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Abstract —This paper proposes a method to investigate into 

helicopter landing on uneven terrain by means of using a scaled 

articulated robotic landing gear. A mathematical model of an 

articulated robotic landing gear that adapts to uneven ground 

conditions is considered. The model consists of a planar landing 

gear composed of two legs connected by a base and a skid at each 

end. Each skid has two degrees of freedom with PID joint 

controllers to provide stability while landing. A combination of 

Lagrange and Newton-Euler techniques is used to model the 

system dynamics. This work also includes a model of the ground 

interaction, a thrust controller and a level controller to maintain 

stability while landing. Experimental results with a laboratory-

build scaled prototype are included and compared with the 

simulations. 

Keywords—PID control, robotic landing gear, nonlinear 

dynamic model, contact model, level controller, robot prototype 

I.  INTRODUCTION 

Helicopters are widely used in search and rescue 

missions, disaster areas or mountainous environments 

because of their ability to access remote or unprepared areas 

that are not accessible by any other means. This is due mainly 

to their ability to perform hovering and vertical landing/take-

off manoeuvres. However, they usually incorporate fixed 

landing gear systems like skids or wheels, which limit their 

ability to land on irregular terrain. 

A number of early publications suggested several 

solutions to cope with the problem of landing on sloped 

surfaces using hydraulic or mechanical systems to adapt the 

position of wheels/legs to the ground conditions [1], [2], but 

with limited study available since then. A recent example of 

robotic landing gear was developed by the Georgia Institute 

of Technology under the DARPA’s Mission Adaptive Rotor 

(MAR) program [3] consisting of four articulated robotic legs 

that adapt their position to ensure that the helicopter stays 

level during landing. Despite practical tests have been carried 

out [4], limited information has been made available about its 

system dynamics and control strategy.  

Dynamics modelling techniques are generally divided 

into two main categories, the ones that are based in Newton-

Euler equations, and the ones based on analytical mechanics 

approaches, like Lagrange method [5]. When modelling 

multibody systems, a common practice is to use an abstract, 

simplified model of the robot to reduce the model’s 

complexity. A mixed approach is found in [6] and [7] where 

the authors use a modelling technique for quadruped robot 

locomotion based on decoupling the body and legs. For body 

position and attitude, a point-mass model of the Centre of 

Mass (CoM) is analysed and the external forces are computed. 

Then the joint torques are calculated using a single leg 

dynamics model. The whole body model is constructed by 

coupling the equations of the floating-base body and each of 

the legs attached to it. 

Examples are also found in the field of Mobile 

Manipulating Unmanned Aerial Vehicles (MM-UAV), a 

recent research line that consists on attaching one or several 

robot-arms to the body of a rotorcraft in order to interact with 

the environment and perform manipulation tasks [8], [9], [10]. 

In this paper, a planar dynamic model of a two-leg 

landing gear and the control strategy to keep the helicopter 

base stable when landing on irregular terrain is presented. In 

Section II, a kinematic and dynamic model of a single leg are 

derived using the Lagrange method and then, the position and 

inclination of the base are computed applying the Newton-

Euler equations to obtain the Centre Of Mass dynamics. The 

whole system model is built by coupling the base model with 

two single-leg models. 

In Section III a landing scenario is designed including 

a simplified model of a thrust force to control the landing 

velocity and a contact model to emulate the ground-leg 

reaction and friction forces. In Section IV a level controller is 

also designed to adapt the position of the legs to the ground 

conditions. Finally, in Sections V and VI a laboratory-built 

prototype of the landing gear is presented and the 

experimental results are compared with the software 

simulations. 

II. SYSTEM KINEMATICS AND DYNAMICS 

A. Single-leg dynamic model 

In this section the mathematical model of a robot leg is 

presented. Each leg has 2 links and two revolute joints at the 

hip and knee with its axes of rotation perpendicular to the XY 

plane, therefore the system is two-dimensional or it has 2-

DOF. The hip and knee angles are represented by θ1 and θ2 

respectively with its origin as shown in Figure 1 and positive 

in the anti-clockwise direction. The length of the two links is 

represented by L1 and L2 respectively and their masses are m1 

and m2. For simplification, the masses are considered to be 

concentrated at the end of each link.  

The equations of motion of the single leg are derived 

using the Lagrange-Euler formulation as it presents a more 

systematic derivation and provides a closed-form expression 

[11]. This approach analyses the system in terms of work and  



 
Figure 1. Sketch of a robotic leg with relevant parameters. It shows 

dimensions and masses of links, joint angles and torques and external forces. 

energy and it´s based on the Lagrangian function (	ℒ) as the 

difference between the kinetic energy (KE) and the potential 

energy (PE) of the system as 

ℒ = �� − �� (1) 

The equations of motion are obtained by solving the 

Euler-Lagrange equation: 
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where θn is the joint angle of the link n, and τi represents the 

torque applied to the joint i. 

The net torque acting on the hip and knee joints is 

given by the following expressions [12]: 
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The total joint torque, τTn, is the sum of the torque 

produced by the joint actuator, τn, and the torque induced by 

the external forces acting on the leg, Fe. In this model, the only 

external forces that are considered acting on the legs are the 

ground reaction and friction forces. The torque induced in the 

joints by the external forces is computed using the transpose 

of the Jacobian matrix 
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The position of the foot is calculated using Forward 

Kinematics equations, which provide the X-Y foot 

coordinates (with respect to the hip joint) as a function of the 

joint angles 

-� = ������� + �������� + ��� (7) 
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The Inverse Kinematics equations provide the joint 

angles as a function of the X-Y foot coordinates 
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Figure 2 shows the control diagram of a single leg. The 

position of the leg is controlled by introducing the desired X-

Y foot coordinates (x2, y2). The Inverse Kinematics block 

calculates the reference joint angles which are introduced as a 

setpoint into PID joint controllers that generate appropriate 

joint actuator torques and introduce them into the Dynamic 

Model of the leg. The Dynamic model reproduces the motion 

of the leg and calculates the current joint angles which are 

used as a feedback to the joint controllers. Using Forward 

Kinematics, the current X-Y foot position is obtained. 

 
Figure 2. Control block diagram of a single leg 

 

B. Centre of Mass dynamics 

The complete landing gear model, is a multibody 

system formed by two robotic legs connected through a base 

link. The position and inclination of the base with respect to 

the ground is computed by using a point-mass model of the 

landing gear. All the different bodies that form the system are 

reduced to a single point that has a rotational inertia, I, and a 

total mass, m, which emulate those of the whole system and 

is located at the Centre of Mass of the landing gear. For 

simplification purposes, the CoM is considered to be at the 

centre of the base link, as the mass of the legs is negligible 

compared to the mass of the base. 

The landing scenario includes a thrust force model to 

control the descending speed and a ground contact model. 

Newton-Euler equations are used to calculate the CoM 

linear and angular acceleration (- , .  and �  respectively) and 

to obtain the x and y-position, and roll angle 

>&3 = �. = �# −	&�?@AB) − &3C − &3D (11) 

>&( = �- = &(C + &(D  (12) 

>EFGH = I� = &3C-J − &3D-K + &(C-J + &(D-K (13) 



where m is the system’s total mass, g is the gravity 

acceleration, I is the system’s inertia and FThrust is the thrust 

controller force. &3C and &(C are the sum of the forces acting 

on the left foot in the y and x direction, and xL and yL are the 

distances from the CoM to the left foot in the x and y 

directions. &3D, &(D, xR and yR are the equivalent on the right 

foot. The roll angle is considered positive when rotates in the 

clockwise direction. The thrust controller is a simplified 

version of the one used in [4] where the only aim is to control 

the descent rate 

&)? = L ∙ �.
@'M − .
� + �# (14) 

where C is a constant. 

 

Figure 3. Sketch of whole landing gear. In the left side, the upper and lower 

links are Link 1 and 2, and hip (LH) and knee (LK) angles are θ1 and θ2 

respectively. In the right side, the upper and lower links are Link 3 and 4, and 

hip (RH) and knee (RK) angles are θ3 and θ4 respectively. 

III. GROUND CONTACT MODEL 

A. Normal Force 

To simulate the ground contact forces during landing, 

a compliant contact model composed by a spring-damper 

system has been used. The main advantages of this approach 

are its good performance and straightforward implementation, 

and the fact that there are lots of examples in literature where 

it was successfully implemented as reported in [13], [14], [15] 

and [16]. 

Equation (15) represents the normal force to the 

ground when a leg tip lands, where y is the current leg tip 

vertical coordinate (normal to the ground), k is the spring 

elastic constant, and b is the damping ratio. The ground 

reaction force resists the leg tip penetrating the ground surface 

and it is proportional to the amount of ground penetration 

(spring component) and the rate of penetration (damper 

component). 

&N O−. ∙ P −	.
 ∙ Q													!R	. ≤ 00																																					!R	. > 0 (15) 

The normal force is zero before the impact and starts 

to make effect at the moment of touchdown, when y=0. At 

this point the force will peak due to the effect of the damper 

force because the foot is penetrating at landing velocity. After 

a few bounces the velocity goes to 0 and the foot position 

settles down to a certain ground penetration due to the effect 

of the spring force. Positive velocities would produce a 

damper force that tends to hold or stick the foot to the ground. 

This has to be avoided as it is physically incorrect and the 

system has to be allowed to bounce.  

B. Friction force 

Apart from the ground reaction force normal to the 

ground, friction force is also modelled to simulate the sliding 

of the system when landing on slopped surface. In [16] and 

[17], the authors present different friction force models. The 

model used in this paper is a variation of the Coulomb friction 

model for its simplicity and approximation to reality. 

Friction force has opposite direction to the sliding 

velocity, and is a non-linear function of the relative velocity 

and position of the two contacting surfaces. At the moment of 

touchdown, the friction force is in the “sticking” region, and 

it is modelled as a spring-damper system and it’s proportional 

to the tangential velocity and displacement of the foot. If the 

velocity and displacement keep growing until the friction 

force exceeds the maximum static friction force, FF_S, then the 

contact model switches to “slip” mode and the friction force 

is equal to the dynamic friction force, FF_D 

&U O−�- − -V� ∙ P −	-
 ∙ Q															!R	&U < &U_Y&U_Z																																														!R	&U ≥ &U_Y  (16) 

&U_Y = \B&N (17) 

&U_Z = \Z&N (18) 

where µS and µD are the static and dynamic friction 

coefficients, and x0 is the x foot coordinate at the moment of 

ground contact. The distance x – x0, is measured in the 

tangential direction to the ground. 

 

1.1. Normal and tangential forces on slopped ground 

The positions and velocities of the CoM and the feet 

are referred to the world coordinate frame XY axis (in the 

horizontal and vertical direction), but when dealing with 

slopped surfaces, in order to calculate ground reaction and 

friction forces, the positions and velocities of the feet have to 

be referred to the ground normal and tangential axis 

-) = -? cos ` +	.a sin ` (19) 

.� = −-? sin ` +	.a cos ` (20) 

where xh and yv are the horizontal and vertical coordinates and 

xt and yn are the tangential and normal coordinates. 

After the normal force, FN, and friction force, FF, are 

calculated, its horizontal and vertical components are 

calculated as: 

&dN = &N"ed = −&N sin ` -d +	&N cos ` .d (21) 

&dU = &U	d = &U cos ` -d +	&U sin ` .d (22) 

To compute the effect of the ground reaction and 

friction forces on the leg model, the sum of the vertical and 

horizontal forces needs to be calculated as: 



&( = −&N sin ` +	&U cos ` (23) 

&3 = &N cos ` +	&U sin ` (24) 

 

IV. LEVEL CONTROLLER 

The level controller (LC) takes the inclination of the 

base as an input and generates a signal to increase/decrease 

the height of both legs in order to make the inclination angle 

equal to 0 and maintain the base horizontal. 

The algorithm considered to control the height of the 

legs is a PI with the following control law equation: 

.��f = �gh�	� + �ij h�	�)
V

 (25) 

where yinc is the height increase/decrease of both legs, e(t) is 

the error between the measured angle and the horizontal 

position, and KP, and KI are proportional and integral gains 

respectively. 

The leg height is adjusted by adding/subtracting the 

height increment to the initial height of each leg 

.J'M)	kGlm = 	.J'M) −	.��f (26) 

.K�n?)	kGlm = 	.K�n?) +	.��f (27) 

So, if the angle is positive, the controller will extend 

the right leg and retract the left leg, and if the angle is 

negative, will do the opposite.  

V. PROTOTYPE DESIGN 

Figure 4 shows the laboratory-fabricated prototype in 

order to carry out the experimental tests. The robotic legs 

include two Dynamixel AX-18 smart servo motors each, at 

the hip and knee joints. These motors provide position and 

load feedback to the system. For motors position control the 

default manufacturing settings have been used. The prototype 

is equipped with an on-board microcontroller ArbotiX-M and 

an Inertial Measurement Unit (IMU) sensor MPU-6050 with 

3-axis accelerometer and gyroscope. The microcontroller 

includes TTL ports for direct connection with the servos and 

I2C bus to interface with the IMU unit. The power is supplied 

by an external source of 12 VDC.   

The code introduced in the microcontroller gets the 

base inclination from the IMU unit using a Kalman filter and 

checks the load feedback from both hip servos. If a load 

threshold is reached the system detects that a leg has made 

ground contact and the level controller is turned on. The LC 

uses servos position feedback and kinematics equations to 

get/set the XY coordinates of the feet. To simulate a helicopter 

landing, an external weight is added to the system during the 

performing of the tests and the system is lowered down using 

a rope and a pulley. Should the robotic legs behave 

abnormally, such as not fully extend/retract to the desired 

setpoint, the position feedback signal from the motors can be 

calibrated to indicate the fault and subsequently, the system 

will be switched off under the current experimental setup.  

 
Figure 4. Image of the laboratory-built landing gear prototype 

The physical parameters of the prototype are described 

in the table below. 

 
Table 1. Prototype physical parameters 

Parameter Symbol Value 

Upper/Lower leg mass m1 / m2 0.1 / 0.15 kg 

Upper/Lower leg length L1 / L2 0.0935 / 0.1045 m 

Base length D 0.1 m 

Total system mass 

(external weight included) 
m 3 kg 

Motor max torque Tmax 18kfg⋅cm / 1.76Nm 

VI. SIMULATION AND EXPERIMENTAL  RESULTS 

A. Simulation parameters 

A MATLAB/Simulink model is designed to simulate 

a landing test. The weights, dimensions and motors maximum 

torque used in the simulations are the same as the prototype. 

The system total inertia used is 0.08 kg/m2, and the spring and 

damper coefficients for the ground contact model are 1500 

kg/s2 and 30 kg/s respectively. The landing scenario is set at 

a rate of descent of the landing gear of 0.5 m/s and the slope 

of the ground of 12°. 

There are several tuning methods available for PID 

controller [18]. However, due to the complexity of the model, 

the controllers are tuned manually by trial and error to obtain 

the desired performance. The controller parameters are 

summarised in Table 2. 

 
Table 2. Controllers’ parameters 

Controller Gain Joint controllers Level 

Controller 

KP 75 0.0025 

KI 40 0.025 

KD 4.5 -- 

B. Simulation results 

The simulation and practical results are shown in 

Figures 5-7 where the software simulation and the landing test 

with the prototype are compared. 
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Figure 5. Base inclination (a), and vertical length of left leg (b) and right leg 

(c). Blue plots represent the simulations and red ones represent the 

experimental test. Dotted line represents the level controller trigger. 

Figure 5 shows that touchdown occurs at 1.7 seconds. 

At this moment, the left leg touches ground first, the system 

starts to tilt to the right and the level controller responds by 

retracting the left leg and extending the right to compensate 

for the ground slope and return the base to the horizontal 

position. The LC trigger shows the moment the system detects 

landing and the signal that activates the level controllers is set 

on (set to 1). The graph shows the correlation between the 

simulation and the practical results. The prototype system 

reacts slower compared to the simulated system. The rate of 

descent, the system´s inertia and also other inherent dynamics 

existing within the system could contribute to the outcome. 

It can also be observed that in the simulations both legs 

retract/expand the same distance, but in the experimental test 

the height movement of the left leg is higher than the right leg. 
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Figure 6. Joint angles at both hips and knees 

Figure 6 shows the change of the legs’ position in 

terms of joint angle variation. There is a clear evidence of 

correlation between the simulation and the practical results. It 

also shows that the practical system requires time to settle 

down before reaching stability. The retracting motion of the 

left leg is carried out by reducing θ1 and increasing θ2 and vice 

versa for the right leg. The results are shown to be consistent 

and repeatable.  

It can be observed again how in the experimental test 

the left leg position changes more than in the simulations. In 

the right leg, the position variation is higher in the simulation 

than in the experimental test. 
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Figure 7. Joint torques at both hips and knees 

Figure 7 shows the joint torques calculated in the 

software simulations compared with the load feedback from 

the servo motors. The manufacturer of the servos explicitly 

says that the load feedback is inaccurate and should be used 

only as an indicator of the direction and size of the torque 

applied [19], as it can be observed in the graphs. Despite that, 

the load feedback shows the weight of the system being 

transferred to the joints and how it changes direction at the 

moment of landing. 

C. Results Analisis 

First thing to notice is that the events in the simulations 

happen at much faster pace than in the experimental test. The 

level controller for example, corrects the inclination in less 

than 1 second, but in the prototype case it takes longer than 2 

seconds, and the legs move much quicker in the simulations. 

One reason for that are the physical limitations of the 

hardware. Landing is a critical operation and therefore a 

controller that works at high frequency is desired in order to 

react faster to changes. This was the reason to choose a cycle 

time of 1ms (1 kHz) in the simulations, but due to limitations 

of the microcontroller speed the cycle time in the 

experimental tests couldn’t by reduced more than 30ms (33 

Hz). During the experimental tests the controller parameters 

have been increased to KP=0.018 and KI=0.18 to make the LC 

react faster but the response time is still slower than the 

simulations. 

Another reason is that the experimental test starts with 

the level controller off. This is because during the descent, the 

inclination of the base is not exactly 0, but it changes around 

±1°, and the controller is switched off to avoid constant 

correction of the legs height before landing moment. The 

controller is turned on only when the landing moment is 

detected by the servos load feedback. This introduces a small 



delay in the experimental test, while in the simulations the 

level controller reacts instantaneously. 

The rate of descent is another possible cause of the 

differences between the simulations and the real tests. In the 

simulations this parameter can be set, but in the experiments 

there was no measurement or control of the descent rate, and 

different speeds will produce different impact forces. 

Despite the inaccuracy of the load feedback, it can be 

used to detect a change in the torque, and it has been 

successfully implemented to detect the moment of landing. 

By contrast, it cannot be used to calculate the real torque 

applied at the joint. 

VII. CONCLUSIONS 

In this paper, a nonlinear dynamic model of a 

helicopter landing gear has been designed, simulated and 

compared to a laboratory-built prototype. The model includes 

the kinematic and dynamic equations, a landing scenario, 

including a controller to regulate the rate of descent and a 

ground contact model to simulate the ground-leg interaction, 

and a level controller to maintain the stability of the base when 

landing on irregular terrains. The results show a correlation 

between the simulations and the experimental tests, showing 

that the mathematical model is a good representation of the 

real system. The performance of the level controller in both 

cases is satisfactory as it maintains the stability of the 

helicopter while landing in slopped terrain. 

The dynamic model presented in this paper constitutes 

a flexible tool that can be used to test different landing 

conditions as dimensions and masses of the bodies can be 

easily changed, as well as the landing speed and the type and 

condition of the terrain.  
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