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Abstract

The building and construction sector is a large contributor to anthropogenic greenhouse

gas emissions and consumes the vastest amount of natural resources. Widely consid-

ered a hard-to-decarbonise sector, improvements in buildings and construction are of

fundamental importance for national and global targets to combat climate change. At

material level, mitigation opportunities exist in terms of efficiency (using less of the

same material) and substitution (using a different material). This article investigates

the latter, with a global focus on the use of cross laminated timber to replace concrete

floors in steel structural systems. This approach, whilst innovative, does not require any

technological development nor upskilling of current professional practice, thus making

it an immediately viable solution to accelerate decarbonisation. We combine Material

Flow Analysis with Life Cycle Assessment across both spatial and temporal dimensions,

accounting for different levels of uptake of the proposed hybrid construction in the next

30 years. Results show that greenhouse gas emissions saving potentials range between

20-80 Mt CO2e (95% confidence interval) with an average around 50 Mt CO2e in the

case of full uptake of the hybrid construction system by 2050. Our analysis does not

account for carbon sequestration potential in timber, which would make the savings

much greater. Still, the overall savings represent a 1.5% reduction of the annual green-

house gas emissions generally attributed to construction, thus making it a non-trivial

contribution to progress towards global targets of net-zero carbon buildings.
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1. Background

By 2060 we will have added 230 billion m2 of new construction to our global build-

ing stock according to the UK Committee on Climate Change (2018b), which is the

equivalent of building Paris every week or Japan every year. As a result of constructing

and using these buildings, an additional 415 Gt CO2 are estimated to be released in5

the atmosphere in the next 40 year (Abergel et al., 2017) which equates to 55% of the

remaining carbon budget (IPCC, 2018) if we are to have a 50% chance of limiting global

warming to 1.5 ◦C.

Worldwide energy demand for heating and cooling, hot water supply, ventilation,

air conditioning and lighting all represent a major cause of anthropogenic greenhouse10

gases (GHG). Energy-related CO2 emissions from buildings operation were estimated

by the International Energy Agency (2019) to be as much as 28% of the total anthro-

pogenic emissions in 2018. The importance and urgency of improving energy efficiency

in buildings has been widely recognised in the last few decades. Policies and building

regulations mandating, facilitating or simply encouraging operational energy-efficiency15

have resulted in the building sector improving its energy intensity (in terms of energy

use per m2) at an annual average rate of around 1.5% worldwide (International Energy

Agency, 2017). Yet, both global fossil CO2 emissions and GHG concentrations continue

to grow annually as evidenced by the World Meteorological Organization and United

Nations Environment Programme (2019).20

As buildings become increasingly more efficient to operate, embodied energy and

carbon becomes the dominant component to focus on. This is reflected in the global

attention it is currently receiving, for instance through the latest report from the World

Green Building Council (2019) which calls for all new buildings to achieve embodied

carbon neutrality by 2050.25

The term embodied accounts for all the energy that is not directly used by the

building’s occupants but nonetheless it is required to construct the building in the

first place, including raw materials extraction, processing and transportation as well

as end-of-life activities such as demolition and disposal. The construction of buildings,
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including upstream supply chains, is estimated to account for nearly 6% of global final30

energy use and responsible for 11% of global CO2 emissions (Abergel et al., 2017).

Most of this energy and related emissions are attributable to materials production and

processing. For instance, manufacture of cement (the binder used in concrete) is alone

responsible for 4-7% of global CO2 emissions (Shanks et al., 2019) whereas global annual

demand for iron and steel is estimated to be around 5% of global emissions (Davis et al.,35

2018). According to Cullen et al. (2012) more than half of worldwide steel production

is destined to the construction sector.

Forecast studies on global population suggest that the current urbanisation trend

—of people relocating from rural areas to cities— will continue to grow in the near

future (UN, 2018). As a consequence, dense urban forms can be expected to take a40

greater share of the built environment, replacing sparse forms of building settlements

with denser ones such as multi-storeys. For these building types, the vast majority of

the overall mass is concentrated in the building structure (Allwood et al., 2012), which is

also where the two most widely used and carbon-intensive construction materials (steel

and concrete) are found.45

1.1. Steel and concrete

Steel and concrete are by far the two dominating materials in terms of worldwide

energy requirement and their increasing demand has never stopped since the industrial

revolution. Forecasts indicate the same trend will continue in the near future (Interna-

tional Energy Agency, 2009b) with steel demand expected to grow by 3.3% per year to50

2.4 Gt in the next five years (PWC-Metals, 2015) and production of cement projected to

grow by 0.8-1.2% per year to 3.7-4.4 Gt in 2050 (International Energy Agency, 2009a).

While incremental reductions of GHG emissions per ton of produced steel and ce-

ment are plausible in future scenarios contemplating a highly decarbonised energy grid,

the remainder of emissions will be difficult to eliminate given that they are a direct55

result of chemical reactions involved in the industrial processes: about 60% of CO2

emissions due to production of cement are from calcination of limestone (Dean et al.,

2011) Similarly, the use of coking coal as an additive to reduce iron oxide ore in blast
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furnaces generates 1.6 to 3.1 tons of CO2 per ton of produced steel (International Energy

Agency, 2000). Davis et al. (2018) point out to carbon capture and storage or utilisa-60

tion technologies as the only feasible way to fully eliminate emissions from the steel and

cement manufacturing industries. Although promising, Haszeldine (2009) notes that

such technologies are currently and mostly at a developmental stage, meaning that by

the time they will be ready to be deployed at scale and commercialised the atmospheric

stock of greenhouse gases will have likely surpassed what are predicted to be safe levels65

as currently reported in scientific literature (Allen et al., 2009; IPCC, 2018).

Shifting the technology focus from the manufacturing of structural materials to the

building design and construction sectors, a series of strategies for effective and immedi-

ate carbon mitigation have been highlighted. One of these is termed material efficiency

(Allwood et al., 2011; Allwood, 2018), that is, using less of the same material while70

providing the same service. Moynihan and Allwood (2014) for instance have empiri-

cally demonstrated the widespread practice in current designs to use over-dimensioned

structural steel members, thus uncovering the exsisting potential for structural mass

reduction. Liew et al. (2017) and Hawkins et al. (2017) have focused on construction

innovation to achieve material efficiency by exploring shape-resistant structural sys-75

tems, or pointing out to optimisation methods as an effective tool to achieve material

efficiency in practice (Moynihan and Allwood, 2014; D’Amico and Pomponi, 2018; Lee

et al., 2018) as well as maximising the potential for deconstruction and reuse of struc-

tural components (Bukauskas et al., 2018; Brütting et al., 2019). Material efficiency

can also be achieved through inherently better building forms, that reduce the required80

materials whilst offering the same function (D’Amico and Pomponi, 2019).

A second technological strategy, contemplated in this paper, is to look at the poten-

tial for material substitution, that is, replacing carbon-intensive materials, such as steel

and concrete, with low-carbon alternatives while providing the same service.
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Figure 1: Composite construction is the dominating structural floor system for multi-storey steel
framed buildings (SteelConstruction.info, 2018). It comprises of a composite floor slab (with a corru-
gated steel deck and a concrete topping) which is connected to the supporting steel beams via shear
studs (coloured in red) in order to achieve composite action between the slab and beam. In the hybrid
construction system the heavy steel-concrete slabs are substituted with cross laminated timber (CLT)
panels (Hassanieh et al., 2016)

2. Material substitution85

2.1. The case for hybrid steel-timber buildings

Unlike more traditional forms of timber construction employing the use of sawn

wood (e.g. Ballon or Platform framing), glue lamination technology allows the making

of structural members made out of timber having arbitrarily large sizes. This has

enabled engineered timber products such as glue laminated timber (Glulam) and cross90

laminated timber (CLT) to become competitors of steel and reinforced concrete in the

construction market of medium- to high-rise multi-storey buildings (Kuzmanovska et al.,

2018). Currently, the number of tall multi-storey buildings with a Glulam-CLT frame

structure (also termed in literature as mass timber buildings (Harte, 2017)) remains

negligible compared to those with a steel and reinforced concrete frame. Yet, as Espinoza95

et al. (2016) point out, the trend in glue- and cross laminated timber production is

growing exponentially. Such trend can be expected to continue in the future given

the number of pressing calls for a wider uptake of timber in construction coming from
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researchers (Churkina et al., 2020; Foster and Reynolds, 2018; Ramage et al., 2017a)

and practitioners (SOM, 2013; Arup Foresight Research and Innovation, 2019). For100

instance, the UK Committee on Climate Change (2018a) has indicated that greatly

increasing uptake of wood products in construction is the most effective options against

climate change in using harvested biomass for non-energy generation.

Existing research aimed at comparatively assessing from a whole-life perspective the

carbon (Hart and Pomponi, 2020; Salazar and Meil, 2009; Liu et al., 2016; Sandanayake105

et al., 2018; Yue et al., 2019) and energy (Gustavsson et al., 2006; Robertson et al.,

2012; Tettey et al., 2019) footprints and/or other environmental impacts (Crawford

and Cadorel, 2017; Lu et al., 2017; Pierobon et al., 2019) of mass timber buildings

against the steel or reinforced concrete counterpart generally concur in favour of the

former. If we exclude those works focusing at a product level boundary system —i.e.110

Life Cycle Assessments of CLT panels (Chen et al., 2019; Hassan et al., 2019)— the

only existing study assessing the environmental (energy) implications of composite steel-

CLT building structures at whole-building scale is the one by Chiniforush et al. (2018).

However, a study that looks at the potential carbon mitigation benefit of adopting such

structural system at global scale seems yet to be carried out. This is the main rationale115

motivating this work.

Instead of focusing our analysis on full-timber building frames as a replacement for

steel or concrete ones, we opted for looking at the potential for partial substitution,

specifically: replacing composite (steel-concrete) floor slabs in steel frames with CLT

slab panels, as shown in Figure 1. Such a composite structural system involving the120

coupling of CLT floor slabs with steel members is still at a developmental stage, with on-

going active research mainly aimed at characterising the structural performance in terms

of strength/serviceability (Hassanieh et al., 2016; Loss et al., 2016, 2018). Nonetheless,

some recent building projects do exist in which such a structural system has been used

(Holmes Structures, 2017; Waugh Thistleton Architects, 2018; Ross, 2019) thus proving125

the practical feasibility of this technology. We termed such construction system hybrid

for consistency with the existing literature (Tesfamariam et al., 2014; Hassanieh et al.,
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2016; Loss et al., 2016). The case for hybrid steel-CLT framed buildings is twofold:

• The floor system is usually where most of the structural mass concentrates (All-

wood et al., 2012), hence, it is where greatest potential for material substitution130

can be exploited.

• The hybrid steel-CLT solution represents a technological transition in which both

‘old’ and ‘new’ materials coexist. Limited awareness of the design and construction

communities with regard to the emerging timber technologies available, along with

perceived (yet unjustified) disadvantages in terms of fire risk, are some of the135

existing non-technological obstacles for a wider and faster uptake of all-timber

structures in multi-storey buildings as Xia et al. (2014) points out. The hybrid

solution is therefore one that can be immediately implemented in building projects.

Regulatory barriers also play their role. Design limits for instance —originally put in

place by policy makers having in mind traditional timber construction— exist in many140

countries on the maximum number of storeys a timber building can achieve. These

limits would not apply to a hybrid system like the one under investigation given that the

primary structure is made out of steel. Further to this, employing partial substitution

at a floor subsystem level would greatly reduce the requirement for knowledge upskill

(another barrier for innovation) necessary for engineering practices to carry out their145

structural designs, therefore increasing the likelihood of them considering timber-based

structural materials for their clients’ projects.

3. Methods

In order to estimate the global warming potential (GWP) mitigation potential deriv-

ing from gradual substitution of composite floor slabs with CLT, we express the annual150

flow of GHG emissions at year t as the dot product between the two vectors M̄ and ē.

GHGt(u) = M̄ t(u) · ē (1)
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Entries in the first vector are estimates of material mass quantities (for both traditional

and hybrid structural systems) required to meet global construction demand for steel

building frames at a given year t. For each material mass entry in M̄ the second vector,

ē, contains the corresponding carbon coefficients (CC) which represent the amount of155

greenhouse gases (CO2e) released in the atmosphere per unit mass of material. To

enable future scenario modelling accounting for various degrees of material substitution

we introduce a factor, u, representing the fraction of hybrid construction uptake to be

achieved at the end of the reference period 2020-2050 (i.e. for u = 0 ⇒ no uptake; for

u = 1 ⇒ 100% uptake by 2050). The vectors of materials and corresponding carbon160

coefficients are provided as follows:

M̄(u) =


Msf (u)

Mc(u)

Msd(u)

MCLT (u)

 ; ē =


esf

ec

esd

eCLT

 (2)

with each subscript indicating the structural material (or component) being considered.

With reference to Figure 1:

• sf = Bare steel frame (i.e. beams and columns)

• c = Concrete (in composite floor slabs)165

• sd = Steel deck (in composite floor slabs)

• CLT = Cross laminated timber (floor slabs)

Global end-use for these materials at a given year t in the future will depend on

two main factors: future demand for construction of buildings with a steel frame; and

fraction of those buildings that will be constructed using hybrid (steel-CLT) technology.170

Unlike for material quantities, it can be seen from Equation (1) that carbon coefficients

are assumed to be static over time. We estimate such coefficients (along with their

uncertainty) based on the current GHG emission intensity of the energy grid (see section
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3.4). According to the International Energy Agency (2018) World Energy Outlook both

a significant increase in energy demand and carbon emissions as well as a decrease in175

carbon emissions —whilst supplying the same amount of energy— are equally likely

between now and 2040. Even when new policies announced by government are factored

in, emissions and energy demand still both increase without peaking before 2040. As

the International Energy Agency acknowledges that all scenarios are equally probable it

would be almost a random choice picking one that can realistically represent the future.180

For this reasons we adopt the conservative hypothesis of maintaining current carbon

coefficients for materials flat through the 2020-2050 reference period. Whilst this might

seem an oversimplification is a conservative standpoint based on collected data.

Figure 2: (a): global projections of urban floor area based on the baseline density scenario (S50) from
Güneralp et al. (2017). (b): corresponding share of steel building frame floor area. The 11 International
Energy Agency regions are: Centrally Planned Asia and China (CPA), Central and Eastern Europe
(EEU), newly independent states of the former Soviet Union (FSU), Latin America and the Caribbean
(LAC), Middle East and North Africa (MNA), North America (NAM), Other Pacific Asia (PAS), Pacific
countries members of the Organization for Economic Cooperation and Development (POECD), South
Asia (SAS), Sub-Saharan Africa (SSA), and Western Europe (WEU).

3.1. Floor area projections

To model future demand of material use in steel building frames (M̄), we first look185

at global forecasts of urban floor area, Λt
urb, for the entire reference period 2020 to 2050.

Based on this, we then derive urban floor area projections specifically for buildings with
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a steel frame Λt
sf , taken as a percentage (ρ) of total urban floor area projections:

Λt
sf = ρΛt

urb (3)

Growth estimates of global urban floor area are taken from Güneralp et al. (2017).

which provide cumulated values at five-year intervals up to 2050 for each of the 11 In-190

ternational Energy Agency regions. Their estimates account for three different future

urban density scenarios: low (S25), baseline (S50) and high (S75). Of these floor area

projections, a certain percentage, ρ, will be represented by steel building frames. While

it remains extremely uncertain what such percentage might be in the future, a reason-

able approach is to look at estimates of the existing building stock, worldwide. For195

this purpose we adopt PAGER (Jaiswal and Wald, 2008), a global building inventory

database which provides population percentages per structural building type at country

level, for both urban and rural categories. Projections of total urban floor area (S50

scenario) and corresponding shares of steel building frames are both shown in Figure

2, color-coded for each region. The Figure shows a clear variation among regions with200

regard to their internal building stock shares of steel frames. Based on this model, steel

frame floor area accounts for about 6% of the total global (urban) building floor area.

Methodological information on how the fractions of building frames (as from PAGER)

were aggregated from country-level to regions can be found in supplementary material.

3.2. Material intensities205

Having derived worldwide building floor area projections for steel frames (Λt
sf ), the

material flows (annual or cumulated) required to construct them can be derived by

multiplying the floor area projections with the corresponding material intensities, m

(i.e. masses of structural material per unit of floor area). Material intensities were

taken as follows (in kg/m2):210

• msf,comp = 30.8 (µ); 6.43 (σ)

• msf,hyb = 27.7 (µ); 5.33 (σ)
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• mc = 230.0

• msd = 14.3

• mCLT = 65.0 (min); 75.0 (max)215

Mass distributions of steel beams and columns in composite and hybrid frames —

msf,comp and msf,hyb respectively— were modelled explicitly via automated structural

design/optimisation techniques (D’Amico and Pomponi, 2018). A parametric struc-

tural frame model was implemented and used to generate a population of 20’000 steel

frame designs to account for a range of realistic geometric and loading configurations.220

Histograms of steel intensities msf,comp and msf,hyb are shown in Figure 3a and 3b

respectively. Input parameters and details of the automated design/optimisation algo-

rithm can be found in supplementary material. As shown in Figure 3, substituting heavy

steel-concrete composite floor slabs with CLT panels yield to an average steel mass re-

duction of circa 3.1 kg/m2. The mass intensity values for the floor slabs (mc = 230.0,225

msd = 14.3 and mCLT = 65.0) are based on manufacturers’ data (see supplementary

material).

Figure 3: Histograms of mass intensity for the bare steel frame for (a): traditional (composite)
construction; (b): hybrid construction.
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3.3. Global material quantities

Global material quantities, M̄ , required to meet future annual demand for construc-

tion of steel building frames can be now derived as a function of material intensities230

(m), floor area projections (Λt
sf ) and fraction of hybrid construction uptake by 2050

(u). To match with floor area projection data, the reference period 2020-2050 is divided

into n = 6 five-year intervals. The global yearly demand for steel frame sections (beams

and columns) is thus computed as follows for the ith five-year interval:

M i
sf (u) =

Λi
sf [(1− uαi)msf,comp + uαimsf,hyb]

5
(4)

where αi is the rate of hybrid construction uptake at the end of the ith (five-year)235

interval, which is assumed to increase linearly throughout the reference period 2020-

2050:

αi =
i

n
(5)

Similarly, projected annual flows for concrete and steel deck sheathing (in composite

floor slabs) and CLT floor slabs can be derived as follows:

M i
c(u) =

Λi
sf (1− uαi)mc

5
(6)

240

M i
sd(u) =

Λi
sf (1− uαi)msd

5
(7)

M i
CLT (u) =

Λi
sfuα

imCLT

5
(8)

Plots of Eq. (4) and Eqs. (6) to (8) are shown in Figure 4a in Mt/yr considering

different levels of uptake by 2050 for the hybrid system. The extreme scenarios are: no

uptake (blue line) and full uptake (red-dashed line). Mean values were set for msf,comp

and msf,hyb in generating these annual material flows. The corresponding cumulated245

quantities, shown in Figure 4b, were obtained via numerical integration, interpolating
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linearly the data-points of the annual flows.

Figure 4: Global projections of materials demand for steel building frames assuming different values
for the uptake factor u. The two extreme scenarios are: Business as usual (u = 0.0) composite steel-
concrete floor slabs remain the most widespread method of construction; Full substitution (u = 1.0)
hybrid construction with CLT floor slabs becomes the mainstream technology by 2050.
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3.4. Carbon coefficients

Distributions of whole-life carbon coefficients, e, are derived for each structural

material in terms of mean and standard deviation.250

• esf = 2.24 (µ); 0.53 (σ)

• ec = 0.45 (µ); 0.13 (σ)

• esd = 2.48 (µ); 0.53 (σ)

• eCLT = 1.08 (µ); 0.2 (σ)

Lower/upper value ranges (and most likely value, when available) are first estimated255

for each life cycle stage (including end-of-life) in line with standardised procedure for

Life Cycle Assessment of construction works (European Committee for Standardization,

2011). The above distributions of aggregated whole-life CCs are then derived numeri-

cally, via Monte Carlo method with whole-life data-point coefficients obtained as sum of

the partial coefficients randomly sampled from each life cycle stage distribution (Pom-260

poni et al., 2017). The Monte Carlo method is relatively straightforward to implement

as it only requires the input values to be re-assigned at each iteration (by randomly

picking from predefined distributions), while the output-generating model is the same

at every iteration. A downside of the method is the requirement for a sufficiently large

number of iterations in order to achieve consistency of results. The minimum number of265

required iterations was calibrated by running the algorithm several times, hence making

sure the means of the output distributions were within ±1% of their average. Numerical

values defining the partial coefficient input distributions, as well as the underpinning

methodology herein adopted to derive them, are both detailed in supplementary mate-

rial.270

It is however worth to mention here that the carbon sequestrated in timber during

the tree-growing stage has not been accounted for in characterising the carbon coeffi-

cients for CLT. Such biogenic carbon compounds will eventually be released back in the

atmosphere as CO2 at a later (however far) time in the future past the building’s end-

of-life. Sequestrated carbon should therefore be treated as source of emissions offsetted275
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in time rather than credited as absolute gain. Strategies to offset emissions in the near

term are indeed very much needed given the short time-frame available for action (as

warned by the IPCC (2018)). While acknowledging the benefit of large-scale engineered

wood products uptake in building construction (coupled with forest replantation) as a

way to create an artificial global carbon sink (Churkina et al., 2020), characterising its280

time-limited extent requires further value judgement (e.g. buildings’ lifespan, just to

name one) which is beyond the scope of our analysis. Further, our approach represents

a conservative hypothesis in light of the validity of our findings.

Figure 5: Global cumulated projections of GHG emissions up to 2050 with uncertainty bands, derived
based on annual flows as from Eq. (1) for the low, medium and high future urban density scenarios from
Güneralp et al. (2017). Mean GHG emission trajectories as a function of hybrid construction uptake
ratio at 2050 (u) are also shown for the medium urban density scenario.
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4. Results

Cumulated projections of GHG emissions up to 2050 have been derived based on285

annual flows as from Eq. (1) and shown in Figure 5 for the low, medium and high future

urban density scenarios. Uncertainty bands, due to variability in material and emission

intensities (m and e) are quantified via Monte Carlo simulation. Assuming current

global urban densities will remain stable (S50), global demand for buildings with a

steel frame structure will result in additional 171-303 Mt of CO2e released into the290

atmosphere in the next 30 years if current construction practice will remain unchanged

by 2050 (u = 0). This range would be lowered to 142-229 Mt CO2e if the most optimistic

scenario materialises, that is to say, current technology will be fully replaced by hybrid

construction by 2050 (u = 1). In mean-value terms this corresponds to a reduction of

about 52 Mt CO2e (-22%) as shown in Figure 6.295

4.1. Urban density

Due to the existing relationship between floor area per capita and urban density,

total emission levels are inversely proportional to this latter, hence implying that denser

urban settlements are to be preferred to sparse ones. Nonetheless, as shown in Figure 5,

if future urbanisation trends do fall on a low density pathway (S25), it will make for an300

even stronger case to adopt hybrid construction given the relative increase of avoided

GHG emission compared to the high density scenario (S75).

4.2. Sensitivity to uncertainties

As Figure 6 shows, projections of GHG that can be avoided via full material sub-

stitution (to be achieved at 2050) are ranging between 22 and 82.8 Mt CO2e within305

the 5-95% confidence interval. This uncertainty range is quantified adopting a Monte

Carlo analysis in which probability ranges were considered for the pool of model inputs,

namely: intensity of whole-life GHG emissions, expressed in terms of carbon coefficients

(kgCO2e/kg), material intensities per unit of floor area (kg/m2) and total urban floor

area projections as function of urban density (m2).310
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Figure 6: Global cumulated projection of avoided GHG emissions, along with uncertainty, as a result
of full material substitution achieved by 2050 (u = 1).

As it can be seen in Figure 6, the influence of individual uncertainty sources on the

magnitude of avoided GHG emissions are also individually quantified by running three

further Monte Carlo simulations, one for each uncertainty source, in which a single input

value (equal to the mean) was set for the remainder of the inputs. Looking separately at

the various sources of uncertainty it can be seen from Figure 6 that future urban density315

has a much smaller influence (6.6 Mt CO2e) compared to the influence of variability in

material intensity (28.4 Mt CO2e) and uncertainty of carbon emission intensities (52.7

Mt CO2e).

4.3. Resource availability

Reaching full material substitution by 2050 (u = 1) is arguably the preferred sce-320

nario, and it may be argued on whether such a demand increase for CLT, and its raw

material component (sawn timber), can be actually met in practice given the global

competitiveness in land use and the limited time-frame of 30 year time. Contrarily to

common belief, despite net losses in the tropical regions global tree cover has increased

worldwide in the last decades. Song et al. (2018) estimated some +2.24 million km2 in325
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the last 35 years mostly as a result of anthropogenic afforestation in regions/countries

such as Europe and China. If we consider that an hectare of commercial conifer plan-

tation produces approximately between 4.0 to 4.5 m3 of sawn timber per year (Ramage

et al., 2017b; Forestry-Commission, 2018) (i.e. ≈ 46 t in 30 years) the land required

to meet an additional 33 Mt of timber (CLT) demand by 2050 (see Figure 4b) would330

be about 7200 km2. This corresponds to an increase in commercial forests of approx-

imately 240 km2/yr for the next 30 years, a figure which is two orders of magnitude

smaller than current afforestation trends (+64000 km2/yr for the past 35 years, based

on Song et al. study).

5. Discussion335

Results in Figure 6 show that cumulated GHG savings can range from about 10% of

national annual emissions of countries like Spain to 10% of countries with much higher

emissions like Germany, and on average represent 15% of national annual emissions of

countries such as France, Italy, or the UK (Global Carbon Project, 2018). The average

of 50 Mt CO2e also represents about five years worth of total UK cementitious material340

emissions (Shanks et al., 2019), or in different terms, it equates to take v11 million cars

off the road for an entire year (Environmental Protection Agency, 2018).

With respect to the remaining carbon budget, there exist different estimates about

what is left for a 66% chance of less than 1.5 ◦C warming. These range from 118 Gt

CO2e (IPCC (2013) AR5 through an Earth System Model) to 300-700 Gt CO2e (various345

estimates using observational data on emissions and warming Carbon Brief (2018)).

While our results indicate that savings are moderate in comparison to the budget

(< 1%), the construction sector is notably one that is hard-to-decarbonise and which

is a laggard in reducing GHG emissions. In this light, if we accept that construction is

responsible for v10% of all global emissions annually, the savings that hybrid systems350

can achieve would contribute some 1.5% reduction of that 10% (based on numbers from

the Global Carbon Project (2018)). If carbon sequestration were accounted for, which

we have not included in our analysis as a conservative approach, this contribution could
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be much greater. Notwithstanding, it is a non-trivial reduction, particularly given the

immediate applicability of this material substitution strategy which does not require355

new technologies to be developed nor does it require upskilling of the current workforce

in design, engineering, and construction practice.

6. Conclusion

Achieving substantial reductions of the current anthropogenic GHG emissions in

the shortest possible amount of time has been unanimously waived as the only feasible360

way to avoid an imminent climate catastrophe. Projected forecasts of global urban

growth combined with an increase in material consumption will certainly lead to a

continuation of the current emissions trend unless alternative solutions are put in place.

The building sector is, historically, among the greatest contributors to global GHG

emissions. This remains true in spite of the continuous improvements in operational365

energy efficiency achieved in the last decades. As buildings become more efficient in

their operational life, the material manufacturing and construction phases (and related

upstream supply chains) are increasingly becoming the main carbon hotspot to focus on.

This is due to the vast amounts of energy required to extract and process raw materials,

manufacturing them into usable products and shipping them around during the various370

processing stages up to construction site, as well as due to the energy required for end-

of-life disposal. Steel and concrete are by far the two human-made materials in highest

demand globally. Notably, they are also among the most energy and carbon-intensive

ones. Even considering the optimistic assumption that very aggressive coordinated

policies will eventually enable the global energy mix to become carbon-free by 2050,375

steel and concrete are hard-to-de-carbonise materials, emitting CO2 as a direct result

of the chemical reactions involved in their respective production processes. A way to

mitigate global demand while providing the same service is to find valid low-carbon

substitutes for specific construction applications.

In this paper we have attempted to quantify the potential global savings, in terms380

of avoided CO2e emissions for the next 30 years, resulting from substituting concrete
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floor slabs in steel building frames with Cross Laminated Timber panels. Such sub-

stitution yields on average 50 Mt CO2e of avoided emissions, without considering any

carbon sequestration and storage potential offered by timber as a building material.

At a time where climate change has rightly turned into climate crisis and emergency,385

urgency in implementing effective actions is of essence and the hybrid system presented

in this research represents an immediately viable route to decarbonise buildings and

construction.

Future work could address some of the limitations of the research presented in this

paper, such as a regionalised approach to estimate GHG emissions linked to the main390

materials used in structural systems, or to expand the analysis beyond the structural

frame only and explore material substitution potential in other building elements and

assemblies.
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