Although this method is standard
incremental learning evaluation metrics, using accuracy alone
as an evaluation method is not sufficient.

A model performing well on the base class but poorly on
subsequent incremental sessions can still have good average
accuracy. For example, the model has the precision of 100
on having 60 base classes and shows 0% accuracy in 2-
incremental. However, the precision is still rated as 96.7%.

TABLE III
ABLATION STUDY UNDER THE 1-BASE 1-INCREMENTAL

0 1 2 3 4 5 6 7 8 9 10 11
Precision

Variation 0 100.0 99.64 96.72 96.86 97.77 93.07 97.16 89.21 92.24 72.61 72.48 67.62
Variation 1 100.0 99.37 99.15 99.02 97.35 95.95 94.65 92.28 90.14 88.54 86.51 83.21
Variation 2 100.0 99.45 99.30 99.41 98.92 97.59 95.21 95.53 92.99 92.87 91.48 90.26
Variation 3 100.0 99.63 99.60 99.25 98.70 97.61 96.27 95.05 93.44 93.20 94.37 93.40

Ours 100.0 99.45 99.39 99.51 99.75 98.79 98.51 97.65 96.23 96.29 96.70 93.87
Harmonic Accuracy

Variation0 0 99.45 98.60 96.57 95.38 89.17 90.79 90.41 89.17 87.96 89.24 86.14
Variation1 0 99.39 98.35 97.89 96.79 88.93 93.56 90.23 75.41 87.96 81.29 80.17
Variation2 0 99.35 99.27 98.26 98.19 93.83 94.76 93.71 90.87 88.53 87.13 86.94
Variation3 0 99.45 99.33 99.63 99.35 97.55 95.73 94.36 93.79 93.20 94.11 89.29

Ours 0 99.63 99.63 99.75 99.70 97.61 96.27 95.05 93.44 94.25 96.27 93.40

Therefore, we use an additional evaluation method, harmonic
accuracy, to assess whether or not the model learns the
new task. If an incremental learning model has high average
precision but low harmonic accuracy, it would indicate that the
model’s performance is mainly provided by the underlying
classes and could be better for learning new classes. The
formula for this method is shown as follows:

Ah =
2×Ab ×Ai

Ab +Ai
(9)

where Ab is the average precision in the primary classes, and
Ai is the average precision of the incremental session classes.
The ideal incremental learning model must be balanced in
precision and harmonic accuracy.

B. Comparison with the State-of-the-art Methods

We compared our method with several representative meth-
ods in the SAR dataset, including iCaRL [17], BiC [18], WA
[13], DER [19] and PodNet [20]. According to Tables I and
II, the highest average accuracy and harmonic accuracy were
achieved by our method in experimental scenarios with the 2-
base 2-incremental settings. For the scenario setup with 2-base
2-incremental, we obtain the average precision of 91.51% and
the harmonic accuracy of 92.60%, which are 6.32% and 5.22%
higher than DER’s method, respectively. In the 5th incremental
session, BiC’s performance produced a significant difference.
We believe that the linear fitting process generates substantial
errors and does not apply to ATR incremental learning. The
incremental version of WA is more stable but shows more
precision reduction per task. In the last session, the precision
of our method is 14.02% higher.

It is worth noting that the results of the iCaRL model that
we used to perform experiments on the MSTAR dataset are
somewhat different from [11]. We think this may be due to
two reasons: different samples retaining the old categories and
different order of the incremental categories. These reasons
may lead to a different feature space learned by the model.

Fig. 3. Feature embedding visualization using t-SNE in the MSTAR dataset.

C. Ablation Study

To verify the effectiveness of each part of our method,
we performed an ablation study on the SAR image dataset
with the setting of 1-base 1-incremental. Table III shows
each incremental class’s accuracy and the ablation study’s
experimental results. Variant 0, benchmark training. Variant
1, training with the attention mechanism. Variant 2, training
with a memory enhancement module and a weight alignment
module via variant 1. Variant 3, training with incremental
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progressive sampling strategy via variant 2. Ours, training
with the angle penalty loss based on variant 3.

When the attention mechanism was used in the bench-
mark test, the model showed varying degrees of accuracy
improvement in both incremental learning classes. This reflects
the training stability and model robustness resulting from
the attention mechanism, which effectively ameliorates the
catastrophic forgetting problem. However, when validating the
harmonic accuracy, we observe that the training of the model
was unstable. We argue the attention mechanism introduced
additional attention weight parameters that have a slight ef-
fect on the network gradient for learning new classes, thus
affecting the overall network optimization process. Further,
the incremental progressive sampling strategy proposed in this
letter ensures more stable training of the model to effectively
solve this problem. The high precision training models use
memory-based incremental weight alignment and show over-
specialization. Their good precision performance is mainly
attributed to the balance of old and new class weights. The
overall performance at the end of class incremental learning
is improved by more than 7% compared to the benchmark.
We then design the incremental progressive sampling strategy
to balance more training data to compensate for the loss
of fewer samples of old classes in the training data. With
the help of this method, in the last incremental session, the
precision and harmonic accuracy improved by 3.74% and
2.35%. The model pre-agings different virtual prototypes with
enhanced discrimination items, which reserves the embedding
space for new classes by angle penalty loss. The precision
(harmonic accuracy) achieved 93.87% (93.40%) in the last
session. Ablations validate that forward-compatible training is
helpful for MEDIL.

Fig.3 shows the feature embedding of the MSTAR dataset
visualized using t-SNE. The different colors represent different
categories. The models visualized from left to right are:
the benchmark, the weight alignment module with memory
enhancement added, and MEDIL. As can be seen from the
figure, the feature embeddings of three categories, BTR60, T72
and BTR70, are mixed together in the benchmark. Following
use the memory-enhanced weight alignment, the feature points
of the same category are seen to be more compact. In MEDIL,
the feature embeddings of different categories are clearly
distinguishable, which proves that the angular penalty loss can
enhance the generalization ability of features.

IV. CONCLUSION

This letter proposes MEDIL, a simple and effective ap-
proach for dealing with catastrophic forgetting in class incre-
mental learning. As new classes continue to emerge, MEDIL is
able to protect previous knowledge in the form of selecting and
updating class weights. It also provides sufficient boundary
distance to provide learning space for new classes. We demon-
strate that modifying the model structure can help reduce
the old class catastrophic forgetting problem in incremental
learning. Meanwhile, the recognition performance loss in
incremental data processing that mainly arises from changes
in the training data distribution and weight parameters. In the
future, we will focus more on going to data in the real world.
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