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ABSTRACT 32 

This paper investigates the determinants of injury severities in pedestrian-motor vehicle accidents at 33 

signalised and unsignalised junctions, and at physically-controlled and human-controlled crossings in 34 

Scotland. The accident data were drawn from the official police crash report database of the UK 35 

spanning a period between 2010 and 2018. Correlated random parameter ordered probit models with 36 

heterogeneity in the means were developed in order to account for the multi-layered impact of 37 

unobserved heterogeneity on statistical estimation. The model estimation results showed that the 38 

severities of accident injuries are affected by roadway, location, weather, vehicle, and driver 39 

characteristics as well as temporal attributes (including time and day of the accident). Factors such as 40 

the urban context, lighting and weather conditions and road surface conditions were found to result in 41 

correlated random parameters, thus capturing the intricate, yet interactive effects of unobserved 42 

heterogeneity, and particularly the unobserved behavioural response of road users to different traffic 43 

control types at junctions and crossings. Vehicle type, driver’s gender and day-of-the-week were 44 

observed to influence the random parameters' distributions. Empirically, the results showcase variations 45 

in the determinants of injury severities at signalised and unsignalised junctions, and at physically-46 

controlled and human-controlled crossings. Even though most of these variations were related to the 47 

magnitude of impact of the determinants, differences in the directional effects on injury severities were 48 

also identified, mainly for factors related to weather conditions, hazard presence on the road, and 49 

temporal characteristics of the accidents.  50 

Keywords: Pedestrian accidents; injury severity; ordered probit model; signalised and unsignalised 51 

junctions; physically-controlled crossings; human-controlled crossings; correlated random parameters;  52 
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1. INTRODUCTION 53 

Road casualties constitute one of the major public health concerns in the United Kingdom and 54 

worldwide. Vulnerable road users, principally pedestrians, cyclists and motorcyclists, have a greater 55 

propensity to casualties, as they account for more than half of all road traffic deaths (WHO, 2018). In 56 

the UK, pedestrian casualties accounted for 14% of all casualties in 2018, thus reflecting the second 57 

largest proportion of fatalities after car users (DfT, 2018). In Scotland, pedestrian casualties accounted 58 

for about 15% of total casualties from all traffic accidents in 2018 (Transport Scotland, 2018).  59 

Road junctions have been long established as road elements where pedestrians face a higher risk of 60 

being involved in accidents with motor vehicles (European Transport Safety Council, 1999). Pedestrian-61 

vehicle accidents in junctions have been investigated extensively in the literature (Ma et al., 2018; Zajac 62 

& Ivan, 2003; Zhang et al., 2008; Zheng, 2014; Jung et al., 2016). Previous evidence has shown that 63 

major determinants of injury severities include vehicle speeds, configuration and geometric 64 

characteristics of the junction, built environment and land-use characteristics, pedestrian characteristics, 65 

the presence of dedicated facilities for pedestrians as well as the desire lines of pedestrians. Furthermore, 66 

the level of traffic control implemented in junctions may influence the occurrence and severity of 67 

pedestrian-involved accidents (Tarko et al., 2012). Traffic signals are widely used in junctions to 68 

regulate traffic control, as they can spatially and temporally separate movements and potential conflicts 69 

between pedestrians and vehicles, thus enabling a reduction in the risk of hazardous conflicts that can 70 

result in accidents (Wong et al., 2007).  71 

The level of pedestrian safety is also subject to the provision of dedicated pedestrian facilities. 72 

Previous research has established the safety benefits of facilities that physically provide protected, yet 73 

segregated paths for pedestrians, such as various types of crossings (e.g., signalised or sign-controlled 74 

crossings, zebra crossings and so on) or footbridges (Elvik et al., 2013; Pantangi et al., 2021a; Pantangi 75 

et al., 2021b; Sarwar et al., 2017). As an alternative to physical infrastructure, the presence of human 76 

control at crossings through crossing patrols also enhances pedestrian safety, especially for special cases 77 

of pedestrian movements, such as commute to school (Rosenbloom et al., 2008), which may include 78 

even more vulnerable users, e.g., children and parents. Despite the presence of physical or human 79 
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control at pedestrian facilities, there is still potential for severe accidents, typically caused by traffic 80 

violations or risk-taking behaviours of drivers and/or pedestrians. 81 

While the injury severities of pedestrian accidents have been individually explored for various 82 

junction and pedestrian crossing types in safety literature, there has been limited empirical research 83 

regarding how the factors determining injury severities of pedestrian-motor vehicle accidents vary by: 84 

(i) the level of traffic control at junctions; and (ii) the presence of physical facilities or human control 85 

at pedestrian crossings. Focusing on the type of traffic control, we separately consider injury severities 86 

of pedestrian-motor vehicle accidents at signalised and unsignalised junctions and physically-87 

controlled and human-controlled crossings, respectively. 88 

To account for unobserved heterogeneity, which may be present in the accident data, this study 89 

explores the determinants of injury severities for pedestrian-motor vehicle accidents using a correlated 90 

random parameters ordered probit approach with heterogeneity in the means. This modelling 91 

framework allows the parameter estimates to vary across the accident observations, thus facilitating the 92 

identification of varying impacts of the injury-severity determinants as well as of exogenous factors 93 

potentially controlling for such varying impacts of the injury-severity determinants. Furthermore, the 94 

correlation among the random parameters enables the recognition of interactive effects among the 95 

unobserved characteristics that may affect injury severities. 96 

This paper contributes to empirical research about pedestrian-motor vehicle accident injuries in two 97 

ways: on the one hand, factors influencing injury severities are concurrently explored for several 98 

junction and pedestrian crossing types, thus enabling the identification of variations in the effects of the 99 

same factors. On the other hand, the statistical modelling framework can provide more robust empirical 100 

findings by addressing layers of unobserved heterogeneity, which were not simultaneously considered 101 

in prior studies of pedestrian safety.   102 

2. PREVIOUS RESEARCH ON INJURY SEVERITIES AT JUNCTIONS AND CROSSINGS 103 

Zajac & Ivan (2003) identified factors that significantly influenced injury severities of motor vehicle-104 

crossing pedestrian crashes in rural Connecticut, U.S.A. using an ordered probit model. Whilst limiting 105 

the crashes to those where pedestrians were attempting to cross two-lane highways controlled by neither 106 
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stop signs nor traffic signals, they found that factors that had significant influence on pedestrian injury 107 

severity were clear roadway width, alcohol use by either driver or pedestrian, age, and vehicle type.  108 

Haleem et al. (2015) identified and compared the major factors affecting crash injury severity 109 

involving pedestrians at signalised and unsignalised intersections in Florida using a mixed logit 110 

approach. They identified major predictors of higher pedestrian severity risk at signalised intersections, 111 

including higher annual average daily traffic, speed limit, proportion of trucks, age, rainy weather, and 112 

dark lighting conditions. At unsignalised intersections, the identified factors included pedestrians 113 

walking along roadway, middle-aged and elderly pedestrians, at-fault pedestrians, vans, dark lighting 114 

conditions and higher speed limits.  115 

Ma et al. (2018) investigated factors influencing injury severity at intersections for pedestrian 116 

involved crashes. They employed an ordered probit modelling approach to develop a model for 117 

examining the influence of various factors on pedestrian injury severity. They found that pedestrian 118 

injury severities vary by driver’s age. Furthermore, their results showed that vehicle type, point of fist 119 

contact, and weather significantly impact pedestrian injury severity at intersections for all driver age 120 

categories investigated.  121 

Using pedestrian and bicyclist involved crash data from the Fatality Analysis Reporting System in 122 

the U.S., Dong et al. (2019) used mixed generalised ordered logit models to investigate injury severities 123 

of vulnerable road users. Factors that were found to significantly influence the injury severities included 124 

age, alcohol use, motorist’s previous crashes, number of occupants, junction profile, weather, and light 125 

conditions among others. Due to unobserved heterogeneity, the number of occupants, vehicle body type, 126 

interstate, and junction led to statistically significant random parameters. 127 

Rothman et al. (2012) questioned the safety effects of traffic signals at midblock locations despite 128 

being established as one the most appropriate approaches to providing safe pedestrian crossings. They 129 

investigated pedestrian injuries at signalised midblock compared to signalised intersection locations in 130 

Toronto, Canada. The outcomes indicate that the odds of children and adults to sustain a major injury 131 

are higher at midblock locations compared to intersections, whereas, for seniors, the risk of sustaining 132 

a fatal injury at midblock locations is even higher.   133 
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Abdelwahab & Abdel-Aty (2001) investigated the use of multilayer perceptron and fuzzy adaptive 134 

resonance theory neural networks in understanding the relationship between factors including driver, 135 

vehicle environment, and roadway characteristics on driver injury severity. Their findings indicate that 136 

injuries in accidents at rural intersections are more severe than in accidents at urban intersections. 137 

Interestingly, they also found that drivers who are at fault in the traffic accident are less likely to 138 

experience severe injuries compared to those not at fault. Similar to Abdelwahab & Abdel-Aty (2001), 139 

who found gender differences in severity of injuries, Obeng (2011) found larger increases in the 140 

marginal effects of driver characteristics on the risk of severe injuries in females compared to males. 141 

Recognising the importance of pedestrian involved vehicle crashes that occur at intersections, Zhu 142 

(2021) investigated the factors contributing to their severity based on a three-year record of crash data 143 

in Hong Kong. Artificial neural network was used to determine significant contributing factors for fatal 144 

and severe crashes. The author found an increase in the likelihood of fatal and severe vehicle-pedestrian 145 

crashes at intersections with light rainfall and at signalised junctions as well as at uncontrolled junctions. 146 

In summary, from the array of studies reviewed, it can be deduced that several traditional methods 147 

of modelling pedestrian injury severity have been used, including discrete choice models, and Bayesian 148 

network methods among others, but with some limitations. Many of these studies do not capture a broad 149 

range of unobserved factors contributing to accidents and their severities. Furthermore, the models 150 

developed are limited in their capacity to concurrently capture both the likely correlations between the 151 

unobserved factors and the variations in the effects of the unobserved factors on injury severities.  152 

To overcome these limitations, this study proposes an integrated modelling framework (i.e., the 153 

correlated random parameter ordered probit approach with heterogeneity in the means). Even though a 154 

few studies recently applied a similar modelling framework for the statistical analysis of accident injury 155 

severities (e.g., Fountas et al., 2021; Se et al., 2021; Ahmed et al., 2021), this approach has not been 156 

used to analyse pedestrian-vehicles accidents, to the best of the authors’ knowledge.   157 
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3. METHODS 158 

For the statistical analysis of the accident data, we employ an ordered probability framework with 159 

allowances for correlated random parameters and with a flexible structure for capturing heterogeneity 160 

in the means of the random parameters.  161 

The traditional ordered probit model is formulated using a latent continuous variable, zi, as follows:  162 

𝑧𝑧𝑖𝑖 = 𝛃𝛃𝐗𝐗𝐢𝐢 + 𝜀𝜀𝑖𝑖 ,𝑦𝑦𝑖𝑖 = 𝑗𝑗, 𝑖𝑖𝑖𝑖 𝜇𝜇𝑗𝑗−1 < 𝑦𝑦𝑖𝑖 < 𝜇𝜇𝑗𝑗 , 𝑗𝑗 = 1,2, … . . 𝑗𝑗                   (1)  163 

where β represents a vector of estimable parameters, Xi represents a vector of observable characteristics 164 

for accident observation i, 𝑦𝑦𝑖𝑖 denotes an integer, which stands for the observed severity outcome of the 165 

accident injury, j denotes an integer representing the levels of injury-severity, the threshold parameters 166 

of the ordered model are represented by 𝜇𝜇𝑗𝑗, which are ordered in nature. The random error component 167 

is denoted by εi, with the assumption for this being normally distributed.  168 

Random parameters are integrated into the modelling framework to account for unobserved 169 

heterogeneity. This setting empowers the estimation of accident-specific parameter vectors, βi for the 170 

explanatory variables included in X (Semple et al., 2021), as shown below:  171 

𝛃𝛃𝐢𝐢 = 𝛃𝛃 + 𝜹𝜹𝐊𝐊 + Γ𝜔𝜔𝑖𝑖                      (2) 172 

Where the mean value of the random parameters’ vector is represented by β, Γ denotes a Cholesky 173 

matrix, K is a vector of exogenous variables that affect the means of the random parameters, δ is a 174 

vector of coefficients for K., a normally distributed random term is indicated by ω.   175 

Considering the typical formulation of the random parameters (Washington et al., 2020), the random 176 

parameters vary across the observations in light of a pre-specified distribution, the mixing distribution. 177 

In this study, the normal distribution was selected to fit the random parameters’ distribution. Previous 178 

evidence typically suggests the estimation of uncorrelated random parameters, implicitly assuming the 179 

existence of independent effects attributed to unobserved heterogeneity. Though, a fast-growing 180 

number of recent studies have revealed that possible dependence structures among unobserved 181 

characteristics may underpin their impact on model predictors. To account for this possibility, the 182 

random parameters are allowed to be correlated, hence, the off-diagonal elements of the Choleksy 183 

matrix are set to take non-zero values (Fountas et al., 2018b).  184 
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The covariance matrix of the random parameters, 𝑉𝑉, is given by multiplying a Cholesky matrix, 185 

Γ, and a Cholesky matrix prime, Γ𝜄𝜄,  as shown in Equation 3: 186 

      𝑉𝑉 = ΓΓ𝜄𝜄              (3) 187 

As a result of the generalized formulation of the Cholesky matrix, the model’s estimable parameters are 188 

both the diagonal and off-diagonal elements of the Cholesky matrix. Furthermore, the diagonal and off-189 

diagonal values of the covariance matrix are used to compute the standard deviations of the correlated 190 

random parameters following a post-estimation procedure established by Fountas et al., 2018a . 191 

The Simulated Maximum Likelihood Estimation (SMLE) method was used to calibrate the 192 

correlated random parameters model. As part of the SMLE , Halton draws were leveraged to obtain 193 

optimum numerical integrations for the simulation process (Halton,1960). For the estimations, 1000, 194 

1200 and 1400 Halton draws have been used to stabilize the models’ parameter estimates.  195 

To capture the extent of correlation between the random parameters, correlation coefficients are 196 

computed. The definition of the correlation coefficient between two random parameters is given as: 197 

             𝐶𝐶𝐶𝐶𝐶𝐶(𝜒𝜒𝜅𝜅,𝜒𝜒𝜅𝜅′) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝜒𝜒𝜅𝜅,𝜒𝜒𝜅𝜅′)
𝜎𝜎𝜅𝜅𝜎𝜎𝜅𝜅′

              (4) 198 

where 𝐶𝐶𝐶𝐶𝐶𝐶(𝜒𝜒𝜅𝜅,𝜒𝜒𝜅𝜅) denotes the covariance among the random parameters generated by the variables 199 

𝜒𝜒𝜅𝜅 and 𝜒𝜒𝜅𝜅′, while, the standard deviations of their corresponding distributions are represented by 200 

𝜎𝜎𝜅𝜅 and 𝜎𝜎𝜅𝜅′. 201 

The probability of each accident i to yield in an injury-severity outcome j, (𝑦𝑦 = 𝑗𝑗) is expressed as: 202 

  𝑃𝑃𝑖𝑖(𝑦𝑦 = 𝑗𝑗) = Φ�𝜇𝜇𝑗𝑗 − 𝛃𝛃𝑖𝑖𝐗𝐗𝑖𝑖� − Φ(𝜇𝜇𝑗𝑗+1 − 𝛃𝛃𝑖𝑖𝑿𝑿𝑖𝑖)      (5) 203 

where Φ represents the cumulative function of the standard normal distribution, the other terms are as 204 

defined previously. 205 

To ascertain the exact effects of the explanatory variables on the probabilities of all injury-severity 206 

levels, and especially of the interior levels, marginal effects are also estimated. Marginal effects 207 

demonstrate the change in the outcome probabilities as a result of a unit change in the independent 208 

variables (Washington et al., 2020). In this study, the vectors of explanatory variables in the estimated 209 

models contain only binary variables. Hence, their marginal effects are determined by the change in 210 

their values from “0” to “1”, as shown is Equation 6: 211 
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       𝑃𝑃𝑖𝑖(𝑦𝑦=𝑗𝑗)
𝜕𝜕𝐗𝐗

= [𝜑𝜑�𝜇𝜇𝑗𝑗−1 − 𝛃𝛃𝐗𝐗� − 𝜑𝜑�𝜇𝜇𝑗𝑗 − 𝛃𝛃𝐗𝐗�]𝛃𝛃             (6) 212 

where 𝜑𝜑 is the density function of the normal distribution and all other terms are as defined previously.  213 

To evaluate the statistical fit of the estimated models, goodness-of-fit metrics were computed, 214 

namely the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC): 215 

 ΑIC = 2F − 2LL(β)          (7) 216 

 BIC = − 2LL(β) + Fln(N)        (8) 217 

F is a scalar denoting how many parameters were estimated by the model, N indicates the size of the 218 

accident dataset used for modelling purposes, and all other terms are as previously defined.  219 

4. EMPIRICAL SETTING 220 

Data from the STATS19 database is used for the empirical analysis of this study. STATS19 is an 221 

accident database with information drawn from the police reports and is available to the public 222 

(Department for Transport, 2019). The dataset contains various fields of accident information, as 223 

extracted from the STATS19 form, which is used by the UK police for accident reporting purposes. 224 

Overall, these fields include characteristics such as accident time, date, and location, number and type 225 

of casualties (driver, passenger, pedestrian, and so on), socio-demographic traits of casualties (age, sex, 226 

type of residential location), vehicle characteristics (type, engine capacity, and condition), road design 227 

and type (e.g., single carriageway, dual carriageway, and so on).  The dataset also includes information 228 

about prevailing weather and lighting conditions at the time of the accident. The reported injury 229 

outcomes are classified into three categories: slight, serious, and fatal injuries. The STATS19 dataset 230 

does not encompass accidents resulting in no injuries. 231 

For this study, we draw a dataset of pedestrian-motor vehicle accidents occurred at signalised and 232 

unsignalised junctions, and at physically controlled and human-controlled crossings in Scotland over 233 

nine years, spanning from 2010 to 2018. During this period, there were 1841 and 5100 accidents cases 234 

at signalised and unsignalised junctions, respectively, while 4656 and 500 accident cases were observed 235 

at physically-controlled and human-controlled crossings, respectively. Table 2 shows the descriptive 236 

statistics of the key variables, which were identified as statistically significant in the analysis. Further 237 

classification of accidents by crossing and human control type, along with corresponding accident 238 
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frequencies, is shown in Table 1. The latter also provides accident frequencies for signalised and 239 

unsignalised junctions.  240 

Table 1. Classification of crossings and junctions based on traffic control 241 
 242 

 243 
Table 2. Descriptive statistics of key variables of pedestrian accidents at signalised and 244 
unsignalised junctions and physically and human-controlled crossings 245 

Variable description Signalised junctions 
(N=1841) 

Unsignalised junctions  
(N=5100) 

 Frequency Percentage (%) Frequency Percentage 
(%) 

Time (1 if evening peak hours, 0 otherwise) 483 26.24 - - 
Day (1 if weekend, 0 otherwise) 462 25.10 - - 
Speed limit (1 if speed limit is 40 mph, 0 
otherwise) 

44 2.39 - - 

Urban area (1 if the accident occurred in an 
urban area, 0 otherwise) 

1745 94.79    4195 
 

82.25 
 

Weather conditions (1 if fine, 0 otherwise) 1358 73.76 3845 75.38 
Lighting conditions (1 if daylight, 0 
otherwise) 

1172 63.66        - - 

Road surface condition (1 if dry, 0 
otherwise) 

1112 60.40 - - 

Vehicle type (1 if passenger car, 0 
otherwise) 

- - - - 

Road surface condition (1 if wet, 0 
otherwise) 

- - 1779 34.88 

Speed limit (1 if speed limit is 30 mph, 0 
otherwise) 

- - 4571 89.63 

Time (1 if morning peak hours, 0 otherwise) - - 662 12.98 
Object in carriageway (1 if no object, 0 
otherwise) 

- - 4990 97.84 

Carriageway hazard (1 if no hazard, 0 
otherwise) 

- - 4967 97.39 

 
 

Physically-controlled 
Crossings (N=4656)  

Human-Controlled 
Crossings (N=500) 

Weather conditions (1 if fine, 0 otherwise) 3468 74.50 391 78.20 
Gender (1 if male driver, 0 otherwise) 3035 65.19 314 62.80 
Vehicle type (1 if passenger car, 0 
otherwise) 

3419 73.48 - - 

Lighting conditions (1 if daylight, 0 
otherwise) 

3094 66.45 - - 

Road surface condition (1 if wet, 0 
otherwise) 

1710 36.74 151 30.20 

Physically-
controlled crossings 

(No) % of 
Accidents 

Human-controlled 
crossings 

(No)% of 
Accidents 

Junction (No) % of 
Accidents 

Zebra crossing (418) 8.9% Control by school 
crossing patrol 

(183) 
36.6% 

Signalised (1841) 
26.5% 

Pelican, puffin, 
toucan or non-
junction pedestrian 
light crossing 

(2061) 
44.3% 

Control by other 
authorised person 

(317) 
63.4% 

Unsignalised 
 

(5100) 
73.5% 

Pedestrian phase at 
traffic signal 

(1792) 
38.5% 

    

Footbridge or subway (23)   0.5%     
Central refuge (362) 7.8%     
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Variable description Signalised junctions 
(N=1841) 

Unsignalised junctions  
(N=5100) 

Carriageway hazard (1 if no hazard, 0 
otherwise) 

4577 98.30 490 98.00 

Day (1 if weekend, 0 otherwise) - - - - 
Speed limit (1 if speed limit is 20 mph, 0 
otherwise) 

- - 45 9.00 

Time (1 if evening peak hours, 0 otherwise) - - 95 19.00 
 246 

5. RESULTS AND DISCUSSION 247 

5.1 Model estimation results 248 

The results (parameter estimates, correlation coefficients, Γ matrix elements, marginal effects) of 249 

the injury-severity models at signalised and unsignalised junctions, and at physically and human-250 

controlled crossings are presented in Tables 3 to 10. For each of the aforementioned accident groups, 251 

Correlated Random Parameters Ordered Probit models with Heterogeneity in the Means (CRPOPHM) 252 

were estimated.  Furthermore, a series of Likelihood Ratio Tests (LRT) were conducted to evaluate the 253 

statistical performance of the CRPOPHM models compared to lower order counterparts (i.e., fixed 254 

parameters and uncorrelated random parameters models).  The LRT results showed that the CRPOPHM 255 

models are statistically superior than their counterparts at a confidence level greater than 95%. Hence, 256 

only the CRPOPHM models are presented and discussed.  Positive parameter estimates indicate an 257 

increase in the likelihood of the most severe injury outcome (i.e., fatal injury), while negative 258 

parameters imply an increase in the likelihood of the slight injury outcome. For all models, the estimable 259 

parameters were found statistically significant considering a minimum 90% level of confidence, though, 260 

in most cases, the parameters were significant at a greater than 95% level of confidence.1  261 

The boxplots in Figures 1-4 illustrate the random parameters’ distributions. The lower and upper 262 

limits of the box reflect the interquartile range – 75th - 25th percentile, the thick line in the middle of the 263 

box represents the median, the red line indicates the zero value, and the whiskers are determined based 264 

on the minimum and maximum values of the distribution. 265 

 
1 The statistical analysis was conducted using the NLOGIT and SPSS software.  
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5.1.1 Pedestrian-motor vehicle accidents at signalised junctions 266 

Seven variables were identified as statistically significant determinants of injury severities at 267 

signalised junctions. As shown in Table 3, four variables generated random parameters, which include 268 

the urban area, fine weather, daylight, and dry road surface. The distributions of these random 269 

parameters are visualised in Figure 1. The urban area variable is observed to reduce the likelihood of 270 

severe injuries for about 56% of the accident observations, while, for nearly 44% of the remaining 271 

observations, the likelihood of severe injuries increases. This may highlight the mixed exposure patterns 272 

of pedestrians to accidents in urban areas, which may depend on the characteristics of the roadway 273 

network and the level of interactions between urban land uses and pedestrian traffic.  In a previous 274 

study, Ukkusuri et al. (2012) found a strong relationship between the built environment, transit, and 275 

road geometric design characteristics (distinguishing factors between urban and non-urban areas) and 276 

the total and fatal pedestrian-vehicle collisions.  Similarly, daylight and dry road surface at the time of 277 

the accident are linked with a reduced likelihood of severe injuries for 51.63% and 94.64%, respectively, 278 

of the accident cases. Only the fine weather, contrary to other variables, was found to increase the 279 

likelihood of slight injuries for nearly 70% of the pedestrian accidents at signalised junctions. This is 280 

not surprising, as Edwards (1998) found that accidents in fine weather conditions were consistently 281 

more severe than accidents under all other conditions except fog, using data for England and Wales 282 

from 1981-1991. More recently, Fountas et al. (2020) showed that pedestrian-related accidents that 283 

occurred in Scotland are more likely to result in severe injuries under daylight and fine weather. 284 

Favourable visibility prompted by fine weather may lead to aggressive driving patterns, which typically 285 

amplify the casualties of vulnerable road users. 286 

The variable indicating whether a passenger car was involved in the accident was found to influence 287 

the means of all random parameters (i.e., this variable was found to capture the heterogeneity in the 288 

means of random parameters in a statistically significant manner). For urban areas, fine weather, and 289 

dry road surface, the passenger car indicator induces an opposite effect from that implied by the sign of 290 

the mean of the random parameter distribution. To that end, car-pedestrian accidents that occurred at 291 

urban areas or on dry road surfaces are associated with a higher tendency for severe injuries compared 292 

to any other types of pedestrian accidents with similar area or road surface characteristics. This may be 293 
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a result of the intense traffic volumes and interactions in urban areas, for both pedestrians and car users. 294 

The passenger car variable has the opposite influence on the mixing distribution of the fine weather, 295 

leading to a decrease of accident observations associated with severe injuries. As expected, fine weather 296 

improves visibility conditions and overall driving comfort, especially for car users, who are more likely 297 

to get affected by adverse weather conditions (Peng et al., 2018).  298 

The model results also reveal that evening peak time, weekend, and 40 mph speed limit are 299 

statistically significant factors that exert a static impact across the accident observations, i.e., they result 300 

in fixed (non-random) parameters (see Table 3). More specifically, pedestrian accidents occurred at 301 

evening peak time and at roads with 40mph speed limit are more likely to yield serious or fatal injuries. 302 

Evening peak hours reflect traffic conditions with intense presence of vehicular and pedestrian 303 

movements, especially at signalised intersections. In Scotland, roads with 40 mph speed limits that 304 

include signalised intersections possibly indicate suburban or rural trunk roads crossing settlements 305 

where the presence of vulnerable road users is highly expected (Transport Scotland, 2012). Accidents 306 

involving pedestrians that occurred at weekends are less likely to generate severe injury outcomes. This 307 

finding is intuitive given the lower volumes of vehicles and pedestrians at signalised junctions on 308 

weekends, thus leading to the reduction of dangerous conflicts between pedestrians and motorised 309 

modes.  310 

Table 3.  Model estimation results for pedestrian accidents at junctions and crossings 311 

Variables Signalised Unsignalised Physically-
controlled 

Human-
controlled 

 Coeff.     t-stat Coeff.     t-stat Coeff.     t-stat Coeff.     t-stat 
Variables (Non-random 
parameters) 

     

Constant  -2.313 -6.42   -1.172 -6.18   -1.302 -6.54   -4.550 -3.24   
Time (1 if evening peak hours, 0 
otherwise) 

0.935 5.51 -       - - - - - 

Urban area (1 if the accident 
occurred in an urban area, 0 
otherwise) 

- - -0.099 -1.76   - - - - 

Day (1 if weekend, 0 otherwise) -0.284 -1.67 - - - - - - 
Speed limit (1 if speed limit is 40 
mph, 0 otherwise) 

2.384 5.41 - - - - - - 

Weather conditions (1 if fine, 0 
otherwise) 

- - 0.295 4.69   0.210 3.06   - - 

Carriage hazards (1 if No 
Hazard, 0 otherwise) 

- - 0.297 1.91   - - 2.753 2.02   
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Gender (1 if driver’s gender is 
male, 0 otherwise) 

- - - - 0.316 5.75   0.665 3.04   

Variables (Random parameters)      
Urban area (1 if the accident 
occurred in an urban area, 0 
otherwise) 

-0.765 -1.95 - - - - - - 

  SDPDF* 4.792 37.67 - - - - - - 
Weather conditions (1 if fine, 0 
otherwise) 

1.011 2.52 - - - -  -0.559 -1.82   

  SDPDF* 2.176 33.06 - - - - 2.048 16.56 
Lighting conditions (1 if 
daylight, 0 otherwise) 

-0.264 -0.76 - - -0.186 -2.71   - - 

  SDPDF* 6.475 34.53 - - 1.310 56.50 - - 
Road surface conditions (1 if 
dry, 0 otherwise) 

-3.026 -7.15 - - 0.370 4.69     0.528 1.75   

  SDPDF* 1.878 30.857 - - 1.641 76.17 2.469 25.19 
Speed limit (1 if speed limit is 30 
mph [Unsignalised]; 20mph 
[Human-controlled], 0 
otherwise) 

- - -0.137          -1.18   - - -2.594 -3.04   

SDPDF* - - 0.737  56.34 - - 1.874 10.50 
Time (1 if morning peak hours 
[Unsignalised], Evening peak 
hours [Human-controlled], 0 
otherwise) 

- - 0.011         0.11   - - -1.425 -3.15   

SDPDF* - - 0.776  79.67 - - 1.123 12.31 
Hit object in carriageway 
indicator (1 if No object, 0 
otherwise) 

- - -0.392 -2.15   - - - - 

SDPDF* - - 1.307 59.20 - - - - 
Road surface condition 
indicator (1 if wet, 0 otherwise) 

- -  0.475 5.48   - - - - 

SDPDF* - - 1.204 91.54 - - - - 
Vehicle type (1 if passenger car, 
0 otherwise) 

- - - - 0.171 2.29 - - 

  SDPDF* - - - - 1.268 83.11 - - 
Carriageway hazards (1 if no 
Hazard, 0 otherwise) 

    -0.307 -1.74   - - 

  SDPDF*     1.397 50.79 - - 
Heterogeneity in means: Vehicle type (1 if passenger car, 0 otherwise)   
Urban area 0.672 2.19  - - - - - - 
Weather conditions -2.229 -4.92 - - - -  -0.230          -0.66   
Lighting conditions  -1.298 -3.75 - - -0.081 -0.73   - - 
Road surface conditions (dry) 2.995 6.64 -0.219 -2.33   -0.263 -2.36   -0.147         -0.30   
Speed limit - - -0.087          -0.63 - - 2.917 2.32   
Time  - -  0.276 2.16   - - 2.724 3.65   
Hit object in carriageway  - - 0.353 2.60 - - - - 
Road surface condition (wet)  - - - -   - - - - 
Vehicle type - - - - 0.529 4.35   - - 
Carriageway hazards - - - - -0.292 -2.15   - - 
Threshold parameters for 
probabilities 

     

µ1 8.694 14.64 2.273 33.87   2.730 32.59   4.522 8.15   
N 1841 5100 4656 500 

-275.329 LL (0) -1159.950 -3330.693 -3103.374 
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*SDPDF: Standard deviation of parameter density function 312 

LL (β) -1135.892 -3282.667 -3054.017 -257.38 
Goodness-of-fit metrics      
AIC 2317.80 6611.30 6152.00 558.80 

651.48 BIC 2399.59 6710.46 6293.84 
Distributional characteristics of random parameters   
 Above 

zero 
Below 
zero 

Above 
zero 

Below 
zero 

Above 
zero 

Below 
zero 

Above 
zero 

Below 
zero 

Urban area  43.66 56.34 - - - - - - 
Weather conditions  67.89 32.11 - - - - 39.24 60.76 
Lighting conditions  48.37 51.63 - - 44.35 55.65 - - 
Road surface condition 5.36 94.64 65.34 34.66 58.92 41.08 58.47 41.53 
Speed limit  - - 42.63 57.37 - - 08.31 91.69 
Time  - - 50.57 49.43 - - 10.22 89.78 
Hit object in carriageway  - - 38.21 61.79 - - - - 
Vehicle type  - - - - 55.36 44.64 - - 
Carriageway hazard - - - - 41.30 58.70 - - 
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Table 4. Diagonal and off-diagonal matrix [t-stats], and correlation 313 
coefficients (in parenthesis) of random parameters at signalised junctions 314 

 315 
Table 5. Diagonal and off-diagonal matrix [t-stats], and correlation 316 
coefficients (in parenthesis) of random parameters for at unsignalised 317 
junctions 318 
Variables Speed 

Limit   
Time  Hit object 

in 
carriageway  

Road 
surface 

condition 
Speed Limit (1 if 
speed limit is 30 
mph, 0 otherwise) 

0.737 
[10.74] 

(1.0000) 

- - - 

Time (1 if Morning 
peak hours, 0 
otherwise) 

 0.008 
[0.12] 

(0.0098) 

0.776 
[11.84] 

(1.0000) 

- - 

Hit object in 
carriageway (1 if 
No object, 0 
otherwise) 

 -0.703 [-
10.33] 
(-0.5377) 

-0.716 [-
21.78] 

(-0.5536)  

0.837 
[25.35] 
(1.0000) 

- 

Road surface 
conditions (1 if wet, 
0 otherwise) 

-0.133 [-
2.95]             
(-0.1106) 

0.615 
[11.29] 

(0.5102) 

1.008[20.54] 
(0.3156) 

0.190[5.22] 
(1.0000) 

 319 
Figure 1 Boxplots illustrating the random parameters’ distributions in the model 320 
for signalised junctions 321 

 322 

 323 
Figure 2 Boxplots illustrating the random parameters’ distributions in the model 324 
for unsignalised junctions325 

Variables Urban area  Weather 
conditions 

Lighting 
conditions  

Road 
surface 

condition  
Urban area (1 if the 
accident occurred in 
an urban area, 0 
otherwise) 

4.792 [13.75] 
(1.0000) 

- - - 

Weather conditions 
(1 if fine, 0 
otherwise) 

 1.0766 [4.46] 
(0.4948) 

1.891 [8.56] 
(1.0000) 

- - 

Lighting conditions 
(1 if daylight, 0 
otherwise) 

3.0708[10.95] 
(0.4742) 

-3.9076[-
13.07]  
(-0.2898)  

4.151[13.6
0] (1.0000) 

- 

Road surface 
conditions (1 if dry, 
0 otherwise) 

-0.0562[-0.25] 
(-0.0299) 

1.8228[7.77] 
(0.8286) 

 -0.4093[-
2.80] 
(-0.7396) 

 0.185 
[1.90] 

(1.0000) 
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5.1.2 Pedestrian-motor vehicle accidents at unsignalised junctions 326 

Table 3 shows that the CRPOPHM model for pedestrian-motor vehicle accidents at unsignalised 327 

junctions contains four variables resulting to correlated random parameters: 30mph speed limit, 328 

morning peak hours, the no-object-in-carriageway indicator, and wet road surface. The distributions of 329 

the random parameters in this model are illustrated in Figure 2. The carriageways with a 30mph speed 330 

limit and those with no visible object at the time of the accident are linked with a higher likelihood of 331 

slight injuries for 57.37% and 61.79% of accident cases, respectively. Roads with 30mph speed limit 332 

either represent urban roads or rural roads within villages or any other types of small settlements 333 

(Transport Scotland, 2012). Given that urban roads are specifically captured through a different variable 334 

in the same model (see also Table 3), the effect of the 30mph speed limit possibly reflects the variation 335 

of driving patterns that are observed in uncontrolled or partially controlled junctions in rural areas (Hou 336 

et al, 2013), which have raised major safety concerns among the local communities of Scotland over 337 

the last few years (Cleland et al., 2020).  Comparing this finding with a relevant effect in the model for 338 

signalised junctions, it is interesting to note the prevalence of severe injuries at signalised junctions on 339 

roads with 40mph speed limit, where both pedestrians and vehicles drivers reap the benefits of traffic 340 

signals, and other warning/information systems. This appears to contrast with Downey et al.’s (2019) 341 

finding, which shows that the pedestrian casualty rate is higher for unsignalised/priority-controlled 342 

junctions compared to signalised junctions.  343 

Pedestrian-motor vehicle accidents that occurred at morning peak hours are associated with balanced 344 

effects on injury severities, as the likelihood of serious/fatal injuries increases for 50.57% of the 345 

observations. Wet road surfaces magnify the chances of pedestrian-motor vehicle accidents to be linked 346 

with severe injuries, as the specific variable increases the likelihood of serious and fatal injuries for 347 

65.34% of the observations. Baireddy et al. (2018) also reported a prevalence of severe pedestrian-348 

involved crashes on wet road surfaces under inclement weather. Focusing on variables with fixed 349 

parameters, fine weather and no hazard in carriageways are connected with more severe injuries, while 350 

the urban areas are linked to lower severity of injuries. In urban areas of Scotland, unsignalised junctions 351 

are primarily located in residential streets or non-built-up areas, where the interactions between 352 

motorized and pedestrian traffic may be less intense, whereas observed vehicular speeds are also lower. 353 
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Fine weather and the absence of apparent hazards on the carriageways may introduce risk-compensating 354 

impacts on drivers’ or pedestrians’ behaviours, as extensively discussed in Fountas et al.’s (2020) study.   355 

The driver’s gender further explains the heterogeneity in the means of the random parameters. The 356 

male driver indicator increases the mean of the random parameter for the no-object-in-carriageway 357 

indicator (which was originally negative), while it decreases the mean of the distribution for the wet 358 

road surface indicator (which was originally positive), as shown in Table 3. These findings imply that 359 

the involvement of a male driver increases the probability of severe injury in accidents where there was 360 

no visible object on the carriageway. On the contrary, male driver involvement decreases the proportion 361 

of accidents on wet road surface that yield injuries of lower severity. Likewise, the driver’s gender is 362 

found to influence the 30mph speed limit and morning peak time variables at the same direction with 363 

that suggested by the original means of their distributions. Specifically, the results demonstrate that the 364 

male driver involvement in accidents during morning peak hours increases the likelihood of severe 365 

injuries. Male drivers have been long established as more prone to risk-taking behaviour, especially 366 

when the prevailing traffic conditions (as those in unsignalised junction environments) allow so (Hamed 367 

et al., 1997; Fountas et al., 2019).  In contrast, male drivers on roads with a 30mph speed limit further 368 

increase the proportion of pedestrian-motor vehicle accidents resulting in slight injuries.  369 

 370 

5.1.3 Pedestrian-motor vehicle accidents at physically-controlled crossings 371 

Table 3 shows that six variables are identified as statistically significant factors of injury severities at 372 

physically-controlled crossings, out of which, four produced random parameters, including the 373 

passenger car indicator, daylight conditions, the wet road surface, and the absence of hazards on the 374 

carriageway. The mixed effects suggested by the random parameters are visualized through the boxplots 375 

of Figure 3, which provide the random parameters’ distributions. Daylight and no-hazard-in-376 

carriageway indicators are seen to reduce the likelihood of more severe injuries by about 56% and 59% 377 

of the accident observations, respectively, while the likelihood of severe injuries increases for the 378 

remaining accident observations. As in the model for signalised junctions, daylight may aid both 379 

pedestrians and drivers in properly comprehending and reacting to associated hazards via better 380 
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visibility at the time of the accident, thereby reducing the potential for severe injuries. The effect of the 381 

no-hazard variable suggests that in the absence of hazardous objects, pedestrians and drivers are at 382 

lower risk of severe injuries in most of the cases; generally, roadside hazards have been long connected 383 

with higher impact velocity changes (delta-v) that may result in more severe injuries (Shannon et al., 384 

2020).  385 

On the contrary, the presence of a passenger car and wet road surface at the time of accident are 386 

associated with an increased likelihood of more severe injuries for about 55% and 59%, respectively, 387 

of the accident observations. The mixed trends for severe outcomes in pedestrian-car accidents may be 388 

attributed to the impact of various human factors of car drivers, such as age and cognitive state at the 389 

time of the accident, which are not available in the dataset (Mannering et al., 2016). It is not surprising 390 

the wet road surface contributes to higher chances of more severe injuries, as the roads tend to become 391 

more slippery for both pedestrians and vehicle users, and the friction between the road surface and the 392 

vehicle tyres reduces substantially. Crashes on wet roads were previously found to increase the 393 

probability of severe injuries (Aziz et al., 2013).  394 

Pedestrian accidents occurred on weekends influence the means of all the random parameters. The 395 

weekend indicator imposes an opposite effect on the mean of the random parameter, only in the case of 396 

the wet road surface, where it reduces the originally positive mean, hence indicating an increased 397 

likelihood of slight injuries (see Table 3). Wet road surface may serve as an alert for driving caution, 398 

which may also extend to how the drivers interact with pedestrians in physically-controlled junctions, 399 

where there is anticipation for pedestrian movements.  The weekend indicator is found to have an 400 

observable influence on the mixing distribution of the variables indicating passenger cars, daylight 401 

conditions, and no-hazard in carriageways by enhancing the main effect captured by the original means 402 

of the random parameters (see Table 3). Specifically, pedestrian accidents involving passenger cars are 403 

more likely to result in severe injuries when occurred at weekends. In contrast, the weekend variable 404 

increases the proportion of accidents under daylight conditions and on carriageways without hazards 405 

that are likely to result in slight injuries.  406 

Focusing on variables with fixed parameters, fine weather at the time of the accident, and male 407 

drivers increase the likelihood of serious or fatal injuries, as shown in Table 3. As for unsignalised 408 
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junctions, favourable weather conditions may trigger risk-compensating effects, especially for 409 

physically-controlled junctions, where drivers and pedestrians may feel more safe or confident due to 410 

the provision of crossing or channelisation facilities.  411 
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Table 6. Diagonal and Off-diagonal Matrix [t-stats], and Correlation 412 
Coefficients (in parenthesis) of Random Parameters for at Physically-413 
Controlled Crossings 414 

Variables Vehicle type  Lighting 
conditions  

Road 
surface 
condition  

Carriageway 
hazard  

Vehicle type (1 if 
Car, 0 otherwise) 

1.268[18.97] 
(1.0000) 

- - - 

Lighting 
conditions (1 if 
daylight, 0 
otherwise) 

-1.133 [-
19.48] 

(-0.8650) 

0.657[11.56] 
(1.0000) 

- - 

Road surface 
conditions (1 if 
wet, 0 otherwise) 

 -0.657 [-
11.65] 

(-0.4003) 

-1.199[-
19.59] 

(-0.0209)  

0.905 
[15.90] 
(1.0000) 

- 

Carriageway 
hazard (1 if no 
Hazard, 0 
otherwise) 

-0.323 [-
4.77] 

(-0.2315) 

-0.350 [-6.61] 
(0.0747) 

 -1.229[-
28.38] 
(-0.2098) 

0.462 [17.27] 
(1.0000) 

 415 
Table 7. Diagonal and off-diagonal matrix [t-stats], and correlation 416 
coefficients (in parenthesis) of random parameters at human-controlled 417 
crossings 418 

 419 
Figure 3 Boxplots illustrating the random parameters’ distributions in the model 420 
for physically controlled crossings 421 

 422 
Figure 4 Boxplots illustrating the random parameters’ distributions in the model 423 
for human-controlled crossings 424 

Variables Speed 
Limit 

Time  Weather 
conditions  

Road 
surface 

condition 
Speed Limit (1 if 
speed limit is 20 
mph, 0 otherwise) 

  
1.874[2.87] 

(1.0000) 

- - - 

Time (1 if Evening 
peak hours, 0 
otherwise) 

-0.836 [-
2.80] 

(-0.7448) 

 0.749 [2.08] 
(1.0000) 

- - 

Weather conditions 
(1 if fine, 0 
otherwise) 

1.326 [7.75] 
(0.6474) 

1.47 [8.08] 
(-0.0039) 

0.531 
[4.15] 
(1.0000) 

- 

Road surface 
conditions (1 if wet, 
0 otherwise) 

-2.199 [-
7.87] 

(-0.8911) 

0.460 [2.31] 
(0.7879) 

0.644 
[3.38] 

(-0.3759) 

0.794[4.26] 
(1.0000) 



Olowosegun, Babajide, Akintola, Fountas and Fonzone 

22 
 

5.1.4 Pedestrian-motor vehicle accidents at human-controlled crossings 425 

Four factors, which include the 20mph speed limit, evening peak hours, fine weather, and wet road 426 

surface, result in correlated random parameters, as shown in Table 3. Out of these, only the wet road 427 

surface is mainly linked with a higher likelihood of more severe injuries, accounting for about 59% of 428 

the accident observations, as shown in the boxplot of Figure 4. This variable displays similar effects to 429 

its counterpart in the model for physically-controlled crossings. In contrast, carriageways with a 20mph 430 

speed limit, evening peak hours and fine weather are associated with a higher likelihood of slight 431 

injuries for vast majorities of accident observations, i.e., 91.69%, 89.78% and 60.76%, respectively (see 432 

Table 3).  The lower speed patterns observed in roads with 20mph speed limits in conjunction with the 433 

presence of authorized patrol officers lead to safer and considerate behaviour, especially from drivers’ 434 

side, which can justify the observed association with slight injuries.  435 

Fine weather is found to favour slight injuries, as opposed to physically-controlled crossings. This 436 

finding may confirm  the potential of human patrolling to encourage drivers and pedestrians complying 437 

with traffic rules and adopting safer traffic behaviour (Pantangi et al., 2020).  Focusing on variables 438 

yielding fixed parameters, male drivers and no roadway hazard increase the likelihood of severe 439 

injuries, as also observed in physically-controlled crossings and unsignalised junctions, respectively.  440 

The variable representing Monday, as the day-of-the-week when the accident occurred, explains the 441 

heterogeneity in the means of the random parameters. Specifically, the “Monday” variable changes the 442 

sign of the mean, from negative to positive, for the 20mph speed limit and evening peak hours, thus 443 

resulting to higher percentages of accidents with severe injuries. That is an interesting finding probably 444 

reflecting the more unsafe driving patterns typically observed in the first days of the week, as evidenced 445 

by the higher frequency of traffic violations relative to other days of the week (Zahid et al., 2020). It is 446 

also worth highlighting the magnitude of the Monday’s effect on the two random parameters, as this is 447 

the only case in this study where the impact of the heterogeneity-in-the-means variable is strong enough 448 

to change the sign of the original means of the random parameters.  449 
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Table 8. Marginal effects of the explanatory variables for the 450 
estimated ordered probit models at signalised and unsignalised 451 
junctions 452 

Variable description 
CRPOPHM 

Slight 
injury 

Serious 
injury 

Fatal 
injury 

Signalised Junction    
Variables (Non-random parameters)    
Time (1 if the accident occurred during 
evening peak hours, 0 otherwise) -0.0010 0.0008 0.00019 

Day (1 if the accident occurred in the weekend, 
0 otherwise) 0.00044 -0.00037 -0.000008 

Speed Limit (1 if speed limit is 40 mph, 0 
otherwise) 

-
0.00425 0.00378 0.000463 

Variables (Random parameters)    
Urban area (1 if it is urban, 0 otherwise) 0.0219 -0.0378 0.0159 
Light conditions (1 if daylight, 0 otherwise) 0.0382 -0.0293 -0.0089 
Road surface condition (1 if dry, 0 otherwise) 0.0213 0.00092 -0.0223 
Weather condition (1 if fine, 0 otherwise) 0.0034 -0.0086 0.0052 
Unsignalised Junctions    
Variables (Non-random parameters)    
Urban area (1 if the accident occurred in an 
urban area, 0 otherwise) 0.0230 -0.0228 -0.00016                 

Weather conditions (1 if fine, 0 otherwise) -0.0602 0.0598 0.00034 
Carriageway hazard (1 if No Hazard, 0 
otherwise) -0.0561 0.0559 0.00027 

Characteristics (Random parameters)    
Speed Limit (1 if speed limit is 30 mph, 0 
otherwise) 0.0323         -0.0321        -0.00024         

Time (1 if Morning peak hours, 0 otherwise) -0.0025        0.0025        0.00002 
Hit object in carriageway (1 if No object, 0 
otherwise) 0.1047 -0.1036 -0.00110        

Road surface condition (1 if wet, 0 otherwise) 
-0.1137 0.1127 0.00094 

 453 
 454 

Table 9. Marginal effects of the explanatory variables for the 455 
estimated ordered probit models for pedestrian accidents at physically 456 
and human-controlled crossings 457 

Variable description 
CRPOPHM 

Slight 
injury 

Serious 
injury 

Fatal 
injury 

Physically-controlled crossings    
Variables (Non-random parameters)    
Weather conditions (1 if fine, 0 otherwise) -0.0430 0.0430 0.00005 
Gender (1 if driver’s gender is male, 0 otherwise) -0.0652 0.0652 0.00007 
Variables (Random parameters)    
Vehicle type (1 if passenger car, 0 otherwise) -0.0356 0.0356 0.00004 
Lighting conditions (1 if daylight, 0 otherwise) 0.0418 -0.0418 -0.00006 
Road surface condition (1 if wet, 0 otherwise) -0.0850 0.0848 0.00012 
Carriageway hazard (1 if No Hazard, 0 otherwise) 0.0776         -0.0775         -0.00015        
Human-controlled crossings    
Variables (Non-random parameters)    
Gender (1 if driver’s gender is male, 0 otherwise) -0.0584 0.0517 0.0068 
Carriageway hazard (1 if no hazard, 0 otherwise) -0.0804 0.0722 0.0082 
Characteristics (Random parameters)    
Speed Limit (1 if speed limit is 20 mph, 0 
otherwise) 0.2495 -0.2419 -0.0077 

Time (1 if Evening peak hours, 0 otherwise) 0.1423 -0.1471 0.0048 
Weather conditions (1 if fine, 0 otherwise) 0.1786 -0.1792        0.00063 
Road surface condition (1 if wet, 0 otherwise) -0.1011 0.0896 0.01154 

458 
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5.2 Interpretation of the correlated random parameters 459 

The correlation coefficients among the random parameters at signalised and unsignalised junctions, 460 

physically-controlled crossings and human-controlled crossings are presented in Tables 4 to 7, 461 

respectively. The correlation coefficients reflect the interactions among the unobserved effects captured 462 

by the random parameters.  463 

Several negative correlations exist between pairs of random parameters related to accidents at 464 

signalised junctions. These are observed in the pairs formed by the urban area and dry surface, daylight 465 

and fine weather, and dry surface and daylight, with the correlation coefficients being -0.0299, -0.2898 466 

and -0.7396, respectively. Negative correlations of the random parameters imply that the unobserved 467 

characteristics captured by the specific variables pose opposite influences on the injury outcomes. That 468 

means the injury severities feature contradictory effects, as the unobserved characteristics linked to one 469 

variable may favour slight injuries, while the unobserved characteristics linked to the other variable 470 

may favour severe injuries. The range of the unobserved characteristics that are captured by land use 471 

characteristics (i.e., urban area) and environmental conditions (lighting, weather, surface conditions) 472 

may be quite broad, but mainly relating to the behavioural responses of drivers and pedestrians to these 473 

factors, under the traffic context of signalised junctions.  474 

Positive correlations are identified between the unobserved characteristics for the pairs fine weather 475 

and urban area, daylight and urban area, dry surface and fine weather - the correlation coefficients are 476 

0.4948, 0.4742, and 0.8286, respectively. The positive coefficients imply unidirectional interactive 477 

influences (positive or negative) of the unobserved characteristics captured by these random parameters. 478 

For example, urban area and daylight are characteristics that generally favour slight injuries, as shown 479 

by the means of the corresponding random parameters.  480 

Similarly, for the accidents at unsignalised junctions, Table 5 shows that there are negative 481 

coefficients of correlation for the following pairs of random parameters: no-object in carriageway and 482 

30mph speed limit, wet road surface and 30mph speed limit, no-object in carriageway and morning 483 

peak time. Speed limits may serve as a significant source of unobserved heterogeneity, as the 484 

behavioural response to them may vary from driver to driver (Anastasopoulos & Mannering, 2016). 485 
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Such behavioural responses exhibit even greater variations when coupled with road conditions with 486 

quite heterogeneous implications on safety, such as the road surface.   487 

For physically-controlled crossings, all the pairs of random parameters (except the no-hazard on the 488 

carriageway and daylight conditions) exhibit negative correlations. These are: daylight condition and 489 

passenger car (-0.8650), wet road surface and passenger car (-0.4003), no-hazard on the carriageway 490 

and passenger car (-0.2315), wet road surface and daylight condition (-0.0209), and no-hazard on the 491 

carriageway and wet road surface (-0.2098). Another interesting finding is that the passenger car, which 492 

has been long established as a major source of unobserved heterogeneity (Mannering et al., 2016), 493 

contributes to mixed effects in whichever pair of random parameters, as implied by the negative 494 

correlations. 495 

Finally, for human-controlled crossings, there are negative correlations between the random 496 

parameter pairs of the evening peak time and 20mph speed limit, wet surface and 20mph limit, fine 497 

weather and evening peak time, and wet surface and fine weather, with the correlation coefficients 498 

being: 0.7448, -0.8911, -0.0039 and -0.3759, respectively.  Positive correlations between the random 499 

parameters are observed for the pairs: fine weather and 20mph limit, wet road surface and evening peak 500 

time. As with unsignalised junction, the interactions between speed limit and road surface conditions 501 

unveil mixed effects. However, when 20mph speed limits are coupled with favourable weather, we 502 

observe evidence of homogeneity in the impact of unobserved characteristics, which may imply the 503 

limited range of users’ behavioural responses to these factors in crossings with human patrolling 504 

presence. 505 

 506 

5.3 Comparison of findings across the models 507 

Table 10 summarises the observed impacts on the likelihoods of injury-severity outcomes of the 508 

variables that turned out statistically significant in all models. The relative magnitudes of the variable 509 

effects across models are also presented, as derived from the marginal effects in Tables 8 & 9. Fine 510 

weather was found to affect injury severities in all estimated models, either as random or fixed 511 

parameter. However, its effect is not consistent across all cases, as it increases the likelihood of severe 512 
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injuries in unsignalised junctions and physically-controlled crossings, as opposed to the signalised 513 

junctions and human-controlled crossings where fine weather predominantly favours slight injuries, 514 

with the strongest effect being identified in the human-controlled crossings; the marginal effect for 515 

slight injuries is 0.179 (see Table 9). Road surface conditions are also observed to strongly affect injury 516 

outcomes across all models demonstrating mixed effects, with wet surfaces being mainly associated 517 

with more severe injuries. Notably, in the model for unsignalised junctions, we observe the most 518 

pronounced impact of this variable (the marginal effect for serious injury is 0.1127). As previously 519 

discussed, the driving conditions typically triggered by wet surfaces in combination with the level of 520 

traffic control in unsignalised junctions –  that is appealing to risk-takers – may result in hazardous 521 

interactions between drivers and pedestrians. Another interesting finding arises from the no-hazard 522 

variable, which is linked with severe injuries in unsignalised and human-controlled junctions, but in 523 

physically-controlled junctions, the same factor exhibits a propensity towards slight injuries. It is worth 524 

mentioning that the absence of any apparent hazard on the carriageway demonstrates relatively strong 525 

effects across all models, as shown by the qualitative assessment of effects provided in Table 10.  526 

Table 10. Comparative overview of the variables’ effects across different models 527 

Variable description 
Signalised 
junctions 

Unsignalised 
junctions 

Physically 
controlled 
crossings 

Human-
controlled 
crossings 

Carriageway hazard (1 if no hazard, 0 otherwise) – ↑↑↑ [↓↓↓] ↑↑↑ 
Day (1 if weekend, 0 otherwise) ↓ – – – 
Gender (1 if male driver, 0 otherwise) – – ↑↑↑ ↑↑↑ 
Lighting conditions (1 if daylight, 0 otherwise) [↓↓] – [↓↓] – 
Object in carriageway (1 if no object, 0 otherwise) – [↓↓↓↓] – – 
Road surface condition (1 if dry, 0 otherwise) [↓↓] – – – 
Road surface condition (1 if wet, 0 otherwise) – [↑↑↑↑] [↑↑↑] [↑↑↑↑] 
Speed limit (1 if speed limit is 20 mph, 0 
otherwise) – – – [↓↓↓↓] 
Speed limit (1 if speed limit is 30 mph, 0 
otherwise) – [↓↓] – – 

Speed limit (1 if speed limit is 40 mph, 0 
otherwise) ↑ – – – 

Time (1 if evening peak hours, 0 otherwise) ↑ – – [↓↓↓↓] 
Time (1 if morning peak hours, 0 otherwise) – [↑] – – 
Urban area (1 if the accident occurred in an urban 
area, 0 otherwise) [↓↓] ↓↓ – – 

Vehicle type (1 if passenger car, 0 otherwise)  –  – [↑↑] – 
Weather conditions (1 if fine, 0 otherwise) [↓] ↑↑ ↑↑ [↓↓↓↓] 

Table Key: “-” denotes a positive coefficient indicating higher likelihood of severe injuries; “-”denotes a  negative coefficient 528 
indicating lower likelihood of severe injuries;  “[…]” denotes a random parameter; “–” indicates that the variable is not 529 
statistically significant. The number of arrows, regardless of direction, provides a qualitative assessment of the relative 530 
magnitude of marginal effects, where: - = 0.000-0.009; -- = 0.010-0.049; ---= 0.050 – 0.099; ----≥0.100 531 



   
 

27 
 

6. SUMMARY OF FINDINGS AND CONCLUSIONS 532 

This study provides a comprehensive investigation of the factors affecting injury severities in 533 

pedestrian-involved motor vehicle accidents considering different types of traffic control at junctions 534 

and pedestrian crossings. Thus, distinct injury-severity models are estimated for signalised and 535 

unsignalised junctions as well as physically-controlled and human-controlled pedestrian crossings.  For 536 

the statistical analysis, we leveraged a correlated random parameter ordered probit approach, enriched 537 

with allowances for heterogeneity in the means of the random parameters. Due to its versatile 538 

capabilities, the employed modelling framework was proven capable of disentangling various angles of 539 

unobserved heterogeneity, demonstrating that the sources of unobserved effects on injury severities are 540 

dependent among them. The interactive effects of unobserved factors were captured by the correlation 541 

structure for random parameters, while the heterogeneity-in-the-means function unveiled another layer 542 

of unobserved impacts on injury severities, which directly influences the distributional characteristics 543 

of the random parameters. 544 

The road surface conditions, posted speed limit and time-of-the-day were found to have 545 

heterogeneous impacts on injury severities, particularly at unsignalised junctions and at human-546 

controlled crossings. In physically-controlled crossings, daylight and the absence of carriageway hazard 547 

introduced varying effects, but with higher propensity towards slight injuries, as opposed to passenger 548 

cars that also induced mixed patterns but with greater tendency towards severe injuries. In addition, the 549 

absence of an identifiable object on the road was found to induce varying effects across the accidents 550 

at unsignalised junctions featuring an overall strong trend towards slight injuries. Passenger cars and 551 

male drivers were found to affect the means of the random parameters at signalised and unsignalised 552 

junctions, respectively. Likewise, factors related to the day-of-the-week (weekend and Monday) were 553 

found to influence the mean of the random parameters for physically-controlled and human-controlled 554 

crossings.  555 

Notable findings were drawn from the comparison of factors that were commonly identified as 556 

statistically significant in multiple models. The absence of any apparent hazard on the carriageway 557 

increased the likelihood of severe injuries at unsignalized junctions and at human-controlled crossings, 558 

whereas, at physically-controlled junctions, the same factor had opposite effect. Similar inconsistent 559 
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effects were also observed for fine weather at the time of the accident. The results also disclosed effect 560 

disparities in accidents occurred at evening peak hours, which were strongly linked with slight injuries 561 

at human-controlled crossings, whereas at signalised junctions, evening peak hours favoured more 562 

severe injuries. Such findings are of key importance, especially for public authorities and policy makers, 563 

especially when designing safety countermeasures, as the sources of serious injury risk do evidently 564 

vary across different roadway facilities.  565 

The outputs of this study can pave the way for policy implications. The consistently strong 566 

relationship of wet road surfaces with severe injuries across all cases highlights the urgency for better 567 

awareness of drivers and pedestrians about the significant injury risk posed by such surface conditions. 568 

This can be achieved either through traditional roadside signage or through vehicle-to-environment 569 

communication in vehicles featuring a higher level of automation. Injury risks arising from wet surfaces 570 

are paramount for Scotland, where climate conditions favour their frequent presence all year long 571 

(Fountas et al., 2020). In addition, the propensity of signalised junctions with 40mph speed limits to 572 

severe accidents may raise questions about the suitability of the specific speed limit and its capacity to 573 

curb speeding behaviours, especially in urban contexts. This finding could serve as supporting evidence 574 

for the further expansion of 20mph speed limits, primarily for built-up areas exhibiting significant 575 

pedestrian movements, as the specific intervention has proven efficient in bearing safety and public 576 

health benefits in Scotland (Nightingale et al., 2020).  577 

Despite the insights gained by the statistical models, the data used for the analysis pose some 578 

limitations, mainly from an empirical perspective. For example, the lack of information about traffic 579 

signal settings (e.g., cycles, stages, or phases) did not allow the identification of the potential impact of 580 

cycle times or pedestrian phases on injury severities. Future research efforts can leverage richer datasets 581 

with more information about the traffic signal timings as well as more disaggregate information about 582 

the geometric design elements of intersections (e.g., angle, sight distance, horizontal and vertical 583 

clearance) and pedestrian facilities (e.g., refuges, curb types, and so on). 584 

 585 

 586 
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