
An Approach to a Laser-Touchscreen System

Jeremiah Aizeboje, Taoxin Peng

School of Computing, Edinburgh Napier University

10 Colinton Road, Edinburgh, EH10 5DT, United Kingdom

Jeromino2009@gmail.com

t.peng@napier.ac.uk

Abstract. As modern day technologies advance, so have different methods in

which users can interact with computers. Computers are currently being used in

combination with devices like projectors for teaching and presentations, in

which the mouse and the USB wireless presenter are two of the main

presentation devices. However, such devices like the USB wireless presenter, is

limited and cannot fully encapsulate what it aspires to simulate, a computer

mouse. This device fails to simulate the movement of a mouse but may only

simulate the actions of a right and left arrow key. This paper proposes a novel

approach to allowing users to interact with a computer from a distance without

the need of a mouse, but instead using a laser pointing device, a projector and a

web camera, by developing a novel laser-touchscreen system. The test results

confirmed the laser pointer could be used to simulate the movement of the

mouse as well as mouse clicks with very high accuracy. It could also be

potentially used in a gaming environment, especially in first person shooter

games.

Keywords: Image recognition, Blob detection, Edge detection, Corner

detection, Quadrilateral transformation.

1 Introduction

As modern day technologies advance, so have different methods in which users can

interact with computers. Throughout the years, teaching and presenting devices have

progressed from chalk board to white-board and now the use of projectors.

Furthermore, the mouse and the USB wireless presenter are two of the main

presentation devices used in combination with a projector. However, such devices like

the USB wireless presenter, is limited and cannot fully encapsulate what it aspires to

simulate, a computer mouse. This device fails to simulate the movement of a mouse

but may only simulate the actions of a right and left arrow key. In such an

environment, a camera can be used to capture the projected screen along with the

laser dot. The projected screen can be seen as a “laser-touchscreen” because the laser

pointer device would act as a mouse; the cursor would move to the position of the

laser in relation to the projected screen. However, the USB wireless presenter, usually

a laser pointer, cannot simulate the movement of a mouse but only simulate the

actions of right and left arrow keys.

mailto:Jeromino2009@gmail.com
mailto:t.peng@napier.ac.uk

The aim of this work is to improve and extend the functionalities of modern day

USB wireless presenters to behave more like a computer mouse. The goal of this

system would give the user more flexibility and more control over the targeted

computer over any distance the laser pointer light can travel. The controller or

presenter using the laser-touchscreen system would be free to move amongst the

audience with confidence knowing that they don’t have to rush back to the front of the

audience where the computer is located, in order to do a simple mouse interaction

with it i.e. clicking the play button of a video embedded within a presentation slide.

This paper proposes a novel approach to allowing users to interact with a computer

from a distance without the need of a mouse, but instead using a laser pointing device,

a projector and a web camera, by developing a novel screen detection method (based

on a simple pattern recognition technique), a laser detection method, and an accuracy

algorithm to control the accuracy of the movement of the mouse cursor. The test

results confirmed the laser pointer could be used to simulate the movement of the

mouse as well as mouse clicks with very high accuracy. It could also be potentially

used in a gaming environment.

The rest of this paper is structured as follows. Related works are described in next

section. Section 3 introduces image recognition techniques that will be used to

develop the application. The main contribution of this work is presented in section 4,

which introduces the novel approach, the design and implementation of the

application. The testing and evaluation are discussed in section 5. Finally, this paper

is concluded and future work pointed out in section 6.

2 Related Work

Beauchemin [1] compared and analysed different image thresholding techniques and

proposed an image based thresholding based on semivariance analysis. This method

“measures the spatial variability of a variable at different scales”. Semivariance

thresholding proved to be highly competitive from the results gained when compared

against other popular thresholding methods. Regardless of the positive results gained,

the semivariance method fails when the images’ background is outshined by

intermittent spatial patterns.

A rectangle shape recognition algorithm was developed by Rajesh [2]. The

algorithm proposes the use of a one-dimensional array to examine the rectangular

shape. The algorithm requires the image to be in binary mode. Afterwards, the image

would need to be rotated to a standard X – Y axis before the rectangle testing

algorithm can be run. The algorithm has been tested for three sample applications;

‘Rice Sorting’, ‘Rectangle Shaped Biscuits Sorting’ and ‘Square Shaped Biscuits

Sorting’ as well as ‘Raw Shape Sorting’. Rajesh proves the algorithm to be fast and

accurate based on these applications. However, since only a one dimension array is

used, only limited information can be stored. The algorithm doesn’t produce accurate

positions for corners, especially for unequal quadrilaterals.

Moon et al [3] proposed a method, through the use of blob detection, to help

computers detect tumours in automated ultrasound images. This computer-aided

detection (CADe) method was proposed to revolutionise the way hand held

ultrasound images are carried out since the results are dependent on the user. Blob

detection has made it possible for an efficiently detailed and automated ultrasound to

be proposed. However, before this method can be used in a clinical environment,

further work needs to be done to reduce its frames per second as well as its execution

time.

There are also two existing commercial systems like electronic whiteboard and

USB wireless presenter.

Electronic whiteboard (E.W.): The accuracy of this device is reliable when it has

been calibrated. On the other hand it is quite costly and is not financially feasible for

some commercial uses. This device works like a touchscreen; built with

functionalities like mouse clicks and movement of the mouse cursor [4].

USB wireless presenter (USB W.P.): This device can be relied on when used

within range of its receiver. It is built with an average range of 15 meters. It is also

quite cheap and easily acquired. Its functionalities are merely pre-programmed

buttons that simulates some keyboard buttons i.e. arrow keys. The USB receiver

cannot work with any other pointer than the one that was built for it [5].

3 Image Processing Techniques

This section discusses image recognition techniques that will be used in this

application.

3.1 Image Processing

Image processing can be defined as running a list of mathematical operations on an

image in order to achieve the desired result. It has been in existence since the 1920s.

The earliest record of a machine based image processing system was first recorded in

1952. As the development and improvement of computers grew so did this field as it

became a widespread area [6].

Image processing has been used to solve several problems identified but it still has

not solved some sensitive issues gathered in 1993, [7] such as:

 Compression: Image compression is a technique for reducing the amount of

digitized information needed to store a visual image electronically. Images are

compressed to speed up transmission time from one place to another. This process

causes the image to loose quality. If image processing could be used to compress a

1.2Mbps video stream to a desirable 1 kbps video stream without degrading in quality

then “compression” would not be a problem in image processing.

Enhancement: Image enhancement is a method used to improve the quality of an

image. Attributes such as hue, contrast, brightness, sharpness etc. of an image may

cause the need for an image to need enhancement. These could be seen as

“degradations”. The main problem of enhancement in image processing is how to

remove these degradations without affecting the intended outcome of the image.

Though many algorithms have been implemented but they still do not fully solve this

problem.

Recognition: Image recognition is the identification of objects within an image.

This area is widely used in computer vision. Such a system should be able to

recognize objects from its input parameters (analysis of the image retrieved). The

difficult task would be, being able to identify different classes of objects i.e. chairs,

table etc. How can one develop a general purpose system such as this? This is a

question yet to be answered.

Even though all these problems and more exist, different algorithms and techniques

have been developed in an attempt to address these issues. It can be argued to what

extent the developed methods help in a quest for a solution.

3.2 Blob Detection

“Blob tracking is a method by which computers can identify and trace the movements

of objects within images.” [8]. A computer can find a blobs position in successive

frames using this method. The idea is to track a group of pixels with similar colour or

light values.

Apart from using blob detection for colour detection, Hinz [9] explains how blobs

can be categorized by its geometric values:

 Blob area

 Geometric moments: centre points, and higher order moments

 Boundary length

 Parameters of a robustly fitted ellipse like:

- Length

- Width

- Orientation

In any case, for a specific end goal in blob tracking to be viable, blob tracking

calculations need to conquer the challenges revealed by high blob interaction, for

example frequent uniting and disuniting of blobs [10].

3.3 The Canny Edge Detector

When analysing an image, one of the popular operations carried out is edge detection.

The cause of its popularity is that edges form the outline of an object, in the generic

sense. An edge outlines the perimeter of an object from another object or background.

Edge detection is essentially needed for accuracy in identifying various objects in

images [11].

The Canny Edge Detector is a very popular and effective edge feature detector that

is used as a pre-processing step in many computer vision algorithms. In 1986, John

Canny characterized a set of objectives for an edge identifier and portrayed an optimal

strategy for attaining them [11].

Canny also stated three problems that an edge detecting system must overcome.

These are:
 Error rate — the edge detector should respond only to edges, and should find all

of them; no edges should be missed.

 Localization — the distance between the edge pixels as found by the edge
detector and the actual edge should be as small as possible.

Response — the edge detector should not identify multiple edge pixels where only

a single edge exists.

The Canny edge detector is a multi-step detector which performs smoothing and

filtering, non-maxima suppression, followed by a connected-component analysis

stage to detect ‘true’ edges, while suppressing ‘false’ non-edge filter responses [12].

3.4 Thresholding

“Thresholding is a non-linear operation that converts a gray-scale image into a binary

image where the two levels are assigned to pixels that are below or above the

specified threshold value.” [13]. Thresholding is a simple method used in segmenting

images. It can be used to partition out different areas of an image. This partition is

dependent upon the strength of the difference between the object pixels and the

background pixels [14]. Before thresholding is applied, the image is normally

converted to a grey scale image. Assuming an 8-bit grey scale image conversion was

used, each pixel would have a value between 0 and 255; where 0 is black and 255 is

white.

Figure 1: Thresholding applied on image. [14]

Figure 1 illustrated thresholding applied to the grey scale image on the left. The

result produced on the right only contains two colours. The black colour could be

classified as ‘0’ and the non-black colour could be classified as ‘1’ in terms of binary.

When thresholding is being applied, it compares each pixel with the threshold value.

If the compared pixel is less than the threshold value, that pixel is converted to 0

(black). But if the compared pixel is greater than the threshold value, that pixel would

normally be converted to a non-black value (the user defines this value; between 0 –

255). This can also work in reverse as there are different forms of thresholding. The

main goal of thresholding is to clearly separate or compress the wanted pixels from

the unwanted pixels.

4 The Approach

This section describes the proposed approach to allowing users to interact with a

computer from a distance by using a laser pointing device, rather than a mouse.

4.1 Introduction

The implementation of this system is defined by its requirements. The functional

requirement of this system is basically being able to use a laser pointing device to

interact with a computer through the help of a web camera and a projected screen.

The interaction here means the mouse must move when the laser pointing dot is

moved within the projected screen and a click must be simulated when the laser

pointer is turned off and on.

The accuracy of the movement is one of the main challenges. To achieve this

objective, the system should answer the following two questions which are its non-

functional requirements:
 How accurately are the four corners of the screen recognized?
 Is the position of the laser dot translated with great accuracy?

4.2 Screen Detection

This section proposes a method that can be used to detect the screen. When detecting

the screen, the aim is to retrieve and store the coordinate of the four corners of the

screen. When this coordinates have been stored, there would be no need to keep on

detecting the screen. This would be costly and useless if the screen is being detected

at every frame alongside with detecting the laser dot. Since the screen is inanimate

and only going to be at one place, there is no need to keep on tracking so the detecting

operation is carried out once. If the projector moves or is being readjusted, this

method would need to be run again.

In order to detect the edges of the screen, the Canny edge detecting method was

implemented as seen below.

Figure 2: Canny edge applied to detect screen

The low threshold value applied varies but is reasonably high since we are aiming

to detect the most intense pixels in the image (thanks to the light from the projected

screen). Figure 2 shows a black background with a white quadrilateral. This

quadrilateral reveals the edges of the screen would hardly be a perfect square or

rectangle.

Retrieving the four corners would require some pattern matching technique. Below

are samples of patterns retrieved from a live test.

Figure 3: Patterns of screen corners

Then 2D arrays (3x3) to represent the corners of the binary images in figure 3 can

be generated. Table 1 shows an example array for the top left corner of the image in

figure 3.

Table 1. A 2D array (3x3) representing the top left corner.

 0 0 0

0 S 1

0 1 0

In order to recognise the left top corner of the screen where S is the current pixel in

question; if S = 1 and the surrounding pixels have the values shown in table 1 then the

top left corner of the screen has been found. The main goal is to check all the 8 pixels

around a visible pixel for the pattern and if found, the S value is stored as a

recognised corner.

4.3 Laser Detection

This detection method implemented the thresholding technique. Each frame received

was first of all converted to a grey scale image before thresholding was applied

because a grey scale image has only one channel to work with while the original

colour (RGB) image would have three channels to work with. Thresholding requires

one channel and the grey scale image provides just that.

Then blob detection is applied to the retrieved binary image. The tracked feature

would be the intensity of the image.

The following method is adopted from the OpenCV library which is used to find a

blob within a binary image:

cvLabel(grey, displayFrame, blobs)

In the above implementation, cvLabel takes in three parameters. The first

parameter (grey) passes in a grey scale image array (IplImage). The second parameter

(displayFrame) passes by reference an empty image array (IplImage) to be filled on

completion of the method run. The third parameter (blobs) passes by reference an

object (cvBlobs) to store the blob details found.

The centroid values (x and y) of the blob found represents the CP values used in the

accuracy algorithm, proposed in next section.

4.4 The Accuracy Algorithm

This novel algorithm is designed specifically for this laser-touchscreen system. The

accuracy algorithm can be seen as an automated screen calibration system, which is

designed to answer the two questions stated in section 4.1

To help to describe the accuracy algorithm, figure 4, 5 and 6, and relevant

variables are introduced first.

Figure 4: sketch of the projected screen on a wall

Figure 5: sketch of a bounding box around the projected screen

Figure 6: sketch of a laser pointer dot (CP) within the projected screen

Variables used for describing the algorithm are described in table 2, table 3 and

table 4. These tables in conjunction with figure 4, figure 5 and figure 6 help to

visualise the equations that would be introduced later in this chapter. The labelled

figures help to illustrate the projected screen and how certain variables were chosen.

Table 2. Variables about the project screen.

Variable Meaning

P1.x top left corner X coordinate value of the screen

P1.y top left corner Y coordinate value of the screen

P2.x top right corner X coordinate value of the screen

P2.y top right corner Y coordinate value of the screen

P3.x bottom left corner X coordinate value of the screen

P3.y bottom left corner Y coordinate value of the screen

P4.x bottom right corner X coordinate value of the screen

P4.y bottom right corner Y coordinate value of the screen

Rw the width value of the resolution of the projected screen

Rh the height value of the resolution of the projected screen

DT.x the top difference of the X axis of P2.x – P1.x

DT.y the top difference of the Y axis of P1.y – P2.y

DL.x the left difference of the X axis of P1.x – P3.x

DL.y the left difference of the Y axis of P3.y – P1.y

DR.x the right difference of the X axis of P4.x – P2.x

DR.y the right difference of the Y axis of P4.y – P2.y

DB.x the bottom difference of the X axis of P4.x – P3.x

DB.y the bottom difference of the Y axis of P4.y – P3.y

Table 3. Variables about a bounding box around the projected screen.

Variable Meaning

XS the minimum value on the X axis between the P1.x and P3.x

XE the maximum value on the X axis between the P2.x and P4.x

YS the minimum value on the Y axis between the P1.y and P2.y

YE the maximum value on the Y axis between the P3.y and P4.y

Yr the correct value of a pixel on the Y axis i.e. where (P1.x, P1.y)

is seen as (1,1)

Xr the correct value of a pixel on the X axis i.e. where (P1.x, P1.y)

is seen as (1, 1)

Yp the bounding box value of a pixel on the Y axis i.e. where (XS,

YS) is seen as (1,1)

Xp the bounding box value of a pixel on the X axis i.e. where (XS,

YS) is seen as (1,1)

CP a pixel (Xp, Yp) within the bounding box i.e. between (XS,YS)

and (XE, YE)

Table 4. Variables about a laser pointer dot (CP) within the projected screen

Variable Meaning

CP.rsx the left value of Xr on single row of pixels

CP.rsy the left value of Yp on single row of pixels

CP.rex the right value of Xr on single row of pixels

CP.rey the right value of Yp on single row of pixels

CP.csx the top value of Xp on single column of pixels

CP.csy the top value of Yr on single column of pixels

CP.cex the bottom value of Xp on single column of pixels

CP.cey the bottom value of Yr on single column of pixels

Ot the top offset for CP

Ol the left offset for CP

Ob the bottom offset for CP

Tx the translated X-axis value of CP

Ty the translated Y-axis value of CP

The algorithm translates the location of the laser dot on the projected screen to the

expected mouse position on the computer.

A simple application would represent the screen as the bounding box. This would

mean the only accurate point given would be the centre (XE/2, YE/2) of the screen. If

the perimeter of the projected screen (P1, P2, P3, P4) were to be the same as that of

the bounding box then that technique would work, but it may be quite difficult to

achieve this depending on where the camera is placed and how the projected screen is

set up.

For a single pixel row and column on the projected screen, its starting Xr and Yr

value would likely differ with its ending Xr and Yr value. This means that in order to

accurately determine the position of any pixel in question, the starting and ending

values (Xr & Yr) of the pixel would need to be known to calculate the translated

values (Tx, Ty).

Without obtaining the values of CP.rsx, CP.rex, CP.csy and CP.cey, the Tx and Ty

values of CP cannot be calculated accurately. In order to calculate these value, the

bounding box ((XS, YS) to (XE, XY)) would be used as a point of reference. The

bounding box is to be used as a point of reference because each of its corners has a 90

degrees angle and none of its edges have a gradient. This would help keep the

calculations simpler; not needing to take its gradient values into account. The top and

left edges would be used in this case.

The idea is to make calculations based on the idea of having DT.y and DL.x to

have a value of zero. Which would mean (P1.x, P1.y) would be equal to (XS, YS) and

(P4.x, P4.y) would be equal to (XE, YE). The calculations made would need to use

the absolute values of DT.y and DL.x to calculate their offset values.

The calculation of Ol:

𝑍 = {
P1.y, 𝑖𝑓 P1.y > P2.y
0, 𝑖𝑓 P1.y ≤ P2.y

W = (CP.𝑦 - 𝑍)/ DL.y

𝐺 = {
1 − 𝑊, 𝑖𝑓 P1.y > P2.y
𝑊, 𝑖𝑓 P1.y ≤ P2.y

Ol = 𝐺 * DL.x

(1)

The calculation of Ot:

𝑍 = {
P1.x, 𝑖𝑓 P1.x > P3.x
0, 𝑖𝑓 P1.x ≤ P3.x

W = (CP.𝑥 - 𝑍)/DT.x

𝐺= {
1 − 𝑊, 𝑖𝑓 P1.x > P3.x
𝑊, 𝑖𝑓 P1.x ≤ P3.x

Ol = 𝐺 * DT.y

(2)

The calculation of Or:

𝑍 = {
P2.y, 𝑖𝑓 P2.y >P1.y
0, 𝑖𝑓 P2.y ≤ P1.y

W = (CP.𝑦 - 𝑍)/DR.𝑦

𝐺= {
1 − 𝑊, 𝑖𝑓 P2.y > P1.y
𝑊, 𝑖𝑓 P2.y ≤ P1.y

Or = 𝐺 * DR.x

(3)

The calculation of Ob:

𝑍 = {
P1.x, 𝑖𝑓 P3.x > P1.x
0, 𝑖𝑓 P3.x ≤ P1.x

W = (CP.𝑥 - 𝑍)/DB.x

𝐺= {
1 − 𝑊, 𝑖𝑓 P3.x > P1.x
𝑊, 𝑖𝑓 P3.x ≤ P1.x

Ob = 𝐺 * DB.y

(4)

The four sets of equations above calculate the offsets values for each edge. The

offset value is the space between the edge of the bounding box and the edge of the

projected screen. Including the offset in the accuracy algorithm would go a long way

in improving the systems accuracy.

Now that all offsets have been calculated:

CP.rsx= XS + Ol

CP.rex= XE - Or

CP.csy = YS + Ot

CP.cey= YE - Ob

(5)

Since each CP may have a different column height (CP.cey – CP.csy) and/or row

width (CP.rex – CP.rsx) from other pixels, the above equations would be used to

calculate its height and width with an end goal of solving its Tx and Ty values.

Once all values related to CP have been found, the translated position of a single

pixel can now be calculated. The calculation of the translated X-axis value of a pixel

(Q) on the projected screen:

Tx = (CP.rsx/(CP.rex – CP.rsx)) * CP.x (6)

The calculation of the translated Y-axis value of CP on the projected screen:

Ty = (CP.csy/(CP.cey – CP.csy)) * CP.y (7)

Translating the values of CP to (Tx, Ty) is basically what this algorithm does. The

mouse cursor would be sent to the translated values of CP (Tx, Ty)

In conclusion, the accuracy formula wouldn’t have been this accurate without

adding the offsets to the edges and realising that each column of a single can have a

various height values and each row of a single pixel can have a various width values.

This algorithm can potentially be tweaked to triangulate a signal location when the

signal is emitted anywhere within 4 receivers.

The pseudocode of the accuracy algorithm is outlined as below:

lu = top left corner coordinate

ld = bottom left corner coordinate

ru = right top corner coordinate

rd = right down corner coordinate

width = max_x_value(ru,rd) – min_x_value(lu, ld)

height = max_y_value(ld,rd) – min_y_value(lu, ru)

portXcoordinate = 2d array of width by height

portYcoordinate = 2d array of width by height

FOR currentX = 1 to width

 FOR currentY = 1 to width

 start_x = get_min_x_value_for_row(currentY)

 end_x = get_max_x_value_for_row(currentY)

 start_y = get_min_y_value_for_column(currentX)

 end_y = get_max_y_value_for_column(currentX)

 Xpercent = (currentY - start_y)/(end_y - start_y)

 Ypercent = (currentX - start_x)/(end_x - start_x)

 set current position in portXcoordinate to Xpercent

 set current position in portYcoordinate to Ypercent

 END FOR

END FOR

The pseudocode simulates, pre-calculates and stores every possible translated value

of the laser dot (CP) in 2 different 2D arrays. This psuedocode assumes that the

position of the projected screen would remain the same during the runtime of the

application. Hence, there would be no need for always recalculating the same pixel

multiple times if it would always return the same value.

4.5 Evaluation of the Accuracy Algorithm

In order to test how effective the accuracy algorithm is, an evaluating method is

proposed in this section.

Figure 7 represents a projected screen with a green laser dot and a mouse cursor. It

illustrates an inaccurate system for a better explanation on how the accuracy of this

system is going to be evaluated.

Figure 7: A projected screen; Explanation of formula used to test applications accuracy.

To evaluate the accuracy of results, the following is designed:

Saccuracy = (1 – ((Dx+ Dy) / (Cw+ Ch))) * 100 (8)

The formula calculates how close the position of the x and y coordinates of the

laser dot is to the position of the x and y coordinates of the mouse on the screen.

4.6 Activity Design

The diagram shown in figure 8 summarises the flow of the program. The ‘search for

object’ process searches for either the projected screen (when setting up the program)

or the laser dot (when main aspect of the program is running). When an object has

been found the program analyses the object. If the laser pointer dot is detected the

‘analyse object’ process checks for its position (coordinates) from the camera frame

and then adjusts the system by moving the mouse to its designated position. If the

user sends an interrupt command (press of the Esc key) the program terminates.

Figure 8: Flow chart for detecting an object (projected screen and laser light dot).

4.7 Event Design

This section elaborates on the ‘adjust system’ process from figure 8. Table 5 explains

the possible states and actions carried out by the program during this process.

States, variables and functions that are involved in the ‘adjust system’ process are

defined as follows:

States:

 INIT – when the program is run for the first time.

 SEEN – when the laser pointer dot is seen by the camera

 NOT_SEEN – when the laser pointer dot is not seen by the camera

Variables:

 seen – set to true if the laser dot has been seen or else false;

 dc – set to true if the ‘determine_click_timer()’ function is called and

running.

 nsc – this is a counter. Counts how many times there was a SEEN to

NOT_SEEN state when dc is true.

 range – set to true if laser dot is within the projected screen range or else

false

 last_x – stores the last x-coordinate value seen.

 last_y – stores the last y-coordinate value seen.

 click_interval – number of seconds to wait after a single click to determine if

the user has finished clicking. (500milliseconds or 1second; user defined)

Functions:

 move_mouse(x,y) – This moves the mouse cursor to coordinate (x,y) on the

screen.

 determine_click_timer() – This starts a timer.

 mouse_click(type) – This simulates a mouse click. When type is:

- 1: single left click

- 2: double left click

- 3: single right click

Table 5. All possible laser triggered events at runtime.

ID From To Condition Action

0 INIT INIT (!seen) (dc=false)

Stays in the init state until the first appearance of the laser pointer dot.

1 INIT SEEN (seen, range) (move_mouse(xNew, yNew))

Set state to seen after the laser pointer has spotting the laser pointer dot for the first time.

Move the mouse to the point where the laser pointer dot is currently seen.

2 SEEN SEEN (seen, range) (move_mouse(xNew, yNew))

Remain in seen state and move the cursor to the point where the laser pointer dot is

currently seen.

3 SEEN SEEN (seen , !range) -

This will occur when the laser dot has been moved off the projected screen area or has

been spotted outside the projected screen area.

4 SEEN NOT_SEEN (!seen, range, !dc) (determine_click_timer(), dc

= true, nsc = 0, last_x = x,

last_y=y)

When the laser pointer dot is not visible and was last spotted in range, set the state as

not_seen and since dc is false, the determine_click_timer() function can be called. Then

set dc to true and nsc to 1. The program needs to know if the user is attempting to click on

something so it stores the x and y coordinates of the current position.

5 NOT_SEEN NOT_SEEN (!seen,dc) -

Remain in the not_seen state. The timer called by event 4 is currently running. If the

elapsed time from the previous click (event 4 or event 7) to now is currently greater that

the click_interval then the timer would come to a halt, dc will be set to false, nsc to zero.

This prevents fake clicks (situations when the user switches off the laser pointer or wants

to cancel a click).

6 NOT_SEEN SEEN (seen, range, dc) -

Since we are still trying to determine if user is attempting a click, we do nothing. After

this event, event 7 is likely to run to simulate a left double click or a right click. If the

elapsed time from the previous click (event 4 or event 7) till now is currently greater that

the click_interval then event 8 will run.

7 SEEN NOT_SEEN (!seen, dc) (nsc++)

The laser pointer dot is now in the not_seen state when dc is true. Since it is currently

trying to determine if the user is clicking, nsc value should be incremented by 1. No need

to move mouse. Event 6 will need to be run again when the user has finished clicking.

Restart the determine_click_timer().

8 SEEN SEEN (range,!dc,nsc>0,

nsc<4)

(mouse_click(nsc), nsc=0,

dc=false)

The determine_click_timer()has run its course. The mouse_click(type) function can be

called with the nsc variable passed to it. This is to determine what kind of click is called.

Reset nsc to zero afterwards.

5 Experiments and Evaluation

The main focus of the following experiment is to evaluate if the proposed approach is

feasible as an interactive system.

The tests carried out on the application were inspired by the developed functional

and non-functional requirements stated in section 4.1. Due to the facts that there are

no benchmark scenarios for this kind of testing, a classic class room scenario was

chosen where the device is used in a lecture room and the light/brightness of the room

fails to affect the visual input of the camera e.g. the screen and the laser pointer dot.

Though the presented results in this chapter had a few irregular classroom setting; the

camera was placed right above (on) the projector with a slight angle. The distance

from the right bottom corner of the projected screen to the centre of the projector’s

bulb was measured as 132cm while the distance from the left bottom corner of the

projected screen to the centre of the projector’s bulb was measured as 151cm.The

goal of the following test is to see how well the system works in a bad setup since it

already worked perfectly fine in a good setup.

5.1 Accuracy Test

Once the accuracy algorithm has been run, its results can be evaluated using the

method proposed in section 4.5 to evaluate how accurate the accuracy algorithm is in

a real world environment.

For this test, the screen resolutions that would be used are 800x600, 1024x768,

1280x1024, and the camera resolutions used are 640x480 and 320x240. These

resolutions are commonly found or supported by most projectors. Testing results are

shown in Table 6 – 8:

Table 6. Results from an 800x600 display resolution..

Camera

Resolution

Best Accuracy

Achieved

Worst Accuracy

Achieved

640x480 99.99% 97.02%

320x240 99.99% 96.88%

Table 7. Results from a 1024x768 display resolution..

Camera

Resolution

Best Accuracy

Achieved

Worst Accuracy

Achieved

640x480 99.99% 97.33%

320x240 99.99% 96.51%

Table 8. Results from a 1024x1024 display resolution..

Camera

Resolution

Best Accuracy

Achieved

Worst Accuracy

Achieved

640x480 99.99% 97.23%

320x240 99.99% 96.58%

The 640x480 camera resolution was able to process an average of 15 frames per

second while the 320x240 camera resolution was able to process an average of 28

frames per second. Doubling the camera resolution halved the frames per seconds

obtained.

The best accuracy was always achieved at the four corners of the projected screen.

The reason could be because the accuracy algorithm used these points to define the

screen boundaries.

On average the system can be said to be over 98% accurate. The testing results

confirm the proposed accuracy algorithm provides a perfect answer to the two

questions in section 4.1.

5.2 Clicking Test

The purpose of the clicking test evaluates how well the system simulates the clicking

action by using laser pointer instead of the mouse.

There are 3 click actions involved; a left click, a double left click and a right click.

A left click action is done by turning off and on the laser pointer, simulating the left

click of a mouse. A double left click action is done by turning off and on the laser

pointer device twice within a space of 1 second. A right click action is done by

turning off and on the laser pointer thrice within a space of 1 second, simulating a

right click of a mouse.

The testing results show that the approach worked perfectly on PowerPoint slides.

The application was also tested on DirectX game applications but it didn’t work.

Further research into a solution resulted in the need of using the DirectX API to

simulate a mouse which remains as future work.

5.3 Evaluation

Comparing the developed screen detection method (section 4.2), against Rajeshs’ [2]

rectangle shape recognition algorithm, the image does not need to be rotated to detect

the quadrilateral screen. Rajeshs’ binary segmentation algorithm wouldn’t have been

able to separate the screen from the background because it requires the background

colour to be known. Since this application is being developed to be used in unknown

environments the Canny detector (section 3.3.) proved to be superior.

The Laser-touchscreen system (L.T.S) developed in this project can be said to be

accurate based on the results from the accuracy test carried out. The camera and the

laser pointer used cost less than $100 which is relatively cheap. The interaction range

of this system is dependent on the range of the laser light. The laser pointer used has a

range 3 miles [15]. This system can simulate three mouse actions and also move the

mouse cursor to the position of the laser dot. Different laser pointer devices can be

used – its parts are interchangeable (P.I.).

Comparing this project with two interactive commercial devices described in

section 2, E.W and USB P.W. would help to prove the usefulness of this project.

Table 9. Comparing similar devices.

 E.W USB W.P. L.T.S

Reliable Yes Yes Yes

Cost Expensive Cheap Cheap

Range Short Medium Long

Accurate Yes N/A Yes

P.I N/A No Yes

Table 9 shows that the developed prototype (the Laser-touchscreen system

(L.T.S)) can easily replace the use of an electronic whiteboard and a USB wireless

presenter.

The test results illustrate that using a higher camera resolution could improve the

accuracy but at the same time reduce the number of frames that can be processed in a

second. It all comes down to sacrificing the application’s speed against its quality

(accuracy).

6 Conclusions and Future Work

This paper has presented a novel approach to a laser-touchscreen system, by using a

laser pointer as a mouse with a web camera installed. The aim is to fully encapsulate

what it aspires to simulate a computer mouse. Also the economic camera used makes

the implementation of this system more attractive to potential users and perhaps

financially feasible. To achieve this approach, a novel screen detection method (based

on a simple pattern recognition technique), a laser detection method, and an accuracy

algorithm were developed, which were successfully used to create the laser-

touchscreen system. Experimental comparative studies show that in several

environments with different device settings of screen resolutions and camera

resolutions, on average the new system can achieve over 98% accuracy. The result

from the testing and evaluation proves the use of a laser pointer as a mouse to be

achievable.

Although promising, much can be done to further improve the potential of this

work. For future development, further investigation and research is required to

determine the best course of action on how to improve the developed accuracy

algorithm so it works better under terrible setups, either by improving the existing

prototype or by creating a new standalone project for the sole purpose of improving

its accuracy.

Another particular interest to the authors is to extend the application to gaming, by

implementing the DirectX API into the system. It is believed that it would be very

user friendly when a USB device, such as a laser pointer is used in playing games,

especially in first person shooter games or games where the user is required to aim at

a particular area on the screen to achieve a goal.

Finally, it is worth noting that, once a more improved accuracy algorithm has been

developed, image processing chips could be looked into and how it could be

integrated into a projector alongside with a good quality camera. It would be

beneficial to both the gaming industry and users if all the external components utilised

in this project can be integrated into a single device, which would ensure a proper and

easy setup.

References

1. Bailey, D.G.: Design for Embedded Image Processing on FPGAs. Singapore: John Wiley &

Sons (Asia) Ltd (2011)

2. Beauchemin, M.: Image thresholding based on semivariance. International Association for

Pattern Recognition 34(5), pp. 456-462 (2013)

3. DIGIFLEX, TRIXES 5in1 Green Laser Pointer Pen with 5 Patterned Projection Caps,

http://www.digiflex.co.uk

4. Hinz, S.: Fast and subpixel precise blob detection and attribution. IEEE International

Conference on Image Processing, Vol 3, pp. 11 – 15 (2005)

5. Huang, T.S., Aizawa, K.: Image Processing: Some challenging Problems. Proceedings of

the National Academy of Sciences of the United States of America, 90(21), pp. 9766-9769

(1993)

6. Luo, Y., Duraiswami, R.: Canny edge detection on NVIDIA CUDA.IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops. Anchorage, Alaska,

USA, pp.1-8 (2008)

7. Moon, W.K., Shen, Y., Bae, M.S., Huang, C., Chen, J., Chang, R.: Computer-aided tumor

detection based on multi-scale blob detection algorithm in automated breast ultrasound

images, IEEE Transactions on Medical Imaging.32(7), pp. 1191 – 1200 (2013)

8. OpenCV, Basic Thresholding Operations, http://docs.opencv.org

9. Parker, J.R.: Algorithms for Image Processing and Computer Vision (2nd ed.). Indiana:

Wiley Publishing, Inc (2010)

10. Rajesh, F.: Rectangle shape recognition using one-dimensional array.IEEE International

Conference on Computational Intelligence and Computing Research (2010)

11. SANOXY: RF Wireless remote control USB PowerPoint PPT presenter laser pointer

PenSmart, http://sanoxy.com

12. Sharma, V.: A blob representation for tracking robust to merging and fragmentation.IEEE

Workshop on Applications of Computer Vision. Colorado, USA, pp. 161-168 (2012)

13. SMART: SMART Board 8000 Series, http://smarttech.com

14. WaveMetrics: Image Threshold, http://www.wavemetrics.com

15. Yao, N., Liu, Z., Qian, F. & Sun, Z.: Target Tracking Method Based on Image Patches

Exemplars. Journal of Computational Information Systems 9(21). pp. 8561-8570 (2013)

