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a b s t r a c t 

Continuous discrepancies in building performance predictions creates an ongoing inclination to link contextu- 

alized, real-time inputs and users’ feedback for not only building control systems but also for simulation tools. 

It is now seeming necessary to develop a model that can record, find meaningful relationship and predict more 

holistic human interactions in buildings. Such model could create capacity for feedback and control with a level 

of intelligence. Fuzzy Logic Systems (FLSs) are known as robust tools in decision making and developing models 

in an efficient manner. Considering this capability, in this paper, FLSs is implemented to make a thermal comfort 

model in an educational building in the UK. Such implementation has an ability to respond to some identified 

desires of developers and performance assessors in addressing uncertainty in thermal comfort models. The results 

demonstrate the proposed method is practical to simulate the value of comfort level based on the input data. 

1

 

1  

t  

b  

N  

d  

c  

s  

b  

H  

b

 

H  

l  

b  

p  

a  

a  

T  

t  

p  

i  

a

 

t  

c  

b  

T  

m  

b  

c  

o  

b

 

d  

c  

b  

s  

i  

m  

b

 

t  

d  

m  

d  

t  

w  

h

R

A

2

(

. Introduction 

In the UK, non-domestic buildings are accountable for approximately

2% of carbon emissions and 17% of overall energy consumption. Even

hough considerable effort has been made on new low energy buildings,

ut the existing building stock dominant energy use in the country [1] .

umerous building regulations are introduced to facilitate low carbon

esign but they only focused on regulated energy loads, which created a

hallenge of building performance gap. As a result, researchers are now

witching their attention to occupant behaviour and many efforts have

een made in studying responsible energy usage in office buildings.

owever, there is still limited understanding of energy use during

uilding operation. 

Widely used simulation programs generally evaluate the heat flux,

VAC system loads and demands and lighting, on the basis of standards

ike ASHRAE55 for thermal comfort. Weather data, the geometry of

uildings and materials as well as setpoints for temperatures are the in-

uts of such programs. Heating or cooling setpoints data are not always

vailable, requiring researchers to use an estimate, which may not be

lways accurate and a true reflection of the occupants’ comfort level.

herefore, there is a growing concern about a discrepancy between

he predicted energy performance of buildings and actual measured

erformance, widely known as building performance gap (BPG). BPG

s not only limited to energy efficiency but also likely to be on indoor

ir quality, acoustic performance and daylighting levels. 
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The importance of addressing the BPG issue lies on the fact that

here is an increased pressure on the construction industry to reduce

arbon emissions from heating and hot water substantially above 20%

y 2030, with a further reduction to complete decarbonisation by 2050.

his is due to legally-binding targets set by UK Parliament in the Cli-

ate Change Act [2] . Furthermore, under a system of the Fifth carbon

udgets which run until 2032, if construction industry fails to achieve

arbon reduction target then the UK will have to increase pressure on

ther sectors to achieve corresponding falls [3] . Therefore, a mismatch

etween designing and delivering could affect other sectors. 

Bridging the performance gap can be achieve by designing a

ecision-making stage to deliver (i) higher quality homes with lower

osts to meet the quantified targets, such as zero carbon Buildings, (ii)

uildings that are robust towards arguably warmer conditions with con-

idering growing concern of changing climate and health risk [4 , 5] . It

s also a key requirement for building delivery and facility manage-

ent, enabling the feasibility of concepts such as performance-driven

uildings. 

BPG can be controlled by an organised, multidisciplinary approach

hat incorporates improvement in data collection for simulations [6 , 7] ,

ata validation [8] and change of industry practice to minimise work-

anship errors [9] . Therefore, the objective of this research is to ad-

ress BPG challenge by make a contextualised thermal comfort model

o address uncertainty in building energy management tools. Neural net-

orks, clustering methods, data mining techniques, fuzzy logic systems
il 2020 
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tc. are some of the engineering techniques that have been used for

uilding performance prediction [10–13] . Each technique comes with

ifferent capabilities and shortcomings. 

Generally, one of the most necessary and crucial activities in the real

orld is decision-making. Decision making is used to find an optimal or

 nearly optimal solution based on input information. There are three

odels that are used for decision-making task; mathematical model, hu-

an experts’ advice and an expert system. Each of these models has its

wn advantages and disadvantages. Inferring an accurate mathematical

odel to present the complex environment is a difficult and challenging

ask and even impossible in some cases; besides, the models cannot be

pplied to all environments. On the other side, querying an expert is

sually a time consuming and expensive task. Recently, expert systems

ave drawn researchers’ attention and are widely used in various do-

ains. The key point about expert systems is that the knowledge base

an grow and can be updated dynamically [14 , 15] . 

Fuzzy Logic Systems (FLSs), provides a robust, artificially intelligent

olution that model human linguistics. FLSs attempt to represent knowl-

dge in Fuzzy Sets by using sets of distributed membership functions and

evelop logic by generating rules. Also, the intermediate possibilities

etween the subject responses can be modelled in a manageable man-

er through the model rules. So far, many fields such as manufacturing,

ngineering, diagnosis, economics, and others have been benefited from

LSs as a control-engineering and decision-making system [16 , 17] . Also,

ome recent developments in BPG have been carried out. In [18] statisti-

al analysis has been implemented on 30 subject responses and in [16] ,

n interface is utilised to receive responses from subjects and again sta-

istical tests are applied on the gathered survey responses. Although this

pproach is interesting, it fails to provide a comprehensive model which

s able to capture all intermediate possible situations. 

Numerous models demonstrate their potential to predict building

sers’ thermal comfort, even though with a degree of inaccuracy. Ad-

ances in artificial intelligence methods and their rapid development

cross other disciplines can uncover the unknown relationship in a large

mount of data, presenting a new opportunity to better understand di-

erse characteristics of thermal comfort in buildings. This study applied

he FLS algorithm to a thermal comfort database in the UK context and

eveloped a new and expandable model in thermal comfort. With vari-

bles of indoor air temperature, age, clothing insulation and working

ours, the model can reduce the previous models’ inaccuracy. Compared

o the ASHRAE model, it can quantify the effects of each input variable

n building users’ thermal comfort. Furthermore, an open-access plat-

orm is developed to support machine learning algorithms applications

n the interpretation of data associate with users’ thermal comfort in

uildings. This study can be an indication for further thermal comfort

odel development. 

. Fuzzy Sets 

The Fuzzy set theory was firstly introduced by Lotfi Zadeh in 1960s

17] and it is designed to resemble the process of human decision mak-

ng. Unlike classical computer-based Boolean logic (Crisp set) “True ( 1 )

r False (0) ”, fuzzy sets have no sharp boundaries and it involves in-

ermediate possibilities between True or False in decision making [19] .

athematically, crisp set A of universe X is defined by function μA (x)

alled the membership function (MF) and is described as follows: 

𝐴 ( 𝑥 ) = 

{ 

1 𝑖𝑓 𝑥 ∈ 𝐴 

0 𝑖𝑓 𝑥 ∉ 𝐴 

(1)

While, in the fuzzy theory, the MF is calculated as follows: 

𝐴 ( 𝑥 ) ∶ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜇𝐴 ( 𝑥 ) = 1 𝑖𝑓 𝑥 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 𝑙 𝑦 ∈ 𝐴 ; 

𝜇𝐴 ( 𝑥 ) = 0 𝑖𝑓 𝑥 ∉ 𝐴 ; 

0 < 𝜇𝐴 ( 𝑥 ) < 1 𝑖𝑓 𝑥 𝑖𝑠 𝑝𝑎𝑟𝑡𝑙𝑦 ∈ 𝐴. 

(2)

Based on the above description, we can have a continuum of possible

hoices. For any element x of universe X, μ (x) equals the degree to
A 

386 
hich x is an element of set A . This degree, a value between 0 and 1,

epresents the degree of membership, also called membership value of

lement x in set A . Fig. 1 (a) and (b) show the difference between crisp

nd fuzzy set theory. While the MF in Fig. 1 (a) has sharp edges, the

F in Fig. 1 (b) is formed in a continuous manner, which provides the

ntermediate possibilities. As it is shown in Fig. 1 (a), someone at the

ge of 21 is considered as old. Because the value x = 21 is crossed the

dge “20 ”. However, the way of human thinking is completely different

s the MF shows in Fig. 1 (b), the concept of being young gradually

hanges which include intermediate possibilities in the MF. Therefore,

s it is circled in Fig. 1 (b), someone at the age of 21 has a membership

egree around 0.3 of being old. It can be interpreted as this person can

e considered old with degree of 0.3. Thus, the Fuzzy set theory can

rovide some degree of truth which is similar to human thinking. 

.1. Fuzzy Logic Systems 

A fuzzy logic system generally consists of four stages [See Fig. 2 for

he overall scheme of fuzzy logic system]: 

• Fuzzification: it is the process of converting a crisp value into a

fuzzy MFs and the most commonly used MFs can be seen in the lit-

erature as Gaussian, triangular and trapezoidal. 
• Rule base: it contains fuzzy rules which are formulated by using

Apriori algorithm. A rule consists of two main parts as Antecedent

MFs and Consequent MFs. While the IF part combines antecedents,

THEN part combines consequents or parameters which can be for-

mulated as follows: 

IF (a set of conditions are satisfied) THEN (a set of consequences can

e inferred). 

As a clear example: 

IF (Food Service is good ) THEN (the waiter tip is high ) 

• Fuzzy inference: In this step, each rule is evaluated throughout

some fuzzy operators and a decision is made as a result. Generally,

this part is capable to simulate human decisions by performing ap-

proximate reasoning. 
• Defuzzification: The gathered output set, from the Inference step,

is converted to a crisp value by utilising defuzzification process. The

most commonly used process can be listed as a centre of gravity

(COG), a centre of area (CEA) or first of maximum (FOM) [20] . 

As one of the most commonly used models, in the presented work,

amdani [21] model is utilised to construct the Fuzzy Logic System. 

. An overview on Thermal Comfort 

Thermal comfort is a complex subject and is dependent on the way

umans perceive their environment and how they control their condi-

ions. Therefore, general quantification is a challenge for designers in

rder to create a built environment that is sustainable in terms of min-

mizing energy consumption. The clarification of user’s comfort level is

rucial to the success of a building, not only because of the air quality

ut also because it will decide the overall energy consumption. There are

wo well-known approaches for thermal comfort definition, the rational

r heat-balance approach and the adaptive approach. The most well-

nown method, in the heat balance approach is “Predicted Mean Vote ”

PMV) and “Predicted Percentage of Dissatisfied ” (PPD) model proposed

y Fanger that has been accepted widely among scholars. However,

anger’s model has failed in the results for naturally ventilated build-

ngs and cumulative dissatisfaction with this approach shifted focus in

ariable indoor temperature standards [22] . Besides, ASHRAE 55 de-

eloped a standard in 2010, which also included metabolic rate into the

onsideration [See Fig. 3 ]. 

However, several studies have questioned the thoroughness of the

tandard for simulation programs and highlighted discrepancies be-

ween users’ actual thermal comfort and ASHRAE’s prediction model
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Fig. 1. ( a ) Crisp set, ( b ) Fuzzy set. 

Fig. 2. the overall scheme of the fuzzy logic 

system. 
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24–26] . The organization updated the standard in 2017 and suggested

hree comfort level calculation approaches for simple situations, more

eneral cases and a method that uses elevated air speed for comfort

27] . The ASHRAE recent updates highlight the complexity and contex-

ual dependency of thermal comfort. 

Furthermore, CIBSE [28] recommended comfort temperature based

n common environmental and physiological factors for non-domestic

uildings implying that a minimum temperature range of 18°C (in most

on-domestic building types) and maximum of 25°C for offices (indoor

omfort temperature for non-air conditioned buildings) will satisfy most

sers. 

Even though aforementioned standards have been developed regu-

arly and their recent updates improved their potential, the difference
387 
etween actual users’ comfort level and their prediction models still

xist. This has shifted researchers focus toward more local assessment

f thermal comfort in which users communicate their comfort level

hrough interviews and data gathering devices [24 , 29–34] , all proved

ignificant advantages of such approach and demonstrate the capacity

f their models for further use in a similar context and users’ size. 

Murakam et al. [35] used an interactive control systems in an of-

ce space to use users’ requests in controlling air conditioning systems

nd showed a reduction in energy consumption without compromising

sers’ satisfaction. Lee et al. [36] developed a methodology to infer oc-

upants comfort level by using a Bayesian approach and a subset of the

SHRAE RP-884 and showed better prediction performances compared

o methods using constant values for un-observed variables. Kim et al.
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Fig. 3. ASHRAE 55 Standard, source: [23] . 

Fig. 4. Proposed method. 
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37] used machine learning process to improve consistent data collec-

ion from occupants and proved in a study with 64 survey inputs that

omfort models based on Personal Comfort System (PCS) produce the

est prediction accuracy. Dai et al. [38] have also used machine learning

o predict thermal demands. Daum et al. [39] also conducted a study to

easure thermal comfort by using data from a field study and showed

n advantage of personalized measures in comparison with standard

on-adaptive methods. 

On another note and in relation to uncertainties associated with ther-

al comfort studies, a study by Wang et al. [40] claims higher uncer-

ainty of subjective measurements if the environment of the comfort

tudy is significantly different from the outdoor ambient temperature

nd that more samples are required if the warm indoor environment

s surveyed during winter period and if the cool indoor environment is

urveyed during the summer period. Further investigation has also been

arried out by Hopf and Hense [41] in relation to uncertainty analysis

nd in particular for building performance simulations and their study

ighlighted the influence of what-if-analysis in decision making support

ystems. This study acknowledges the superiority of using contextual

nd personalized comfort measures in comparison with standard mod-

ls and integrate a robust and artificially intelligent method to gather

nd process data from occupants. 

. Methods 

In this paper, we aim to use an AI approach, the fuzzy logic systems

o make a predictive model in thermal comfort. Fig. 4 shows the

bjectives in each step to achieve the study’s aim. Thermal comfort is

 decisive factor in HVAC systems’ operational settings and also how

imulation tools quantify heating and cooling loads required to keep

he operative temperature within the comfort zone. This investigation

s built on a vision that some user-specific factors vitally affect the

omfort level. Initially a field experiment was conducted to observe

ccupants feeling about certain temperature by noting their gender,
388 
ge, clothing level and the time they spend in the office spaces in an

ducational building. These are considered as driving factors in their

omfort level very similar to the ASHRAE model. We then try to find

ome relationships between these factors by implementing conditional

tatements using Apriori Algorithm. These conditional statements, in

his case, if-then rules are features of a computer language in which

uzzy logic system is a widely-accepted method for that [42 , 43] . 

.1. Data set 

The research collected a dataset from 100 occupants with no pre-set

riteria for selection, the occupants of an educational building in the

K were chosen to collect the data with a very simple questionnaire

whether they feel comfortable or need warmer or cooler environment)

nd observation of their working area, clothing level and recorded tem-

eratures. Fig. 5 shows the layout where occupants were surveyed over

 period and location of the recordings until we reached 100 figure. A

hermo-hygrometer as shown in Fig. 6 is used to measure indoor air

emperature in their working environment. 

The considered dataset has 100 samples and four features as below:

Age: The survey respondent’s age in years. The values of this feature

ary between 18 and 65. 

The Activity Time (AT): This feature indicates that the survey re-

pondent’s working hours on average in a day. This feature is between

 to 8 hours. 

The Clothing Level (I cl ): A column with a value in the range of

0.25 to 1] that indicates the level of clothing in a day, with 0.25 being a

ypical summer clothing, 0.5 being clothing for mild temperature, whole

ody covering (long sleeves), 0.75 being a typical winter clothing with

oat/jacket and 1 being very cold winter clothing (jumpers or similar

lothing + coats and jackets). 

The Comfort Zone (CZ): This feature is only presented in the train-

ng data. This feature can take a lower bound and an upper bound value

anged [18-25°C operative temperature]. The lower bound values are
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Fig. 5. Case study layout with location of users 

Fig. 6. Thermo-hygrometer for indoor air temperature recordings 

Fig. 7. the MFs for Age. 
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Fig. 9. the MFs for comfort zone lower. 
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hosen from 18 to 22 and the upper bound values are selected from 23

o 25. 

In the experiments, three inputs and two outputs are defined to con-

truct FLSs rules. As the system inputs, Age is defined in two MFs ( Young

nd Old), both ATs and CLs are defined as Low and High MFs. Two out-

uts are determined, lower and upper bound of CZ, LB and UB respec-

ively. Two MFs are also assigned to LB and UB. After constructing sys-

em inputs and outputs as Fuzzy MFs, the fuzzy rules are defined by

he Apriori Algorithm and Mamdani Fuzzy model [21] is implemented
389 
ith the min-max operator. At the defuzzification step of FLS, the cen-

roid method is utilised and the crisp output of the FLSs is gathered.

fter constructing the Fuzzy model, in order to evaluate our approach,

oot Mean Square Error (RMSE) measure is used between the predicted

utputs of the FLSs and actual output. 

. Results and Discussion 

FLS has more prominence due to its imitation ability of humans’ deci-

ion making. Such decision making allows for intermediate possibilities

y giving a degree of membership to a set [44] . This level of possibil-

ties would create a more realistic and functional platform for comfort

elated studies which are mostly fraught with uncertainty. The FLS can

e implemented in the systems with various sizes and help to deal with

ncertainty. 

With the help of membership function and If-Then rules, the method

an handle continuous states. It is also a flexible system and allows mod-

fications in the rules. As described before the FLS has four parts, fuzzi-
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Fig. 10. Antecedents and consequences of the rules 
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er, rules, inference and defuzzfier [45] . A crisp set of data, in this case,

nfluential factors on building users comfort level is collected and con-

erted to a fuzzy set using fuzzy membership functions (fuzzifications)

nd then an inference is made on a set of rules and the output is mapped

o a value in a defuzzification part. Such output could reduce the uncer-

ainty, improve data collection and influence decision making process. 

The proposed framework is implemented in MATLAB and figures are

rawn by using the open source library JuzzyONLINE [46] . The whole

nalysis is done using a 2.50 GHz Intel Core i5 processor with 4GB RAM.

he key point in this work is the factors that are related and effective on

he level of comfort are considered as the inputs. In the first step, the MFs

or input, output and state variables are defined. As mentioned before,
390 
 building with one hundred agents has been considered for this study,

ach agent with different age, gender, clothing level and activity time.

he label in the data includes two values, the lower bound and the upper

ound; therefore, to predict both values, two output are considered, one

f them is used to predict the lower bound and the other one reveals the

pper bound of the level of comfort. Therefore, based on our data, there

re three inputs- age, Activity time (AT), Clothing Level (CL), and there

re two outputs- the Lower Bound of comfort level (LB) and the Upper

ound of comfort level (UB). The domain intervals of age, AT, CL, LB

nd UB are defined as [16, 65], [2, 8], [0.25, 1], [19, 22] and [23,

6], respectively, where domain interval of a variable means that most

robably this variable will sit in this interval. Each domain interval is
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Table 1 

Fuzzy rules. 

Number Rules 

Rule 1 If Age is young and Activity Time is Low, Clothing Level is High then Lower Comfort Level is Low and Upper Comfort Level is Low 

Rule 2 If Age is young and Activity Time is Low, Clothing Level is Low then Lower Comfort Level is Low and Upper Comfort Level is High 

Rule 3 If Age is young and Activity Time is High, Clothing Level is Low then Lower Comfort Level is High and Upper Comfort Level is High 

Rule 4 If Age is young and Activity Time is High, Clothing Level is High then Lower Comfort Level is Low and Upper Comfort Level is Low 

Rule 5 If Age is old and Activity Time is Low, Clothing Level is High then Lower Comfort Level is Low and Upper Comfort Level is High 

Rule 6 If Age is old and Activity Time is Low, Clothing Level is Low then Lower Comfort Level is High and Upper Comfort Level is High 

Rule 7 If Age is old and Activity Time is High, Clothing Level is High then Lower Comfort Level is Low and Upper Comfort Level is High 

Rule 8 If Age is old and Activity Time is High, Clothing Level is Low then Lower Comfort Level is High and Upper Comfort Level is High 
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Fig. 11. The fuzzy control surface. ( a ): Upper bound, ( b ): Lower bound. 
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ivided into some regions to define MFs of FLSs. As mentioned before

ach input domain is covered by using two MFs. The Age is characterised

s Young (16 – 35), Old (36 - 65), the AT is divided into Low (2 - 4) and

igh (5 - 8). Also, the output comfort level is constructed as; the LB for

ow (19 - 20) and High (21 - 22), UB is Low (23 - 24) and High (25 –

6). In order to represent each interval, the fuzzy MFs are generated as

hown in Figs. 7 , 8 and 9 . 

In the experiment the FLSs rules are generated based on Association

ule mining. Association rule mining finds rules that predict the occur-

ence of a feature based on the occurrences of other features by satis-

ying some measures of interestingness [47 , 48] . The rules are shown in

able 1 . The experience of the human controller is usually expressed

s some linguistic “IF-THEN ” rules that state in what situation(s) which

ction(s) should be taken. The generated if-then rules in Table 1 are

ntegrated with the JuzzyOnline FLSs as shown in Fig. 10 . 

As mentioned before, in this paper, inputs and the outputs are com-

ined by using the AND (min) operator . Lastly, the defuzzification is

ompleted by utilizing the centroid of gravity (COG) calculation. The

xperiment continued by processing all the input values, from the col-

ected dataset, into the constructed FLS. After each operation, the error

s measured between the output and the actual value by using RMSE.

he accuracy of the proposed method is calculated, as follows, where

ctual is the ground truth value and predicted is the predicted value: 

𝑀𝑆𝐸 = 

√ ∑𝑁 

𝑖 =1 𝑝𝑟𝑒𝑑𝑖𝑐 𝑡𝑒 𝑑 𝑖 − 𝑎𝑐 𝑡𝑢𝑎 𝑙 𝑖 
2 

𝑁 

(3)

The lower value of RMSE refers to the more accurate model. Based

n Eq. 3 , the RMSE values for lower bound of comfort level and upper

ound of comfort level are 1.2291 and 0.8153 respectively. Thus, it can

e said the predicted values are similar to the real values. There is no

xed threshold limit for RMSE, the common practice is to keep it as low

s possible. 

In this experiment, a model is created that can provide a compre-

ensive analysis not only the given subject answers but the combina-

ion between those answers. Therefore, as the further experiment, rather

han using the actual individual data points from the dataset, we inves-

igate/explore the functional relationship between Comfort zone and

T-Age by plotting a fuzzy control surface. In this experiment, all the

ossible input values for AT (between 2 to 8) and all the possible inputs

or Age are investigated in the created Fuzzy Logic Systems. Firstly, the

ystem input AT is set 2 and different Ages (between 16 to 65) are given

o the Fuzzy Logic System. In each experiment the result is stored. Then

he AT level is increased to 3 and all the Ages (between 16 to 65) are

rocced again. These procedures are repeated for all the possible AT (be-

ween 2 to 8) and Ages (between 16 to 65). Each combination results are

tored and visualized in Fig. 11 . As Fig. 11 reveals the relationship in the

ystem parameters, it can be argued that this surface could be a suitable

nitial step to provide a guideline for comfort level determination. 

Linking user feedback and simulations to deliver better prediction

reates opportunities to provide improved operations and maintenance,

orrect predictions and eventually more sustainable buildings. The in-

erface developed in this study creates a new type of assessment to assist

n building simulation and building control systems. Currently, concep-
391 
ual design developments are largely based on experimental knowledge

f simulation users and the current simulation tools have not played a

ignificant role to influence that. If the issue of BPG is to be affected

hen there is a necessity to develop more of various recording systems

or occupants’ behaviour with ability to improve over time. Computers

ools are expected to be less dependent on widely used standards and

ser’s expert knowledge and more on actual recording data and deci-

ions that are derived from it. Artificial Intelligence based approaches

uch as the fuzzy logic systems used in this study have attempted this

pproach and are expected to have a lasting impact. 

If the design is complex and so the modelling and simulations are ex-

ected to be more vulnerable to errors, therefore the usage of assumed

evel of comfort in simulation tools could significantly increase the like-
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ihood of BPG. This is the area where artificial intelligence based tools

ave been left out in being used as an additional tool for simulations

nd building operations. The need for such tools is mostly sensed in ar-

hitectural technology that explores new boundaries in data processing

nd performance-driven design. The interface developed in this study

an also be used to exchange data between various simulation tools, a

oncept that is widely known as coupling [49] . This interface is used

o make a decision on thermal comfort boundaries and could set more

ontextualised and accurate temperature for simulation tools. 

. Conclusion 

This study is driven by a necessity to use an expandable model

hat interprets the relationships between critical factors affecting ther-

al comfort. This study suggests how thermal comfort data gathered

hrough a simple questionnaire can be interpreted and used for simula-

ion tools and building control systems. The following are notable: 

• With a very simple questionnaire and sample of 100 users, this study

approached thermal comfort prediction from local assessment per-

spective. 
• With variables of indoor air temperature, age, clothing insulation

and working hours, the model shows capacity to reduce the previous

models’ inaccuracy. Compared to the ASHRAE model, it can quantify

the effects of each input variable on building users’ thermal comfort.
• This research demonstrates meaningful relationship in critical ther-

mal comfort elements and the method is practical enough to predict

the value of comfort level based on data and the predefined rules. 
• A combination of Association Rule Mining and Fuzzy Logic Systems

approach with expandable capacity is used with RMSE values of

1.2291 and 0.8153 of accuracy in data interpretation and decision

making. 
• The developed interface can be used for open source programs

and has the ability to expand and include more variables into the

database. 
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