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Mind the Gap: Developments in Autonomous Driving Research and the 

Sustainability Challenge 

 

Scientific knowledge on autonomous-driving technology is expanding at a faster-than-ever 

pace. As a result, the likelihood of incurring information overload is particularly notable for 

researchers, who can struggle to overcome the gap between information processing 

requirements and information processing capacity. We address this issue by adopting a 

multi-granulation approach to latent knowledge discovery and synthesis in large-scale 

research domains. The proposed methodology combines citation-based community 

detection methods and topic modeling techniques to give a concise but comprehensive 

overview of how the autonomous vehicle (AV) research field is conceptually structured. 

Thirteen core thematic areas are extracted and presented by mining the large data-rich 

environments resulting from 50 years of AV research. The analysis demonstrates that this 

research field is strongly oriented towards examining the technological developments 

needed to enable the widespread rollout of AVs, whereas it largely overlooks the wide-

ranging sustainability implications of this sociotechnical transition. On account of these 

findings, we call for a broader engagement of AV researchers with the sustainability concept 

and we invite them to increase their commitment to conducting systematic investigations into 

the sustainability of AV deployment. Sustainability research is urgently required to produce 

an evidence-based understanding of what new sociotechnical arrangements are needed to 

ensure that the systemic technological change introduced by AV-based transport systems 

can fulfill societal functions while meeting the urgent need for more sustainable transport 

solutions. 

 

Keywords: autonomous vehicle; research developments; text mining; topic modeling; 

sustainability; knowledge gap 

 

1. Introduction 

 

The first motor vehicle that pioneering mechanical engineer Karl Benz invented in 1885 has 

escalated into a global fleet of approximately one billion cars and trucks, which constantly 

transport flows of people and goods (Burns, 2013). The existing transportation system is an 

essential enabler of social and economic interactions, yet its multifaceted negative impacts 

(Santos et al., 2010) are turning society away from meeting its sustainable development 

goals. Public transport services and private mobility solutions have become unaffordable for 

a growing share of the world population (Mullen et al., 2020). In addition, with an overall 
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production of energy-related greenhouse gas emissions of approximately 25%, 

transportation represents one of the most carbon-intensive sectors (Creutzig et al., 2015; 

Edenhofer et al., 2014). Being heavily dependent on fossil fuels (Ahmed et al., 2016), the 

transportation systems are also responsible for releasing a vast amount of air pollutants and 

harmful levels of noise, causing environmental degradation and acute effects on public 

health (Nicoletti et al., 2015). Not to mention the concerns generated by safety and security 

risk factors, with road traffic crashes which give rise to approximately 1.25 million deaths 

annually (Bartolomeos et al., 2013). 

Decoupling the provision of transport services and infrastructure assets from the detrimental 

consequences that the sector is imposing on society is key to attaining sustainable 

development objectives. In response to this call for a radical shift (Stephenson et al., 2018), 

multi-disciplinary research efforts are being made to assemble cross-cutting strategies in 

which diversified mitigation measures and sustainable transport solutions are combined 

(Xenias and Whitmarsh, 2013; Zawieska and Pieriegud, 2018).  

A growing body of research suggests autonomous-driving technology has the potential to 

radically reshape the future of transportation (Al-Kanj et al., 2020) and help generate the 

system innovation required to support the transition to fully sustainable sociotechnical 

transportation systems (Whitmarsh, 2012). Advancements in self-driving-vehicle technology 

promise to make urban environments more sustainable by reducing fuel consumption 

(Chehri and Mouftah, 2019), carbon emissions (Burns, 2013), air and light pollution (Dean et 

al., 2019; Stone et al., 2020), congestion-related productivity losses (Fagnant and 

Kockelman, 2015), and the risk of driving crashes (Duarte and Ratti, 2018; Grace and Ping, 

2018). In addition, the global AV market is expanding and expected to generate a global 

revenue of 173 billion dollars by 2023. Leading tech firms have already joined this expanding 

market, together with large vehicle manufacturers and related industries. Notable examples 

include the Intel company Mobileye, Uber, Waymo, Microsoft, and Tesla (Birdsall, 2014; 

Dagan et al., 2004; Stringham et al., 2015; Xu and Fan, 2019). Yet the commercial 

availability of self-driving vehicles is still far from becoming a reality (Hemphill, 2020). 

Despite the growing investments and interest, making self-driving vehicles penetrate into the 

mainstream market still needs substantial research and development efforts. 

With the volume of research on autonomous vehicles (AVs) on the rise, more and more 

knowledge is becoming available at a remarkably fast pace. This fast knowledge production 

process opens up significant development opportunities, but researchers can struggle with 

managing and exploring the large quantity of information which is constantly made available. 

In order to avoid information overload issues, research efforts are required to organize this 

information into an easy to interpret style.  
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This paper contributes to meet such an objective by reporting on the results of a multi-

method bibliometric study which offers a synthetized view of the scientific knowledge 

produced during the last five decades of AV research (1970-2019). Citation-based 

community detection methods and topic modeling based on exploratory factor analysis are 

combined to extract the relevant semantic structures (i.e. main keywords, central topics, and 

core research themes) hidden in this complex data-rich environment. These sub-information 

systems of latent variables are then analyzed to give a full account of how the intellectual 

structure of the AV research field is conceptually shaped. 

The paper is structured in four main sections. After presenting the growth rate of the AV 

research domain, the paper goes into the rationale behind its call for a more consistent effort 

to reach knowledge summarization in the large network of AV-related scientific publications 

released during the period under investigation. The introductory discussion ends by focusing 

on the challenges affecting large-scale exploratory text analytics and the role that digitally-

induced text mining techniques play in facilitating knowledge discovery processes. The 

paper continues with a detailed description of the methodology adopted to conduct the 

bibliometric analysis. This second section is followed by a discussion on the latent 

knowledge extracted during the analytical process, which is used to convey core knowledge 

from a large volume of scientific publications in a concise but comprehensive way. The 

paper concludes with a final section in which the insights captured through the analysis is 

summarized and used to offer recommendations on future research directions. The analysis 

demonstrates that AV research is not paying sufficient attention to the environmental 

consequences and socio-economic, cultural, political, institutional, and organizational 

implications that a mass market for autonomous driving technology can generate. After 

elaborating on this evidence-based statement, the conclusive section also reports on the 

limitations of the study and details its contribution. 

 

2. Latent knowledge discovery in AV research: a multi-granulation perspective 

 

Branches of science resemble living organisms and are subject to the evolutionary nature of 

scientific discovery. Since its inception, a field of scientific research progressively develops 

through knowledge production mechanisms, facilitated by open discussion amongst 

scholars. Formalized through academic publications, this debate progressively frames the 

overall intellectual structure of the research area. During this co-production process, 

however, it is easy for scholars to experience information overload and lose sight of how 

their fields of study have conceptually evolved (Roetzel, 2019). The likelihood of incurring 

information overload is particularly notable in an era where scientific knowledge is produced 

and accumulated at a faster-than-ever pace (Thananusak and Ansari, 2019; Valdez et al., 
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2018), in particular when dealing with research domains where a strong and fast-growing 

interest generates a sudden increase in the amount of available scientific information (Mora 

et al., 2017). This event can cause a potential gap between information processing needs 

and the existing capability to process such information (Eppler and Mengis, 2004).  

Recent developments in AV have raised information overload concerns (Cavazza et al., 

2019; Gandia et al., 2019; Rashidi et al., 2020). The interest of research institutions in 

examining the largely unknown socio-cultural, environmental, economic, and technological 

implications of vehicle automation has grown conspicuously over the years, especially 

during the last decade. This trend can be observed in Figure 1, where Scopus data is used 

to show the annual production volume of peer-reviewed scientific outputs focusing on AV 

research. Conducted at the end of January 2020, this publication search covers a 50-year 

timespan and has resulted in the identification of 18,153 publications. Approximately 80% of 

these knowledge items have been published during the period 2010-2019 and the majority 

has been accumulated between 2017 and 2019. These three years account for 55% of the 

Scopus-indexed scientific publications on autonomous driving released in the last five 

decades. The production peak was reached in 2019, with 4,841 publications (26.7%). 
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Figure 1. Five decades of AV research (Scopus data). APO: Annual publication output; 

CGR: Cumulative growth. 
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Scopus data confirms that autonomous driving has become a prominent topic of 

investigation in the scientific debate on transportation futures. Aware of the difficulties that 

researchers may experience when attempting to grasp the rapidly expanding intellectual 

structure of the AV research field, two initial studies have been conducted which attempt to 

guide summarization by means of knowledge maps. These studies combine knowledge 

domain visualization and bibliometric techniques to identify relevant semantic links between 

natural language representation components, whose visualization facilitates the 

understanding of core concepts embedded in large-scale collections of AV-related 

bibliographic data sources. 

The first study is conducted by Gandia et al. (2019), who focus on the WoS-indexed 

literature published between 1969 and 2018. The selection of this timeframe leads to the 

identification of 10,580 publications, from which two groups of items are extracted: a set of 

“research-front concepts” (Chen, 2006, p. 359) and a number of emergent research 

categories. The extraction process is conducted by using the software CiteSpace, where the 

burst detection algorithm designed by Kleiberg (2003) allows the authors to estimate the 

burst of each emergent concept and research category. When comparing the results, 

evidence of a trend change surfaces. According to the findings, AV research shows an initial 

techno-centric focus, with subject areas belonging to engineering and technology disciplines 

dominating the scientific debate. Research trends begin to evolve around 2015, when a 

more holistic research environment starts to develop as a result of the growing scientific 

contribution offered by studies in the social sciences. 

The investigation into the conceptual shifts describing the evolutionary nature of the AV 

research field continues with Rashidi et al. (2020). CiteScape remains the main supporting 

tool, but unlike the previous study, this second bibliometric analysis: (1) relies on a smaller 

bibliographic record composed of Scopus-indexed publications, rather than WoS data; (2) 

narrows the timeframe, covering the years between 1999 and 2018; and (3) excludes 

conference papers and a series of subject areas from the analysis which are considered 

irrelevant in the framework of the study. After dividing the 20-year timeframe of the analysis 

in 2-year time slices, Rashidi and colleagues use the 50 most co-cited publications of each 

slice to develop a document co-citation network, which is split into thematic clusters. Each 

cluster is then assigned a keyword that best synthesizes its underlying thematic focus. While 

the citation-based clustering analysis has been automated, the authors have conducted the 

labelling process manually, by reviewing titles, abstracts, and keywords of the publications in 

each cluster. The result of this task is a list of thirteen themes, which are visualized on a 

timeline tracing their evolution. 

The abovementioned studies offer an initial overview of the AV research field, but the insight 

they produce does not provide sufficient granularity to determine how this knowledge 
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domain is conceptually structured. As Gandia et al. (2019) observe, additional research is 

needed to complement their findings by increasing the level of detail. This requires looking 

over the too wide approximation of concepts resulting from their initial lists of emergent 

thematic areas and deepening the current understanding of the latent knowledge that each 

thematic area is shaped by. However, fulfilling this refined knowledge extraction process 

requires coping with the “curse of dimensionality” (Verleysen and François, 2005, p. 761). 

By adopting metrics of proximity or distances (Glänzel et al., 2019), community detection 

algorithms can be used to split a research field into clusters of thematically related 

publications (Panori et al., 2019). Thematic clusters are high-dimensional knowledge spaces 

in which huge amounts of textual data is gathered and connected by an intricate network of 

semantic links (Mora et al., 2019). As basic entities of natural languages, words offer an 

initial level of language-dependent understanding of the clusters’ contents. However, the 

presence of meaningless textual components generate noise, making it difficult to extract 

core information. Reducing the volume of the input variable space is indispensable, by 

removing as much irrelevant textual components as possible. During the dimensionality 

reduction process, depending upon the extent of the synthesis and degree of approximation 

(Yao, 2004), different levels of knowledge granulation can be reached. 

Given the limitations of manual coding techniques in large-scale exploratory text analyses 

(Kobayashi et al., 2018), the discovery of latent knowledge patterns requires examining 

thematic clusters by means of text mining techniques, which make it possible to 

automatically reduce dimensionality by filtering quality information from high-dimensional 

sets of textual data. The core knowledge embedded in a large-scale dataset can be 

expressed as the sum of three complementary sub-information systems (Jing et al., 2017) of 

latent variables: main keywords, central topics, and core research themes1. Sourcing and 

connecting the different levels of knowledge which are rooted in these subsystems is key to 

produce a condensed but thorough representation of the intellectual shape of a research 

area. As a result, a comprehensive knowledge discovery process entails a multi-granulation 

perspective (Roslovtsev and Marenkov, 2018; Thijs, 2019). 

Topic modeling is one of the most frequently used computer-assisted text data mining 

applications for knowledge discovery. Its usage makes it possible to automatically identify 

and look into sub-information systems of latent variables in high-dimensional collections of 

textual data, producing “insight in properties underlying those knowledge structures” 

(Tijssen, 1993, p. 111). Given a collection of unstructured textual data extracted from a 

cluster of thematically related publications, topic modeling combines a probabilistic approach 

to unsupervised learning and co-occurrence measures to: extract the words and phrases of 

                                                
1 The groups of variables are listed in ascending order of knowledge granularity. 
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greatest significance (Level 1: Keywords); arrange these text elements into groups of core 

topics (Level 2: Topics); and, facilitate the identification of the foremost thematic area 

emerging from each group of topics (Level 3: Research themes).  

Topic modeling allows the integration of latent knowledge sourced from multiple analytical 

levels (Valdez et al., 2018), moving from individual keywords to collections of textual 

components delineating relevant topics and core themes. With researchers selecting from a 

wide range of different topic modelling techniques and heterogenous data sources, this 

multi-granulation perspective to large-scale exploratory text analyses has proven successful 

in examining knowledge structures in different application domains. For example, by 

progressively increasing the granularity of the analysis, Valdez et al. (2018) surveyed the 

transcripts of 2016 US presidential debates to detect the main differences between the 

political views of the two candidates. With a content analysis of some 900 articles published 

in regional and national newspapers, Chandelier et al. (2018) assessed the printed media 

coverage of wolf recolonization in France during the period 1993–2014. Kuhn (2018) 

sourced textual data from 25,706 publicly available records to map recurrent topics within 

aviation incident reports. Talavera et al. (2020) discovered behavioral habits by translating 

the visual content of 100,000 images into textual data. Roy et al. (2012) offered insights into 

the environmental contributions to early lexical development by examining more than 

200,000 hours of audio and video recordings. This data captures the day-to-day linguistic 

environment in which a newborn child has been immersed during the first three years of life. 

 

3. Data and methods 

 

The abovementioned studies demonstrate that topic modelling has been successful in 

replacing laborious manual coding exercises in which the volume of data would have made 

the analysis impossible to complete without a computer-assisted approach. In addition, this 

research shows that different types of objectives call for different approaches to topic 

modelling and variations in the techniques, yet the analytical stages tend to remain the 

same. Three main phases can be identified, which have been considered in the framework 

of this study: preparation, topic modelling, and post-processing (Asmussen and Møller, 

2019; Kobayashi et al., 2018). 

 

3.1. Preparation 

 

The preparation phase begins with the identification of the peer-reviewed literature which 

forms the intellectual structure of the AV research area. Considering that Scopus represents 

one of the most comprehensive databases indexing scientific literature (Gomez-Jauregui et 
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al., 2014), the exploratory text-data mining analysis was conducted using the Scopus-

indexed scientific literature on autonomous driving as data sources. The analysis covers a 

50-year timespan, between 1970 and 2019. As shown in Figure 1, these five decades 

account for 18,153 publications, which were retrieved from the results of a keyword search. 

The search was conducted in January 2020 by using the following combination of terms and 

Boolean operators: TITLE-ABS-KEY (“autonomous car*” OR “autonomous vehicle*” OR 

“autonomous automobile*” OR “driverless car*” OR “driverless vehicle*” OR “driverless 

automobile*” OR “self-driving car*” OR “self-driving vehicle*” OR “self-driving automobile*”). 

After manually checking for errors in the dataset, citation data was used to build a document 

citation network which comprises 6,970 of the initial 18,153 bibliographic references. Only 

AV-related intellectual work which has been cited by or has cited other AV publications has 

been included. This methodological approach considers citations as a similarity measure 

and a mean for connecting publications dealing with a mutual intellectual interest (Fitzpatrick 

et al., 2018), and it indicates that central topics and core research themes of a research field 

are rooted in its highly cited publications and the chain of publications which have 

subsequently built on their contents (Panori et al., 2019).  

The Louvain modularity algorithm implemented in Gephi was then used to measure the 

strength of division of the large network of publications into clusters of thematically related 

items. Several algorithms can be found in the available literature, which are adopted for 

network modularity optimization, but most of them are unsuitable for finding communities in 

large networks. The Louvain algorithm, a large-scale modularity optimization algorithm 

designed by Blondel et al. (2008), is the most commonly used option for such purposes 

(Glänzel and Thijs, 2017; Yu et al., 2017).  

During the clustering process, 13,397 citations were considered, and each publication was 

assigned to a thematic cluster. The publications belonging to each thematic cluster were 

subsequently assigned a Rich Text Format (RTF) file containing the following textual data: 

the publication title, abstract, and keywords. The RTF files were then uploaded onto the 

content analysis software WordStat (Version 8.0.21), which converted the thematic clusters 

into high-dimensional sets of unstructured textual data and to semi-automatize the data 

preparation and cleaning process. For each cluster, the textual data extracted from its RTF 

files was organized in a tabulated form, in which all words were listed together with their raw 

frequency and co-occurrence. Stop words were subsequently filtered out to eliminate noise. 

In addition, acronyms were substituted with their extended forms, common misspellings 

were corrected, and variant forms of the same word were grouped together (lemmatization).   
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3.2. Topic modelling 

 

To reduce dimensionality and better filter quality information describing the intellectual 

structure of the AV research field, topic modelling was used to analyze each thematic 

cluster. WordStat’s topic modelling function was selected, which is performed on factor 

analysis with varimax rotation (Péladeau and Davoodi, 2018). Multiple levels of analysis 

were combined during the examination, making it possible to progressively source different 

types of latent knowledge. By considering co-occurrence values, the software was instructed 

to detect groups of interrelated keywords and assign a topic to each group. The topics 

represent a set of underlying variables called factors.  

Scree plots (Cattell, 1996) and parallel analyses (Horn, 1965) were used for factor retention 

purposes, to determine the number of topics to consider for each cluster. In an exploratory 

factor analysis, a scree plot is a line chart which displays the eigenvalues of all the factors 

identified during the analytical process in a downward curve (Nebel-Schwalm and Davis, 

2011). The inflection point where the slope of the curve levels off divides the factors, 

revealing those which can be discarded as irrelevant to the analysis (Jany et al., 2020). If 

considered in the profile of the thematic cluster, these factors “would add relatively little to 

the information already extracted” (Woods and Edwards, 2011, p. 373). A number of 

experiments demonstrate that scree plot tests are easily manageable and tend to produce 

accurate results (Cattell and Vogelmann, 1977; Linn, 1968; Zwick and Velicer, 1982). 

However, reliability issues can surface, leading to an overestimated number of salient topics 

(Crawford and Koopman, 1979; Zwick and Velicer, 1986). Aware of the potential bias that 

the “subjective quality” (Hoyle and Duvall, 2004, p. 305) of this technique can generate, the 

examination of the patterns of decreasing eigenvalues was conducted by overlapping the 

results of both scree plot tests and parallel analysis (Ledesma et al., 2015; Nebel-Schwalm 

and Davis, 2011). 

The topic modelling phase concludes with the identification of the core research themes, 

which were derived by inductive reasoning. This task was completed by examining the 

groups of keywords and topics of each cluster, as well as their top ten core documents. The 

core documents of a thematic cluster are the publications with the highest level of centrality. 

The centrality of a document in a cluster is directly proportional to its in-degree value, a 

social network analysis measure which is calculated by combining the number of citations 

they have received from other publications belonging to the network. Due to their high 

connectivity, core documents are the main cognitive nodes of a thematic cluster (Meyer and 

Beiker, 2014; Mora and Deakin, 2019) and provide most of the information describing its 
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contents. In this investigation, core documents are deployed as a form of data triangulation 

to improve construct validity. 

 

3.3. Post-processing 

 

The last phase of the knowledge discovery process involved interpreting the results of the 

topic modelling and validating the proposed observations (Kobayashi et al., 2018). A concise 

review of each thematic cluster was proposed, in which the three complementary sub-

information systems of latent variables identified during the topic modelling phase were 

linked (i.e. keywords, topics, and research themes).  

Finally, four independent experts were tasked with verifying the validity of the extracted 

knowledge patterns and significance of the contents used to present them. In this study, 

domain experts are representatives of public or private organizations who have been 

actively engaged with research activities in the AV sector and have accumulated at least five 

years of professional experience. This selection criteria made it possible to ensure that the 

selected experts had a proven knowledge background in AV research. Each domain expert 

was invited to undertake a one-hour interview. During the interview, they were initially 

introduced to the analysis and were then asked to provide feedback on the results. A yes/no 

binary system was adopted to evaluate the extent to which the experts were in agreement 

with the proposed overall structure and the contents of each cluster. In case of 

disagreement, comments motivating the answer were collected and used to refine the topic 

modelling output. When changes were proposed, before being processed, their validity was 

checked with all other reviewers. 

 

4. Results 

 

The network graph in Figure 2 is a document citation network which shows how the AV 

research field is structured by considering the last five decades of scientific publication 

output and its main thematic research areas. The network is a combination of edges and 

nodes. The nodes are Scopus-indexed publications. Each node has a diameter proportional 

to its in-degree centrality. Therefore, the higher the number of citations received by a 

publication, the larger its diameter in the graph. The citations are represented as edges, 

whose weight is directly proportional to the number of citations connecting two nodes. 
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Figure 2. Document citation network and thematic clusters. The size of each cluster is 

expressed in percentage of publications. 
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The analysis of the document citation network uncovered 13 clusters of thematically related 

publications. The core literature of each cluster is listed in Appendix A, while the results of 

the topic modelling phase are presented in Appendix B, in which the main keywords, 

emergent topics, and core research themes are organized. The following sub-sections draw 

a connection between these knowledge items in order to provide a concise written account 

of the semantic structure of each thematic cluster. 

This activity has been implemented by using the core literature as the main reference 

source, together with the data in Table 1, which visualizes the temporal evolution of the core 

research themes and shows how their intensity has evolved over the years. The intensity is 

a measure of the annual publication output of each cluster. The higher the number of 

publications added to a thematic cluster during a specific year, the higher its intensity. 

During the validation process, all reviewers agreed with the conceptual structure of the AV 

research field. As a result, only a few changes were suggested, but at the cluster level. 

These changes aimed at enhancing clarity in the discussion phase. Therefore, the input 

collected during the validation process has not only generated construct validity evidence, 

but it has also helped refine the description of the thematic clusters. 

 

 

Year Thematic clusters 

  CL.01 CL.02 CL.03 CL.04 CL.05 CL.06 CL.07 CL.08 CL.09 CL.10 CL.11 CL.12 CL.13 

1970-85 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 

1986 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 

1987 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.7% 0.5% 0.0% 0.0% 0.0% 0.0% 

1988 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 

1989 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.1% 0.0% 0.0% 0.0% 0.0% 0.0% 

1990 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

1991 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.5% 0.0% 

1992 0.2% 0.0% 0.3% 0.2% 0.0% 0.0% 0.7% 3.5% 3.4% 0.1% 0.0% 0.0% 0.0% 

1993 0.1% 0.0% 0.3% 0.2% 0.0% 0.0% 0.0% 0.7% 0.0% 0.1% 0.0% 0.0% 0.0% 

1994 0.1% 0.2% 0.5% 0.0% 0.0% 0.7% 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 

1995 0.1% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 2.1% 0.0% 0.0% 0.0% 0.0% 0.0% 

1996 0.1% 0.3% 0.3% 0.2% 1.3% 0.7% 0.0% 2.8% 0.0% 0.0% 0.0% 0.0% 1.7% 

1997 0.2% 0.5% 0.3% 0.4% 1.3% 1.1% 0.0% 1.4% 1.5% 0.0% 0.0% 0.0% 0.0% 

1998 0.4% 0.3% 0.8% 1.0% 2.5% 0.0% 0.0% 2.8% 1.5% 0.3% 0.0% 0.5% 0.0% 

1999 0.0% 0.3% 0.3% 0.0% 0.4% 0.4% 0.0% 2.1% 2.0% 0.0% 0.0% 0.5% 0.0% 

2000 0.3% 0.8% 0.3% 0.2% 0.8% 0.7% 0.7% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 
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2001 0.1% 2.2% 0.8% 0.8% 0.8% 1.8% 0.0% 5.6% 0.0% 0.0% 0.2% 0.0% 0.0% 

2002 0.2% 3.0% 0.8% 1.0% 3.4% 1.5% 0.0% 1.4% 0.5% 0.0% 0.0% 0.0% 1.7% 

2003 0.3% 4.0% 1.3% 1.0% 3.0% 0.4% 0.0% 2.8% 2.4% 0.0% 0.0% 0.0% 1.7% 

2004 0.5% 4.0% 1.3% 1.1% 5.9% 1.1% 2.9% 5.6% 2.9% 0.0% 0.0% 0.5% 1.7% 

2005 0.6% 5.1% 2.6% 1.0% 7.6% 1.5% 1.5% 4.2% 0.5% 0.1% 0.5% 0.5% 0.0% 

2006 1.2% 5.3% 0.5% 2.1% 3.4% 1.1% 2.9% 4.2% 0.5% 0.2% 0.0% 1.0% 0.0% 

2007 1.8% 3.7% 1.6% 1.7% 3.4% 0.7% 4.4% 4.9% 2.0% 0.6% 1.0% 1.0% 1.7% 

2008 2.8% 5.8% 1.0% 2.1% 5.1% 1.8% 0.7% 5.6% 1.5% 0.6% 0.7% 2.0% 6.8% 

2009 2.4% 5.1% 1.6% 2.7% 5.5% 1.5% 2.9% 4.2% 1.5% 0.4% 0.0% 0.5% 10.2% 

2010 3.3% 4.7% 3.1% 2.9% 4.7% 1.5% 4.4% 9.7% 1.0% 0.8% 1.0% 2.0% 6.8% 

2011 3.4% 4.0% 4.1% 5.7% 3.0% 1.5% 2.2% 2.1% 3.9% 1.8% 0.7% 2.0% 11.9% 

2012 4.7% 6.3% 2.1% 3.2% 3.4% 1.5% 3.7% 3.5% 3.9% 2.4% 1.2% 3.9% 6.8% 

2013 4.8% 5.3% 4.7% 3.4% 6.4% 3.3% 5.1% 3.5% 2.4% 2.2% 1.0% 3.4% 5.1% 

2014 6.6% 5.3% 5.2% 6.3% 5.5% 5.9% 6.6% 1.4% 4.4% 3.0% 3.6% 5.4% 11.9% 

2015 7.9% 5.1% 6.2% 7.6% 5.5% 6.6% 8.1% 2.1% 9.3% 5.2% 5.8% 4.9% 5.1% 

2016 10.0% 5.5% 8.8% 10.8% 5.9% 8.4% 8.1% 3.5% 9.3% 11.3% 13.6% 8.9% 8.5% 

2017 13.1% 7.2% 16.8% 13.3% 6.4% 13.6% 6.6% 2.8% 17.6% 16.3% 19.0% 9.9% 5.1% 

2018 21.6% 9.1% 19.4% 21.3% 8.9% 27.1% 22.8% 8.3% 16.6% 28.2% 29.2% 31.0% 11.9% 

2019 13.2% 6.7% 15.0% 9.7% 5.9% 15.8% 15.4% 2.1% 10.7% 26.4% 22.4% 21.7% 1.7% 

 

Table 1. Temporal evolution of the core research themes: intensity of the publication output 

by year 

 

4.1. CL.01: The Urban Challenge 

 

The first cluster mainly focuses on the 2007 DARPA Urban Challenge2 (Broggi et al., 2016). 

This driverless car race has triggered a significant number of studies that build on its 

outcome to examine the complexity of AV operation in urban environments and propose 

approaches to modelling, as well as motion planning, for improving AV operations in 

uncertain, dynamic and un/semi-structured environments. For example, Urmson et al. (2008) 

introduce the three-layer planning system of Boss, the driverless vehicle which won the first 

place of the challenge. The Boss is a 2007 Chevy Tahoe with an artificially intelligent mixed-

mode system combining: (1) a mission planning layer, which creates various options of 

                                                
2 The Defense Advanced Research Projects Agency (DARPA) sets competitions with millions of dollar 

awards to encourage the development of AVs, and the Urban Challenge is the third one of the Grand 

Challenge series. It took place in November 2007, in California, where the Carnegie Mellon 

University’s vehicle named Boss reached the first place. 
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trajectories towards the destinations; (2) a behavioral layer that decides the moment for 

lane-changing and simulates error recovery, and; (3) a layer of motion planning to avoid 

obstacles.  

Lessons learned from Boss are deployed by Ferguson et al. (2008) to design a motion 

planning framework that improves AV’s navigation in urban environments. This framework 

combines three components: the first component is an algorithm that generates accurate 

trajectories and dynamically feasible actions, the second component is a lane-based planner 

for real-time road situations, and the third one is a 4D lattice planner that tackles 

unstructured areas. By gathering insight from other prototypes presented during the 

challenge, Campbell et al. (2010) examine the status of the AV research and further 

highlight the technological challenges of introducing autonomous driving into urban 

environments. Kuwata et al. (2009) and Dolgov et al. (2010) report on two novel path 

planning approaches which they have deployed during the challenge. The first team of 

researchers proposes a system that deploys the Rapidly-exploring Random Tree (RRT) 

algorithm to manage motion planning. The second one consists of a two-phase procedure in 

which the variant of the A* search is used to obtain feasible trajectories.  

Borrelli et al. (2005) and Falcone et al. (2007) both look at how the Active Front Steering 

(AFS) systems functioned for AVs in the challenge. They expand this subject area by 

proposing a new Model Predictive Control (MPC)-based approach, which can effectively 

enhance AV’s stability of predictive active steering, barking, and driving performance in 

general.  

 

4.2. CL.02: Real-time motion planning of multi-AV operations  

 

Planning the real-time motion of multi-AV operations is a key challenge (Frazzoli et al., 

2002). This cluster focuses attention on this subject matter of investigation and introduces 

various control systems and techniques for multi-AV operations in dynamic road 

environments, such as sensor network and position measurement for collision avoidance. 

For example, based on mathematical programming formulations, Schouwenaars et al. 

(2001) present an approach to planning the trajectories of multiple vehicles to avoid 

collisions. In addition, Leonard and Fiorelli (2001) contribute with a framework that 

coordinates a fleet of vehicles by modelling the vehicles as point masses that contain full 

actuation. The approach stabilizes flocking motions with vehicles’ prescribed group 

geometry and controls the inter-vehicle spacing by using artificial potentials and virtual 

beacons.  

Advancements in real-time motion planning of multi-AV operations continue with Olfati-

Saber and Murray (2002). The framework proposed by Leonard and Fiorelli seeks a 
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distributed control law that works for the scenario of multi-AVs’ operation. Olfati-Saber and 

Murray provide two examples of structural formation stabilization which demonstrate such a 

framework, involving 3 vehicles and 6 vehicles respectively. Similarly, Olfati-Saber (2006) 

introduces a theoretical framework that can generate and analyze the distributed flocking 

algorithms for multi-vehicle networked systems. It addressed not only the cases of free-

flocking but also the cases of flocking with obstacle avoidance. Comparative studies of three 

flocking algorithms contributed to the future research of collision avoidance. Similarly, Cortes 

et al. (2004) present an approach that focuses on multi-vehicle networks. 

Inspired by the DARPA Urban Challenge, Wongpiromsarn et al. (2012) put forward an 

approach that can synthesize control protocols automatically. It ensures system correctness 

for its specification expressed in linear temporal logic in any operational conditions. Besides, 

a receding-horizon based framework was presented, which can simplify a computational 

synthesis problem and divide it into smaller, easy-to-solve problems. Further investigation of 

the robustness of this framework is expected. 

 

4.3. CL.03: Multi-sensors and fusion systems 

 

Seeing and understanding road conditions is crucial for AV detection and navigation, which 

depend on the interaction between sensors and AI-empowered systems. This cluster looks 

at virtual-based techniques and tests for automated driving. 

Sensor devices, processing, and fusion algorithms are crucial components of a data fusion 

system. Important probabilistic modelling and fusion techniques as well as nonprobabilistic 

data fusion methods are reviewed by Durrant-Whyte and Henderson (2016). Their research 

outlines key principles in data fusion architectures from a hardware perspective as well as 

an algorithmic perspective. It also reports on two examples of applications: (1) a self-tracking 

application for AV navigation and (2) an application in mapping and environment modelling. 

Pioneering research on multi-sensor data fusion first appears in the late 90s (Hall and Llinas, 

1997). The experiment-based studies, however, emerge only in recent times. Cho et al. 

(2014) design an object-detection and tracking system based on the old version 

implemented during the DARPA Urban Challenge in 2007. The vision module in this system 

detects vehicles, cyclists, and pedestrians to generate vision targets accordingly, which 

improves the capabilities of movement classification and data association for sensors’ 

measurement. The major downsides of this system are identified as the errors caused by: 

(1) the perceptions of new areas and (2) the inaccurate pose estimation and noise 

measurements (Moras et al., 2011).  

Research belonging to this cluster also examines various approaches to implementing 

navigation systems for AVs. For example, using evidential reasoning, Pagac (1998) 
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analyses the issues of building and maintaining a map of the AV environments to improve its 

navigation performance. The implemented approach allows support for multiple propositions 

at a time, which differs from the Bayes approach as it only allows a single hypothesis. 

Building upon such studies, Desjardins and Chaib-Draa (2011) propose a method for 

designing AV controllers with machine learning techniques, while Häne et al. (2015) present 

an approach to drawing out static obstacles from depth maps that are computed from multi-

consecutive images. With the support of monocular fisheye cameras, this system enables a 

wider view to detect obstacles. Other novel approaches to the implementation of AV 

navigation systems include focusing on image processing and vision abilities (Menze and 

Geiger, 2015), designing driving behavior models (Al-Shihabi and Mourant, 2003), and 

simulators (Pereira and Rossetti, 2012). 

 

4.4. CL.04: Road boundaries and extended curbs detection 

 

This cluster focuses on developing sensors and algorithms for AV real-time detection of road 

boundaries and extended curbs. Improvements in stereo image processing, localization, and 

mapping techniques are key topics. 

Bertozzi et al. (1998) discuss the possibility of extending an inverse perspective mapping 

geometrical transformation to a stereo image procession and present a calibration method 

for autonomous vehicles. As an example of an application in the field of AVs, it explicates 

the efficiency of an inverse perspective mapping. This work contributes to the development 

of various sensors and cameras for operating AVs. For example, Davison et al. (2007) 

developed an algorithm called MonoSLAM that uses real-time data to playback the 3D 

trajectories of a monocular camera that moves at high speed in unfamiliar scenes. based on 

real-time data. Furthermore, this work is expected to be extended for AV’s real-time 

localization and mapping. With the development of Lidar, IMU, and GPS techniques, 

collected data can be applied to build a high-resolution infrared remittance ground map and 

this improvement supports AV navigation in dynamic urban environments (Levinson and 

Thrun, 2010). An extension to this approach can generate higher precision, improve the 

ability to understand and learn maps continually, and increase the robustness to the 

diversification of environments. Following this stream of research, Mutz (2016) introduced an 

end-to-end framework that can enhance the precision of large-scale mapping for 

autonomous driving. The large-scale mapping system was evaluated, and the experiment 

suggests it has the potential to support AV operations.  

By adopting different approaches, Huang et al. (2009) demonstrate a system that uses 

calibrated video imagery plus laser range data to detect and predict the multiple travel lanes 

on city roads. This system successfully guides an AV through a 90km long course at speeds 
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up to 40km/h in dynamic environments during the 2007 DARPA Urban Challenge. Similar 

systems that use vision data and Lidar emerge in the following years (Han et al., 2012; Hata 

et al., 2014; Li et al., 2014; Wijesoma et al., 2004). Numerous experiments are conducted for 

map-based visual localization and the results suggest the possibility and feasibility of using a 

single monocular camera to produce data for visual localization in a 3D Lidar map that 

contains surface reflectivity (Wolcott and Eustice, 2014).  

 

4.5. CL.05: Motion planning for agricultural machinery  

 

This cluster investigates motion planning for autonomous wheeled vehicles, especially 

addressing maneuver issues by means of fussy systems and other methods, and with a 

predominant focus on autonomous driving systems for agricultural machinery. 

Gómez-Bravo et al. (2001) present a method to generate real-time operation strategies for 

wheeled vehicles, which uses artificial intelligence techniques, namely, fuzzy logic. A fuzzy 

system helps select strategies from the set of maneuvers based on the environments. It is 

associated with the optimization of path-selection, the performance of path tracking and 

collision avoidance. The proposed method contains three advantages: (a) it includes 

maneuvers for parallel parking as well as diagonal parking; (b) it obtains a set of maneuvers 

for collision avoidance and suggestions for viable starting points; and (c) it can define 

several optimal maneuvers for consideration.  

Fuzzy systems are applied to address specific car maneuvers. For example, the 

Autonomous Fuzzy Behavior Control (AFBC) approach is introduced to simulate human’s 

driving techniques and behaviors, especially parallel parking skills (Li et al., 2003). This 

method is developed based on the driving experiences, sensor-based behaviors, and Fuzzy 

Logic Control (FLC) techniques. Similarly, a fuzzy control system is developed to tackle 

issues associated with the diagonal parking of AVs in the narrow space, which is a common 

challenge in motion planning of wheeled systems (Baturone et al., 2004). A wide collection 

of experimental results from Cuesta et al. (2004), including different vehicles, environments 

and control architectures, suggests the robustness and flexibility of the proposed fuzzy 

systems.  

In terms of testing, Kelly et al. (2006) investigated the architecture of the system in the 

DARPA PerceptOR program. The DARPA PerceptOR project enforces a strict test that 

accelerates the development of mobile robots and other applications in the field. By 

demonstrating the challenges and lessons learned from the testing, this study contributes to 

enhanced motion planning in various challenging environments. 

To increase the productivity of specialty crops and reduce the human-labor cost, the 

Autonomous Prime Movers (APMs) is designed (Bergerman et al., 2012). The three-year 
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experiment proves the ability to create cost-effective orchard AVs that can automate tree 

pruning, mowing, spraying, fruit harvesting, and other daily orchard tasks. Likewise, 

Subramanian et al. (2006) discussed the design and development of an autonomous 

guidance system that can be potentially used in a citrus grove and Cariou et al. (2009) 

address the problem of path tracking for mobile robots that move on the slippery ground. 

4.6. CL.06: Lane detection and connected technologies 

 

This cluster focuses on two major technologies for autonomous driving-lane detection based 

on visual abilities and connected technologies. The recent development of connected 

technologies enables vehicle-to-vehicle communication, vehicle-to-infrastructure 

communication, and vehicle-to-everything communication, which benefits lane detection and 

can be expanded to broad functional areas.  

Ünyelioǧlu et al. (1997) designed a constant steering controller for lane following by 

measuring the look-ahead point’s deviation. This study lays a foundation for lane-keeping 

and detection research. Building upon such research, a real-time algorithm for AV lane 

detection is proposed (Assidiq et al., 2008), which uses the video data captured by a vehicle 

driving on the highway. This algorithm can be applied to AV’s operation on various roads, 

including unpainted roads and roads with slight curves. Using both a linear algorithm and a 

non-linear algorithm, Törő et al. (2016) present the lane-keeping design and implementation 

of an automated and electric go-cart. Focusing on AV visual abilities, Batista et al. (2015) 

come up with a novel method to detect and estimate lanes, which relies on the road image 

captured by a monocular camera. In other words, the key to the success of this algorithm is 

the robustness of image processing, which deploys techniques such as Probabilistic Hough 

Transform, vehicle lateral localization, road marker estimation. This study thus offers a 

robust system that takes the perspective image as the only data source. Another example is 

the system designed in the Blind Driver Challenge3 (BDC), which allows the safe operation 

of a vehicle by the visually impaired (Hong et al., 2008). This system shows the potential to 

enhance mobility for visually impaired people. It can also be extended to assist in driving for 

other groups of people. 

Having benefited from the advancement of the internet and connected technologies, 

vehicles became connected. The development of intelligent vehicles based on different 

technologies such as grid, automation, connectivity, and vehicular cloud starts being 

explored (Gerla et al., 2014), as well as its potential impact on the market (Pearmine, 2017). 

Meanwhile, Amoozadeh et al. (2015) propose a critical view of the vulnerability of connected 

                                                
3 BDC was launched in 2009 by the National Federation of the Blind Jernigan Institute. This initiative 

aimed to support the creation of a vehicle that blind persons can operate independently. 
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AVs by looking at the potential attacks on communication channels that may threaten AV 

security. This investigation points out a future research direction of AV security. 

 

 

 

 

4.7. CL.07: Motion planning for underwater intervention 

 

The cluster CL.07 investigates the deployment of collaborative/multi autonomous vehicles in 

dynamic environments, especially focusing on their underwater operation. 

Automation technologies enable the exploration of dangerous environments, such as the 

deep ocean. An overview of the development of automated technologies that enable various 

aerial and sea applications is offered by Steinberg (2006), while Marani et al. (2009) present 

one of the first approaches that involve the development of a robust autonomous 

manipulation. Some live experiments and trials are conducted. For example, during the 

Adaptive Sampling and Prediction (ASAP) experiment in California in 2006, a full-scaled 

ocean sampling network is implemented (Leonard et al., 2010), demonstrating new 

techniques designed to coordinate environmental sensor-empowered AVs to conduct 

sampling tasks in the ocean. Likewise, other research (Nađ et al., 2015) presents an 

experiment of AV’s navigation, guidance and control (NGC), which suggests the robustness 

of motion of all directions for an autonomous marine vessel. These practices enrich 

theoretical discussions and technological approaches. The Underwater Systems and 

Technology Laboratory (LSTS), which creates sensing devices, various types of AV 

applications, and networked AV systems with human operators, lead the way to develop and 

evaluate approaches to underwater automation technologies. A layered control architecture 

invented at LSTS is introduced along with a demonstration of its deployed software (Pinto et 

al., 2012), and a C3I infrastructure (Communications, Command, Control, and 

Intelligence/Information), i.e. the Neptus framework, is also developed by LSTS (Dias et al., 

2005). This framework supports the coordinated operation of multiple types of AVs, including 

the fully automated vehicles and the semi-automated ones.  

Studying the evolutionary history of autonomous underwater vehicles (AUVs) also helps 

improve the understanding of coastal dynamics and further contributes to its 

characterization. Galceran et al. (2012) assess the relatively mature Remote Environmental 

Monitoring Units (REMUS) of an AUV system. Based on data collected from a 750km long 

underwater operation, the study demonstrates the REMUS as a feasible underwater 

platform that can operate automatically. Furthermore, it implies the importance of adopting 

suitable sampling methods and the parameterization of model domains.  
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The prospects of using collaborative autonomous vehicles in mine countermeasures (MCM) 

scenarios are also explored (Djapic and Nađ, 2010), where this technology can reduce the 

workload while improving the safety of operators. 

 

 

 

 

4.8. CL.08: Obstacle detection and avoidance in different conditions 

 

This cluster looks at different approaches to lane detection based on vision systems and 

algorithms. AV obstacle detection and avoidance abilities are explored in different 

conditions. 

In 1985, a pioneering computer-vision system was built by the University of Maryland’s 

computer vision lab (Davis and Kushner, 1986) for AV’s road and road network navigation, 

wherein the image processing component along with the implementation of a set of 

algorithms were investigated. Inspired by this work, a cruise control system is created for AV 

guidance on the German highway system (Maurer et al., 1996) and image sequences 

techniques are implemented (Enkelmann, 1991; Suzuki et al., 1992), laying the foundations 

for AV detection and navigation studies.  

Equally important to road recognition, efficient obstacle detection on roads within a short 

time helps trigger appropriate reactions to road situations. Apart from the slow changes in 

aspect conditions caused by long translation processes, there exist fast changes generated 

by rotational motion components. Research by Dickmanns (2007) mainly focuses on this 

subject matter of investigation.  

AV’s lane detection technique becomes mature under certain conditions in terms of speed 

and accuracy. Additional research was conducted, tackling challenging conditions, for 

instance, night-time operations. A lane detection algorithm implemented by Lipski et al. 

(2008), which is tested on an AV that participated in the 2007 Urban Challenge, has 

achieved satisfying experimental results as it can robustly detect and track multiple lane 

markings simultaneously. The algorithm, in combination with Lidar, radar, and other sensors, 

empowers the autonomous vehicles to drive in cities at the maximum speed of 15 mp/h. 

Similarly, the Springrobot prototype, which adopts a novel algorithm for lane-marking 

detection, uses a driver assistance system with the safety warning and an autopilot system 

for traffic in both rural and urban environments (Li et al., 2004). The prototype is 

demonstrated along with its lane-detecting tasks, and the experiment suggests that the 

accuracy and robustness of detecting road boundaries are challenging for AVs under 

different road conditions or during different periods of a day with changing light-conditions. It 
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also points out that future studies should aim to reduce the running time in lane detection 

and improve machine learning’s role in such a domain. 

 

4.9. CL.09: Traffic sign recognition 

 

Traffic sign recognition for AV is the main focus of this cluster, with cybersecurity concerns 

briefly mentioned. A vision-based smart vehicle has three roles, including road detection, 

obstacle detection as well as sign recognition. De la Escalera et al. (2003; 1997) introduced 

algorithms to improve the detection and classification of signs. Fairfield and Urmson (2011) 

proposed a novel method to automatically map the 3D positions of traffic lights and detect 

traffic light state onboard vehicles. In addition, Levinson et al. (2011) presented a passive 

camera-based pipeline that can detect the traffic light state. It uses vehicle localization 

techniques and assumes a prior knowledge of traffic light location. The latter study shows 

that multi-lights detection for each intersection improves the robustness to noise. The 

performance of single-light detection is also improved. Algorithms for traffic light recognition 

that use machine learning and computer vision techniques are further introduced in the 

following years. For instance, traffic light recognition algorithm presented by John et al. 

(2014) used a neural network to detect and draw out images features.  

After recognizing traffic signs, AVs need to make decisions. Regele (2008) proposes a 

modelling method to improve the decision-making process for autonomous vehicles. 

Applying a hierarchical world model, it distinguishes a low-level model from a high-level 

model as the former one plans vehicle trajectories while the latter one coordinates road 

traffic. The traffic model is expected to be integrated into traffic management. 

 

4.10. CL.10: Social impacts and integration of AVs 

 

This cluster gathers social-oriented research on AVs and its attention is focused on the 

social effects and public acceptance of AV technology. The publications in this cluster also 

provide an overview of the potential benefits of AV developments to road safety and driving 

environments, and they point out the challenges that AV integration brings. Although 

covering many aspects at a high level, in-depth investigations are less diffused. 

For instance, Fagnant and Kockelman (2015) draw a brief overview of the technology and 

the potential social impacts of AVs, and they discuss the challenges for social deployment. 

Their study focuses on aspects such as safety, congestion and traffic operation, travel 

behavior, vehicle ownership, and parking. Barriers to implementation, which are associated 

with vehicle cost, AV certification, litigation, liability and public perception, security, and 

privacy are also discussed. Fagnant and Kockelman (2014) continue the analysis by 
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exploring an agent-based model regarding the implementation of shared AVs (SAV), which 

as a basic framework, can extract travel features of an SAV fleet. Furthermore, their work 

estimates the waiting time for customers based on the analysis of AV’s relocation maneuver 

and its operational conditions. AV’s and SAV’s impacts on the broader driving environment 

also raise research attention (Talebpour and Mahmassani, 2016). 

Another important aspect of AV societal research is acceptability, which is closely related to 

people’s opinions on AV technology and SAV service. By means of a survey with 5,000 

responses from 109 countries, people’s preferences and willingness to different types of AV 

regarding the level of automation are studied by Kyriakidis et al. (2015). The results show 

that nearly 69% of people believe AVs with full automation will reach half of the market share 

between now and 2050, however, various concerns are revealed at the same time. These 

concerns are related to aspects such as safety, data privacy, and AV legislation. It enriches 

stakeholders’ understanding of public opinions on AVs and contributes to market strategies. 

Likewise, user preference is widely studied and analyzed in multiple regions and cultures, for 

instance, regional differences between Israel and North America (Haboucha et al., 2017) are 

explained through the study of user preference of AVs, which may inspire regional policy 

making in the future.  

Some researchers also look at the willingness to pay for AV/SAV services (Bansal et al., 

2016; Krueger et al., 2016). For example, a survey conducted in Austin indicates that people 

perceive a decrease in car accidents to be the primary benefit and equipment failure as the 

top concern. The study also finds that participants are more willing to pay for the service that 

can add a higher level (level 4) of automated technology to their current car than adding 

comparatively lower automation (level 3).  

However, apart from discussing broad social impacts and challenges, these studies are 

mainly centered around evaluating and improving social acceptance. The marketing 

strategies and implications from such studies thus imply a research driven out of 

commercialization. In-depth investigations of other non-technical implications of 

autonomous-driving technology, such as accessibility, affordability and liability, are largely 

missing. 

 

4.11. CL.11: HCI and ethical dilemmas 

 

This cluster explicates different types of challenges of human-robot (automated vehicles) 

interaction and discusses some ethical dilemmas.  

Five major challenges of human factors research on automated vehicles are pointed out by 

Sheridan (2016): (1) a task analysis that considers environmental, economic and other 

potential factors; (2) the avoidance of accidental consequences; (3) the mutual models and 
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shared features between robots and humans; (4) robotic applications for education; and (5) 

strategies for managing users’ concerns and considerations caused by cultural or value 

difference. In the context of automated driving, complex situations are discussed such as 

pedestrian behavior (Chang et al., 2017; Rothenbucher et al., 2016), challenges that a driver 

with autopilots experience on the roads (Brown and Laurier, 2017), and moral dilemmas in 

vehicle crash scenarios (Lin, 2015).  

Goodall (2014) and Lin (2015) suggest that, even in ideal conditions, automated vehicles 

cannot always avoid being involved in crashes, and the AV decision that precedes certain 

crashes has a moral and ethical component. Lin introduces scenarios such as the trolley 

problem that implicate ethics and illustrate the complexity of AV decision making since this 

process goes beyond mechanically obeying the existing traffic rules. These studies highlight 

the importance of ethics for AVs and encourage methods from various disciplines to tackle 

these challenges.  

Gerdes and Thornton (2015) attempted to find a mathematical way to pin down the 

philosophical ethical considerations of AV and address them accordingly by offering better 

choices of steering, braking, or accelerating under certain circumstances. Efforts on 

translating between philosophical concepts and mathematical equivalents contribute to 

simple implementations of ethical rules, however, they simplify the real-world complexity. As 

suggested by Goodall (2014), human morality can hardly be encoded into AVs.  

To understand and increase users’ acceptance and adoption, Pettersson and Karlsson 

(2015) introduced two methodologies to explore the user’s reaction and expectation. The 

first one encompasses techniques such as interviews while the second one mediates a shift 

of views over time through setting expectations of the AV use. For a similar purpose of 

studying pedestrian’s reaction and expectation, a breaching experiment was designed and 

conducted at Stanford (Rothenbucher et al., 2016), which used a faux driverless car as an 

intervention in the real-world setting. This study contributed to a new method to investigate 

interactions between pedestrians and driverless vehicles, and it provided insights on 

pedestrian behavior and pedestrians’ expectations of encountering driverless vehicles. 

 

4.12. CL.12: Testing and risk assessment  

 

This cluster mainly discusses testing methods of autonomous driving and cybersecurity 

risks, which are introduced in an overview by Huang et al. (2016). Their work also covered 

topics such as the functional testing and verification of AVs and the validation of AV 

systems. 

The core literature also demonstrates some novel ideas and methods. For example, Kalra 

and Paddock (2016) call for adaptive policies, by pointing out that AVs need to be driven up 
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to billions of miles to demonstrate their functional feasibility. In addition, Huang et al. (2017) 

applied the Satisfiability Modulo Theory (SMT) and developed an AV verification system, 

which focuses on making safe decisions based on image management.  

Testing the vision-based control systems of AV is a complicated task. To tackle this, 

Abdessalem et al. (2018) designed and demonstrated an AV testing algorithm that builds 

upon the learnable evolutionary algorithms. The core technologies for this algorithm to 

generate new sets of solutions are machine learning and a mix with Darwinian genetic 

operators. The proposed algorithms show accuracy in evaluations. Aiming to solve the 

ADAS’s time testing issue in simulated environments, Abdessalem et al. (2016) proposed a 

neural network-based approach that combines a multiobjective search with alternative 

models. They evaluate the robustness of this method through an industrial application.  

Behere and Törngren (2016) described a functional reference architecture for AV operation 

and explicate several considerations that may affect it. The functions of such architecture do 

not rely on specific implementation technologies, rather, they are logistically described. The 

study investigates two aspects, first, how do implementation technologies affect functional 

architectures, and second, how does the fact of replacing human drivers with computers 

affect the architectures. Furthermore, the study suggests that to incorporate the processes 

of such deployment, it is essential to speed up the testing and verification. 

Some types of risks around AV operation also trigger discussions. For instance, Sharif et al. 

(2016) looked at cybersecurity issues. In particular, they aim to design facial biometric 

systems that can identify certain attacking behaviors and attackers who try to evade 

recognition. These systems have been widely applied for surveillance and regulation. 

 

4.13. CL.13: Automated Storage and Retrieval System (AVS/RS) 

 

Autonomous Vehicle Storage and Retrieval System (AVS/RS) represents an advanced 

alternative to the traditional automated storage and retrieval systems. AVs operate as 

storage or retrial devices while also being able to transfer loads out of the storage racks. The 

superiority of this new system is that AV systems can match the size of vehicle fleets as well 

as the number of lifts to the storage system’s transaction demand. This cluster focuses on 

the development and evaluation of AVS/RS, which shows a constant effort in enhancing the 

technological feasibility of AVs. 

Through opportunistic interleaving, a network queuing model was used to evaluate the 

AVS/RS performance measures (Fukunari and Malmborg, 2009). This model contains the 

potential to provide an important component of a decision support system to conceptualize 

AVS/RS. At the same time, it can combine modelling of cost and resource requirements. 

Taking inspiration from the network queuing models, Roy et al. (2012) designed a semi-
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opened system to estimate one AVS/RS layer’s design trade-offs. After testing, the model 

was proven to help quantify the trade-offs and such a result further implies its impact on 

reducing transaction time of AVS/RS. The computationally efficient cycle time model 

(Fukunari and Malmborg, 2008) is essential in an AVS/RS as it is proved to be useful for the 

accurate system conceptualization. The model also enables a comparison between the 

performances of AVS/RS and the traditional AS/RS (Kuo et al., 2007). 

Simulation-based experimental designs were further conducted for AVS/RS studies (Ekren 

et al., 2010) and strategies are tested in practical projects, for example, a regression 

analysis of an AVS/RS rack configuration is demonstrated to build warehouse configurations 

that deploy AVS/RS and AS/RS alternately (Ekren and Heragu, 2009; Zhang et al., 2009). 

Likewise, a state equation model was introduced by Malmborg (2002, 2003) to estimate the 

usage of dual command cycles in an AVS/RS. Using interleaving, it empowers users with a 

clear understanding of the computational complexity as well as a rational consideration of 

the model’s accuracy in an early stage of its development. 

 

5. Discussion and conclusion 

 

Autonomous-driving technology has the potential to radically change the automotive industry 

and generate the system innovation which is needed to boost sociotechnical transitions to a 

sustainable transportation sector. Driven by the desire to unleash its innovation potential, a 

fast-growing interest in AV research has manifested across academic disciplines, which has 

resulted in a sudden increase in the volume of scientific publications. AV-related scientific 

knowledge is produced and accumulated at a very fast pace. As a consequence, the 

likelihood of incurring information overload is particularly notable for AV researchers, who 

can struggle to overcome the gap between requirements for and capacity of information 

processing. 

Inspired by information granularity studies and mixed-methods bibliometric investigations, 

this paper suggests addressing this issue by adopting a multi-granulation approach to latent 

knowledge discovery and synthesis in large-scale research domain. The proposed 

methodology combines citation-based community detection methods and topic modeling 

techniques to: (1) extract the relevant semantic structures (i.e. main keywords, emergent 

topics, and core research themes) hidden in large data-rich environments; and (2) use these 

sub-information systems of latent variables to give a concise account of how the intellectual 

structure of research field is conceptually structured. 

The proposed methodological approach has been successful in providing a synthetized view 

of the scientific knowledge produced during five decades of AV research (1970-2019). 

Starting from 18,153 publications, 13 clusters of thematically related publications were 
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detected, which are complementary to each other in terms of developing the insight needed 

for enabling AV operations. The clusters CL.01, CL.02, CL.04, CL.05, CL.06, CL.08, and 

CL.13 all discuss the technical developments related to AV detection and navigation, with 

each group of publications representing different techniques and approaches. CL.03 and 

CL.09 both focus on the importance of AV multi-sensors and discuss image recognition and 

processing techniques. In consideration of the literature belonging to these clusters, the 

findings of the bibliometric analyses show advancements in different AV-related 

technological domains. This collective research efforts are making it possible to shine light 

onto the unknowns and uncertainties surrounding complex tasks that AVs are expected to 

implement in real-life environments. The analysis also shows that automated technologies 

have been applied to different fields, such as agriculture (see CL.05), underwater 

operations, and unmanned aerial vehicles (see CL.07). 

However, despite the development of various technologies that can empower AV operations, 

which been developing at high-speed, most of the research is experimental in nature. As a 

result, large-scale deployment of AVs remains undeveloped. Pioneering experiments have 

led to an exploration of the broader uses of AV technology. Numerous models, algorithms, 

and methods have been proposed since the 1970s to develop automated technologies. But 

laboratory-based experiments remain the core component of AV deployment, with only 

some initial and quite recent small-scale testing in urban environments. In fact, evaluation 

and verification methods for moving to real-world trials have started emerging only during 

the past decade (see CL.12). 

Finally, CL.10 and CL.11 concentrate on Human-Computer-Interaction (HCI). In addition to 

introducing the ethical dilemma of AV technology, CL.11 literature reports on the technical 

aspects of HCI, examining the rollout of neural networks and deep learning. The former is 

instead mainly focused on public acceptance and the overall social impacts and challenges. 

Out of thirteen clusters, CL.10 is the only group of publications which identify the non-

technical implications of AVs as a core topic.  

By defining each thematic cluster and presenting its content, this paper produces a 

synthesized view of the most relevant AV-related thematic areas which expands the list of 

research-front concepts proposed by Gandia et al. (2019), providing a more information-rich 

understanding of how the AV research field is conceptually structured. In addition, the 

analysis has made it possible to cluster these concepts in groups of thematically related 

keywords, helping researchers to grasp the bigger picture. The higher level of detail that this 

paper offers also becomes evident when comparing the keyword-topic-theme correlations 

embedded in each thematic cluster with the manually labelled co-citation clusters identified 

by Rashidi et al. (2020), whose thematic focus is defined by using single keywords rather 

than a group of complementary sub-information systems of latent variables. Supported by 
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the use of core literature, the latter approach has offered a broader understanding of how 

thematic areas are conceptually shaped and improved the contextualization process 

required to comprehensively communicate the core knowledge included in each cluster. For 

example, the proposed cluster analysis details the differences between AV core control 

systems and techniques and their progressive development, whereas Rashidi and 

colleagues generalize this knowledge area under abstract themes, such as Algorithm, 

Control strategy, and Controller.  

In addition, this study has made it possible to discover that AV research has seriously 

overlooked the wide-ranging sustainability implications of autonomous-driving technology. 

As a result, “the discussions and studies extrapolating AVs technical aspects, by inserting 

them in a dynamic environment with several agents and implications, are far from being 

exhausted” (Gandia et al., 2019, p. 22). 

 

5.1. The sustainability challenge 

 

Overall, the findings of this study show that AV research is mainly technology-driven and is 

much more oriented towards examining the technological developments needed to enable 

the widespread rollout of AVs, rather than exploring the socio-economic, environmental, 

cultural, political, institutional, and organizational dimensions of a future sociotechnical 

transition to sustainable transport systems. The research investigating the non-technical 

aspects of AVs is significantly underdeveloped when compared to technology-related 

dimensions. As a result, the current status of AV research exposes a serious lack of 

attention to the sustainability of large-scale AV deployment. This gap probably explains why 

no thematic clusters strongly related to sustainability research have been identified. During 

the last fifty years, little research has been conducted which attempts to assess the 

sustainability implications of AVs, and this limited effort represents an exclusion of the 

utmost importance.  

When looking at the annual intensity of each core theme, the findings show that the thematic 

clusters CL.10 and CL.11, which are mainly associated with social sustainability aspects, 

have grown significantly during the last four years, especially in comparison to the 

technology-related clusters of the network, where it is possible to assume that a higher 

degree of maturity has been reached. But the content analysis demonstrates that most of 

the research is only focused on user experience studies exploring market dynamics and how 

public acceptance of AV solutions can be enhanced. This suggests that the research 

focusing on the social and economic sustainability of a potential sociotechnical transition to 

AVs is not only scarce, but it is also mainly driven by a market-oriented approach. Despite 

being pivotal in the search for a sustainable approach to AV deployment in urban 
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environments, broader topics such as accessibility, affordability, liability, trust, business 

models, travel behavior, political and cultural implications, and socio-economic impacts 

remain unexplored. The solutions to some of the most relevant barriers to AV 

implementation and mass-market penetration relate to these unexplored areas of research 

(Fagnant and Kockelman, 2015; Hess, 2020). 

In addition, the analysis shows that social and economic implications are not the only 

sustainability dimensions which have been largely overlooked in the 50 years of AV research 

under investigation. Not enough consideration has been given to environmental 

consequences. Autonomous-driving solutions are expected to introduce the systemic 

technological changes required to provide society with environmentally sustainable 

transportation systems. The frequently claimed benefits notwithstanding, only a few 

academic publications attempt to evaluate the potential impacts that AVs can have on 

environmental sustainability (Martin, 2019) and green city making (Chehri and Mouftah, 

2019; Vleugel and Bal, 2018), and a full environmental assessment of AVs is still missing 

(Gawron et al., 2018). This lack of evidence creates uncertainty in relation to what the 

ecological impacts of AVs will be and the real role that newly introduced travel behavior 

patterns will play. As Miller and Heard (2016) note, not all the AV-induced behavioral shifts 

will introduce environmentally favorable changes, because the approach to usage may 

worsen already existing ecological conditions (Ryan, 2020). For example, “additional vehicle 

miles traveled may be incurred due to unoccupied travel miles where the vehicle is moving 

without passengers” and “the reduced aggravation associated with commuting may lead to 

an increased acceptable commuting radius, increasing overall vehicle miles traveled and 

inducing additional GHG emissions related to urban sprawl” (Miller and Heard, 2016, p. 

6119). 

A major lesson from transitions studies is that sustainability transitions do not only involve 

major shifts in technological systems fulfilling societal functions. They also imply co-

evolutionary changes of non-technological assets, which give meaning and purpose to the 

newly introduced artefacts (Naor et al., 2015; Smith et al., 2010). These changes are strictly 

interconnected and relate to the socio-economic, cultural, political, institutional, 

environmental, and organizational dimensions of sustainability transitions (Geels et al., 

2016). Sustainability transitions require finding a new equilibrium between innovative 

technological trajectories and these non-technical dimensions. A stable match is needed, 

which can be found through experimenting with new structural arrangements. AV research 

seems still far from finding this equilibrium and additional sustainability-oriented research is 

required in order to shed light on what new sociotechnical arrangements can ensure that the 

systemic technological change introduced by AV-based transport systems will fulfill societal 

functions while meeting the urgent need for more sustainable transport solutions. 

Jo
urn

al 
Pre-

pro
of



 30

For example, cultural inclinations are well entrenched in urban environments, but a shift is 

essential to cultivating the new set of desired behaviors and virtues which is needed to 

underpin autonomous-driving technology and the improved sustainability that this transition 

promises to deliver (Castán Broto and Dewberry, 2016; Throop and Mayberry, 2017). 

Negative cultural perceptions are hard to replace and can prevent innovative practices and 

technologies. When looking at transport-related sustainability issues, for instance, it is widely 

acknowledged that cycling can substitute many short- and medium-distance trips, making 

the transport sector more environmentally friendly (Pucher and Buehler, 2017). Whilst the 

Amsterdam cycling transition was backed by a strong sociocultural connection between the 

bicycle and the Dutch national identity, conversely, a culturally negative image of cyclists 

has become an obstacle to the cycling niche which is opposing the regime of motorized 

trans-ports in London (Marije De Boer and Caprotti, 2017). 

The politics of regime change is an additional factor that plays a major role in building the 

institutional and regulatory systems needed to sustain sustainability transition contexts 

(Gonzalez de Molina, 2013), but it also represents an explored area of research when 

observing the AV research field. Sociotechnical transitions require political action to readjust 

public policies, so that they reflect more sustainable trajectories (Goyal and Howlett, 2020) 

and arbitrate when competing propositions, resistance, and powers struggles hinder the 

transformation (Wironen and Erickson, 2020). As a result, formal institutional frameworks are 

modified by setting and enacting new laws, guiding principles, norms, and procedures which 

regulate power relations in niche-regime interactions (López-García et al., 2019) and 

facilitate the development of multi-actor networks, protecting and deepening the reach of 

sustainability transitions (Brown et al., 2013).  

The project Aramis is emblematic of the importance that the politics of regime change has in 

sustainability transitions. Launched in the 1970s, Aramis attempted to introduce a 

revolutionary Personal Rapid Transit (PRT) system in Paris. This government-funded 

experimental project was expected to improve road capacity by placing small cars on an 

automated highway system and using them as trains. The system was never completed, and 

research investigating the development process has proved that inconsistent political 

support was one of the major failure-causing issues, together with a serious lack of strategic 

planning (Latour, 1996). 

Sustainability transitions also require changes in organizational settings (Bögel et al., 2019). 

By replacing existing values, norms, infrastructure components, services, and routines, 

transition processes alter the way in which local communities are organized. Transition 

management research has shown that pursuing sustainability transitions requires 

democratic governance arrangements (Jhagroe and Loorbach, 2015) based on inter-

organizational collaboration and co-creation principles (Cohendet et al., 2014). New 
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alliances between heterogeneous actors and social groups emerge which are tasked with 

developing the pathway leading to the envisioned sustainable future, while overcoming the 

resistance of existing regimes (Köhler et al., 2019). As a result, roles and responsibilities of 

individuals and communities are subject to modifications, generating empowering and 

(dis)empowering effects (Hölscher et al., 2019). However, relevant questions have yet to be 

answered in relation to what organizational settings should be enacted to facilitate the 

sustainable widespread of AV solutions and how these settings modify due to geographical 

differences. 

In addition, when looking at changes in organizational settings regulating the functioning of 

transport systems, it is also important to highlight that AV-related sustainability studies are 

also required for exploring how AV development will be affected by the Covid-19 pandemic 

and what new barriers and opportunities have been brought to light. For example, while 

people are forced to observe social distancing measures to prevent the virus for spreading, 

AVs have been deployed for non-contact, low-speed delivery services, in particular in areas 

that were subject to lockdown measures (Okyere et al., 2020). This approach to deployment 

shows that driverless technology may provide an opportunity to reduce biosafety risks. In 

addition, the pandemic has caused a drop in transit ridership, making it difficult for public 

transport systems to address transport needs in some urban areas (Short et al., 2020; Wang 

et al., 2020). The pressure exerted by this unfortunate event may help accelerate the 

development of mass autonomous transit systems, by lowering the existing resistance to 

change  (Zeng et al., 2020). However, shrinking economies and health concerns may also 

challenge the AV industry, by reducing funding opportunities and slowing down real-world 

testing. How self-driving technology development and deployment will be reorganized in the 

post Covid-19 era is another subject matter worthy of investigation. 

 

5.2. Limitations 

 

This methodological approach has been effective in achieving the proposed research 

objectives, but it is important to acknowledge the presence of a number of methodological 

limitations, which themselves present future research opportunities.  

First, the use of a single database to gather the source literature may have resulted in some 

relevant academic publications on AV being undetected. Scholarly databases retrieve 

different sets of publications when the same search query is processed and their level of 

coverage tends to change depending upon the subject under investigation (Martín-Martín et 

al., 2018). Mindful of this limitation, Scopus and Web of Science, two of the main sources of 

bibliometric data currently available (Mongeon and Paul-Hus, 2016), were both tested to 
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establish their coverage of AV research. The initial keyword search was performed in both 

databases and Scopus was found to offer a broader coverage of literature, sourcing 6,626 

additional titles.  

Second, this study only focuses attention on peer-reviewed publications. Therefore, AV-

related grey literature was not taken into account. It would be interesting to evaluate whether 

this type of literature, which is not subject to a formal peer-review process, has influenced 

the academic debate and the shaping of the intellectual structure of the AV research field. 

Finally, the evaluation phase of the topic modelling output can be further enhanced. This 

phase of the analytical process has proven successful in generating construct validity 

evidence and input for refining the description of the thematic clusters. However, due to 

resource constraints, validity was ascertained by means of a limited number of domain 

experts and the interrater reliability was measured by considering qualitative rather than 

qualitative approaches, which would provide more robust measures. Therefore, additional 

research involving large-scale data collection tools would be beneficial for further testing and 

refining the results of the topic modelling. 
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Armingol J.M. 
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 65 Krueger R., Rashidi T.H., Rose J.M. 2016 Preferences for shared autonomous vehicles AR 
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 40 Carlino D., Boyles S.D., Stone P. 2013 Auction-based autonomous intersection management CP 
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 32 Lin P. 2015 Why ethics matters for autonomous cars BC 
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 8 Möller L., Risto M., Emmenegger C. 2016 The social behavior of autonomous vehicles CP 
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APPENDIX B 
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Planning Algorithm 
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Automobile steering 
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Method; Control Theory; Closed Loop Control; Graph Theory; Loop System; Lyapunov Function; Ensure Stability 

3.18 304 30.34% 

Unmanned aerial vehicle Unnamed; Aerial; Unmanned; Aircraft; Air; Flight; Unmanned Aerial Vehicle; Unmanned Vehicle; Aerial Vehicle; Aircraft 
Control; Air Navigation; Unmanned Autonomous Vehicles; Unmanned Air Vehicle; Autonomous Unmanned Vehicle; 
Fixed Wing 

3.07 730 33.71% 

Intelligent Vehicle-
Highway System 

Traffic; Highway; Transportation; Intelligent; Safety; Road; Drive; Intelligent Vehicle; Intelligent Vehicle Highway; 
Intelligent Transportation; Intelligent Robot; Roads and Streets; Traffic Control; Vehicle Platoon 

2.89 390 29.05% 

Sensor network Detection; Data; Sensor; Environmental; Map; Search; Development; Sensor Network; Environmental Monitoring 2.80 412 40.77% 
Collision avoidance Avoidance; Collision; Obstacle; Avoid; Free; Collision Avoidance; Obstacle Avoidance; Avoid Obstacle; Avoidance 

Problem; Avoiding Obstacle; Collision with Obstacle 
2.68 564 26.00% 

CL.03 
 

Multi-sensors and 
fusion systems 

Road Road; Street; Lane; Transportation; Traffic; Road and Street; Traffic Control; Intelligent Transportation System; Lane 
Detection; Road Traffic 

17.69 483 46.51% 

Lidar Lidar; Optical; Radar; Cloud; Point; Optical Radar; Point Cloud; Lidar Data; Optical Flow; Lidar Sensor; Light Detection 
and Ranging; Detection and Tracking 

3.97 497 32.56% 

Neural networks and 
deep learning 

Neural; Convolutional; Network; Deep; Train; Learning; Dataset; Neural Network; Deep Learning; Convolutional Neural 
Network; Machine Learning; Learning System; Deep Neural Network; Learning Algorithm; Learning Approach 

3.73 672 33.85% 

Stereo image processing Stereo; Image; Camera; Processing; Dense; Estimate; Estimation; Map; Vision; Visual; Compute; Match; Image 
Processing; Computer Vision; Stereo Image Processing; Stereo Vision; Optical Flow 

3.41 806 59.95% 

Global positioning system 
(GPS) 

Global; Localization; Location; Trajectory; Positioning; System; Position; Mobile; Estimation; Mobile Robot; Motion 
Estimation; Autonomous Mobile; Global Navigation; Vehicle Location 

3.33 325 44.44% 

Virtual-based testing Virtual; Reality; Agent; Behavior; Rule; Modeled; Coordinate; Surface; Virtual Reality; Autonomous Agent; Virtual 
Environment; Behavioral Research; Urban Traffic 

3.10 228 30.75% 

Motion planning Planning; Path; Motion; Avoidance; Collision; Compute; Constraint; Obstacle; Motion Planning; Path Planning; Collision 
Avoidance; Obstacle Detection; Obstacle Avoidance; Obstacle Detector; Motion Estimation; Robotic Vehicle 

3.05 422 43.67% 

Autonomous car drive Car; Drive; Driverless; Driving; Autonomous Car; Driverless Car 2.74 547 52.45% 
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CL.04 Road boundaries and 
extended curbs 
detection 

Deep neural network Neural; Deep; Network; Train; Learning; Dataset; Neural Network; Deep Learning; Convolutional Neural Network; Deep 
Neural Network; Learning System; Machine Learning; Learning Algorithm; Semantic Segmentation 

15.13 671 31.94% 

Liadar Radar; Optical; Lidar; Cloud; Point; Light; Optical Radar; Point Cloud; Light Detection and Ranging; Lidar Data; Lidar 
Sensor 

3.80 789 38.40% 

Simultaneous localization 
and mapping 

Slam; Simultaneous; Mapping; Localization; Robotic; Vehicle Localization; Localization and Mapping; Simultaneous 
Localization and Mapping; Localization Method; Localization Accuracy; Localization System; Localization Algorithm; 
Localization Error; Monte Carlo Method; Particle Filter; Visual Localization 

3.41 641 46.77% 

Road marking detection Marking; Street; Road; Mark; Lane; Road and Street Marking; Lane Marking; Road Surface; Road Marking 3.21 1222 47.72% 
Safety Technology; Future; Development; Develop; Safety; Research; Accident Prevention; Automobile Manufacture; 

Automotive Industry; Research and Development 
3.04 281 44.11% 

Global positioning system 
(GPS) 

Global; Inertial; Positioning; System; Position; Accurate; Global Positioning System; Inertial Navigation System; Vehicle 
Position; Global Navigation Satellite System; Inertial Measurement; Inertial Sensor; Position Estimation; Inertial 
Measurement Unit; Navigation Systems 

2.87 605 45.63% 

Autonomous car drive Driver; Assistance; Advance; Automobile; Advanced Driver Assistance System; Automobile Driver; Driving Assistance 
System 

2.74 320 24.14% 

Stereo image processing Vision; Image; Camera; Computer; Monocular; Visual; Stereo; Processing; Computer Vision; Image Processing; Image 
Segmentation; Stereo Vision 

2.67 1326 65.59% 

Motion planning Planning; Path; Motion; Motion Planning; Path Planning; Motion Estimation; Path Planner; Highway Planning; Local 
Path; Path Tracking; Control System; Autonomous Parking; Tracking Error 

2.51 334 28.71% 

Experimental results Result; Experimental; Show; Method; Propose; Experimental Result; Proposed Method; Detection Method 2.41 775 87.83% 
Odometry Scale; Large; Odometry; Outdoor; Collect; Visual Odometry; Large Scale; Outdoor Environment; Monocular Visual 2.37 181 29.47% 

CL.05 Motion planning for 
agricultural 
machinery 

Scene segmentation Segmentation; Classification; Scene; Outdoor; Visual; Ground; Terrain; Perception; Natural; Feature; Selection; 
Unmanned; Operating; Outdoor Environment; Perception System; Unmanned Vehicle; Image Segmentation; Road 
Vehicle; Autonomous Ground Vehicle; Natural Environment 

22.01 242 48.73% 

Image processing Image; Vision; Camera; Detect; Processing; Detection; Stereo; Detector; Computer; Machine; Row; Computer Vision; 
Machine Vision; Image Processing; Stereo Vision; Autonomous Navigation 

4.12 544 62.71% 

Path tracking Straight; Average; Curve; Steering; Proportional; Guidance; Angle; Error; Equipment; Path; Successfully; Develop; Path 
Tracking; Automobile Steering Equipment; Guidance System; Automatic Guidance; Steering Angle 

3.91 348 70.76% 

Control Velocity; Orientation; Adaptive; Relative; Nonlinear; Linear; Feedback; Trajectory; Curvature; Distance; Follow; 
Feedback Control; Autonomous Vehicle; Control Approach; Tracking Control; Control System; Control Law; Nonlinear 
Control; Control Method 

3.72 234 53.39% 

Agricultural machinery Agricultural; Agriculture; Precision; Machinery; Increase; Farm; Agricultural Machinery; Agricultural Vehicle; Precision 
Agriculture; Agricultural Robotics; Agricultural Environment; Agricultural Field; Agricultural Operation 

3.59 298 44.92% 

Vehicle behavior Behavior; Solve; Problem; Plan; Nonholonomic; Mobile; Practical; Constraint; Deal; Robot; Mobile Robot; Fuzzy 
Controller 

3.30 265 65.25% 

Advanced driver-
assistance systems 

Assistance; Driver; Advance; Advanced; Automobile; Technology; Case; Advanced Driver Assistance System; 
Automobile Driver; Human Driver 

3.19 140 33.90% 

Fuzzy control Controller; Fuzzy; Logic; Simulation; Design; Proportional; Tune; Fuzzy Control; Control System; Fuzzy Controller; 
Fuzzy Set; Simulation Result; Fuzzy Logic Control; Controller Design; Autonomous Vehicle Control 

3.18 532 50.42% 

CL.06 Lane detection and 
connected 
technologies 

Edge computing Cloud; Distribute; Computation; Edge; Complexity; Unit; Computing; Require; Assist; Edge Computing; Distributed 
Computer System; Driverless Vehicle 

21.51 171 42.49% 

Vehicular ad-hoc 
networks (VANETs) 

Hoc; Ad; Vehicular; Network; Communication; Lead; Vehicle to Vehicle Communication; Vehicular Ad Hoc Network; 
Network Security; Millimeter Wave; Short Range Communication; Mobile Communication System 

4.60 506 40.66% 

Lane detection Image; Detection; Lane; Detect; Camera; Vision; Transform; Condition; Line; Extract; View; Edge; Road; Computer 
Vision; Road and Street; Lane Detection; Vision System; Hough Transform; Road Condition 

3.89 582 61.90% 

Internet of things and 
smart cities 

Thing; Internet; Service; Smart; Quality; Cloud; Life; City; Internet of Things; Internet of Vehicles; Smart City; Base 
Station; Connected Vehicle 

3.65 422 31.14% 

Control Verify; Lateral; Angle; Controller; Introduce; Reference; Modeled; Track; Good; Follow; Lane; Side; Steering; Comfort; 
Automobile Steering Equipment; Lane Detection; Lateral Control; Computer Vision; Hough Transform; Lane Tracking; 
Vision System 

3.50 338 58.61% 

Cybersecurity Security; Cyber; Attack; Cooperative; Safety; Secure; Physical; Connect; Network Security; Cyber Physical System; 
Cyber Security; Embedded System 

3.36 337 42.86% 

Kalman filter Filter; Kalman; Estimation; Estimate; Method; Image; Kalman Filter; Kalman Filtering; Image Processing; State 
Estimation; Feature Extraction; Image Segmentation; Road and Street 

3.12 223 39.93% 
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Traffic control Traffic; Behavior; Transportation; Street; Safety; Capability; Traffic Control; Traffic Congestion; Transportation System; 
Road Traffic; Autonomous Car; Traffic Information; Traffic Sign 

2.97 269 58.61% 

CL.07 Motion planning for 
underwater 
intervention 

Spatio-temporal scale of 
oceanographic sampling 

Spatial; Temporal; Sample; Resolution; Sampling; Oceanography; Scale; Data; Observation; Spatial and Temporal; 
Autonomous Underwater 

30.95 140 49.26% 

Underwater intervention Manipulator; Intervention; Recovery; Submersibles; Man; Knowledge; Object; Project; Learning; Class; Equip; 
Demonstration; Dock; Highlight; Open; Recent; Exist; Float; Free; Human; Address; Survey; Task; Capability; Future; 
Underwater Intervention 

5.55 243 72.06% 

Mixed initiative planning 
and control 

Mix; Initiative; Support; Team; Laboratory; Heterogeneous; Operational; Command; Type; Air; Include; Number; 
Infrastructure; Technology; Management; Framework; Requirement; Command and Control; Underwater System 

5.17 160 62.50% 

Motion planning Numerical; Derive; Drive; Modeled; Wind; Efficient; Scheme; Methodology; Speed; Level; Finally; Dynamic; Method; 
Energy; Presence; Path; Motion Planning; Path Planning 

5.09 206 69.12% 

Model predictive control Formation; Decentralize; Predictive; Nonlinear; Action; Constrain; Operative; Local; Computational; Model; Avoid; 
Strategy; Constraint; Formation Control; Operative Control; Control System; Cooperative Control 

4.65 168 48.53% 

Kalman filtering Filter; Localization; Kalman; Position; Accuracy; Measurement; Fusion; Navigation; Error; Measure; Extend; Kalman 
Filter; Sensor Fusion; Autonomous Vehicle 

4.33 193 49.26% 

Sonar obstacle detection Detect; Autonomously; Detection; Advantage; Link; Forward; Combine; Moor; Robust; Map; Forward Looking Sonar 4.21 75 37.50% 
CL.08 Obstacle detection 

and avoidance in 
different conditions 

Obstacle avoidance Reach; Planning; Avoid; Goal; Unknown; Path; Motion; Controller; Behavior; Obstacle; Variety; Environment; Function; 
Obstacle Detection; Obstacle Detector; Obstacle Avoidance; Motion Planning; Unknown Environment 

28.21 257 71.53% 

Multi-focal, Saccadic 
vision 

Saccadic; Expectation; Action; Perception; Capability; Hierarchical; Hardware; Representation; Active; Multi; Mission; 
Architecture; Knowledge; Perform; Decision; Head; Control; Complex; Vision System 

6.88 228 65.28% 

Night-time operativity Night; Effectiveness; Light; Procedure; Feasibility; Segmentation; Locate; Front; Condition; Robustness; Fast; Estimate; 
Study; Distance; Process; Experimental; Automatic; Operate; Move; Stage; Digital; Analysis; Demonstrate; Scene; 
Result; Detect; Extract; Experimental Results; Navigation Systems; Image Segmentation; Vehicle Detection 

6.05 296 88.19% 

Line detection Edge; Mark; Marking; Curve; Street; Extraction; Detection; Fit; Width; Road; Interest; Lane; Region; Stage; Extract; 
Lane Detection; Detection Algorithm; Vehicle Detection; Edge Detection; Image Segmentation; Road and Street 
Marking 

4.89 453 75.00% 

CL.09 Traffic sign 
recognition 

Smart cities Future; Smart; Deployment; Public; City; Current; Mobile; Service; Infrastructure; Mobility; Provide; Smart City 25.81 130 47.32% 
Vehicular ad-hoc 
networks (VANETs) 

Hoc; Attack; Intrusion; Ad; Vehicular; Security; External; Semi; Communication; File; Service; Cooperative; Network; 
Behavior; Simulator; Neural Network; Vehicular Ad Hoc Network; Network Security; Vehicle to Vehicle Communication; 
External Communication; Intelligent Intrusion Detection System; Security System 

7.39 677 53.66% 

Traffic sign recognition Color; Recognition; Region; Candidate; Image; Traffic; Recognize; Light; Shape; Segmentation; Classifier; Sign; 
Classification; Method; Feature; Detection; Gradient; Traffic Sign; Pattern Recognition 

6.26 1444 78.54% 

Semantic context 
information 

Semantic; Relationship; Aid; Language; Mobility; Infrastructure; Platform; Capture; Motor; Context; Key; Simple; 
Ontology; Domain; Dynamic; Map; Concept; Scene; Traffic Situation 

4.63 248 63.90% 

Neural networks and 
deep learning 

Deep; Convolutional; Learning; Neural; Training; Dataset; Network; Train; Classifier; Detector; Prove; Neural Network; 
Deep Learning; Machine Learning; Convolutional Neural Network; Vehicular Ad Hoc Networks; Intrusion Detection; 
Network Security; Deep Neural Network; Object Detection 

4.41 531 47.32% 

Motion planning Path; Planning; Avoid; Collision; Motion; Obstacle; Motion Planning; Path Planning; Collision Avoidance 4.07 131 20.98% 
Autonomous car drive Assistance; Driver; Automobile; Advance; Advanced; Perceive; Intelligent; Automobile Driver; Intelligent System; 

Intelligent Vehicle; Intelligent Vehicle Highway System; Advanced Driver Assistance System; Driving Assistance; 
Intelligent Transportation System; Vehicle Control System; Traffic Control 

4.01 334 55.61% 

CL.10 Social impacts and 
integration of AVs 

Intersection management Intersection; Delay; Stop; Control; Signal; Management; Collision; Cross; Traffic; Protocol; Propose; Traffic Control; 
Intersection Management; Traffic Congestion; Control System; Traffic Management; Intersection Control; Street Traffic 
Control; Autonomous Intersection 

14.31 3420 76.96% 

Shared autonomous 
vehicle fleet demand 

Demand; Fleet; Service; Share; Operation; Mobility; Size; Ride; Trip; Urban; Transport; City; Travel; Fleet Operation; 
Urban Transportation; Transport Vehicle; Shared Autonomous Vehicle; Autonomous Mobility; Urban Mobility 

4.22 2131 62.67% 

Acceptance Perceive; Acceptance; Survey; Factor; Perception; People; Influence; Participant; Trust; Affect; Public; Public Transport; 
Online Survey; Risk Perception; Stated Preference; Technology Acceptance; Public Attitude; Public Road; Public 
Transportation; Public Acceptance; Willingness to Pay 

3.88 881 43.38% 

Optimization issues Programming; Linear; Problem; Program; Solve; Optimization; Optimal; Constraint; Schedule; Solution; Minimize; 
Integer Programming; Optimal Control; Integer Linear; Mixed Integer; Optimization Problem; Control Problem; Integer 
Linear Program; Linear Programming; Optimal Solution; Numerical Experiment; Predictive Control 

3.26 1006 43.38% 

Human-computer 
interaction 

Interaction; Human; Trust; Machine; Participant; Task; Design; Computer; Simulator; Human Computer Interaction; 
Human Driver; Human Engineering; Human Factor; Human Driver; Car Driving 

3.05 899 56.41% 
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Large scale deployment Scale; Large; Large Scale; Scale Deployment; Control Mechanism 2.89 92 14.81% 
Travel demand Estimate; Travel; Choice; Trip; Travel Time; Travel Behavior; Travel Demand; Mode Choice; Shared Autonomous 

Vehicle; Stated Preference; Discrete Choice 
2.82 580 37.75% 

CL.11 Human-Computer 
Interaction and 
ethical dilemmas 

Ethical and moral 
dilemma 

Ethical; Ethics; Philosophical; Moral; Aspect; Dilemma; Argue; Make; Decision; Principle; Legal; Situation; Philosophical 
Aspect; Ethical Decision; Make Decision; Moral Dilemma; Ethical Dilemma; Robot Ethics 

17.25 817 54.01% 

Neural networks and 
deep learning 

Deep; Neural; Network; Camera; Learning; End; Steering; Image; Visual; Learn; Vision; Performance; Input; Deep 
Learning; Neural Network; Automobile Steering Equipment; Convolutional Neural Network; Machine Learning; Learning 
System; Computer Vision; Deep Neural Network; Convolutional Neural Networks; Learning Algorithm 

4.53 635 45.50% 

Public concern Concern; World; Technology; Future; Public Concern 4.08 150 43.80% 
Motion planning Avoidance; Obstacle; Collision; Path; Motion; Planning; Algorithm; Simulation; Navigation; Collision Avoidance; Motion 

Planning; Navigation System; Path Planning; Obstacle Avoidance; Simulation Result 
3.39 430 40.88% 

Trust in human-computer 
interaction 

Human; Man; Machine; Interaction; Trust; Robot; Computer; Engineering; Interact; Human Factor 3.30 1374 72.02% 

CL.12 Testing and risk 
assessment 

Verification and validation Verification; Correctness; Verify; Decision; Property; Formal; Respect; Check; Make; Tool; Formal Verification; Decision 
Making 

23.73 192 45.81% 

Neural networks and 
deep learning 

Neural; Deep; Image; Input; Network; Adversarial; Technique; Learning; Robustness; Camera; Training; Recent; 
Include; Deep Neural Network; Deep Learning; Machine Learning; Learning System; Learning Algorithm; Adversarial 
Example 

5.40 728 54.19% 

Testing Testing; Test; Generation; Automatically; Reality; Virtual; Drive; Automatic; Demonstrate; Car; Software; Generate; 
Autonomous Driving; Software Testing; Driving Car; Software Engineering; Safety Testing; Test Cases; Computer 
Software; Test Scenario 

4.33 702 77.83% 

Modeling and simulation 
of dynamic systems 

Graph; Bond; Modeled; Dynamic; Wheel; Theory; Model; Fault; Deal; Validate; Intelligent; Intelligent System; Intelligent 
Autonomous Vehicle; Bond Graph; Graph Theory; Bond Graph Model; Autonomous Vehicle 

3.98 453 70.94% 

Artificial intelligence 
attack 

Artificial; Intelligence; Machine; Learning; Attack; Security; Physical; Network; Neural; Neural Networks; Artificial 
Intelligence Attack; Network Security 

3.53 498 54.19% 

Computer vision Computer; Time; Unit; Platform; Program; Real; Processing; Run; Vision; Computer Vision; Computer Graphic; 
Graphics Processing; Test Case 

3.48 255 59.61% 

Risk assessment Risk; Assessment; Safety; Hazard; Run; Support; International; Automotive; Situation; Safety Engineering; Safety 
Critical Systems; Automotive Systems; Risk Assessment; Vehicle Safety; Safety Critical Application 

3.33 283 55.67% 

Cyber-physical systems Cyber; Physical; Embed; Smart; Virtual; Embedded System; Virtual Reality; Cyber Physical System 3.25 192 33.00% 
Automobile steering 
equipment 

Steering; Equipment; Track; Automobile; Wheel; Path; Automobile Steering Equipment; Path Tracking 3.24 102 27.09% 

CL.13 Automated Storage 
and Retrieval System 
(AVS/RS) 

Transport logistics Pick; Production; Shuttle; Move; Order; State; Supply Pick 18.83 51 40.68% 
High-density storage 
areas 

Density; High; Transfer; Area; Flexibility; Effect; Aisle; Detail; Capacity; Throughput; Cycle; Parameter; Address; 
Location; Vertical; Warehouse; Tier; Unit; High Density Storage Area; Dual Command Cycle; Cycle Time 

6.87 196 89.83% 

Event simulation and 
automation software 

Arena; Commercial; Software; Average; Complete; France; Rack; Number; Configuration; Variable; Study; Determine; 
Define; Warehouse; Arena Commercial Software 

6.01 155 91.53% 

Vehicle movement Horizontal; Vertical; Lift; Analyze; Movement; Travel; Insight; Network; Semi; Solve; Transaction; Decomposition; Tier; 
Improve; Queue; Queuing Network; Vertical Movement 

4.78 245 79.66% 

Unit Load Automated 
Storage & Retrieval 
System 

Unit; Load; Design; Automate; Technology; Transaction; Queuing Network; Unit Load Storage and Retrieval 4.19 174 83.05% 

Agent-based simulation Environment; Agent; Order; Recent; Dynamic; Implement; Efficient; Tool; Flexibility; Agent Based Simulation; Multiagent 
Simulation 

3.80 67 57.63% 

Rail-guided vehicles Guide; Rail; Tool; Problem; Include; Propose; Address; Optimal; Rail Guided Vehicles 3.64 64 66.10% 
Transition cycle-times Time; Cycle; Transaction; Aisle; Cycle Time; Storage and Retrieval 3.29 127 76.27% 
Queuing network Handle; Material; Technology; Alternative; Automate; Automation; Key; Open Queuing Network; Queuing Network; 3.16 139 61.02% 
Evaluation of system 
performance 

Research; Multi; Decomposition; Evaluate; Insight; Detail; Develop; Tier; Approach; System Performance 3.11 86 62.71% 

 
 
Table B.1. Thematic clusters: main keywords (Granularity Level 1), central topics (Granularity Level 2), and core research themes (Granularity Level 3). EI: 
Eigenvalue; FR: Frequency; CO: Co-occurrence 
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