THE JOURNAL OF

DIGITAL FORENSICS,

SECURITY AND LAW Journal Of Digital ForenSiCS,
Security and Law
Volume 13 | Number 2 Article 7
October 2018

Fingerprinting JPEGs With Optimised Huftman
Tables

Sean McKeown
Edinburgh Napier University, s.mckeown@napier.ac.uk

Gordon Russell
Edinburgh Napier University, g.russell@napier.ac.uk

Petra Leimich
Edinburgh Napier University, p.leimich@napier.ac.uk

Follow this and additional works at: https://commons.erau.edu/jdfsl

b Part of the Information Security Commons

Recommended Citation

McKeown, Sean; Russell, Gordon; and Leimich, Petra (2018) "Fingerprinting JPEGs With Optimised Huffman Tables," Journal of
Digital Forensics, Security and Law: Vol. 13 : No. 2, Article 7.

DOIL: https://doi.org/10.15394/jdfs1.2018.1451

Available at: https://commons.erau.edu/jdfsl/vol13/iss2/7

This Article is brought to you for free and open access by the Journals at E M B RYRI DD L E

Scholarly Commons. It has been accepted for inclusion in Journal of Digital Aeronautical Univer Slty
SCHOLARLY COMMONS

Forensics, Security and Law by an authorized administrator of Scholarly

Commons. For more information, please contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/jdfsl/vol13?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/jdfsl/vol13/iss2?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/jdfsl/vol13/iss2/7?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2018.1451
https://commons.erau.edu/jdfsl/vol13/iss2/7?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.erau.edu?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
//creativecommons.org/licenses/by-nc-nd/4.0/
//creativecommons.org/licenses/by-nc-nd/4.0/

Fingerprinting JPEGs With Optimised Huftman Tables

Cover Page Footnote

This research was supported by a scholarship provided by Peter KK Lee.

This article is available in Journal of Digital Forensics, Security and Law: https://commons.erau.edu/jdfsl/vol13/iss2/7

https://commons.erau.edu/jdfsl/vol13/iss2/7?utm_source=commons.erau.edu%2Fjdfsl%2Fvol13%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages

FINGERPRINTING JPEGS WITH OPTIMISED
HUFFMAN TABLES

Sean McKeown, Gordon Russell, Petra Leimich

School of Computing
Edinburgh Napier University, Scotland
{S.McKeown, G.Russell, P.Leimich}@napier.ac.uk

ABSTRACT

A common task in digital forensics investigations is to identify known contraband images. This is
typically achieved by calculating a cryptographic digest, using hashing algorithms such as SHA256,
for each image on a given medium, and comparing individual digests with a database of known
contraband. However, the large capacities of modern storage media and time pressures placed on
forensics examiners necessitates the development of more efficient processing methods. This work
describes a technique for fingerprinting JPEGs with optimised Huffman tables which requires only
the image header to be present on the media. Such fingerprints are shown to be robust across large

datasets, with demonstrably faster processing times.

Keywords:
analysis

1. INTRODUCTION

Digital Forensics is developing at a rapid pace
to keep in step with advances in technology. Ap-
proaches which worked well decades ago may not
remain effective, as the nature of the underlying
evidence shifts, or as datasets surpass the ter-
abyte scale (Beebe & Clark, 2005). The nature
of the field demands ongoing research, with gaps
existing in prominent in areas such as triage and

data reduction (Quick & Choo, 2014).

One common aspect of many public sec-
tor investigations is the detection of contra-
band material within a large number of im-
ages. Traditionally, this is achieved using file fin-
gerprints generated by means of cryptographic
hashing (Garfinkel, Nelson, White, & Roussev,
2010). The fingerprints extracted from a piece of
evidence are compared with a database contain-
ing fingerprints of known files of interest. These
fingerprints require that the entire file be pro-
cessed, incurring 10 and CPU overhead, and are
sensitive to any change in the binary data.

digital forensics, image comparison, image processing, known file analysis, partial file

However, if an equivalent fingerprint could be
created from information residing near the be-
ginning of a file, then significant performance im-
provements could be gained by avoiding the 10
required to process the whole file with more tra-
ditional fingerprinting techniques. Even if this
partial file technique created fingerprints with
a larger collision domain, false positive matches
could be additionally verified by a full file hash,
and so performance gains with such a combined
hashing approach is still effective as long as the
false positive rate was reasonably low.

The main contribution of this paper is an inex-
pensive method for creating fingerprints of JPEG
files. Huffman tables are present in the header of
every JPEG, with the fingerprinting method in
this work exploiting Huffman tables which have
been optimised for maximal compression, which
is an increasingly common encoding technique
used on the Web. An analysis of the distinctness
of such fingerprints is provided, as well as an ex-
amination of the portion of the file which must be
processed to extract them. Finally, the method

is evaluated with timed benchmarks comparing
the extraction process to a traditional hashing
method.

This paper demonstrates that the proposed
fingerprinting technique is faster than traditional
hashing techniques on a large dataset of real
world images. In analysing the false positive
rate, the collision rate was shown to be almost
Zero.

When Huffman tables are optimised for the
content of the image,
cates coarse information about the image, while
changes to EXIF metadata and some small im-
age manipulations have no affect on the ta-
ble. This work is timely, as there is a tech-
nological trend towards optimally encoding im-
ages in the JPEG format, such as those pub-
lished recently by Mozilla (Mozilla, 2017) and
Google (Alakuijala et al., 2017).

Experiments are carried out wusing three
datasets: Flickr 1 Million (Huiskes, Thomee,
& Lew, 2010), containing 1 million JPEGS;
Govdocs (Garfinkel, Farrell, Roussev, & Dinolt,
2009), containing 100,000 JPEGs; and a pre-
processed version of Govdocs with optimised
Huffman tables produced by the authors.

the table communi-

2. JPEG COMPRESSION
OVERVIEW

The JPEG standard (Wallace, 1992), is a lossy
compression technique for reducing the file size of
images. The standard leverages properties of hu-
man vision in order to provide the best trade-off
in perceived image quality to compression ratio,
with several stages of compression being utilised.

During compression, images are typically con-
verted to the YCbCr colour space, separating the
luminance and chrominance channels, the latter
of which may be optionally sub-sampled. The
result is then divided in to 8 x 8 pixel blocks,
which are transformed to the frequency domain
using the Discrete Cosine Transform (DCT) to
produce a matrix of 64 coefficients. The coeffi-
cient at the top left of the matrix, known as the
DC (Direct Current), represents the mean colour
value of the block, while the remaining 63 coeffi-
cients, which are known as AC (Alternating Cur-

rent), contain horizontal and vertical frequency
information. As most of the human sensitive as-
pects of the signal are concentrated in the top-
left of the matrix, which hosts the low frequency
coefficients, much of the higher frequency infor-
mation may be discarded, or represented more
coarsely. This is achieved by quantization, with
the JPEG quantization table mapping the rela-
tive compression ratios of each DCT coefficient.
The standard provides a generic quantization ta-
ble, which can be scaled to vary image quality.

The quantization process results in many AC
coefficients becoming zero. A run-length en-
coding scheme is then applied which compresses
these runs of zeroes efficiently. Additionally, as
the average colour (DC) of each 8 x 8 block is
expected to change gradually throughout the im-
age, differential coding is used to efficiently com-
press the colour differences between blocks. The
coefficient compression utilises variable length
encoding schemes, with the data stored as a set
of bit length and value pairs. This informa-
tion is further encoded using single byte codes,
which in turn represent the magnitude of the
DC, or combined magnitude and run-length for
the AC coefficients. As these codes are repeated
frequently, Huffman encoding can be used to
compress their representation to variable length
bit strings. This allows for frequently occurring
codes to be represented in perhaps two or three
bits, instead of a byte. The JPEG standard pro-
vides a default mapping of these Huffman bit
strings for the AC and DC byte codes. However,
for more efficient compression, a per image opti-
mised Huffman table may be generated based on
the actual occurrences of these codes, resulting
in smaller file sizes.

Figure 1 depicts the beginning of a sample
JPEG image. Immediately following the JPEG
start marker are the application markers which
specify the particular JPEG form format (such
as JFIF, EXIF) and miscellaneous metadata,
such as title, comments, camera settings, cam-
era model, or editing software information. This
is then followed by decompression information
comprised of the quantization and Huffman ta-
bles. The most basic (baseline) JPEG makes use
of two quantization tables, one for luminance,

JPEG Start {FF D8] FF E0 00 10 4A 46 49 46 00 01 01 01 00 01
Marker 20 01 09 99
EXIF and other Metadata

Quantization
Tables

Huffman DC(Y) 00 00 00 00 00 00
FE C4 10

= Baseline
1 Marker

A
0|
0]

01 05 01 01 01 00 O

02 03 06 07 0O A 01 0S|
0S5 03 03 02 05 03 03 05
00 04 05 06 11 07 08 21

FF C4 1
00 00 00 00 00

Huffman AC(Y)

Marker 09 D
Figure 1: The structure of a sample JPEG
as it is stored on disk. The metadata sec-

tion may be long, and it is abbreviated
here for clarity.

22 41 51 15 61 71 17 23 42
7 1201]01 00 02 03 01 oo_‘—‘
00 00 00 00 00 04 05 01 03 06 Huffman DC(Cr)
02 01 03 03 02 03 06 O

01 02 03 04 11 05 21 31 2L | Hyffman AC(Cr)

and another for chrominance, with four Huffman
tables for the combinations of AC/DC and lumi-
nance/chrominance. This is then followed by the
actual image scan data, which is stored sequen-
tially, from the top of the image to the bottom.
An alternative format, the progressive JPEG,
may contain multiple image scans, starting with
low resolution versions of the image and increas-
ing in steps, allowing for images to increase in
quality as they are loaded on the Web. Progres-
sive JPEGs may contain more Huffman tables,
which are used for each individual scan.

Mozilla’s MozJPEG (Mozilla, 2017) intro-
duces tweaks to the encoding process by mod-
ifying the original JPEG libraries while remain-
ing compliant with the specification. The tech-
nique uses optimised Huffman tables. All im-
ages are converted to the progressive JPEG for-
mat, and new quantization table presets are pro-
vided to better accommodate high resolution im-
ages. Google’s Guetzli (Alakuijala et al., 2017)
takes a more aggressive approach, with coarse
quantization presets, Huffman table optimisa-
tion and post processing the DCT coefficient ma-
trix. Guetzli produces sequential images, rather
than using progressive JPEGs.

3. RELATED WORK

This section outlines existing work in crypto-
graphic file hashing in order to detect known

files, before exploring work focusing on the anal-
ysis of JPEG header features.

3.1 Forensic File Hashing

Cryptographic hashes are fundamental to the
digital forensics process, deployed as a mecha-
nism for verifying the integrity of the data, sub-
ject to chain of custody assurance, as well as to
fingerprint both known good and known bad files
for later database lookups. J. Kornblum (2006)
noted that such hashes, which are typically based
on the entire content of a file or media, can eas-
ily be attacked by modifying a single bit in the
original data, which produces an entirely differ-
ent hash digest. Such changes may be used to
interfere with automatic detection processes. In
order to mitigate this, piecewise hashes may be
used, where data is split in to chunks which are
hashed separately, such that the fingerprint it
is more resistant to manipulation. J. Kornblum
(2006) extends prior piecewise hashing methods
by applying a rolling hash system. This is incor-
porated in to the ssdeep tool, which provides a
conservative estimate of the number of identical
bytes in a file, providing a similarity score from
0-100.

Piecewise hashing can give false positives due
to the existence of common data blocks in vari-
ous file types. Roussev (2010) describes sdhash,
a method for selecting statistically improbable
features when producing data fingerprints, while
Garfinkel et al. (2010) focus on reducing the
number of common non-distinct blocks from the
hash database.

Breitinger et al. (2013) compare and contrast
the properties of full file cryptographic hashing,
bytewise approximate matching, and semantic
approximate matching. Binary methods were
shown to be much faster, though much less resis-
tant to content preserving modifications, while
out performing semantic methods in the realms
of damaged or embedded file detection. The au-
thors suggest that the relative merits of each
method should be exploited with an ordered ap-
proach. Traditional file hashing can be used to
flag up obvious contraband, followed by costly se-
mantic methods to detect any modified images.
Finally, damaged or embedded fragments may be

detecting using bytewise approximate matching.

McKeown, Russell, and Leimich (2017) exploit
image encoding metadata and small blocks of
scan data to create signatures for images in the
PNG format. While the signatures in this work
are not unique, the extraction time is much faster
than full file hashing. The authors suggest that
inexpensive and less accurate techniques may be
used to rule out the majority of non-contraband,
while more expensive methods may be used to
verify potential contraband. This allows for re-
duced processing loads and efficient contraband
detection.

3.2 Exploiting JPEG Header
Features

Cryptographic hashing is usually applied in a
manner which is indifferent to the specifics of
the file format, processing the entire file at the
binary level. However, there is much to be gained
through careful analysis of the JPEG file struc-
ture, with the following work focusing on the
utility of features found in the JPEG header.

As JPEGs are often a central part of many in-
vestigations, it is important that their integrity
can be verified, so as to detect manipulation or
forgeries. Piva (2013) provides an overview of
techniques addressing both of these issues. Sig-
nal processing techniques can be used to iden-
tify imperfections or camera fingerprints caused
by particular camera lenses; image sensors; and
camera software traces, such as colour filters.
Image manipulations are detected both in the
JPEG pixel and compression domains, using 8 X8
block boundaries, pixel and frequency domain
gradients, and coefficient histograms.

In contrast, a body of work has developed
which attempts to address the issues of integrity
and source identification purely via the exploita-
tion of JPEG headers. Quantization table fin-
gerprinting has been explored for this purpose
(Farid, 2006, 2008; J. D. Kornblum, 2008; Mah-
dian, Saic, & Nedbal, 2010), with findings sug-
gesting that while quantization tables are not
unique, they provide a good deal of discrimi-
nating information. Quantization tables may be
unique to a particular camera model/software
editor, or they may be able to identify a par-

ticular manufacturer, or group of source de-
vices (Farid, 2006, 2008). Together with knowl-
edge of the base tables provided in the JPEG
standard, it is possible to detect mismatches
and identify manipulation (J. D. Kornblum,
2008). However, this approach fails when adap-
tive quantization tables are used, which adjust
the table on a per image basis, much in the
same way that Huffman tables may be opti-
mised (J. D. Kornblum, 2008).

Gloe (2012) provides an analysis of quanti-
zation tables as well as structural information
pertaining to metadata, file markers and thumb-
nails. It was noted that the ordering and par-
ticular structure of metadata may be used as a
mechanism to detect image manipulation. This
is attributed to differences between how image
editors record this data at the lowest level, essen-
tially leaving a software fingerprint behind which
can be detected, hindering untraceable modifi-
cations. It is suggested that convincing forg-
eries require advanced programming skills in or-
der to avoid altering these structures using ex-
isting tools.

Kee, Johnson, and Farid (2011) utilise a larger
set of JPEG header features to generate signa-
tures for cameras and software tools. In addition
to quantization tables, features are extracted
from Huffman tables, EXIF metadata, image di-
mensions and thumbnails. This was shown to be
effective for 1.3 million Flickr images, with 62%
of signatures identifying a single camera model,
80% to three or four cameras, and 99% identify-
ing a unique manufacturer. The algorithm does
not use complete representations of the original
data structures and instead uses only the num-
ber of Huffman codes of each length, and sim-
ple counts of EXIF fields. From the extracted
features, EXIF data was shown to be the most
distinct, followed by the image dimensions.

In the domain of Content Based Image
Retrieval (CBIR), Edmundson and Schae-
fer (Schaefer, Edmundson, Takada, Tsuruta, &
Sakurai, 2012; Schaefer, Edmundson, & Saku-
rai, 2013; Edmundson & Schaefer, 2012, 2013)
exploit optimised Huffman tables for inexpen-
sive image comparison. This is possible as opti-
mised tables are derived from the frequencies of

Huffman { METADATA

HEADER
Comparison 6 06 68 :

Traditional < - SCAN 'DATA QUANTIZATION TABLES

Hash HUFFMAN TABLES

Figure 2: The portions of a JPEG used
for traditional cryptographic hashing and
Huffman comparison.

DCT coefficients in the compressed data stream,
and can therefore serve as a coarse proxy for
image content. Image search performance was
evaluated using a number of datasets, includ-
ing Flickr 1 million (Huiskes et al., 2010), with
performance levels being comparable to prior
CBIR methods, while offering a 30 fold compu-
tational improvement over non-Huffman based
compressed domain methods, and 150-fold over
the fastest pixel domain method.

4. METHODOLOGY

To generate ranked similarity lists and to detect
image source devices and software, prior work
utilised entire Huffman tables. Our approach is
to use optimised Huffman tables to identify par-
ticular JPEG images. This means that only the
header of the JPEG needs to be read, while tra-
ditional hash based fingerprinting processes the
entire file, as depicted in Figure 2.

4.1 Extracting Huffman tables

Structures in the JPEG format are preceded by
markers which consist of two bytes, which always
begin with 0xFF, with the second byte indicating
the type of marker.

An example Huffman table is provided in Fig-
ure 3. Huffman tables are essentially stored as
two arrays, the first containing the number of
Huffman codes of each bit length, while the lat-
ter lists the corresponding DC and AC byte codes
in the table. These arrays are all that is needed
to reconstruct the entire Huffman decode tree.
Pseudo-code for generating Huffman fingerprints
is provided in Algorithm 1, showing that an or-

Table Type
Table Table 00=DC(Y) 01=DC(C)
Marker | | Length 10=AC(Y) 11=AC(C)

oo 00 ononn

00 00 00 00 00 01 02 03
09 12 31 13 32 OA 14 22

1e 31 13 3£

24 53 81 B1 B2

Code Lengths
0S 03 03 02 05 03 03 05

) 04 05 06 11 07 08 21

1 51 1 71 17 23 42
Code Values

Figure 3: An example Huffman table as it
appears on disk. In table types, Y corre-
sponds to the luminance channel, while C
corresponds to the chrominance channels

(Cb/Cr)

dered concatenation of all length/value arrays is
all that is required to generate the fingerprint.

In practice, there are many existing libraries
for parsing JPEGs. The authors chose the Lib-
jpeg (Independent JPEG Group, 2016) library to
extract the Huffman tables using C+4-. Once the
de-compression object is initialised, header data,
including the Huffman tables, can be acquired
by calling the jpeg_read header function. This
header information also includes JPEG type and
colour space data. At this point, the file has been
processed up to the Start of Scan (SOS) marker,
which indicates the beginning of the compressed
data streams.

4.2 Properties and Limitations

Optimised Huffman tables provide coarse infor-
mation about the relative frequencies of DCT
codes in the compressed data stream, and there-
fore communicate some information about the
frequency domain representation of the source
image. As such, fingerprints derived from the
DCT codes are robust to metadata modification
and some modifications to image content.

A limitation of this technique is that both im-
ages must have been encoded using the same
quantization tables, colour space, and channel
sub-sampling. If this is not the case the images
will contain a different distribution of DCT byte
codes, resulting in different Huffman tables when
optimised.

Progressive JPEGs use multiple scans at dif-
ferent resolutions, potentially resulting in many
more Huffman tables than baseline JPEGs. As

Algorithm 1: Generate Huffman Fin-
gerprint. Order tables by type to avoid issue
with ordering on disk.

Input: JPEG File

Output: JPEG Fingerprint

huffmanTables= {};

marker = nextMarker();

/ / Loop until SOS marker

while (marker != 0zFFDA) do

/ / Check for Huffman marker

if (marker == 0zFFC/) then

length = readBytes(2);

type = readBytes(1);

/ / read remaining length after
length/type bytes

htable = readBytes(length-3);

huffmanTables[type|=toString(htable);

end
marker = nextMarker();

end

/ / Order keys by type: 0x00, 0x01, 0x10,
Ox11

orderedKeys = order(huffmanTable.keys());

fingerprint = ¢ ’;

for (key in orderedKeys) do
| fingerprint += huffmanTable[key];

end

return fingerprint

such, encoding the same image as both base-
line and progressive JPEG will result in a mis-
matched number of tables, though the tables
from the baseline image may be very similar to
the tables for coarse progressive scans. Huffman
tables will appear before each scan in progressive
JPEG, such that they will be found throughout
the file.

The process of generating optimised Huffman
tables involves inspecting the corresponding DC
and AC streams, and counting DCT code fre-
quencies. The most frequently occurring items
are assigned the smallest Huffman codes. The
jpegtran utility in the Libjpeg package may be
used to create optimised images from unopti-
mised JPEGs with the —optimize option. How-

ever, this requires the entire file to be processed,
and introduces substantial overhead. Therefore,
while it is possible to acquire optimised tables
for any given image, Huffman table comparison
is best suited to images which are already opti-
mised.

4.3 Evaluation

In order to demonstrate the utility of optimised
Huffman table analysis for digital forensics, sev-
eral features must be investigated. The first
is the distinctness of optimised Huffman ta-
bles, and whether they are capable of identify-
ing uniquely images within a large dataset. Sec-
ondly, the incidence of optimised Huffman tables
in the wild must be explored, in order to deter-
mine how often this technique can be applied.
The proportion of a JPEG required to read the
Huffman tables, and any corresponding reduc-
tion in processing time, must be also be quan-
tified to measure the performance advantage of
this technique.

Huffman fingerprints are constructed by ex-
tracting the Huffman data, ordering the data
by table type, and concatenating the raw data.
For the purposes of the experiment, where two
fingerprints match, clashes were verified using a
SHA256 digests of the entire images.

The offset of the Start of Scan marker was ac-
quired after reading the JPEG header by calling
the stdio::ftell function and then subtract-
ing the remaining bytes in the src input buffer
to get the correct value.

Benchmarks compare the proposed method
against a traditional full file hashing method us-
ing the SHA256 algorithm. Benchmark times
correspond to the duration for extracting sig-
natures from a list of files, without storing the
signatures or performing database lookups. In
order to assess the 10 costs of accessing small
pieces of the file from the storage media, an addi-
tional benchmark was performed which read the
first 4KiB of each file without any processing.

4.4 Datasets

Three datasets were used in this work. The
first, the Flickr 1 Million dataset (Huiskes et
al., 2010), contains 1 million JPEGs with op-

timised Huffman tables. The second is the Gov-
docs JPEG corpus (Garfinkel et al., 2009), which
contains approximately 109,000 JPEGs possess-
ing mixed properties. The third dataset is a
copy of Govdocs where all images were optimised
using using JPEGtran with the -copy all and
-optimize flags. Duplicate images were not re-
moved.

While the Flickr 1 Million dataset is almost
completely comprised of optimised JPEGs, three
images (621224.jpg, 636616.jpg, 646672.jpg)
were found to use default Huffman tables, and
therefore produced the same Huffman finger-
print. These three images were optimised us-
ing the same method as for the optimised Gov-
docs dataset. All optimised images use the
YCbCr colour space and are non-progressive,
while the unmodified Govdocs dataset contains
mixed types.

5. FINDINGS

5.1 Huffman Distinctness in Flickr 1
Million

If Huffman tables are to be used to identify par-
ticular images in a large dataset, they must con-
tain enough discriminating power to do so. To
this end, the Huffman fingerprints for all images
in the Flickr 1 Million dataset were used to con-
struct equivalence classes, grouping together im-
ages with the same fingerprint. A class size of n
indicates that n images possess the same finger-
print, with a class size of 1 indicating a unique
fingerprint.

The Flickr 1 Million dataset contains many
sets of duplicates, with a total of 746 images hav-
ing at least one other image in the dataset with
identical binary data (see Table 1). Once du-
plicates were removed from the results all but
two pairs of images were found to possess
unique Huffman fingerprints. This shows
that this fast fingerprinting technique has almost
a zero percent false positive rate at scale.

Indeed, the two sets of JPEGs with matching
Huffman tables in this collection are almost iden-
tical, and in reality differ by a small number of
pixels. Image differences were visualised using
the Resemble.js library (Cryer, 2016), with dif-

Figure 4: Highlighted image differences for
image pairs with matching Huffman tables
in the Flickr 1 Million dataset. Images
985964.jpg and 986229.jpg are represented
on the left, 431419.jpg and 431931.jpg on
the right.

ferences highlighted in Figure 4. In the first case,
3 pixels are different as a semi-colon is added to
the text rendered in the image, while in the sec-
ond case one version of the image has two let-
ters transposed. As the matching pairs also use
the same quantization tables, such differences
are small enough to result in the same optimised
Huffman tables being generated.

This result shows that optimised Huffman ta-
bles possess a great deal of discriminating power,
with only two pairs of nearly identical images
possessing the same Huffman fingerprint in a
dataset of 1 million images. Indeed, this may
be seen as a positive property, as the fingerprint
can be tolerant to slight changes within the im-
age.

5.2 Huffman Distinctness in Govdocs

Two versions of the Govdocs dataset were used:
i) the unaltered original dataset, and i) a ver-
sion where all images have had their Huffman ta-
bles optimised, and converted to baseline JPEGs,
using jpegtran. The former is used to derive
representative statistics for how common partic-
ular types of JPEG are in the wild, while the
latter provides a secondary test dataset for opti-
mised Huffman distinctness. A small number of
JPEGs generated errors when optimising or ex-
tracting Huffman tables and other information,
and those were omitted from this analysis.

The unaltered Govdocs corpus is heteroge-
nous, with a mix of JPEG modes, colour spaces

Flickr 1 Million

Equivalence Classes

Size

No. Images
Huffman

No. Images

Sha256 Duplicates
No. Images
Huffman No Dupes.

1 (Unique) 2 3

—~
[S)1

999250 726 18 4 5

N/A 722 15 4 5

999250 4 0 0 0

Table 1: The number of images belonging to equivalence classes of each size for the Flickr 1 Million
dataset. A class size of n indicates that there are n images with the same fingerprint.

Colour Space YCbCr

YCCK CMYK RGB Greyscale

No. Images 95783 3

0 9 13443

Table 2: The number of images for each colour space option in the Govdocs corpus.

and origin software. Of approximately 109,000
images, only 6809 JPEGs (6.2%) use the pro-
gressive format, with the remainder using the
baseline JPEG format. 37,879 (34.7%) baseline
JPEGs use default Huffman tables, and, as such,
produce the same fingerprint when extracted.
39,035 images (35.7%) contained Adobe appli-
cation markers, which may either use optimised
or pre-defined Huffman tables. The predominant
colour space is overwhelmingly YCbCr, as shown
in Table 2.

Prior to optimisation, 39,328 (36%) of all Gov-
docs images have a unique Huffman fingerprint,
which is 55.1% when excluding default tables.
The remaining images are primarily grouped in
to very large classes, with 23,706 images belong-
ing to groups of equivalent Huffman tables with
1000 or more members, the largest class con-
taining over 10,000 images. This indicates that,
even in the presence of many JPEGs using pre-
defined tables, Huffman analysis can be used as
the sole method of identifying images more than
1/3rd of the time. That is, this corpus suggests
that optimised Huffman tables are used as of-
ten as default tables, however the authors ar-
gue that the trend is towards optimised JPEGs,
and indeed the Govdocs corpus itself is relatively
old. The software developed by Mozilla (Mozilla,
2017) and Google (Alakuijala et al., 2017) may

be an indication that optimised images will ap-
pear more frequently on the Web, where page
load times and data transfers are relatively ex-
pensive compared to other domains.

The optimised Govdocs dataset provided sim-
ilar results to the Flickr 1 Million dataset (see
Table 3), in that images with matching Huffman
tables were either identical in the binary domain,
or demonstrate small variations of the same im-
age. When combining both datasets into one
corpus of over 1.1 million images, no new equiv-
alence classes were found. This confirms that
Huffman tables are very distinct for optimised
JPEGs, even across datasets.

5.3 Start of Scan Marker Offsets

Statistics for the position of the Start of Scan
marker are depicted in Table 4 for all datasets,
with a visual representation for Flickr and un-
modified Govdocs in Figure 5. As the SOS
marker appears after the Huffman tables, the
data shows that very few 4096 byte media blocks
are required to read those Huffman tables. In the
case of the Flickr dataset, a single block read suf-
fices for 96.6% of the dataset, with three blocks
being sufficient for 99.6% of images. The figures
are slightly higher for the Govdocs corpus, which
contains more metadata, where nine blocks are
required to acquire 99% of Huffman tables. In

Optimised Govdocs

Equivalence Classes

Size

No. Images
Huffman Only

No. Images

Sha256 Duplicates
No. Images
Huffman No Dupes.

1 (Unique) 2 3 4 5

108539 684 4 0 O

N/A 676 0 0 O

108539 8 4 0 O

Table 3: The number of images belonging to equivalence classes of each size for the optimised Govdocs
dataset. A class size of n indicates that there are n images with the same fingerprint.

Flcikr 1 Million Offsets

1000
T |

110

I \\‘ ‘

4KiB 10KiB 100KiB 1MiB 10MiB

100B 1KiB

Count

Govdocs Offsets

1000

110

100B 1KiB 4KiB 10KiB 100KiB 1MiB 10MiB

Offset(Bytes)

Figure 5: Log-log distribution of Start of
Scan offsets for Flickr 1 Million and un-
modified Govdocs. Optimised Govdocs is
almost identical to the original.

both cases, the distribution is long tailed, with
the majority of images requiring a single block.

Using mean values for marker offsets and file
lengths, 1.6% of the file must be read on aver-
age to acquire the SOS marker in the Flickr 1
Million dataset, while both Govdocs datasets re-
quire 1.2% of the file to be processed. However,
when considering that 4096 bytes may be the
minimal transfer size on modern storage media,
the figure for the Flickr dataset rises to 3.2%,
while Govdocs remains all but unchanged.

Using the proposed fast fingerprinting method,
a small fraction of the file is all that is required
to be read, as opposed to the entire file for tra-
ditional hashing.

nnnnnnnnnnnnnn

nnnnnnn

Figure 6: Distributions for the number of
DCT codes in each dataset. Flikr 1 Million
the top, Optimised Govdocs in the middle,
and Govdocs at the bottom.

5.3.1 Number of Codes and Table
Lengths

The maximum number of DCT byte codes pos-
sible in the baseline JPEG format is 348 (12 per
DC, 162 per AC table). However, the maximum
number of codes observed for an optimised JPEG
in this work was 277, suggesting that the num-
ber of codes may be used as a heuristic to distin-
guish between optimised and pre-defined tables.
However, as can be seen in Figure 6, not all pre-
defined tables use all codes. The spikes in the
bottom graph of Figure 6, for 174 and 249 codes,
are caused by images produced by Adobe Pho-
toshop’s ‘save for web’ settings, which optimise

Percentile (B)

Dataset Mean (B)
50 75 95 99 99.9
Flickr 1 Million 973 3560 3599 9060 28866 2054
Govdocs 623 4181 23926 36128 51658 4205
Govdocs Optimised 417 3972 23863 36205 51426 4080

Table 4: Start of Scan offsets in bytes for all datasets.

entropy encoding using alternative mechanisms.
However, based on this data, images with less
than 300 codes are very likely to make use of
optimised JPEGs.

Ignoring Huffman table markers, the length of
the Huffman table may be calculated by sum-
ming the number of entries in the value and
length vectors for each table. The maximum pos-
sible number of codes is 376 for baseline JPEGs,
plus 16 bytes of marker and metadata for each
of the four Huffman tables, for a total of 440
bytes. The maximum length found for an opti-
mised JPEG in this work is 300 bytes, with a
mean of 191 bytes for the Flickr dataset.

Using this observation, it is possible to iden-
tify some images with a high degree of certainty
which use unoptimised tables. Additionally, this
table length information indicates the number of
bytes which are required to be stored for JPEG
Huffman fingerprints. To reduce storage, these
fingerprints themselves could be hashed using
a cryptographic hashing mechanism with fixed
length digests.

5.4 Benchmark Results

To quantify the potential speed improvements
over traditional cryptographic hashing, several
benchmarks were run on a workstation (i5-6490k,
16GiB DDR3 RAM, Western Digital Red 4TB
HDD, Crucial MX300 525GB SSD) and lap-
top (i7-5500U, 8GiB DDR3 RAM, Samsung 840
EVO 500GB SSD), with several multi-threading
options. Times represent the total extraction
time for all files, with no database lookup in-
cluded. Testing was limited to the Flickr 1 Mil-
lion dataset, as this is both the largest dataset,
and the worst case performance scenario (with
the mean file size being 1/3 that of Govdocs,

such that the header is a larger proportion of the
file). Benchmarks were carried out on Ubuntu
15.04 64bit, with memory caches being cleared
between runs. A C++ application was compiled
in g++ using Boost 1.55 for thread pools, lib-
jpeg62 for JPEG parsing, and OpenSSL for cryp-
tographic hashing (SHA256).

The proposed method saw no improvement
when images were stored on the HDD. This can
be attributed to the relatively small file sizes of
this dataset, but more importantly, due to the
the poor small block read performance of the me-
chanical media.

However, substantial performance gains were
seen when utilising solid state media, which are
better suited to random access patterns. Fig-
ure 7 show results for Huffman fingerprint ex-
traction, full cryptographic file hashing, and
reading the first 4096 bytes of the file with no
further processing. Results are compared across
both the EXT4 and NTFS file systems. While
both file systems scale well to two threads, NTFS
performance appears to plateau at this stage,
while the EXT4 file system performance im-
proves with the number of threads. Overheads
were explored by obtaining the logical block ad-
dresses (LBA) for each file and running the ex-
periment with physical addresses, rather than
looking up each file in the file system. When
the initial pre-processing was not included in the
recorded time, benchmark times using the LBA
addresses performed nearly identically to those
of EXT4. The relatively poor performance of
NTFS could be attributed to overhead within
the file system, which does not scale well with
many concurrent accesses. This observation was
verified using the Windows operating system to
rule out the Linux ntfs-3g driver as a bottle-

LINUX DESKTOP: EXT4 VS. NTFS

—e—EXT4_Huff
— NTFS_Huff

—m—EXT4_Hash
—#—NTFS_Hash

EXT4_4k
—a—NTF5_4k

1100.0

1000.0
900.0
800.0
700.0
600.0
500.0
400.0
300.0

)
g 2.5x
E
200.0 K 5.7)(1
100.0
oo 1 2 4 g 16 32
——EXT4_Huff | 2820 149.0 89.0 59.8 49.3 47.0
—=—EXT4_Hash 1046.5 602.3 376.8 285.3 269.0 269.0
EXT4_ak 246.0 135.0 79.3 53.8 45.8 44.0
—==NTFS_Huff | 341.3 290.3 282.0 278.3 279.3 278.7
—=NTFS_Hash 866.3 605.7 639.7 692.7 704.7 699.7
—e— NTF5_4k 283.3 271.0 267.0 267.0 267.3 270.3

THREADS

Figure 7: Comparison of the relative per-
formance of Huffman and Hash finger-
print extraction to reading the first 4K file
block, across the EXT4 and NTF'S file sys-
tems. EXT4 performance is close to using
raw LBA block addresses.

neck. Thus, EXT4 and LBA based addressing
are preferable when performing this kind of frac-
tional file access.

When comparing Huffman fingerprint extrac-
tion to full file hashing on the workstation, a
speed increase of 2.5X was recorded on NTFS,
and up to 5.7X on EXT4. In both cases Huff-
man extraction performance mirrored 4KiB file
read performance very closely, typically with less
than 10% overhead. This suggests that Huff-
man fingerprint extraction is close to the theo-
retic limits of storage media access for small file
fractions.

When a storage device with higher random
4KiB read performance is used, the relative
performance of Huffman extraction to full file
hashing also improves. This is depicted in
Figure 8, which compares the same methods
using the benchmark workstation and laptop
machines, which each possess different SSDs.
The laptop SSD has higher small block through-
put with low queue depths, which is of benefit

LINUX NTFS DESKTOP VS. LAPTOP
(SAMSUNG 840 EVO VS. CRUCIAL MX300)
—+—Laptop_Huff —8—Laptop_Hash Laptop_4K

—=—Desktop_Huff —4—Desktop_Hash —e—Desktop_4K

11000
1000.0
900.0
800.0
700.0

600.0

o)
E 500.0 3)([
= 400.0
300.0
2000 .‘i’\»
100.0
oo 1 2 3 4 5 6
—+—Laptop_Huff 291.8 2275 203.3 203.8 204.0 203.8
—a—Laptop_Hash 950.0 714.7 569.0 604.3 606.3 593.7
Laptop_4K 219.5 196.3 189.5 191.0 192.3 191.8
—=—Desktop_Huff 341.3 290.3 282.0 278.3 279.3 278.7

—#—Desktop_Hash ~ 866.3 605.7 639.7 692.7 704.7 699.7
—eo—Desktop_4K 283.3 271.0 267.0 267.0 267.3 270.3
THREADS

Figure 8: Comparison of the relative per-
formance of Huffman and Hash finger-
print extraction to reading the first 4K
file block, across two computers. The Lap-
top SSD possesses better random 4K Read
performance and higher IOPS.

to both Huffman and hashing methods, despite
the less performant CPU. In this case, Huffman
extraction on the NTF'S file system is 3 X.

Partial file access performance with HDDs are
dominated by seek time, with transfer time be-
ing less of a factor. However as file sizes increase
the relative performance would be expected
to improve (McKeown et al., 2017), both for
mechanical media and solid state devices. SSDs
have much smaller effective seek times, and
thus the proposed technique holds significantly
more appeal for flash media. In modern systems
flash media are becoming increasingly common,
particularly in the laptop arena, in addition to
already dominating the mobile device market.
The observation that partial file access scales
well on this type of media opens the door for
flash storage optimised approaches to digital
forensics, which may well be the dominant
storage technology for personal computers in
the near future.

6. CONCLUSIONS AND
FUTURE WORK

This paper has explored the potential to use
optimised Huffman tables to identify particular
JPEGs in a collection, with tables being essen-
tially unique across 1.1 million JPEG images
with optimised Huffman tables. The Huffman
fingerprint was shown to group very similar im-
ages together, while also being inexpensive to
extract, resulting in speed increases of up to
5.7x on solid state media, despite the relatively
small file sizes of the test dataset. On datasets
of higher resolution images, this technique may
be expected to perform well over an order of
magnitude faster than file hashing, in line with
prior benchmarks on similar fingerprint gener-
ation from PNG files (McKeown et al., 2017).
This method also has the benefit of being usable
for partially carved files, where only the header
exists, potentially providing strong supplemen-
tary evidence in the absence of direct evidence.

The limitations are that this approach relies
on Huffman tables being optimised ahead of
time, and therefore excludes many camera im-
ages without initial pre-processing.
the recent development of software to optimise
JPEGs, in lieu of adopting a new compression
standard, is promising and may indicate wider
adoption of optimisation in the future. Addition-
ally, it may be possible to exploit similar content
derived features in future generations of image
codecs, or for other file formats, such as com-
pressed video.

However,

Future work should explore the possibility of
using the same technique on progressive JPEGs
and other compressed media types. Additionally,
leveraging work in the field of Content-Based Im-
age Retrieval, Huffman fingerprints may be used
to detect similar images in a digital forensics con-
text. Fractional file processing may be explored
in other scenarios, such as for de-duplication, or
for processing remote/networked devices, which
will have different performance characteristics
which may facilitate greater performance im-
provements. Finally, flash optimised digital
forensics techniques may be explored, which may
be of great benefit to the field in the future.

7. ACKNOWLEDGEMENTS

This research was supported by a scholarship
provided by Peter KK Lee.

REFERENCES

Alakuijala, J., Obryk, R., Stoliarchuk, O., Sz-
abadka, Z., Vandevenne, L., & Wassen-
berg, J. (2017). Guetzli: Perceptually
Guided JPEG Encoder. arXiv preprint
arXiw:1703.04421. Retrieved 2017-05-
31, from https://arxiv.org/abs/1703
.04421

Beebe, N., & Clark, J. (2005). Dealing with Ter-
abyte Data Sets in Digital Investigations.
In M. Pollitt & S. Shenoi (Eds.), Advances
in Digital Forensics (Vol. 194, pp. 3-16).
Springer US. Retrieved from http://dx
.doi.org/10.1007/0-387-31163-7_1

Breitinger, F., Liu, H., Winter, C., Baier, H., Ry-
balchenko, A., & Steinebach, M. (2013).
Towards a process model for hash func-
tions in digital forensics. In International
Conference on Digital Forensics and Cyber
Crime (pp. 170-186). Springer.

Cryer, J. (2016). Resemble.js: Image analy-
sts and comparison. Retrieved 2017-02-
21, from https://github.com/Huddle/
Resemble. js

Edmundson, D., & Schaefer, G. (2012).
Fast JPEG image retrieval using op-
timised Huffman tables. In Pattern

Recognition (ICPR), 2012 21st Interna-
tional Conference on (pp. 3188-3191).
IEEE. Retrieved 2016-03-16, from
http://ieeexplore.ieee.org/xpls/
abs_all. jsp?7arnumber=6460842

Edmundson, D., & Schaefer, G. (2013, Novem-
ber). Very Fast Image Retrieval Based
on JPEG Huffman Tables. In 2013 2nd
IAPR Asian Conference on Pattern Recog-
nition (ACPR) (pp. 29-33). doi: 10.1109/
ACPR.2013.18

Farid, H. (2006). Digital image ballistics from
JPEG quantization (Tech. Rep.). Tech-
nical Report TR2006-583, Department of
Computer Science, Dartmouth College.

Farid, H. (2008). Digital image ballistics
from JPEG quantization: A followup
study. Department of Computer Sci-
ence, Dartmouth College, Tech. Rep.
TR2008-638. Retrieved 2016-05-06, from
http://www.cs.dartmouth.edu/farid/
downloads/publications/tr08.pdf

Garfinkel, S., Farrell, P., Roussev, V., & Dinolt,
G. (2009, September). Bringing science
to digital forensics with
forensic corpora. Digital Investigation,
6, S2-S11. Retrieved 2016-03-05, from
http://linkinghub.elsevier.com/
retrieve/pii/S1742287609000346 doi:
10.1016/j.diin.2009.06.016

Garfinkel, S., Nelson, A., White, D., &
Roussev, V. (2010, August). Us-
ing purpose-built functions and block
hashes to enable small block and sub-
file forensics. Digital Investigation, 7,
S13-S23. Retrieved 2016-03-03, from
http://linkinghub.elsevier.com/
retrieve/pii/S1742287610000307 doi:
10.1016/j.diin.2010.05.003

Gloe, T. (2012). Forensic analysis of
ordered data structures on the exam-
ple of JPEG files. In Information
Forensics and Security (WIFS), 2012
IEEE International Workshop on (pp.
139-144). IEEE. Retrieved 2016-04-
29, from http://ieeexplore.ieee.org/
xpls/abs_all. jsp?arnumber=6412639

Huiskes, M. J., Thomee, B., & Lew, M. S. (2010).
New trends and ideas in visual concept de-
tection: the MIR flickr retrieval evaluation
initiative. In Proceedings of the interna-
tional conference on Multimedia informa-
tion retrieval (pp. 527-536). ACM. Re-
trieved 2017-02-22, from http://dl.acm
.org/citation.cfm?id=1743475

Independent JPEG Group. (2016). Libjpeg. Re-
trieved 2017-02-20, from http://wuw.ijg

standardized

.org/
Kee, E., Johnson, M. K., & Farid, H.
(2011). Digital image authentication

from JPEG headers. Information Foren-
sics and Security, IEEE Transactions on,
6(3), 1066-1075. Retrieved 2016-04-

05, from http://ieeexplore.ieee.org/
xpls/abs_all. jsp?arnumber=5732683

Kornblum, J. (2006, September). Identify-
ing almost identical files using context
triggered piecewise hashing. Digital
Investigation, 8, Supplement, 91-97.

Retrieved 2016-03-04, from http://
WwWw.sciencedirect.com/science/
article/pii/S1742287606000764 doi:
10.1016/j.diin.2006.06.015

Kornblum, J. D. (2008, September). Us-

ing JPEG quantization tables to
identify imagery processed by soft-
ware. Digital Investigation, &, S21-
S25. Retrieved 2016-04-14, from

http://linkinghub.elsevier.com/
retrieve/pii/S1742287608000285 doi:
10.1016/j.diin.2008.05.004

Mahdian, B., Saic, S., & Nedbal, R. (2010).
JPEG quantization tables forensics: a sta-
tistical approach. In Computational Foren-
sics (pp. 150-159). Springer.

McKeown, S., Russell, G., & Leimich, P. (2017).
Fast Filtering of Known PNG Files Using
Early File Features. In Annual ADFSL
Conference on Digital Forensics, Security
and Law. Daytona Beach, Florida, USA.

Mozilla. (2017). Mozjpeg: Improved JPEG
encoder. Retrieved 2017-02-20, from
https://github.com/mozilla/mozjpeg

Piva, A. (2013). An Overview on Image
Forensics. ISRN Signal Processing,
2013, 1-22. Retrieved 2016-05-06, from

http://www.hindawi.com/journals/
isrn.signal.processing/2013/496701/
doi: 10.1155/2013/496701

Quick, D., & Choo, K.-K. R. (2014, December).
Impacts of increasing volume of digital
forensic data: A survey and future research
challenges. Digital Investigation, 11(4),
273-294. Retrieved 2015-10-06,
http://linkinghub.elsevier.com/
retrieve/pii/S1742287614001066 doi:
10.1016/j.diin.2014.09.002

Roussev, V. (2010). Data fingerprinting
with similarity digests. In Advances
in digital forensics wvi (pp. 207-226).
Springer. Retrieved 2016-03-04, from

from

http://link.springer.com/chapter/
10.1007/978-3-642-15506-2_15

Schaefer, G., Edmundson, D., & Saku-
rai, Y. (2013, December). Fast
JPEG Image Retrieval Based on AC
Huffman Tables. In (pp. 26-30).
IEEE. Retrieved 2016-04-15, from
http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6727165
doi: 10.1109/SIT1S.2013.16

Schaefer, G., Edmundson, D., Takada, K.,
Tsuruta, S., & Sakurai, Y. (2012, Novem-
ber). Effective and Efficient Filtering
of Retrieved Images Based on JPEG
Header Information. In (pp. 644-649).
IEEE. Retrieved 2016-03-31, from
http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6395154
doi: 10.1109/SIT1S.2012.97

Wallace, G. K. (1992). The JPEG still
picture compression standard. Con-
sumer Electronics, IEEE Transactions on,
38(1), xviii-xxxiv. Retrieved 2016-03-
11, from http://ieeexplore.ieee.org/
xpls/abs_all. jsp?arnumber=125072

	Journal of Digital Forensics, Security and Law
	October 2018

	Fingerprinting JPEGs With Optimised Huffman Tables
	Sean McKeown
	Gordon Russell
	Petra Leimich
	Recommended Citation

	Fingerprinting JPEGs With Optimised Huffman Tables
	Cover Page Footnote

	Fingerprinting JPEGs With Optimised Huffman Tables

