Lo UHas W -

Q3
Q1

DIIN712_proof m 13 October 2017 m 1/11

Digital Investigation xxx (2017) 1 11

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

A methodology for the security evaluation within third-party Android

Marketplaces

William J. Buchanan *, Simone Chiale b Richard Macfarlane P

2 The Cyber Academy, Edinburgh Napier University, United Kingdom
Y The Cyber Academy, United Kingdom

ARTICLE INFO ABSTRACT

Article history:

Received 28 January 2017
Received in revised form
10 July 2017

Accepted 10 October 2017
Available online xxx

This paper aims to evaluate possible threats with unofficial Android marketplaces, and geo localize the
malware distribution over three main regions: China; Europe; and Russia. It provides a comprehensive
review of existing academic literature about security in Android focusing especially on malware detec

tion systems and existing malware databases. Through the implementation of a methodology for
identification of malicious applications it has been collected data revealing a 5% of them as malicious in

an overall analysis. Furthermore, the analysis shown that Russia and Europe have a preponderance of

Keywords:
Malware analysis
APK

Android
Marketplace

generic detections and adware, while China is found to be targeted mainly by riskware and malware.

© 2017 Published by Elsevier Ltd.

Introduction

In a context where Android is spread worldwide as the most
used OS, even if it is still a young one, this paper aims to help to
evaluate the real growth of threats along with it. In 2012 a good
deal of research was performed to try to study an increasing
amount of malware in Android. Zhou et al. categorized and ana
lysed a large number of malicious applications downloaded from
different sources in order to evaluate risk evolution since Android
was born (Zhou, 2012).

Currently little research is focused on mobile security outside of
the main Google marketplace and there is a lot of disinformation in
this field among average users. In recent years there has been a
large increase in the number of unofficial third party marketplaces,
both in number and variety, due to the large demand placed by
users. Along with them, the number of fake and malicious apps also
increased. As a relevant study revealed in 2012, between 5% and
13% of a sample number of apps downloaded through third party
marketplaces were modified from the original version via repack
aging techniques (Zhou et al,, 2012).

With the fast growth of network technology, mobile devices and
mobile internet are becoming a trend for the information ages.

* Corresponding author.
E-mail address: w.buchanan@napier.ac.uk (W)J. Buchanan).

https://doi.org/10.1016/j.diin.2017.10.002
1742-2876/© 2017 Published by Elsevier Ltd.

Since 2011 smartphones surpassed traditional desktop computers
in terms of units sold and the smartphone market grew by 13% in
2015 alone. It should be noted, however, that 82,8% of the total is
made by Android devices with only a 13% of I0S and a circa 5% of
other Operating Systems (IDC, 2015).

Android is an Operating System for mobile devices based on the
Linux Kernel and is currently developed by Google. It is aimed
mainly at touch screen systems (smartphones and tablets) and it
has the characteristics of an almost totally Free and Open Source
Software, apart from some proprietary drivers included by device's
manufacturers.

Apache 2.0 license permits to modify and redistribute the source
code and thanks to that a vast community, made up of developers
and supporters, has grown up around it to become the most pop
ular OS in mobile environment, in addition to the fact that it is best
choice for mobile manufacturers thanks to low production costs,
high customization and lightness of the platform itself.

A growing distribution of smartphones and of the Android OS
itself has brought an entirely new world of threats and malicious
activities linked with this relatively new and young system. More
over, accessing the so called “black market” it is possible to share
malware and exploits easily with other users and the only trend that
seems to contrast it, is to pay customers and developers to advise
unknown bugs and vulnerabilities instead of spreading them on the
web. Even if specific programs have been developed to use fuzzing
techniques to find or prevent big bugs to be spread, it is still very

Investigation (2017), https://doi.org/10.1016/j.diin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

SCDW\IU’UIJ;WN—I

j=2] [*2 I =2 iNe)) Lo n A AN I R S S - B W wwlwlbwWWUWININNDNNDNDNDNDNDND = == ek ek el el
u:gwN—'Stooo\lmmfgwmﬂcwW\lmmﬁwN~Sww\lmm.::.ww—'onooo\lmm.hww—‘owoo\lmmbww—-

DIIN712_proof m 13 October 2017 m 2/11

2 W.J. Buchanan et al. / Digital Investigation xxx (2017) 1 11

likely that a large number of exploits can be detected each year in
Android OS as shown in the last CVE survey for 2015 (CVE, 2015).

While the early days of Android mobile malware were just a
proof of concept, after many years of studies in mobile phone se
curity, specific categories have been created based mainly on
malware behaviour and targets. Even if rooting techniques (used to
get access to the file system) are becoming more sophisticated,
developers take advantage of web communities, which publish root
exploits to increase smartphone customization. Using them, a
malware developer can often root the target device and execute
malicious code on it without user permission (Felt et al., 2011).

The increasing amount of vulnerabilities discovered weekly,
along with the considerable number of new variants that are being
revealed recently, are setting up a dangerous scenario which risks
to transform Android in a totally unsecure platform. Those poten
tially alarming situations are well represented in another survey
performed by Symantec in 2016, where the last three years are
compared in order to show how the increasing amount of Android
users is changing its security level (Symantec Corporation, 2016).

Android became popular thanks also to its way of sharing very
easy to code applications. It uses the “Google Play Store” as the
official marketplace to download apps but periodically new mal
ware and threats are discovered inside the Play Store despite
Google increased security through automated controls like Google
Bouncer (Faruki et al., 2015).

To cite an example to help readers to understand actual risks and
dangers linked with Android OS, a very recent research made by
Trend Micro revealed a new malware named Godless which uses
mainly publicly available root exploits along with a malicious
payload in order to infect as many users as possible. Potentially 90%
of all devices worldwide are contaminated with this malware (Trend
Micro, 2016). High risk malware are being discovered frequently
especially during 2016, when not only third party marketplaces
have been found hosting potentially malicious content, but also the
Google Bouncer has been often too easily avoided, resulting in many
dangerous applications stored in the Google Play Store.

As a proof of how easily new malware are spreading and how
much more complex they are becoming in terms of coding, at
writing time, a new very powerful malicious APK has been found by
Check Point Research Team on the 30/11/2016. They named it
Gooligan and it is infecting circa 13,000 devices per day (Check
Point Research Team, 2016).

Related literature
Market stores

With the growing number of Android applications, Google had
to make its own marketplace, called “Google Play Store”, as robust
and trustable as possible. But, for various reasons, people often
need or want to download applications from different sources from
the main one and so during the last years Third Party Marketplaces
started to grow throughout the internet. A potential reason for
customers to prefer other Marketplaces instead of the Play Store is
the excessive power that Google has over each Google Account. It
has been shown various times that Google has used a backdoor to
remotely uninstall applications downloaded from the Play Store,
which have been found to be malicious. Many security experts and
the “Free Software Foundation” have commented on the actions
taken, saying that no one should have such considerable power
over its customers (Keizer, 2011).

Google Play Store
Google Play Store is the way Google forces people to download
applications through its market. Developers have to upload APKs

signed with their own Google key to the marketplace if they want
them to be easily accessed by customers. From a user point of view
the Play Store provides access to a huge database of applications
and their details and statistics (Google Inc, 2016). Unfortunately,
currently not much information has been revealed about Google
Play Store's backend system, but a recent project developed by
Computer Science Department of Columbia University built an
application called “PlayDrone” used to crawl inside Play Store so to
explore as much as possible about it. Researchers found out that
Play Store contains more than 1,100,000 APKs with 25% of them
being duplicates of other ones. They also discovered a lot of badly
managed applications that could put customer's sensitive data at
high risk (Viennot et al., 2015).

One of the main selling points of the Google Play Store is that it
is very useful both for customers and publishers. Customers can
either search easily through an always updated and well managed
application for a specific app or use Google Top rankings charts to
see which applications could fit better for them. From a publisher
point of view the Play Store guarantees 70% of applications revenue
paying just 25$ fee for the developer account once (Google, 2016).

Third party marketplaces

New Android marketplaces regularly appear on the internet,
however due to IP and geo blocking restrictions, it can be difficult
to categorise them all. In late 2013 the Politecnico di Milano Uni
versity tried to characterise alternative marketplaces finding 89
distinct webstores with a tool called AndroCrawl (Fig. 1). Other
studies have been performed in the same field but without a spe
cific tool and with minor results (Sisto, 2013).

It is interesting to note how China in particular is one of the
countries with the highest number of marketplaces. The reasons for
it resides on the fact that China is the only country in the world
where Google Play Store is not permitted as Fig. 2 shows (Google
Inc, 2016).

Security

Google Bouncer

As previously explained, the main approach used by Android
(and other OS) to protect users is to create a trusted pool from
where to safely download new applications, the so called market
places. However, trying to make it a safe store seems to be a very
hard challenge, especially considering the huge number of new
applications uploaded daily. Along with them an impressive num
ber of malicious applications are linked. According to one of the last
security reports made by “G Data”, 8240 new Android malware
threats have been discovered in just one day during last quarter of
2015 (IDC, 2015).

These numbers make it impossible to use manual verification
for each application like the Apple Store does so on 2nd February
2012 Google released Google Bouncer, an app validator announced
with the following description:

“The service performs a set of analyses on new applications,
applications already in Android Market, and developer accounts.
Here's how it works: once an application is uploaded, the ser
vice immediately starts analyzing it for known malware, spy
ware and trojans. It also looks for behaviors that indicate an
application might be misbehaving, and compares it against
previously analyzed apps to detect possible red flags. We actu
ally run every application on Google's cloud infrastructure and
simulate how it will run on an Android device to look for hidden,
malicious behaviour. We also analyze new developer accounts
to help prevent malicious and repeat offending developers from
coming back” (Google Mobile Blog, 2012).

Investigation (2017), https://doi.org/10.1016/j.diin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

Swmqmmhww.—-

W w w W W w NN NN N
GRORN 2B 0wV lRdN S8R NSOEUN S0V arilRN"donNonlibNn_cboNanr®o=

DIIN712_proof m 13 October 2017 m 3/11

WJ. Buchanan et al. / Digital Investigation xxx (2017) 1 11

Marketplace URL Language
AndroidBlip bttp://www.androidblip.com/ English |
Appslib betp://wew. appslib_coa/ English
F-Droid bBttp://www.t-droid.org English
GetlJar bttp://a.getjar.con/ English
AppMarket htep://indiroid. con/ Turkish
Soc.io http://soc.io/ English
Andiim3 bttp://andiin3.com English
Android http://endroidis.ru Russian
AndroidPhones.ru bttp://android-phones.ru/category/files/ Russian
Anzhi http://www.anzki.con Chinese
Aptoide http://aptoide.con English
Amazon AppStore bttp://www.anazon.it/zobile-apps/bnode~1661660031 English
Hiapk http://biapk. com Chinese
Opm Mobile Store btep://apps.opera.con/ Hng]i-l\
Mikandi http://zikasdi.com English
Myandroid.su bttp://=zyandroid.su/index. php/catprog Russian
Wandojia btetp://wandouiia.com/ Chinese
Androidpit kttp://wew.androidpit. con English
IMobile http://www.lzobile.com English
”lpk htep://wew. 92apk .com Chinese
Android online http://www.androidonline .net Chinese
Appchina.com bttp://wew.sppchina. com Chinese
Appitalism htep://wew. appitaliss. con English
Eomarket.com htep://wew.coezarket.con Chinese
Insyde Market http://www. insydemarket .con Engliah
Nduoa http://www. nduca.com Chinese
SlideMe http://slideme.org English
SjApk http://wew.sjapk.com Chinese
Xda Developers http://torun. xda-developers.con English
4PDA http://dpda.ru/forun/index . php?abovs orum=281 Russian
Softportal bttp://wew.softportal. con/dlcategory- 1649 . htal Russian
AppBrain htetp://www. appbrain. com/ English
Apk gfan btep://epk.gfan. con/ Chinese
ProA ndroid.net http://www.proandroid.net/ Russian
Andapponline hteps://www .andapponline.con/ Engliah
AppsZoom http://wew.appszcos. com/ English
Androlib bttp://www.androlib. con/ English
Camangi bttp://www.camangizarket .con/ English
ESDN http://www.endn.wa/zobile-applications-zarket English
T-app betp://2app. T/ Russian
Jimil6s btep://wew. jini1€8.con/ Chinese
Android MyApp bttp://endroid.zmyapp.con Chinese
D.cn bttp://android.d.ca/ Chinese
Hami apps bttp://baziaspps. cnome.net/ Taiwanese
Lenovo http://3g.lenovoan.con/ Chinese
Mobango http://www.zobango.cox English
Nexva.com bttp://nexva.com English
Panda app kttp://download. pandsapp .coz English
T-store bttp://www.totore.co.kr Korean
Tacbao http://app.tacbac.con Chinesc
Yandex bttp://store.yandex . con/ Russian
BrotherSoft kttp://android.brothersoft . con/ English
Mobo Market bttp://store.mcborobe. con Rnsli:h
AppZil bttp://www.appzil.con/ Korean
reeware Lovers Bttp://www.troewarelovers.con/ English
Android Downloadz bttp://www.androiddownloads .con/ Engliah
CoolApk kttp://wew.coolapk.con Chinese
APKs http://wew.apky. con/ Chinese
APK bttp://opk.inobile.com.ca/ Chincsc
Cooyo btep://www.gooyo.con/ Chinese
Aibala http://www.aibala.con/ Chinese
AppVN kttp://sppetore. va/android/ English
AppTomato kttp://apptomato.comn/ English
Mobogenie http://www.zobogenie. con/ English
GetBazaar bttp://getbazaar . con/ea/ Arabic
RepoDroid http://repodroid.con/ English
CetApk bttp://getapk.co/ English
Samaung Calaxy App http://cazouwmgappa.cina.ca/main/gotMain. e English
189store bttp://www. 1B9store. com Chinese
Baidu Mobile http://as.baidu.coz Chinese
Sogou butp://=pp.sogou.com Chincse
Zhushou 360 bttp://zhushou.360.cn Chinese
25pp kttp://appa.uc.ca Chinesec
CNMO bttp://app.como.com Chinese
Removed Apps kttp://wew.removedapps.con English
Appdh.com http://www.appdh.con/ Chinese
Apps Apk bttp://www.appsapk.com English
Mobile Apk World http://mobileapkworld. con English
AndroidPit httpa://www .androidpit.con/ English

Fig. 1. All marketplaces found in September 2015.

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

Investigation (2017), https://doi.org/10.1016/.diin.2017.10.002

100
101
102
103
104
105
106
107
108

110
m
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Szpmqmm.&ww—-

Lo IR Al W wwlwlbwWWUWININNDNNDNDNDNDNDND = == ek ek el el

GRS

DIIN712_proof m 13 October 2017 m 4/11

4 W,J. Buchanan et al. / Digital Investigation xxx (2017) 1 11

- Cunalia
Bl Burkina Faso
B} Cambodia
B Camerocon
el Canada
&= Cape Verde
B Chile
il China
mmm Colombia
== Costa Rica
== Croatia

= Cyprus
I Czech Repubiic
am Denmark
=& Dominican Republic .
i Ecuador '

.= Eavnt

TN AL T SN e

Fig. 2. List of countries with relative Play Store features (Google Inc, 2016).

Initially in 2012 Bouncer was nothing more than a list of
emulated devices on which try to install and launch applications
trying to trigger malicious events. All the emulated apps are ana
lysed in a dynamic and behavioural way in order to see potential
malicious activities. Google chose dynamic analysis instead of the
cheaper and usually more efficient static one in order to prevent
obfuscation and repackaging techniques that are very popular and
easy to perform. Dynamic analysis is more robust against code level
evading methods and can detect new threats easily, despite it still
cannot guarantee a total protection from code evasion (Diao, 2016).

Not much technical information has been revealed about Bouncer
but an in depth analysis made during SummerCon 2012 found out
some IP addresses used by Google emulated devices and also some
used by manual operators. They discovered that an unverified
application run for 5 min on Emulated Android environment
(QEMU) on Google's infrastructure which have a permission for
external network access. Using this access the researchers finger
printed the exact QEMU version, the emulated device ID and the
owner name. The way Bouncer explores applications is via emulated
Ul input, which are easy predictable and many methods can be used
to exploit this type of code verification (Oberheide and Miller, 2012).

It is interesting to notice how two of the most famous and
widespread malware families, Dendroid and the more recent GM
Bot (also known as Mazar), used simple approaches to avoid
Bouncer check. Dendroid used a hard coded flag to determine if the
application is running in Google Bouncer. It simply checks DEVICE,
PRODUCT, CPU, MODEL and BRAND of the system to see if they
match with an emulator one (Blue Coat Labs, 2014).

GM Bot and other spyware and adware software use newer ways
to pass undetected. An interesting method used by AdDis
play.Cheastorm is to obtain the IP address of the device and check it
with WHOIS record. If it returns a string with the word Google in
side it assumes to be run inside Bouncer and so basically it decides
to postpone or directly not run the malicious code (Stefanko, 2015).

As it is possible to evaluate from the two examples described
above, Bouncer can still be bypassed with customized techniques. A
properly skilled malware developer can find a way with more so
phisticated tricks and get also more information directly from
Google Bouncer even if according to Oberheide and Miller Google is
very severe and restrictive when it comes to uploading malicious
applications, with a direct ban of the IP address used by the
application owner (Oberheide and Miller, 2012).

As far as researchers know, Google Bouncer can be avoided
mainly through two attack types:

e Delayed Attacks: an application can contain malicious code
when it is checked but its behaviour results not malicious inside
Bouncer execution. Malicious code is executed only once
application is installed on a user device.

e Update Attack: no malicious code is included within the
application. Once it passes Bouncer check and it is installed on a
user device, the application downloads malicious code from a
server or tries to connect to a C&C server to send user's sensitive
data.

Both attacks are based on dynamic code loading, which is used
primarily to download and execute code from a live application.
Analysing these assumptions and considering recent facts, it seems
that Google Play Store is still not safe and that it works better in a
post reaction way, doing an immediate ban of a malicious appli
cation from the market and, thanks to the way Android OS itself is
built, eventually making a remote deletion inside infected devices.

Third party marketplaces

Third party marketplaces are evolving fast because of the high
quantity of competitors and currently most of them present
external metadata along with each application. Often they show
package name, developer name, update contents, upload date and
reviews to convince users to download from their webstore. Most
of them have also added internal metadata like MD5 hashes,
developer fingerprint, Android permissions, size and application
version. A real problem however is that there are often little or no
security policies for third party marketplaces and just a few of
them can guarantee an AV check for applications. For that reason it
is very easy for them to spread malware or grayware.

Yi Ying Ng and his team demonstrated well the general diffi
dence of people about unofficial marketplaces through a software
called TransRank, which has shown (focusing on China) more than
36% of analysed applications as highly suspicious. Developers
knows that publishing and deleting applications continuously or
hopping between unofficial marketplaces is a key strategy to stay
unchecked. In addition to that it is known that code control and
dynamic analysis are computationally intensive if they have to be
done for thousands of applications. For this reason marketplace
owners prefer to avoid them (Ng et al., 2014).

Malware databases
As of 2016 not so many Malware Datasets have been collected
specifically for Android. The first and probably most well known is

Investigation (2017), https://doi.org/10.1016/j.diin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

SEDW\IU’UI.I;UJNH

j=2] [*2 I =2 iNe)) Lo n A AN I R S S - B W wwlwlbwWWUWININNDNNDNDNDNDNDND = == ek ek el el
u:gwN—'Stoooﬂmmfgwm—'cu:oo\lmm:&ww—‘gtooo\lmm.::.ww—'Onooo\lmm.hww—‘oooo\lmmbww—-

DIIN712_proof m 13 October 2017 m 5/11

WJ. Buchanan et al. / Digital lnvestigation xxx (2017) 1 11 5

called the Genome Project, created and used by Zhou et al., in 2012,
it was the first overview of the Android malware world (Zhou,
2012). It is a dataset, shared only academically, of 1260 samples
categorized in 49 different families. They analysed every aspect of
each malware such as the infection method, the malicious aim, the
AV evasion techniques, and the triggering action.

The analysis made by Zhou et al. was the first one to reveal that
the BOOT_COMPLETED event was being used by malware de
velopers to wait for the right moment to attack. It revealed also that
some malware hijacks the main activity or the handler of the Ul
components. Even if it is a complete research paper, often it omits
the exact conditions used to launch the malicious part of the
application, the result of which makes it difficult to replicate parts of
the experiment. A good example is DroidKungFu, where from the
article it is possible to know that it can be triggered at boot time but
it is not specified that there is a time bomb which launches the
malicious part only after 240 min waiting. Without this information
itis difficult to analyse it properly with other tools (Zhou et al., 2012).

A second and more recent dataset was presented in 2014 in Artz
et al. paper. They created FlowDroid, a static taint analysis tool used
to monitor Android apps. With static analysis they detect data leaks,
but in order to test and validate it Artz et al. developed also
DroidBench1, which is a database of apps implementing different
types of data leakages. They classified applications through
methods used to leak data with a description of the performed leak.
It is interesting to note that the source code for every leak is given
and it is useful for evaluation and comparisons. The database con
tains 120 APKs along with minimal source code. Even if it is a very
thorough project and database, samples are not real malware and
often are too easy to be spread in “real world”. Plus, samples are not
mixed with benign code as is usual in malware (Arzt et al.,, 2013).

A third well known malware dataset is the Contagio Mobile
Minidump project which is basically a blog used to store malware of
any type along with their descriptions. The idea was to offer an
online repository to share malware samples, encrypted via pass
word protected zip files, in order to manage who could download
them. Evenifitis easily accessible, at the time of writing, it still only
contains a few samples and relative hashes (Contagio, 2016).

Methodology and design

In order to test the application nine marketplaces will be
examined. While Zhou Y. et al. used as base pool a total of 204,040
APKs among 4 marketplaces in 2011, because of time constraints,
only 1000 APKs will be download per marketplaces gathering a
total of 9000 applications to analyse. It is important also to get the
same number of APKs from each marketplace so to be as fair as
possible for statistical results. To permit discussions and compari
sons with older projects, the chosen regions for the marketplace
locations follow the only similar location based research, made by
W. Zhou et al., which is performed on Western Countries, East
Europe, and Chinese markets (Zhou et al., 2012). Unfortunately, due
to instability of third party marketplaces, it is impossible to adopt
the same unofficial market list used in other studies. Furthermore,
some marketplaces have changed over the years improving their
security policies and a few of them have built anti download
checks that could block completely the analysis of the specific
market.

For the reasons listed above the resulted marketplace schema
used as input for the application will be: BAIDU (China); WAN
DOUJIA (China); XIAOMI (China); FDROID (Europe); FREEWARE
LOVERS (Europe); ONEMOBILE (Europe); SOFTPORTAL (Russia);
TEGRAMARKET (Russia); and UPTODOWN (Russia).

A sub criteria chosen to apply to each market is linked to which
kind of APKs should be downloaded. In Google Play Store and

usually also in third party marketplaces Android APKs are split in
categories so to help users to choose what to download. Following
the schema used by W. Enck et al. if the marketplace has a list of top
downloaded/popular applications, those ones will have priority
over the others. In case there is no top list, APK downloads will be
equally spread through all the categories so to obtain an equal
distribution of APK type and size (Enck et al, 2011).

Before continuing with the in depth analysis it has to be spec
ified that because of the quantity and variety of AVs used by Viru
sTotal, a high number of false positive results could be returned. To
compensate this problem, it has been chosen to only define an APK
as malicious if 6 or more AVs out of an average of 55 detect it as a
threat. Vice versa APKs with 5 or less detection are considered
genuine for the aim of this project.

Crawler

The first section to design is the way to catch URLs once a
marketplace is given. It is possible to find many crawling projects
on GitHub used for different purposes and situations but just few of
them are designed to catch APKs specifically from marketplaces. In
particular apkcrawler developed in the “Open GApps” GitHub
channel uses a main Google API interface to interact with Google
Play Store easily, plus another eight marketplaces. It is becoming
popular as the main APK crawling application but it is developed
only to download main GApps. GApps are APKs directly developed
by Google and usually preinstalled on Android smartphones
(GitHub, 2016). Because of the criteria specified above the crawler
has to be per market and per category customizable so to easily
select a range of application to catch. After a deep analysis of the
marketplace websites the resulting schema in Fig. 3 represents
which design is considered as the best solution.

As Fig. 3 shows the crawler is designed to get marketplace's
details and capture through a script all the URLs. After that, a per
link cycle checks for the existence of an identical file and in case of
success it goes through a multithread download engine, built with
the aim to save time in download and avoid single data failures. As
an output, the entire system will produce a log and print a row to
the shell in order to manage the current situation properly.

Scanner

The second relevant section to be designed is the Scanner part. It
is the core of the application and it will take files from the crawler
output to check them and mark them as malicious one or good one.
To do this it is fundamental to rely on a malware database
considered as a trustable source. From the literature review, only
VirusTotal results to have a complete and updated malware data
base system and for this reason it will be used as scanner engine
during this project.

At the same time metadata information of each specific APK are
extracted from the package and then details from both the meta
data and the VirusTotal report are collected and stored. From
VirusTotal it is possible to return three results:

e OK result, which indicates a clean APK.

e Malicious result, which indicates the APK detected as malicious
by one or more AVs.

e Not Found, which indicates that the hash of the specific APK is
not stored in VirusTotal Database.

VirusTotal works through a personal account analysing the MD5
hash, in this scenario, and matching it with 59 AVs. If an AV finds
the hash positive it will send back also the category of the malware
(VirusTotal, 2016). All the information captured from both

Investigation (2017), https://doi.org/10.1016/j.diin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

Swmumm.&ww.—-

AR AN I A L v Wb ww WWWWNNDNDNNNDNDNDNDND = = == = = e
898&0oo\lcnt.ngwN—'cggﬁaat&ﬁﬁgwm\lmmgww—‘owm\lmmhww—*oww\lmmwa'—‘

GRS

DIIN712_proof m 13 October 2017 m 6/11
W,J. Buchanan et al / Digital Investigation xxx (2017) 1 11

Crawler

5 'l’l o) (i & .

P ~ e e | B A ke W
gy (E {EU)

07 (I By -4 § S

metadata and VirusTotal are stored in per marketplace tables to be

used later in statistical analysis.

Script to Crawl

’>».-. Fen .’:"\‘.
GOREEREEN

Multithread
Download engine

Fig. 3. Design of the crawler.

e The number of positive detections (from VT).
o The list of Android Permission requested (from metadata).

In Fig. 4 it is possible to see the entire Scanner process in which,
for each file downloaded during crawling phase, metadata with
MD5 are extracted and sent to VirusTotal for a malware check. In
detail, the relevant stored data are:

e The APK package unique name used as identifier (from
metadata).

e The version number of the APK (from metadata).

e The MD5 hash signature (from metadata).

o The total number of AVs used (from VT).

New file scanner

The third part of this tool is tasked with scanning “never before
scanned” files and storing the results within a specific Exceptions
Table. In Fig. 5, instead of sending an MD5 verification, the picked
up files go through a three step process. The first step is a proper
upload and analysis on VirusTotal, the second one is a main
permission based check with Google Play Store to see if some
permissions have been altered, and the third one is an upload to a

Scanner and Storer

p Per file

APKF detail

o I

Store result as not
found in SQLite

Store result with
details in SQLite

Stare result with
details in SQLite
Save Android
Permissions

L)
Save Android
Permissions

Mark it as non
dangerous

L3

Store Malware type

+

Mark it as

dangerous

Fig. 4. Design of the file scanner.

Investigation (2017), https://doi.org/10.1016/jdiin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

StDOO\ImUI-hWN—i

Lo Lo v n W wwlwlbwWWUWININNDNNDNDNDNDNDND = == ek ek el el

DIIN712_proof m 13 October 2017 m 7/11

WJ. Buchanan et al. / Digital lnvestigation xxx (2017) 1 11 7

dynamic data leak online scanner called AppAudit. Results from
these three steps will be stored to define later if the specific APK is
malicious or not.

Database design

Akey point for the application and for further statistical analysis
is a structured local Database system used to store details for each
analysed APK. Taking considerations of the aims analysed in the
literature review, part of the database has been built on a per
marketplace structure as outlined in Fig. 6. Each table inside Mar
kets Database follows a precise structure which represent the de
tails of the applications stored inside it. This structure can be
summarised as follows (Fig. 7).

Results

This section of the dissertation is used to test the designed and
implemented software in the real scenario and analyse the results.
Due to the large amount of information extracted from the exper
iment it will be possible to build different graphs and discuss re
sults and their trustiness critically.

Data collection overall

Using the tool designed and implemented in previous sections it
was possible to obtain detection data from 9000 APKs. As specified
at the beginning of the project three main regions have been cho
sen (China, Europe, Russia) as information sources. To reach trust
iness and equity unofficial marketplaces chosen use no AV
automated control over their APKs and permit crawling through
automated scripts.

To begin to analyse the paper's results, an overall view of the
downloaded and scanned APKs is plotted to a pie chart, soto show a
realistic proportion of detected applications. As can be deduced
from Fig. 8, analysing a total of nine marketplaces spread through
Europe, China and Russia, 64% of the downloaded APKs scanned via
VirusTotal result as Negative (or genuine). Only 5% of the total APKs

Name Type
v |I] Tables (11)

> 2] Baidu
\ > | Exceptions

>] Fdroid
‘ > '] Freewarelovers

> |_] GoogleTopSelling
L] Onemobile
|_] Softportal
|| Tegramarket
] Uptodown
|| Wandoujia
>] Xiaomi

Indices (0)

& Views (0)
LJ Triggers (0)

VN Y N

Fig. 6. Database structure used for the software.

have been detected from more than 5 AVs but it is still circa 450
malicious APKs. Furthermore, 31% of the total downloaded APKs are
still unknown because they have never been uploaded to
VirusTotal.

At this point, it is important to remember that these statistics
are based on AV detections and for this reason, it means that it is
not guarantee that the 64% of the applications are completely safe,
although it is more likely that they do not contain malicious code
(or at least currently known malicious code). At the same time, the
31% of new applications to be stored, reflects an Android world in
continuous growth, with many new or repackaged applications
built every day, and for this reason, difficult to manage in terms of
security.

A second chart pictured in Fig. 9 represents more in depth the
division of detected malicious activities throughout the three main
regions adopted for this project (Russia in green, China in blue,

New File Scanner

Per file in
exceptions

APKF detail

7

VIRUSTOTAL

file upload

\

AppAudit

file upload

Store result in Not
found Table in
SQLite

KMultiAVs static scanner/

Store result in Not -

Found Table in
SAlite

Compare Android
Permissions

\Permission based scanney

Store result in Not
Found Table in
sQlite

Behavioral and

\ data leak scanner j

Fig. 5. Design of the new file scanner.

Investigation (2017), https://doi.org/10.1016/j.diin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

SLDOO\lmUl-thA

Lo Lo v n W wwlwlbwWWUWININNDNNDNDNDNDNDND = == ek ek el el

DIIN712_proof m 13 October 2017 m 8/11

8 W.J. Buchanan et al. / Digital Investigation xxx (2017) 1 11
|=) Package TEXT ‘Package” TEXT
l=) Version INT *Version® INT
[2) Name TEXT ‘Name' TEXT
=) MD5 TEXT *MD5" TEXT
[=) GoogleCheck INT ‘GoogleCheck’ INT
l=) VirusTotal INT “VirusTotal’ INT
[=) TotalAVs INTEGER ‘TotalAVs® INTEGER
|=] PositiveAVs INT “PositiveAVs” INT
|=) VirusType TEXT VirusType™ TEXT
l=) Permissions TEXT “Permissions” TEXT
[2] LastUpdate DATE ‘LastUpdate” DATE

Fig. 7. Table structure used for each marketplace.

Overall marketplaces detection

® Positives real
B Negatives real

% Not in VT

Fig. 8. Overall results of analysed unofficial marketplaces.

Europe in red). As it would be expected from the literature review,
because Chinese does not have a legal Google Play Store active at
the moment, the number of positive detected APKs is considerably
higher than the other two regions (248 vs 81 and 90). It is also
interesting to note how China has a remarkable difference in terms
of “never scanned” APKs.

Data collection malware

The next step that has to be analysed to help to define an
average geo localized malware spreading detection scenario, is a
list of detected threats. Using a customised Python script it was
possible to extract all uniquely detected malware types from each
region. Due to the way that AVs work it almost always happened
thatan APK was detected as malicious, but with a different category

Overall per market detection

results
3000
2000 I
100 I l
o = HEAR H.
Positive Negative Not found

MmChina MEurope MRussia

Fig. 9. Overall results divided into Europe, China and Russia.

name from each AV brand. For that reason it was decided not to
specifically check an APK malware type manually, but to plot only
the result of detected malware types for files with more than five
positive AVs detections. Because the Python script returned a list of
hundreds of malware types it was decided to only show the top 15
detected malicious applications.

Fig. 10 defines the Top 15 detected malware samples given by
the sum of three analysed Russian marketplaces (Softportal,
Tegramarket, Uptodown). As it can be seen, at least 5 of the most
detected threats are AirPush adware. AirPush is a mobile ad
network based on push notifications and instead of using in app
advertisements, they add notifications inside the Android tray bar
(LaCouvee, 2011).

The first and second detected malware threats, with a number of
51 and 48 respectively, are instead generic detection for Trojan,
which usually could refer to adware and spyware. The second
histogram, shown in Fig. 11 reveals more or less the same scenario
found for the Russian marketplaces, with just an increased number
of Artemis threats. Artemis was detected for the first time by
McAfee and is considered a potentially unwanted program. It
usually works as an adware and it can also hijack the main browser.

Fig. 12 reflects the Chinese average marketplace scenario and it
is undoubtedly more dangerous than the previous two. Even
though the highest number of detections are still generic malware
it shows how riskware such as SMSPay or the similar SMSReg are
spread throughout the Chinese web. SMSPay is a malware used to
add an SMS activation fee to fake legitimate applications (Wontok,
2015).

Russian marketplaces top 15

\ & o
& & & CHN RN R I A S P
P & o & .,»'PL SN vs“ & & & & A
& P F &N &S F&
g & &F F @ o F S & &
O’ & AaRN AP LR S S S & F §
& & & @ T S &
v“b L & & & bg LR K &o‘ &
& R S
& & ¥° ® s° K
A &S © &
5
W5
g

Fig. 10. Russian marketplaces malware detection histogram.

Investigation (2017), https://doi.org/10.1016/j.diin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

120
121
122
123
124
125
126
127
128
129
130

SOOO\IC’UIAWNA

Lo Lo v n W wwlwlbwWWUWININNDNNDNDNDNDNDND = == ek ek el el

DIIN712_proof m 13 October 2017 m 9/11

WJ. Buchanan et al. / Digital lnvestigation xxx (2017) 1 11 9

European marketplaces top 15

P T N S . R S . T WY
:‘;@@ S FEE TGS
& o d RO S - WS
& Y & & F N &P e N 8
& o\§ A 19%? E S EE s"\& o“SQ
& ° & ¢ & & F @ v“b‘ ;&
O A& F N o o o &
s P & R 06‘\» PO
& & S & QN o8 &
& « & & & & &

Fig. 11. European marketplaces malware detection histogram.

Chinese marketplaces top 15

120

Fig. 12. Chinese marketplaces malware detection histogram.
Exceptions

A last important analysis that has to be done and represents
one of the fulcra of the entire project, regards files moved in the
exception folders. The New File Scanner used the three detection
techniques described in the design section to examine 1622 files,
which were effectively APKs that have never been detected
(while the rest of the excluded data were damaged or other
extensions files). VirusTotal and AppAudit combined revealed
potential malware threats in 221 of the 1622 analysed APKs
(with a detection rate > 5). With a percentage of 13.62% of po
tential malware throughout the never scanned APKs it was
revealed how much new or repackaged applications are likely to
contain malicious code, especially the ones from Chinese
marketplaces.

A second interesting scenario has been outlined via the Google
Comparison Permission script, which firstly has revealed that only
circa half of the analysed applications were also stored inside the
Google official market, but more interesting it revealed how some

detected malware threats are probably repackaged version of
legitimate one with a higher plethora of permission requested
compared with the original one.

Fig. 13 highlights an example of this category were usually
games are targeted (in this scenario ‘com.ea.game.pvz2_row’) in
order to make a malicious copy of them. The box on the right of the
image represents permission not currently requested in the closest
version of the same APK found in the Google Play Store (in that case
the Play Store version was 210). It is easy to note how permissions
like ‘GET_TASKS’, ‘RECORD_AUDIO’, and ‘WRITE_SETTINGS', which
are potentially dangerous permissions, have been added in the
unofficial version.

Another interesting result that could require further analysis has
been found in not more than 10 APKs generated by the Exception
folder where the exact version of the Play Store one has been
detected but a completely different list of permissions was
requested. Fig. 14 outlines this scenario for the package
‘cn.wps_moffice_eng’, which is a similar office program (Fig. 15),
where ‘Version’ and ‘PlayStoreVersion’ were the same but the field
‘PermissionDifference’ revealed some suspicious permissions
requested. It is interesting to note how VirusTotal did not detect any
malicious activity even if those permissions were added.

Comparison

Focusing on projects analysed during the literature review, only
one of them performed a geo localized evaluation of the repack
aged market inside third party marketplaces. W. Zhou et al. used
DroidMOSS, and later a manual verification, to check repackaging
rate over 200 randomly chosen APKs from Europe, China and East
Europe. In the paper they found Softportal marketplace with 5% of
repackaged apps and Freewarelovers with 6% of them. It is possible
to note indeed, that statistics evaluated from this results section are
aligned with 2011 Zhou results (with all the limitations that could
come with it) (Zhou et al,, 2012).

A second comparison that has to be made is with Y. Zhou et al.
As illustrated in the literature review section they built Droi
dRanger, a tool to detect, both in static and behavioural way, mal
ware inside Android APKs. They crawled 51,038 applications from
five different marketplaces finding 179 malicious activities
including some zero day malware. Comparing their results with
the ones retrieved from this project it is possible to see that they
found circa 3% of malicious applications inside 51,038 APKs against
5% of this research. Even though the results are close, it should be
noted that they did not consider Adware inside their research
(Zhou et al., 2011).

Significant results

Even though the per market graph shows a clear preponderance
of generic malware and adware, searching through the entire list of
detected malicious applications some well known and high risk
threats have been found and will be listed below, along with a
description of their main functionalities:

Toble: | Eeptons v 8
Padkage Markotplace Vergion yStoreVers MDS ssiont sshonDIffc VirusTotal

29 comed.game.pvz2 row Xaomi 206 210 1bdaf51dd6e... 1 l

30 com.tencent.news Xiaomi 5200 5200 7bedeTiee... 1 4] 1

31 comcyshgundem Xiaomi 250 S6addecT3sh... 2 1

°

Yow Racord . [Delote Pecord Mode: Ted ~ mpoct Eport Set a3 NAL
[WRITE_SETTINGS', GET_TASKS, 'READ_PHONE_STATE,
"RECORD_AUDIO', 'RESTART_PACKAGES',
'KILL_BACXGROUND_PROCESSES', "USE_CREDENTIALS',

TotalAVs ___ PositheAVs VIVinsType °

57 15 [VAndroid M... 'GET_ACCOUNTS', ‘SYSTEM_ALERT_WINDOW,
"BLUETOOTH_ADMIN', 'BLUETOOTH',

S3 15 [vAndroid, Tr... 'ACCESS_COARSE_LOCATION', 'READ_LOGS',
"MANAGE_ACCOUNTS', "ACCESS_COARSE_UPDATES'

S8 15 [VAndeoid. Tr..,)

Fig. 13. Repackaged application in Xiaomi marketplace.

Investigation (2017), https://doi.org/10.1016/j.diin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

SLDOO\IC’UI-hWN—I

j=2] [*2 I =2 iNe)) Lo n A AN Y - - - B W wwlwlbwWWUWININNDNNDNDNDNDNDND = == ek ek el el

DIIN712_proof m 13 October 2017 m 10/11

10 W.J. Buchanan et al. / Digital Investigation xxx (2017) 1 11
3 KcETewd Mouqon)s n n 9IQH6Q33GRE™ 1 [oow™ 1 £ 0 4] [amLegvEL"
7 Kygpcswd yavous nr n 100009399 1 l » 1 [avugoq 10 [IMLESVEL™
= = MEVDT2EL1INC2," BEVD BHOME 2UVIE, ID2EKAICE,]
_ O Jowoe Tewse Jwe S (T (7 T Towss [eues [|| wmoessEcene. ovmerv, cervoconiz:
(S ARZOU I2roueNRE WD2 20U ZIUDRE NUTR 109 19/ DREMGVAR ALAURIADG pRWRAOUR | [COWWOMBISOAIDES," WTUH 2EKAICE.

Lo | peboon R = IS VR, | (O e woow: (08 - oo Ddou 2% T
DOSOPPNe JRNING guone D9 09X Mo Do 200 9K DITpoRs OO e x

Fig. 14. Same version possible malware detection.

WPS Office +
PDF

Kingzoft Office Software Corporaton Limited
Dusiness

€ Editors’ Cholen <& Top Developer

wheRd

O reais

Fig. 15. Example of the original APK in Play Store.

e GinMaster, is a note trojanized APK distributed in Chinese
alternative Android marketplaces which was discovered for the
first time in 2011 and since then has changed its source code
through three generations. It uses a malicious service to root the
infected device, and then tries to escalate privileges so to send
confidential information to a C&C server. It is evolving using a
polymorphic structure in order to avoid AV detection (Yu, 2013).
Plankton, is another well known Trojan which is used to forward
as much information as possible about the device and user's
details. It uses an update attack via an URL sent by a remote
server, witha link to a JARfile in it, in order to avoid AV detection
(F Secure Corporation, 2016).

GoldenEagle, is instead an older Trojan from 2011 which creates
two services mainly to record and store user calls and SMS. It is
interesting to note that it is SMS controlled and uses a service to
intercept received SMS messages and hide them from users. At
boot time it sends an SMS to a specific number which contains
the words “A host online, attention please!” (Symantec, 2011).
Fusob, is probably the most interesting of the detected malware.
It started between 2014 and 2015 from a Russian developer and
along with Small is part of the ransomware family in Android.
Ransomware are specific malware used to encrypt the user's
device and then used to ask for a payment in order to decrypt it.
It works by displaying a fake screen which accuses victims of a
misdemeanour. With a threat of opening a criminal case, they
force users to pay a fine. A peculiarity of this ransomware is that
they suggest a payment via iTunes gift cards (Kaspersky Lab,
2016).

Conclusions

As it was analysed in the result section a first overall view of the
current situation on the average third party marketplace reveals
that 5% of the total APKs have a high likelihood of containing ma
licious code, 64% are likely to be clean and 31% of them have never
been scanned by VirusTotal. These percentages can be considered
only as a guideline, because VirusTotal's AVs cannot guarantee to
uncover malicious code inside a specific APK. Furthermore, every
one of the AVs used by Virus Total uses its own database and
method, which brings to a plethora of different malware types
detected. For these reasons a lower cap of 6 positive detections was
set during this paper to define an APK as malicious. On account of

that, two previously analysed studies, DroidMOSS and DroidRanger,
have been compared revealing a similar malware and repackaging
percentage in similar Android marketplace scenarios.

Geo localized over three main regions (China, Europe, and
Russia) has been plotted showing a majority of malware detections
focused on China, with 248 probable malicious APKs found.
Furthermore, in China a vast number of application was found as
never detected by VirusTotal, if compared with the other two re
gions, confirming that China is a continuously changing scenario
with always either new or repackaged applications growing wildly
because of the absence of an official Play Store.

Subsequently a proper malware detection comparison has been
analysed throughout the three main regions. While Russia and
Europe had similar results, with a preponderance of generic mal
ware detection, adware, and Airpush (advertisement mobile
network for push notifications) and only a few cases of the most
dangerous applications, China had again a completely different
scenario, revealing a highly detected number of riskware like
SMSPay, which are used to trick money from users.

Finally, searching through all the detected malware types, a
couple of noteworthy Trojans have been found like GoldenEagle and
Plankton. Also GinMaster, a trojanized application strictly geo
localized in Chinese marketplaces was detected numerous times.
Furthermore, Fusob, a mobile ransomware discovered recently, was
also detected throughout the dataset.

As it would be expected, this paper has shown how a high
percentage of dangerous APK can still be found over the web
through untrusted marketplaces, especially Chinese ones. However,
most interesting, it has to be noted how many applications are
distributed along the internet without any security check as Viru
sTotal database revealed.

Uncited reference

Apache, 2016.

References

Apache, 2016. http://www.apache.org/licenses/LICENSE-2.0.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
McDaniel, P, 2013. FlowDroid. Proc. 35th ACM SIGPLAN Conf. Program. Lang.
Des. Implement. - PLDI '14 259 269.

Blue Coat Labs, 2014. Dendroid under the Hood a Look inside an Android RAT Kit.

Check Point Research Team, 2016. More than 1 Million Google Accounts Breached
by Gooligan | Check Point Blog.

Contagio, 2016. Minidump Mobile.

CVE, 2015. Vulnerability Trends over Time.

Diao, W.,, 2016. Evading Android Runtime Analysis through Detecting Programmed
Interactions.

Enck, W,, Octeay, D., McDaniel, P.,, Chaudhuri, S., 2011. A study of android applica-
tion security. USENIX Secur. 39. August, pp. 21 2L

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M., Rajarajan, M.,
2015. Android security: a survey of issues, malware penetration, and defenses.
IEEE Commun. Surv. Tutorials 17 (2), 998 1022.

Felt, A.P, Finifter, M., Chin, E., Hanna, S., Wagner, D., 2011. A survey of mobile
malware in the wild, pp.3 14.

F-Secure Corporation, 2016. Trojan:Android/Plankton Description | F-secure Labs.

GitHub, 2016. opengapps/apkcrawler.

Google Inc, 2016. Google Play Help.

Google Mobile Blog, 2012. Android and Security.

Investigation (2017), https://doi.org/10.1016/j.diin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

Q2

OO WN =

10
1

DIIN712_proof m 13 October 2017 m 11/11

WJ. Buchanan et al. / Digital lnvestigation xxx (2017) 1 11 n

Google, 2016. https://developer.android.com/about/dashboards/index.html.

IDC, 2015. Smartphone OS Market Share, 2015 Q2.

Kaspersky Lab, 2016. Mobile ransomware: Major Threats and Best Means of
Protection.

Keizer, G., 2011. Google Throws ‘kill Switch’ on Android Phones | Computerworld.

LaCouvee, D., 2011. Interview with Airpush - the Future of Mobile Advertising? -
Android Authority.

Ng, Y.Y,, Zhou, H, Ji, Z., Luo, H., Dong, Y., 2014. Which Android App Store Can Be
Trusted in China?.

Oberheide, |., Miller, C., 2012. Dissecting the android bouncer. Summercon 2012,

Sisto, A., 2013. AndroCrawl : Studying Alternative Android Marketplaces.

Stefanko, L., 2015. Android AdDisplay Using Anti-bouncer Technique.

Symantec Corporation, 2016. Internet Security Threat Report.

Symantec, 2011. Android. Goldeneagle Technical Details | Symantec.

Trend Micro, 2016. GODLESS' Mobile Malware Uses Multiple Exploits to Root
Devices.

Viennot, N., Garcia, E., Nieh, ., 2015. A Measurement Study of Google Play.

VirusTotal, 2016. Advanced Features & Tools.

Wontok, 2015. Wontok Lab Tests Android RiskWare SMSPay Striking APAC -
Wontok.

Yu, R, 2013. Ginmaster: a case study in android malware. Virus Bull 92 104.
October.

Zhou, Y., Wang, Z., Zhou, W,, Jiang, X,, 2011. Hey, You, Get off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets, vol. 2.

Zhou, W, Zhou, Y., Jiang, X, Ning, P, 2012. Detecting repackaged smartphone ap-
plications in third-party android marketplaces. Proc. Second ACM Conf. Data
Appl. Secur. Priv. - CODASKY '12 317 326.

Zhou, Y., 2012. Dissecting Android Malware : Characterization and Evolution, vol. 4.

Investigation (2017), https://doi.org/10.1016/j.diin.2017.10.002

Please cite this article in press as: Buchanan, et al., A methodology for the security evaluation within third party Android Marketplaces, Digital

