
1 
 

Into the first biomimetic sphingomyelin stationary phase: suitability in drugs’ biopharmaceutic profiling 1 

and block relevance analysis of selectivity.   2 

 Giacomo Russo1,2*, Giuseppe Ermondi3, Giulia Caron3, Dieter Verzele1, Frederic Lynen1.  3 

 4 

1. Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, 5 

Krijgslaan 281 S4-Bis, 9000 Ghent, Belgium. 6 

2. School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN 7 
Edinburgh, United Kingdom. 8 

3. CASSMedChem Research Group, Molecular Biotechnology and Health Sciences Department, University of 9 
Turin, Italy. 10 

* corresponding author 11 

 12 

 13 

 14 

 15 

 16 

 17 

To whom correspondence should be addressed: 18 

 19 

 20 

Dr. Giacomo Russo  21 

School of Applied Sciences  22 

Sighthill Campus  23 

Edinburgh Napier University  24 

9 Sighthill Ct,  25 

EH11 4BN Edinburgh, United Kingdom 26 

Tel. +44 (0) 131 455 3464 27 

e-mail: g.russo@napier.ac.uk  28 



2 
 

Into the first biomimetic sphingomyelin stationary phase: suitability in drugs’ biopharmaceutic profiling 29 

and block relevance analysis of selectivity.   30 

Giacomo Russo1,2*, Giuseppe Ermondi3, Giulia Caron3, Dieter Verzele1, Frederic Lynen1.  31 

 32 

1. Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, 33 

Krijgslaan 281 S4-Bis, 9000 Ghent, Belgium. 34 

2. School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, EH11 4BN 35 
Edinburgh, United Kingdom. 36 

3. CASSMedChem Research Group, Molecular Biotechnology and Health Sciences Department, University of 37 
Turin, Italy. 38 

* corresponding author  39 

Abstract 40 

State of the art: Sphingomyelin (SPH) is a type of sphingolipid found in animal nerve tissues, especially in the 41 

membranous myelin sheath that surrounds some nerve cell axons. Because of its characteristics, SPH 42 

stationary phase represents an ideal tool to mimic the interactions taking place between active 43 

pharmaceutical ingredients and neurons.  44 
 45 
Method:  The IAM.SPH stationary phase (0.821 mg) was suspended in methanol (7.0 mL) and the resulting 46 

slurry packed (600 bar) in an HPLC column (10 cm x 2.1 mm). The column was operated at 300 µL min-1 at 25 47 

°C using a mobile phase consisting of 60/25/15 (v/v/v) Dulbecco’s phosphate buffer saline pH 48 

7.4/methanol/acetonitrile. The elution was achieved isocratically and monitored by UV detection at 220 nm. 49 

The investigated dataset consisted of 88 compounds (36 neutrals, 26 bases and 26 acids). The block relevance 50 

(BR) analysis was accomplished starting by calculating 82 descriptors using the software VS+ and submitting 51 

the data matrices to Matlab. Multiple linear regression and related descriptors were obtained with Vega ZZ 52 

64.   53 
 54 
Results and discussion:  The method developed allowed to achieve a solid and reproducible SPH affinity scale 55 

for the assayed compounds. Computational studies produced statistically significant models for the  56 

prediction and mechanism elucidation of the retentive behavior of pharmaceutically relevant compounds on 57 

the SPH stationary phase. 58 
  59 
Conclusions: For ionizable compounds, the IAM.SPH exhibited an original selectivity when compared to the 60 

commercially available IAM.PC. Moreover, apart from its suitability to surrogate log BB, IAM.SPH was also 61 

found relate significantly with the drugs’ fraction unbound in plasma, a crucial parameter in 62 

pharmacokinetics.   63 
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 64 
 65 
Keywords: sphingomyelin; immobilized artificial membrane; block relevance analysis; blood-brain barrier; 66 

biomimetic liquid chromatography; retention time prediction.   67 

1. Introduction  68 

Liquid chromatography has been successfully employed in both industry and academic research for fast, 69 

reliable, and reproducible of assessment of physico-chemical properties that are crucial in drug discovery and 70 

development programmes. For instance, Valkò and co-workers (Valko et al., 1997) used in a fast gradient 71 

reversed-phase HPLC method to derive a chromatographic hydrophobicity index (CHI) to be used as part of 72 

a protocol for high throughput physicochemical property profiling for rational drug design, whereas Natalini 73 

et al. (Natalini et al., 2009) have employed  another chromatography derived index, i.e. ϕ0, to model self-74 

aggregation process of bile acids.  75 

Immobilized artificial membrane (IAM) chromatography (Pidgeon et al., 1995; Pidgeon et al., 1991; Pidgeon 76 

and Venkataram, 1989) has been used since more than thirty years as a tool to scrutinize the interactions 77 

taking place between biological membranes and pharmaceutically relevant compounds. This comprises a 78 

type of reversed phase liquid chromatography implemented on stationary phases featuring 79 

phosphatidylcholine (PC) analogues which are covalently bound to silica (Ong et al., 1996). To date only three 80 

IAM stationary phases are commercially available: PC, PC.MG and PC.DD2 (Stewart and Chan, 1998), of which 81 

the latter (represented in Figure 1. A) is the most widely used (from here on out simply referred as IAM.PC). 82 

A conspicuous number of scientific reports (Grumetto et al., 2015, 2016a, b; Russo et al., 2017b, 2018) has 83 

successfully related IAM measurements to data of drugs’ passage through complex biological barriers, 84 

including skin, intestinal mucosa and blood-brain barrier (BBB) achieved on in vivo or in situ models.  85 

The BBB is a lipoidal membrane which protects the integrity of the central nervous system by segregating the 86 

brain and spinal cord parenchyma from the interstitial fluids (Pandey et al., 2016). It features a superior 87 

degree of leakiness as compared to barriers located elsewhere because of the presence of tight junctions, 88 

which impede any crossing from small polar compounds through the intercellular gaps (Van Bree et al., 1992). 89 

Although simplified, IAM models are constantly regarded as complimentary tools to avoid – or at least 90 

minimize – some animal testing when this is conducted for the assessment of drugs’ pharmacokinetics, with 91 

an emphasis on membrane uptake (Ducarme, 1997). In this scenario, the IAM phases are designed and the 92 

experimental conditions optimized with the aim of mimicking the asset of the biological systems in which 93 

drugs’ absorption takes place. Therefore, these platforms are claimed to be “biomimetic”.   However, the 94 

accuracy of IAM phases in mimicking the membrane barrier asset exhibited is severely constrained by some 95 

shortcomings (Ong et al., 1996). The most noticeable is that PC is only one of the phospholipids encompassing 96 

the BBB, whose composition features instead a wide range of lipids (Campbell et al., 2014).  In fact, PC 97 
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represents only 28.7% (v/v) of the lipids composing the BBB, while other components are more abundant in 98 

this histologic structure. Among those, sphingolipids and cholesterol (together 54.2 % w/w) keep captivating 99 

the interest of the scientific community (Siakotos and Rouser, 1969). In fact, these lipids tend to segregate in 100 

discrete structures, called lipid rafts, whose role in cellular signalling, metabolism and trafficking is still very 101 

far from being completely unraveled (Bieberich, 2018; Kinoshita et al., 2018). Moreover, evidence suggests 102 

that these lipids accumulate specifically in the outer leaflet of the endothelial cells surrounding the brain 103 

parenchyma and hence are believed to be the structures that most readily interact with solutes passively 104 

diffusing from the circulating blood to the brain (Cannon et al., 2012). Although immobilization of these 105 

biological structures and their coupling to silica is challenging, their use in (high performance) liquid 106 

chromatography setups allows for superior robustness and reproducibility of the measurements.  107 

Among the sphingolipids, sphingomyelin (SPH) is a type of sphingolipid found in animal cell membranes, 108 

especially in the membranous myelin sheath that surrounds some nerve cell axons (Slotte, 2016). It usually 109 

consists of phosphocholine and ceramide, or a phosphoethanolamine head group. In humans, SPH represents 110 

~85% of all sphingolipids, and typically make up 10–20 mol % of plasma membrane lipids (Garcia-Arribas et 111 

al., 2016). However, SPH % in the BBB equals 33.4%, being the most abundant lipid in this strategic body 112 

district (Siakotos and Rouser, 1969).  113 

SPH stationary phases designed for IAM chromatography are not commercially available. However, in 2011, 114 

a prototype SPH stationary phase for IAM chromatography was synthesized by an ultra-short, solid-phase 115 

inspired methodology (Verzele et al., 2012), in which an oxidative release monitoring strategy played an 116 

essential role. This prototype was evaluated in a proof-of-concept model for BBB passage (De Vrieze et al., 117 

2014). However, while there is a conspicuous amount of literature aimed at modeling (Taillardat-Bertschinger 118 

et al., 2002), and at some extent predicting (Russo et al., 2017a), the retention of chemically diverse solutes 119 

on the IAM.PC phases commercially available, no data is available so far with regards to prediction and 120 

mechanism elucidation of analytical retention on IAM phases based on SPH. This article is meant as a 121 

contribution to fulfilling this demand using the block relevance (BR) analysis (Ermondi and Caron, 2012; 122 

Ermondi et al., 2014) and quantitative-structure-property relationships (QSPR) (Pedretti et al., 2004) , a 123 

chemometric tool designed for the stationary phases selectivity characterization.  124 

We have four main aims: (i) collecting a good number of experimental data to build up a SPH affinity database 125 

of pharmaceutically relevant compounds; (ii) providing mechanistic information concerning the nature of the 126 

intermolecular forces driving retention on this novel prototype; (ii) assessing analytical retention similarities 127 

and dissimilarities with regards to the IAM phases commercially available to evaluate if further 128 

implementation of such phases is advantageous (iii) allowing prediction of chromatographic retention factors 129 

on the IAM.SPH and (iv) investigate the relevance of this novel stationary phase in drug development 130 
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programs dealing with the screening of new chemical entities according to their potential to cross biological 131 

membranes.  132 

To reach our aims we firstly determined experimental data by LC conducted on the IAM.SPH phase, then 133 

applied BR analysis to obtain the mechanistic interpretation of IAM.SPH data. Briefly, the BR strategy is based 134 

on a PLS algorithm and VolSurf+ (VS+) descriptors (Ermondi and Caron, 2012). It pools the 82 VS+ descriptors 135 

into six easy-to-interpret blocks and graphically shows the relevance of a certain block in the PLS model: the 136 

higher the value, the more significant the block. The organization of the VS+ descriptors in blocks allows a 137 

straightforward understanding of the investigated phenomena (e.g. chromatographic retention, partitioning) 138 

because the six blocks provide an easy mechanistic interpretation based on the nature of the interaction of 139 

the solute with the environment represented by some tailored probes defined by the GRID methodology.  BR 140 

analysis also allowed to compare the retention of the IAM.SPH phase with that observed on the commercially 141 

available IAM.PC columns to highlight similarities and dissimilarities.  142 

A second computational strategy strategy based on 27 descriptors and multiple linear regression (MLR) 143 

algorithm, was also set-up to build models allowing to produce some sort of chromatographic behavior 144 

prediction. This is very relevant in drug discovery programs. In fact, although extremely high degrees of 145 

accuracy are hardly achievable, statistic models can complement other druggability assessment technologies 146 

and act as a filter in screening extremely large and complex compound libraries for their ability to cross the 147 

BBB and be up taken by the brain. Indeed, combinatorial synthetic approaches (Marakovic and Sinko, 2017) 148 

are nowadays able to generate a huge number of compounds at an incredibly fast rate and the screening 149 

demands for such ample libraries are currently unmet in most cases. In these scenarios, pharmaceutical 150 

enterprises might decide to compromise between accuracy and speed, with the aim of channelling their drug 151 

design efforts in a direction that is safer to a solid extent.  152 

Finally, the relevance and suitability of the IAM.SPH phase in ADME profiling, with an emphasis on absorption, 153 

distribution, and BBB permeability, was also scrutinized by retrieving literature pharmacokinetic data.  154 

 155 

2. Materials and methods 156 

 157 

2.1 In vitro measurements  158 

 159 

2.1.1 Chromatographic columns  160 
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The experiments were performed on a IAM.SPH (10 µm, 100 mm × 2.1 mm 300 Å pore size) analytical column 161 

prepared in house as described in 2.1.3. A subgroup consisting of 36 neutral compounds were also tested on 162 

a IAM.PC.DD2 column (10 µm, 100 x 4.6 mm 300 Å pore size, Regis Technologies, Inc Morton Grove, IL, USA).     163 

 164 

2.1.2 Chemicals  165 

The solutes were obtained from Merck Millipore (Machelen, Belgium, previously known as Sigma-Aldrich), 166 

TCI-Europe (Zwijndrecht, Belgium), Thermofisher Acros Organics (Geel, Belgium), Cerilliant Corporation 167 

(Round Rock, TX) and Aurora Fine Chemicals Ltd - Europe (Graz, Austria) as listed in Table 1 and S1. Their 168 

purity was equal to or higher than 98%.  169 

 170 

2.1.3 Column packing 171 

The IAM.SPH stationary phase (0.821 mg), previously synthesized (Verzele et al., 2012), was suspended in 172 

methanol (7.0 mL) and the resulting slurry packed (600 bar) by a Haskel airdriven pump (Burbank, CA) in an 173 

HPLC column (100 x 2.1 mm). 174 

 175 

2.1.4 Column performance assessment  176 

Twelve model drugs, i.e. acetaminophen, amitriptyline, atenolol, benzene, carbamazepine, chlorpromazine, 177 

cimetidine, desipramine, ethylbenzene, ibuprofen, propranolol and ropinirole, covering a retention time 178 

range spanning from 1.2 to 90.2 minutes were determined on the SPH stationary phase prototype and 179 

compared with the data already published (Verzele et al., 2012) to verify column reproducibility. 180 

Experimental conditions are the same as reported in (Verzele et al., 2012), except for the UV wavelength 181 

which was set to 220 nm for all the dataset.   Results are reported in the supporting information section. A 182 

plot of experimental vs published is displayed in Figure S1, while the retention data are listed in Table S1. The 183 

high degree of accuracy (r2 = 0.96) is clear indication that the performance of the stationary phase was 184 

preserved and therefore the column was used for the study. However, the analytes acetaminophen, atenolol, 185 

cimetidine and ropinirole exhibited some minor fluctuations when compared to already published data.   186 

 187 

2.1.5 HPLC measurements (IAM.SPH) 188 

IAM.SPH chromatographic analysis was performed on an Agilent 1100 (Santa Clara, CA, USA). The system 189 

included a quaternary pump, a micro vacuum degasser, a column thermostat and an automatic injector. An 190 
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Agilent 1100 Series variable wavelength detector was used and set at 220 nm.  The separation was carried 191 

out at 25 °C, the flow rate was 300 µL min-1 and the injection volume was 10 µL. The autosampler needles 192 

were washed with 50/50 (v/v) 2-propanol/water solution every three runs to avoid any cross contamination 193 

and a blank run was done every five injections. All the analyses were performed at least in triplicate and the 194 

results reported are the average of at least three analytical determinations.  195 

 196 

2.1.6 Mobile phase and sample preparation  197 

Water (18.2 MΩ·cm-1) was purified and deionized in house via a Milli-Q plus instrument from Millipore 198 

(Bedford, New Hampshire, USA). IAM.SPH mobile phases consisted of a solution 60/25/15 (v/v/v) Dulbecco 199 

Phosphate Buffered Saline (DPBS) / methanol /acetonitrile (both HPLC grade Biosolve, Valkenswaard, The 200 

Netherlands). DPBS was composed of 2.7 mmol·L−1 KCl, 1.5 mmol·L−1 potassium dihydrogen phosphate, 137.0 201 

mmol·L−1 NaCl, and 8.1 mmol·L−1 disodium hydrogen phosphate (Merck). The pH was adjusted with sodium 202 

hydroxyde and the aqueous solution had a pH value of 7.40 ± 0.05.  The IAM.PC mobile phase was composed 203 

of a 10 mM ammonium acetate buffer (Merck Millipore, Machelen, Belgium, previously known as Sigma-204 

Aldrich, purity ≥ 98 %) and acetonitrile (Merck Millipore, HPLC grade) in ratios spanning between 0 and 30% 205 

(v/v) and extrapolated to 100% aqueous eluents by an extrapolation method (Braumann et al., 1983).  206 

The mobile phase was vacuum filtered through 0.20 μm nylon membranes (Grace, Lokeren, Belgium) before 207 

use. Stock solutions of all drugs were prepared by dissolving 10 mg in 2 mL of methanol except for quinidine 208 

and quinoline for which stock concentrations of 1 mg mL−1 was used. Caffeine and pentoxifylline were 209 

dissolved in water (5 mg mL−1), the stock solution of domperidone was prepared in dimethyl sulfoxide (5 mg 210 

mL−1) , chlorpromazine, diethylstilbestrol, estradiol and tolnaftate  were dissolved in acetonitrile (5 mg mL−1), 211 

hydrocortisone and hydrocortisone 21- acetate were dissolved in ethanol (2.5 mg mL-1). Stock solutions were 212 

stored at 4 °C, except for atenolol, chlorambucil, nifedipine, rifampicin and testosterone which were stored 213 

at −20 °C. Working solutions were freshly prepared at the beginning of each day by dilution of the stock 214 

solutions to 50 μg mL−1 with mobile phase for all the analytes, except for tolnaftate and diethylstilbestrol 215 

which were diluted to 25 μg mL−1  with a 50/50 (v/v) water/acetonitrile solution. Nifedipine, nitrofurantoin 216 

and rifampicin working solutions were wrapped in aluminium foil before feeding the autosampler to protect 217 

these chemicals from photodegradation.  218 

 219 

2.1.6 HPLC measurements (IAM.PC) 220 

IAM.PC measurements of the 36 neutral compounds were accomplished as described in a previous paper 221 

(Ermondi et al., 2018).  222 
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 223 

2.2 In silico calculations  224 

 225 

2.2.1 Processing  226 

 227 

The chromatographic retention coefficients of each analytes were calculated by using the following 228 

expression:  229 

𝑘𝑘 = 𝑡𝑡𝑟𝑟−𝑡𝑡0
𝑡𝑡0

           Eq. (1) 230 

in which tr is the retention time of the compound of interest and t0 the retention time of a non-retained 231 

compound (acetone). All reported log k values are the average of at least three measurements; for each log 232 

k value the 95% confidence interval associated with each value never exceeded 0.04.  233 

 234 

2.2.2 Datasets 235 

Compounds were organized in 4 datasets: a) the complete dataset including all the 88 compounds (called 236 

Dataset), b) a dataset of 36 neutrals compounds firstly assayed by Lombardo et al. (Lombardo et al., 2000) 237 

(named Neutrals), c) a dataset of 26 acidic compounds (named Acids), d) a dataset of 26 bases (named Bases). 238 

 239 

2.2.3 BR analysis 240 

BR analysis was accomplished as detailed elsewhere (Ermondi and Caron, 2012; Ermondi et al., 2014; Vallaro 241 

et al., 2020). The SMILES codes of the 88 compounds were used as an input for VS+ software. The electrical 242 

state was assigned by pKa calculations implemented in the software and an average conformation was build 243 

and minimised.The 82 descriptors directly obtained from 3D molecular interaction fields (MIFs) were then 244 

calculated (Ermondi and Caron, 2019; Goetz et al., 2017). The four data matrixes (one for each datasets) 245 

including descriptors and chromatographic data were submitted to Matlab (ver. R2019a, 246 

https://it.mathworks.com/) to perform Partial Least Square Regression (PLSR) and VIP analysis. As already 247 

discussed elsewhere (Ermondi and Caron, 2012), since here the PLS model is used for interpretative and not 248 

predictive purposes, only internal validation was performed. 249 

Finally, an in-house Matlab script grouped the descriptors in blocks and processed the corresponding VIPs to 250 

draw the BR plots  251 
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Processing was done on a notebook equipped with a 4 cores Intel i7-4700MQ and 12 GB of RAM operating 252 

with Windows 10.  253 

BR analysis interpretation is obtained by two graphical outputs: a) the absolute BR plot that shows the 254 

relevance of any block to the PLS model independently of the sign (the higher, the more relevant) and b) the 255 

BR plot with signs which splits the contribution of any block into positive BR (+) and negative BR (-) portions. 256 

BR (+) indicates how much the considered block favours the considered descriptor (e.g. log k IAM.SPH) whereas 257 

BR (-) shows how much the block lowers the descriptor. Blocks with small and comparable positive and 258 

negative contributions indicate the high noise and inter-correlation of the descriptors of the block itself and 259 

thus are poorly relevant in the description of the investigated phenomenon. 260 

 261 

2.2.4 QSPR modeling 262 

MLR analysis was accomplished by VEGA ZZ x64 software 3.2.0.9 (Pedretti et al., 2004) implemented on a 263 

one 8 core i7 at 3.1 Ghz CPU and 32 GB of RAM Windows machine. Physico-chemical and topological 264 

properties (Virtual log P (Gaillard et al., 1994), lipole (Pedretti et al., 2002), volume, polar surface area, surface 265 

accessible to the solvent, gyration radius, ovality, mass, number of atoms, angles, dihedrals, etc) were 266 

calculated by VEGA ZZ software and finally, all molecules were inserted into a Microsoft Access database. 267 

Detailed information is reported in here (Russo et al., 2017b). In brief, The starting three-dimensional 268 

structures of the considered molecules were downloaded from PubChem database (Kim et al., 2019; Kim et 269 

al., 2016), and they were considered in both zero atomic charge and ionized form. The Gasteiger−Marsili 270 

method (Gasteiger and Marsili, 1980), along with CHARMM force field (Brooks et al., 2009; Brooks et al., 271 

1983; MacKerell et al., 2002), was applied to calculate the atomic charges. After that, structures were 272 

minimized by AMMP software (Harrison, 1993) (conjugate gradients, 3000 iterations, toler 0.01). The best 273 

independent variables were selected by calculating the correspondent equation with a single regressor. 274 

Regressions with r2 value less than 0.10 determine automatically the exclusion of the independent variable. 275 

Collinear independent variables were identified by calculating the Variance Inflation Factor (VIF) value for 276 

each regressor pair. Variable pairs with VIF > 5.0 were not considered in the model calculation. Calculation 277 

of the models with a number of regressors from one to four. Statistic models were developed by using either 278 

the zero-charge or the ionized forms of the compounds. To take into account the distribution of the 279 

microspecies at the experimental pH, a weighted average of the physico-chemical descriptors at the 280 

experimental pH according to the experimental pKa values was also performed. For each model, a cross-281 

validation procedure (leave-one-out) is performend and the prediction power is shown as q2. Validation was 282 

performed on the dataset by the model validator script that splits randomly the whole dataset in a number 283 

of training and test set pairs. For each training set, the regression coefficients are calculated to evaluate the 284 
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test set in terms of standard deviation of errors, angular coefficient, intercept and r2 of the trend line of the 285 

chart of the predicted vs. experimental activities. A number of 18 and 8 were selected as size of the test set 286 

and number of trials, respectively.  287 

 288 

2.2.5 Postprocessing  289 

Plotting and data analysis was done by Microsoft Excel for Office 365 v 16.0 at 64 bit.  290 

 291 

2.3 Literature data sources  292 

For the dataset “neutrals” , experimental lipophilicity values (log Pn-oct/water) were taken from Lombardo and 293 

co-workers (Lombardo et al., 2000). For the ionizable molecules (i.e. datasets Acids and Bases), they were 294 

taken from DrugBank (Wishart et al., 2018), except for verapamil, 4-amino benzoic acid, celecoxib, 295 

chlorambucil and fexofenadine, whose source was PubChem (Kim et al., 2016). Chromatographic retention 296 

data achieved on both IAM.PC and IAM.SPH stationary phases in the same experimental conditions were 297 

gathered from (De Vrieze et al., 2014). In vivo data of membrane passage were collected from (Avdeef, 2012), 298 

while in vitro PAMPA BBB measurements were used from (Tsinman et al., 2011). The reference report in vivo 299 

data assayed on various species including rat, mouse, pig and human. Although values on different species 300 

were claimed by the authors to be highly interrelated, we averaged them for the sake of consistency.  301 

  302 

3. Results and discussions  303 

 304 

3.1 IAM.SPH determinations 305 

 306 

3.1.1  IAM.SPH performance assessment  307 

Before starting the study, twelve model drugs were tested on the IAM.SPH analytical column to assess data 308 

reproducibility and the measurements were compared to those reported in (De Vrieze et al., 2014). A dataset 309 

featuring wide SPH affinity (log kIAM.SPH from -0.539 to 2.110) and spanning different lipophilicity degree (log 310 

P n-octanol/water from 0.16 (atenolol) to 5.90 (chlorpromazine)) and ionization (neutrals, acids and bases included) 311 

was selected. The results were evaluated in terms of reproducibility as compared to the published data (De 312 

Vrieze et al., 2014), intraday and interday precision. Regarding the former, a very high squared correlation 313 

coefficient (r2 = 0.96) was achieved and no elution order changes were observed. This implies that 314 
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performance of the IAM.SPH stationary phases was preserved and that no anormalities during packing and 315 

re-equilibration took place. As to the second, the % standard deviation (intraday precision) was retention 316 

time independent and below 3% for all the measurements as reported in Table S1. The interday precision 317 

was instead below 5% (data not shown).     318 

 319 

3.1.2 IAM.SPH and IAM.PC systems: relationships with n-octanol/water lipophilicity  320 

The LC determinations were conducted isocratically and some exemplative chromatograms are reported in 321 

Figure 2. Although the use of a gradient could speed up the process, we needed to collect data to build QSPR 322 

models which required thermodynamic experimental descriptors. The identification of the mobile phase was 323 

not trivial since the use of 30% (v/v) methanol as organic modifier as in our previous study (De Vrieze et al., 324 

2014) did not allow any elution of some highly lipophilic compounds, i.e. tolnaftate and diethylstilboestrol. 325 

Therefore, a more apolar organic modifier ratio equal to 25/15 (v/v) methanol/acetonitrile had to be used. 326 

The addition of acetonitrile was beneficial as it allowed a solid lowering in the operating pressure by reducing 327 

the viscosity of the mobile phase. Nevertheless, the two most lipophilic compounds (tolnaftate and 328 

diethylstilboestrol) eluted after 94.0 and 52.0 minutes, respectively.  329 

Interestingly, highly lipophilic neutral solutes, such as diethylstilbestrol and tolnaftate, have superior affinity 330 

on the IAM.SPH (log kIAM.SPH values are 1.672 and 1.928, and log Pn-oct/water  equal to 5.10 and 5.09, respectively) 331 

as compared to bases of similar lipophilicity, for instance chlopromazine (log kIAM.SPH is 0.891 and log Pn-oct/water 332 

equals 5.90). This occurrence highlights some interesting differences between IAM.PC and IAM.SPH. Indeed, 333 

based on some partitioning experiments undertaken on liposomes, Alex Avdeef formulated the so-called “pH 334 

piston hypothesis” (Avdeef et al., 1998) that was soon after extended to IAM.PC phases. According to his 335 

theory, cations would be favored with regards to neutral compounds of same lipophilicity in the interaction 336 

with IAM.PC phases as its negatively charged phosphate moieties locate more internally as compared to the 337 

positively charged amino groups. This allows bases to have a deeper and more productive interaction of 338 

electrostatic nature and to better accommodate their apolar moieties in the hydrophobic tails of the lipid 339 

network, especially as compared to acidic solutes. Anions, on the contrary, can engage dipolar interplay with 340 

the positively charged amino groups lying in the distal part of the stationary phases, much further from the 341 

silica core. This results in a more superficial and weaker interaction that effects in acids being retained less 342 

than neutral isolipophilic molecules. Diethylstilbestrol and tolnaftate when compared with chlorpromazine 343 

support that retention on the IAM.SPH does not seem to comply with the “pH piston hypothesis” and this 344 

depicts a rather different selectivity as compared to the IAM.PC on the market. Figure 3 generalizes the lack 345 

of fulfilment to the “pH piston hypothesis” exhibited by the IAM.SPH system. In fact, the plot shows that the 346 

presence of ionizable moieties mostly acts as a disturbing agent, at least in a “pharmaceutically relevant” log 347 
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Pn-octanol/water range (-1.0 - +5.0). Indeed, on IAM.PC phases extensively ionized acids are retained significantly 348 

less, while bases interact more readily instead as compared to neutral molecules exhibiting similar 349 

lipophilicity.  350 

Overall, although some exceptions can be observed, the collected data suggest:  351 

1. Analogously to partitioning on IAM.PC phases (Grumetto et al., 2014), log kIAM.SPH values of neutral 352 

compounds relate unambiguously with log Pn-octanol/water by a highly significant linear relationship (r2 = 353 

0.95 and Figure 3a); 354 

2. This dependency is disrupted when solutes ionize and specifically the interaction rank on the 355 

IAM.SPH is neutral>acids>bases;  356 

3. The affinity for the IAM.SPH of ionizable chemicals depicts interactions which differ from the 357 

“classical” n-octanol/water lipophilicity.  358 

The last statement is motivated by the aspect that rough relationships between log kIAM.SPH and log Pn-359 
octanol/water are seen for both acidic (r2 = 0.64) and basic (r2 = 0.62, in both cases data not shown) compounds. 360 

 361 

However, our measurements were conducted at a relatively high ratio of organic modifier, i.e. 40% (v/v), that 362 

could affect retention in multiple ways. For instance, by lowering the dielectric constant of the eluents, the 363 

difference in polarity between stationary and mobile phase decreases, hence resulting in a lower retention. 364 

Moreover, the addition of organic modifier also decreases the acidic/basic strength of the ionizable solutes 365 

to an extent that is dependent both on the chemistry of the compound and on the characteristics of the 366 

solvents employed (Rossini et al., 2018).  367 

Therefore, to draw some conclusive evidence about whether or not IAM.SPH phase complies with Adveef’s 368 

“pH piston hypothesis”, we decided to compare affinity data achieved on either phase, i.e. IAM.PC and 369 

IAM.SPH, exactly in the same analytical conditions and using 30% (v/v) methanol as organic modifier, 370 

collected from (De Vrieze et al., 2014). The retention data are reported in Table S2, while graphs are shown 371 

in Figure S2. This data shows that on the IAM.PC most bases are shifted upwards with regards to the 372 

“neutrals” regression line (Figure S2a) – with only one base lying below. On the contrary, on the IAM.SPH 373 

most bases are instead either overlapping the “neutrals” regression line or alternatively lying below it. The 374 

acidic compounds are in both cases retained less than neutral isolipophilic molecules. However, the distance 375 

from the regression line is clearly higher on the IAM.PC than on the IAM.SPH, suggesting that the electrostatic 376 

repulsion is way stronger on the latter, even though the number of acids (n = 11) assayed is limited.  377 

These findings all in all suggest that while neutrals interplay identically on both phases, when it comes to 378 

ionizable compounds the selectivity of these IAM phases markedly changes. The presence of electronic 379 
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charges seems to disrupt the interaction in a more consistent way on the IAM.SPH than on IAM.PC, on which 380 

partitioning of basic compounds is enhanced. We can conclude that IAM.SPH does not conform to the “pH 381 

piston hypothesis” and the addition of acetonitrile 15% (v/v) produces a measurable effect on the 382 

partitioning of acids, which appears to be enhanced.  383 

 384 

3.1.3 BR analysis  385 

The four investigated datasets (Neutrals, Acids, Bases and Dataset) were submitted to BR analysis to 386 

deconvolute the balance of the intermolecular forces governing retention. The experimental procedure is 387 

described in the Materials and Methods Section. PLS statistics are in Table S3.   388 

 389 

3.1.3.1 Neutral compounds  390 

As previously mentioned, the same 36 neutral compounds assayed by Lombardo et al. (Lombardo et al., 391 

2000)(dataset Neutrals) were firstly investigated. This choice was motivated by the aspect that this dataset 392 

features wide lipophilicity range (6 log Pn-oct/water units) and has been extensively used to characterize different 393 

chromatographic systems by BR analysis (Ermondi and Caron, 2018). Therefore, assaying these compounds 394 

allows us to contrast and compare with n-octanol/water and IAM.PC partition systems (data in Table S4). 395 

Statistics show that, although the accuracy of models based on log k IAM.SPH is good (r2 = 0.80 and q2 = 0.60, 396 

Figure S3b), this is inferior to that of the other two models which performs slightly better.  397 

BR plots of log kIAM.SPH, log Pn-oct/water and log kw
IAM.PC are compared in Figure 4. Absolute BR plots evidences 398 

that (i) retention on the IAM.PC phase is more affected by molecular size (green block) as compared to the 399 

other two systems; (ii) the solutes H-bond acceptor and donor properties (blue and red block, respectively) 400 

depicted by neutral compounds on the IAM.SPH resemble quite closely those of the n-octanol/water 401 

partition system; (iii) the polarity contribution (light blue block) between the two IAM phases is very similar 402 

and less important that encoded in the n-octanol/water partition system. The BR plots with sign highlights 403 

that, as expected because of the reverse nature of the system, the larger the compound the more retained, 404 

and the higher its interaction with water the less retained. Notably the capacity of solutes to act as hydrogen 405 

bond donor increases their interaction with the stationary phase in a more pronounced way when log kIAM.SPH 406 

is considered. Conversely, a compound which exhibit high hydrogen bond acceptor skills is penalized and 407 

thus poorly retained by the system.  408 

Overall, retention on the IAM.SPH phase for neutral compounds seems to be led by a peculiar H-bonding 409 

pattern in comparison with the other systems. This could be due to the presence of the alcoholic hydroxy 410 

group in the IAM.SPH (Figure 1), which has indeed both H-bond acceptor and donor capabilities.  411 



14 
 

Finally, the evidence that the polarity contribution is very similar for both IAM phases and lower than that of 412 

log Pn-oct/water could suggest that the free silanol groups and the silica itself do not play a significant role in 413 

retention and demonstrates that quality of column manufacture and that the synthesis itself is fully 414 

compliant to industrial standard. In fact, according to these data it seems that secondary, unintended 415 

interactions with the propyl amino moieties on the silica of the IAM.SPH, if occur, disrupt pure retention to 416 

an extent that is comparable to that of industrially produced IAM.PC columns.  417 

 418 

3.1.3.2 Acids  419 

PLS models produced by the Acids dataset shows solid statistics (r2 = 0.76 and q2 = 0.57,) with two LVs. The 420 

BR plot (Figure 5) with sign indicates that the blocks that affect retention by a larger extent are those related 421 

to molecular size and hydrophobicity. Such an involvement of hydrophobicity was not observed for neutral 422 

compounds. Moreover, H-bonding capabilities, as either donor or acceptor, seem to play a very minor role 423 

in driving the analytical retention for such compounds. This evidence could be in principle motivated by the 424 

aspect that the solutes that support hydrogens that are covalently bound to heteroatoms (mostly oxygens) 425 

or in general the acidic protons are released as a consequence of ionization and therefore cannot possibly 426 

act as H-bond donors. However, this would not explain why H-bond acceptor capability would not affect 427 

analytical retention as in pure principle, negatively charged heteroatoms should be more prone to establish 428 

H-bonding. The fact that the IAM.SPH measurements were conducted at relatively high ratio of organic 429 

modifier, i.e. 40% (v/v), lowering not only the difference in polarity between stationary phase and eluents 430 

but also the pKa of ionizable compounds, does not explain this outcome as for neutral compounds instead 431 

H-bonding was proved to impact IAM.SPH affinity. A reasonable explanation to this evidence can be retrieved 432 

in the concept of QSPR on which BR analysis is based. In fact, in a QSPR model a mathematical relationship is 433 

sought between the variation of the property and the variation in the descriptors. In the case of acidic 434 

compounds, the negative charge is present in all the substances and therefore it does not vary along the 435 

dataset. QSPR and thus BR analysis do not catch this information and therefore the interaction with the 436 

IAM.SPH is found to be due to the intermolecular interactions not related to the presence of the charge, size 437 

and hydrophobicity and the capacity of interacting with water (light blue block, detrimental for the 438 

interaction). This explanation is in line with what has been reported in a previous paper in which the BR 439 

analysis of IAM.PC has been performed (Ermondi et al., 2018).  440 

 441 

3.1.3.3 Bases  442 



15 
 

PLS models produced by the Bases dataset (Table S3) are of poor statistical quality, even when paroxetine, 443 

which behaves as a strong oulier, is removed from the dataset. This finding makes unreliable the information 444 

content produced by BR analysis and thus no graphical output has been reported. 445 

 446 

3.1.3.4 Dataset  447 

In a final stage, the Dataset was submitted to BR analysis and no robut PLS model has been found. However, 448 

if the bases are excluded along with antipyrine (which behaved as outlier) a good accuracy (r2 = 0.76 and q2 449 

= 0.60) is reached despite a smaller dataset (n = 61). These results are reported in Figure 6.  450 

The BR plot of this dataset which includes neutral and negatively charged compounds supports that analytical 451 

retention is mostly driven by molecular size and hampered by polarity. While the net contribution of 452 

hydrophobicity seems negligible, analytical retention seems to be hindered by the tendency of molecules to 453 

accept H-bonding. This is reasonable if we look at the IAM.SPH structure (Figure 1 and graphical abstract), 454 

which supports H-bond acceptor moieties that are not present on the IAM.PC. Notably, the decrease of the 455 

relevance of the red block (solutes HBD) in comparison with Figure 4 (neutral compounds) when anionic 456 

structures are introduced in the dataset, support the detrimental effect of charges discussed in the previous 457 

section 3.1.2. 458 

 459 

3.1.4 QSPR models 460 

Since the statistics of the model related to the analytical retention of basic compounds were poor, we tried 461 

another in silico approach to improve the predictive strength of the models. The experimental details are  462 

described in 2.2.4. The neutrals, acids and bases datasets were modeled with three independent variables 463 

whereas for the Dataset four variables were set. The results are listed in Table 2, while statistical models that 464 

are normalized to fit the same scale to allow an unbiased comparison between descriptors are in Table S5. 465 

All the models are statistically validated, and for the sake of conciseness, only the models optimized through 466 

Leave-One-Out (LOO) crossvalidation runs are presented. A list of relevant descriptors is available in the 467 

supporting information (Table S6). 468 

For Acids and Bases, the best results were achieved by assuming all the molecules in their charged forms, 469 

despite of the evidence that ionizable molecules are present in solution as a mixture of neutral and charged 470 

abundances that are function of their experimental pKa. This is extremely consistent with the experimental 471 

evidence described in 3.1.2, as we noted that electrical charges, especially positive, has a disrupting effect 472 

on retention if compared with neutral compounds of equal lipophilicity. As listed in Table 2, for the Neutrals 473 

dataset a satisfactory statistic model is achieved (r2 = 0.86). Retention of these compounds was found to be 474 



16 
 

directly related to molecular VirtualLogP and the number torsions and inversely related to Lipole (Mauri et 475 

al., 2017).  476 

The models describing retention of acidic solutes also show remarkable statistics (although not as good as 477 

the that of the neutral compounds, with r2 = 0.84 on a significantly lower number of solutes) and seems to 478 

be promoted for highly lipophilic (once again Virtual Log P – in this case calculated from the anionic forms) 479 

and bulky (Vdiam which stands for volume diameter) and hindered by molecular flexibility. These outcomes 480 

are consistent with the BR analysis detailed in 3.1.3.2.  481 

From 3.1.3.3,  we know that the modeling of the retention of bases on IAM.SPH phase based on BR analysis 482 

was problematic. However, when QSPR with different descriptors and algorithmis conducted, the statistics 483 

is still good (r2 = 0.81) although the least accurate among the QSPR models so far presented. Retention of 484 

basic compound was found to be (again) directly related to VirtualLog P, lipole and number of rings. The 485 

analyte removed to maximize the predictive stength of the model – hydroxyzine – is the only basic compound 486 

of the dataset supporting two basic functions rather than only one. Therefore, the interplay between electric 487 

charges might have played a role, even though at the experimental pH 7.4, the solute should theoretically 488 

prevail in its monocationic form.  Seven compounds, i.e. cimetidine, metoprolol propranolol, quinidine, 489 

ropinirole, tramadol and venlafaxine, despite having very similar affinity on IAM.SPH (from -0.616 to -0.640) 490 

have a predicted retention falling in a nearly one-unit range (from -0.801 to 0.005). These compounds are 491 

structurally unrelated therefore the substandard prediction for these cannot be motivated on specific 492 

structural features. Moreover, the datapoints seem to aggregate in two data clusters. This is also evident in 493 

Figure S4.   494 

Finally, we assembled all the compounds in one dataset (Eq (5)) and ran the modeling with 4 dependent 495 

variables. The model achieved, as well as the previous ones (from Eq (2) to (4)) allows retention time 496 

prediction having solid statistics (r2 = 0.74) and a quite high Fisher coefficient (59.30). The plots experimental 497 

vs predicted log kIAM.SPH values for the subsets (a,b,c) and for the complete dataset (d) are shown in Figure 7. 498 

A further  validation is listed in Table S7.   499 

 500 

3.2 Biological barrier permeability prediction  501 

From the results so far achieved, the IAM.SPH demonstrated to exhibit some sort of originality when 502 

compared to IAM.PC on the market. However, the point that still needs clarification is whether this selectivity 503 

is relevant in drug development programs to reduce the attrition rates and direct efforts only on the most 504 

promising candidates, discontinuing the implementation of other molecules featuring substandard 505 

membrane permeability. 506 
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The previous work (De Vrieze et al., 2014) addresses partly this concern, as it was thereby demonstrated that 507 

the IAM.SPH proved as effective as IAM.PC and cholesteryl stationary phases in the prediction of log BB, i.e. 508 

the logarithm of the brain - to - plasma distribution ratio estimated in vivo.  However, if on one hand 509 

optimizing CNS candidate selection based on the value of log BB is a well-established practice, on the other 510 

hand solid evidences (Hammarlund-Udenaes et al., 2008) suggest that when used in isolation, this can be a 511 

misleading parameter, since it is generally accepted that it is the unbound drug that exerts the 512 

pharmacological effect.  Indeed, Summerfield and co-workers emphasized how increasing lipophilicity does 513 

not necessarily result in increased efficacy and may instead lead medicinal chemists astray in a chemical 514 

space that is hardly druggable due to poor solubility and metabolic instability. This approach might actually 515 

transpire to be one of the most misleading exercises within modern drug discovery (Jeffrey and Summerfield, 516 

2007).  517 

For this reason, we decided to consider in vivo BBB permeation parameters taken from the literature (Avdeef, 518 

2012) other than log BBB, focusing specifically on brain and plasma unbound fractions.  519 

The fraction unbound in plasma (fu,p) seems to be at some extent inversely related to the retention 520 

coefficients achieved on the IAM.SPH phase (Figure 8a). Interestingly, this relationship is much weaker when 521 

data on IAM.PC extracted from the literature (Ermondi et al., 2018) are used (Figure S6). The fraction 522 

unbound in plasma is an important determinant of drug efficacy in pharmacokinetic and pharmacodynamic 523 

studies. This is because, in general, only the unbound (free) drug can interact with pharmacological target 524 

proteins such as receptors, channels, and enzymes and can diffuse between plasma and tissues. In in vivo 525 

BBB partitioning studies, the fraction unbound in plasma is an indication of the amount of compounds 526 

exposed to the CNS and that can be readily up taken by the brain. The capability to surrogate the values of 527 

fraction unbound in plasma is also extremely beneficial in the optimization of therapeutic dose. In fact, for 528 

drugs having large values of fraction unbound in plasma, smaller doses can be administered allowing a more 529 

selective action and a mitigation of untoward effects. 530 

However, once reached the brain it is the unbound fraction to brain that is responsible of the pharmacological 531 

action; therefore an estimate of both fu,pl and fraction unbound in brain (fu,br) would be desirable for a more 532 

successful brain delivery strategy.  533 

To compare with a tool routinely employed by pharmaceutical enterprises and in an attempt to broaden our 534 

vision concerning the BBB partitioning of therapeutics, we selected from the literature (Tsinman et al., 2011) 535 

data achieved by parallel artificial membrane permeability assay (PAMPA) BBB. Indeed, PAMPA, developed 536 

by Kansy and co-workers (Kansy et al., 1998), is a non-cell-based, high-throughput permeation model which 537 

is widely used in the early phase of drug discovery for the prediction of passive diffusion of drug molecules 538 

across phospholipid membranes. Different implementations of this techniques have been developed in 539 
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recent years to mirror the specific compositions of the barriers under study, with the PAMPA BBB adapted 540 

to study the diffusion of therapeutics through the BBB. This is based on the stratification of a porcine brain 541 

lipid extract (PBLE) based artificial membrane dissolved in n-dodecane. The in vivo and in vitro data is 542 

reported in Table 3. Please note that PAMPA BBB P0 measurements refer to the permeability (cm·s−1)—of the 543 

neutral species only, whereas PAMPA BBB PM determinations reflect PAMPA transmembrane permeability 544 

(which is Pe, i.e. PAMPA effective permeability coefficient (cm·s−1)—the experimentally-determined value) 545 

corrected for the permeability of the aqueous boundary layer and aqueous pore diffusion effects. PAMPA 546 

BBB PM 7.4 are values adjusted at physiological pH according to the Henderson-Hasselbalch equation.  547 

Interestingly, the fraction unbound to brain seems to be well-parameterized by PAMPA BBB PM 7.4 (Figure 548 

8b). Interestingly, no relationship was observed between retention data on both IAM phases and PAMPA 549 

BBB P0 measurements. This was not at all surprising as most PBLE formulations available of the market 550 

feature a content of PC below 13 % and an unknown concentration of SPH.  551 

All in all these results suggest that IAM.SPH LC has a good potential to be implemented in drug development 552 

programs as it proved effective in the estimation of both log BB and of the fu,pl.  553 

 554 

4. Concluding remarks 555 

The IAM.PC stationary phases currently available of the market present several shortcomings, the most 556 

important being their lack in accuracy in representing some of the lipids structuring strategic body districts. 557 

The BBB is made of SPH for over 33% (v/v), making up for the most abundant lipid in this biological barrier 558 

which represents the obstacle that more than others jeopardizes the efforts of pharma companies aiming to 559 

produce drugs targeting the brain. Although an IAM phase based on SPH is not commercially available to 560 

date, a prototype was realized by the Separation Science Group in 2011 (Verzele et al., 2012) and used for 561 

drug partitioning studies (De Vrieze et al., 2014). However, a deep characterization of analytical retention on 562 

this stationary phase was not so far envisaged. This was fulfilled by the present work, which clearly 563 

demonstrates that:  564 

1. Although retention of neutral compounds is similarly dependent on n-octanol/water lipophilicity, the 565 

IAM.SPH retains originality when affinity for solutes supporting ionizable moieties is measured;  566 

2. On the basis of the data collected, IAM.SPH does not comply to the Avdeef’s “pH piston hypothesis” 567 

(Avdeef et al., 1998)  but rather reverts it;  568 

3. BR analysis proved, especially for neutral and acidic compounds, a valuable tool to scrutinize and 569 

visually represent and interpret the intermolecular forces governing retention on this novel phase;  570 
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4. QSPR modeling allowed prediction of retentive behavior usable for instance in virtual screening 571 

scenarios. In these settings, in fact, if some minor accuracy loss might be a reasonable price to pay 572 

for much faster estimates; 573 

5. The IAM.SPH demonstrated relevant not only in prediction of log BB as already evidenced (De Vrieze 574 

et al., 2014) but also in the estimation of a drug’s fraction unbound in plasma, a parameter that is 575 

crucial not only in BBB permeation but also in drug delivery and therapeutic dose optimization.    576 

Both BR analysis and QSPR can be run in batch, the former in MatLab and the second in VEGA ZZ 64 577 

interfaces, and on mid-range CPUs hence meeting the demands of private users and smaller enterprises.   578 
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Tables  579 

Table 1. 580 

Chemical  log kIAM.SPH log Pn-oct/water pKa Chemical nature Supplier 

3,5- dichlorophenol 1.027 3.68   N Merck  

3- bromoquinoline 0.459 3.03   N Merck 

3- chlorophenol  0.412 2.50   N Merck 

4- aminobenzoic acid -1.795 0.83 4.62 A Acros Organics 

acetaminophen  -0.794 0.51   N Acros Organics 

acetophenone -0.243 1.58   N Merck 

acetylsalicylic acid -1.269 1.18 3.50 A Acros Organics 

allopurinol -1.417 -0.55   N Merck 

amitriptyline  0.539 4.92 9.17 B TCI Europe 

amobarbital  0.014 2.07 7.48/11.15 A Merck  

antipyrine -1.002 0.38   N Acros Organics  

atenolol  -1.620 0.16 9.19 B Acros Organics  

atorvastatin  0.768 6.36 4.46 A Merck 

bifonazole 1.488 4.77  N Merck  

bromazepam -0.101 1.65  N Merck  

caffeic acid  -0.719 1.15 4.62 A Acros Organics 

caffeine -1.335 -0.07  N Acros Organics 

carbamazepine 0.012 2.19  N Acros Organics 

celecoxib  1.157 3.53 9.38 A Acros Organics 

chlorambucil 0.811 3.90 4.60 A TCI Europe  

chloramphenicol -0.014 1.14  N Acros Organics 

chlorpromazine  0.891 5.41 9.50 B TCI Europe  

cimetidine  -0.627 0.40 7.01 B TCI Europe 

citalopram  0.142 3.76 9.22 B TCI Europe  

clotrimazole 1.336 5.20  N Acros Organics 

cyclobenzaprine  0.518 5.20 8.47 B TCI Europe 

desipramine  0.516 4.90 10.28 B Merck  

dexamethasone -0.026 1.83  N Acros Organics  

diazepam 0.520 2.79  N Cerilliant 

diclofenac 0.791 4.51 3.99 A Acros Organics  

diethylstilboestrol 1.672 5.07   N Merck  
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domperidone  0.531 3.90 9.68 B TCI Europe  

donepezil  0.000 4.70 8.54 B Acros Organics  

estradiol 1.228 4.01  N Merck  

ethosuximide -1.004 0.38 9.27 A Acros Organics 

fexofenadine  0.091 2.81 7.84 A Merck  

fluconazole -0.820 0.50  N Merck  

flurbiprofen  0.482 4.16 4.18 A Acros Organics  

furosemide  -0.109 2.06 9.90 A Acros Organics  

gallic acid -1.484 0.70 8.54 A Acros Organics  

griseofulvin 0.240 2.18  N Acros Organics  

hexobarbital -0.154 1.98 8.20 A Merck 

hydrochlorothiazide -0.351 -0.07 9.80 A Merck  

hydrocortisone 0.100 1.55  N Acros Organics  

hydrocortisone 21- acetate 0.375 2.19  N Merck  

hydroxyzine  -0.635 3.43 7.52/1.58 B Merck  

ibuprofen  0.433 3.97 4.24 A Acros Organics  

imipramine  0.458 4.80 9.52 B Acros Organics  

ketoprofen  0.032 3.12 4.00 A TCI Europe  

ketorolac -0.222 2.10 3.84 A TCI Europe 

lorazepam 0.399 2.51  N Cerilliant 

lormetazepam 0.362 2.72  N Cerilliant 

methylthioinosine -0.817 0.09  N Aurora 

metoclopramide  -0.433 2.67 9.71 B TCI Europe 

metoprolol  -0.603 2.15 9.56 B TCI Europe 

metronidazole -1.153 -0.02  N Acros Organics  

naphthalene 0.767 3.37  N Acros Organics  

naproxen  0.104 3.18 4.14 A Acros Organics  

nifedipine 0.463 3.17  N Acros Organics  

nifuroxime -0.092 1.28  N Merck  

nitrofurazone -0.546 0.23  N TCI Europe  

nortriptyline  0.606 3.90 10.13 B TCI Europe  

paroxetine  0.641 2.53 9.77 B TCI Europe  

pentobarbital  0.043 2.10 8.18 A Cerilliant 

pentoxifylline -0.966 0.29  N TCI Europe  

phenobarbital  -0.211 1.47 7.41 A Cerilliant 
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phenytoin 0.344 2.47 8.28 A Merck 

piroxicam  0.008 3.06 5.29 A TCI Europe  

prednisolone 0.119 1.60  N TCI Europe  

prednisone -0.078 1.46  N TCI Europe  

promethazine  0.597 4.81 9.00 B TCI Europe  

propranolol  -0.635 3.48 9.16 B Acros Organics  

quinidine  -0.618 3.44 8.56 B Acros Organics  

quinoline -0.145 2.03  N TCI Europe 

ranitidine  -1.194 0.20 8.33 B TCI Europe 

rifampicin  0.591 2.70 1.70 B TCI Europe 

ropinirole  -0.640 3.06 10.17 B Merck 

salicylic acid -0.361 2.26 2.82 A Acros Organics  

terbutaline -0.885 0.90 11.02 B Cerilliant 

testosterone 0.727 3.29  N Cerilliant 

thiamphenicol -0.770 -0.27  N Acros Organics 

tolnaftate 1.928 5.40  N TCI Europe 

tramadol  -0.608 1.34 9.41 B Merck  

triprolidine  -0.027 3.92 8.64 B Merck 

valproic acid -0.321 2.75 4.54 A Acros Organics 

venlafaxine  -0.616 2.69 9.67 B Acros Organics 

verapamil  0.212 3.69 8.68 B Acros Organics 

warfarin 0.066 2.70 4.82 A TCI Europe 

 581 

Table 1. Common names, logarithms of the chromatographic retention coefficients on the IAM.SPH 582 

stationary phase, pKa values, chemical nature (A = acids, B = bases and N= neutral compounds) and suppliers 583 

for the 88 compounds measured in the present study.  584 

 585 

 586 

 587 

 588 

 589 

 590 
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Table 2.  591 

Dataset Variables N r2 SE F ExRow Equation Eq 

(n) 

neutrals 3 35 0.86 0.336 61.52 3,5-

dichlorophenol 

-1.5401 + 0.4195 VirtualLogP + 

0.0606 Torsions - 0.0517 

Lipole 

2 

acids 3 25 0.84 0.307 37.14 fexofenadine                        -3.6851 + 0.3963 VirtualLogP + 

0.4457 Vdiam - 0.1443 

FlexTorsions 

3 

bases 3 25 0.81 0.319 29.56 hydroxyzine                          -1.7191 + 0.2806 Rings + 

0.1946 VirtualLogP + 0.3215 

Lipole 

4 

dataset 4 87 0.74 0.396 59.30 fexofenadine                         -1.9477 + 0.3391 VirtualLogP + 

0.1953 Rings + 0.0890 Lipole + 

0.1052 Vdiam 

5 

 592 

Table 2. Statistic models based on QSPR analysis along with validation for various compound classes.  593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 
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Table 3 606 

 607 

Name fu,pl 
(Avdeef, 
2012) 

fu,br 
(Avdeef, 
2012) 

fu,pl/fu,br 

(Avdeef, 
2012) 

PS 
(Avdeef, 
2012) 

t1/2 (min) 
(Avdeef, 2012) 

PAM
PA 
BBB 
log P0 
(Tsin
man 
et al., 
2011) 

PAM
PA 
BBB 
log 
Pm 
7.4 
(Tsin
man 
et al., 
2011) 

acetamin
ophen 

0.744 0.807 0.925 38.000 3   

amitriptyli
ne 

0.090 0.003 28.000 1414.000 9 -1.27 435 

caffeine 1.045 0.810 1.550 165.000 1.5 -5.92 1 
carbamaz
epine 

0.258 0.118 2.267 401.0 3   

celecoxib 0.001 0.003 0.300 207.0 25   
chlorprom
azine 

0.035 0.001 47.000 774.0 28 -1.46 496 

cimetidin
e 

0.810 0.530 1.500 3.7 15 -6.40 0.40 

citalopra
m 

0.226 0.043 5.667 89.3 11 -2.09 99 

cyclobenz
aprine 

0.054 0.007 7.000 1905.0 5   

dexameth
asone 

0.272 0.098 3.000 31.0 12   

diazepam 0.109 0.053 2.050 370.0 4 -3.83 148 
diclofenac 0.012 0.055 0.200 58.0 11   
donepezil 0.285 0.102 3.000 200.0 4   
ethosuxim
ide 

0.815 0.742 1.100 34.0 4 -5.83 1.50 

fexofenad
ine 

0.350 0.077 5.000 0.4 136 -5.17 5 

flurbiprof
en 

0.006 0.129 0.050 160.0 4 -2.35 3 

hydroxyzi
ne 

0.052 0.010 5.000 417.0 10 -3.72 82 

ibuprofen 0.016 0.296 0.100 93.0 4 -2.64 4 
ketorolac 0.058 0.485 0.100 1.7 23   
metoclopr
amide 

0.710 0.310 2.300 21.0 8 -1.11 380 

metoprol
ol 

0.900 0.183 5.000 18.0 
 

  

naproxen 0.018 0.542 0.030 68.0 3 -2.63 0.60 
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nortriptyli
ne 

0.031 0.005 7.000 314.0 17   

paroxetin
e 

0.015 0.004 4.000 21.0 80   

phenytoin 0.161 0.104 1.733 64.0 8 -4.34 41 
propranol
ol 

0.120 0.022 7.500 770.0 6 -1.93 87 

quinidine 0.160 0.037 4.000 21.0 24 -2.85 93 
ranitidine 0.960 0.960 1.000 0.5 31   
rifampicin 0.120 0.140 0.900 0.1 

 
  

salicylic 
acid 

0.280 1.064 0.300 4.0 10     -
3.34 

0.02 

tramadol 0.850 0.234 4.000 4.3 
 

  
triprolidin
e 

0.310 0.092 3.000 501.0 3   

venlafaxin
e 

0.648 0.215 3.033 104.0 4   

verapamil 0.115 0.026 4.500 255.0 8 -2.03 196 
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Figures  624 

Figure 1 625 

 626 

 627 

Figure 1. Chemical structure of the industrially immobilized artificial membrane phase  IAM.PC and of the in 628 

house synthetized IAM.SPH prototype. Free silanol groups – although present – are not displayed.  629 

 630 

 631 

 632 

 633 

 634 
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Figure 2.  635 

 636 

 637 

Figure 2. UV chromatograms of donepezil (a) and chlorpromazine (b) measured in the present study. The 638 

experimental conditions are described in 2.1.6, while the equipment used is detailed in 2.1.5.639 
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Figure 3.  640 

 641 

 642 

Figure 3. Graph plotting kIAM.SPH vs log Pn-oct/water values for the complete dataset.  643 

 644 

 645 
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 653 

 654 

 655 
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Figure 4.  656 

 657 

 658 

Figure 4. On top, comparison of the BR plots with sign and absolute BR plots for the 36 neutral compounds 659 

achieved for n-octanol/water partitioning and analytical retention on IAM.PC and IAM.SPH stationary phases. 660 

At bottom, a short explanation about the meaning of each block.  661 

 662 
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Figure 5.  663 

 664 

Figure 5. (a) BR plots with sign deconvoluting the interactions underlying the analytical retention on IAM.SPH 665 

stationary phase and (b) plot experimental vs calculated log kIAM.SPH for the 26 acidic compounds.  666 
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Figure 6.  667 

 668 

Figure 6. Plot experimental vs calculated log kIAM.SPH for the whole dataset. The outliers are mentioned at the 669 

top left.  670 
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Figure 7.  671 

 672 

Figure 7. QSPR modeling: experimental vs predicted log kIAM.SPH plots for neutral (a), acidic (b), basic 673 

compounds (c) and for the whole dataset considered (d).  674 

 675 

 676 

 677 
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 684 

 685 
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Figure 8.  686 

 687 

Figure 8. Logarithm of chromatographic retention coefficients measured on the IAM.SPH vs unbound fraction 688 
in plasma. The three compounds deviating the most from the regression line are indicated.   689 
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