
Visualisation Support for Biological Bayesian Network
Inference

A thesis
submitted in partial fulfilment

of the requirements of
Edinburgh Napier University,

for the award of
Doctor of Philosophy

by

Athanasios Vogogias

Edinburgh Napier University

August 2019

Abstract

Extracting valuable information from the visualisation of biological data and turning it into a net-
work model is the main challenge addressed in this thesis. Biological networks are mathematical
models that describe biological entities as nodes and their relationships as edges. Because they
describe patterns of relationships, networks can show how a biological system works as a whole.
However, network inference is a challenging optimisation problem impossible to resolve compu-
tationally in polynomial time. Therefore, the computational biologists (i.e. modellers) combine
clustering and heuristic search algorithms with their tacit knowledge to infer networks. Visual-
isation can play an important role in supporting them in their network inference workflow. The
main research question is: “How can visualisation support modellers in their workflow to infer

networks from biological data?” To answer this question, it was required to collaborate with com-
putational biologists to understand the challenges in their workflow and form research questions.
Following the nested model methodology helped to characterise the domain problem, abstract data
and tasks, design effective visualisation components and implement efficient algorithms. Those
steps correspond to the four levels of the nested model for collaborating with domain experts to
design effective visualisations. We found that visualisation can support modellers in three steps
of their workflow. (a) To select variables, (b) to infer a consensus network and (c) to incorporate
information about its dynamics.

To select variables (a), modellers first apply a hierarchical clustering algorithm which produces
a dendrogram (i.e. a tree structure). Then they select a similarity threshold (height) to cut the tree
so that branches correspond to clusters. However, applying a single-height similarity threshold
is not effective for clustering heterogeneous multidimensional data because clusters may exist at
different heights. The research question is: Q1 “How to provide visual support for the effective

hierarchical clustering of many multidimensional variables?” To answer this question, MLCut, a
novel visualisation tool was developed to enable the application of multiple similarity thresholds.
Users can interact with a representation of the dendrogram, which is coordinated with a view of
the original multidimensional data, select branches of the tree at different heights and explore dif-
ferent clustering scenarios. Using MLCut in two case studies has shown that this method provides
transparency in the clustering process and enables the effective allocation of variables into clusters.

Selected variables and clusters constitute nodes in the inferred network. In the second step
(b), modellers apply heuristic search algorithms which sample a solution space consisting of all

possible networks. The result of each execution of the algorithm is a collection of high-scoring
Bayesian networks. The task is to guide the heuristic search and help construct a consensus net-
work. However, this is challenging because many network results contain different scores pro-
duced by different executions of the algorithm. The research question is: Q2 “How to support the

visual analysis of heuristic search results, to infer representative models for biological systems?”

BayesPiles, a novel interactive visual analytics tool, was developed and evaluated in three case
studies to support modellers explore, combine and compare results, to understand the structure of
the solution space and to construct a consensus network.

As part of the third step (c), when the biological data contain measurements over time, heuris-
tics can also infer information about the dynamics of the interactions encoded as different types of
edges in the inferred networks. However, representing such multivariate networks is a challenging
visualisation problem. The research question is: Q3 “How to effectively represent information

related to the dynamics of biological systems, encoded in the edges of inferred networks?” To
help modellers explore their results and to answer Q3, a human-centred crowdsourcing experi-
ment took place to evaluate the effectiveness of four visual encodings for multiple edge types in
matrices. The design of the tested encodings combines three visual variables: position, orienta-
tion, and colour. The study showed that orientation outperforms position and that colour is helpful
in most tasks. The results informed an extension to the design of BayePiles, which modellers
evaluated exploring dynamic Bayesian networks. The feedback of most participants confirmed the
results of the crowdsourcing experiment.

This thesis focuses on the investigation, design, and application of visualisation approaches
for gaining insights from biological data to infer network models. It shows how visualisation can
help modellers in their workflow to select variables, to construct representative network models
and to explore their different types of interactions, contributing in gaining a better understanding
of how biological processes within living organisms work.

Table of Contents

Acknowledgments v

List of Figures 1

List of Tables 9

1: Introduction 10

1.1 Biological Networks . 11

1.2 Network Inference Workflow . 12

1.3 Biological Analysis Challenges . 13

1.4 Research Questions . 14

1.5 Contribution to Knowledge . 15

2: Background 18

2.1 Domain Scientists . 18

2.2 The Data . 19

2.3 Visualisation . 22

2.3.1 Biological Visualisation . 23

2.3.2 Visual Analytics . 24

2.4 Visualisation Design Methodology . 25

2.4.1 The Nested Model . 27

3: Related Work 31

3.1 Hierarchical Clustering Analysis . 31

3.1.1 Visualising Dendrograms . 32

3.1.2 Cutting the Dendrogram . 33

3.1.3 Representing Multivariate Data . 36

3.2 Network Inference . 39

3.2.1 Bayesian Networks . 40

3.2.2 Exploring and Comparing Networks . 42

3.3 Multivariate Network Analysis . 46

3.3.1 Dynamic Bayesian Networks . 46

3.3.2 Visualising Multivariate Networks . 48

3.4 Summary . 51

4: Exploring Multi-Level Cuts in Dendrograms with MLCut 53

4.1 Domain Problem Characterisation . 54

4.2 Requirements . 55

4.3 Design and Implementation . 57

4.3.1 Design Process . 57

4.3.2 Dendrogram Design . 58

4.3.3 Dynamic Sliders . 60

4.3.4 Coordinated Views . 62

4.3.5 Releases . 64

4.4 Evaluation . 64

4.4.1 Clustering SNPs to Chromosomes . 65

4.4.2 Clustering Time-series Gene Expression Data 66

4.5 Summary of Contribution . 67

5: Bayesian Network Inference with BayesPiles 68

5.1 Domain Problem Characterisation . 69

5.2 Tasks . 70

5.3 Design and Implementation . 71

ii

5.3.1 Exploring Hundreds of Scored Directed Networks to Support T1 75

5.3.2 Importing and Ordering Multiple Network Collections to Support T2 . . 76

5.3.3 Group and Compare Networks to Support T3 78

5.3.4 Graph Filtering of Nodes and Edges to Support T4 80

5.3.5 Viewing Outgoing Edges of Nodes in Multiple Networks to Support T5 . 81

5.3.6 Manual Consensus Network Construction to Support T6 81

5.4 Evaluation . 82

5.4.1 Brain Regions on Songbird . 82

5.4.2 Genes and Brain Regions on Rats . 83

5.4.3 Gene Clusters on Ovarian Cancer Cells 86

5.4.4 Subjective Feedback . 88

5.5 Summary of Contribution . 89

6: Visual Encodings for Edges in Matrices 92

6.1 Domain Problem Characterisation . 93

6.2 Tasks . 94

6.3 Encoding Multiple Edges in Matrices . 95

6.3.1 Matrix Cell Designs . 96

6.4 User Study . 99

6.4.1 Data . 99

6.4.2 Questions to Participants . 100

6.4.3 Hypotheses . 102

6.4.4 Experimental Procedure . 104

6.5 Results . 106

6.5.1 Task 1 - Cell with Most Marks . 109

6.5.2 Task 2 - Most Frequent Mark . 110

6.5.3 Task 3 - Most Frequent Mark Pair . 111

6.5.4 Task 4 - Matrix with Most Cells of a Mark Type 112

6.6 Integration into BayesPiles and User-Centred Evaluation 114

6.6.1 Data . 115

iii

6.6.2 Evaluation . 116

6.6.3 Results . 118

6.6.4 Qualitative Feedback . 119

6.7 Summary of Contribution . 120

7: Conclusions and Future Work 121

7.1 Contribution 1: Hierarchical Clustering with MLCut 122

7.2 Contribution 2: Inferring Networks with BayesPiles 124

7.3 Contribution 3: Matrix Representations for Networks with Multiple Edge Types . 128

7.4 Contribution Summary . 133

References 134

Appendix A: GitHub Repositories 154

Appendix B: List of Terms 155

iv

Acknowledgments

I would like to thank Edinburgh Napier University for funding my research. Also, I would like
to thank the School of Computing for providing technical support, office space to work as well
as space for collaboration and exchange of ideas with colleagues. I would like to express my
sincere gratitude and deep appreciation to my supervisors Prof. Jessie Kennedy and Dr Daniel
Archambault for their guidance and insightful mentoring, for motivating me and for helping me to
grow as a researcher. Without their invaluable support, I would not be able to overcome difficulties
and achieve my research goals. Also, I would like to thank all my collaborators, and especially Dr
Anne Smith, for believing in the value of my research and for their continuous engagement and
enthusiastic interest in applying my visualisation methods to their biological data. Without their
feedback, my research would be meaningless. I would like to thank Dr Benjamin Bach for the
inspiration, his comments and his generous assistance during our collaboration in the second half
of my PhD. Finally, I would also like to thank my fellow PhD students for their companionship in
this long and often lonely journey of scientific inquiry and my family and friends that always stand
by me tolerating my ignorance. Their patience and love overwhelm me with satisfaction and joy.

v

List of Figures

1.1 The workflow that describes the process of network inference with the three anal-
ysis challenges highlighted. Step (a): reduce the number of variables, Step (b):
guide the heuristic search and construct a consensus network and Step (c): incor-
porate the dynamics about the system in the network model. 13

1.2 The visual analysis circle that describes the contributions of this thesis for inferring
biological networks from multivariate data. 16

2.1 The flow of data in the three steps of modellers’ workflow: (a) variable selection
through hierarchical clustering (HC), (b) network inference and (c) incorporating
the dynamics of interactions. 21

2.2 (a) The visual analysis loop. (b) The visual data-exploration loop [102]. 24

2.3 The sense-making loop for Visual Analytics [102]. 25

2.4 Sense-making model for exploring molecular level influences on disease-related
processes [130]. 26

2.5 The four levels of the nested model. In the first level, the domain problem is
characterised and understood. In the second level, data and tasks are abstracted
and clarified. In the third level, the visual encoding and the interaction technique
are designed. In the fourth level, an efficient algorithm for manipulating the data
is designed. [132]. 28

2.6 Threats and validation in the nested model [132]. 29

2.7 The task clarity and information location axes as a way to analyse the suitability
of design study methodology. Green and yellow areas mark regions where design
studies may be the wrong methodological choice [159]. 30

3.1 The flow of constructing the dendrogram. Pairwise dissimilarities between data
records are calculated and used by the hierarchical clustering algorithm to con-
struct a dendrogram. The branches A and B correspond to clusters. 32

1

3.2 A traditional top-down representation of a dendrogram generated using R. The
axis on the left shows the dissimilarity levels ranging between 0 (leaves) and 1
(root). 33

3.3 Different tree layouts as presented by McGuffin et al. [124]. (a) node-link, (b) a
variation on (a) to support long labels, (c) icicle, (d) radial, (e) concentric circles,
(f) nested circles, (g) treemap and (h) indented outline. 34

3.4 Multi-level cuts in a heterogeneous dendrogram. The red icons indicate four lo-
cally applied similarity thresholds which cut the tree in four branches that form
the same number of non-overlapping clusters. This clustering scenario could not
be achieved using any single-height similarity threshold. 35

3.5 Applying brushing technique in Timesearcher software to specify time pattern [89]. 37

3.6 Time-series represented in 3D with TIALA [94]. 37

3.7 Using animated scatterplots to identify patterns in temporal data using MaTSE [50]. 38

3.8 Visualisation of ranking changes in large time-series data with RankExplorer [164]. 38

3.9 Screen-shot of MAVisto analysing a transcriptional regulatory network of Saccha-
romyces cerevisiae with different perspectives to explore motifs. On the left-hand
side, the network is shown with the motif-preserving layout of highlighted matches
of the feed-forward loop motif. On the right-hand side, all discovered motifs can
be further analysed. Detailed information is presented in the motif table (top), the
structure of the currently active motif is displayed in the motif view (middle) and
the motif frequency spectrum is shown in the motif fingerprint (bottom) (as found
in Schreiber et al. [158]). 43

3.10 The Semantic Graph Visualizer (SGV) comparing two process graphs representing
workflows involved in buying a computer. (as found in Andrews et al. [10]). . . 44

3.11 (a) CompNet canvas displaying the union of eight protein-protein interaction net-
works. The names of nodes belonging to different communities are marked with
different colours. (b) The ‘pie-nodes’ representation enables to identify the pres-
ence/absence of individual nodes across the compared networks. (c) The cumula-
tive community distribution plot (d) Bubble chart representing similarity between
networks (e) Hierarchical tree built using network similarity (as found in Kuntal
et al. [108]). 44

3.12 Small multipiles (i.e. MultiPiles) create lists (piles) of similar dense graphs in a
time line, visualised using the technique of adjacency matrix. Larger piles indicate
longer occurrences of the graph in the time line [18]. 45

3.13 The traditional representation of a DBN with edges connecting nodes in different
time-slices. Edges that show self-correlation have been removed to create a more
clear diagram. Self-correlation edges create a feedback loop that starts and finishes
in the same node. 47

2

3.14 A PivotGraph visualisation of a large graph rolled up onto two categorical dimen-
sions [189]. 48

3.15 Multivariate network exploration using selections of interest, detail view (left) and
high-level infographic-style overview (right) [177]. 49

3.16 Alternative superimposed (a) matrix and (b) node-link visualisations supporting
weighted graph comparisons [9]. 50

3.17 Exploration of the InfoVis 2004 Contest co-authorship data set using GraphDice.
On the left is the main visualisation window of GraphDice including (a) an overview
plot matrix, (b) a selection history tool, (c) a selection query window, (d) the main
plot, and (e) a toolbar [31]. 51

4.1 A picture showing two of the handwritten cards after a card sorting session with
one of the participants. 55

4.2 Pictures from the second card sorting session. New requirements and requirements
found in the first session were grouped based on their relevance. 56

4.3 Dendrogram displayed in an earlier version of MLCut using a version of the top-
down node-link tree layout. This dendrogram layout is suitable for identifying
clusters and outliers based on the length of the branches. 59

4.4 A summary of the visual encodings used for representing the dendrogram in MLCut. 59

4.5 Texture added to data records that have been double-clicked. Those records will
remain highlighted (“locked”) in the interface and not affected by any cluster se-
lection. 60

4.6 Dynamic query sliders in use. The top slider in II sets the similarity threshold and
the bottom slider in III sets the distinctiveness threshold. 61

4.7 Three sub-clusters of genes (A, B and C) that exhibit distinctive time patterns.
Each sub-cluster belongs to a larger main cluster, visually encoded using colour. . 63

4.8 A screenshot from TetraploidSNPMap showing MLCut as an integrated clustering
component [82]. 65

5.1 (a) A “rainbow” consensus network of 10 networks superimposed, shown in Graphviz
[65]. This is the most dense network analysts can currently handle. (b) A denser
consensus network which is almost impossible to read. 72

5.2 Some of the sketches drawn and discussed during our meetings with the compu-
tational biologists. The first six sketches show unrefined encoding ideas of the
solution space and the last three sketches are concerned with encoding directed
networks in matrices. 73

3

5.3 A screenshot of MultiPiles [18] showing four piles of networks represented as
adjacency matrices. The interface was extended in BayesPiles to provide visuali-
sation support for tasks related to Bayesian network inference. 74

5.4 The two linked views of BayesPiles. (a) Overview of 99 networks produced in
five runs and shown as summary columns. Different colours indicate different
runs. (b) A histogram with the distribution of scores. By hovering over each bar,
details such as the computed score value, the run ID and the iteration appear as a
tooltip. (c) Initially, the consensus pile is empty. Piles 1-5 contain networks from
the five different runs and shown using the top-down mode. Opacity encodes the
weight of each edge (cell) in piles of superimposed networks. Opacity is also used
to summarise the out-degrees which except the overview also appear at the top
edge of each pile. 75

5.5 Directed versus undirected node-link and matrix representations. (a) Node-link
representation of a directed network. (b) The same directed network as encoded
in top-down mode. Rows encode incoming edges and columns outgoing edges
resulting in an adjacency matrix that is not symmetric. (c) The out-degree of each
node as encoded using opacity in a summary column. (d) Node-link representation
of an undirected network. (e) The undirected network shown in skeleton-mode
resulting in a symmetric adjacency matrix (MultiPiles visualisation method). (f)
The degree of each node as encoded using opacity in a summary column. 76

5.6 Node reordering improves network comparison and pattern recognition in matri-
ces. (a) Five piles in skeleton mode before applying node reordering. (b) The
same five piles after node reordering. (c) It is easier to spot differences such as an
edge which is only missing in the second pile from the left (in last row and third
column). 77

5.7 The evolution of the design for comparing edges of opposite directions. Interme-
diate design options created ambiguities and visual artefacts because of adjacent
neighbouring edges. In the final design (diamond mode), only the (top and bot-
tom) triangles that encode the opposite directions (in and out respectively) appear
adjacent. 79

5.8 Interactively comparing piles. (a) Top-down mode highlights differences in addi-
tion and removal of edges. (b) Diamond mode highlights change in direction of
edges between piles. In both modes, it becomes evident that the hovered consensus
pile is more similar to piles 1, 2 and 4 and less similar to piles 3 and 5. 80

4

5.9 Comparing representations that show the outgoing edges from a selected node
across a collection of networks. (a) Showing outgoing edges from node 3 in 4
networks using a node-link diagram in which networks are superimposed and en-
coded using different colours. The resulting visualisation is already hard to read.
(b) For the same task, a matrix-based representation, similar to a heatmap, is much
more scalable. Opaque rectangles indicate the existence of an edge in a network
and blank rectangles indicate its absence. (c) Users can hover over the label of
a node (here var16) and all outgoing edges will appear in the column summaries
across all networks of multiple runs (here there are 99 networks in total). Interest-
ing patterns may appear. For instance, the analyst can observe that the edge from
var16 to var6 does not appear in any of the networks found by runs 3 (blue) and 5
(pink). 81

5.10 The hill-climbing pattern consistently appearing in five repetitions of the search.
(a) Summary of networks when ordered by score. Networks of the same score are
piled. (b) Piles shown in the top-down mode. Fully opaque edges show that all
five runs produced identical results. (c) The outgoing edges for var2 look the same
across all runs when networks are ordered based on their run ID. A smooth asymp-
totic curve appears in the histogram of their scores, indicating a hill-climbing pattern. 83

5.11 (a) The even length of score bars together with the solid opacity of column sum-
maries in skeleton mode suggest that networks 12-45 belong to the same equiv-
alence class. (b) However, using the diamond mode reveals that there is a lot of
variation in the directionality of edges within and across piles. 84

5.12 Flexible edge filtering. By moving a slider, users can interactively filter out edges
from the consensus network and all other piles. Filtering out edges that appear in
fewer networks contributes to the construction of a more reliable and reproducible
consensus network. In other words, users are enabled to identify and control which
edges to include based on how consistently they appear in high-scoring networks. 85

5.13 Comparison between the final BN model found by BANJO without BayesPiles
with the one constructed after using BayesPiles. (a) The top-scoring network
found by BANJO. (b) The same network as shown in skeleton mode. (c) The
consensus network constructed manually by the analyst using BayesPiles. Users
not only can gain control over the process of consensus network construction but
also, they can visualise uncertainties about edges (shown in lower opacity). . . . 86

5

5.14 Results from five search attempts finding Bayesian networks in gene clusters of
ovarian cancer cells. (a) User interface controls. (b) A summary of outgoing
edges for var41 in five collections of thirty networks each. (c) Networks grouped
in five piles and juxtaposed. The column that corresponds to var41 in each pile
(manually labelled) appears darker indicating a high out-degree for var41. (d)
Differences between the first and the other four runs are shown in the blue and red
cells which correspond to edge additions and removals. 87

5.15 An overview of the workflow. BayesPiles visualises the results of heuristic search
algorithms, informs their parameter settings and enables the construction of a con-
sensus network structure. 90

5.16 A snapshot of BayesPiles taken during the interactive construction of an average
consensus network. 91

6.1 (a) A DBN visualised as a multivariate node-link diagram and in (b) as a multi-
variate matrix. 95

6.2 Examples of visual designs considered for encoding multiple types of edges in
matrices. The top row shows an example of a single matrix and the bottom row
shows the encoding for each ML type. The encodings use one or more visual
variables to represent multiple edges: a) uses a coloured pie chart, b) uses opacity
in a pie chart, c) uses a segmented and coloured pie chart d) uses orientation, e)
combines position and colour, f) uses size and g) combines size and colour to
create a glyph. 97

6.3 Proposed visual encodings for the different types of edges (MLs) tested in the user
study: a) orientation without colour (ORI), b) orientation with colour (ORI+COL),
c) position without colour (POS) and d) position with colour (POS+COL). Columns
(i), (ii), (iii) and (iv) show the encoding of edge types ML0, ML1, ML2 and ML3
accordingly. Columns (v), (vii) and (vii) show how the combination of two, three
and four edge types look in the different encodings. 98

6.4 An example of the final encodings showing the same multivariate network: a)
orientation without colour (ORI), b) orientation with colour (ORI+COL), c) position
without colour (POS) and d) position with colour (POS+COL). 99

6.5 a) An example of the interface used in the first task. This trial uses the encod-
ing orientation without colour (ORI). b) An example of the interface used for the
second task which uses orientation and colour (ORI+COL). c) An example of the
interface used for the third task which uses position without colour (POS). 102

6.6 An example of the interface used for the fourth task which uses position with
colour (POS+COL). 102

6

6.7 Instructions were shown before every block of trials. This is an example of how
instructions were shown before the block that was testing orientation in the first
task (T1). 104

6.8 An example of a gold standard question for task T2. 105

6.9 This image appeared between trials to help participants concentrate. 106

6.10 Distributions of response times (left) and error rates (right) for the first experiment. 107

6.11 Distributions of response times (left) and error rates (right) for the second experi-
ment. 107

6.12 Distributions of response times (left) and error rates (right) for the third experiment. 108

6.13 Distributions of response times (left) and error rates (right) for the fourth experiment.108

6.14 Average response times (top) and error rates (bottom) for experiment 1. The mar-
gin of error for 95% confidence intervals is shown in each box while the black
lines between boxes indicate significance between visual encodings. Mean and
median values are indicated below each bar. 110

6.15 Bar charts of average response times (top) and error rates (bottom) for experiment
2. The margin of error for 95% confidence intervals is shown in each box while the
black lines between boxes indicate significance between visual encodings. Mean
and median values are indicated below each bar. 111

6.16 Bar charts of average response times (top) and error rates (bottom) for experiment
3. The margin of error for 95% confidence intervals is shown in each box while the
black lines between boxes indicate significance between visual encodings. Mean
and median values are indicated below each bar. 112

6.17 Bar charts of average response times (top) and error rates (bottom) for experiment
4. The margin of error for 95% confidence intervals is shown in each box while the
black lines between boxes indicate significance between visual encodings. Mean
and median values are indicated below each bar. 114

6.18 A collection of 17 dynamic Bayesian networks shown in BayesPiles. 114

6.19 A collection of 30 dynamic Bayesian networks shown in BayesPiles. 117

6.20 Three piles of 30 networks in total shown using orientation and colour. To increas-
ing the salience of the representation, we used red instead of yellow for encoding
ML0. 118

7.1 Semantic zooming in a large dendrogram for low-level exploration of individual
variables and small clusters, using MLCut. 123

7.2 Exploring a data set of reordered matrices from five runs. At the top, an overview
of all outgoing edges for node var6. At the bottom, the difference between the
consensus and five piles of networks in diamond mode. 126

7

7.3 Two patterns that appear after combining Bayesian networks in BayesPiles: (a)
the cycle pattern and (b) the combo pattern. 127

7.4 Orientation and colour used to encode multiple edge types in four dynamic Bayesian
networks. 129

8

List of Tables

2.1 The first 15 variables of a time-series gene expression data set with 5 time points.
Each numerical value corresponds to the mean log2 fold change. 20

2.2 The format BANJO uses to represent Bayesian networks as text. 22

2.3 The format in which a dynamic Bayesian network with three types of edges is
printed in the output of BANJO. 23

6.1 Parameter settings as percentages of marks in each matrix used for generating
networks of the same density but of different difficulty levels. 101

6.2 A summary of domain experts’ results. 119

9

1 Introduction

Networks are a mathematical model composed of nodes and edges useful for studying complex
systems, including biological systems. Nodes in network models represent entities and edges
between nodes represent interactions between entities. Instead of looking at single interactions,
networks can describe multiple interactions between entities (i.e. patterns) in a clear and easy to
interpret way, summarising how a system works as a whole [86]. Patterns of interactions between
biological entities can be inferred from the data using heuristic search algorithms and depicted as
a network [167]. However, scientists struggle to cope with the volume, the complexity and the
dynamics of biological data [59], and the discipline of biological visualisation, which is a branch
of bioinformatics, has emerged to help represent complex data and networks effectively [72].
This thesis argues that data visualisation can help scientists to gain insights about the state of the
biological system and help infer networks that describe the interactions between its entities. Also,
this thesis presents visualisation tools that support scientists in their workflow to infer networks
from biological data.

The domain scientists or experts who analyse data to infer networks are called modellers. In
the domain of biology, the modellers are computational biologists (i.e. bioinformaticians), so
throughout this thesis, these terms are used interchangeably. For this thesis, we collaborated with
a group of 5 computational biologists who wanted to use visualisation to support their network
inference workflow. These collaborators were also the end-users of the presented visualisation
tools. One of them was a senior lecturer specialised in probabilistic methods for inferring com-
plex biological networks. The other 4 were research students that worked on individual projects
supervised by the senior lecturer. Also, during the first period of this research, a senior statistician
specialised in computational methods for analysing genetic data provided useful feedback. Our
collaborators not only helped to identify requirements when the features of the visualisation tools
were designed but also helped with their evaluation.

Using visualisation along with data mining techniques to extract valuable information from
biological data, and to infer networks, is the main focus of this thesis. In Section 2.4, we de-
scribe the four levels of the nested model methodology [132], which helped to make this research
successful. In particular, the nested model was used to help understand the characteristics of the
domain problem, to abstract data and tasks, to design effective encodings and to implement effi-
cient algorithms. The contributions of this thesis are presented as three separate design studies,

10

each following the nested model methodology. In particular, we found that visualisation can help
our modellers in three steps of their network inference workflow: (a) to organise variables into
groups, (b) to infer representative networks and (c) to explore the different types of interactions
which reveal information about the dynamics of the underlying biological system. The challenges
involved in each of these workflow steps have led to the formation of the three research questions
discussed in Section 1.4.

The different workflow steps require the visualisation of different types of data. For the first
step (a), the data sets consist of potentially thousands of variables measured over time or in differ-
ent experimental conditions, resulting in a multidimensional data set. Although such data sets can
be gathered by the modellers as part of their experimental process, in this thesis, we used data sets
stored in publicly accessible repositories. For the second step of the workflow (b), the data sets
consist of collections of potentially thousands of networks. The networks were generated by our
collaborators using BANJO [167], a package that contains different heuristic search algorithms for
network inference. For the third step (c), the data generation process is similar to the second step,
but the networks are more complex as they contain multiple edge types. More details about the
data are explained in Section 2.2.

1.1 Biological Networks

Biological systems are composed of individual parts or entities which are interlinked. One of the
challenges that scientists face when they analyse biological data is to understand the interactions
between these entities. Networks are used to describe complex interactions simply and clearly,
providing an abstract view of a biological system [86]. For instance, networks can describe inter-
actions between chemical molecules within single cells by integrating genetic and environmental
factors which both affect cell functions and the phenotype of a living organism [71]. The depic-
tion of interactions between biological entities as a network is one of the first steps towards making
sense of the data [138]. Thus, the study of networks has become intrinsic to modern biological
research, finding its way into many applications in medicine, neuroscience, genetics, ecology etc.

In general, biological networks take their name from the different types of variables or inter-
actions they model. For instance, the circuitry inside a living cell is commonly described by three
types of molecular network: a) gene regulatory networks (GRNs), b) protein-protein interaction
networks (PPIs) and c) metabolic pathways [138]. However, biological networks often include
variables and interactions of different types, which are interlinked and influence each other [4].
For instance, biological networks often describe probabilistic relationships between aggregates of
variables, experimental conditions, or other biological entities, providing a more high-level view
of the system [54, 166]. This level of abstraction is particularly important when there is a lot of
uncertainty about the underlying biological mechanisms that govern the behaviour of the system,
and a more qualitative understanding is required. Biological networks are most useful when they
are simple and can describe biological processes in a minimal and easy to interpret way.

11

1.2 Network Inference Workflow

The concept of network inference refers to the process followed by modellers for deriving net-
works from biological data [54]. Given a biological data set, the goal of the modeller is to find the
network that optimally represents the interactions between biological entities found in the underly-
ing data. During network inference, the modeller plays an active role in combining computational
and mathematical heuristic methods with their tacit knowledge to identify interactions between
biological entities that define the structure of the presented final network [54]. The final network
is also known as the consensus network because it is often derived from the exploration, combina-
tion and comparison of multiple networks. The possible network solutions that modellers consider
when they construct a consensus network are called candidate networks. In other words, during
network inference, it is the modellers who decide on a method that determines the structure of the
consensus network, combining edges from different candidate networks.

Inferring networks that describe the real interactions between biological entities is a challeng-
ing optimisation problem because many variables can affect the status of the biological system at
any given moment [54]. A model that incorporates the effect of all these variables is difficult to find
because the search space that includes all possible network solutions increases super-exponentially
every time a new variable is considered [91]. Also, collecting biological measurements is finan-
cially expensive and technically complicated [91, 41]. This results in measurements which might
be noisy, sparse, and can contain missing values. These factors add to the uncertainty about the
state of the complex natural system (i.e. the biological network) which hence becomes inherently
stochastic. Network inference cannot be resolved in polynomial time and finding an exact solution
to the underlying computational problem is known to be NP-hard [48, 44]. Therefore, modellers
use clustering and approximate heuristic search methods to find candidate networks.

Instead of considering all possible variables, modellers constrain the search space of solutions
to the problem by filtering or aggregating variables so that only those that affect the status of the
biological system are included in the model. Also, modellers use heuristic search algorithms that
sample the search space of all possible network solutions. Each of these networks is assigned
with a score that indicates how well it fits the underlying data. As part of their network infer-
ence workflow, modellers supervise the variable selection step, guide the heuristic search and then
decide on a method that determines the structure of the consensus network. To construct a consen-
sus network modellers often explore, combine and compare multiple candidate network solutions
generated and assessed by the algorithm.

There are different steps involved in the process of inferring network models but as shown in
Figure 1.1, the workflow usually starts with (1) forming hypotheses about the biological system
based on previous evidence followed by the (2) design and execution of experiments for collecting
relevant biological data measurements. Those measurements often contain variables with multiple
dimensions or time points. Raw data (3) get pre-processed, cleaned and normalised to enable
comparisons. Then modellers (4) reduce the number of variables selecting only those that become
nodes in the network. Usually, this is done by removing redundant variables, or by aggregating

12

similar variables after organising them into groups using clustering algorithms. The next step (5)
involves the execution of heuristic search algorithms to infer the structure of the network. During
this step, the modeller guides the heuristic search and decides on a method for constructing a
consensus network. When the data set involves measurements over time (6), information about
the dynamics of the system can be incorporated into the different types of edges in the network.
Finally, the modeller shares the network with other scientists (7) who interpret this new knowledge,
motivating future research and forming new hypotheses.

Figure 1.1: The workflow that describes the process of network inference with the three
analysis challenges highlighted. Step (a): reduce the number of variables, Step (b):
guide the heuristic search and construct a consensus network and Step (c): incorporate
the dynamics about the system in the network model.

1.3 Biological Analysis Challenges

The workflow that computational biologists (i.e. modellers) often follow to infer network models
involves the following three steps that appear highlighted in Figure 1.1 (a), (b) and (c). Those
steps constitute the main biological analysis challenges targeted in this thesis.

• Step (a): Narrowing the search space by reducing the number of variables is an essential step
for improving the performance of the computationally expensive heuristic search algorithms
that follow. The challenge is to find the most important variables in large and complex data
sets with multiple dimensions or time points. A hierarchical clustering algorithm is used
to reduce the number of variables included in the model. The algorithm produces a tree
structure which is called the dendrogram. Modellers have to inspect the dendrogram and the
multidimensional data to decide which branches correspond to clusters. Selected variables,
or clusters of variables, become nodes in the network model.

• Step (b): Heuristic search algorithms sample the search space of all possible networks
generating collections of candidate networks. Also, multiple executions of the algorithm
take place using different parameter settings and a network score that represents the fitness

13

to the data. Modellers guide the heuristic search and decide on a method that determines
the consensus network after consulting the candidate networks generated by the algorithm.
However, it is difficult for modellers to explore, combine and compare large collections of
candidate networks to infer a consensus network. To overcome this challenge, modellers
first need to acquire an understanding of the shape of the solution space, consisting of the
many high-scoring candidate networks produced by different heuristic search runs.

• Step (c): Modellers also attempt to infer the dynamics of the biological systems. Spe-
cialised heuristic search algorithms can analyse time-series data to infer information about
the dynamics of the underlying biological system and incorporate this information into the
network results. These algorithms produce collections of multivariate networks with mul-
tiple edge types which are hard to represent and explore. Therefore, supporting modellers
in studying the characteristics of different edge types in the search results is important for
understanding how biological processes evolve.

1.4 Research Questions

In the aforementioned three steps of modellers’ workflow (Section 1.3), visualisation can play an
important role in overcoming biological analysis challenges. This thesis focuses on the investiga-
tion, design, and application of visualisation approaches for supporting computational biologists
in their workflow of inferring network models. The main research question that initiated the re-
search for this thesis is the following: “How can visualisation help modellers in their workflow
to infer networks from biological data” which immediately leads to the following questions:

• Q1 “How to provide visual support for the effective hierarchical clustering of many mul-
tidimensional variables?” The first visual analysis challenge is to help modellers explore
multidimensional data sets of multiple variables and allocate those variables into groups,
using the method of hierarchical clustering. Selected variables, or clusters of variables,
become nodes in the inferred network model.

• Q2 “How to support the visual analysis of heuristic search results, to infer representa-
tive models for biological systems?” The second challenge is to help modellers guide the
heuristic search and decide on a method that determines the final consensus network. Mod-
ellers are required to understand the shape of the solution space after sampling this space
using a heuristic search algorithm, executed multiple times. The visual analysis challenge is
to explore, combine and compare potentially hundreds of candidate networks for inferring
the structure of a representative final consensus network.

• Q3 “How to effectively represent information related to the dynamics of biological sys-
tems, encoded in the edges of inferred networks?” The third challenge is to help modellers

14

understand the dynamics of the underlying biological system through the understanding of
heuristic search results, which consist of networks with multiple types of edges. The vi-
sual analysis challenge is to identify effective visual encodings for multivariate networks in
which the multivariate data is associated with the edges.

Supporting modellers in their workflow to overcome those challenges, constitutes the three
main contributions presented in this thesis. In the following chapters, we provide answers to
those three research questions. In Chapter 2, we cover some of the background regarding the
domain scientists, the data and the methodology followed for answering the research questions. In
Chapter 3, we discuss the research questions in detail and we present a literature review. Chapter
4 addresses the challenge of variable selection, which concerns the first research question (Q1).
In Chapter 5, we address the second research question (Q2) which corresponds to the challenge
of inferring a network structure from biological data sets. In Chapter 6, we address the challenge
of representing information about the dynamics of the biological system, encoded in the different
types of edges (Q3). The thesis concludes with Chapter 7, which presents an outline of each
contribution in relation to the whole visual approach and also discusses future work.

1.5 Contribution to Knowledge

This thesis presents a novel visual analysis approach to the process of biological Bayesian network
inference. Figure 1.2 summarises the three main contributions to knowledge which correspond to
the three research questions (Section 1.4) derived from steps of the network inference workflow.

• Contribution 1: Answering the first research question (Q1), we developed a novel visual-
isation tool, called MLCut, which enables the hierarchical clustering of multidimensional
data by cutting dendrograms at multiple levels. The interface of the tool incorporates two
coordinated views, one for representing multidimensional data sets as parallel coordinates
and a second for representing the dendrogram using a scalable design. The visual encod-
ing can represent potentially large multidimensional data sets and dendrograms. Moreover,
an interactive mechanism for cutting dendrograms at multiple heights was implemented.
More details about this contribution are presented in Chapter 4. The paper for MLCut was
published in the Computer Graphics and Visual Computing (CGVC) conference [180].

• Contribution 2: As part of a contribution that concerns the second research question (Q2),
we developed a novel visualisation tool, called BayesPiles, for providing visualisation sup-
port for Bayesian network structure learning. The tool enables the exploration, combination
and comparison of potentially large collections of scored, directed networks. The tool can
visualise directed networks as matrices and supports an overview of multiple networks, ca-
pabilities for sorting networks, node reordering and node/edge filtering. Most importantly,
the modeller can inspect the shape of the solution space, interactively select networks from

15

Figure 1.2: The visual analysis circle that describes the contributions of this thesis for
inferring biological networks from multivariate data.

the collection and construct a consensus network manually. More details about this con-
tribution are presented in Chapter 5. The paper for BayesPiles was published in the ACM

Transactions on Intelligent Systems and Technology (TIST) journal [181].

• Contribution 3: As part of the contribution that concerns the third research question (Q3),
we explored a large design space of possible visual encodings based on a literature review,
feedback from modellers and perceptual principles related to primary visual variables. The
main contribution is a quantitative evaluation of a selected subset of the most promising
encodings in matrices. The results of this study informed the design of BayesPiles to also
support dynamic Bayesian networks. Except biology, the identification of effective encod-
ings has application to several other domains that utilise multidimensional networks, such
as neuroscience, social networks and software engineering. More details about this con-
tribution are presented in Chapter 6. The paper for the evaluation study was accepted for

16

presentation in the VIS 2019 Workshop on the Visualization of Multilayer Networks [182].

In the following Chapter 2, we describe in more detail the domain scientists and the data
involved in this thesis. Also, we cover the background knowledge related to the domain of vi-
sualisation as well as details about the design methodology followed for answering the research
questions.

17

2 Background

In this thesis, we describe how visualisation can support computational biologists (i.e. domain
scientists) in their workflow to infer networks from biological data. We present visualisation tools
that can help reduce the number of variables (Figure 1.1 (a)), infer the structure of a final network
model (Figure 1.1 (b)) and understand information about the dynamics of the interactions (Figure
1.1 (c)). This chapter, covers some of the background knowledge required for understanding
the context of these contributions. Section 2.1, introduces the domain scientists who collect and
visually analyse biological data to infer networks. Section 2.2 provides a description of the data
visualised in this thesis. The chapter continues with an overview of concepts and definitions related
to the fields of information and biological visualisation (Section 2.3). Section 2.4, presents the
methodology followed for identifying biological and visualisation analysis challenges addressed
in this thesis.

2.1 Domain Scientists

The visualisation tools presented in this thesis were designed for scientists who are interested in
inferring networks that model biological systems. In other words, the end-users of the contributed
tools are scientists who use visualisation to gain insights from biological data and combine mathe-
matical and computational methods with their tacit knowledge to infer networks. These scientists
can be statisticians, mathematical modellers, bioinformaticians (i.e. computational biologists) or
any other scientists interested in inferring biological networks. Because they can come from dif-
ferent backgrounds, throughout this thesis the terms end-users, specialists, modellers, analysts,

computational biologists, bioinformaticians, domain scientists and domain experts are used inter-
changeably. Most commonly, we refer to the end-users of our tools with the generic term: “mod-

ellers”. Moreover, because we collaborated with a specific group of five computational biologists,
we often refer to them as “our collaborators” or “our biologists”.

Our collaborators included a senior lecturer in the field of biology, who is an expert in the
field of complex biological network inference, and four research students, who were supervised
by the senior lecturer. Each of the research students worked independently on individual projects,
focusing on different aspects of the biological network inference workflow (Figure 1.1). Our

18

collaboration with the research students lasted for as long as they were working on each of their
projects. The duration of that period ranged from six weeks up to six months, depending on the
project. Our collaboration with one of the research students lasted for approximately six months,
and it was related to the first two steps of the network inference workflow (Figure 1.1(a) and (b)).
A second student, who was a neuroscientist, only collaborated during a short period of six weeks
for a research project that focused on the second challenge (Figure 1.1 (b)). The projects of the
other two students were mostly focusing on challenges related to the third step of the workflow
(Figure 1.1 (c)). Our collaboration with one of them lasted for three months, while the second
student (who was a PhD candidate) collaborated during six months on an occasional basis (3-4
meetings in total). The senior lecturer collaborated in all steps of the workflow for the three years
of this thesis. Our collaboration for some periods was very close (meeting weekly), while for other
periods it was occasional (meeting monthly). During six months and while we were addressing
the first step of the workflow (Figure 1.1 (a)), we also received feedback from a senior statistician
specialised in computational methods for analysing genetic data.

For the step of variable selection in the analysis workflow (Figure 1.1 (a)), our collaborators
used the implementation of the agglomerative hierarchical clustering algorithm (average-linkage)
found in the R package TSclust [131]. They executed the algorithm through the command line,
and they inspected the results in the form of the static dendrogram visualisation the package pro-
vides. For the steps of network inference (Figure 1.1 (b)) and the integration of the dynamics of
interactions (Figure 1.1 (c)), our collaborators used a particular software package for Bayesian net-
work structure learning, called BANJO [167]. BANJO provides a command-line interface through
which common heuristic search algorithms such as greedy search and simulated annealing become
easily accessible. Users of BANJO can easily set parameters editing a configuration file. Such pa-
rameters include discretisation policies for transforming continuous data into discrete, setting-up
the heuristic search algorithms, the maximum number of parents per node permitted, edges be-
tween pairs of nodes which are already known, the range of latency types (i.e. Markov lag) for
dynamic Bayesian networks etc. The output of BANJO is a text file that reports on the networks
that the execution of the heuristic search algorithm has found. The networks are encoded in a
textual format and sorted based on score, with the top-scoring network appearing first. Our col-
laborators combined many of these textual reports to identify edges that appeared in high-scoring
networks and were missing from the lower-scoring ones. Also, in their effort to construct a con-
sensus network, they used Graphviz [65] to visualise more than one networks.

2.2 The Data

As part of the second step of the network inference workflow (Figure 1.1), scientists perform
experiments collecting biological data to test their hypotheses. Typically, the purpose of these
experiments is to record the state of a biological system by collecting quantitative measurements
of variables in different conditions or time points [115]. There are many ways that data can be
collected and the experimental design may involve both manual and automated steps. Modern

19

automated methods, such as next-generation sequencing technologies [125, 149], enabled scien-
tists to massively collect genetic data from organisms, resulting in large data tables that contain
potentially thousands of variables measured in different experimental conditions or time points.
However, because collecting biological data is financially expensive and technically complicated
[91], in real data sets, the number of experimental conditions or time points usually ranges from
2 to 20, with each corresponding to a different column in the data table. In this thesis, we present
case studies that involve data sets that fall within this range. Also, we do not use the same data set
throughout the whole analysis workflow (Figure 1.1) because each of our collaborators was focus-
ing on analysing data in specific steps of the pipeline. However, the tools presented in this thesis
can be used sequentially for the same data set throughout the whole network inference workflow.

In a typical data table, recordings are summarised in data tables in which rows correspond
to variables, while columns correspond to the different experimental conditions or time points
(Table 2.1). Thus, each variable can be described as a vector of multiple attributes, each of which
corresponds to a different condition or time point, resulting in a high-dimensional data set. The
numerical values of real data sets are usually continuous measurements of different ranges. Their
range depends on the experimental design and the technology used for each data set in the sampling
(i.e. measuring) process. However, these continuous measurements always get normalised in a
pre-processing step to enable comparisons.

NAME DAY1 DAY2 DAY4 DAY7 DAY14
ILMN 2053546 -0.64824 0.02733 -0.03789 -0.84012 -0.17355
ILMN 1742981 0.59644 0.28945 -0.16766 0.17026 -0.0533
ILMN 3224758 0.515 0.07212 -0.04839 0.06311 -0.10306
ILMN 1755115 -0.43211 0.0443 -0.08666 -0.54099 -0.23722
ILMN 1789702 0.00909 0.12338 0.21579 -1.27578 0.02609
ILMN 2053546 -0.64824 0.02733 -0.03789 -0.84012 -0.17355
ILMN 1784217 -0.17191 -0.37519 -0.25647 -0.97748 0.07347
ILMN 1652082 -0.07852 -0.01369 -0.12612 -0.67727 0.15559
ILMN 2053178 -0.43855 0.0289 0.08289 -0.57347 -0.02958
ILMN 1656625 -0.35504 -0.00547 -0.19932 -0.45741 -0.12073
ILMN 1665909 -0.43526 0.072852 -0.18364 -0.58188 -0.08157
ILMN 3246292 -0.39645 0.04943 -0.12847 -0.53187 -0.10791
ILMN 1803429 0.12951 0.13822 0.20856 0.80324 0.22108
ILMN 1670881 0.17555 -0.06011 0.0919 0.92469 0.1284
ILMN 2051519 -0.36165 0.07544 0.06387 -0.51779 0.00425

Table 2.1: The first 15 variables of a time-series gene expression data set with 5 time
points. Each numerical value corresponds to the mean log2 fold change.

After the data-collection step and before any representation or analysis of the data, there is a
data pre-processing step (the third step in Figure 1.1) which ensures that the data can be used for
comparisons and further processing. As part of this step, scientists perform a variety of methods
to clean, filter and format the data, remove noise and normalise the measurements across the set,
making them comparable [147]. By the end of this step, a ready to use and share data set gets
created. The raw data used in this thesis were normalised using the z-score, and the entries in the

20

resulting data table were the means of the log2 fold change for each variable in every condition
or time point tested, as shown in Table 2.1. Examples of such data sets can be found online in
publicly accessible repositories such as the Gene Expression Omnibus (GEO) [64].

After the variable selection step of the biological workflow (Figure 2.1 (a)), the number of
variables is reduced by either removing or aggregating rows in the data table. The data table is
reduced from containing hundreds or even thousands of rows, to contain just a few dozen (30 to
50 rows). The resulting data table of this smaller set of variables is used as input in the network in-
ference step (Figure 2.1 (b)). However, an additional discretisation step is first required. Although
real data sets contain continuous variable types, most network inference methods, such as BANJO
[167], require that the measurements in the data table are discrete values [56]. In those cases, a
discretisation policy is applied to the data before networks can be inferred. BANJO offers several
policies for discretising continuous data sets at different granularities.

Figure 2.1: The flow of data in the three steps of modellers’ work-
flow: (a) variable selection through hierarchical clustering (HC),
(b) network inference and (c) incorporating the dynamics of inter-
actions.

The output of network inference algorithms is a collection of potentially hundreds of candi-
date networks (Figure 2.1 (b)). A scoring metric assesses the merit of each network based on its
statistical fit to the data [69]. BANJO generates plain text reports as an output which contain the
candidate networks found by the heuristic search algorithm printed in a tabular format as lists of
edges between pairs of nodes (Table 2.2). The networks are ordered based on their score, cal-
culated using the BDe metric [87], with the top-scoring network appearing first. In this format,
the first line indicates the rank of the network, its score and the iteration it was first encountered
by the algorithm. The second line indicates the number of nodes in the network. In each of the

21

Network #1, score: -1168.0524, first found at iteration 11642630

12

0 1 10

1 4 0 2 4 10

2 3 0 6 10

3 3 5 7 10

4 3 3 6 10

5 0

6 3 0 3 7

7 3 0 5 10

8 3 4 9 11

9 3 7 10 11

10 0

11 4 0 3 4 5

Table 2.2: The format BANJO uses to represent Bayesian networks as text.

remaining rows, the first column indicates the id of the node of reference. The second column
indicates the number of the incoming edges to that node (i.e. parents) and the rest of the columns
indicate the ids of the incoming edges. For example 0 1 10 means that node with id=0 has 1 parent
which is the node with id=10. Each execution of the algorithm can generate hundreds of candidate
networks, and modellers often compare networks across different runs to construct a consensus
network. Therefore, the data sets that modellers handle, contain results from multiple runs, and up
to a thousand networks in total.

When the data contains measurements over time, it is also possible to infer networks which
incorporate information about the dynamics of the interactions (i.e. dynamic Bayesian networks),
as shown in Figure 2.1 (c). Such networks involve multiple types of edges, and an example of
a network generated by BANJO is shown in Table 2.3. In this thesis, we visualise data sets that
contain networks with up to four types of edges. To be able to visualise such networks, first,
we had to parse those text files and transform them into a more flexible JSON format. For this
purpose, we wrote custom text-formatting scripts that convert BANJO report files into JSON. In
the next section, we present an overview of basic concepts and definitions about visualisation and
its role in helping scientists make sense of their data.

2.3 Visualisation

Visualisation can be defined as the scientific discipline which aims at helping humans to gain
a better understanding of data, through the sense of sight, using visual means. In other words,
visualisation is about creating visual representations and interactive interfaces that can augment
our perception and help us explore and understand reality based on evidence found in collected
data. Practically, when visualisation is applied to real situations, gaining insight is mainly achieved
by exploring, explaining or confirming information and knowledge found in the data. Therefore,

22

Network #1, score: -15756.4344, first found at iteration 25555

12

0 0: 0 1: 2 0 7 2: 0

1 0: 0 1: 1 1 2: 1 1

2 0: 1 0 1: 2 1 2 2: 0

3 0: 0 1: 2 2 3 2: 0

4 0: 0 1: 2 1 4 2: 0

5 0: 0 1: 2 4 5 2: 0

6 0: 0 1: 1 6 2: 1 6

7 0: 0 1: 2 3 7 2: 0

8 0: 0 1: 2 3 8 2: 0

9 0: 1 5 1: 1 9 2: 0

10 0: 1 9 1: 2 8 10 2: 0

11 0: 0 1: 2 10 11 2: 0

Table 2.3: The format in which a dynamic Bayesian network with three types of edges
is printed in the output of BANJO.

visualisation can be exploratory, explanatory, or confirmatory. In the first case, the aim is to help
users form new hypotheses about reality, based on information they find after interacting with the
data [176]. In the second case, the aim is to present information in a clear way to the users and
promote a better understanding of what was already found in the data [175]. In the third case, the
aim is to provide an evidence-based verification and confirmation of previous knowledge found in
new data [176]. In any case, a successful visualisation can help to deal with practical problems
in a more efficient and effective way. In this thesis, we mostly focus on problems related to the
exploration and representation of biological data. However, the visualisation tools presented in
this thesis can be also used for the visual explanation and confirmation of results.

2.3.1 Biological Visualisation

In the field of biological visualisation, the discipline of biology provides challenging problems that
originate and motivate hypotheses and research questions, while the discipline of visualisation pro-
vides a suitable vehicle for approaching these biological challenges. The aim is to gain a better
understanding of biological processes, using visualisation techniques for exploring biological data
and for representing findings more effectively [59]. Visualisation aims at developing useful tools
for conducting scientific research more efficiently and effectively. Inherently, biological visual-
isation aims at assisting researchers in finding better solutions to biological challenges, such as
representing biological networks and data effectively [72]. Biological visualisation overlaps with
many research disciplines, but because it relies heavily on the use of computer systems, it is often
considered to be part of the wider interdisciplinary field of bioinformatics.

23

2.3.2 Visual Analytics

The exploration of the data typically follows the Visual Analytics loop, which starts with the ex-
ecution of an algorithm followed by a representation of the results, as shown in Figure 2.2 (a).
A visual interface enables the user to interact with the results, select data and refine parameters
informing the next execution of the algorithm [102]. This process creates a loop which is repeated
several times in an iterative fashion, as shown in Figure 2.2 (b) and leads to the gradual improve-
ment of the results (i.e. the model). Depending on the speed of the algorithm, the user can interact
either sequentially or in real time with its execution. Usually, in both cases, the user can receive
visual feedback through the representation of the data in real time.

Figure 2.2: (a) The visual analysis loop. (b) The visual data-
exploration loop [102].

When applied to biological data, Visual Analytics produces interactive visualisation software
tools, algorithms, classifications, techniques and/or methodologies, which can be used for com-
pleting different biological analysis goals [102]. For example, as mentioned in Chapter 1, systems
biologists try to model biological processes by observing changes within a living cell at a molecu-
lar level. Usually, biologists collect observations under multiple experimental conditions and then
try to integrate findings in a model, which is often represented as a network. In the case of proba-
bilistic methods, such as Bayesian networks, there is a need for visualisation tools which can help
modellers to make sense of their data and improve their network inference workflow. The sense-
making loop for Visual Analytics, shown in Figure 2.3, places visualisation between the user and
the data. The users try to make sense out of data by combining their knowledge with what they
perceive visually. Thus, the process of sense-making is repetitive and involves elements from both
exploratory and confirmatory data analysis methods since it combines new with old knowledge
[176].

When the sense-making loop for Visual Analytics is applied to systems modelling, it takes
the form of the visual data-exploration loop (Figure 2.2 (b)). The user interacts with a visual

24

Data Knowledge

Hypotheses

Visualisation Perception

Exploration
& Analysis

Initial
Analysis

New
Insight

Analyse
Further

Image

Specification

Data Visualisation User

Figure 2.3: The sense-making loop for Visual Analytics [102].

representation of the data to tune parameters of the suggested model in an iterative way. This
process is repeated in a loop until the model is further refined in a way that more knowledge about
the real system is acquired from the data.

In the context of exploring data from biological experiments for the purpose of unravelling
functional relationships between molecules, biological visualisation provides users with interac-
tive data visualisations that give insights through a process of sense-making. For instance, Figure
2.4 presents a model which describes the sense making loop for exploring interactions in disease-
related processes in a molecular level [130].

This thesis focuses on the application of visualisation methods for gaining insights from bi-
ological data to create better network models. Visualisation plays an important role because it
provides opportunities for developing tools for data exploration, complexity reduction and pat-
tern detection, which can help modellers gain insights about the biological system [80]. However,
given a biological problem, there are many ways that information can be visualised and it is dif-
ficult to identify which design would be the most effective [133]. In the following section, we
describe the methodology followed for creating the visualisations presented in this thesis.

2.4 Visualisation Design Methodology

The outcome of effective visualisation design can augment human judgement by combining the
ability of humans’ visual system in detecting patterns quickly, with the power of modern comput-
ers in storing, processing and displaying information. Thus, visualisation designers must take into
account limitations related to the visual perception of humans, to create successful visual encoding
and interaction techniques [188]. Usually, a successful visualisation design is achieved by devel-
oping effective graphical representations which reduce the cognitive overload and visual clutter of
naive representations [29].

25

Figure 2.4: Sense-making model for exploring molecular level in-
fluences on disease-related processes [130].

Due to advances in computer science, it became possible for the user to interact with the
display and get visual feedback in real time. This development created new opportunities and
challenges for developing powerful visualisation systems based on computers. Computer-based
visualisations of data can help people carry out tasks, that cannot be automated [133]. However,
there are many possible ways that data can be represented visually and the design space is huge.
To deal with all these possibilities, visualisation designers must take into account limitations in
computers, displays and humans [133].

Computer systems are considered an invaluable resource for the discipline of visualisation
because they can process and represent data sets that would be infeasible to draw manually. In ad-
dition, computers provide capabilities for manipulating visual representations interactively. How-
ever, real-world data sets may be composed of hundreds of Gigabytes and current computer sys-
tems cannot always handle them efficiently. Therefore, there are limitations in computational
resources available to deal with the increased demands that those data sets impose. Therefore, the
path of visually gaining insights from large, complex and dynamic data, partly coincides with the
one already followed by the disciplines of high-performance computing, data mining and optimi-
sation [157, 95]. For example, scientific discovery often uses visualisation in conjunction with
computational methods as part of a larger workflow.

26

Regarding display limitations: it is true that during the last decades screens became larger
and of a higher resolution. However, their capabilities are still limited compared to the size of
the data available for analysis. There are visualisation approaches for utilising larger and higher
resolution displays [15] and also approaches that utilise the hardware architecture of the most
advanced graphics processing units (GPUs) [30]. Such technological solutions are important for
advances in the discipline of visualisation but they are outside the scope of this thesis, in which we
are mostly concerned with creating visualisations for users with a standard set of computational
resources (an average PC).

In visualisation approaches, except for technological limitations, there are also limitations in-
herent to human visual perception. For example, the human brain has certain limitations in matters
of memory and attention. In order to comply with those limitations, appropriate visual encoding
has to be selected for creating effective external representations. Such representations help us
to surpass our cognitive limitations and augment our capacity to take decisions and solve prob-
lems. Following design principles is important so that information will become more sensible,
will be communicated more effectively, with increased precision and within reasonable time con-
straints [103, 188, 133]. This is how the discipline of visualisation has been shaped; by considering
the limitations in human perception and cognition, in conjunction with the technological limita-
tions.

2.4.1 The Nested Model

The methodology followed for determining the visualisation designs presented in this thesis was
driven by the nested model, proposed by T. Munzner [132]. This model was selected to be the core
methodological approach during this thesis, mainly because of its generality and its widespread
adoption by the visualisation community. Contrary to other frameworks [78, 178, 160, 151], the
nested model has been applied successfully to all kinds of visualisation approaches and appli-
cation domains, including case studies for multi-attribute rankings [79], social media data [38],
climate change data [144] and even poetry [1]. Most importantly, the nested model has been used
extensively in design studies for biological visualisation [76, 169, 67, 163].

There are many possible ways to visually encode information to pictures (the design space is
huge) and the danger of creating ineffective visualisations is very high [133]. The nested model can
help designers avoid threats that often lead to bad design decisions, identify and clarify interesting
problems in the application domain and create effective visualisations. In this section, we overview
the basic concepts of this model and in the next chapters, we describe how we used it to create
visualisations presented in this thesis.

According to this model, there are four nested levels, summarised in Figure 2.5, which should
be addressed and evaluated separately: (1) target users to identify domain analysis objectives, (2)
select appropriate data structures and operations, (3) justify visual encoding and interactions and
(4) develop efficient algorithmic implementations.

27

Figure 2.5: The four levels of the nested model. In the first level,
the domain problem is characterised and understood. In the second
level, data and tasks are abstracted and clarified. In the third level,
the visual encoding and the interaction technique are designed. In
the fourth level, an efficient algorithm for manipulating the data is
designed. [132].

• Level 1: target users to identify domain analysis objectives. The first level in the nested
model involves characterising the domain problem. Designers target domain users to under-
stand and clarify the underlying domain problem. The identified analysis goals are described
using the terminology of the domain in which the problem occurs. For that step to be suc-
cessful, close communication with domain users should be established, to receive feedback,
refine and prioritise requirements and avoid potential misunderstandings related to the ob-
jectives of the users. The first level of the nested model mainly answers the questions: “why
this domain problem cannot be solved using automation (algorithm) and why there is a need
for a visualisation approach to address its challenges?”

• Level 2: select appropriate data structures and operations. In the second level of the
nested model, the way that the most relevant data is structured is decided and operations
applied to the data are identified. This level requires the understanding of the most relevant
aspects of the data to the domain problem. To achieve that understanding, the designer
should receive feedback from users about potential data abstractions and operations. A
good way to receive feedback is through the development and presentation of sketches and
prototypes followed by discussions with end users. This level mainly answers the questions:
“what data should be visualised and which operations should be applied to this data to
support the domain problem?”

• Level 3: justify visual encoding and interactions. In the third level of the nested model,
the designer selects how the data should be encoded visually, using a combination of dif-
ferent visual variables and also how the operations on the data could be performed interac-
tively. There are different ways of testing potential encodings, e.g. after evaluation through
a usability study with a group of participants. Receiving user feedback is also important
for testing the effectiveness of the proposed approaches. This level answers the questions:
“how the data are going to be encoded in the display and how the users will interact with
the data?”

28

• Level 4: develop efficient algorithmic implementations. Finally, the last step is that of the
algorithm design and implementation and it is common in every computer science project.
In that step, the designer has to deal mostly with technical issues to ensure that the right ap-
plication programming interface and software libraries have been selected and that the data
can be handled, visualised and controlled as expected. Those technical issues may include
speed and memory measurements and they can be extended to involve other performance
benchmarks (e.g. to test performance for larger data sets). Dealing with such issues is
common in software engineering and in the design of information technology management
systems. Systems could be evaluated according to their scalability, robustness, portabil-
ity, interoperability, internationalisation and other characteristics. This level of the nested
model involves practical questions such as: “how to improve the speed of reading data from
the database? How can this data transformation take place in real time every time the user
moves a slider or selects this option?”

Moreover, for each level of the nested model, there is a number of common threats, which have
to be addressed and validated throughout the whole process. The threats are shown in Figure 2.6.
One of the ways to avoid those threats is by the continuous refinement of the requirements and the
design choices until the domain problem is clear, the data and their operations are abstracted, the
visual encoding and the interactivity are effective and the algorithm design is performing well.

Figure 2.6: Threats and validation in the nested model [132].

Because biology is an applied field that poses specific challenges to the field of visualisation,
our visualisation research approach was problem-driven rather than technique-driven. Hence, one
of the most important threats was the characterisation of the domain problem. For this reason,

29

it was important to collaborate closely with domain experts to understand their requirements and
design effective visualisation tools that could help them in specific steps of their analysis workflow.

The problem of network inference from biological data is located between two extremes. On
the one hand, modern biological data collection methods create opportunities. But on the other
hand, the resulting data sets are difficult to explore and make sense of, while at the same time
automation is not possible since the network cannot be inferred in polynomial time using com-
putational methods. Thus, the modeller plays an important role in steering the network inference
process. For those reasons, a design study was found suitable for addressing the underlying bi-
ological problem. Figure 2.7 shows the area in which the approach of a design study is suitable
(between two axes: task clarity and information location). While the nested model methodology
was used throughout this thesis, the contributed visualisation tools were developed and presented
as design studies.

Figure 2.7: The task clarity and information location axes as a way
to analyse the suitability of design study methodology. Green and
yellow areas mark regions where design studies may be the wrong
methodological choice [159].

In the next chapter, we describe in more technical detail the three challenges addressed in this
thesis and we discuss related visualisation tools and techniques. Each challenge corresponds to
a different research question (Section 1.4) and a step in the network inference workflow (Figure
1.1). In Section 3.1, we discuss related work to visualising dendrograms and the challenge of
cutting dendrograms constructed by a hierarchical clustering algorithms to select variables that
constitute nodes in the inferred network. In Section 3.2, we present related work to the challenge
of learning the structure of Bayesian networks. Finally, in Section 3.3, we discuss work related
to the challenge of exploring multiple types of edges in collections of inferred dynamic Bayesian
networks.

30

3 Related Work

In this chapter, we present related work to the biological and visual analysis challenges that corre-
spond to the three research questions which motivated this thesis (Section 1.4). For each of those
challenges, visualisation approaches found in the literature are reviewed. Section 3.1, covers work
related to the challenge of variable selection (Figure 1.1 (a)) using hierarchical clustering. In Sec-
tion 3.2, related work to the challenge of network inference (Figure 1.1 (b)) is presented. Section
3.3, covers work related to the third challenge (Figure 1.1 (c)) of incorporating information about
the dynamics of interactions through the representation of multivariate networks. We conclude
with a summary of the visualisation challenges and an overview of what follows next.

3.1 Hierarchical Clustering Analysis

Hierarchical clustering algorithms are used in many applications for “grouping” data records into
a number of non-overlapping sets (i.e. clusters). Those algorithms take as input a distance matrix
with estimated pairwise dissimilarity scores (i.e. distances) between all data records. Dissimilar-
ities between records are calculated using an appropriately selected metric or measure, such as
Euclidean distance or correlation coefficient, which matches the purpose of the intended analysis
[46]. The output produced is a simplified hierarchical structure, known as the dendrogram, which
encapsulates the rationale followed by the hierarchical clustering algorithm. For instance, agglom-
erative hierarchical clustering algorithms repeatedly find and merge pairs of similar data records
into composite objects, forming a hierarchy of dissimilarity levels, until the point that all records
are merged into a single group: the root of the tree (Figure 3.1). The way in which the distance
between composite objects is calculated determines the different types of hierarchical clustering
algorithms (such as average-linkage, single-linkage and complete-linkage) [193].

Except for the bottom-up approach of agglomerative clustering, there is also the divisive ap-
proach which starts with placing all data records in one group. Then, in each step of the algorithm,
the group is divided into two separate groups and this continues until the point that every data
record belongs to a separate cluster [152]. There are several types of hierarchical clustering algo-
rithms but all of them result in a dendrogram in which the intermediate nodes show the dissimilar-
ity levels at which a merging/division took place and the leaves represent the original data records.

31

Cluster assignment

Data records Pairwise Dendrogram
dissimilari�es

B

 A

Figure 3.1: The flow of constructing the dendrogram. Pairwise dissimilarities between
data records are calculated and used by the hierarchical clustering algorithm to con-
struct a dendrogram. The branches A and B correspond to clusters.

In the following Section 3.1.1, we investigate how trees and dendrograms have been visualised in
the literature.

3.1.1 Visualising Dendrograms

The result of the hierarchical clustering algorithm is encapsulated in the dendrogram. Dendro-
grams are traditionally represented as top-down trees with the length of each branch encoding its
distinctiveness. The total height of the dendrogram from the leaves until the root corresponds to
the range between the minimum and the maximum dissimilarity levels and it can be normalised
so that the leaves correspond to the dissimilarity of 0 and the root of 1, as this is shown in the
vertical axis of Figure 3.2. One of the problems with this representation is that for large data sets
the dendrogram becomes too long and its exploration becomes difficult. The tree does not fit in a
typical monitor display, the use of scrollbars often becomes necessary, while the lower branches
often appear cluttered. Such a representation makes it difficult to compare branches or encode
additional information such as clustering assignments to the leaves of the tree which represent the
data records [43].

Except from the top-down layout that uses a node-link diagram (Figure 3.3 (a)), there are more
options for representing trees visually. The dendrogram can be rotated and its leaves can form
a list, as shown in Figure 3.3 (b). Alternatively, the node-link diagram can be shown in a radial
layout (Figure 3.3 (d)). Higher-level nodes can get a larger layer area, either extending horizontally
(Figure 3.3 (c)), or forming concentric circles (Figure 3.3 (e)). The tree structure can be enclosed
to form nested circles (Figure 3.3 (f)) or a TreeMap (Figure 3.3 (g)). Finally, indentation can be
used to outline the structure of the tree, as shown Figure 3.3 (h). Evaluation studies have shown
that radial layouts are more space efficient that top-down and left-to-right representations [124],
but they take longer to read [37].

There are several tools and techniques for visualising trees, but most of them do not focus on
the task of hierarchical clustering analysis. For instance, TreeJuxtaposer [134] is a tool designed
for biologists who want to perform a structural comparison of large trees, such as phylogenetic

32

Figure 3.2: A traditional top-down representation of a dendrogram generated using
R. The axis on the left shows the dissimilarity levels ranging between 0 (leaves) and 1
(root).

trees, which look similar to dendrograms. MizBee [126] uses three views that correspond to three
levels of detail in order to provide support for comparing whole genomes. Both tools can be used
to compare different data sets. However, our task is different as we focus on the challenge of
finding patterns in the original data, through the interactive exploration of a single dendrogram.
A technique presented in Chen et al. [43] uses a uniform threshold to provide improved visibility
by simplifying the dendrogram representation. This is a useful technique for summarising the
dendrogram in a selected level of detail and making it fit in smaller displays. However, it does not
provide support for exploring or cutting the dendrogram at different heights.

3.1.2 Cutting the Dendrogram

Since overlapping is not permitted between clusters in hierarchical clustering, often there is am-
biguity regarding the allocation of variables into clusters. The analyst, therefore, has to decide
whether several records form one or more clusters, or if they are all part of a larger cluster (i.e.

a nested cluster). This ambiguity is more evident in large and complex data sets, where clusters
may exist at different heights of the dendrogram. For data sets which consist of relatively distinct
and homogeneous subsets, deciding a single similarity threshold, which cuts the tree at a uniform
height, could be sufficient for determining representative clusters. For larger dendrograms, which
often consist of heterogeneous and less distinct subsets, a more flexible approach that involves
multiple-level cuts, would produce more representative results. However, it is not clear how the
analyst could explore the data and the different clustering scenarios to identify groups of similar
records in large and complex data sets.

Dynamic Tree Cut (DTC) [112] can cut the branches of the dendrogram at different levels
automatically, based on their shape, their length or other criteria. However, heuristic criteria are
tailored to describe pre-determined shapes and patterns in the dendrogram and they cannot identify

33

Figure 3.3: Different tree layouts as presented by McGuffin et al. [124]. (a) node-link,
(b) a variation on (a) to support long labels, (c) icicle, (d) radial, (e) concentric circles,
(f) nested circles, (g) treemap and (h) indented outline.

new patterns in the data. Thus, heuristic approaches are rarely optimal because they cannot capture
all the pattern variations which can be observed in real data sets. Moreover, semi-supervised
approaches such as the ones presented by Dotan-Cohen et al. [60], Navlakha et al. [137] and in
HCsnip [140] that integrate prior knowledge into the algorithm to detect clusters, require that the
data records are first labeled. The configuration cannot be generalised for unstructured data sets
without assuming any background knowledge related to them. Hence, the clustering results rely
on additional information about the system, which is usually missing from most data sets, and the
assumption that the added labels determine how similar the data records are.

In the real world, there is no “one-size-fits-all” solution and it is common to ignore special
characteristics of clusters [101]. Within the same data set, some clusters may be tight (low pair-
wise dissimilarity), while some others may be loose (high pairwise dissimilarity). For instance,
biologically associated genes may follow a similar expression pattern either constantly or only for
a time period, as reported by Mahanta et al. [120] and Craig et al. [50]. Therefore, adding the
“human in the loop” is needed to visually explore the dendrogram and the data records in different
levels of detail and select potential clusters manually [165].

Visual support tools have been always used in the analysis of biological data. An evaluation of
microarray visualisation tools has been presented by Saraiya et al. [156] and a more recent survey
has been presented by Pavlopoulos et al. [142]. Specialised tools for microarray data analysis of-
ten incorporate visualisation features for different analysis tasks, including hierarchical clustering

34

analysis. Chipster [98] and Mayday [22] are two open source microarray data analysis platforms
that support hierarchical clustering. Due to the importance of time-course gene expression data,
there is also a number of tools that target the clustering of such data sets. For instance, STEM [66]
is a software tool for automatic profiling and clustering of short time-series data. The tool creates
profiles for possible temporal patterns that can occur and then matches those patterns with what
is found in the data set. However, it is difficult to capture all variation that could possibly exist
in a multivariate time-series data set. A flexible and user-driven approach, in matters of statistical
analysis capabilities, is provided by PESTS [165]. All of those tools support some visualisation
features for hierarchical clustering analysis but they provide little or no support for interactive
exploration of the data.

There are several tools which perform hierarchical clustering analysis, but only a few of them
provide visual feedback or support the interactive exploration of the clusters. However, due to
the increasing complexity and size of the data, visualisation becomes an important aspect of per-
forming clustering analysis. The relatively new paradigm of visual analysis is founded on the idea
that expert users are capable of steering the analysis to produce more successful results [139]. The
actions of the users are often driven by tacit knowledge which cannot become part of an algorithm.
Therefore, involving a human for taking decisions and for guiding the analysis is essential.

At the highest level, a view of the clusters as part of the whole dendrogram should be supported
and at the lowest level, the original multidimensional data should be visualised and linked to their
clustering assignment to enable the visual comparison of data records. The idea of drilling-down to
see more detail in the data is common to many visual analysis tools. Similar steerable approaches
have been investigated in the past for exploring graph structures, as in Archambault et al. [13]
and in Abello et al. [2]. To provide flexibility and control over the clustering process, modellers
required a method that would enable them to combine hierarchical clustering results with their
own tacit knowledge to take decisions about the allocation of variables into clusters. During the
analysis, modellers need to be able to cut branches of the dendrogram at different heights, as
shown in (Figure 3.4).

Figure 3.4: Multi-level cuts in a heterogeneous dendrogram. The red icons indicate
four locally applied similarity thresholds which cut the tree in four branches that form
the same number of non-overlapping clusters. This clustering scenario could not be
achieved using any single-height similarity threshold.

Moreover, it is hard to evaluate the quality of hierarchical clustering results while clusters are

35

selected, mainly because the underlying data and the rationale of the clustering algorithm remain
hidden to the final user, who only relies on the dendrogram for selecting clusters. However, visu-
alising the original multivariate data in addition to the dendrogram can help to reveal interesting
patterns and relationships between data records which are not always obvious in the dendrogram.
Thus, enabling the representation and comparison of the original data records is also important
for improving and confirming the selection of clusters. However, visualising the original data
records can be complicated, especially when they are large and contain multiple dimensions or
time points. In the following Section 3.1.3 we discuss approaches for visualising data sets of
variables that contain multiple dimensions or time points.

3.1.3 Representing Multivariate Data

Hierarchical clustering algorithms are often applied to data sets that contain records with multiple
dimensions or time points. Representing the original multivariate data is challenging but there are
several visualisation tools and techniques that target this problem. The most common approaches,
either use heatmaps or parallel coordinates [93] to represent multivariate data. For instance, there
are several visualisation tools that aim at the discovery of time patterns in large data sets of time-
series. However, most of those tools are generic and not designed specifically for representing and
exploring temporal profiles in biological data.

A representative software tool in the wider category of time-series visualisation analysis is
Timesearcher [89], Figure 3.5. The user can specify the time pattern of interest by applying dy-
namic queries. In addition the pattern can be sought interactively as the user drags the pattern
to the different areas of the time-series representation. Even if this tool is very useful when the
pattern is already known, it fails to detect unknown patterns automatically. The user should know
the pattern beforehand, or at least perform a sequence of queries until the desired pattern gets
revealed.

TIALA [94] is a tool designed specifically for exploring microarray time-series expression
data in order to investigate biological mechanisms (Figure 3.6). It can align multiple time-series
data from different experiments. Those can be visualised both in 2D using small multiples and
in 3D using superimposed time-series on the same axes. This is a very useful tool for comparing
a small number of time-series experiments (e.g. experiments from different cell lines). This tool
is designed to support comparisons between different time-series data sets and not to support the
representation, exploration and hierarchical clustering of a single data set, which is the first anal-
ysis challenge.

Contrary to TIALA, Interactive Horizon Graphs [143] is a visualisation approach aiming at the
parallel comparison of a much larger number of time-series data sets. The user can search for time
patterns when the multiple time-series are displayed vertically. Interactive zooming and panning
techniques help the user to inspect several time-series at the same time. However, this approach
cannot scale well for thousands of time-series, which is usually the case with many biological data

36

Figure 3.5: Applying brushing technique in Timesearcher software
to specify time pattern [89].

Figure 3.6: Time-series represented in 3D with TIALA [94].

sets.

The gene expression time-series explorer (MaTSE) [50], utilises the technique of animated
scatterplots, to discover local patterns in complex time-course gene expression data (Figure 3.7).
The user can select a time period from the whole time span and then drag the selection across the
time-series plot visualisation. At the same time, an animated scatterplot can help the user to iden-
tify motion, which occurs in locations where there is an interesting turbulence in the time pattern.
Interesting local events can be identified, while clustering usually smoothens such perturbations
in the data. MaTSE performs a very finely grained analysis of time segments and it is useful for

37

exploring data sets with many time points. However, this tool has been designed for a very specific
type of analysis, while real-world data sets often include only a small number of time points.

Figure 3.7: Using animated scatterplots to identify patterns in tem-
poral data using MaTSE [50].

RankExplorer [164] is a visualisation method for revealing ranking changes in time-series
data (Figure 3.8), together with other changes in different types of data. This is an approach for
visualising changes in multiple attributes of data which are linked to time-series. This method can
visualise more than one attribute related to each time point of the time-series. While this approach
is interesting, it is more common for biological data sets to involve either multiple attributes or
multiple time points of one attribute. Moreover, the tool does not provide visual support for the
results of hierarchical clustering algorithms.

Figure 3.8: Visualisation of ranking changes in large time-series
data with RankExplorer [164].

Although we did not find any visual support tools that enable the exploration of the dendro-
gram in different levels of abstraction to target the problem of ambiguity in hierarchical clustering

38

analysis, there are tools that provide this kind of visual support for other clustering algorithms.
For instance, Spark [139] provides two views, one in the level of clusters (found by k-means) and
one in the level of regions within clusters. However, we focus on visualising the output of hier-
archical clustering algorithms rather than k-means. Spark does not directly address the particular
challenges related to hierarchical clustering analysis (i.e. exploring the dendrogram structure in
coordination with the original data, to allocate variables into clusters).

The most relevant tool to our challenge is the Hierarchical Clustering Explorer (HCE) [161],
which has been designed for supporting interactive genomic microarray data analysis. It provides
a dendrogram linked to a heatmap. It enables dynamic querying using a minimum similarity bar,
which specifies a single similarity threshold in which the dendrogram is cut. In contrast to other
tools, HCE provides interactivity and it is a powerful visualisation tool for hierarchical clustering
analysis. However, the dendrogram representation does not easily fit in a standard display without
producing visual clutter and it does not support multi-level cuts.

Summary of challenge 1: The step of variable selection is essential for simplifying the net-
work inference process by narrowing the search space within which heuristic search algorithms
look for network solutions. To reduce the number of variables, biologists often use hierarchical
clustering algorithms for selecting only “the most important” variables [54]. The output of a hi-
erarchical clustering algorithm is a dendrogram and clusters correspond to its branches. However,
cutting the tree at a single height is not sufficient for performing effective allocation of variables
into clusters because clusters can exist in different heights. This problem is more evident for large
and complex data sets which involve variables of multiple dimensions or time-points. Therefore, a
more flexible method that enables cutting the dendrogram at multiple heights was needed. In this
section, we described the challenge of cutting the dendrogram at multiple levels, which requires an
effective representation of both the dendrogram and the original data, we reviewed visualisations
of trees and dendrograms as well as the most relevant visualisations for complex data found in
the literature. In Chapter 4, we present our contribution to this challenge by introducing a novel
visualisation tool, called MLCut, which enables the exploration of multi-level cuts in dendrograms
in coordination with a view of the original data.

3.2 Network Inference

After the most important variables are selected, the next challenge for the modellers is to infer a
representative network structure (Figure 1.1(b)). However, the route of inferring networks from
biological data passes through a difficult optimisation problem which is known as the “curse

of dimensionality” [27], which occurs because the search space of all possible network models
increases super-exponentially with the number of variables [91, 54]. For instance, there are thou-
sands of genes that could affect a biological process. However, it is practically impossible to
check how well all possible network models fit the underlying data (a process which is known to
be computationally expensive). Thus, inferring the structure of the best network is a known com-
binatorial optimisation problem which cannot be solved in polynomial time [44, 48]. To render

39

this problem more manageable, hierarchical clustering is used to select only a small number of
variables that become nodes in the model. Then, modellers use a combination of mathematical
and computational methods to infer the structure of the network model.

There are many computational methods for learning the structure of biological networks and
each has its own strengths and weaknesses [86, 194, 115, 88]. Different modelling methods,
such as regression [172], correlation, Boolean networks, Ordinary Differential Equations (ODE),
Bayesian Networks (BNs), mutual information methods and others, are used for inferring networks
in systems biology [194]. Each method has its own advantages and disadvantages. Different algo-
rithms and methods are evaluated in an annual competition, which aims to assess the performance
of algorithms in finding known networks, and a combination of methods was found to be a suc-
cessful strategy for improving results [121]. Also, finding the most appropriate method depends
on the aim and scope of the analysis and the data available [121]. For instance, weighted gene co-
expression network analysis (WGCNA) [111] became a popular method for constructing genetic
networks.

To model such complex and uncertain biological systems, probabilistic graphical models gained
popularity over deterministic methods, due to their ability to handle uncertainty and their ease of
interpretation. The structure of probabilistic graphical models contains a lot of information about
the underlying system because it can describe complex relationships between variables, such as
statistical dependencies, in a minimal way [117]. Probabilistic models provide a clear and compact
representation of the data and encapsulate details such as the parameterisation of the probability
distribution. Their simplicity highlights their qualitative nature and enables modellers to combine
mathematical and computational machine-learning methods with their own tacit knowledge to take
decisions about the final structure of the model [105]. Other advantages are their ability to deal
with confounding (hidden) variables and that they can integrate prior knowledge about the sys-
tem in their structure [115]. Eventually, these models are key in supporting modellers in gaining
insight into biological systems and to develop better and more useful graphical models from ex-
perimental data. Thus, graphical models can describe complex systems effectively and therefore
find applications in medical prognosis and treatment, social network analysis, natural language
processing and robotics [105].

In this thesis, we focus on one type of graphical model, Bayesian networks (BNs), and their
usage for modelling biological systems. We focus on this particular type because our collaborators
were using Bayesian methods to model their biological systems. In the following, we explain the
foundations of Bayesian networks in biology research and challenges modellers are engaged in
when they infer Bayesian networks, as well as the specific challenges that relevant visualisation
interfaces address in the literature.

3.2.1 Bayesian Networks

Bayesian networks are directed acyclic graphs (DAGs) with nodes representing random variables
and being allocated a conditional probability distribution (CPD) that depends on the parents of

40

a node. Edges between nodes show direct statistical dependencies which can be used to reason
about causal relationships between the variables. The main disadvantage of Bayesian methods is
that inferring (i.e. learning) the structure of the network is computationally expensive. There are
many possible networks in the search space and the process of selecting and evaluating candidate
networks is slow as finding the best network is an NP-hard problem [48, 44]. The search space
grows super-exponentially with the number of variables and for networks with more than fifty
nodes, given the sparsity of data measurements, it is almost infeasible to achieve good results.
However, the quality of a search result has been shown to be better for smaller networks between
ten and fifty nodes (i.e. variables) [121]. Therefore, in most cases, Bayesian networks used in
biology are smaller than fifty nodes.

In our case, Bayesian networks describe biological systems, where nodes represent biomarkers
and edges represent relationships between them. To find Bayesian networks, our biology collabo-
rators rely on two heuristic search algorithms which are currently used by BANJO [167], a soft-
ware package that specialises in Bayesian network structure learning. These methods are greedy

search and simulated annealing. The heuristic search algorithms of BANJO check billions of
networks but only return a relatively small collection of the highest scoring ones, usually around
100 networks per run (each network has a score representing how well it fitted internal evaluation
criteria given the data set). Because of the variety and complexity of the search space, a “good”
network structure must be controlled and evaluated by a human analyst. This involves evaluating
the performance of multiple runs and understanding the shape of the solution space (distribution
of optima). This also means that the analyst is left with the task of manually (visually) comparing
networks and their respective scores.

Eventually, the analyst’s main task is to create a consensus network. A consensus network can
be either a single network that has been found appropriate, or it can be a logical combination of a
set of networks [153]. While BANJO supports the automatic creation of a consensus network, the
number of networks taken to determine the consensus network can have a huge impact on quality.
Analysts often choose this number “blindly” or decide to include a larger number of networks,
hoping this will lead to an improved solution. Also, including networks with similar topology
but different edge directions as well as topologically different networks, which can further distort
the consensus network. Instead, the analysts need to check the topologies of the highest ranked
networks—possibly across several runs of the optimization algorithm. If these highest scoring
networks do not satisfy the analyst, e.g., because the solution space contains multiple optima, the
analyst has to select multiple networks for combination: every link present in at least one selected
network is also present in the final consensus network. However, there can be cases that require
filtering specific links. Thus, finding and evaluating consensus networks does not just require
visualising all the networks to overview their topologies, but it implies an explorative strategy of
searching for an appropriate consensus network and heavily relies on interactive visual previews
of the consensus network. In the following Section 3.2.2, we describe visualisation tools and
techniques we found relevant to the challenge of network inference.

41

3.2.2 Exploring and Comparing Networks

There are several automated community detection methods that decompose complex networks in
their building blocks, which constitute patterns (motifs) of potentially interesting relationships be-
tween elements [129]. MAVisto [158] (Figure 3.9) is a representative tool, which uses algorithms
and visualisation for exploring motifs in biological networks. There are many other similar meth-
ods, which mostly focus on the task of motif discovery such as: the one proposed by Song et al.

[168], FANMOD [191], POWRS [52] and SeAMotE [5]. For instance, PheNetic [53] supports the
interpretation of molecular profiling data using networks. Other tools suggest motif simplifica-
tion [62] or summarisation [136] techniques, to enhance network representation, exploration and
analysis. Most of those motif discovery methods use heuristics and their results are often neither
accurate nor stable. In addition, many of those methods only support the analysis of a single large
and complex network, while the challenge of Bayesian network inference requires the combination
of features from many different networks, which usually, are relatively small (up to fifty nodes).
A more flexible approach would be to use consensus clustering as a framework for combining
results [110]. However, it is not clear how to optimally combine results in an automated way
because there is a lot of variation in the data, many network formats and many possible network
structures. Most importantly, it is hard to integrate tacit knowledge of domain experts in a fully
automated method. Thus, there are no sufficiently good algorithmic solutions for detecting the
best network model in any data set. Visualisation approaches can provide flexibility in exploring
heuristic search results and in constructing consensus networks which are the two main challenges
in Bayesian network inference.

Research in network visualisation has yielded a plethora of tools and techniques to improve
layout readability, visualise networks with specific attributes, as well as visualise and explore
network series (dynamic networks) [183, 24]. Techniques exist for the comparison of two data
sets [75] as well as for the visualisation of series of data sets in temporal data [19]. The challenge
of finding differences between two graphs has been previously studied and the most common
approach is small multiples in which the topology of each network is shown clearly, however
comparing networks becomes a cognitive task. Archambault et al. present an algorithm which
uses the difference map between two graphs to decompose their nodes and edges in order to create
a hierarchical structure which can be used to find differences more easily [11, 14]. Semantic
Graph Visualiser (Figure 3.10) aims at the comparison and merging of two different networks
by superimposing common nodes and by using colour to encode their different properties [10].
ManyNets aims at the comparison of multiple networks by visualising network metrics and metric
distribution in table format [68]. To help with the comparison of multiple networks, Hascoët
and Dragicevic [85] propose an interactive select-and-hide method to allow comparing multiple
topologies by colouring networks and allowing the user to enable or disable networks. The main
problem with these methods is scalability with respect to network density (the more links the
network contains and the more networks are “superimposed”, the more line-crossings occur) as
well as the number of networks.

42

Figure 3.9: Screen-shot of MAVisto analysing a transcriptional
regulatory network of Saccharomyces cerevisiae with different per-
spectives to explore motifs. On the left-hand side, the network is
shown with the motif-preserving layout of highlighted matches of
the feed-forward loop motif. On the right-hand side, all discovered
motifs can be further analysed. Detailed information is presented
in the motif table (top), the structure of the currently active mo-
tif is displayed in the motif view (middle) and the motif frequency
spectrum is shown in the motif fingerprint (bottom) (as found in
Schreiber et al. [158]).

Besides automated and general network visualisation approaches, there are visualisation tools
which specifically target the analysis of Bayesian networks. VisNet [196] has been explicitly
designed to visualise properties of a single Bayesian network using a node-link representation.
Elvira [109] uses a similar approach but gives more emphasis to the interpretation of the Bayesian
networks. Kadaba et al. [97] use animation to show causal relationships in networks. NetEx [49],
which is a Cytoscape plug-in, targets the problem of visualising large Bayesian networks as node-
link diagrams. The Visual Causality Analyst [184] provides a GUI that supports causal reasoning
and it also uses node-link diagrams to represent Bayesian networks. CompNet [108] (Figure 3.11)
facilitates the comparison of networks visually and via metrics. The tool presents an overlay of
a number of networks and statistics on the presence or absences of nodes in given clusters of
this union. However, all these tools work only for one or a small number of Bayesian networks
and none of them supports any specific visualisation or interaction capabilities for the exploration
of heuristic search results and the creation of consensus networks. Thus, the limitation is visual
scalability in terms of the number of networks they can show in a readable manner. This thesis
targets the task of exploring the output of heuristic search algorithms, such as the ones included in
BANJO, which can generate hundreds of networks in a single run.

43

Figure 3.10: The Semantic Graph Visualizer (SGV) comparing
two process graphs representing workflows involved in buying a
computer. (as found in Andrews et al. [10]).

Figure 3.11: (a) CompNet canvas displaying the union of eight
protein-protein interaction networks. The names of nodes belong-
ing to different communities are marked with different colours. (b)
The ‘pie-nodes’ representation enables to identify the presence/ab-
sence of individual nodes across the compared networks. (c) The
cumulative community distribution plot (d) Bubble chart repre-
senting similarity between networks (e) Hierarchical tree built us-
ing network similarity (as found in Kuntal et al. [108]).

There are many network analysis tools in the literature, which are either generic or they are tai-
lored to perform specific visualisation tasks. Also, there are several reviews that compare the dif-

44

ferent features of those tools, mainly focusing on tasks that those tools can perform [154, 141, 171].
Although there is a rich literature in graph comparison tools and algorithms for motif discovery,
there is a lack of tools that address the challenge of network inference [7]. Probably this is be-
cause our targeted challenge is only relevant to the post-processing of results produced by network
inference methods, which generate relatively large numbers (possibly hundreds) of candidate net-
works. However, we found that the design of some already existing visualisation tools and tech-
niques could be extended to also support the exploration and comparison of heuristic search results
used for inferring Bayesian networks. In Chapter 5, we describe how we evaluated some of those
approaches with domain experts who wanted to infer networks from their data. Then we present
the design of BayesPiles, a novel visual analytics tool which has been created based on the de-
sign of an already existing tool for exploring dynamic graphs, called MultiPiles (Figure 3.12)
[18]. BayesPiles can be used as a visual analysis component within the experimental process that
modellers often follow to infer the structure of biological Bayesian networks.

Figure 3.12: Small multipiles (i.e. MultiPiles) create lists (piles) of
similar dense graphs in a time line, visualised using the technique
of adjacency matrix. Larger piles indicate longer occurrences of
the graph in the time line [18].

Summary of challenge 2: Heuristic search algorithms sample the search space of all possible
network models based on parameter settings and a network score that encodes the fitness of its
structure to the underlying data. The purpose is to find a final consensus network which is rep-
resentative and explains the observations collected from the biological system. In this process,
the role of the modeller is to guide the heuristic search (choosing the algorithm and setting its
parameters) and to decide on a method that determines the structure of the final consensus net-
work. Our modellers were interested in exploring sets of multiple candidate networks generated
by a Bayesian network algorithm [166], implemented and distributed freely as part of the soft-
ware package called BANJO [167]. The process of exploring such data sets was found to be
very complicated and time-consuming. Thus, there was a need for developing a visualisation ap-
proach which can strengthen the argument for choosing a particular consensus network as the final
model, and which can also speed up the process of finding it, by providing visual feedback to the
user. Moreover, a visual analysis approach can facilitate the reproduction of networks by different
modellers, supporting the cross-validation of research results. Based on a literature review and
modellers’ feedback, we identified MultiPiles [18] as the most promising technique for exploring

45

many networks. In Chapter 5 we present BayesPiles, a novel tool inspired by MuliPiles which can
support domain-specific visual analysis tasks for inferring Bayesian networks.

3.3 Multivariate Network Analysis

3.3.1 Dynamic Bayesian Networks

When the data contain measurements over time (time-series), it is possible to infer information
about the dynamics of the interactions in the biological system [104]. When such information is
incorporated into the edges of a Bayesian network then the resulting network is called a dynamic
Bayesian network (DBN). Using the terminology from mathematical graph theory, static-BNs are
directed acyclic graphs (DAGs), while dynamic-BNs (DBNs) permit feedback loops, which result
in directed graphs (DGs) (Figure 3.13). Thus, DBNs are an extension of Bayesian networks that
can model dynamic systems [135]. Although the structure of a DBN does not change over time, it
contains different types of edges which encode information about the dynamics of interactions in
the underlying system. In other words, a DBN is a temporal probabilistic model which not only
can describe the state of a system at a certain time point (as a BN does), but also it can describe
interactions in the system over a sequence of discrete time-slices, including self-correlation [104].

A traditional DBN (Figure 3.13) can be described by a series of time-slices with edges that not
only connect pairs of nodes in the same time-slice (i.e. intra-time-slice edges), but also edges that
connect pairs of nodes that belong to different time-slices (i.e. inter-time-slice edges) [135]. In
other words, edges in DBNs can skip time-slices and connect nodes of previous time-slices with
nodes of future time-slices. The number of time-slices skipped is an integer (usually between 0
and 3) that indicates the delay of an interaction. Those delays are called Markov lags (MLs) and
correspond to different edge types in DBNs.

Picking the frequency of time-slices (time granularity) is important, to capture the dynamics
of a system and it usually coincides with the rate in which measurements are collected from the
system (i.e. the sampling rate). For example, if the sampling rate is one sample per day and this
corresponds to one time-slice in the model, then an edge of type ML1 (ML = 1) would only connect
nodes between previous and current slices (skipping one slice) and the delay of the interaction
would correspond to the time period of one day.

Edges of ML1 are called persistence edges because they persist their state from one time-slice
to another. In Figure 3.13 (a) there are two persistence edges (of type ML1) between node Dt0

and nodes Bt1 and Ft1. When a DBN includes many persistence edges, it means that the sampling
rate was set in an effective way for finding important interactions which have a constant effect to
the state of the system over a long period of time. However, there are more types of MLs that can
appear in a DBN.

When an edge is of type ML2 (ML = 2) then two time-slices are skipped and a link appears to
connect two nodes every two time-slices. This is the case for the edge that connects node Dt0 with

46

Figure 3.13: The traditional representation of a DBN with edges connecting nodes in dif-
ferent time-slices. Edges that show self-correlation have been removed to create a more
clear diagram. Self-correlation edges create a feedback loop that starts and finishes in
the same node.

node Et2 in Figure 3.13. This edge indicates that the interaction between those two nodes is two
times slower than the sampling rate. So for a sampling rate of one sample per day, this interaction
delays for two days before it is observed in the data.

In a similar way, an edge of type ML3 (ML = 3) indicates that the interaction is three times
slower than the sampling rate. An example of an edge of type ML3 is shown in Figure 3.13
between nodes At0 and Bt3. When there are many edges of this type in the model it means that the
sampling rate (time granularity) is too fine. MLs larger than 3 are usually not considered in the
heuristic search by biologists unless oversampling took place. In that case, sub-sampling or the
aggregation of sequential time-slices in which samples have the same value may be considered.
A coarser sampling rate would result in DBNs with edges appearing in lower MLs (between 0
and 3). However, oversampling is rare because taking sample measurements of biological data is
usually expensive.

Finally, when the edge is of the type ML0 (ML = 0) then it connects nodes of the same time-
slice in the network. Edges of this type are intra-time-slice edges, while edges of any other type
are inter-time-slice edges [105]. For example in Figure 3.13 there are three edges of type ML0
connecting nodes Ft0 with At0, Dt0 with Bt0 and Dt0 with Ct0. Edges of this type indicate inter-
actions that are instantaneous. Those dependencies in the model react faster than the sampling
rate. However, it is not clear how much faster those interactions are. Thus, having many of those
edge types in the model is not very informative about the dynamics of the system (static-BNs only
contain edges of this type). To get a better sense of how fast these interactions occur, a more fine-
grained experiment that collects samples in a faster time rate would be needed. In summary, the
types of edges (Markov lags) commonly found in DBNs are usually interpreted in the following
way by the modellers.

ML0: The sampling rate was slower than the speed of the interaction.

47

ML1: The sampling rate was the same as the speed of the interaction.

ML2: The sampling rate was 2 times faster than the speed of the interaction.

ML3: the sampling rate was 3 times faster than the speed of the interaction.

Although this is how Markov lags are usually interpreted, the sampling rate may differ during
an experiment due to technical, practical or ethical reasons. Thus, modellers often interpret the
various edge types taking into account possible variation in the sampling rate which determines
the period between time-slices.

Visualising DBNs effectively is a challenging problem because it is difficult to encode mul-
tivariate data associated with the edges in a network structure. Thus, the resulting visualisations
often appear cluttered. Consequently, although DBNs are important for modelling a variety of dy-
namic systems in many scientific domains, there is a lack of visual analysis tools that can support
modellers in inferring DBNs. In the following section, we present a review of the most relevant
tools and techniques found in the literature, for visualising DBNs or other multivariate networks.

3.3.2 Visualising Multivariate Networks

Several techniques have been proposed in the literature for representing and exploring multivariate
networks. PivotGraph [189] uses a layout that arranges a node-link diagram between the X and
Y axes that encode two categorical dimensions (Figure 3.14). GraphTrail [63] uses a hybrid bar
chart which can encode additional dimensions using arcs to connect the bars. Pretorius et al. [145]
propose an approach that integrates lists of edge labels with clusters of node attributes in a single
view using links, colour and size to encode relationships and additional information. Shamir et al.

propose the application of interactive queries to retrieve information from multivariate networks
[162]. However, the exploration is limited to a particular set of available queries.

Figure 3.14: A PivotGraph visualisation of a large graph rolled up
onto two categorical dimensions [189].

48

Although these techniques are useful, they often suffer from multiple edge crossings when
networks get denser (Figure 3.15 left view). Therefore, several approaches use node or edge ag-
gregation to deal with the visual clutter in node-link diagrams. For instance, Clustervis [39] uses
a radial ring layout to arrange aggregates of nodes. Elzen et al. [177] use intuitive overviews to
represent clusters of nodes to guide user selection (Figure 3.15). Grouseflocks [13] supports a hi-
erarchy attached to a network that describes its partitions as multiple abstraction layers. Although
there has been an attempt to maintain the readability of the node-link topology after clustering
nodes [12] or edges [150], useful information can easily get lost and the representation can be-
come too simple for low-level tasks such as network comparisons, or for finding nodes and edges
in the network.

Figure 3.15: Multivariate network exploration using selections of
interest, detail view (left) and high-level infographic-style overview
(right) [177].

As an alternative to node-link diagrams, matrices have also been used to represent multivariate
networks. For instance, designs for encoding weighted networks of two edge types have been
examined for comparing brain connectivity networks [9] (Figure 3.16). In another study, edge-
weighted encoding in matrices has been explored [42]. Such approaches usually encode weight
using opacity or size. However, it is unclear how those encodings could scale to support more than
two types of edges between a pair of nodes.

Using glyphs is a way for encoding more than two variables in a small area (e.g. the cell
of a matrix) and there are several reviews for methods that represent multivariate data as glyphs
[186, 70, 33]. For instance, they have been used to represent cliques [62], while Gestaltlines [36]
have been used in matrices to represent longitudinal social networks [35].

Small Multipiles [18] and Matrix Cubes [17] can represent how the structure of a network
changes over time. Those visual encodings for dynamic networks in matrices can be relevant to
multivariate networks. However, in our case, the challenges are different because in DBNs a pair
of nodes can contain multiple types of edges and modellers were interested mostly in tasks related
to the distribution and comparison of edge types rather than structural changes over time.

49

Figure 3.16: Alternative superimposed (a) matrix and (b) node-
link visualisations supporting weighted graph comparisons [9].

Except for integrated visualisations, multiple coordinated views (MCV) have also been used
to deal with the increased complexity of multivariate networks. For instance, Detangler targets
the task of group cohesion in networks with multiple edge types using dual linked views and two
abstraction levels [148]. GraphDice [31] on the other hand, extends the X, Y layout of PivotGraph
adding interactive features such as animated transitions between three dimensions of categories.
Pairs of categorical dimensions are shown as two-dimensional small multiples in a coordinated
view (Figure 3.17). Whereas MCV methods are useful, integrated approaches are preferred for
visualising multivariate networks because they save space by containing both the structure and the
data in the same view [96]. This also makes them more efficient since users are not required to
look at separate views for finding relations in the network [77]. However, embedding additional
multivariate data into standard network representations that use node-link diagrams or adjacency
matrices is not intuitive and it can often result in visual clutter.

In Chapter 6, we present a user study for formally evaluating the effectiveness of visual en-
codings in matrices when users were performing common visual analysis tasks related to DBN
inference. The results of this study informed the design of BayesPiles which was extended to also
support the exploration and analysis of DBNs.

Summary of challenge 3: Time-series data can be used to infer information about the dynam-
ics of interactions in biological systems. Extending Bayesian networks, DBNs encode this infor-
mation in their multiple types of edges, called Markov lags. Modellers are interested in exploring
the results of heuristic search runs that produce multiple DBNs, to understand the dynamics of the
underlying biological system. However, it is hard to represent and analyse collections of DBNs
because they contain edges of different types. In Chapter 6, we present a formal user study that
tested the effectiveness of visual encodings for edges in matrices. The results informed the design
of a visual analysis tool (BayesPiles) for exploring DBNs and the tool was evaluated by domain
experts.

50

Figure 3.17: Exploration of the InfoVis 2004 Contest co-authorship
data set using GraphDice. On the left is the main visualisation win-
dow of GraphDice including (a) an overview plot matrix, (b) a se-
lection history tool, (c) a selection query window, (d) the main plot,
and (e) a toolbar [31].

3.4 Summary

Three research challenges have been identified in modeller’s workflow of inferring probabilistic
biological networks. Those challenges were the main research objectives targeted in this thesis.
The first challenge is related to the variable selection step during which hierarchical clustering is
used for allocating variables into clusters. In our literature review, we found that HCE [161] is
the most relevant tool for performing this step. However, HCE does not support multiple-level
cuts and large dendrograms often appear cluttered. In Chapter 4, we present MLCut, a tool that
supports an effective dendrogram representation and clustering analysis tasks, such as cutting the
tree at multiple levels.

The second challenge is related to the network inference step during which heuristic search
algorithms sample the space of all possible networks. The challenge is to help modellers guide the
heuristic search and decide on a method that determines the final consensus network. Our literature
review showed that MultiPiles [18] is the most relevant visualisation approach for supporting
this challenge. In Chapter 5 we present how BayesPiles extended MultiPiles to support domain-
specific analysis tasks, such as the manual construction of a consensus network.

The third research challenge is related to the incorporation of information about the dynamics
of the biological system into the inferred network model. Representing this information visually
is challenging because the resulting networks contain edges of multiple types. Our literature re-
view showed that although matrix-based representations can be effective for representing dense
networks, there was no previous study that evaluated the performance of visual encodings for
multivariate networks in matrices, in which the multivariate data is associated with the edges. In

51

Chapter 6, we present a formal user study that investigates effective encodings for performing net-
work analysis tasks related to the inference of dynamic Bayesian networks and how the results of
this study informed the design of BayesPiles. Then we present how this extension was evaluated
by modellers.

This thesis suggests that modellers’ efficiency can be improved when visualisation is used as
part of their network inference workflow. Following the nested model framework, three biological
analysis challenges were identified and mapped to visualisation challenges. For each of those
challenges, we presented an overview of necessary background knowledge and a literature review
which describes the most relevant visualisation techniques and tools. In the following, we present
how each of the three research challenges has been addressed in practice. Each of the following
three chapters presents a contribution to knowledge. In the next chapter, we present the design of
MLCut, a novel visualisation method for performing hierarchical clustering analysis.

52

4 Exploring Multi-Level Cuts in Den-
drograms with MLCut

In the previous chapter, we presented related work for each of the three research questions ad-
dressed in this thesis. In this chapter, we focus on answering the first research question: Q1 “How
to provide visual support for the effective hierarchical clustering of many multidimensional
variables?” To investigate how visualisation could help to address this question, we applied the
nested model methodology [132], which led to the following questions:

Q1a What are the requirements of domain scientists who select variables based on the results of
hierarchical clustering algorithms?

Q1b Which design decisions and operations can lead to effective visualisations for exploring the
results of hierarchical clustering algorithms applied to many multidimensional variables?

We discuss the design of a novel visualisation tool, MLCut following the nested model method-
ology approach [132]. MLCut, enables the interactive exploration of different clustering scenarios
by allowing its users to cut the dendrogram at multiple heights. Clustering assignments are shown
in a coordinated view of the original multivariate data, which is updated in real time as the user
interacts with the derdrogram. In Section 4.1, we describe how the first level of the nested model
was applied to the hierarchical clustering analysis challenge, followed by the second level in Sec-
tion 4.2. By the end of these two steps of our methodology, we answer Q1a summarising a list
of requirements. Regarding Q1b, in Section 4.3 we present the design and implementation of two
MLCut prototypes and how they satisfy the requirements (third and fourth levels of the nested
model). Also, in Section 4.4, we discuss how MLCut has been evaluated with real time-series
gene expression data in a case study. Finally, in Section 4.5, we present a summary of the contri-
bution. A paper describing MLCut was published in the Computer Graphics and Visual Computing

(CGVC) conference [180].

53

4.1 Domain Problem Characterisation

As part of the domain problem characterisation, which is the first level of the nested model (Fig-
ure 2.5), it was important to establish a shared understanding of the domain problem with the
domain scientists [159]. We received anecdotal feedback from three computational biologists
with experience in hierarchical clustering, following the example of other successful design stud-
ies [159, 126]. Over a period of two months, we held two one-hour informal meetings with each
of them (six meetings in total). During these meetings we let them describe their data sets, the
method they were using to organise them in groups, as well as the problems they were facing
during the step of variable selection. Two of our analysts were interested in reducing the number
of variables in their data sets using hierarchical clustering and then infer network models. In par-
ticular, they were interested in finding data records of similar temporal profiles and then aggregate
them taking their averages so that a single variable would be created from each cluster.

Our first collaborator was an experienced computational biologist who often uses hierarchical
clustering to reduce the number of variables and infer probabilistic network models. The second
was a biology graduate with experience in computational methods who wanted to infer models
from time-series gene expression data as part of a research project. Our third collaborator was a
senior statistician specialised in computational methods for analysing genetic data and hierarchical
clustering was used to map collections of DNA markers with a set of chromosomes.

Inferring network models is challenging mainly because of the large number of variables af-
fecting the state of the biological system [48]. To infer useful networks, computational biologists
first need to reduce the number of variables, including the most important and excluding those that
are redundant [57]. The challenge is to find and organise variables that are similar into groups.
Computational biologists commonly use the unsupervised method of hierarchical clustering to al-
locate biological variables into groups. This is a popular method among scientists because they
do not need to specify in advance the number of clusters. Also, the algorithm produces a den-

drogram (i.e. a tree) that shows similar objects close to each other, encouraging the exploration
of the results. The main task for the user is to explore the data and decide which branches of the
tree correspond to the different clusters (i.e. groups). Usually, this is done selecting a similarity
threshold that determines a single height for cutting the tree. However, for large and complex data
sets, applying a single similarity threshold is not sufficient for effectively allocating variables to
clusters because these may exist at different heights of the dendrogram.

The size and complexity of the data set often result in cluttered dendrogram representations that
do not help to decide where to cut the branches that correspond to different clusters. Finding more
representative clusters required an interface that could support the exploration of the original data
in coordination with the dendrogram. Our challenge was to create a visualisation tool that would
allow computational biologists to observe their data and cut the dendrogram so that branches
correspond to clusters. Each of the identified clusters of variables could be either studied as a
separate module, or it could form an aggregate represented by a single node in the network (usually
taking the mean).

54

4.2 Requirements

After understanding the domain problem of variable selection in the context of hierarchical cluster-
ing, we proceeded with the second level of the nested model during which the data were abstracted
from the tasks. For this step, it was important to collaborate closely with the computational bi-
ologists, to understand their data and tasks and derive a list of requirements that our tool should
support.

To identify, refine and prioritise requirements we performed four card sorting sessions with
two of the computational biologists consulted in the previous level of the nested model. We per-
formed two sessions with each participant separately, following the three steps of preparation,
execution and analysis described by Sakai et al. [155]. At the end of these sessions, we performed
an additional short session during which both computational biologists were asked to collaborate
in order to organise and refine requirements. Before conducting the card sorting sessions, we
followed the application procedure for acquiring cross-university ethical approval.

During the first session, the computational biologists were asked to verbally describe opera-
tions and tasks they would like to perform when they select variables using hierarchical clustering.
Then, they were asked to write these requirements on empty cards (Figure 4.1). By the end of
the first session, we had two collections of requirements related to hierarchical clustering that our
collaborators had generated.

Figure 4.1: A picture showing two of the handwritten cards after a card sorting session
with one of the participants.

As a preparation step before the second session we gathered all cards creating a single col-
lection of requirements. We found that many of the requirements were common between the
two participants. The next step was to refine them, remove duplicates, type them and print them
to make them easily readable for the next session. During the second session, participants were
given all the cards from the previous sessions (four cards in total) and they were asked to revise and
update their content as required. Also they were asked to hand-write new requirements on empty
cards. The participants generated four requirements during the first session and another four dur-
ing the second. At the end of the second session, both participants were asked to collaborate and
organise these eight cards in groups depending on how similar they were. Complementary and
duplicate requirements could be easily detected as they would appear in the same group (Figure
4.2). By the end of the second session, we had an updated collection of requirements. Duplicates

55

were removed and similar or complementary requirements were merged to form more concise re-
quirements. Answering Q1a, we found that the design of our tool should support the following
five requirements:

Figure 4.2: Pictures from the second card sorting session. New requirements and re-
quirements found in the first session were grouped based on their relevance.

R1 - An effective dendrogram representation that scales well for large data sets. Analysts were
interested in a scalable dendrogram representation which could fit in a standard monitor
display and could also show which are the different clusters.

R2 - An effective representation of the original data, in addition to the dendrogram repre-
sentation. Analysts wanted to be able to visually inspect their multidimensional data in
coordination with the dendrogram.

R3 - The ability to interactively explore the dendrogram and the representation of the orig-
inal data, in different levels of detail. Analysts wanted a method that would allow them to
steer the exploration of the dendrogram and their data so that they could detect and select
potential clusters on demand.

R4 - The ability to maintain multiple cluster selections on display during the exploration
process, without losing a view of the whole data set. Analysts expected to have flexibility
and control over their variable selection process and to be able to compare clusters while
they were interacting with the interface.

R5 - The ability to export selected clusters so that they could be used for further analysis: this
was important for the analysts so that they could proceed easily to next steps of their analysis
workflow.

These requirements have implications for interface design including scalability to large den-
drograms, representing the original multidimensional data, showing selected clusters, support for
cutting the dendrogram at different heights and comparing clusters. The data that needed to be

56

visualised to satisfy these requirements involved both the dendrogram and the original multidi-
mensional data. In the following Section 4.3, we describe how the third level of the nested model
was applied to design effective visual encodings and interactive operations for satisfying these
requirements and for answering research question Q1b.

4.3 Design and Implementation

Applying the third level of the nested model, we investigated and reviewed potential designs for
dendrograms and representations of multidimensional data found in the literature. We evaluated
design ideas and we developed prototypes for the interface while we were receiving anecdotal
feedback from the computational biologists. To improve the design of our tool, we followed an
iterative process of continuously refining design decisions and evaluating results. For a period of
four months, we arranged to meet twice a month with our collaborators to receive feedback re-
garding how well our design decisions supported the requirements listed in Section 4.2. However,
while most of the design decisions were made after consulting the end users, some of the design
choices were based purely on studies about human perception and cognition. For instance, the
visual encoding was based on principles related to the effectiveness of visual variables for repre-
senting certain types of data [119, 47, 28], while the colour palette was created using ColorBrewer

[84]. Details about design decisions related to visual encoding and user interface (UI) controls
are explained in the next sections which describe the two phases for developing MLCut, focusing
on the dendrogram design and the way it was linked with a representation of the original multi-
dimensional data. Those two phases led to the design and implementation of two prototypes of
MLCut.

4.3.1 Design Process

The first step in the design process of MLCut was to consider potentially effective representa-
tions for the dendrogram and the original multidimensional data, conducting a literature review as
described in Section 3.1. We found that the most relevant tool to our problem was the Hierarchi-

cal Clustering Explorer (HCE) [161], which uses two coordinated views to represent a top-down
dendrogram linked to a heatmap of the original multidimensional data. However, the top-down
dendrogram representation did not scale well and zooming and panning were often needed. Also,
while the heatmap was found useful for representing multidimensional data, our collaborators
found it less intuitive than parallel coordinates when it was used to visualise time-series data.
Most importantly, HCE supports only single-level cuts for allocating variables into clusters, while
one of our requirements was to support multiple-level cuts.

Two main phases of design and development took place, which resulted in two prototypes.
Each of those prototypes was used by different research groups for analysing different data sets.
The design of the first prototype was mostly focusing on the effective exploration of the dendro-
gram. The challenge was to visually represent and explore large dendrograms in a scalable way.

57

The design of the second prototype was mostly focusing on linking the dendrogram with a rep-
resentation of the original multidimensional data. The challenge was to create an interface that
would enable users to interactively cut the dendrogram in multiple levels and see the effect of their
actions in the original data.

4.3.2 Dendrogram Design

The first phase of developing MLCut addressed the problem of exploring large dendrograms. To
satisfy R1, described in Section 4.2, we considered alternative two-dimensional (2D) tree layouts
such as node-link, icicle, radial, concentric circles, nested circles, treemap and indented outline,
described in McGuffin et al. [124]. In one of our first attempts to visualise the dendrogram,
we implemented a version of the top-down node-link tree representation (Figure 3.3 (a)). The
user could zoom in to inspect branches of interest in more detail or zoom out to see the whole
dendrogram, as shown in Figure 4.3. This dendrogram layout was suitable for identifying outliers
and clusters based on the length of their branches. Long branches were probably part of the same
cluster, while data records that did not belong to any of the branches indicated possible outliers.
This layout made it easy to compare between branches when the whole dendrogram was displayed
on the screen. However, considering the limitations of a standard monitor display, this layout did
not always produce intelligible results. This was mainly because, above approximately 400 leaves,
the size of the hierarchical structure was too large to browse. In this layout, it was unrealistic to
expect users to visually compare edge lengths in large dendrograms of potentially thousands of
edges. Moreover, clustering assignments encoded on the leaves or the branches of the tree were
not easily discernible because of their small size, while using labels resulted in visual clutter.

The updated design of our dendrogram was based on known perceptual principles regarding
the suitability of certain visual variables (such as “position”, “size”, “shape” etc.) in encoding
information for performing perceptual tasks [119, 47, 28]. In our updated design, we adopted a
space-efficient radial layout that enabled additional encoding for the clustering assignment using
“colour hue”. Whilst Burch et al. [37] shows that radial node-link representations take longer to
read than top-down node-link views, at least up to 500 nodes, radial node-link layouts are more
space efficient than top-down node-link representations [124], and also more efficient than left-
to-right node-link representations if labels are not shown, as is the case here. The radial layout
utilizes better the space available for displaying the data and limits the use of scrollbars. Because
the hierarchy is wide, the top-down tree layout in Figure 4.3 would not be visible in a single view
without scrollbars. Another option is to zoom out to a scale where the dendrogram was entirely
visible, but the colour of the nodes, used to encode the clusters, would not be distinguishable.
For the same task, a radial dendrogram is much more compact, allowing the different colours to
be distinguished, while the whole data set can fit in a standard monitor display. Identifying the
different clusters in the dendrogram is a nominal perceptual task for which “colour” is a well-
suited visual encoding [119]. Following the same logic, edge lengths were encoded using the
visual variable of “size”. In addition, we quantified the property of edge length and we enabled

58

Figure 4.3: Dendrogram displayed in an earlier version of MLCut using a version of
the top-down node-link tree layout. This dendrogram layout is suitable for identifying
clusters and outliers based on the length of the branches.

users to apply a distinctiveness threshold using a dynamic slider [6]. Longer than the threshold
edges (i.e. “weak”), were encoded using easily discernible red, dashed lines. Dynamic sliders are
discussed in more detail in Section 4.3.3. The visual variable of “shape” was used to distinguish
between the two different categories of leaves and intermediate branch levels. Data records, which
are leaves in the dendrogram, are represented as rectangles and dissimilarity scores, which are
always intermediate branch nodes, are represented as circles of diameter proportional to their
value. The node with the largest diameter and the highest dissimilarity score is the root of the tree.
A summary of the visual encoding used in the dendrogram is shown in Figure 4.4.

Figure 4.4: A summary of the visual encodings used for representing the dendrogram
in MLCut.

Interacting with the dendrogram is simple as scientists can use the middle wheel of their mouse
or buttons in the user interface to easily apply semantic zooming to achieve a better view on

59

branches of interest. Hovering over elements of the dendrogram reveals more detail, such as their
dissimilarity score (for circles), or their name and vector of values (for rectangles). Clicking on a
rectangle selects it, while clicking on a circle selects the whole branch. A thicker border is used
to highlight the selected items. Moreover, to partly support R4 and enable comparisons, variables
of particular interest can be “locked” and remain highlighted by double-clicking on their mapped
rectangle at the dendrogram. This action would add texture to the rectangles, as shown in Figure
4.5 and the selection would persist until the user would double-click again on those elements to
“unlock” them.

Figure 4.5: Texture added to data records that have been double-clicked. Those records
will remain highlighted (“locked”) in the interface and not affected by any cluster selec-
tion.

4.3.3 Dynamic Sliders

To enable the exploration of the dendrogram in a controlled and reproducible way, and thus, par-
tially support requirements R3 and R4, we implemented two dynamic sliders for setting similarity
and distinctiveness thresholds respectively. A global similarity threshold can be applied using the
first slider. Branches that belong to the same cluster get the same colour. In Figure 4.6, snapshots
I and II demonstrate the process of merging a large number of smaller clusters into three main
groups by moving the top slider, which controls the similarity threshold. This interaction is useful
for identifying the main clusters and also for testing the different scenarios that the single-height
approach can investigate in a consistent and reproducible way. The algorithm that dynamically al-
locates colours to clusters as the user moves the slider, rotates between the 12 colours of a palette
(Figure 4.4 (c)) in a way that only new clusters get different colours, while existing clusters main-
tain their colour to make the merging/division of clusters easier to spot. The efficient allocation of
colours to clusters, complies with the fourth (and last) level of the nested model as the algorithm
updates cluster selection quickly and the interaction with the interface takes place in real time.

The second dynamic slider can be used to identify long (or “weak”) edges that indicate het-
erogeneity within clusters. It helps to point out nested clusters, which appear considerably more
distinctive than the larger ones in which they may seem to belong to. In large dendrograms, it is
difficult to compare edge lengths. Hence, the second slider sets the maximum allowed similarity

60

Figure 4.6: Dynamic query sliders in use. The top slider in II sets the similarity thresh-
old and the bottom slider in III sets the distinctiveness threshold.

61

distance between a parent main cluster and a child sub-cluster. Distinctive “weak-edges” between
neighbouring nodes are shown as thicker, dashed and coloured red. Experimenting with different
distinctiveness thresholds can help users identify potential outliers and nested clusters. Figure 4.6
III demonstrates the identification of a distinct nested cluster (shown in black) by moving the bot-
tom slider, which controls the distinctiveness threshold. In the first prototype, possible outliers and
nested clusters found using the distinctiveness slider were shown in black. However, this encoding
changed in the final prototype because using the same colour was confusing when multiple “weak-

edges” were found close to each other in the dendrogram. Therefore it was decided to retain the
colour encoding that characterises the parent cluster and only show the “weak-edges” using thick,
dashed, red lines.

4.3.4 Coordinated Views

The first prototype supported the exploration of large dendrograms but it did not support require-
ment R2. The original data records were only represented in an abstract way as the leaves of the
dendrogram while their values were shown in a static tabular format within the tool. Common al-
gorithms for hierarchical clustering ignore special characteristics of the underlying data records in
the data sets. Usually, hierarchical clustering algorithms only use the distance matrix to merge or
divide clusters and form the dendrogram, which may lead to some wrong merging/dividing deci-
sions. If the wrong combination of distance metric/measure, hierarchical clustering algorithm and
its type is used, important information could be lost and the clustering results could be even mis-
leading. Clustering results cannot be evaluated simply by looking at the dendrogram. Therefore,
the computational biologists also asked for an effective representation of the original multidimen-
sional data, in coordination with the dendrogram (R2 and R3). It was important to enable users
interact with the dendrogram while seeing the effect their choices on the original data.

We were looking for an intuitive way to represent multidimensional data and time-series in
particular, which were very common in the data sets of our collaborators. As part of this step,
we showed our collaborators different examples of visualisation techniques (discussed in Section
3.1.3) and we asked them to review them providing anecdotal feedback. In this way, different tech-
niques were informally evaluated in matters of their relevance to users’ data sets and tasks. The
techniques that our collaborators found the most useful for representing their data (i.e heatmaps

and parallel coordinates) were explained in more detail. Further discussions with the compu-
tational biologists led to the clarification of operations and interactivity the interface needed for
supporting the requirements (fourth level of the nested model). Although our collaborators found
the heatmap useful for representing multidimensional data, they did not find it intuitive when the
data set consisted of time-series. On the other hand, they found parallel coordinates more intuitive
for representing time-series and also suitable for satisfying requirements R2 and R4, as they found
it easier to compare variables represented as lines in the parallel coordinates, rather than squares
of different opacity in the heatmap.

In our effort to satisfy requirements R2 and R3, we also adopted the approach of multiple coor-

62

Figure 4.7: Three sub-clusters of genes (A, B and C) that exhibit distinctive time pat-
terns. Each sub-cluster belongs to a larger main cluster, visually encoded using colour.

dinated views in the design of MLCut. The user interface is composed of two separate but linked
components (Figure 4.7). The top view is a radial representation of the dendrogram, while the
bottom shows the original multidimensional data as parallel coordinates [93]. Each data record,
represented as a rectangle in the dendrogram (i.e. top) view, is linked to a line in the parallel coor-
dinates (i.e. bottom) view. Data records are normalised, and every axis in the parallel coordinates
is scaled to the same minimum and maximum values to enable comparisons. To support R3 and
R4, the user can explore clustering assignments using the two sliders and also interact with the
branches of the dendrogram to explore potential multi-level cuts, shown in the parallel coordinates
view. The interaction is done hovering over the circles of intermediate branch nodes. This gives
a real-time preview of the effect the branch-cut would have in the original data. Clicking on a
circle, selects the whole branch, including its leaves. Previewing and selecting branches can be

63

done interactively at any level of detail: from the whole tree down to a single leaf. This flexibility
enables the exploration of potential sub-clusters within the main clusters identified using the slid-
ers. Selected branches are highlighted with thicker borders at the top view and with thicker lines
at the bottom, as shown in Figure 4.7.

To reduce the visual clutter at the bottom view, variables that are not selected are shown in
light grey. The top view supports most of the interactivity, and the colour encoding is preserved to
enable the further exploration of the dendrogram. Finally, to support R5, each selected cluster or
sub-cluster can be exported as a comma separated values (CSV) file by double-clicking on any of
the lines of the bottom view.

4.3.5 Releases

The development of MLCut took place in two main phases that led to the implementation of two
software prototypes. The first prototype was incorporated into a larger software package used for
the analysis of genetic data in tetraploid populations, called TetraploidSNPMap [82] (Figure 4.8).
The second prototype is the most mature version that supports all features of MLCut [180] (Figure
4.7) and it can be used as a standalone visualisation tool.

The first prototype was developed in Java. It does not include an implementation of coordi-
nated views between the dendrogram and the original data but it supports a top-down tree layout
for the dendrogram (Figure 4.3). The second and final prototype was written in JavaScript using
D3 [34] and it can be accessed online through a web browser. The source code can be found
in a repository as described in Appendix A. The implementation lacks the top-down tree layout
representation for the dendrogram, but it includes the implementation of the coordinated views
that show the dendrogram and the original multidimensional data as parallel coordinates. The pre-
processing and hierarchical clustering analysis of the original multidimensional data was done in
R using the TSclust package [131].

4.4 Evaluation

Usability testing was done to validate the design of MLCut during and after the development of the
second software prototype. We followed the method of a design study [159], receiving informal
feedback from three biological domain experts who used MLCut to visualise and cluster their
data. A senior statistician tested the usability of the two dynamic sliders and the dendrogram
design, confirming previous clustering results. The first prototype became part of a larger software
package, TetraploidSNPMap [82]. This package, not only supports hierarchical clustering but also
provides tools for genetic linkage analysis. The usability testing of the first prototype was done
using the default data set of DNA markers supplied in the release of TetraploidSNPMap. The
second (and final) prototype of MLCut was evaluated by two computational biologists who were
interested in clustering time-series gene expression data as part of a research project. The testing

64

Figure 4.8: A screenshot from TetraploidSNPMap showing MLCut as an integrated
clustering component [82].

of the second prototype also confirmed previous clustering results. In the following, we present
the application of both MLCut prototypes for clustering real biological data.

4.4.1 Clustering SNPs to Chromosomes

Modern sequencing technologies enable thousands of single nucleotide polymorphisms (SNPs)
to be measured in genetic mapping populations. The first step in genetic linkage analysis is to
cluster the SNPs into separate chromosomal groups so that SNPs in different groups are inherited
independently.

The first prototype of this tool (part of TetraploidSNPMap shown in Figure 4.8) was used to
partition over 5000 SNPs measured on 190 offspring in a cross between two tetraploid potato lines.
The distance metric between each pair of SNPs was estimated from the significance of a χ2 test
for independence [118], and average-linkage was used as the type of the hierarchical clustering
method.

The user found that the main clusters agree well with position information from the sequenced
potato genome. Detail within the clusters shows SNPs located on the different homologous chro-
mosomes within each linkage groups. Full details of the genetic mapping are given in Hackett et

al. [81].

65

4.4.2 Clustering Time-series Gene Expression Data

In the context of gene expression analysis, hierarchical clustering algorithms are used for data
partitioning and variable selection. When analysing gene expression data to infer network models,
a subset of variables (from thousands) is selected for inclusion in the network [122]. The clusters or
representative single genes selected, become variables represented as nodes in the network model.
Towards this analysis goal, the second prototype of MLCut was developed in collaboration with
a small group of two computational biologists for clustering short time-series gene expression
data. For such data sets, each of the clusters corresponds to a characteristic profile or temporal
pattern [185].

A real usage scenario took place in which a gene expression data set with short time-series was
explored [179]. The data set consisted of the fold change of 800 differentially expressed genes in
five time-points and it is publicly available in the Gene Expression Omnibus (GEO) [64] repository
with accession number GSE49577 [106].

Initially, different distance measures were used for calculating pairwise dissimilarities be-
tween time-series such as: Euclidean distance, autocorrelation coefficient and dynamic time warp-
ing. Also, different agglomerative hierarchical clustering algorithms have been tested using the
TSclust [131] package in R. The combination of Euclidean distance with an average-linkage hier-
archical clustering algorithm was selected as the best option for the task.

Using the second and final version of MLCut, the users managed to find three distinct tempo-
ral profiles of late gene expression (Figure 4.7). This was achieved by interactively exploring the
branches for potential sub-clusters, and eventually by cutting the dendrogram in multiple levels.
The difference in gene expression patterns occurs between the third and the fifth parallel coordi-
nates, which correspond to time-points. Gene expression in the cluster shown in Figure 4.7A first
increases and then decreases, while in Figure 4.7C the opposite happens (first decreases and then
increases). Gene expression in the cluster shown in Figure 4.7B remains stable between the third
and fourth time-points and decreases after that. These patterns not only agree well with clusters
related to late gene expression as reported in Koussounadis et al. [106], but also provide a more
clear cluster assignment scenario.

The case study demonstrated the benefits of MLCut in practice and helped to test and refine
the implementation of the prototype. Finally, anecdotal feedback was given through emails and
also verbally during our discussions with the users. One of the users wrote: “I cannot seem to

download the gene list by clicking on the genes. It is still working with the HOX data set but for

some reason, it will not let me in the OV data sets. Thank you for all of your help so far and other

than this the tools are excellent!”. Another user wrote: “I really like how the tool lets you see

both the expression lines and clusters, and how this changes as you change the clustering. I can

really see the applications for being about to choose sub-clusters based on visual match rather

than having to blindly slice the tree at one level only, and am looking forward to seeing what we

can discover using this method of clustering the data”.

66

4.5 Summary of Contribution

To answer Q1, we developed MLCut, an interactive visualisation tool that enables analysts to se-
lect clusters manually by applying multi-level cuts on demand. There are two types of thresholds:
a global single-height similarity threshold that applies to the whole dendrogram and local distinc-
tiveness threshold that applies between pairs of two linked nodes, enabling a more finely-grained
exploration. In addition, the interactive exploration of the dendrogram is coordinated with a repre-
sentation of the original data, shown as parallel coordinates. The analysis process involves three
steps. First, a single-height similarity threshold can be applied using a dynamic slider to iden-
tify the main clusters. Second, a distinctiveness threshold can be applied using a second dynamic
slider to identify long edges (i.e.“weak-edges”), that indicate heterogeneity within clusters. Third,
the user can interact with the dendrogram and the original data to manually cut the branches of
the tree at multiple levels. This step is important for detecting nested clusters and outliers. Inter-
active drilling-down is supported using mouse events such as hovering, pointing and clicking on
elements of the dendrogram.

The design of MLCut followed a synergistic approach that combines the strengths of hierar-
chical clustering algorithms with the ability of humans to visually detect patterns and anomalies in
the data. It was developed in close collaboration with analysts that had experience in using hierar-
chical clustering as part of their workflow. The tool was evaluated while being used for allocating
single nucleotide polymorphisms (SNPs) to chromosomes of tetraploid species and for finding
temporal patterns in time-series gene expression data. Anecdotal feedback from the analysts sug-
gested that MLCut is a promising method for clustering which could lead to scientific discoveries.
In the following chapter, we discuss how selected variables or clusters of variables become nodes
in the inferred network. As part of the second step in modellers’ workflow (Figure 1.1 (b)), we ad-
dress the challenge of learning the interactions between pairs of nodes that constitute the structure
of the network.

67

5 Bayesian Network Inference with
BayesPiles

Clustering is an important step for reducing the number of variables and for selecting those that
become nodes in the inferred network model. However, modellers still need to understand how
all these variables interact with each other to form the structure of the network. The step of
inferring the structure of the network is the most challenging in modellers’ workflow (Figure
1.1 (b)), because there is a lot of uncertainty about the state of the natural system, resulting in
many possible network solutions for a given data set. Therefore, modellers apply heuristic search
algorithms that sample the solution space of all possible networks, based on algorithm parameters
and a network score that encodes the statistical fit to the data. Then, modellers combine the
heuristic search results using their own tacit knowledge to take decisions about the final structure
of the model [105, 117]. In this chapter, we focus on answering the second research question: Q2
“How to support the visual analysis of heuristic search results, to infer representative models
for biological systems?” To investigate how visualisation could help to address this question, we
applied the nested model methodology [132], which led to the following questions:

Q2a How can visualisation help modellers understand the shape of the solution space in order to
guide the heuristic search in finding better network solutions?

Q2b How can visualisation help modellers decide on a method that determines the structure of a
final consensus network?

This chapter presents BayesPiles, a novel interactive visual analytics tool which was devel-
oped to support computational biologists (i.e. modellers) in exploring, comparing and combining
Bayesian networks (BNs) interactively. BayesPiles builds upon the design of an already exist-
ing tool for analysing dynamic networks visually, called MultiPiles. In Section 5.1, we describe
how the the first level of the nested model was applied to characterise the domain problem. In
Section 5.2, as part of the second level of the nested model, we present a list of common tasks
related to Bayesian network inference. In Section 5.3, as part of the third and fourth levels of the

68

nested model, we describe the design of BayesPiles and how it extends MultiPiles to support the
identified tasks. In Section 5.4, we present an evaluation of our tool with domain experts, who
used BayesPiles as part of their network inference workflow in three case studies that involved
real biological data sets. Finally, at the end of the chapter (Section 5.5), we present a summary
of the contribution and we discuss findings. The paper for BayesPiles was published in the ACM

Transactions on Intelligent Systems and Technology (TIST) journal [181].

5.1 Domain Problem Characterisation

Following the design study methodology [159], we applied the first level of the nested model
(described in Section 2.4) to understand the problems computational biologists often face when
they infer Bayesian networks from biological data. Inspired by other successful design studies
[127, 126], we collaborated closely with three domain experts (i.e. computational biologists)
who wanted to infer Bayesian networks. Our first collaborator was an experienced academic
researcher, specialised in computational biology using Bayesian methods. The second was a PhD
candidate in computational biology who used Bayesian networks as part of a research project.
Our third collaborator was a student in neuroscience who mostly provided feedback at a later stage
when BayesPiles was used for analysing neuroimaging data. Two more research students provided
feedback when BayesPiles was extended to support dynamic Bayesian networks (Chapter 6).

As part of the first two levels of the nested model, our priority was to understand the domain
problem and abstract the data and the main biological analysis tasks. Over a period of two months,
we held four one-hour informal meetings with the most experienced of our collaborators and two
one-hour meetings with the PhD student (six meetings in total). During the first month we met
only with the most experienced of our collaborators. The second (less experienced) computational
biologist provided feedback during the second month to confirm and refine the characteristics of
the domain problem.

During these meetings our collaborators described the process they followed to infer networks
and the tools they used to explore, combine and compare them to construct a final consensus
network. We conducted a literature review to better understand the domain problems and extend
our background knowledge on the field of Bayesian network inference. Through our literature
review (Section 3.2) and anecdotal feedback from our collaborators, we understood that heuristic
search algorithms, such as greedy search and simulated annealing, are used for finding and scoring
hundreds of possible network solutions. Then, modellers have to explore, compare and combine
results from different runs to infer a final consensus network. However, this task is difficult because
heuristic search algorithms run multiple times and produce potentially hundreds of networks which
are hard to explore and compare without visualisation support.

The main task for the computational biologists was to guide the heuristic search and decide on
a method that determines the structure of a final consensus network, usually by selecting the top-
scoring network or constructing the consensus network from a collection of high-scoring networks.

69

A “good” network has to explain the observations—a process that requires the combination of both
data and expert knowledge, which in turn require an understanding of the shape of the solution
space and the comparison of potentially hundreds of individual network solutions. As a system
can give scores to networks, we use the term solution space to refer to the set of highest scoring
networks as generated and assessed by the system. On a general level, the human task is twofold:
i) answer Q2a assessing the individual quality of network solutions (with respect to their scores)
and ii) answer Q2b creating consensus networks by combining individual solutions.

5.2 Tasks

We often had to contact our analysts for clarifications, but we gradually managed to refine our un-
derstanding and to abstract data and tasks (second level of the nested model). Then, the biological
analysis tasks were mapped into visualisation tasks suitable to start designing a system. Based
on the previous observations, our literature review, as well as semi-structured interviews with our
collaborators, we summarised the following tasks as the most crucial ones related to the under-
standing of Bayesian networks for modelling biological interactions. The first three are mostly
concerned with answering Q2a and the rest with Q2b.

T1 - Overview large sets of networks: overview and explore topologies of hundreds of directed
networks together with the distribution of their respective scores. Modellers were interested in
observing the solution space, consisting of network structures and their scores.

T2 - Compare different runs: display and order multiple collections of networks produced in
different runs. Heuristic search algorithms are executed multiple times and their results often vary.
Modellers were interested in sorting and comparing results from different runs.

T3 - Group networks: organise and combine networks into groups and enable comparisons
within and across groups. Modellers were interested in summarising results by creating network
aggregates and then compare them to identify common and different edges.

T4 - Filter nodes and edges based on user-defined criteria, such as connectivity of nodes and
weight of edges. Modellers wanted to identify nodes and edges that could be removed from the
final consensus network.

T5 - Summarise and check the consistency of outgoing edges for selected nodes across multi-
ple networks. This is important for exploring networks at a node level. Modellers wanted to see if
nodes with the same degree would also maintain the same edges across multiple networks.

T6 - Determine consensus network: explore and construct a possible consensus network. Mod-
ellers were interested in a flexible method that would enable them to combine multiple networks
to determine the final consensus network.

70

These tasks have implications for interface design; scalability to many networks, visualise dif-
ferences between network topologies, show network scores, show link directions, support manual
creation of the consensus network, etc. In the following Section 5.3 we describe in detail how the
design of BayesPiles supports each of the identified tasks. In Section 5.4, we present an evaluation
based on three case studies in which real biological data sets were analysed using BayesPiles. The
chapter finishes with a summary of the contribution.

5.3 Design and Implementation

As part of the third level of the nested model, after we identified the analysis tasks, we sought a
visualisation idiom which could be successfully applied to the data to support the tasks. As de-
scribed in Section 3.2.2, we conducted a literature review to identify relevant visualisation tools
and techniques that could be potentially extended to support our analysis tasks for inferring net-
work models. We found that Bayesian networks (BNs) are usually represented as node-link dia-
grams using a hierarchical or force-directed graph layout. The example in Figure 5.1 (a) shows
a set of 10 superimposed BNs of a similar structure produced with the BANJO system and visu-
alised using the Graphviz visualisation library [65]. Superimposing larger collections of BNs, or
BNs that have many structural differences, results in a dense network (Figure 5.1 (b)) because the
superimposed network includes all edges and because adding different networks in the collection
increases the overall number of edges. Link colour represents the links in each network and the
layout is optimised to minimise edge crossings. The visual encoding is limited in several ways:
it seems impossible to overlay more than ten networks (resulting in too many lines and hardly
discernible colours) and many of the lines are overlapping. Aggregating adjacent edges (i.e. edge
bundling) in directed networks can only partly alleviate the problem because it makes it hard to
discern between target and source nodes, while edge crossings can still be a problem. Moreover,
while node-link diagrams are effective for path following tasks, our users are mostly interested in
tasks related to degree and adjacency [73].

As a scalable alternative to node-link diagrams, adjacency matrices have been proven effective
in visualising dense networks [73]. Adjacency matrices represent networks in table format; each
node corresponds to a row and to a column. Whenever two nodes are related (linked), the respec-
tive matrix cell is filled by some visual mark. Given an appropriate ordering of rows and columns,
matrices show topological network patterns such as clusters [26]. Ghoniem and Fekete [73] found
that matrix representations perform better than node-link for many network visualisation tasks
such as spotting clusters, finding highly connected nodes, finding common neighbours, as well as
comparing weights on links [9]. Consequently, matrices have been used to visualise and compare
the architecture of software systems [3, 23], brain connectivity [9, 17, 18], or ontologies [16].
Alper et al. [9] demonstrated that matrices are more readable in comparing two networks than
node-link diagrams such as shown in Figure 5.1.

While looking for an appropriate visualisation approach to support our tasks, we discussed
existing visualisation tools and techniques with our biology collaborators. To receive initial feed-

71

consensus.graph.2016.11.09.10.02.30.txt hxct2

hxct1

cell_line

hxct3

hxct9

ovct5

hxct10

hxct4

ovcb11

hxct5

ovct11

ovcb9

hxct11

hxct12

hxct14

hxct16ovct2

ovcb1

ovct10

ovcb7

ovcb4

ovcb5

ovct1

ovcb6

ovcb10

ovcb8

ovct3

ovct14

ovct4ovct6

ovct7

ovct13

treatmentyn

hxct7 hxct8hxct6

ovcb2

hxct15

ovct12

hxct13

ovcb3

ovct8

consensus.graph.2016.11.09.10.30.56.txt consensus.graph.2016.11.09.11.00.35.txt consensus.graph.2016.11.10.08.36.33.txt consensus.graph.2016.11.10.08.39.47.txt consensus.graph.2016.11.10.08.39.50.txt consensus.graph.2016.11.10.08.48.04.txt consensus.graph.2016.11.10.08.48.56.txt consensus.graph.2016.11.10.08.49.49.txt consensus.graph.2016.11.10.08.50.27.txt

(b)

Figure 5.1: (a) A “rainbow” consensus network of 10 networks superimposed, shown
in Graphviz [65]. This is the most dense network analysts can currently handle. (b) A
denser consensus network which is almost impossible to read.

72

Figure 5.2: Some of the sketches drawn and discussed during our meetings with the
computational biologists. The first six sketches show unrefined encoding ideas of the so-
lution space and the last three sketches are concerned with encoding directed networks
in matrices.

back regarding design options, we held two one-hour meetings with two of our collaborators. In
these meetings we discussed different visualisation tools and techniques found in the literature
(Section 3.2.2). They were mostly interested in tools that could represent multiple networks, such
as Cerebral [21], eXamine [58], Caleydo [113] and MultiPiles [18]. Their feedback was particu-
larly positive when matrix-based approaches were discussed; “[t]he matrix representation allows

for a lot better overview of the data set, as looking at such a large detail in the traditional network

representation is too confusing when there are so many nodes and edges. It is quickly obvious in

this format which nodes have many edges attached to them and which are connected to very few

other nodes.” Our literature review, evaluation studies [9, 73] and feedback from our collaborators
indicated that matrix-based representations were more promising compared to node-link diagrams
because of their visual scalability and potential for information design. After we discussed differ-
ent visualisation tools and techniques with our biology collaborators we drawn sketches (first row
in Figure 5.2) and we identified MultiPiles (Figure 5.3) as the most relevant matrix-based visual-
isation technique for the respective type of data (large collections of scored Bayesian networks)
and our tasks.

73

Figure 5.3: A screenshot of MultiPiles [18] showing four piles of networks represented
as adjacency matrices. The interface was extended in BayesPiles to provide visualisation
support for tasks related to Bayesian network inference.

MultiPiles [18], was designed for the exploration of dynamic networks where each time step
in the dynamic network is represented as a thumbnail-size matrix. Matrices in MultiPiles can be
juxtaposed or superimposed to visually form piles, thus scaling to many matrices (networks). Piles
are visually summarised by showing the weighted mean of all edges for all networks in the pile.
Users can interactively create, refine, and explore the contents of each pile through simple drag-
and-drop and hover interactions. Feedback from our collaborators on MultiPiles was again very
positive, stating that “[t]he matrices were a much more concise representation of networks than

[what] we had been using, and particularly the ability to ‘pile’ them up and see both a summary

of multiple networks and the variation in the individual networks was far better than our previous

‘rainbow’ output.”

Although MultiPiles provided a promising technique for visualising hundreds of networks, we
had to alter and extend its design to support the tasks. Inspired by the design of MultiPiles and as
part of the third and fourth levels of the nested model, we developed BayesPiles to help modellers
explore, combine and compare multiple Bayesian networks to infer a final consensus network.
During the development of BayesPiles we followed a user-centred design approach with iterative
development of sketches (Figure 5.2) and prototypes. We took design decisions not only based on
known design principles for presenting relational information [119, 47, 28], but also considering
anecdotal feedback from our collaborators who were testing our software prototypes to identify
weaknesses in the visual encoding and the supported interactive operations. BayesPiles is a web-
based tool implemented in JavaScript using the D3 [34] and WebGL libraries for graphics. The
source code can be found in an online repository (Appendix A). Figure 5.4 shows the interface

74

Figure 5.4: The two linked views of BayesPiles. (a) Overview of 99 networks produced
in five runs and shown as summary columns. Different colours indicate different runs.
(b) A histogram with the distribution of scores. By hovering over each bar, details such
as the computed score value, the run ID and the iteration appear as a tooltip. (c) Ini-
tially, the consensus pile is empty. Piles 1-5 contain networks from the five different runs
and shown using the top-down mode. Opacity encodes the weight of each edge (cell) in
piles of superimposed networks. Opacity is also used to summarise the out-degrees
which except the overview also appear at the top edge of each pile.

of BayesPiles with the following views: (a) a heat-map summary view for each network (column)
and their node degree (row), (b) bar charts visualising each network’s assessed score, and (c) a
detail view of networks grouped in piles, alongside with a placeholder (empty matrix) for the
user-created consensus network. The following details how BayesPiles inspired by the interface
of MultiPiles satisfies each of the tasks. In order to support each of these tasks, changes needed
to be made in the design and the implementation of MultiPiles. Each of the following subsections
from 5.3.1 to 5.3.6 describes in more detail the changes to MultiPiles required for supporting the
tasks.

5.3.1 Exploring Hundreds of Scored Directed Networks to Support T1

To support task T1 and enable the exploration of hundreds of scored directed networks, the design
of MultiPiles had to be updated. In MultiPiles, networks have to be in a fixed order (time), and
piles can only be created on adjacent networks. Moreover, a second limitation is that MultiPiles
does not visualise edge direction but assumes every network is symmetric. Although adjacency
matrices could represent directed graphs [183], there are no clear guidelines of how this can be
done effectively. Thus, to support directed edges, we were inspired by other approaches that
represent directionality in matrices [114], such as OntoTrix [16], to adopt a top-down matrix rep-
resentation. Rows indicate incoming edges and columns indicate outgoing edges, resulting in an
adjacency matrix which is not symmetric. Figure 5.5 demonstrates how the node-link diagram

75

Figure 5.5: Directed versus undirected node-link and matrix representations. (a) Node-
link representation of a directed network. (b) The same directed network as encoded in
top-down mode. Rows encode incoming edges and columns outgoing edges resulting in
an adjacency matrix that is not symmetric. (c) The out-degree of each node as encoded
using opacity in a summary column. (d) Node-link representation of an undirected
network. (e) The undirected network shown in skeleton-mode resulting in a symmet-
ric adjacency matrix (MultiPiles visualisation method). (f) The degree of each node as
encoded using opacity in a summary column.

in (a) is encoded as a top-down directed adjacency matrix in (b). In Figure 5.5 (b), column 3
shows the four outgoing edges from node 3, while row 3 shows that there are no incoming edges
to node 3. In addition to the top-down mode, the design of BayesPiles can also support a skeleton
mode which ignores the direction of the edges and shows an undirected adjacency matrix similar
to MultiPiles (Figure 5.5 (e)).

The technique of MultiPiles is scalable to hundreds of networks because it enables networks to
be piled using superimposition and because it provides a single-column summary overview. When
multiple networks are superimposed, opacity encodes the edge weights in the resulting network.
These weights provide an indication of how frequently the edge appears in networks present in
the pile. Moreover, in BayesPiles, opacity is used in the column summary of the directed network
(Figure 5.5 (c)) that encodes the out-degree of each node. In skeleton mode, opacity encodes node
degree, as the edges are undirected (Figure 5.5 (f)).

A third limitation of MultiPiles is that it does not visualise any data specific to networks, such
as a numeric quality score in our case. We hence added value bars at the bottom of each summary
column. This encoding is a top-down histogram of network scores which provides an overview of
their distribution in the solution space (Figure 5.4 (b)). In order to allow for comparisons between
runs, we normalise the bar lengths between the highest and the lowest network score.

5.3.2 Importing and Ordering Multiple Network Collections to Support T2

In order to support T2, networks can be sorted based on their run ID, iteration, or score. Different
network orderings support the exploration of the search results and support the identification of
trends in the data such as sudden changes in score values. When networks are ordered by score,
it gives an impression of the overall shape of the solution space. For instance, a dramatic rise in
scores indicates a high-scoring network (hilltop) found in an otherwise flat solution space. These

76

Figure 5.6: Node reordering improves network comparison and pattern recognition in
matrices. (a) Five piles in skeleton mode before applying node reordering. (b) The same
five piles after node reordering. (c) It is easier to spot differences such as an edge which
is only missing in the second pile from the left (in last row and third column).

variations in score indicate which networks to include in a consensus network and which to omit.
The actual score of the network, calculated using the BDe metric [87], is visible by hovering over
its bar as shown in Figure 5.4 (b) for network 80. When networks are sorted by iteration, the
analyst can find periods when the algorithm made rapid progress towards finding high-scoring
networks and periods when the algorithm was stuck in low scoring areas of the search space. This
information is important for guiding future heuristic searches and helps users in tuning parameters
for improving search results.

Apart from changing the order of the sampled networks, users can also reorder the nodes
within the matrices (Figure 5.6). In general, node reordering is important for effective matrix-
based representations of networks and is similar to graph layouts in node-link diagrams [26]. In
BayesPiles, node reordering is applied globally to the entire data with all matrices taking the same
order. In particular, the optimal leaf ordering algorithm [20] is applied which uses hierarchical
clustering to place the most similar rows across all matrices close to each other. Then the ordering
of the rows is also applied to the columns. The similarity matrix for each network is calculated
using the Manhattan distance. Node reordering enables comparisons between matrices and piles
and makes it easier for the users to see differences between collections of networks. It can reveal
interesting patterns in the data [114, 26] (Figure 5.6 (b)). At any point, the user can switch back to
the original node ordering as provided by the data set (Figure 5.6 (a)).

BayesPiles also supports the visualisation of multiple collections of BNs, generated by differ-
ent runs of the heuristic search algorithm. Comparing runs is useful for determining the shape

77

of the solution space more reliably. For instance, if networks appear to approach the same single
optimum solution across multiple runs, the analyst would have confidence that the top-scoring
network is reproducible and representative of the data since no other variation is observed in the
solution space. When this is the case, the gradual improvement in score is coinciding with the
addition of an edge until no more improvement in score is observed. We refer to this pattern as
the hill-climbing pattern. However, if multiple runs produce high-scoring networks of different
structure, the user would need to construct a consensus network.

Comparing high-scoring networks found in different search attempts is important for discov-
ering variation between runs. In order to facilitate comparison, scores are globally normalised and
colour used to encode the results of up to 12 different algorithm runs. The palette of colours was
generated using ColorBrewer [84]. Results from five runs are shown in Figure 5.4 (a). For a larger
number of runs, colours are repeated, but analysts rarely explore the results from more than ten
runs simultaneously in our experience. By examining the scores (Figure 5.4 (b)), it becomes clear
that only a few runs found substantially high-scoring networks (runs 1, 2 and 4), while the other
runs (runs 3 and 5) only found local optima in the search space. This variation in network score
between runs indicates a complex solution space with multiple optima for which the construction
of a consensus network is required.

5.3.3 Group and Compare Networks to Support T3

Our analysts were interested in exploring and comparing many BNs and found grouping BNs to-
gether was important. They were interested in grouping networks of a similar score to understand
if they belong to the same equivalence class. Networks of the same equivalence class are math-
ematically equivalent representations, differing in only the directionality of some (or all) edges.
Networks of the same equivalence class have the same score. If too many of them are added to the
consensus, then it could be a biased result based on the size of the equivalence class rather than
the probability of the solution. The histogram can help identify networks of similar scores, but it
cannot be used alone to check if the networks belong to the same equivalence class. When there
are multiple hills in the data set, networks of the same score may have a very different structure.
Therefore, in order to find equivalence classes, it is important to inspect and compare edges and
their directionality within groups of networks that have the same score.

The user needs to group BNs of the same score and then needs to identify networks of the same
equivalence class within that group. In BayesPiles, the top-down histogram sorted by score can
help analysts identify networks of a similar score to pile (i.e. group) them together. Piling networks
could be automatic by using the dynamic slider provided by MultiPiles, or by manually clicking
on the summary view (Figure 5.4 (a)). White vertical lines indicate separate piles. Automatic
piling based on score difference is sometimes possible, but identifying a distinctive drop in score
is often a question of individual judgement, especially when the solution space has multiple hills.
Skeleton mode can help to identify networks that belong to the same equivalence class as these
networks have nodes with the same degree. Therefore, their column summaries look the same.

78

The cover matrix of each pile summarises the networks it contains and enables the interactive
comparison of edges within these piles by hovering over their summaries. Edges that exist in all
networks appear black in the cover matrix, while lighter shades of grey indicate a lower frequency
of the edge (Figure 5.4 (c)). In skeleton mode, edges in the cover matrix that belong to the same
equivalence class will appear very dark. If many equivalence classes appear in the results, it could
mean that the directionality of the edges is not informative. In these cases, it would be preferable
to represent these networks ignoring directionality by using skeleton mode.

In the top-down mode, the two directions of an edge are on opposite sides of the diagonal of
the matrix, making it difficult to compare opacity levels. Inspecting only one of the edges does
not reveal much information about the opacity of the edge that points to the opposite direction
because opacities depend on the frequency of the edges in the pile and not on the number of edges
that point in the opposite direction.

In order to further satisfy task T3 and enable comparison of edge direction, we developed a
third matrix mode, diamond mode (Figure 5.7). This design is inspired by other approaches [192,
16, 9] for representing directionality in adjacency matrices, and it was developed as an evolution of
the top-down mode. Depending on the task, analysts can easily switch between the three network
representations.

Figure 5.7: The evolution of the design for comparing edges of opposite directions. In-
termediate design options created ambiguities and visual artefacts because of adjacent
neighbouring edges. In the final design (diamond mode), only the (top and bottom)
triangles that encode the opposite directions (in and out respectively) appear adjacent.

Our analysts found the diamond design easier to read, compared to alternative encodings
shown in Figure 5.7. The selected encoding avoids visual artefacts which appear due to neigh-
bouring triangles. The users also found intuitive the way directionality is encoded, as the upper
and lower triangles could be easily interpreted as arrowheads pointing inwards and outwards the
node indicated by each column.

Juxtaposing matrices and piles, as in MultiPiles, can help users to make these comparisons.
However, this task becomes more and more difficult as the size or the number of matrices increases.
The difficulty is that the user must make a judgement on the opacity of two edges which could be
separated in the visualisation.

In order to support the comparison of piles or individual matrices, the user can select to display
the differences between a selected matrix or pile with all other matrices or piles in the data set.
Differences are illustrated using a red to blue colour scale. Missing edges or edges with lower

79

Figure 5.8: Interactively comparing piles. (a) Top-down mode highlights differences
in addition and removal of edges. (b) Diamond mode highlights change in direction of
edges between piles. In both modes, it becomes evident that the hovered consensus pile
is more similar to piles 1, 2 and 4 and less similar to piles 3 and 5.

weight will appear as red edges, while new edges or edges with a higher weight will appear as blue
edges. The opacity levels of red and blue encode the degree of difference between the network or
pile (Figure 5.8).

5.3.4 Graph Filtering of Nodes and Edges to Support T4

As part of task T4, analysts wanted to focus on a small number of nodes within a network. Even
though MultiPiles supports subnetwork selection by dragging the mouse over node labels, our
analysts required filtering based on graph connectivity across all matrices and the ability to exclude
nodes that are disconnected. Our analysts also wanted to filter edges in the cover matrix based on
the percentage of networks in the pile that contain the edge.

To satisfy task T4, we introduced two dynamic sliders [6] that provide edge and node filtering
capabilities. Disconnected nodes are automatically filtered out and appear in a list. Node filtering
is applied globally based on the overall connectivity of nodes in all networks. Edge filtering,
however, is applied locally at a pile level. For instance, when the edge filtering level is set to 50%,
all edges that appear in less than half of the networks in each pile are removed from the cover
matrix. Setting this slider to 100% will place only those edges that are present in all networks of the
pile in the cover matrix, resulting in a logical AND operation. On the contrary, setting this slider
to 0% will include all edges in the cover matrix, resulting in a logical OR operation. Depending
on the circumstances experts may choose to present a denser network with weaker edges or only
show the strong edges for which they are more confident about. Filtering edges provides less
information about the results (i.e. content) but also increases confidence about the consistency
of the reported edges. Our analysts found this feature particularly useful when deciding which
edges should be included in the consensus network because this is a task that requires integration
of domain knowledge. According to our users, the final decision for setting the slider depends

80

Figure 5.9: Comparing representations that show the outgoing edges from a selected
node across a collection of networks. (a) Showing outgoing edges from node 3 in 4 net-
works using a node-link diagram in which networks are superimposed and encoded
using different colours. The resulting visualisation is already hard to read. (b) For the
same task, a matrix-based representation, similar to a heatmap, is much more scalable.
Opaque rectangles indicate the existence of an edge in a network and blank rectangles
indicate its absence. (c) Users can hover over the label of a node (here var16) and all out-
going edges will appear in the column summaries across all networks of multiple runs
(here there are 99 networks in total). Interesting patterns may appear. For instance,
the analyst can observe that the edge from var16 to var6 does not appear in any of the
networks found by runs 3 (blue) and 5 (pink).

equally on what is shown on the display and their background knowledge about the system under
study. One of our users reported: “if I’m working with a biologist who is planning to do very

expensive experiments, one per edge and could only do a handful of experiments, I’d want to give

them only 100% edges if I could! Basically, the most confident I could be. Alternatively, if we’re

more interested in a holistic view of ’network structure’ including more edges with less confidence

would make sense”.

5.3.5 Viewing Outgoing Edges of Nodes in Multiple Networks to Support T5

The overview of piled node summaries enables analysts to identify nodes with high out-degree.
To better support T5, we extend this feature as analysts were interested in seeing if the same
outgoing edges appear in multiple networks for a selected node, as the out-degree may be similar
between networks, but the actual edges differ from network to network. Analysts were interested
in stable blocks of edges as network scores change. Consistency and variation in edge appearance
are important, but these patterns cannot be easily explored in collections of hundreds of networks.
Thus, we modified a feature of MultiPiles, which shows all the connections of a node, to present a
summary of the outgoing edges for a selected node. By hovering over a node label, all the outgoing
edges from that node appear for every network and collection in the data set. An opaque rectangle
indicates the existence of an edge from the selected node to another node in the data set for every
network, while blank spaces indicate that no edge is present (Figure 5.9 (b) and (c)).

5.3.6 Manual Consensus Network Construction to Support T6

Probabilistic search methods, such as simulated annealing, often produce different results between
runs due to the size and the complexity of the solution space. In these cases, constructing an

81

average consensus network, which combines the results from different runs, is useful. In order to
satisfy T6, BayesPiles enables interactive network construction by allowing users to add/remove
networks from a consensus pile, located at the top-left side of the piles’ canvas (Figure 5.16 and
Figure 5.4 (c)). A single network can be added to the consensus pile by pressing the shift key
and clicking on its summary (or score bar). Its score bar will turn red and a red dot will appear
next to its summary in the piles canvas (bottom linked view), indicating that it has been added
to the consensus network. The selected network will be copied to the consensus pile and can
only be added once. Repeating the same interaction on the same network will remove it from the
consensus pile. Piles of networks can be also added/removed from the consensus by clicking on a
pile at the bottom view.

5.4 Evaluation

We evaluated BayesPiles in three case studies with three computational biologists visualising real
biological data. The data was explored by our analysts without our presence. In the first two
cases, the analysts examined data from experiments conducted and published in previous studies.
The purpose of repeating previous experiments was to verify findings, detect inconsistencies, and
gain new insights regarding the decision-making process followed during the analysis. This test
was the first time that BayesPiles was used under real conditions. In the third case study, network
inference had not been previously undertaken by the domain scientist and BayesPiles was used as
part of their exploration strategy. In particular, our collaborators wanted to extend their analysis
to infer networks. This case study provided an opportunity to assess how BayesPiles can improve
the analyst’s workflow in an ongoing experiment.

Two of our analysts were already familiar with BayesPiles as they provided feedback when
developing BayesPiles. After a very short training period, they were using it with increased con-
fidence. They performed the analysis of their own data individually and were interviewed after-
wards. From these interviews, we collected anecdotal evidence about the effectiveness of our ap-
proach and its applicability to computational biology research. A third researcher used BayesPiles
to analyse a fourth real data set of neuroimaging scans, guided by one of our analysts who had
experience with BayesPiles. The analysis revealed a hill-climbing pattern, similar to our first case
study. Below, we present three use cases from our collaborators.

5.4.1 Brain Regions on Songbird

The first data set consisted of electrophysiological recordings from the brains of female songbirds
listening to auditory stimuli. Each bird had eight electrodes placed in her auditory regions. Net-
works were produced representing the flow of neural information among these regions [167]. In
the original analysis, a greedy search was run and the single top-scoring network presented as the
solution. Repeated runs of the algorithm resulted in the same top-scoring network.

82

Figure 5.10: The hill-climbing pattern consistently appearing in five repetitions of the
search. (a) Summary of networks when ordered by score. Networks of the same score
are piled. (b) Piles shown in the top-down mode. Fully opaque edges show that all five
runs produced identical results. (c) The outgoing edges for var2 look the same across
all runs when networks are ordered based on their run ID. A smooth asymptotic curve
appears in the histogram of their scores, indicating a hill-climbing pattern.

Our analyst repeated the original search on one bird’s data and the networks were visualised
in BayesPiles. The resulting visualisation showed a smooth, asymptotic increase across all scores,
suggesting a single hill-climb. By piling all networks together and scanning the mouse down the
pile, or by juxtaposing them as small multiples, the analyst could confirm the hill-climbing pattern.
Our analyst made one further check, repeating the search five times and importing them all into
BayesPiles. All searches revealed the same asymptotic curve in scores (Figure 5.10 (c)) and the
same summary matrix representation, suggesting each search had climbed the same hill. This was
confirmed by ordering the networks by score and piling identical scores (Figure 5.10 (a)). Each
pile showed identical links visible via fully opaque squares in the cover matrices (Figure 5.10 (b)).
This finding was also confirmed by hovering on the labels of each node showing that for each run
networks had the exact same outgoing edges (Figure 5.10 (c)).

The analyst not only reproduced the results of a previous experiment but also was more con-
fident that selecting the top-scoring network from a greedy search was the correct choice for this
data set. BayesPiles provided a concrete visualisation of the search’s hill-climb, enabling a deci-
sion made not solely on reproducibility but instead on a visualisation of the sampled search space.

5.4.2 Genes and Brain Regions on Rats

The second data set consisted of gene expression analysed from the brains of rats bred for alcohol
dependence. Gene expression was measured for rats in alcohol and alcohol-free environments,
looking for candidate genes implicated in alcoholism [122]. The original analysis, which was

83

done before the existence of BayesPiles, started with increasing lengths and networks combined
in greedy searches, then moved through the same in simulated annealing. The final procedure used
simulated annealing to search 200 million networks, computed a consensus across 1000, and used
only the links in common from ten such searches. This was somewhat unsatisfactory as almost
half the links across all consensus networks were ignored, but reproducibility was considered
paramount.

The analyst repeated this experiment in a similar way by beginning with a greedy search but
moved immediately onto simulated annealing when BayesPiles revealed many hills in the solution
space and vastly different links present in each high-scoring network. Although the analyst decided
to follow the same analysis scenario as before, this time, BayesPiles provided the opportunity to
explore the solution space of 1000 networks. While only 200 could appear at the same time on
screen, the analyst could use the mouse wheel to scroll through all of them. After sorting them
by score, one of the first things that the analyst spotted was that the solution space appeared flat
in many areas. However, after a closer look at the networks of the same score, this was revealed
to not be the case. Skeleton mode revealed that many networks belonged to the same equivalence
class (Figure 5.11 (a)), and diamond mode showed that there was high variance in edge direction
within and across equivalence classes (Figure 5.11 (b)).

(a) Flat areas in the solution space

(b) Diamond mode showing inconsistent directionality of edges

Figure 5.11: (a) The even length of score bars together with the solid opacity of column
summaries in skeleton mode suggest that networks 12-45 belong to the same equivalence
class. (b) However, using the diamond mode reveals that there is a lot of variation in the
directionality of edges within and across piles.

84

These findings led our analyst to prune networks of the same equivalence class in the pa-
rameters and to switch to skeleton mode, ignoring edge directionality. This decision reduced the
number of networks considerably, from 1000 to 100. By analysing the solution space of ten runs
and using new parameters with a reduced number of networks, our analyst realised that there was
still a lot of variation between the high-scoring networks and that scores dropped consistently af-
ter the top 20 networks. The analyst decided to ignore lower scoring networks and considered
only the top 20 networks from each run. A manual consensus network was constructed from the
top-scoring networks using the consensus pile (Figure 5.16).

The analyst could easily try out different networks from the final selection of approximately
200 networks in total by adding them in the consensus pile. The analyst would apply node re-
ordering during the process of exploring the piles in order to improve comparisons when selecting
representative networks (Figure 5.6). After reordering the nodes and by hovering over the results
of the first run (Figure 5.8), it became evident that while runs 1, 2 and 4 produced networks with
consistently similar edges, some other runs (3, 5, 6 and 8 in particular) found networks with edges
that did not appear consistently either across runs, or within the same run. In addition, the analyst
could see in the histogram of scores that this structural variation seemed to have caused a drop in
the score values. For these reasons, the analyst decided to include all the networks from the runs
that showed consistency, ignore networks from runs with many inconsistent edges and selectively
pick representative networks with edges which were consistent across runs as shown in Figure 5.16
for networks 120 and 160-164.

Figure 5.12: Flexible edge filtering. By moving a slider, users can interactively filter out
edges from the consensus network and all other piles. Filtering out edges that appear
in fewer networks contributes to the construction of a more reliable and reproducible
consensus network. In other words, users are enabled to identify and control which
edges to include based on how consistently they appear in high-scoring networks.

Finally, edge filtering was used to refine edge selection in the consensus network. The analyst
observed that a rate of just over 50% would remove many of the edges from the view. Instead,
the analyst decided to include those and only filter out edges that appeared in less than half of the
networks (Figure 5.12). Thus, the analyst achieved to present a consensus network that contained
a rich number of edges which were also consistent across runs. In the presentation of the final
network, the consistency of each edge is reflected in its opacity.

85

Figure 5.13: Comparison between the final BN model found by BANJO without
BayesPiles with the one constructed after using BayesPiles. (a) The top-scoring network
found by BANJO. (b) The same network as shown in skeleton mode. (c) The consensus
network constructed manually by the analyst using BayesPiles. Users not only can gain
control over the process of consensus network construction but also, they can visualise
uncertainties about edges (shown in lower opacity).

This case study showed that before BayesPiles, modellers could not explore the network struc-
tures produced by multiple runs and instead, they chose the top-scoring network found by the
heuristic search algorithm (shown in Figure 5.13 (a)). This approach produced a very different
result compared to the consensus network construction using BayesPiles (shown in Figure 5.13
(c)). Figure 5.13 (b) shows the top-scoring network Figure 5.13 (a) when edge directionality is
ignored. Comparing (b) with (c) demonstrates that the top-scoring network and the one found
using BayesPiles not only differ in the directionality of their edges but also their structure.

Note that the fact that the user-created consensus network was different does not necessarily
mean that it was also better in describing the biological process. The expert user made conscious
choices of constructing a different model than the one found before. This was an informed choice
that was not possible using purely automatic tools. Due to the lack of ground truth knowledge
in this real data set, it is hard to quantify the benefit of using the tool to estimate how much it
improved modellers’ decision making.

5.4.3 Gene Clusters on Ovarian Cancer Cells

The third data set consists of expression data of recognised differentially expressed genes in ovar-
ian cancer, in two cell types - one which is responsive to the standard medication regimen, and one
which is resistant.

In this ongoing experiment, our analyst initially decided to run a greedy search but switched to
simulated annealing after inspecting the shape of the solution space. It was found that there was a
lot of variation between the high-scoring networks in both runs and that simulated annealing found
more networks that had higher scores. Then the analyst checked the consistency of results between
multiple runs and found high variety, too. She then selected the 30 highest scoring networks from
each run and visualised them in BayesPiles (Figure 5.14, one colour per run). When the networks

86

Figure 5.14: Results from five search attempts finding Bayesian networks in gene clus-
ters of ovarian cancer cells. (a) User interface controls. (b) A summary of outgoing
edges for var41 in five collections of thirty networks each. (c) Networks grouped in five
piles and juxtaposed. The column that corresponds to var41 in each pile (manually la-
belled) appears darker indicating a high out-degree for var41. (d) Differences between
the first and the other four runs are shown in the blue and red cells which correspond
to edge additions and removals.

were grouped in separate piles based on their run ID (Figure 5.14 (d)), the analyst noticed that
several columns (nodes) appeared very dark, suggesting consistency. Choosing one of such a
highly connected node (here var41) (Figure 5.14 (c)) and hovering over its label in Figure 5.14
(b), the analyst sees a summary of all its outgoing edges in Figure 5.14 (b). From the rather
diverse row patterns within each of the coloured columns in Figure 5.14 (b), the analyst found that
the particular edges of this node are not consistent; both within the same pile (same colour, same
matrix pile) and across runs (different colours, different matrix piles). The lack of consistency
across runs was confirmed by hovering over the cover matrix of each pile which showed many
differences in red and blue (Figure 5.14 (d)). In other words, the high node degree suggested by the
dark colours in the matrices was resulting from combining the individual networks, which however
did not show consistency in their edges. Consequently, the solution space is highly diverse, with
many inconsistent edges, which is not clear from the score within BANJO. Given this level of
uncertainty, the user was not confident enough to report a consensus network before modifying
BANJO parameters and repeating the experiment.

It was also clear from the tags under the filter nodes slider (Figure 5.14 (a)) that neither var35
nor var43 have any connections to other nodes and that they have been filtered. The analyst
commented: “Looking at these initial results would definitely lead to me running BANJO on the

set, minus variable 43 to see if it has any effect on the overall network. I would also probably,

having looked at these results, changed my run to search for a shorter time, or for the consensus

87

graphs to consist of fewer high scoring graphs. Overall, I think this would make the process more

efficient.”

5.4.4 Subjective Feedback

Throughout the design and development of BayesPiles, we consulted our analyst collaborators
(denoted [A1-3]) on its functionality and usability, while visualising our collaborator’s data sets
(every 2 weeks, around 20 in total plus minor ad-hoc sessions). During the scenarios, described
in the last section, we obtained more formal feedback on the overall usability and its impact on
the analysts work. All collaborators found that BayesPiles greatly extended their capabilities to
explore the data. Below we report on the most prominent remarks. While some of the highlighted
aspects refer to features already present in MultiPiles, we see them as evidence of our general
approach of adopting MultiPiles to Bayesian network exploration.

Perhaps most important, A3 reported that “You can see the shape of the search space” which
was one of our main goals with BayesPiles. Scalability with respect to the number of individual
networks was noted: “I think this method will be of particular use to larger data sets, as it allows

for a more instinctive overview of the data and identifies areas or nodes of interest very easily

upon first look.” [A1]. On the other hand, interactivity sometimes fell below real-time for data sets
around 1000 networks with 50 nodes each. While 1000 is a common size for the data our analysts
are dealing with, many other data sets are in the range of several hundred. We attribute this issue
to the fact that BayesPiles (as well as MultiPiles) are currently implemented in WebGL and the
relatively prototypical nature of our implementation. Future optimisations could possibly increase
scalability further while keeping the browser-memory limits in mind.

Besides its use of reducing the number of visually present matrices and thus coping with many
networks, piling has been found to allow for“a quick preview of what a consensus graph would

look like and which edges would be prominent, which will hopefully improve the efficiency with

which I optimise my BANJO run and therefore save me lots of time” [A1]. The interactive com-
parison of piles was found “easy and [happening] in a visual manner” [A1]. It has been found
particularly useful for “understand[ing] which nodes are reliable across runs.” [A1] Another an-
alyst found interactive comparison “useful for finding patterns between piles, such as swapping

directions.” [A2]. The manual creation and selection of consensus network construction has
been reported as “an extremely valuable new feature [which] allows for a lot more interactive and

fluid consensus matrix and will allow removal of any networks that one decides do not better the

consensus network. The function is easy to use and understand, especially due to the inclusion of

information about which networks are being included and how many. It would be excellent if there

was the option to export this manually curated consensus network so it could be used in further

study.” [A1]. Export as well as other common extensions are straightforward and discussed as
future work.

Though already part of MultiPiles, reordering nodes and columns has been regarded an
important feature “[aiding] detection of patterns as it allows the main nodes of variation to be

88

focused into one area of the graph. [This] makes it easier to focus on the most important pat-

terns. This new feature definitely highlights for me the benefits of using a visual based method

for sorting the networks.” [A1]. On the other hand, in the third case study, the user preferred the
original ordering because they knew that the last set of variables (i.e. nodes) were combinations
of treatments and thus belonged to a different class than the rest of the variables which were gene
clusters. Encodings for different classes of variables or an ordering mechanism that distinguishes
these classes of variables should be supported in a future version of BayesPiles.

As for the overall assessment of BayesPiles for the exploration of biological networks in the
described contexts, A2 reported that she found in BayesPiles a way of assessing and refining
her previous feature-selection steps during which the most important variables (features) were
selected to be included as nodes in the network [180]. Since BayesPiles was used in an ongoing
experiment, the selection of the variables was not yet fixed and could change based on visual
evidence found using BayesPiles. Moreover, statistical dependencies between candidate variables
were explored by comparing networks from multiple runs. Common structural properties between
networks were detected and new hypotheses could be formed. BayesPiles has been highlighted
for its use in presentation: “[BayesPiles] makes explanation of results to a wider audience a

lot easier, as the summary of many networks can be done easily and cleanly, retaining a lot of

information within one image.” [A1]. On the other hand, after not using the system for a period
“[it] was hard to remember how the top-down and diamond modes were read [A3]. This could
indicate that the glyph design is not intuitive enough, however, the user had only used the system
once and it was the first time they could visualise data of this complexity, therefore we believe that
regular use will overcome this issue.

Moreover, identifying cycles and other patterns that require following paths is not supported
effectively in BayesPiles: “It may be that a biologist may care about cycles in the network, but

BayesPiles is to help me to find what to present to the biologist; the visualisation of the final net-

work I present for biological interpretation may be (most likely should be!) done using a different

method (e.g., node-link)” [A2]. We designed BayesPiles to support the tasks of the computational
biologist in finding a consensus network. It is clear now that extending the system to support
the export of the consensus network for presentation to biologists, would be beneficial. Though
we had not designed BayesPiles for presentation scenarios, we believe there is a lot of potential
in creating clean visualisations and interactive demos. Along similar lines, one of the analysts
commented that “[v]isualisation can help machine learning (ML) people and users of ML to do a

better job in deciding how to guide my search—stay/leave the search area. It helps to learn how

the heuristic search works and opens up possibilities in studying heuristic search” [A2]. We take
this as evidence for the general potential of creating visualisation interfaces for biological models.

5.5 Summary of Contribution

In this chapter, we presented a visual analytics system, BayesPiles, designed to support compu-
tational biologists (i.e. modellers) in exploring and combining Bayesian networks interactively.

89

4. Construct consensus network:

 Inform
 parameters BayesPilesHeuristic Search

1. Find network
structures

2. Score network
structures

Network Score
struct 01 - 3700.3
struct 02 - 3699.9
struct 03 - 3701.2
struct 04 - 3697.1

 Import
 results

3. Determine shape of solution space:

- Select high-scoring networks
- Filter out edges

Flat

Single optimum

Multiple optima

Figure 5.15: An overview of the workflow. BayesPiles visualises the results of heuristic
search algorithms, informs their parameter settings and enables the construction of a
consensus network structure.

Figure 5.15 shows a typical analysis process in systems biology; 1) find and generate network
structures, 2) score networks, 3) find optimal networks, and 4) select a final network, the con-

sensus network. Rather than relying on a single (automatically selected) network for consensus,
BayesPiles encourages the active involvement of the analyst in constructing the consensus net-
work by supporting the visual exploration of the most interesting (i.e. high-scoring) networks in
the search space and the manual creation of a consensus network by combining selected networks
from the entire set, thereby accounting for multiple optimum solutions in the search space. The
learning process of the final network involves a combination of automated steps (performed by
heuristic search algorithms) for generating networks and manual steps (performed by a “human-
in-the-loop”) for understanding the solution space and for constructing the consensus network.
BayesPiles visualises intermediate search results in order to help with the adjustment of parame-
ters that control the next round of a heuristic search, generating a novel set of networks. This is
repeated until a good sampling of the search space is achieved and the results represent the most
interesting regions of the search space (i.e. the solution space). Therefore, BayesPiles is part of
the wider learning process that involves multiple executions of search algorithms, each followed
by the interactive exploration of the results by experts.

BayesPiles (Figure 5.16) is inspired by an existing visualisation interface, called MultiPiles
[18], which has been proven successful for exploring temporal states in dynamic (temporal) net-
works with large numbers of timesteps. MultiPiles uses a sequence of matrix representations, one
for every timestep, and which can be automatically or interactively grouped into piles (or stacks)
of matrices. BayesPiles provides features specifically designed to support domain-specific re-
quirements for exploring, comparing and combining multiple BNs: a) visualising network quality
scores; b) ordering and grouping networks by experimental run ID, score, and iteration number;
c) additional visual encodings (e.g. for directed edges); d) extended filtering capabilities; and
e) manual construction of a consensus network through combining networks. BayesPiles was
developed in close collaboration with computational biologists and was tested on three different

90

Figure 5.16: A snapshot of BayesPiles taken during the interactive construction of an
average consensus network.

of the biologists’ data sets. In these case studies, BNs were used to find relationships between
brain regions and the singing behaviour of birds; genes and brain regions of rats; and relationships
between genes, cell lines and treatments on ovarian cancer cells. Subjective feedback from the
biologists revealed that our tool provided new insights and more confidence in achieving not only
more reproducible but also more representative results.

In the next chapter, we investigate support for the representation and exploration of dynamic
Bayesian networks, which result in the comparison of hundreds of multivariate networks. Despite
their name, dynamic Bayesian networks are static networks with multiple types of edges which
can describe dynamic systems. The specific challenges that arise in representing and exploring
dynamic Bayesian networks are discussed in more detail in the following chapter.

91

6 Visual Encodings for Edges in Ma-
trices

The previous chapter describes how BayesPiles handles collections of many scored directed net-
works and enables the exploration, combination and comparison of results from different heuristic
search runs. The case studies showed how biologists, based on visual feedback from BayesPiles,
effectively represent and analyse Bayesian networks. Besides Bayesian networks, computational
biologists are also interested in other types of networks which are more complicated and difficult
to represent visually. As discussed in Section 3.3.1, examples of such networks are the dynamic
Bayesian networks (DBNs), which contain different types of edges. In this chapter, we focus on
the problem of visualising DBNs and in general, networks with multiple edge types between the
same pair of nodes. Such networks are also known as multivariate, multilayer or multi-modal net-
works and are very common for representing relationships in complex systems in disciplines such
as biology, ecology, social networks and software engineering [55, 74].

We focus on answering the third research question: Q3 “How to effectively represent informa-
tion related to the dynamics of biological systems, encoded in the edges of inferred networks?”
We present how we applied the nested model methodology [132] to understand the tasks related
to DBN inference and propose effective visual encodings for networks with different edge types.
In Section 6.1, we present how the first level of the nested model was applied to characterise the
domain problem. In Section 6.2, as part of the second level of the nested model, we present a list
of tasks related to the visual analysis of DBNs, while in Section 6.3, we explore the design space
and discuss the rationale followed for designing the proposed encodings (third level). Then, in
Section 6.4, we present the design of a formal user study with which we evaluated our proposed
visual encodings. Finally, in Section 6.5, we present the results of this study followed by a sec-
tion that describes how the encodings were integrated into BayesPiles (fourth level) and how that
extension was evaluated by a group of three computational biologists (Section 6.6). The paper for
this evaluation study was presented in the VIS 2019 Workshop on the Visualization of Multilayer

Networks [182].

92

6.1 Domain Problem Characterisation

As part of the first level of the nested model (Section 2.4), we collaborated with three computa-
tional biologists (i.e. modellers) who wanted to use visualisation to help them infer DBNs. Our
first collaborator was specialised in computational biology using Bayesian methods. The second
was a biology graduate who analysed DBNs as part of a research project. Our third collaborator
was a PhD candidate in bioinformatics who was interested in inferring DBNs from neuroimaging
data.

In order to understand the domain problem, we performed a literature review (Section 3.3) and
we held four one-hour meetings with the most experienced of our collaborators and two one-hour
meetings with each of the research students (eight meetings in total). We found that Dynamic
Bayesian networks extend Bayesian networks and they can model dynamic systems. A DBN
does not change over time but rather it can describe the interactions of a system that evolves
over time [135]. Although the structure of DBNs is static, representing these networks visually is
challenging because their edges are associated with multivariate data. In particular, DBNs contain
different types of edges, each corresponding to the number of time-slices skipped before observing
the interaction between a pair of nodes.

Modellers are interested in inferring DBNs to understand the dynamics of biological processes
within living organisms. Important events and behaviours could be explained by changes that oc-
cur in different parts of the system over a period of time. DBNs can be used to make predictions,
identify causes and provide reasonable explanations about the ways variables interact over time
[32]. Identifying connections that integrate information about their underlying dynamics and their
perturbations can help biologists to understand the state of a dynamic system, to design experi-
ments for collecting data and to reason about causal relationships between variables that explain
the evolution of interesting natural phenomena. For instance, the singing behaviour of a songbird
can be related to the activation of certain regions in the brain of the bird and this neural flow net-
work can be described as a DBN [167]. In medicine, inferring DBNs can be helpful for identifying
and describing profiles of cells based on their response to certain conditions measured over time
[106].

While reviewing the literature related to network visualisation, we were surprised not to find
any indication about how to best visualise multiple edges and their types in a matrix format (Sec-
tion 3.3.2). In particular, our collaborators use DBNs to model probabilistic dependencies in com-
plex biological processes. These processes range from gene regulation [195] to brain connectivity
[167] and ecological networks [4]. Heuristics are used to find the most probable relationships in
these large search spaces. Visualisation and comparison of these networks require adjacency ma-
trix visualisations as shown in the previous chapter, which require modellers to find and compare
edge types, compare edges across networks, as well as find edges of specific types. While edges
are shown as matrix cells, the visual design space for both i) multiple edges, and ii) edge types is
potentially very large, including simple designs such as bar charts [63, 61, 92], Gestaltlines [36],
contrast [18], and glyphs [187]. However, to the best of our knowledge, no study or design paper

93

exists that investigates the respective effectiveness of these design decisions.

This chapter presents several visual designs (encodings) which were developed to represent
multivariate networks as matrices. Characteristics of DBNs were explained and current approaches
for visualising multivariate networks and design options were discussed in Section 3.3. In the
following Section 6.2, we present a list of common tasks related to DBN analysis.

6.2 Tasks

Modellers analyse sequential time-series data, to infer the structure of a DBN that describes the
dynamics of a system. Similarly to BN inference, described in the previous chapter, biologists
use heuristic search algorithms that scan the space of all possible networks. The results of each
execution of the algorithm (i.e. run) is a collection of high-scoring DBNs. As with BN inference,
the role of the modeller is to guide the heuristic search and decide on a method that determines
the structure of the final consensus network. This process requires the visual representation and
analysis of multiple DBNs. However, representing DBNs visually, using BayesPiles or other tools,
is a challenging task mainly because these networks are multivariate.

To create effective visualisation tools for analysing DBNs and other multivariate networks of
similar characteristics, we identified a list of DBN analysis tasks. After four sessions of one hour
each, in the form of informal interviews with two of our collaborators, we identified four analysis
tasks where visualisation could help. Abstracting the data from the tasks was part of the second
level of the nested model.

T1: Identify the interaction with the highest number of different edge types (MLs) in
a DBN. Modellers are interested in finding information about the dynamics of the system incor-
porated in the edges of the DBN. When an interaction appears in multiple MLs, then there is
uncertainty about the actual dynamics of that interaction in the system. Thus, it is important to
identify edges with multiple MLs.

T2: Identify which edge type appears more often in a DBN. Time granularity is related (and
often coincides) to the sampling rate picked for collecting expensive experimental measurements
from the system. Identifying the most common ML in a DBN informs tuning the frequency of
time-slices (or the sampling rate) accordingly so that more detail about the dynamics of the system
is revealed in the inferred networks. For example, if most of the edges in a network are of type 3,
time granularity is too fine; most edges being of type 0 implies the opposite.

T3: Identify which combination of two edge types appears more often in a pile of net-
works. Multiple DBNs could be combined to form an aggregated network (a pile in BayesPiles [181]).
Following the previous task (T2) modellers are also interested in finding interactions that combine
two edge types in the same pile of networks (e.g. ML0 and ML3) between a pair of nodes. This
could indicate a relationship between two edge types and could help to reason about the effect of
the interactions of those edge types over time. For instance, it could indicate that there may be

94

Figure 6.1: (a) A DBN visualised as a multivariate node-link diagram and in (b) as a
multivariate matrix.

two different biological processes captured in the same network, which have different dynamics
but affect the same pairs of nodes.

T4: Identify which DBN contains the highest number of a particular edge type in a col-
lection of DBNs. Because modellers often have to analyse collections of multiple DBNs, we
need to compare features between two DBNs and identify differences. For example, modellers
are interested in finding networks that contain many edges of a particular type, e.g., when net-
works are assessed based on their structure to be included in the consensus (aggregated) network.
For instance, modellers are interested in creating consensus DBNs which mostly contain edges
of a particular type. They could choose to include networks with many persistence edges (ML1)
and exclude networks with a lot of edge type variation in their structure or networks with many
intra-time-slice edges (ML0).

The above analysis tasks show how important it is for the modellers (i.e. computational biol-
ogists) to identify different edge types in visual representations of DBNs. All of the above tasks
are related with the ability to distinguish between edge types, identify instances and combinations
of them, and to count them and compare them. After discussing with modellers, to identify their
analysis tasks, we discovered that for the visual analysis of DBNs it was important to create ef-
fective encodings that support multiple edge types. Based on an evaluation of the encodings, the
design of BayesPiles could be informed so that it could also support the analysis of multivariate
networks, such as DBNs.

6.3 Encoding Multiple Edges in Matrices

For the traditional node-link representation of a DBN found in the literature [135, 105, 170], all
transitions from one time-slice to the next are required and the nodes are repeated in every time-
slice, as shown in Figure 3.13. The resulting network is read from left to right following the
sequence of time. DBNs can become very long when they extend to many time-slices and are
therefore hard to visualise. A more compact representation requires additional visual encoding to
help distinguish between the different edge types. Figure 6.1(a) shows how the network becomes
much smaller when the nodes are not repeated and edge types are encoded using colour. However,
this approach creates visual clutter for more dense networks because of edge crossings [9].

95

Figure 6.1(b) shows how the same DBN can be represented as a directed adjacency matrix,
again using colour to encode edge types. Edges are represented by adjacent cells in the matrix read
by column and row (i.e. top-down). This representation is less cluttered than node-link diagrams
when the networks are dense [9, 75], but when there are multiple edge types for the same pair of
nodes, the visual encoding becomes challenging. For instance, in Figure 6.1(b) it is not clear how
to encode two edge types coexisting in the one cell that corresponds to the pair of nodes D and B.
One possibility is to create a glyph by splitting the cell into as many parts as edge types and use a
different colour for each part. In the following section, we explore the design space for encoding
networks with multiple edge types as matrices.

6.3.1 Matrix Cell Designs

In Section 3.3.2 we discussed different approaches to the problem of multivariate network visu-
alisation. We found that integrated approaches are more efficient than multiple and coordinated
views [96, 77]. However, embedding additional multivariate data into standard network represen-
tations that use node-link diagrams or adjacency matrices, is not intuitive and it often results in
visual clutter. Because we were interested in extending BayesPiles to also support the analysis
of DBNs, we only considered integrated approaches for matrix-based representations. Node-link
diagrams were not considered, not only because they are not supported in BayesPiles, but also
because there are limitations in embedding additional multivariate data in edges represented as
arrows. Moreover, node-link diagrams often suffer from visual clutter caused by multiple edge
crossings even for networks that are not multivariate [9, 73]. On the other hand, matrices provide
more opportunity for encoding multivariate data in their edges. The available plane space in each
matrix cell could be used to encode not only the existence of an edge but also its type. Encoding
multiple types in the same cell could be done either by splitting the cell or by using icons and
glyphs.

Criteria: Based on the task identification, modellers’ feedback and a literature review, we de-
veloped several potential visual encodings for representing DBNs through matrices (Figure 6.2).
The goal of our design was to find a representation that fulfils the following criteria per edge: C1)
multiple edge types and C2) in a given order. In matters of scalability, we expected that a success-
ful encoding would be able to represent clearly at least four different edge types in a single cell.
For our empirical tests and prototypes, we considered matrices of up to 50 nodes in size, which
were either displayed within BayesPiles or in images that could fit in a standard laptop monitor.
Given the limited amount of space in each matrix cell, to avoid unnecessary visual complexity and
clutter, we tried to maximise the data-to-ink ratio [174] utilising the maximum number of pixels
within the cell. In other words, we allowed a minimum number of pixels to remain unused, those
that were necessary for distinguishing between the visual marks that encoded the different edge
types. This approach produced more salient marks to encode edge types in the matrix represen-
tation. Also, we based the design of those encodings on primary visual variables, such as colour,
opacity, size, shape, texture, orientation, position and their combinations.

96

Figure 6.2: Examples of visual designs considered for encoding multiple types of edges
in matrices. The top row shows an example of a single matrix and the bottom row
shows the encoding for each ML type. The encodings use one or more visual variables
to represent multiple edges: a) uses a coloured pie chart, b) uses opacity in a pie chart,
c) uses a segmented and coloured pie chart d) uses orientation, e) combines position and
colour, f) uses size and g) combines size and colour to create a glyph.

Design Space: Figure 6.2 shows some of our initial designs, created through iterations and dis-
cussions with the modellers. The upper row in this figure shows the encodings for a single matrix
where we need to visualise potentially multiple edge types (C1) and their order (C2). For example,
design (a) uses colour and design (b) uses shades of grey to differentiate types of edges. Design (c)
is a variation of design (a), using equally-spaced and coloured segments of a pie chart to indicate
the presence of a lag (one segment per lag type). Design (d) uses orientation (angle) to differentiate
edge types and encode their order. Design (e) uses position and colour within each cell, resulting
in a striped cell design. Design (f) uses size and design (g) is a variation of design (f) which uses
both size and colour to encode category and order, but instead of superimposed squares, it uses
rings.

97

Figure 6.3: Proposed visual encodings for the different types of edges (MLs) tested in the
user study: a) orientation without colour (ORI), b) orientation with colour (ORI+COL), c)
position without colour (POS) and d) position with colour (POS+COL). Columns (i), (ii),
(iii) and (iv) show the encoding of edge types ML0, ML1, ML2 and ML3 accordingly.
Columns (v), (vii) and (vii) show how the combination of two, three and four edge types
look in the different encodings.

Final Designs After we identified criteria for potentially successful encodings and explored the
design space of possible combinations, we discussed potential solutions in three one-hour sessions
with a team of four visualisation experts and two domain experts (i.e. computational biologists), to
select the four most promising encodings which we decided to compare in our final study (Figure
6.3). We rejected designs that would easily get cluttered when they were combining multiple edge
types in the same cell and those that do not make it easy to distinguish between the different types
of edges. For instance, we found that encodings that used texture were easily getting cluttered
and they were hard to discern in the limited space of a matrix cell. Our selected encodings use at
least one of the following visual variables: position, orientation and colour hue as they can not
only easily encode the four types of edges found in DBNs, but also they can scale to encode up to
a dozen different types. Orientation and position can stand alone or in combination with colour,
however, colour can only be used in combination with another visual variable.

When colour was used as double encoding in addition to position or orientation, several colour-
ing schemes were tested. However, we found that a colour scheme using ColorBrewer [84] was
more appropriate since the colours looked more balanced and distinct. Examples of the final en-
codings used on the same multivariate network are shown in Figure 6.4. All four selected encod-
ings could sufficiently represent networks with multiple types of edges, such as DBNs. However,
we wanted to compare them and find which was the most effective for supporting the identified
analysis tasks that modellers most commonly perform when they infer DBNs. Therefore, we ran a
quantitative evaluation study to assess the effectiveness of the final encodings. The study involved
participants from the general public who were asked to perform simple visual analysis tasks on
matrices that use those encodings.

98

Figure 6.4: An example of the final encodings showing the same multivariate network:
a) orientation without colour (ORI), b) orientation with colour (ORI+COL), c) position
without colour (POS) and d) position with colour (POS+COL).

6.4 User Study

To test the effectiveness of the encodings in multivariate networks represented as matrices, we per-
formed four controlled user studies through Amazon Mechanical Turk (AMT). The visualisation
tasks that participants were asked to complete in the study derived from the biological analysis
tasks described in Section 6.2. Each experiment evaluated the encodings with a different task,
with each participant performing only one task at a time. Participants could perform each task
(experiment) only once, but if they wanted they could participate in all four of them. We present
the results of the four experiments individually and then discuss the results.

6.4.1 Data

It was important to find a realistic data set that could be used across the four experiments. In
addition, we wanted to have control over the characteristics of the data set to draw useful results
about the tested encodings so that the tasks were not too easy or too hard. Therefore, we generated
data that resembled the network structures in our real-world data. We used the following process
for generating the multivariate networks in the experiments and refined the parameters in two pilot
studies; one lab-study with 5 visualisation experts which included three experienced academic
researchers and two PhD students in the area of information visualisation, as well as through an
AMT study with 20 participants for each task/experiment.

1. We generated Watts-Strogatz networks using NetworkX [83], to target a wide range of real-
world networks which often exhibit small-world properties. Such networks are neither reg-
ular (p = 0) nor random (p = 1), but they are located in an intermediate point (0 <p <1)
[190]. We tried different settings but our final base-networks were directed and of two sizes
(30 and 50 nodes) because DBNs in biology are usually small and rarely exceed this number
of nodes [121]. The probability of a random edge (p) was set to 0.25 and to avoid discon-
nected networks, every node was initially connected to its 4 neighbouring nodes (k = 4).
The resulting base-network had many resemblances with real DBNs in matters of density,
structure and size.

99

2. For each trial, we created a version of the base-network by randomly removing a number of
its connections. Each time, we randomly removed 15% of the total connections in the base-
network, resulting in a collection of networks with similar structure and the same number
of connections.

3. The networks were transformed into multivariate networks with four types of edges. For
each edge type (ML0-ML3), we added one link between each node pair that was connected
in the network. As a result, every connected node pair included all four types of edges.

4. Finally, for each trial, we specified the percentages that each edge type or possible combina-
tion of two or three edge types (15 in total) appeared. All edge types and their combinations
appeared in the same frequency counterbalancing each other except the correct answer (type
or combination) which appeared more times in the network. The difficulty of finding the
correct answer was based on how much higher the percentage of the correct answer was in
relation to the other (wrong) answers. The higher the percentage, the easier the task. Each
of those percentages could be adjusted easily through an interface using filters.

We tried different combinations of network sizes and percentages for each experiment until
we found settings that resulted in tasks that were neither too easy nor too hard for participants
to complete. In our pilot studies, we tested networks of two sizes (of 30 and 50 nodes) and four
difficulty levels (“very easy”, “easy”, “hard” and “very hard”). The percentages in which wrong
and correct answers appeared in the generated matrix are summarised in Table 6.1. For task T1
there was always only one correct answer (i.e. a cell that contained all 4 MLs). For task T3,
the remaining percentage of cells contained only one mark with all four types (MLs) equally
distributed in each matrix e.g. for the ”very easy” setting, cells with a single ML would occupy
40% of the edges (10% for each ML). This network generation process ensured precision and
control over the properties of the networks so that each data set would consist of different networks
with similar characteristics, such as structure, size, regularity, connectivity and difficulty. Every
participant in the pilot study would perform one task in all 4 difficulty levels. We found that
participants were responding very slowly when the data sets were “hard” or “very hard”. Slow
response times indicated that the tasks were becoming too difficult for the participants. Therefore,
to minimise fatigue in our experiments, we only used “very easy” or “easy” networks of 30 nodes
each.

6.4.2 Questions to Participants

For each task described in Section 6.2, we performed a crowdsourcing user study. For the needs of
each study, the tasks were rephrased and presented as generic visualisation tasks to the participants,
who were not required to have any background knowledge in biological modelling.

100

Task very easy easy hard very hard
T1 2x95%, 3x5% 2x75%, 3x25% 2x50%x, 3x50% 3x100%
T2 3x20%, 1x40% 3x21%, 1x37% 3x22%, 1x34% 3x23%, 1x31%
T3 5x8%, 1x40% 5x10%, 1x30% 5x11%, 1x25% 5x12%, 1x20%
T4 3x20%, 1x40% 3x21%, 1x37% 3x22%, 1x34% 3x23%, 1x31%

Table 6.1: Parameter settings as percentages of marks in each matrix used for generat-
ing networks of the same density but of different difficulty levels.

Q T1 For each trial in task T1, participants were shown a matrix and they were asked to “Click

on the cell that has the most marks” with each mark encoding a different edge type. In
each trial, the correct answer either contained all 4 edge types or 3 out of 4 edge types.
The rest of the connected cells in the matrix (i.e. node pairs) either contained a single edge
type or a combination of edge types. In particular, there was one instance for every possible
combination of edge types that contained one edge type less than the correct answer. For
example, if the correct answer included all 4 edge types (ML0, ML1, ML2, ML3), then
in the matrix there was one instance for each of the following combinations: (ML0, ML1,
ML2), (ML0, ML1, ML3), (ML0, ML2, ML3) and (ML1, ML2, ML3). An example of a
trial that uses the orientation encoding is shown in Figure 6.5(a).

Q T2 For each trial in task T2, participants were shown a matrix and were asked to select “Which

mark appears more often in the image?” from a list which displayed all four edge types as
icons. In each trial, the correct answer had a double number of instances compared to any
other type and 25% of those instances appeared alone and the rest in combination with a
second edge type distributed in equal numbers. An example of a trial that uses orientation
with colour is shown in Figure 6.5(b).

Q T3 For each trial in task T3, participants were asked to select “Which combination of two marks

appears more often in the image?” In each trial, the correct answer had a double number
of instances compared to any other combination of two edge types. Also, while there were
cells with a single edge type or combinations of more than two edge types, they appeared
in the same proportion. An example of the interface that uses position is shown in Figure
6.5(c).

Q T4 For each trial in task T4, participants were shown two matrices and they were asked to select
“Which matrix has more cells” of a particular edge type. Alternative choices were: “Both

the same” and “I don’t know”, but those options were never the correct answer in the test.
In each trial, the wrong matrix had the same percentage of either edge type. However, the
correct matrix had an increased percentage of the requested edge type, while the rest of the
edge types shared an equal percentage of instances. Thus, both matrices maintained the
same density (i.e. the total number of edges). An example of the interface that uses position

101

(a) Example from ORI (b) Example from ORI+COL (c) Example from POS

Figure 6.5: a) An example of the interface used in the first task. This trial uses the
encoding orientation without colour (ORI). b) An example of the interface used for the
second task which uses orientation and colour (ORI+COL). c) An example of the interface
used for the third task which uses position without colour (POS).

Figure 6.6: An example of the interface used for the fourth task which uses position with
colour (POS+COL).

with colour is shown in Figure 6.6.

6.4.3 Hypotheses

T1: The first task asked to find the most effective visual encoding for multiple edge types(marks)

combined in a single cell of a matrix. The task required participants to (a) identify the densest cell
in the matrix and (b) compare it to other dense cells in the same matrix to verify their choice.

102

• H1(a): ORI will outperform POS. When multiple edge types are combined in the same cell,
ORI looks like a star whereas POS is a square which is less clear. The shapes produced by
ORI are more perceptually salient.

• H1(b): Colour will improve the performance. We believe the redundant encoding would
make it easier to compare the differences between cells.

T2: The second task asked to find the most effective visual encoding for assessing the frequency

of a mark in a matrix. Participants had to: (a) distinguish between the four edge types and (b)
compare their frequency of appearance in the matrix.

• H2(a): Again, ORI will outperform POS as the shapes it forms are more visually salient.

• H2(b): We believe that colour will improve performance as it will help in estimating the
number of marks of a particular type in the matrix.

T3: The third task asked to find the most effective visual encoding for finding the most frequent

combination of two edge types in the matrix. Participants had to: (a) distinguish between the 6
possible combinations of two edge types and (b) compare their frequency of appearance in the
matrix. In many ways, this task is similar to T2 but instead of looking for single edge types, we
are interested in combinations of two edge types and their resulting visual encoding.

• H3(a): ORI will outperform POS. Pairs of marks will have more distinctive shapes than those
produced by POS(compare (a) with (c) in Figure 6.3(v)).

• H3(b): We believe that colour will improve performance as it would help make the patterns
of pairs of marks more distinctive.

T4: The fourth task involves selecting the matrix with the most frequent edge of a particular type.

Participants had to: (a) distinguish between the 4 edge types to find the one requested and (b)
compare the frequency of its appearance between two matrices. This task is similar to T2 but
involves the comparison of two matrices.

• H4(a): We believe that ORI would outperform POS as the marks are more distinctive.

• H4(b): We also believe that colour would improve performance as it would make it easier
to assess the number of edges of a particular type.

103

Figure 6.7: Instructions were shown before every block of trials. This is an example of
how instructions were shown before the block that was testing orientation in the first
task (T1).

6.4.4 Experimental Procedure

Each of the four user studies tested one task in a within-subject 2 × 2 design (× 2 techniques: ori-
entation/position × 2 colour schemes: with/without colour), testing the following 4 experimental
conditions (i.e. encodings in Figure 6.3): a) orientation without colour, b) orientation with colour,
c) position without colour and d) position with colour.

The first page of each study contained information about the study and a list of terms which
participants were asked to read carefully. Then participants were asked demographic questions
such as: age, gender, familiarity using data visualisations, and the device they were using for the
study (laptop, desktop, tablet or phone). In the case they selected phone, the website showed a
message that participation was not possible due to the small available screen size. Throughout
each study, the entire information was shown in one full-screen window without a need to zoom
or pan.

Each study had 4 blocks (parts) of trials, one for each encoding. Before each block, there was a
page with instructions that explained the task and demonstrated how to use the interface to submit
answers (Figure 6.7). Participants were asked to first complete the task on a demo trial before
proceeding to the main study, to familiarise themselves with the interface. Following feedback
explained why their response was correct or incorrect. Except for the demo trial at the beginning
of each block, participants did not receive feedback on the correctness of their answers in the
recorded trials.

After the demo trial, each block contained 3 training trials, followed by 12 recorded trials
for tasks T1 and T3 and 8 recorded trials for tasks T2 and T4. Fewer trials were used for tasks
that participants spent more time to complete in our pilot studies. Also for tasks T2, T3 and T4,
attention trials (gold standard) were placed randomly within the recorded trials showing a very
simple situation where an attentive participant would not be expected to make an error. Attention
questions were similar to the recording trials with the only difference that the correct answer was

104

Figure 6.8: An example of a gold standard question for task T2.

very easy to find. For example, for T2 the correct answer would appear in a very high percentage
compared to all other answers (Figure 6.8). Those trials were later used to identify participants
who were not invested in the experiment or who did not understand the task. In task T1, there was
no gold standard and the participant attention to the task was evaluated by comparing the mean
error rate with an error rate close to chance. In between trials, a neutral screen would appear for
two seconds to help participants focus their attention to the next image (Figure 6.9).

The blocks of the experiment were counterbalanced to alleviate the effects of presentation or-
der (learning and fatigue effects). Visual encodings were very different, precluding randomising
experimental trials. For each of the four experiments, approximately half of all the participants
started the experiment orientation first. Within each encoding (orientation and position), approxi-
mately half performed the task with colour first. Except for the order of blocks, the recorded trials
were also shuffled within each block for each participant. Between the 4 blocks, participants were
encouraged to take breaks.

The effectiveness of each encoding was evaluated through two dependent variables: (a) par-
ticipants’ response time (in milliseconds), that measured efficiency and their (b) error rate, that
measured accuracy. For each trial, there was only one correct answer, so the average error rate of
each block was ranging between 0 and 1. However, regarding participants’ response times, there
was a danger of including outliers by taking the average, since we did not have control over the
study environment [146]. Therefore, for each encoding, the average response time was calculated
as the 25% truncated (trimmed) mean of response times within each block of recorded trials. This
excluded the minimum and maximum response times of each block from calculating the mean.
Thus, from the 8-12 trials in each block, we only considered 6-10.

Each study was run on Amazon Mechanical Turk (AMT), linking to our own JavaScript web-
site. All participants were located in the US and paid $3 for completing the test which lasted

105

Figure 6.9: This image appeared between trials to help participants concentrate.

approximately 15 minutes. Participants were told to answer as fast and accurate as possible. There
was no time limit to complete the study. Multiple participation in the same study was prohib-
ited, but participants could participate in all four studies. At the end of the test, an authentication
code would appear on screen which participants could use to claim payment through AMT for
completing the task.

6.5 Results

We analyse the results considering each task as a separate experiment as set out in our experimental
design. Our statistical protocol was set out in advance and applied separately to the response time
and error rate of the four combinations of factors: ORI, ORI+COL, POS, and POS+COL. Before
analysis, we applied data quality checks. Participants that answered with an accuracy close to
chance or that failed more than half of the four gold standard questions (available in T2-T4) were
removed from the analysis. Participants that did not complete the full set of experimental trials
were also removed (within-subject design). For the first experiment, Figure 6.10 (left) shows
the distribution of all valid participants’ average response times for each experimental condition
(block). Figure 6.10 (right) shows the distribution of all participants’ average error rates for the
first experiment. For the second, third and fourth experiments, the corresponding distributions are
shown in Figures 6.11, 6.12 and 6.13, respectively.

After the quality checks, the response time and error rate data were analysed separately. For
each of the four distributions, we used a Shapiro-Wilk test with a significance level of α = 0.05 to
determine if the data were normally distributed. In all cases for response time and error, at least
one of the distributions was found to not be normally distributed. Therefore, we ran a Friedman
test with a significance level of α = 0.05 to determine if there was a significant difference between

106

Figure 6.10: Distributions of response times (left) and error rates (right) for the first
experiment.

Figure 6.11: Distributions of response times (left) and error rates (right) for the second
experiment.

107

Figure 6.12: Distributions of response times (left) and error rates (right) for the third
experiment.

Figure 6.13: Distributions of response times (left) and error rates (right) for the fourth
experiment.

108

the four distributions. We used a post-hoc approximative (Monte Carlo) Nemenyi-Damico-Wolfe-
Dunn test to determine the pairwise significant differences. This post-hoc test includes a correction
to compensate for the number of tests performed to reduce the likelihood of false positive results.

6.5.1 Task 1 - Cell with Most Marks

Our first experiment asked: Click on the cell that has the most marks. We collected the data from
42 participants in this experiment, but one participant was excluded as they did not complete the
full experiment.

Demographics: The remaining 41 participants had an average age of 36.5 years (21 to 71 years).
39% of participants had no experience in using data visualisations, 15% had little experience (use
visualisations once a year), 17% had some experience (once a month), 17% were experienced
(once a week), and 12% were experts (use visualisations daily). To perform the experiment, 29%
of the participants used a laptop and 71% used a desktop computer. None of the participants gave
answers with an average error rate close to chance (error rate of 98%).

Counterbalancing: There was a good counterbalancing concerning the order of the techniques
in the blocks, with 21 participants starting with orientation and 20 starting with position. Also
the counterbalancing of colour was good with 20 participants starting the experiment with a block
that had colour and 21 with a block that did not have colour, while 22 participants finished the
experiment with a block that had colour and 19 with a block that did not have colour. Finally, 11
participants started both techniques with colour while 13 started both techniques without colour.

Results: Our results are shown in Figure 6.14. We find significant results for response time for
this task (χ2 = 75.117, d f = 3, p < 0.05). Our post-hoc analysis reveals that ORI was significantly
faster than both ORI+COL and POS+COL. POS was significantly faster than ORI+COL and POS+COL.
Also, we find significant results for error rate for this task (χ2 = 71.032, d f = 3, p < 0.05). Our
post-hoc analysis reveals that ORI produced significantly fewer errors than POS, ORI+COL, and
POS+COL. ORI+COL produced significantly fewer errors than POS and POS+COL.

As POSwas faster than ORI+COL but produced more errors, we performed a correlation analysis
between response time and error. The analysis showed negative correlation between response time
and error for both POS and ORI+COL distributions. This means that participants who answered
faster tended to answer incorrectly. However, the error rate for POS was still low (near 20%).

Discussion: Our results are surprising as they provide evidence that colour significantly hurts
the efficiency (response times) of participants completing the task in all cases (reject H1(b)).
For this task, users were not required to differentiate between types of marks across cells. Thus,
colour seems to have added distracting complexity to the representation. Orientation consistently

109

Figure 6.14: Average response times (top) and error rates (bottom) for experiment 1.
The margin of error for 95% confidence intervals is shown in each box while the black
lines between boxes indicate significance between visual encodings. Mean and median
values are indicated below each bar.

produces significantly fewer errors than position with no significant difference in response time
(accept H1(a)). It could be that the density and star-like patterns of the orientation support the
task.

6.5.2 Task 2 - Most Frequent Mark

Our second experiment asked: Which mark appears most often in the image? In total, 50 partic-
ipants performed experiment 2. From those 4 were excluded because of incomplete data and 1
because they used a phone. No participant had an average error rate close to chance (75%).

Demographics: In total, 45 participants were included in the analysis, with an average age of 35
years (24 to 54 years). In terms of experience, 47% of participants had no experience in using data
visualisations, 4% had little experience (use visualisations once a year), 33% had some experience
(once a month), 9% were experienced (once a week), and 7% were experts (use visualisations
daily). For the devices used, 40% of the participants used a laptop and 60% used a desktop
computer.

Counterbalancing: There was a good counterbalancing concerning the order of the techniques
in the blocks, with 24 participants starting with orientation and 21 starting with position. Also
the counterbalancing of colour was good with 24 participants starting the experiment with a block
that had colour and 21 with a block that did not have colour, while 20 participants finished the
experiment with a block that had colour and 25 with a block that did not have colour. Finally, 17
participants started both techniques with colour while 9 started both techniques without colour.

Results: Our results are shown in Figure 6.15. We find significant results for response time
for this task (χ2 = 77.948, d f = 3, p < 0.05). Our post-hoc analysis reveals that ORI+COL is
significantly faster than ORI and POS. Similarly, POS+COL is significantly faster than ORI and POS.

110

Figure 6.15: Bar charts of average response times (top) and error rates (bottom) for ex-
periment 2. The margin of error for 95% confidence intervals is shown in each box while
the black lines between boxes indicate significance between visual encodings. Mean and
median values are indicated below each bar.

We also found that ORI is significantly faster than POS. We find significant results for error rate for
this task (χ2 = 96.746, d f = 3, p < 0.05). The pairs of results are exactly the same as those found
in response time. Our post-hoc analysis reveals that ORI+COL is significantly more accurate than
ORI and POS. Similarly, POS+COL is significantly more accurate than ORI and POS. We also found
that ORI is significantly more accurate than POS.

Discussion: In general, the results show that for this task it is preferable to use colour for encod-
ing the different types of edges (accept H2(b)). For this task, it could be that colour provides a
method for quickly gauging the number of marks of each type at a glance, allowing for the quick
identification of a more prevalent one. When colour is not used, orientation seems to perform
better than position (accept H2(b)). It could be that since the marks for orientation have a more
unique appearance, it is easier to judge the number of such marks in the matrix visualisation.

6.5.3 Task 3 - Most Frequent Mark Pair

Our third experiment asked: Which combination of two marks appears more often in the image? In
total, 45 participants took part in experiment 3. When checking the data quality, 4 participants were
excluded because of incomplete data and 1 did not answer at least half of the four gold standard
questions. None of the remaining participants had an average error close to chance (84%).

Demographics: We analysed the data of the remaining 40 participants with an average age of
36.5 years (24 to 71 years). In terms of experience, 40% of participants had no experience in using
data visualisations, 10% had little experience (use visualisations once a year), 7.5% had some
experience (once a month), 37.5% were experienced (once a week), and 5% were experts (used
visualisations daily). To perform the experiment, 50% of the participants used a laptop and 50%
used a desktop computer.

111

Figure 6.16: Bar charts of average response times (top) and error rates (bottom) for ex-
periment 3. The margin of error for 95% confidence intervals is shown in each box while
the black lines between boxes indicate significance between visual encodings. Mean and
median values are indicated below each bar.

Counterbalancing: There was a good counterbalancing concerning the order of the techniques
in the blocks, with 22 participants starting with orientation and 18 starting with position. Also
the counterbalancing of colour was good with 21 participants starting the experiment with a block
that had colour and 19 with a block that did not have colour, while 20 participants finished the
experiment with a block that had colour and 20 with a block that did not have colour. Finally, 11
participants started both techniques with colour while 10 started both techniques without colour.

Results: Our results are shown in Figure 6.16. We find significant results for response time for
this task (χ2 = 14.91, d f = 3, p < 0.05). Our post-hoc analysis reveals only one significant differ-
ence with ORI+COL being significantly faster than ORI. In terms of error rate, we find significant
differences for this task (χ2 = 45.608, d f = 3, p < 0.05). ORI+COL has significantly fewer errors
when compared to POS+COL and POS. POS+COL has significantly fewer errors than POS. Also, ORI
has significantly fewer errors than POS.

Discussion: The error rates indicate that orientation has significantly fewer errors than position
in many cases (accept H3(a)). When orientation is used, it either reduces the error rate with no
difference in response times or it reduces response times with no difference in error rate (accept
H3(b)).

In this task, we asked users to select the pair of marks that occurred most frequently together.
Colour may have helped the participant judge the frequency of each mark type at a global level
and select the pair that occurred more frequently. As the orientation marks are more unique in
appearance, it could have helped the participants make this judgement.

6.5.4 Task 4 - Matrix with Most Cells of a Mark Type

Our fourth experiment asked: Which matrix had the most cells of a particular mark type. In
total, 40 participants performed the experiment. From these participants, 3 failed more than half

112

of the gold standard questions, 2 had incomplete data, and 2 had a variance of answers equal to
zero – meaning they clicked on the same answer for the duration of the experiment. All these 7
participants were excluded. From the remaining 33 participants, no one had an average error rate
close to chance (75%).

Demographics: We analysed the data from the remaining 33 participants with an average age
of 39.5 (24 to 72 years). In terms of expertise, 37% of participants had no experience in using
data visualisations, 21% had little experience (use visualisations once a year), 24% had some
experience (once a month), 18% were experienced (once a week), and none was expert (daily). To
perform the experiment, 58% of the participants used a laptop and 42% used a desktop computer.

Counterbalancing: There was a good counterbalancing concerning the order of the techniques
in the blocks, with 15 participants starting with orientation and 18 starting with position. Also
the counterbalancing of colour was good with 19 participants starting the experiment with a block
that had colour and 14 with a block that did not have colour, while 18 participants finished the
experiment with a block that had colour and 15 with a block that did not have colour. Finally, 10
participants started both techniques with colour while 9 started both techniques without colour.

Results: Figure 6.17 presents our results. We find significant results for response time for this
task (χ2 = 30.018, d f = 3, p < 0.05). Our post-hoc analysis reveals that ORI+COL was signif-
icantly faster than ORI and POS. We also find that POS+COL is significantly faster than POS. In
terms of error rate, we find significant differences for this task (χ2 = 71.181, d f = 3, p < 0.05).
ORI+COL has significantly fewer errors than ORI and POS. POS+COL has significantly fewer errors
than ORI and POS. Finally, ORI has significantly fewer errors than POS.

Discussion: From the results, it is clear that colour provides the most benefit and helps par-
ticipants perform this task (accept H4(b)). When colour is not used, then orientation produces
significantly lower error rates than position (accept H4(b)). As the task requires the participant
to make a global assessment of the presence of a particular mark in the matrix, colour could have
provided a means to quickly gauge the number of marks. If no colour is present, the uniqueness
of the marks in the orientation condition might have helped participants make this judgement.

Considering all four experiments, ORI outperformed POS and colour was usually of benefit.
Thus, we were able to accept all hypotheses except H1(b). In the following section, we discuss
how we integrated the results of our experiments to extend the design of BayesPiles to support
the exploration of dynamic Bayesian networks. Then we report on the feedback we received from
three domain experts who qualitatively evaluated the tool using realistic data sets that contained
multiple networks.

113

Figure 6.17: Bar charts of average response times (top) and error rates (bottom) for ex-
periment 4. The margin of error for 95% confidence intervals is shown in each box while
the black lines between boxes indicate significance between visual encodings. Mean and
median values are indicated below each bar.

Figure 6.18: A collection of 17 dynamic Bayesian networks shown in BayesPiles.

6.6 Integration into BayesPiles and User-Centred Evaluation

Our experiments showed that orientation is the best visual encoding for our tasks. Colour was
mostly beneficial but it could also harm the performance. Based on those results, we extended the
design of BayesPiles to support the visualisation of DBNs using orientation (Figure 6.18). Users
can also switch between a greyscale and a colour mode (ORI and ORI+COL) to explore their data
and perform comparison tasks.

To receive feedback regarding this new extension of our tool and to also understand better how
this approach could be improved, we invited three computational biologists to test our tool using a
realistic data set. In our crowdsourcing experiments, we were interested in finding the best visual

114

encoding for multivariate edges in matrices by participants drawn from the general public. In this
second evaluation study, we were interested in collecting qualitative feedback from domain experts
who could potentially use BayesPiles for inferring DBNs as part of their research. The first partic-
ipant was an experienced computational biologist who had used BANJO and BayesPiles to infer
Bayesian networks in the past. The second participant was a biology graduate who was interested
in using BayesPiles to compare dynamic Bayesian networks inferred from electrophysiological
recordings of zebra finch brain during playback of white noise and song stimuli. The third partic-
ipant was a PhD student in neuroscience who was interested in learning how to use BayesPiles to
visualise networks constructed from brain scans, using live imaging data of neural activity.

Instead of single networks or pairs of networks as used in the crowdsourcing experiment,
BayesPiles can support the visualisation of hundreds of networks. In addition, with BayesPiles,
users can interact with the interface and create summaries of networks as piles. Creating piles
results in summary matrices with edges which are not only multivariate but also weighted. Every
edge weight is calculated based on the average number of matrices that contain this edge in the
pile. Using a combination of orientation and colour to encode edge types and opacity to encode
weights in the summary matrix, was a design aspect that increased the complexity of the repre-
sentation which was not tested in our previous experiments. It was interesting to see how this new
variable, edge weight, would affect participants’ performance. Also, it was interesting to see how
challenging it would be for the domain experts to perform the same set of tasks, as those described
in Section 6.2, but in the context of multiple networks and piles of networks. Those low-level
tasks in the context of multiple networks are important for high-level tasks such as the exploration
of the solution space and the construction of a consensus network.

6.6.1 Data

To get as close as we could to a real-world scenario and to effectively test our software extension
in challenging settings, we first needed to generate realistic collections of networks, similar to the
ones found in real biological data sets. However, we wanted control over the patterns found in
those data sets, so that we could evaluate performance based on some ground truth. To create a
realistic collection of DBNs we used a set of real songbird data and we ran BANJO to generate 17
DBNs. The results followed the “hill-climbing” pattern in which edges were added gradually (read
from bottom-up and from right-to-left) improving the score (Figure 6.18). However, the resulting
networks were relatively simple and with little diversity in edge types. To make the data set
more challenging, we manually edited this network collection adding interactions that contained
combinations of edge types (i.e. MLs) and single edges as distractors. We also inserted networks
with edges appearing in known combinations of MLs. Those new networks were permutations of
the top-scoring network and of the same density and size. In one of the networks, we introduced
the most dense edge type in the collection that contained all 4 MLs (full star edge). Also, we
edited the shape of the solution space creating three score levels and we introduced more edges
of a known type in the networks that had the lowest score. The result of those interventions

115

was a curated but realistic collection of 30 DBNs which incorporated known patterns within the
data set (Figure 6.19). This data set would help us evaluate in a controlled way the implemented
visual encodings when domain experts were performing tasks using the interface. In summary, we
inserted the following known patterns in the data set:

1. A matrix with the densest cell in the collection that included all 4 MLs (useful for task T1).

2. A matrix in which a particular ML would appear more times than the rest of MLs (useful
for task T2).

3. Networks of three distinct levels of score which could easily form three piles.

4. In one of the piles, we inserted matrices with cells that combined two MLs more frequently
than other combinations (useful for task T3).

5. In the networks of one of the piles, we inserted edges of a particular ML type making it
appear more often than in other piles (useful for task T4).

In the following, we describe how we collected feedback from our domain experts and we
discuss the results.

6.6.2 Evaluation

First, we wanted to make sure that all participants knew how to use the interface of BayesPiles.
Therefore, we provided a quick demonstration of the software to each of them. One of the partici-
pants had already used BayesPiles in the past but the other two did not know how to use it. Second,
we created and distributed an evaluation form to all three participants asking them to load the data
set of the 30 networks in BayesPiles and then perform the tasks using both orientation encodings
(with and without colour). For each task, we already knew the correct answer so we could evaluate
their performance in matters of accuracy. In the form, we included an index that showed which
visual mark corresponds to which type of edge (i.e. ML). We also provided clarification about the
tasks we wanted them to perform in the form of general guidelines. Finally, we asked participants
to provide feedback regarding difficulties they might have encountered in performing those tasks
as well as suggestions for further improvements.

1. For the first task, participants were asked to inspect all 30 networks and try to find which
matrix contained the cell with the most MLs. They were asked to report on the matrix
and the cell they found. Instead of looking in a single matrix, this time participants had to
explore a collection of 30 networks to find the densest edge.

116

Figure 6.19: A collection of 30 dynamic Bayesian networks shown in BayesPiles.

2. For the second task, we asked participants to find a specific matrix in the collection and
then identify the ML that appeared more often. This task was very similar to T2 in the
crowdsourcing study.

3. As part of the third task, participants were asked to use the slider and create 3 piles based
on the different score levels (Figure 6.20). Then they were asked to inspect the first pile and
find which combination of two MLs was the most common.

4. For the fourth task, participants were asked to identify which of the three piles contained the
highest concentration of a particular ML. This was similar to task T4 in the crowdsourcing
study but this time instead of a pair of single networks, participants had to compare edge
type across three piles of weighted networks.

117

Figure 6.20: Three piles of 30 networks in total shown using orientation and colour. To
increasing the salience of the representation, we used red instead of yellow for encoding
ML0.

6.6.3 Results

Although all domain experts found this new extension to the tool potentially useful for their re-
search, we received mixed results regarding their performance in completing the tasks as shown
in Table 6.2. Only one participant (P1) completed all tasks correctly. A second participant (P2)
answered correctly in three of the tasks but gave the wrong answer for the third task (T3). The
third participant (P3) gave three wrong answers, only performing task T2 correctly. Regarding
colour, the feedback of most participants confirmed the results of our crowdsourcing experiments
in which we found that colour is helpful for all tasks except task T1.

Participant (P1) found that orientation without colour was the preferred encoding for task T1,
while for the rest of the tasks they preferred orientation with colour. Participant (P2) found that
orientation without colour was the preferred encoding for tasks T1 and T3, while for tasks T2 and

118

Task T1 T2 T3 T4
P1 CORRECT CORRECT CORRECT CORRECT
P2 CORRECT CORRECT WRONG CORRECT
P3 WRONG CORRECT WRONG WRONG

Table 6.2: A summary of domain experts’ results.

T4 they preferred orientation with colour. Finally, the third participant (P3) found that colour was
the best encoding for all tasks. All participants answered correctly in task T2 and they all found
colour particularly helpful, confirming the results of the crowdsourcing experiment for task T2.
The task that most participants found difficult to perform and provided mostly wrong answers, ex-
cept P1 who answered correctly, was task T3. For this task, each of the three participants provided
a different answer. Also while participants P1 and P3 agreed that colour helped them to perform
the task, participant P2 had a different opinion and preferred not to use colour. Regarding the last
task T4, participants P1 and P2 answered correctly, while participant P3 gave a wrong answer.
They all agreed that colour helped them to perform the task. Participants provided anecdotal feed-
back regarding difficulties in performing the tasks. Their comments are discussed in Section 7.3,
together with an interpretation of the results.

6.6.4 Qualitative Feedback

Participants were not only asked to comment on difficulties they have encountered performing the
tasks but also to provide qualitative feedback about their overall experience and expectations using
the tool. Participant P1 commented that “the tool is useful for combining multiple networks into

one to find the most common edges and the way networks are displayed on BayesPiles facilitates

comparison of different networks.” Participant P2 commented: “I think it will be useful to

visually pull out which Markov lag is most common, by making piles of similar networks and

inspecting colours. I think, in fact, it may be more useful at a slightly later analysis stage than

the previous version of BayesPiles: I would want to work with instead of networks from a given

search, a selection of “answers” and then look for commonalities regarding the system about

them. However, an analysis at the search stage could still also be useful to identify what Markov

lags to concentrate on”.

Participants also shared their ideas for future improvements. Participant P1 found it difficult
to remember which visual mark corresponded to which ML and wrote “it would have been easier

to perform the tasks if there was a legend for Markov Lag value representations in the network.”

Participant P2 commented: “I like the interface, and I particularly like the ability to switch back

and forth between greyscale and colour. This enables doing different things with the different

options when one is easier than the other”. Participant P3 commented the following: “I wasn’t

sure whether I had clicked a network or not. I didn’t really realise that hovering over the grey

boxes above each network actually did something either. It would be useful to have tooltips on

119

each of the controls to say a bit more about what they do. Lastly, maybe having a summary box

with some basic stats about the networks and piles would help. Perhaps also when clicking on a

network, a network specific summary box can appear.”.

6.7 Summary of Contribution

In computational biology, modellers use heuristics that sample the search space of all possible
networks to find those that best represent their data. They then either choose the best network or
combine networks to construct a final consensus network of several multivariate networks. Visu-
alisation plays an important role in network selection and consensus construction. For this step
of the workflow, we collaborated with computational biologists to create encodings for dynamic
Bayesian networks. Our encodings apply to multivariate networks represented as matrices when
the multivariate data is associated with the edges. Our main contribution is a formal evaluation of
encodings that can inform the design of visualisation tools for this domain and similar ones. We
ran four crowdsourced experiments to evaluate these encodings. The performance of our visual
encodings was task-dependent. For more local tasks, we found that colour hindered performance,
but for all other tasks, it helped. For most tasks, orientation outperformed position.

Based on those results, we extended BayesPiles to also support dynamic Bayesian networks.
MLs were encoded using orientation, and colour could be enabled and disabled in the interface
on demand. We tested our implementation with a small group of 3 domain experts on a realistic
data set of 30 networks. Although the results were encouraging, we identified that using opacity to
encode edge weights in piles of networks that also use colour can be challenging. Therefore, there
is a need for more formal evaluation studies that would test the performance of visual encodings
that combine more than two visual variables. A discussion and interpretation of the results, as
well as future work regarding all three challenges addressed in this thesis, are discussed in the
following final chapter which also provides an overview of the three main contributions presented
in this thesis.

120

7 Conclusions and Future Work

This thesis presented research motivated by the question: “How can visualisation support mod-

ellers in their workflow to infer networks from biological data?” First, to further investigate this
question, it was important to understand the steps that modellers commonly follow when they
analyse biological data to infer networks. To understand modellers’ requirements, we collabo-
rated closely with computational biologists who were interested in using visual analysis to improve
their workflow when they were inferring Bayesian networks from biological data. We found that
visualisation can play an important role in supporting modellers in three steps of this workflow.
In Chapter 1, we laid out the research questions that emerged from each step and motivated our
thesis:

• Q1 “How to provide visual support for the effective hierarchical clustering of many multi-

dimensional variables?”

• Q2 “How to support the visual analysis of heuristic search results, to infer representative

models for biological systems?”

• Q3 “How to effectively represent information related to the dynamics of biological systems,

encoded in the edges of inferred networks?”

To address each of these questions, we used the nested model methodology to understand the
underlying domain problems, identify tasks and design effective visual encodings and interaction
techniques. Two novel visualisation tools were designed and implemented to support the identified
tasks in practice: MLCut and BayesPiles. Making those tools available to our biology collabora-
tors, we managed to receive constructive feedback from case studies that involved the analysis of
real biological data. To address Q3, we also conducted a formal crowd-sourcing study to identify
perceptually effective visual encodings for multivariate edges in matrices. The results informed
an extension to the design of BayesPiles. We presented our contributions for each of the three
workflow steps, in separate chapters. In the following, we summarise our work and reflect on
how our contributions answer the research questions derived from the three workflow steps. Also,
we discuss limitations and future work for each of those contributions, providing guidelines for
further research.

121

7.1 Contribution 1: Hierarchical Clustering with MLCut

As part of the first step in modellers’ workflow, hierarchical clustering algorithms organise multi-
dimensional biological data into groups, generating a dendrogram. The research question was: Q1

“how to provide visual support for the effective hierarchical clustering of many multidimensional

variables?” To understand the challenges involved in answering this question, we held regular
meetings with modellers and we performed a card sorting session, through which we charac-
terised the domain problem (Section 4.1) and identified requirements (Section 4.2). We found that
the operations that modellers perform to identify which branches correspond to clusters, require
the concurrent exploration of the dendrogram in coordination with the original multidimensional
data. Also, we found that it was important to enable modellers to cut the dendrogram at multiple
levels. Our literature review (Section 3.1) showed that existing tools for hierarchical clustering
only provided support for cutting the tree at a single level.

To help answer Q1, we developed MLCut (Figure 7.1), a novel visualisation tool which can
represent potentially large multidimensional data sets as parallel coordinates and provides a second
coordinated view in which the resulting dendrogram is displayed in a space-efficient radial layout.
The modeller can interact with the dendrogram to select clusters by cutting the tree at different
levels. In Chapter 4 (Section 4.3), we presented how the design of MLCut evolved through the
development of two versions of a prototype. In an earlier version of the tool, the main focus
was the design of an effective dendrogram representation. The tree unfolds in a radial layout,
utilising the two-dimensional space and providing opportunities for interactive exploration aided
by two dynamic sliders. To further support the hierarchical clustering of many multidimensional
variables (Q1), in the final prototype of MLCut, we introduced a coordinated view of the original
data linked to the dendrogram. Selections of multiple branches enable the comparison between
clusters of records in the original multidimensional data. MLCut was evaluated by modellers who
used it to detect clusters of variables in large sets of time-series gene expression data. The tool
helped them identify distinct temporal patterns in those data sets and also enabled the comparison
between those patterns. Overall, MLCut helped modellers select variables from complex data sets
to become nodes in the inferred network model, successfully answering Q1.

MLCut has potential applications in many clustering challenges in high-dimensional molecular
biology. It can be applied to any type of hierarchical clustering algorithms and could be extended
to support hybrid methods for hierarchical clustering [45]. Therefore, one of the future challenges
would be to identify requirements and prioritise technical specifications which would guide the
further development of this approach to a more generic tool for hierarchical clustering. Also, it
would be interesting to provide support for other unsupervised learning methods, such as density
based clustering [107] and k-means [100]. Investigating consensus clustering approaches [110],
would be another interesting extension. For example, results from different clustering algorithms
could be combined and compared visually. Building consensus could improve variable selection
through the mutual allocation of variables into clusters.

A complement to the hierarchical clustering step for variable selection in biological research

122

Figure 7.1: Semantic zooming in a large dendrogram for low-level
exploration of individual variables and small clusters, using ML-
Cut.

would be to help researchers evaluate their selected groups of variables by identifying them in
overrepresented pathways found in previous studies. This is part of an analysis step called: over-
representation, or enrichment analysis. In order to evaluate and further refine the selection of
variables, it is important to identify overrepresented pathways, in which most (or all) of those
variables are present. Some of the common tools for enrichment analysis include: DAVID [90],
KeyPathwayMiner [8] and MeSH [173]. However, those tools mostly focus on the systematic
integrative analysis of different data sets, which uses algorithms for detecting related pathways.
Less attention is given to the use of visualisation for showing relationships between biomarkers
and already known pathways [7]. Therefore, a future research objective could be to investigate
opportunities for visualising the results of enrichment analysis and how those results are linked to
the original data. As a future direction, it would be interesting to link the interface of MLCut with
curated pathway repositories such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[99], the Pathway Commons [40], PANTHER [128] and Reactome [51].

Although the dendrogram representation of MLCut can scale well for thousands of variables,
there are limitations in scalability regarding the number of clusters that it can visualise at the same
time. This is mainly because clusters in the dendrogram and in the original data view are encoded
using colour. Although the visual variable of colour is intuitive and can effectively represent up to
approximately 15 clusters [133], when the number of clusters is larger then additional colours are
similar to those already used. Therefore, as future work, it would be interesting to explore ways in
which the tool could support the analysis of more clusters without repeating colours. For instance,
branches already identified as clusters could be either aggregated or filtered from the display and
branches of interest could be expanded. Alternatively, visual variables other than colour could
be explored for encoding the different clusters in dendrograms. For example, different shapes
or glyphs could be used to encode the leaves of the tree to help distinguish between clusters of
variables that would otherwise get the same colour. Then, colour could be used as double encoding
to provide a more salient representation. Combining visual variables generates a huge number

123

of possible design alternatives. Therefore, it is important to formally investigate and evaluate
combinations of visual variables that result in the best encodings for a number of common analysis
tasks. Designers who deal with the visualisation of complex data sets need clear guidelines to avoid
ineffective visual representations for their data.

The representation of the original data as parallel coordinates also has its limitations. A future
challenge would be to deal with scalability issues for supporting data sets with more dimensions
or time-points than those tested in the case studies (Section 4.4). Currently, MLCut carries the
inherent limitations of the parallel coordinates technique which can represent approximately 15
dimensions in a satisfactory way. Representing hundreds of dimensions while limiting information
loss is a common problem in data visualisation [116]. Moreover, when the dimensions in the data
set do not follow a natural order, then the axes of the parallel coordinates need to be reordered
appropriately to reveal interesting patterns. However, determining the optimal order of the axes
is a difficult computational problem for which several automated methods have been proposed.
Enabling automated axes reordering would be a useful extension to the tool. Edge bundling could
be used to reduce clutter and occlusion in the parallel coordinates view when the data sets involve
thousands of records. For such data sets, the edges of each cluster could be aggregated forming
bundles. However, aggregation inevitably leads to information loss, and it becomes difficult to
identify separate variables of interest within clusters. Therefore, our recommendation for user
interface designers would be to provide a switch that could enable and disable edge bundling on
demand.

Hierarchical clustering is a useful unsupervised method for analysing biological data. For
large and complex data sets, there are ambiguities in the way that data records form clusters,
which cannot be resolved automatically using a heuristic algorithm. Therefore, to answer Q1, we
followed a synergistic approach for exploring clustering scenarios in the context of the original
data records, the output of the hierarchical clustering algorithm and users’ tacit knowledge. We
developed MLCut, an interactive software tool that enables a visual exploration approach for per-
forming hierarchical clustering analysis. Human intervention is not sufficient when it is limited in
choosing a similarity threshold for cutting the dendrogram at a single level. With MLCut, the user
can cut the dendrogram at multiple levels and see the effect in the original data. Selected clusters
can be exported and used in other steps of the network inference workflow. There is still room for
improvement, particularly regarding its interoperability with statistical packages for hierarchical
clustering and its scalability in matters of the number of clusters and the number of dimensions
that it can handle. However, our research has shown that this method provides more transparency
and confidence in the process of assigning data records to clusters and can be applied successfully
to multidimensional biological data.

7.2 Contribution 2: Inferring Networks with BayesPiles

As part of the second step in the modellers’ workflow, heuristic search algorithms sample the
search space of all possible networks based on a score that encapsulates their statistical fit to the

124

data. The research question was: Q2 “how to support the visual analysis of heuristic search results,

to infer representative models for biological systems?” To understand the challenges involved in
answering this question, we applied the nested model methodology which helped to characterise
the domain problem (Section 5.1) and derive common analysis tasks (Section 5.2). We found that
the operations that modellers often perform involve the exploration, combination and comparison
of potentially large collections of candidate networks produced by heuristic search algorithms. The
purpose is to guide the heuristic search and decide on a method that determines a final consensus
network. Thus, to answer Q2, we had to overcome the challenge of representing and comparing
collections of potentially hundreds of networks.

Our literature review (Section 3.2.2) showed that exploring and comparing multiple networks
is a challenging task for visualisation, especially when hundreds of networks are involved. We
found that most of the existing visualisation tools can only handle a small number of networks.
Moreover, previous research has shown that for some of our identified tasks, matrix representa-
tions perform better than node-link diagrams [9, 73]. Therefore, we decided to use matrices for
representing our collections of Bayesian networks. Our design process led to the development of
BayesPiles, which is inspired by MultiPiles – a dynamic network visualisation tool. In MultiPiles,
networks are represented as juxtaposed matrices which can be organised in groups to form piles
of superimposed networks.

BayesPiles was designed to answer Q2 supporting a list of tasks that modellers commonly
perform when they infer networks from biological data. BayesPiles (Figure 7.2) supports the
overview of all network scores providing a view to the shape of the solution space, two modes
for representing directed networks as matrices, the ordering of networks within collections, the
ordering of nodes in each network, the filtering of nodes/edges based on connectivity criteria, the
exploration of outgoing edges for a particular node, a mechanism for the manual construction of a
consensus network etc. In other words, BayesPiles provides extended functionality for supporting
the visual analysis of heuristic search results, to infer Bayesian networks (Q2).

To assess how well the design of BayesPiles can support modellers in their workflow answer-
ing Q2, we evaluated the tool in three case studies that involved real biological data sets (Section
5.4). For each of those data sets, a computational biologist used BayesPiles to visually explore
the heuristic search results, to take decisions about parameter settings of the heuristic search algo-
rithms and to construct a final consensus network. They found that BayesPiles helped them gain
new insights from their data and construct more representative networks, successfully answering
Q2. We also received subjective feedback, which helped us identify opportunities for improve-
ment.

There are several avenues for future work, including both technical extensions as well as
conceptual features and questions. Future directions for further extending the capabilities of
BayesPiles include support for a wider range of tasks (e.g. finding clusters), support for large
networks (e.g. gene regulatory networks that may involve hundreds of nodes), as well as the im-
plementation of a more efficient algorithm for improving performance and interactivity. Although

125

Figure 7.2: Exploring a data set of reordered matrices from five
runs. At the top, an overview of all outgoing edges for node var6.
At the bottom, the difference between the consensus and five piles
of networks in diamond mode.

our decision to represent networks as matrices improved the scalability of the tool regarding the
number of networks that it can handle, we found that it was not particularly effective when net-
works with more than 50 nodes were represented. In these larger networks, it was difficult to see
details in the cells and zooming in was required. For example, it was hard to observe differences
between networks in the diamond mode because of the small size of the triangles. Node filtering
or clustering could be used to decrease the size of the networks, but this would lead to information
loss.

Currently, BayesPiles only supports the search algorithms and the scoring metric found in
BANJO. It would be useful to extend its scope by integrating other network inference methods
(such as evolutionary algorithms) to make them more accessible to a wider community of analysts.
A feature that users asked for but is not supported in BayesPiles is the ability to automatically
create one pile for each run. Exporting the consensus network would be a small but useful feature.
Currently, sorting the order of the networks in the collection is only based on three aspects (score,
run ID, iteration). Networks of similar structure also have similar scores. Sorting by score and
then piling networks of similar scores, enables the identification and grouping of similar structures
even for collections that have more than 1000 graphs in total. However, in complex solution
spaces, different networks may also have similar scores making the groups appear structurally
heterogeneous. Therefore, it would be interesting to investigate unsupervised methods (clustering

126

of networks by structure) in addition to the scoring from BANJO.

BayesPiles could also be extended to support community-based methods to infer consensus
networks. Although the value of community-based methods to build consensus has been noted
in the area of gene network inference [121], there is a lack of visualisation tools that can help
modellers integrate results from different network inference methods. As future work, it would
be interesting to develop visualisation methods that could enable modellers to explore, combine
and compare results produced from different methods, to help achieve consensus. One of the
bottlenecks in this process is that there is no unified strategy that modellers follow to normalise
heterogeneous network results. For instance, some methods tend to favour sparse networks and
penalise more dense ones to avoid overfitting. Also, comparing between scores calculated using
different metrics is another normalisation problem. Overcoming these analysis obstacles will open
the way for BayesPiles to also support community-based methods for network inference.

Adjacency matrices utilise the fact that networks can be represented by their connectivity ma-
trix, with patterns corresponding to interesting subgraphs, such as cliques, bicliques and clusters,
appearing along the diagonal of an appropriately ordered adjacency matrix [123]. However, there
are many different ordering methods which can help identify interesting patterns in adjacency ma-
trices [25]. To optimise node reordering for Bayesian network inference, first, it is important to
identify interesting patterns which could be targeted by the reordering algorithm. For instance,
after experimenting with different data sets, our modellers identified two interesting patterns in
directed adjacency matrices, the cycle and the combo patterns. Every Bayesian network is a di-
rected acyclic graph and therefore cycles are not permitted in single Bayesian networks. However,
when many Bayesian networks are superimposed creating a pile, then a cycle could appear in the
cover matrix. A cycle corresponds to a feedback loop, which is an important feature that most
modellers would be interested to notice. Cycles would appear in BayesPiles as shown in Figure
7.3 (a). However, they are difficult to spot visually, especially when the nodes in the matrix are
not ordered appropriately.

Figure 7.3: Two patterns that appear after combining Bayesian networks in BayesPiles:
(a) the cycle pattern and (b) the combo pattern.

127

The second interesting pattern describes a combinatorial relationship (i.e. a combo pattern).
Although networks with high node in-degrees are usually restricted by parameters in the heuristic
search algorithm, nodes of unexpectedly high in-degrees can occur in the cover matrix when net-
works are piled. The combo pattern appears in our encodings as shown in Figure 7.3 (b). Both of
those patterns can only appear in the summary matrix of a pile. Therefore, such patterns would
most likely appear in a lower opacity and therefore, they will be harder to spot visually. A node
reordering algorithm that could help identify such patterns would be useful for exploring Bayesian
networks represented as matrices. For a more flexible node reordering mechanism, distinguishing
between the different classes of nodes and edges could be supported. Also, there is a huge space
for investigating novel visual encodings in matrices for the different classes of nodes and edges
and for annotating specific network structures within the matrices, such as cycles.

Inferring Bayesian networks from biological data using heuristic search algorithms plays a piv-
otal role in understanding how important mechanisms in biological systems work. To help answer
Q2, we developed BayesPiles, a visual analytics system inspired by MultiPiles and redesigned for
Bayesian networks. BayesPiles allowed modellers to understand the shape of the solution space,
to explore, compare and combine network structures, and to construct consensus networks. As
Bayesian methods produce hundreds of scored directed networks, they are hard to explore without
the aid of visualisation. Helping to answer Q2, BayesPiles enables the exploration, organisation
and comparison of hundreds of scored directed networks from multiple heuristic search runs. It
features two matrix-based representation modes for directed networks (top-down and diamond), a
normalised histogram that shows the distribution of scores in the solution space, flexible network
ordering based on run ID, iteration or score, node reordering, interactive comparison of networks
across groups, support for the manual construction of a consensus network, interactive graph fil-
tering mechanisms and a summary view of all outgoing edges for selected nodes.

Our work suggests that there is still room for improvement and that more visualisation ap-
proaches are required for tackling optimisation problems, in understanding the solution space,
and how heuristic search works. However, our case studies have shown that we can successfully
answer Q2 as our tool enables the visual analysis of heuristic search results and helps to infer
representative Bayesian network models for biological systems.

7.3 Contribution 3: Matrix Representations for Networks with Multiple Edge Types

As part of the third step in modellers’ workflow, heuristic search algorithms not only infer informa-
tion about the structure of the network but also about its dynamics. The research question was: Q3

“how to effectively represent information related to the dynamics of biological systems, encoded

in the edges of inferred networks?” We used the nested model methodology to characterise the
domain problem (Section 6.1) and identify tasks (Section 6.2) that modellers perform when they
explore the dynamics of their inferred networks. We discovered how important it is for modellers
to be able to explore the heuristic search results and understand information about the dynamics
of the interactions encoded in the edges of the inferred networks. We found that the tasks that

128

modellers often perform include type lookup, type frequency, and comparison within the same as
well as across networks. In particular, our modellers were interested in performing those tasks
on collections of dynamic Bayesian networks. Such networks are similar to Bayesian networks
shown in BayesPiles but with up to four different types of edges. To be able to answer Q3, we were
interested in extending BayesPiles to provide support for dynamic Bayesian networks. However,
to achieve that, we had to find out how to encode different edge types in networks represented as
matrices.

Our literature review (Section 3.3.2) showed that representing multivariate networks with dif-
ferent types of edges is a challenging visualisation problem. Moreover, we were surprised not
to find any formal study on visual encodings for multiple edge types in matrices. In our effort
to identify potentially effective encodings for matrix cells with up to 4 different edge types, we
explored the design space generating a series of sketches. Based on feedback from 5 visualisa-
tion experts, we identified four potentially effective visual encodings for representing multivariate
networks as matrices. These encodings derived from combinations of the visual variables: ori-
entation, position and colour. To test which encoding performs better for modellers’ tasks, we
conducted a formal user study using the crowd-sourcing platform of Amazon Mechanical Turk.
We presented the results of our study in Chapter 6 (Section 6.5). In summary, we found that the
encodings performed differently depending on the task. However, colour was found to help in all
tasks except lookup tasks. Orientation outperformed position in all of our tasks. Based on our
findings, we extended the design of BayesPiles to support the representation of dynamic Bayesian
networks using orientation with or without colour. If the set of precise tasks is unknown, we would
suggest an orientation encoding with colour (Figure 7.4).

Figure 7.4: Orientation and colour used to encode multiple edge
types in four dynamic Bayesian networks.

After we extended the design of BayesPiles to support dynamic Bayesian networks, we invited
three computational biologists (i.e. modellers) to test it and provide feedback. We wanted to
evaluate our progress in answering Q3 in realistic settings by testing how our encodings could help
domain experts in the third step of their network inference workflow. We created a challenging
data set of 30 networks arranged in three piles, and we asked the modellers to perform analysis
tasks in the context of multiple dynamic Bayesian networks.

129

The tasks that domain experts performed were similar to those tested in our previous crowd-
sourcing experiments. However, in our evaluation with domain experts, the context was wider and
more demanding since it involved multiple networks and piles of networks with weighted edges.
Also, participants were required to know how to use the interface, to interactively scroll through
the networks and move sliders to zoom or form piles. The results showed that for task T1 most
participants could visually inspect all 30 networks of the data set when they were juxtaposed as
small multiples and find the denser cell in the whole collection. Participants that answered cor-
rectly preferred not to use colour for this task. P2 commented that “it was easier to see a dense

block of lines without colour. With colour, the “star” of all blended into the vertical ML1 below it,

and didn’t look so different from networks 4-8 which didn’t have the ML1 in the “star” but did in

the cell directly below it.”

For task T2, the results were particularly encouraging as all participants could identify which
ML was the most common in the matrix. Although they answered correctly, they did not find this
an easy task. Participant P1 commented that “it would be helpful if there was some information

about the number of edges at different Markov Lags, as it is easy to make mistakes if the edges

have to be detected by eye, especially in larger networks”. For piles of networks that demand an
estimate of all ML types based on edge weights, shown using opacity, the task becomes particu-
larly demanding. Participant P2 commented that “it was easier to compare different opacity levels

in the grey scale, but the trade-off was that it was harder to distinguish between MLs when colour

was not present.

In task T3, which involved finding the most common combination of two MLs in a pile of
networks, the answers varied a lot between participants. This was probably because the edges
in the pile were weighted and participants had to estimate the overall weight of not only one but
of a combination of two MLs, as those appeared in the whole matrix. The task was particularly
challenging for our data set as the correct answer had many instances of the combination but in
relatively low weights. Thus, most instances of the correct combination appeared “faint” in the
pile. However, when added up they would result in the highest number of co-occurrences in the
pile. On the other hand, other combinations would appear in the matrix with a higher opacity but in
fewer cells. It was challenging for the participants to correctly estimate the overall weight of each
combination of two MLs appearing in the matrix and then compare those estimations effectively.

Regarding the last task, most participants could identify correctly the pile that contained the
highest concentration of a particular edge type. However, this task becomes much harder when
participants are required to estimate the overall weight of an edge type (i.e. ML) in a pile of
heterogeneous networks. When opacity is used with colour it tends to affect the distinctiveness
of the colour and for edges that have a lower weight it often becomes difficult to recognise their
colour. When colour is not used, it becomes even more challenging to both identify all instances
of a particular type and also estimate their overall summary. Participant P2 commented that “I

found this the hardest task. I’m not positive I’m right! It was easier to identify ML2 with colour,

but then I was unsure if perhaps the shading might make there be less overall ML2, even though

there was clearly more *kinds* of ML2.”.

130

The tasks where colour was beneficial (T2, T3, T4) asked participants to judge the prevalence
of a mark globally in the visualisation. This result agrees with similar results on node-link di-
agrams [12]. One possible explanation for the negative impact of colour in T1 is that this task
requires retrieving detailed information within a cell but marks do not need to be distinguished. In
this case, the shape of the glyph (star-like shape in orientation) was the predominant factor while
colour added unnecessary visual complexity.

Design guidelines: Given these results, our best encoding is ORI+COL. However, we suggest
an option to turn colour on and off to support a wider range of tasks. Naturally, we suggest colours
being discernible and of similar value as colours too light or too dark can easily blend with the
white or black background respectively. Also, we recommend encodings that result in unified
(connected) glyph designs, even when attributes are missing. Fragmented glyphs become harder
to perceive as one, especially when they are located next to other glyphs and occupy a small space
in the display. In addition, we recommend leaving margins between neighbouring glyphs or to use
a grid, because it is easy to perceive adjacent glyphs as part of the same entity. We believe that
ORI is scalable to around 12 values while remaining more performant than POS for both, coloured
and non-coloured versions. We believe POS to not be very scalable, nor do we think that any of
the other designs in Figure 6.2 is as scalable as ORI. For larger networks, we conjecture our results
would be similar but the visual search would increase the difficulty of the task, but the relative
differences between our techniques would stay the same.

Limitations and future work: The qualitative evaluation study with domain experts con-
firmed most of the results of our crowd-sourcing study and that these results were applicable to the
context that involved multiple networks. However, our evaluation with domain experts had certain
limitations. First, the sample size of 3 participants is too small to generalise the results, but the fact
that all 3 participants were domain experts adds more value to the study. It would be preferable to
evaluate the tool with a higher number of domain experts, but this is practically difficult to achieve
for such a specialised study. Second, the data set used in this study was realistic because it origi-
nated from real data in which many distractors and ground truth were added manually. However,
it would be more useful if domain experts could evaluate the tool using real data they owned, as
was done previously for BayesPiles in the three case studies presented in Section 5.4. A third
limitation of this evaluation is the number and the quality of tasks that domain experts performed
to provide feedback about the tool. The list of tasks was constrained compared to the number and
relevance of tasks that modellers perform in real case scenarios. Perhaps, it would be more inter-
esting if modellers could analyse their data and provide feedback about their experience using the
tool based on tasks interesting for their research. It would be interesting to characterise the space
of possible tasks on multivariate networks from a variety of application domains. Eventually, a
taxonomy that would map tasks with visual encodings would be extremely useful for designers of
visualisation tools and interfaces.

Although the implementation of our encodings in BayesPiles received positive feedback, we
identified several avenues for further improvement. For instance, while modellers’ feedback
mostly confirmed the results of the crowd-sourcing study, there were cases in which finding the

131

correct answer in the context of piled networks was difficult. Participants that had less experience
using the interface were more likely to get overwhelmed and make mistakes. As the requirement
for visualising more complex data increases, there is a danger that visual interfaces will become too
complicated for analysts to use. While addressing this danger, it was interesting to identify trade-
offs between visual encodings when we presented users with more complex data. For instance,
we found that while on the one hand, using colour helped participants to distinguish between edge
types, on the other hand, it was making it harder to estimate and compare weights across different
edge types. Using opacity and colour to encode weight and type in the same encoding seemed
to be problematic. Therefore, in future work, it would be interesting to further explore the de-
sign space of encodings that combine multiple visual variables. As networks become increasingly
multivariate, there is a need for more formal user studies which evaluate combinations of visual
variables which form glyphs. Thus, understanding the principles for composing effective glyphs
for multivariate data in the context of matrices, is one of the future challenges in the area of mul-
tivariate network visualisation. Also, more work is needed for understanding and evaluating the
performance of approaches that combine two or more visual variables in the same encoding.

Also, it is important to test the scalability of orientation and colour when networks contain
more than four edge types. We can assume that most users would be able to distinguish between
12 possible edge types (as many as the hours in the traditional clock). However, this encoding
would require to visualise only half of the bar currently used (top half for twelve o’ clock or bottom
half for six o’ clock). Another alternative would be to keep the current full length of the bar and
only change the angle. Theoretically, this approach can scale more, but it is unrealistic to believe
the users will be able to recognise the difference between a five-degree (5◦) and a ten-degree
(10◦) angle. Also, colour cannot encode effectively more than 15 edge types at the same time
[133]. It would be interesting to test the scalability of those approaches through formal evaluation
studies similar to the one performed for comparing the position and orientation with/without colour
encodings. Finally, it would be interesting to improve the interoperability of visualisation tools
for multiple networks, such as BayesPiles, with graph database management systems. NoSQL
databases such as Neo4j become increasingly popular because they can provide infrastructure for
scalable, fast and easy access to voluminous, interconnected resources. Therefore, one of the
future challenges is to facilitate communication between visualisation interfaces and resources
stored in graph databases.

When the collected biological data contain multiple measurements over time, then heuristic
search algorithms can infer information about the dynamics of the interactions. In those cases, the
results of the search algorithms contain collections of networks with multiple types of edges, such
as dynamic Bayesian networks. To help answer Q3, we were interested in extending BayesPiles
to support dynamic Bayesian networks, but we realised that representing networks with multiple
edge types is a challenging visualisation problem. Therefore, we conducted a formal experiment
on visual encodings of multivariate networks when the multivariate data is associated with the
edges. The tested encodings used the visual variables of orientation, position and colour. The
results of the experiment informed the design of BayesPiles, and the extension was evaluated

132

by three domain experts who used the tool in the context of multiple networks. Their feedback
provided evidence that our encodings were helpful for the tested tasks. However, answering Q3
in the context of multiple networks requires more work in understanding how to combine three or
more visual variables (e.g. orientation, colour and opacity) in the same encoding. Also, we found
that the scalability of the proposed encodings requires further investigation and evaluation. Still,
our work made significant progress in answering Q3 providing useful guidelines for designers who
want to encode up to four edge types in matrix representations for networks.

7.4 Contribution Summary

In this thesis, we presented three main contributions each of which was undertaken and can be
applied independently. However, in the wider scope of this thesis, all three contributions are
complementary to each other, providing visual support to modellers who are interested in infer-
ring networks from biological data. First, we presented a novel visualisation tool which can help
modellers to explore their data and cut dendrograms in multiple levels. Second, we presented a
novel visual analytics tool for exploring the solution space of heuristic search algorithms and in-
ferring a consensus Bayesian network. Third, we presented a quantitative evaluation of effective
visual encodings for multivariate networks represented as matrices, in which the multivariate data
is associated with the edges. Our findings informed the design of one of our tools, supporting
the analysis of dynamic Bayesian networks. This thesis demonstrates how our tools can enable
human-machine intelligence to help modellers infer networks by effectively integrating their ex-
pertise and tacit knowledge with computer algorithms and interactive visualisations.

133

References

[1] A. Abdul-Rahman, J. Lein, K. Coles, E. Maguire, M. Meyer, M. Wynne, C. R. Johnson,
A. Trefethen, and M. Chen. Rule-based visual mappings – with a case study on poetry vi-
sualization. Computer Graphics Forum, 32(3pt4):381–390, 2013. doi: 10.1111/cgf.12125.

[2] J. Abello, F. van Ham, and N. Krishnan. Ask-graphview: A large scale graph visualization
system. IEEE Transactions on Visualization and Computer Graphics, 12(5):669–676, 2006.
doi: 10.1109/tvcg.2006.120.

[3] A. Abuthawabeh and D. Zeckzer. Immv: An interactive multi-matrix visualization for
program comprehension. In 2013 First IEEE Working Conference on Software Visualization

(VISSOFT), pages 1–4, Sept 2013. doi: 10.1109/VISSOFT.2013.6650549.

[4] A. Aderhold, V. A. Smith, and D. Husmeier. Biological Network Inference at Multiple

Scales: From Gene Regulation to Species Interactions, pages 525–554. Wiley Online Li-
brary, 2015. ISBN 9781119078845. doi: 10.1002/9781119078845.ch27.

[5] F. Agostini, D. Cirillo, R. D. Ponti, and G. G. Tartaglia. Seamote: a method for high-
throughput motif discovery in nucleic acid sequences. BMC Genomics, 15(1):925, Oct
2014. ISSN 1471-2164. doi: 10.1186/1471-2164-15-925.

[6] C. Ahlberg and B. Shneiderman. Visual information seeking: Tight coupling of dynamic
query filters with starfield displays. In Proceedings of the SIGCHI conference on Human

Factors in Computing Systems, pages 313–317. ACM, 1994. doi: 10.1145/191666.191775.

[7] M. Albrecht, A. Kerren, K. Klein, O. Kohlbacher, P. Mutzel, P. Wolfgang, F. Schreiber,
and M. Wybrow. On Open Problems in Biological Network Visualization, pages 256–267.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-11805-0. doi:
10.1007/978-3-642-11805-0 25.

[8] N. Alcaraz, J. Pauling, R. Batra, E. Barbosa, A. Junge, A. G. L. Christensen, V. Azevedo,
H. J Ditzel, and J. Baumbach. Keypathwayminer 4.0: Condition-specific pathway analysis

134

by combining multiple omics studies and networks with cytoscape. BMC systems biology,
8(1):99, 2014. doi: 10.1186/s12918-014-0099-x.

[9] B. Alper, B. Bach, N. H. Riche, T. Isenberg, and J. D. Fekete. Weighted graph comparison
techniques for brain connectivity analysis. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’13, pages 483–492, 2013. ISBN 978-1-4503-
1899-0. doi: 10.1145/2470654.2470724.

[10] K. Andrews, M. Wohlfahrt, and G. Wurzinger. Visual graph comparison. In 2009

13th International Conference Information Visualisation, pages 62–67, July 2009. doi:
10.1109/IV.2009.108.

[11] D. Archambault. Structural differences between two graphs through hierarchies. In Pro-

ceedings of Graphics Interface 2009, GI ’09, pages 87–94, Toronto, Ont., Canada, Canada,
2009. Canadian Information Processing Society. ISBN 978-1-56881-470-4.

[12] D. Archambault, H. C. Purchase, and B. Pinaud. The readability of path-preserving clus-
terings of graphs. Computer Graphics Forum, 29(3):1173–1182. doi: 10.1111/j.1467-
8659.2009.01683.x.

[13] D. Archambault, T. Munzner, and D. Auber. Grouseflocks: Steerable exploration of graph
hierarchy space. IEEE Transactions on Visualization and Computer Graphics, 14(4):900–
913, 2008. doi: 10.1109/tvcg.2008.34.

[14] D. Archambault, H. C. Purchase, and B. Pinaud. Difference Map Readability for Dynamic

Graphs, pages 50–61. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[15] J. Aurisano, K. Reda, A. Johnson, and J. Leigh. Bacterial gene neighborhood investigation
environment: A large-scale genome visualization for big displays. In 2014 IEEE 4th Sym-

posium on Large Data Analysis and Visualization (LDAV), pages 103–104, Nov 2014. doi:
10.1109/LDAV.2014.7013210.

[16] B. Bach, E. Pietriga, I. Liccardi, and G. Legostaev. Ontotrix: A hybrid visualization for
populated ontologies. In Proceedings of the 20th International Conference Companion on

World Wide Web, WWW ’11, pages 177–180, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0637-9. doi: 10.1145/1963192.1963283.

[17] B. Bach, E. Pietriga, and J. D. Fekete. Visualizing dynamic networks with matrix cubes.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’14, pages 877–886, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2473-1. doi:
10.1145/2556288.2557010.

135

[18] B. Bach, N. H. Riche, T. Dwyer, T. Madhyastha, J. D. Fekete, and T. Grabowski. Small mul-
tipiles: Piling time to explore temporal patterns in dynamic networks. Computer Graphics

Forum, 34(3):31–40, 2015. ISSN 1467-8659. doi: 10.1111/cgf.12615.

[19] B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale. A descriptive frame-
work for temporal data visualizations based on generalized space-time cubes. Computer

Graphics Forum, 36(6):36–61, 2017. doi: 10.1111/cgf.12804.

[20] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf ordering for hi-
erarchical clustering. Bioinformatics, 17:S22–S29, 2001. doi: 10.1093/bioinformat-
ics/17.suppl 1.S22.

[21] A. Barsky, T. Munzner, J. Gardy, and R. Kincaid. Cerebral: Visualizing multiple ex-
perimental conditions on a graph with biological context. IEEE Transactions on Visu-

alization and Computer Graphics, 14(6):1253–1260, Nov 2008. ISSN 1077-2626. doi:
10.1109/TVCG.2008.117.

[22] F. Battke, S. Symons, and K. Nieselt. Mayday - integrative analytics for expression data.
BMC Bioinformatics, 11(1):121, 2010. doi: 10.1186/1471-2105-11-121.

[23] F. Beck and S. Diehl. Visual comparison of software architectures. Information Visualiza-

tion, 12(2):178–199, 2013. doi: 10.1177/1473871612455983.

[24] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of dynamic graph
visualization. Computer Graphics Forum, 2016. ISSN 1467-8659. doi: 10.1111/cgf.12791.

[25] M. Behrisch, B. Bach, M. Hund, M. Delz, L. von Ruden, J. D. Fekete, and T. Schreck.
Magnostics: Image-based search of interesting matrix views for guided network explo-
ration. IEEE Transactions on Visualization and Computer Graphics, PP(99):1–1, 2016.
ISSN 1077-2626. doi: 10.1109/TVCG.2016.2598467.

[26] M. Behrisch, B. Bach, N. H. Riche, T. Schreck, and J. D. Fekete. Matrix Reordering Meth-
ods for Table and Network Visualization. Computer Graphics Forum, 2016. ISSN 1467-
8659. doi: 10.1111/cgf.12935.

[27] R. Bellman and S. Dreyfus. Functional approximations and dynamic programming. Math-

ematical Tables and Other Aids to Computation, pages 247–251, 1959.

[28] J. Bertin. Semiology of Graphics. University of Wisconsin Press, 1983. ISBN 0299090604.

[29] J. Bertin. Matrix theory ofgraphics. Information Design Journal, 10(1):5–19, 2000.

136

[30] J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-art in gpu-based large-scale volume
visualization. Computer Graphics Forum, 34(8):13–37, 2015. doi: 10.1111/cgf.12605.

[31] A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J. D. Fekete. Graphdice: A
system for exploring multivariate social networks. Computer Graphics Forum, 29(3):863–
872. doi: 10.1111/j.1467-8659.2009.01687.x.

[32] C. Bielza and P. Larranaga. Bayesian networks in neuroscience: a survey. Frontiers in Com-

putational Neuroscience, 8:131, 2014. ISSN 1662-5188. doi: 10.3389/fncom.2014.00131.

[33] R. Borgo, J. Kehrer, D. H. S. Chung, E. Maguire, R. S. Laramee, H. Hauser, M. Ward,
and M. Chen. Glyph-based Visualization: Foundations, Design Guidelines, Techniques and
Applications. In M. Sbert and L. Szirmay-Kalos, editors, Eurographics 2013 - State of the

Art Reports. The Eurographics Association, 2013. doi: 10.2312/conf/EG2013/stars/039-
063.

[34] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE Trans-

actions on Visualization and Computer Graphics, 17(12):2301–2309, 2011. doi:
10.1109/TVCG.2011.185.

[35] U. Brandes and B. Nick. Asymmetric relations in longitudinal social networks. IEEE

Transactions on Visualization and Computer Graphics, 17(12):2283–2290, Dec 2011. ISSN
1077-2626. doi: 10.1109/TVCG.2011.169.

[36] U. Brandes, B. Nick, B. Rockstroh, and A. Steffen. Gestaltlines. Computer Graphics

Forum, 32(3pt2):171–180. doi: 10.1111/cgf.12104.

[37] M. Burch, N. Konevtsova, J. Heinrich, M. Hoeferlin, and D. Weiskopf. Evaluation
of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE

Transactions on Visualization and Computer Graphics, 17(12):2440–2448, 2011. doi:
10.1109/TVCG.2011.193.

[38] N. Cao, L. Lu, Y. R. Lin, F. Wang, and Z. Wen. Socialhelix: Visual analysis of sentiment
divergence in social media. Journal of Visualization, 18(2):221–235, May 2015. ISSN
1343-8875. doi: 10.1007/s12650-014-0246-x.

[39] R. Cava, C. M. Dal Sasso Freitas, and M. Winckler. Clustervis: Visualizing nodes attributes
in multivariate graphs. In Proceedings of the Symposium on Applied Computing, SAC
’17, pages 174–179, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4486-9. doi:
10.1145/3019612.3019684.

137

[40] E. G. Cerami, B. E. Gross, E. Demir, I. Rodchenkov, O. Babur, N. Anwar, N. Schultz, G. D.
Bader, and C. Sander. Pathway commons, a web resource for biological pathway data. Nu-

cleic Acids Research, 39(SUPPL. 1), 1 2011. ISSN 0305-1048. doi: 10.1093/nar/gkq1039.

[41] S. C. Chan, L. Zhang, H. C. Wu, and K. M. Tsui. A maximum a posteriori probability
and time-varying approach for inferring gene regulatory networks from time course gene
microarray data. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
12(1):123–135, Jan 2015. ISSN 1545-5963. doi: 10.1109/TCBB.2014.2343951.

[42] C. Chang, B. Bach, T. Dwyer, and K. Marriott. Evaluating perceptually complementary
views for network exploration tasks. In Proceedings of the 2017 CHI Conference on Human

Factors in Computing Systems, CHI ’17, pages 1397–1407, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-4655-9. doi: 10.1145/3025453.3026024.

[43] J. Chen, A. M. MacEachren, and D. J. Peuquet. Constructing overview+ detail dendrogram-
matrix views. IEEE Transactions on Visualization and Computer Graphics, 15(6):889–896,
2009. doi: 10.1109/tvcg.2009.130.

[44] D. M. Chickering. Learning Bayesian Networks is NP-Complete, pages 121–130. Springer
New York, New York, NY, 1996. ISBN 978-1-4612-2404-4. doi: 10.1007/978-1-4612-
2404-4 12.

[45] H. Chipman and R. Tibshirani. Hybrid Hierarchical Clustering with Applications to Mi-
croarray Data. Biostatistics, 7(2):286–301, 2006. ISSN 1465-4644. doi: 10.1093/biostatis-
tics/kxj007.

[46] S. S. Choi, S. H. Cha, and C. C. Tappert. A survey of binary similarity and distance mea-
sures. Journal of Systemics, Cybernetics and Informatics, 8(1):43–48, 2010. ISSN 1690-
4532.

[47] W. S. Cleveland and R. McGill. Graphical perception and graphical methods for an-
alyzing scientific data. Science, 229(4716):828–833, 1985. ISSN 0036-8075. doi:
10.1126/science.229.4716.828.

[48] G. F. Cooper. The computational complexity of probabilistic inference using bayesian
belief networks. Artificial Intelligence, 42(2):393 – 405, 1990. ISSN 0004-3702. doi:
10.1016/0004-3702(90)90060-D.

[49] M. Cossalter, O. J. Mengshoel, and T. Selker. Visualizing and understanding large-scale
bayesian networks. In Proceedings of the 17th AAAI Conference on Scalable Integration of

Analytics and Visualization, AAAIWS’11-17, pages 12–21. AAAI Press, 2011.

138

[50] P. Craig, A. Cannon, R. Kukla, and J. Kennedy. Matse: The microarray time-series explorer.
In Symposium on Biological Data Visualization (BioVis), pages 41–48. IEEE, 2012. doi:
10.1109/biovis.2012.6378591.

[51] D. Croft, G. O’Kelly, G. Wu, R. Haw, M. Gillespie, L. Matthews, M. Caudy, P. Garapati,
G. Gopinath, B. Jassal, et al. Reactome: a database of reactions, pathways and biological
processes. Nucleic Acids Research, 39(suppl 1):D691–D697, 11 2010. ISSN 0305-1048.
doi: 10.1093/nar/gkq1018.

[52] I. W. Davis, C. Benninger, P. N. Benfey, T. Elich, and J. L. Heazlewood. Powrs: Position-
sensitive motif discovery. PloS one, 7(7):e40373, 2012.

[53] D. De Maeyer, B. Weytjens, J. Renkens, L. De Raedt, and K. Marchal. Phenetic: Network-
based interpretation of molecular profiling data. Nucleic Acids Research, 43(W1):W244–
W250, 04 2015. ISSN 0305-1048. doi: 10.1093/nar/gkv347.

[54] P. D’haeseleer, S. Liang, and R. Somogyi. Genetic network inference: from co-
expression clustering to reverse engineering. Bioinformatics, 16(8):707–726, 2000. doi:
10.1093/bioinformatics/16.8.707.

[55] S. Diehl and A. C. Telea. Multivariate networks in software engineering. In Multivari-

ate Network Visualization, pages 13–36. Springer, 2014. ISBN 978-3-319-06792-6. doi:
10.1007/978-3-319-06793-3.

[56] E. S. Dimitrova, M. P. V. Licona, J. McGee, and R. Laubenbacher. Discretization
of time series data. Journal of Computational Biology, 17(6):853–868, 2010. doi:
10.1089/cmb.2008.0023.

[57] C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene expres-
sion data. Journal of Bioinformatics and Computational Biology, 03(02):185–205, 2005.
doi: 10.1142/S0219720005001004.

[58] K. Dinkla, M. El-Kebir, C. I. Bucur, M. Siderius, M. J. Smit, M. A. Westenberg, and G. W.
Klau. examine: Exploring annotated modules in networks. BMC Bioinformatics, 15(1):
201, 2014. ISSN 1471-2105. doi: 10.1186/1471-2105-15-201.

[59] S. I. O. Donoghue, A. Gavin, N. Gehlenborg, D. S. Goodsell, J. Hériché, C. B. Nielsen,
C. North, A. J. Olson, J. B. Procter, D. W. Shattuck, T. Walter, and B. Wong. Visualizing
Biological Data — Now and in the Future. Nature Publishing Group, 7(3s):S2–S4, 2010.
ISSN 1548-7091. doi: 10.1038/nmeth0310-S2.

139

[60] D. Dotan-Cohen, A. Melkman, and S. Kasif. Hierarchical Tree Snipping: Clustering Guided
by Prior Knowledge. Bioinformatics, 23(24):3335–3342, 2007. ISSN 13674803. doi:
10.1093/bioinformatics/btm526.

[61] S. H. C. Du Toit, A. G. W. Steyn, and R. H. Stumpf. Graphical Exploratory Data Analysis.
Springer-Verlag, Berlin, Heidelberg, 1986. ISBN 0-387-96313-8.

[62] C. Dunne and B. Shneiderman. Motif simplification: Improving network visualization read-
ability with fan, connector, and clique glyphs. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’13, pages 3247–3256, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-1899-0. doi: 10.1145/2470654.2466444.

[63] C. Dunne, N. H. Riche, B. Lee, R. Metoyer, and G. Robertson. Graphtrail: Analyzing
large multivariate, heterogeneous networks while supporting exploration history. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12,
pages 1663–1672, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1015-4. doi:
10.1145/2207676.2208293.

[64] R. Edgar, M. Domrachev, and A. E. Lash. Gene Expression Omnibus: NCBI Gene Expres-
sion and Hybridization Array Data Repository. Nucleic Acids Research, 30(1):207–210,
2002. doi: 10.1093/nar/30.1.207.

[65] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull. Graphviz— Open

Source Graph Drawing Tools, pages 483–484. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2002. ISBN 978-3-540-45848-7. doi: 10.1007/3-540-45848-4 57.

[66] J. Ernst and Z. Bar-Joseph. Stem: a tool for the analysis of short time series gene expression
data. BMC Bioinformatics, 7(1):1, 2006. doi: 10.1186/1471-2105-7-191.

[67] J. A. Ferstay, C. B. Nielsen, and T. Munzner. Variant view: Visualizing sequence variants
in their gene context. IEEE Transactions on Visualization and Computer Graphics, 19(12):
2546–2555, Dec 2013. ISSN 1077-2626. doi: 10.1109/TVCG.2013.214.

[68] M. Freire, C. Plaisant, B. Shneiderman, and J. Golbeck. Manynets: An interface for multiple
network analysis and visualization. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’10, pages 213–222, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-929-9. doi: 10.1145/1753326.1753358.

[69] N. Friedman and title = Discretizing Continuous Attributes While Learning Bayesian Net-
works booktitle = Proceedings of the Thirteenth International Conference on International

140

Conference on Machine Learning series = ICML’96 year = 1996 isbn = 1-55860-419-7 lo-
cation = Bari, Italy pages = 157–165 numpages = 9 acmid = 3091716 publisher = Morgan
Kaufmann Publishers Inc. address = San Francisco, CA, USA Goldszmidt, M.

[70] J. Fuchs, F. Fischer, F. Mansmann, E. Bertini, and P. Isenberg. Evaluation of alternative
glyph designs for time series data in a small multiple setting. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’13, pages 3237–3246, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1899-0. doi: 10.1145/2470654.2466443.

[71] L. I. Furlong. Human diseases through the lens of network biology. Trends in Genetics, 29
(3):150 – 159, 2013. ISSN 0168-9525. doi: 10.1016/j.tig.2012.11.004.

[72] N. Gehlenborg, S. I O’Donoghue, N. S. Baliga, A. Goesmann, M. A. Hibbs, H. Kitano,
O. Kohlbacher, H. Neuweger, R. Schneider, D. Tenenbaum, et al. Visualization of omics
data for systems biology. Nature methods, 7:S56–S68, 2010. doi: 10.1038/nmeth.1436.

[73] M. Ghoniem, J. D. Fekete, and P. Castagliola. A comparison of the readability of graphs
using node-link and matrix-based representations. In IEEE Symposium on Information

Visualization, pages 17–24, 2004. doi: 10.1109/INFVIS.2004.1.

[74] M. Ghoniem, F. Mcgee, G. Melançon, B. Otjacques, and B. Pinaud. The state of the art in
multilayer network visualization. arXiv preprint arXiv:1902.06815, 2019.

[75] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C. Roberts. Visual com-
parison for information visualization. Information Visualization, 10(4):289–309, October
2011. ISSN 1473-8716. doi: 10.1177/1473871611416549.

[76] M. Glueck, M. P. Naeini, F. Doshi-Velez, F. Chevalier, A. Khan, D. Wigdor, and M. Brudno.
Phenolines: Phenotype comparison visualizations for disease subtyping via topic models.
IEEE Transactions on Visualization and Computer Graphics, 24(1):371–381, Jan 2018.
ISSN 1077-2626. doi: 10.1109/TVCG.2017.2745118.

[77] C. Görg, M. Pohl, E. Qeli, and K. Xu. Visual representations. In Human-Centered Visual-

ization Environments: GI-Dagstuhl Research Seminar, Dagstuhl Castle, Germany, March

5-8, 2006, Revised Lectures, pages 163–230. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2007. ISBN 978-3-540-71949-6. doi: 10.1007/978-3-540-71949-6 4.

[78] M. Graham, J. Kennedy, and D. Benyon. Towards a methodology for developing visualiza-
tions. International Journal of Human-Computer Studies, 53(5):789–807, November 2000.
ISSN 1071-5819. doi: 10.1006/ijhc.2000.0415.

141

[79] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. Lineup: Visual analysis of
multi-attribute rankings. IEEE Transactions on Visualization and Computer Graphics, 19
(12):2277–2286, Dec 2013. ISSN 1077-2626. doi: 10.1109/TVCG.2013.173.

[80] O. Guitart-Pla, M. Kustagi, F. Rügheimer, A. Califano, and B. Schwikowski. The cyni
framework for network inference in cytoscape. Bioinformatics, 31(9):1499–1501, 2015.
doi: 10.1093/bioinformatics/btu812.

[81] C. A. Hackett, K. McLean, and G. J. Bryan. Linkage Analysis and QTL Mapping Using
SNP Dosage Data in a Tetraploid Potato Mapping Population. PLoS ONE, 8(5):1–21, 2013.
doi: 10.1371/journal.pone.0063939.

[82] C. A. Hackett, B. Boskamp, A. Vogogias, I. Milne, and K. F. Preedy. TetraploidSNPMap:
Software for Linkage Analysis and QTL Mapping in Autotetraploid Populations Using SNP
Dosage Data. Journal of Heredity, 108(4):438–442, 03 2017. ISSN 0022-1503. doi:
10.1093/jhered/esx022.

[83] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008.

[84] M. Harrower and C. A. Brewer. Colorbrewer. org: an online tool for selecting
colour schemes for maps. The Cartographic Journal, 40(1):27–37, 2003. doi:
10.1179/000870403235002042.

[85] M. Hascoët and P. Dragicevic. Interactive graph matching and visual comparison of graphs
and clustered graphs. In Proceedings of the International Working Conference on Advanced

Visual Interfaces, AVI ’12, pages 522–529, New York, NY, USA, 2012. ACM. ISBN 978-
1-4503-1287-5. doi: 10.1145/2254556.2254654.

[86] M. Hecker, S. Lambeck, S. Toepfer, E. van Someren, and R. Guthke. Gene regulatory
network inference: Data integration in dynamic models - a review. Biosystems, 96(1):86 –
103, 2009. ISSN 0303-2647. doi: 10.1016/j.biosystems.2008.12.004.

[87] D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The com-
bination of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995. ISSN
1573-0565. doi: 10.1007/BF00994016.

[88] S. M. Hill, L. M. Heiser, T. Cokelaer, M. Unger, N. K. Nesser, D. E. Carlin, Y. Zhang,
A. Sokolov, E. O. Paull, C. K. Wong, et al. Inferring causal molecular networks: Empirical
assessment through a community-based effort. Nature methods, 13(4):310–318, 2016. doi:
doi:10.1038/nmeth.3773.

142

[89] H. Hochheiser and B. Shneiderman. Interactive exploration of time series data. In The Craft

of Information Visualization, Interactive Technologies, pages 313 – 315. Morgan Kauf-
mann, San Francisco, 2003. ISBN 978-1-55860-915-0. doi: 10.1016/B978-155860915-
0/50039-1.

[90] D. W. Huang, B. T. Sherman, and R. A. Lempicki. Systematic and integrative analysis of
large gene lists using david bioinformatics resources. Nature protocols, 4(1):44–57, 2008.
doi: 10.1038/nprot.2008.211.

[91] D. Husmeier. Sensitivity and Specificity of Inferring Genetic Regulatory Interactions from
Microarray Experiments with Dynamic Bayesian Networks. Bioinformatics, 19(17):2271–
2282, 2003. ISSN 13674803. doi: 10.1093/bioinformatics/btg313.

[92] J. F. Im, M. J. McGuffin, and R. Leung. Gplom: The generalized plot matrix for visualizing
multidimensional multivariate data. IEEE Transactions on Visualization and Computer

Graphics, 19(12):2606–2614, Dec 2013. ISSN 1077-2626. doi: 10.1109/TVCG.2013.160.

[93] A. Inselberg and B. Dimsdale. Parallel coordinates. In Human-Machine Interactive Systems,
pages 199–233. Springer, 1991. doi: 10.1007/978-1-4684-5883-1 9.

[94] G. Jäger, F. Battke, and K. Nieselt. Tiala time series alignment analysis. In 2011 IEEE

Symposium on Biological Data Visualization (BioVis)., pages 55–61, Oct 2011. doi:
10.1109/BioVis.2011.6094048.

[95] C. V. Jones. Visualization and Optimization, volume 6. Springer Science & Business Media,
2013. ISBN 978-1-4613-6848-9. doi: 10.1007/978-1-4615-4121-9.

[96] I. Jusufi. Multivariate Networks: Visualization and Interaction Techniques. PhD thesis,
2013.

[97] N. Kadaba, P. Irani, and J. Leboe. Visualizing causal semantics using animations. IEEE

Transactions on Visualization and Computer Graphics, 13(6):1254–1261, Nov 2007. ISSN
1077-2626. doi: 10.1109/TVCG.2007.70528.

[98] M. A. Kallio, J. T. Tuimala, T. Hupponen, P. Klemelä, M. Gentile, I. Scheinin, M. Koski,
J. Käki, and E. I. Korpelainen. Chipster: User-friendly analysis software for microarray
and other high-throughput data. BMC Genomics, 12(1):1–14, 2011. ISSN 1471-2164. doi:
10.1186/1471-2164-12-507.

[99] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic

Acids Research, 28(1):27–30, 01 2000. ISSN 0305-1048. doi: 10.1093/nar/28.1.27.

143

[100] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu.
An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans.

Pattern Anal. Mach. Intell., 24(7):881–892, July 2002. ISSN 0162-8828. doi: 10.1109/T-
PAMI.2002.1017616.

[101] G. Karypis and V. Kumar. Chameleon: Hierarchical Clustering Using Dynamic Modeling.
Computer, 32(8):68–75, 1999. ISSN 00189162. doi: 10.1109/2.781637.

[102] D. Keim, G. Andrienko, J. D. Fekete, C. Görg, J. Kohlhammer, and G. Melançon. Visual

Analytics: Definition, Process, and Challenges. Springer-Verlag, Berlin, Heidelberg, 2008.
ISBN 978-3-540-70955-8. doi: 10.1007/978-3-540-70956-5 7.

[103] J. B. Kennedy, K. J. Mitchell, and P. J. Barclay. A framework for information vi-
sualisation. SIGMOD Rec., 25(4):30–34, December 1996. ISSN 0163-5808. doi:
10.1145/245882.245895.

[104] S. Y. Kim, S. Imoto, and S. Miyano. Inferring gene networks from time series microar-
ray data using dynamic Bayesian networks. Briefings in Bioinformatics, 4(3):228–235, 09
2003. ISSN 1477-4054. doi: 10.1093/bib/4.3.228.

[105] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques -

Adaptive Computation and Machine Learning. The MIT Press, 2009. ISBN 0262013193,
9780262013192.

[106] A. Koussounadis, S. P. Langdon, D. J. Harrison, and V. A. Smith. Chemotherapy-induced
dynamic gene expression changes in vivo are prognostic in ovarian cancer. British journal

of cancer, 110(12):2975–2984, 2014. doi: 10.1038/bjc.2014.258.

[107] H. P. Kriegel and M. Pfeifle. Density-based clustering of uncertain data. In Proceedings

of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data

Mining, KDD ’05, pages 672–677, New York, NY, USA, 2005. ACM. ISBN 1-59593-135-
X. doi: 10.1145/1081870.1081955.

[108] B. K. Kuntal, A. Dutta, and S. S. Mande. CompNet: a GUI based tool for comparison
of multiple biological interaction networks. BMC Bioinformatics, 17(1):185, 2016. ISSN
1471-2105. doi: 10.1186/s12859-016-1013-x.

[109] C. Lacave, M. Luque, and F. J. Diez. Explanation of bayesian networks and influence
diagrams in elvira. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-

netics), 37(4):952–965, Aug 2007. ISSN 1083-4419. doi: 10.1109/TSMCB.2007.896018.

144

[110] A. Lancichinetti and S. Fortunato. Consensus clustering in complex networks. Scientific

Reports, 2, 2012. doi: 10.1038/srep00336.

[111] P. Langfelder and S. Horvath. Wgcna: an r package for weighted correlation network
analysis. BMC Bioinformatics, 9(1):559, 2008. ISSN 1471-2105. doi: 10.1186/1471-2105-
9-559.

[112] P. Langfelder, B. Zhang, and S. Horvath. Defining clusters from a hierarchical cluster
tree: the dynamic tree cut package for r. Bioinformatics, 24(5):719–720, 2008. doi:
10.1093/bioinformatics/btm563.

[113] A. Lex, M. Streit, E. Kruijff, and D. Schmalstieg. Caleydo: Design and evaluation of a vi-
sual analysis framework for gene expression data in its biological context. In 2010 IEEE Pa-

cific Visualization Symposium (PacificVis), pages 57–64, March 2010. doi: 10.1109/PACI-
FICVIS.2010.5429609.

[114] I. Liiv. Seriation and matrix reordering methods: An historical overview. Statistical Analy-

sis and Data Mining, 3(2):70–91, 2010. ISSN 1932-1872. doi: 10.1002/sam.10071.

[115] J. Linde, S. Schulze, S. G. Henkel, and R. Guthke. Data-and knowledge-based mod-
eling of gene regulatory networks: an update. EXCLI Journal, 14:346, 2015. doi:
10.17179/excli2015-168.

[116] S. Liu, D. Maljovec, B. Wang, P. Bremer, and V. Pascucci. Visualizing high-
dimensional data: Advances in the past decade. IEEE Transactions on Visualiza-

tion and Computer Graphics, 23(3):1249–1268, March 2017. ISSN 1077-2626. doi:
10.1109/TVCG.2016.2640960.

[117] D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. Winbugs - a bayesian modelling
framework: Concepts, structure, and extensibility. Statistics and Computing, 10(4):325–
337, Oct 2000. ISSN 1573-1375. doi: 10.1023/A:1008929526011.

[118] Z. W. Luo, C. A. Hackett, J. E. Bradshaw, J. W. McNicol, and D. Milbourne. Construction
of a genetic linkage map in tetraploid species using molecular markers. Genetics, 157(3):
1369–1385, 2001. ISSN 0016-6731.

[119] J. Mackinlay. Automating the design of graphical presentations of relational information.
ACM Trans. Graph., 5(2):110–141, 1986. ISSN 0730-0301. doi: 10.1145/22949.22950.

[120] P. Mahanta, H. A. Ahmed, D. K. Bhattacharyya, and J. K. Kalita. Triclustering in gene
expression data analysis: a selected survey. In 2nd National Conference on Emerging

145

Trends and Applications in Computer Science (NCETACS), pages 1–6. IEEE, 2011. doi:
10.1109/ncetacs.2011.5751409.

[121] D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. Camacho, K. R.
Allison, M. Kellis, J. J. Collins, G. Stolovitzky, et al. Wisdom of crowds for robust gene
network inference. Nature Methods, 9(8):796–804, 2012. doi: doi:10.1038/nmeth.2016.

[122] F. Matthäus, V. A. Smith, A. Fogtman, W. H. Sommer, F. Leonardi-Essmann, A. Lour-
dusamy, M. A. Reimers, R. Spanagel, and P. J. Gebicke-Haerter. Interactive molecular net-
works obtained by computer-aided conversion of microarray data from brains of alcohol-
drinking rats. Pharmacopsychiatry, 42(S 01):S118–S128, 2009. doi: 10.1055/s-0029-
1216348.

[123] M. J. McGuffin. Simple algorithms for network visualization: A tutorial. Tsinghua Science

and Technology, 17(4):383–398, 2012. doi: 10.1109/TST.2012.6297585.

[124] M. J. McGuffin and J. M. Robert. Quantifying the space-efficiency of 2d graphical represen-
tations of trees. Information Visualization, 9(2):115–140, 2010. doi: 10.1057/ivs.2009.4.

[125] M. L. Metzker. Sequencing technologies—the next generation. Nature reviews genetics, 11
(1):31, 2010. doi: 10.1038/nrg2626.

[126] M. Meyer, T. Munzner, and H. Pfister. Mizbee: a multiscale synteny browser. IEEE

Transactions on Visualization and Computer Graphics, 15(6):897–904, 2009. doi:
10.1109/TVCG.2009.167.

[127] M. Meyer, B. Wong, M. Styczynski, T. Munzner, and H. Pfister. Pathline: A tool for
comparative functional genomics. Computer Graphics Forum, 29(3):1043–1052, 2010.
doi: 10.1111/j.1467-8659.2009.01710.x.

[128] H. Mi, A. Muruganujan, J. T. Casagrande, and P. D. Thomas. Large-scale gene function
analysis with the panther classification system. Nature Protocols, 8(8):1551–1566, 2013.
doi: 10.1038/nprot.2013.092.

[129] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
motifs: Simple building blocks of complex networks. Science, 298(5594):824–827, 2002.
ISSN 0036-8075. doi: 10.1126/science.298.5594.824.

[130] B. Mirel and C. Görg. Scientists’ sense making when hypothesizing about disease mecha-
nisms from expression data and their needs for visualization support. BMC Bioinformatics,
15(1):117, 2014. ISSN 1471-2105. doi: 10.1186/1471-2105-15-117.

146

[131] P. Montero and J. Vilar. Tsclust: An r package for time series clustering. Journal of

Statistical Software, 62(1):1–43, 2014. ISSN 1548-7660. doi: 10.18637/jss.v062.i01.

[132] T. Munzner. A nested model for visualization design and validation. IEEE

Transactions on Visualization and Computer Graphics, 15(6):921–928, 2009. doi:
10.1109/TVCG.2009.111.

[133] T. Munzner. Visualization Analysis and Design. A K Peters/CRC Press, New York, NY,
USA, 2014. doi: 10.1201/b17511.

[134] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou. Treejuxtaposer: Scalable
tree comparison using focus+context with guaranteed visibility. In ACM SIGGRAPH 2003

Papers, SIGGRAPH ’03, pages 453–462, New York, NY, USA, 2003. ACM. ISBN 1-
58113-709-5. doi: 10.1145/1201775.882291.

[135] K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, 2002. AAI3082340.

[136] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded error. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’08, pages 419–432, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-
6. doi: 10.1145/1376616.1376661.

[137] S. Navlakha, J. White, N. Nagarajan, M. Pop, and C. Kingsford. Finding Biologically

Accurate Clusterings in Hierarchical Tree Decompositions Using the Variation of Informa-

tion, pages 400–417. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-02008-7. doi:
10.1007/978-3-642-02008-7 29.

[138] M. Newman. Networks: An Introduction. Oxford University Press, Inc., New York, NY,
USA, 2010. ISBN 0199206651, 9780199206650.

[139] C. B. Nielsen, H. Younesy, H. O’Geen, X Xu, A. R. Jackson, A. Milosavljevic, T. Wang,
J. F. Costello, M. Hirst, P. J. Farnham, et al. Spark: a navigational paradigm for genomic
data exploration. Genome Research, 22(11):2262–2269, 2012. doi: 10.1101/gr.140665.112.

[140] A. Obulkasim, G. A. Meijer, and M. van de Wiel. Semi-supervised Adaptive-height Snip-
ping of the Hierarchical Clustering Tree. BMC Bioinformatics, pages 1–11, 2015. doi:
10.1186/s12859-014-0448-1.

[141] G. A. Pavlopoulos, A. L. Wegener, and R. Schneider. A survey of visualization tools for
biological network analysis. BioData Mining, 1(1):12, Nov 2008. ISSN 1756-0381. doi:
10.1186/1756-0381-1-12.

147

[142] G. A. Pavlopoulos, D. Malliarakis, N. Papanikolaou, T. Theodosiou, A. J. Enright, and
I. Iliopoulos. Visualizing genome and systems biology: Technologies, tools, implementa-
tion techniques and trends, past, present and future. GigaScience, 4(1):1–27, 2015. doi:
10.1186/s13742-015-0077-2.

[143] C. Perin, F. Vernier, and J. D. Fekete. Interactive horizon graphs: Improving the compact
visualization of multiple time series. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’13, pages 3217–3226, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1899-0. doi: 10.1145/2470654.2466441.

[144] J. Poco, A. Dasgupta, Y. Wei, W. Hargrove, C. Schwalm, R. Cook, E. Bertini, and C. Silva.
Similarityexplorer: A visual inter-comparison tool for multifaceted climate data. Computer

Graphics Forum, 33(3):341–350, 2014. doi: 10.1111/cgf.12390.

[145] A. J. Pretorius and J. J. Van Wijk. Visual inspection of multivariate graphs. Computer

Graphics Forum, 27(3):967–974. doi: 10.1111/j.1467-8659.2008.01231.x.

[146] H. C. Purchase. Experimental Human-Computer Interaction: A Practical Guide with Visual

Examples. Cambridge University Press, New York, NY, USA, 1st edition, 2012. ISBN
0521279542, 9780521279543.

[147] J. Quackenbush. Microarray data normalization and transformation. Nature genetics, 32
(4s):496, 2002. doi: 10.1038/ng1032.

[148] B. Renoust, G. Melançon, and T. Munzner. Detangler: Visual analytics for multiplex
networks. Computer Graphics Forum, 34(3):321–330, 2015. ISSN 1467-8659. doi:
10.1111/cgf.12644.

[149] J. A. Reuter, D. V. Spacek, and M. P. Snyder. High-throughput sequencing tech-
nologies. Molecular Cell, 58(4):586 – 597, 2015. ISSN 1097-2765. doi:
10.1016/j.molcel.2015.05.004.

[150] N. H. Riche, T. Dwyer, B. Lee, and S. Carpendale. Exploring the design space of interactive
link curvature in network diagrams. In Proceedings of the International Working Confer-

ence on Advanced Visual Interfaces, AVI ’12, pages 506–513, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1287-5. doi: 10.1145/2254556.2254652.

[151] J. C. Roberts, C. Headleand, and P. D. Ritsos. Sketching designs using the five design-sheet
methodology. IEEE Transactions on Visualization and Computer Graphics, 22(1):419–428,
Jan 2016. ISSN 1077-2626. doi: 10.1109/TVCG.2015.2467271.

148

[152] M. Roux. A comparative study of divisive and agglomerative hierarchical clustering al-
gorithms. Journal of Classification, 35(2):345–366, Jul 2018. ISSN 1432-1343. doi:
10.1007/s00357-018-9259-9.

[153] R. Sadana, T. Major, A. Dove, and J. Stasko. Onset: A visualization technique for large-
scale binary set data. IEEE Transactions on Visualization and Computer Graphics, 20(12):
1993–2002, Dec 2014. ISSN 1077-2626. doi: 10.1109/TVCG.2014.2346249.

[154] R. Saito, M. E. Smoot, K. Ono, J. Ruscheinski, P. L. Wang, S. Lotia, A. R. Pico, G. D.
Bader, and T. Ideker. A travel guide to cytoscape plugins. Nature methods, 9(11):1069–
1076, 2012. doi: 10.1038/nmeth.2212.

[155] R. Sakai and J. Aerts. Card Sorting Techniques for Domain Characterization in Problem-
driven Visualization Research. In E. Bertini, J. Kennedy, and E. Puppo, editors, Eurograph-

ics Conference on Visualization (EuroVis) - Short Papers. The Eurographics Association,
2015. doi: 10.2312/eurovisshort.20151136.

[156] P. Saraiya, C. North, and K. Duca. An evaluation of microarray visualization tools for
biological insight. In Symposium on Information Visualization, pages 1–8. IEEE, 2004.
doi: 10.1109/INFVIS.2004.5.

[157] T. Schaffter, D. Marbach, and D. Floreano. Genenetweaver: in silico benchmark generation
and performance profiling of network inference methods. Bioinformatics, 27(16):2263–
2270, 2011. doi: 10.1093/bioinformatics/btr373.

[158] F. Schreiber and H. Schwöbbermeyer. MAVisto: a Tool for the Exploration of Network
Motifs. Bioinformatics, 21(17):3572–3574, 07 2005. ISSN 1367-4803. doi: 10.1093/bioin-
formatics/bti556.

[159] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology: Reflections from the
trenches and the stacks. IEEE Transactions on Visualization and Computer Graphics, 18
(12):2431–2440, Dec 2012. ISSN 1077-2626. doi: 10.1109/TVCG.2012.213.

[160] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller. Visual param-
eter space analysis: A conceptual framework. IEEE Transactions on Visualization

and Computer Graphics, 20(12):2161–2170, Dec 2014. ISSN 1077-2626. doi:
10.1109/TVCG.2014.2346321.

[161] J. Seo and B. Shneiderman. Interactively exploring hierarchical clustering results [gene
identification]. Computer, 35(7):80–86, 2002. doi: 10.1109/mc.2002.1016905.

149

[162] A. Shamir and A. Stolpnik. Interactive visual queries for multivariate graphs explo-
ration. Computers and Graphics, 36(4):257 – 264, 2012. ISSN 0097-8493. doi:
10.1016/j.cag.2012.02.006. Applications of Geometry Processing.

[163] P. D. Shaw, M. Graham, J. Kennedy, I. Milne, and D. F. Marshall. Helium: visualization
of large scale plant pedigrees. BMC bioinformatics, 15(1):259, 2014. doi: 10.1186/1471-
2105-15-259.

[164] C. Shi, W. Cui, S. Liu, P. Xu, W. Chen, and H. Qu. Rankexplorer: Visualization of rank-
ing changes in large time series data. IEEE Transactions on Visualization and Computer

Graphics, 18(12):2669–2678, Dec 2012. ISSN 1077-2626. doi: 10.1109/TVCG.2012.253.

[165] A. Sinha and M. Markatou. A platform for processing expression of short time series
(pests). BMC Bioinformatics, 12(1):1, 2011. doi: 10.1186/1471-2105-12-13.

[166] V. A. Smith, E. D. Jarvis, and A. J. Hartemink. Evaluating functional network inference
using simulations of complex biological systems. Bioinformatics, 18(suppl 1):S216–S224,
2002. doi: 10.1093/bioinformatics/18.suppl 1.S216.

[167] V. A. Smith, J. Yu, T. V Smulders, A. J Hartemink, and E. D. Jarvis. Computational infer-
ence of neural information flow networks. PLOS Computational Biology, 2(11):1–14, 11
2006. doi: 10.1371/journal.pcbi.0020161.

[168] T. Song and H. Gu. Discriminative motif discovery via simulated evolution and random
under-sampling. PLOS ONE, 9(2):1–10, 02 2014. doi: 10.1371/journal.pone.0087670.

[169] J. Sorger, K. Bühler, F. Schulze, T. Liu, and B. Dickson. neuromap — interactive graph-
visualization of the fruit fly’s neural circuit. In 2013 IEEE Symposium on Biological Data

Visualization (BioVis), pages 73–80, Oct 2013. doi: 10.1109/BioVis.2013.6664349.

[170] L. E. Sucar. Probabilistic graphical models. Advances in Computer Vision and Pattern

Recognition., 10:978–1, 2015. doi: 10.1007/978-1-4471-6699-3.

[171] M. Suderman and M. Hallett. Tools for visually exploring biological networks. Bioinfor-

matics, 23(20):2651–2659, September 2007. ISSN 1367-4803. doi: 10.1093/bioinformat-
ics/btm401.

[172] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288, 1996. doi: 10.1111/j.2517-
6161.1996.tb02080.x.

150

[173] K. Tsuyuzaki, G. Morota, M. Ishii, T. Nakazato, S. Miyazaki, and I. Nikaido. Mesh ora
framework: R/bioconductor packages to support mesh over-representation analysis. BMC

Bioinformatics, 16(1):45, Feb 2015. ISSN 1471-2105. doi: 10.1186/s12859-015-0453-z.

[174] E. R. Tufte and P. Graves-Morris. The visual display of quantitative information, 1983.

[175] E. R. Tufte, N. H. Goeler, and R. Benson. Envisioning Information, volume 126. Graphics
press Cheshire, CT, 1990.

[176] J. W. Tukey. Exploratory data analysis. 1977.

[177] S. van den Elzen and J. J. van Wijk. Multivariate network exploration and presentation:
From detail to overview via selections and aggregations. IEEE Transactions on Visual-

ization and Computer Graphics, 20(12):2310–2319, Dec 2014. ISSN 1077-2626. doi:
10.1109/TVCG.2014.2346441.

[178] J. J. van Wijk. The value of visualization. In VIS 05. IEEE Visualization, 2005., pages
79–86, Oct 2005. doi: 10.1109/VISUAL.2005.1532781.

[179] A. Vogogias, J. Kennedy, and D. Archambault. Hierarchical Clustering with Multiple-
Height Branch-Cut Applied to Short Time-Series Gene Expression Data. In Tobias Isenberg
and Filip Sadlo, editors, EuroVis 2016 - Posters. The Eurographics Association, 2016. ISBN
978-3-03868-015-4. doi: 10.2312/eurp.20161127.

[180] A. Vogogias, J. Kennedy, D. Archambault, V. A. Smith, and H. Currant. MLCut: Exploring
Multi-Level Cuts in Dendrograms for Biological Data. In Cagatay Turkay and Tao Ruan
Wan, editors, Computer Graphics and Visual Computing (CGVC). The Eurographics Asso-
ciation, 2016. ISBN 978-3-03868-022-2. doi: 10.2312/cgvc.20161288.

[181] A. Vogogias, J. Kennedy, D. Archambault, B. Bach, V. A. Smith, and H. Currant.
Bayespiles: Visualisation support for bayesian network structure learning. ACM Transac-

tions on Intelligent Systems and Technology (ACM TIST), 10(1):5:1–5:23, November 2018.
ISSN 2157-6904. doi: 10.1145/3230623.

[182] A. Vogogias, D. Archambault, B. Bach, and J. Kennedy. A study of matrix representa-
tions for networks with multiple edge types. In Multilayer Network Visualization Workshop

(MLNVIS). IEEE VIS, 2019.

[183] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van Wijk, J. D. Fekete,
and D. W. Fellner. Visual analysis of large graphs: State-of-the-art and future research
challenges. Computer Graphics Forum, 30(6):1719–1749, 2011. ISSN 1467-8659. doi:
10.1111/j.1467-8659.2011.01898.x.

151

[184] J. Wang and K. Mueller. The visual causality analyst: An interactive interface for causal
reasoning. IEEE Transactions on Visualization and Computer Graphics, 22(1):230–239,
Jan 2016. ISSN 1077-2626. doi: 10.1109/TVCG.2015.2467931.

[185] X. Wang, M. Wu, Z. Li, and C. Chan. Short time-series microarray analysis: Methods and
challenges. BMC Systems Biology, 2(1):58, 2008. doi: 10.1186/1752-0509-2-58.

[186] M. O. Ward. A taxonomy of glyph placement strategies for multidimensional data
visualization. Information Visualization, 1(3-4):194–210, 2002. doi: 10.1057/PAL-
GRAVE.IVS.9500025.

[187] M. O. Ward. Multivariate data glyphs: Principles and practice. In Handbook of Data

Visualization, pages 179–198. Springer, London, 2008. doi: 10.1007/978-3-540-33037-
0 8.

[188] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann Publishers
Inc., San Francisco, 2nd edition, 2004. doi: 10.1016/B978-155860819-1/50001-7.

[189] M. Wattenberg. Visual exploration of multivariate graphs. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’06, pages 811–819, New York,
NY, USA, 2006. ACM. ISBN 1-59593-372-7. doi: 10.1145/1124772.1124891.

[190] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393
(6684):440, 1998. doi: 10.1038/30918.

[191] S. Wernicke and F. Rasche. Fanmod: a tool for fast network motif detection. Bioinformatics,
22(9):1152–1153, 02 2006. ISSN 1367-4803. doi: 10.1093/bioinformatics/btl038.

[192] Y. Yang, T. Dwyer, S. Goodwin, and K. Marriott. Many-to-many geographically-embedded
flow visualisation: An evaluation. IEEE Transactions on Visualization and Computer

Graphics, 23(1):411–420, Jan 2017. ISSN 1077-2626. doi: 10.1109/TVCG.2016.2598885.

[193] O. Yim and K. T. Ramdeen. Hierarchical cluster analysis: Comparison of three linkage
measures and application to psychological data. Tutorials in Quantitative Methods for Psy-

chology, 11(1):8–21, 2015. ISSN 1913-4126.

[194] W. C. Young, A. E. Raftery, and K. Y. Yeung. Fast bayesian inference for gene regulatory
networks using scanbma. BMC Systems Biology, 8(1):47, 2014. ISSN 1752-0509. doi:
10.1186/1752-0509-8-47.

152

[195] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Using bayesian net-
work inference algorithms to recover molecular genetic regulatory networks. International

Conference on Systems Biology (ICSB02), 2002.

[196] J. D. Zapata-Rivera, E. Neufeld, and J. E. Greer. Visualization of bayesian belief networks.
In IEEE Visualization 1999 Late Breaking Hot Topics Proceedings, pages 85–88. Press,
1999.

153

A GitHub Repositories

The source code for MLCut and BayesPiles can be found online in the following GitHub reposi-
tories:

• https://github.com/than8/MLCut

• https://github.com/than8/BayesPiles

154

B List of Terms

Useful terms listed in order of appearance in the text.

• Network: a mathematical model that models entities (nodes) and the relationships between
them (edges).

• Model: in the context of this thesis, it refers to a network model of the phenomenon being
studied.

• Modeller: a domain scientist or expert who analyses data to infer networks. In the context
of this thesis the modellers are computational biologists (bioinformaticians).

• Network inference: the process followed by modellers for deriving networks from the data.

• Consensus network: the presented final network that modellers infer from the data.

• Candidate networks: the network solutions that modellers consider when they infer a con-
sensus network.

• Visualisation: the scientific discipline that aims at helping humans to gain a better under-
standing of data, through the sense of sight, using visual means.

• Exploratory: visualisation approach focusing on the exploration of the data to form new
hypotheses.

• Explanatory: visualisation approach focusing on the comprehensive presentation of a con-
cept or idea.

• Confirmatory: visualisation approach focusing on enabling the verification of a fact, based
on evidence found in the data.

155

• Dendrogram: a tree structure generated by a hierarchical clustering algorithm in which the
leaves correspond to entities and the intermediate nodes to similarity levels at which entities
are merged to form clusters.

• Cut: in the context of this thesis it is the similarity threshold (level) that defines the height
at which branches are separated from the rest of the dendrogram and correspond to clusters.

• Distinctiveness: the length (or height) of an edge in the dendrogram that indicates the
similarity between two variables or clusters of variables (branches).

• Search space: the set of all possible networks from which candidate networks are sampled.

• Solution space: the set of highest scoring networks as generated and assessed by a network
inference algorithm.

• Markov Lag (ML): the delay of an interaction measured by the number of time slices
skipped before observing its effect.

156

