Props Alive: A Framework for Augmented Reality Stop Motion Animation

Llogari Casas*
Edinburgh Napier University

ABSTRACT

Stop motion animation evolved in the early days of cinema with
the aim to create an illusion of movement with static puppets posed
manually each frame. Current stop motion movies introduced 3D
printing processes in order to acquire animations more accurately
and rapidly. However, due to the nature of this technique, ev-
ery frame needs to be computer-generated, 3D printed and post-
processed before it can be recorded. Therefore, a typical stop mo-
tion film could require many thousands of props to be created, re-
sulting in a laborious and expensive production. We address this
with a real-time interactive Augmented Reality system which gen-
erates virtual in-between poses according to a reduced number of
key frame physical props. We perform deformation of the surface
camera samples to accomplish smooth animations with retained vi-
sual appearance and incorporate a diminished reality method to al-
low virtual deformations that would, otherwise, reveal undesired
background behind the animated mesh.

Underpinning this solution is a principled interaction and sys-
tem design which forms our Props Alive framework. We apply
established models of interactive system design, drawing from an
information visualisation framework which, appropriately for Aug-
mented Reality, includes consideration of the user, interaction, data
and presentation elements necessary for real-time. The rapid devel-
opment framework and high performance architecture is detailed
with an analysis of resulting performance.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Aurtificial, augmented, and vir-
tual realities; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation 1.3.8 [Computer Graphics]:
Applications

1 INTRODUCTION

Stop motion animation techniques have an extensive history in the
film industry. The first representative sample is, "The Humpty
Dumpty Circus” by Albert E. Smith and J. Stuart Blackton, circa
1897. This short animated film featured a circus of steady acrobats
and animals in motion. The first Oscar nomination for this genre
came in 1966, when Eliot Noyes Jr. redefined the technique of free-
form clay animation and settled the foundations for modern stop
motion pictures.

Undoubtedly, one of the major exponents of this genre is ”"The
Nightmare Before Christmas” directed by Henry Selick and pro-
duced by Tim Burton in 1993. In this 76 minute long movie, 227
puppets were constructed, using more than 400 different expression
heads for the main character. This movie was recorded at 24 frames
per second, capturing a remarkable amount of 109,400 frames for
its entire length, taking 3 years to produce.

Recently, ”Kubo and The Two Strings™ has introduced 3D print-
ing advancements to mass produce puppets and faces, and conse-

*e-mail: L.CasasCambra@napier.ac.uk
fe-mail: M.Kosek @napier.ac.uk
fe-mail: K.Mitchell2@napier.ac.uk

Maggie Kosek'
Edinburgh Napier University

Kenny Mitchell*
Edinburgh Napier University

quently, accelerate the film production. However, over 66,000 faces
were 3D printed, hand-detailed, post-produced, set and captured in
order to be ready for capture. Therefore, regardless the advantages
that 3D printing brings to stop motion, a tremendous amount of
manual post-processing time remains.

This paper introduces a framework that reduces the number of
3D printed puppet components required in a traditional stop motion
animation. To do so, the in-between frames of the key poses are
computer-generated, having the only requirement to have the key
poses physically present. To achieve this transition, we use Aug-
mented Reality to perform deformation of the surface samples pro-
jected from the video feed. Further, a diminished reality technique
is implemented to deal with virtual deformations which digitally
reveal visually erroneous surfaces obscured by the physical prop.

2 RELATED WORK

Animating real world objects in Augmented Reality requires meth-
ods of deformation, lighting consistency, diminished reality and in-
formation visualization. Clayvision introduced a related scheme
for building scale objects in the city. The method pre-scanned a
set of known locations into reconstructed meshes. The live camera
feed was patched with a pre-modified version of the background
image, in which the appropriate building was removed. Upon the
movement of the animated mesh, the desired deformed pixels were
overlaid on the camera image [1].

Object removal for diminished reality is typically attempted with
inpainting techniques, and these tend to be computationally expen-
sive and not capable of real-time performance [2][3]. However, in-
painting in real-time has recently been approached through a light-
weighted algorithm that apply object segmentation and frame re-
dundancy to solve the problem of finding the occluded pixels. Here,
the cost function is split into structural and appearance costs in a
computationally effective algorithm [4].

Real-time texture remapping from a camera feed has been
achieved through the conversion of a 2D hand-painted drawings to
a 3D colored mesh [5]. In this particular approach, a static lookup
map was built in order to match every single pixel of the drawing
to corresponding sample locations on the mesh via fast dependent
texture reads.

Cloth simulation is a particular case of mesh deformation with
the challenge of resolving self collisions in real-time. Wei and
Kuichao [6] employ a spatial hash function for rapid indexing of
surface co-locations. In a similar concept, we introduce a vertex
hash map structure, but instead for the purpose of computation of
the mesh warp without repeated redundant vertex re-projections.

A framework for information visualization to display graphical
information in a diversity of domains was introduced by Mitchell
et al. [7]. In this particular research, an object oriented system de-
sign was mapped to different development platforms and use cases.
We consider how this applies specifically to our Props Alive frame-
work, and perhaps, in general, to interaction in Augmented Reality.

However, none of these techniques have been applied to the par-
ticular criteria of stop motion animation in augmented reality.



3 PRoOPS ALIVE FRAMEWORK
3.1 Scene Setup

Our framework requires to have a physical puppet, either 3D printed
or manually formed with its key physical poses. For instance, in
the case of our Pirate head, a hand-painted Bossons plaster model.
Our digital equivalent meshes are created through photogrammetric
capture through a number of digital images from a variety of view-
points. This virtual object database contains the key frame poses
and the in-between artist animated frames.

A prior known location relative to the target marker it is required
to track the object’s location. The virtual mesh counterpart uses the
tracked location to match the same position in the virtual scene and
use the resulting dependent mesh vertex positions for real-time tex-
turing. In addition, at present, background composition is limited
to solid colors or non-variant textures.

3.2 Real-time Deformed Texturing and Lighting

In order to perform texturing in real-time according to the video
feed, we base our approach on Magnenat [5]. However, in our sce-
nario, the texture coordinates need to be updated on a per frame
basis, in accordance to the position of the camera and the anima-
tion of the virtual mesh. Furthermore, in order to obtain coherency
on the deformation of the texture, we extend this method using a
hash table map between the initial rest pose vertices and the ani-
mated ones. We adopt an approach similar to that introduced by
Wei and Kuichao [6].

In more detail, we place a proxy object locator in the pivot po-
sition of the physical object and we assume that no movement will
be performed on that object. This approach enables an optimized
lookup of the animated vertex position as gives us a ¢'(/) constant
access time.

Av
v
=T X
p
Proxy Object Virtual Mesh

Figure 1: The texture coordinates of an animated in-between frame
represented as Av are back projected via &(1) hash map reference
to the initial rest pose v to achieve real-time deformed texturing sam-
pled from the real world object’s vertex locations dependent on the
originating physical proxy object’s pivot location p.

The required model matrix is computed in a vertex shader. The
matrix contains the transformation to locate the proxy virtual object
for the physical prop. As Figure 1 indicates, the real-time texture
coordinates of the computer generated object will match the proxy
location of the physical prop even if an animation is performed on
the mesh. An example of the resulting warp can be observed in
Figure 2, in which image c), renders the physical object texture in
an animated mesh position.

Once the shifted texture coordinates are computed, a screen pro-
jection is executed, and as a result, a sample mapping between the
image processed from the camera feed and the vertex locations is

Figure 2: a) Real-world Bossons plaster pirate’s head. b) real-time
mesh texturing in its initial key pose showing the proxy object at rest.
c¢) real-time mesh texturing of an in-between frame.

generated. This approach enables a seamless augmented reality ap-
pearance, as the material, lighting and shadowing of the object are
updated to the virtual mesh every frame. Any changes applied to the
surroundings of the virtual object will perform its expected lighting
effects to the virtual mesh. However, large deformations away from
the proxy object’s reference mesh, degrades realism.

3.3 Diminished Reality

Following the approach of Herling and Broll [4], our method takes
advantage of the fact that the position of the object that needs to
be removed can be obtained through the pivot position of the proxy
object locator. Therefore, we use that information to segment the
area where the occluded pixels need to be inpainted. To do so,
we compute the size of the proxy object every frame, creating a
rectangle area of pixels that contains the region of the image where
the physical object is placed.

Once the area that needs to be inpainted is located, boundary
pixel RGB values are sampled as color probes. Each pixel that
needs to be replaced is computed through the average RGB values
of its boundary counterparts in the X and Y axes.

(b)

L

Figure 3: a) Animated mesh without a diminished technique. b) Ani-
mated mesh with a diminished plane implemented.

The inpainted texture is applied to a procedural plane that con-
tains the size of the physical prop. As Figure 3 indicates, the real-
world prop would have been shown in the circled area of the image
b) if a diminished background technique would have not been ap-
plied.

4 ARCHITECTURE AND IMPLEMENTATION

We base our system design on the Framework for Information Visu-
alisation [7], which generically considers user interaction with data.
This framework unifies models of Model-View-Controller (MVC)
with others, such as Presentation-Abstraction-Control (PAC) or
User Interface Management Systems (UIMS).

Due to the fact that the user interacts with data through an Aug-
mented Reality scenario, we need to further develop some concepts
from the Information Visualisation Framework [7]. For instance,
the observation process of the system’s model of the user observing



the visualisation, necessarily includes the camera sensor providing
the video feed to augment. In addition, the system’s performance
applies to the processing of the scene database that represents the
real object. In our specific example, the Pirate head, and modifies
this information to produce the animated Augmented Reality visu-
alisation. The major elements of the Props Alive framework deals
with the performance processing the scene database.

Props Alive Framework

Prop Real-time Diminished
Animation Texture Plane
Module Module Module

Vuforia Plug-in

Unity Game Engine

Figure 4: Props Alive framework’s structure and layered implementa-
tion with the Vuforia Augmented Reality plugin within the Unity game
engine.

To achieve this real-time interactive system, we implemented our
framework with Unity game engine. This technology provides a
cross-platform solution that enables development for an extended
variety of devices with rapid prototyping featuring scripting and
a component based architectural design. In this particular case,
our framework runs on contemporary mobile devices as deployable
apps. In addition, Vuforia is used to support tracking of the real-
world object in the scene and delivers the video image and pose
registration parameters to our Props Alive framework components.

As Figure 4 indicates, the Props Alive framework is built on top
of Vuforia and Unity core libraries and split into three core mod-
ules: Prop Animation, Real-time Texture and Diminished Plane
modules. A standalone C# script along with its associated Shader
are used.

In order to deploy with Vuforia, a marker target needs to be cre-
ated, activated and attached to the main scene camera. In our spe-
cific framework, we opted for an Image based marker. This marker
provides a by default enabled component that handles event man-
agement in real-time for specific Augmented Reality events. As
Figure 5 indicates, our framework uses those events in combination
with Unity provided ones to deliver Props Alive.

4.1 Prop Animation Module

In order to animate our real-world puppet, we captured the physical
object through photogrammetric digital images. The outcome mesh
was cleaned and retopologised manually using Autodesk Maya.
Several technical solutions are currently available to animate a
3D mesh. Nevertheless, not all of them are computationally effec-
tive and capable of a high performance in a real-time domain. For
instance, Point Cache Animation provides a high flexible solution,
due to the fact that all the vertices of the mesh are baked to the ex-
ported file on every frame. However, this is extremely costly in a
real-time scenario, as the size of the generated file is dependent to
the amount of vertices and length of the animation. To overcome
this constraint, we implemented a weighted skeleton bone system
to the puppet and performed the resulted animation on the GPU.
This approach only requires to store the transformation values of
its bones on each frame to animate the entire mesh, and conse-
quently, avoids storing large amount of data on the exported file.

App
Initialization

Store Initial Key
Pose

Video frames into
tracking data

'

Vuforia
Initialization

~
Registration pose
parameters combined with
animated mesh data .
Tracking
Lost

Disable Object
Rendering

Vuforia Tracking

Video image used | Tracking
to compute texture

coordinates | Found

Compute Texture
Coordinates

Video image used to
inpaint disoccluded areas

Inpaint
Segmented Area

Mesh data used to render
the final animated object

Render Animated
Object

App
Stopped .

Figure 5: Props Alive framework’s statechart diagram annotated with
data structures used in the Augmented Reality mesh deformation.

The Shader renderers the result of the multiplication between the
initial vertex pose position (v), the weighted value for each bone
(w;) and the transformation matrix for each bone (M;). Thus defin-
ing v’ as,Vv = Y wiM;v.

4.2 Real-time Texture Module

Achieving real-time texturing according to the video feed requires
us to compute the texture coordinates on each frame for every ver-
tex. Therefore, the performance of our framework is correlated
with the complexity of the given mesh. In our implemented pi-
rate’s head, we use a low poly version of the mesh, which contains
an approximately 8,000 vertices. In order to avoid unnecessary op-
erations in real-time, we store the initial key pose before initializing
the Framework, as Figure 5 indicates. This pipeline reduces the op-
erational cost per vertex, as the only calculation that is performed
in the Vertex Shader on the GPU is a multiplication between the
current location of the vertex and the original pose position. This
operation resolves the real-world location of the physical puppet to
retrieve the texture sample from the video feed.

4.3 Diminished Plane Module

Inpainting traditionally requires expensive algorithms that were not
capable of real-time performance [2][3]. However, in our im-
plementation, we follow a novel real-time capable approach from
Herling and Broll [4]. To do so, we only inpaint the segmented
area where the occluded pixels are located with complexity of
O(N x M). Consequently, we intend to keep N and M, which de-
fine the segmented area, as low as possible through object segmen-
tation. N and M values are also dependent to the position of the
physical object relative to the camera. If the camera gets closer to
the segmented object, those values would increase due to the big-
ger presence of the object in the screen. Conversely, those would
decrease if the object gets further away from it. Hence, the perfor-
mance of our diminished plane prototype is linked with the size of
the segmented area that needs to be inpainted every frame.



In addition, in our implementation of the inpainted texture, we
create a 24-bit buffer of (N x M) size. We allocate 8 bits per each
RGB component. The buffer is released from the memory once it
is assigned to the diminished plane.

5 PROTOTYPE RESULTS USING THE FRAMEWORK

The preliminary results enabled us to analyze the performance of
our Framework. As Figure 6 indicates, the area that contains a
peak over the time in the rendering section defines the framework’s
state where the marker is detected. Render time is steady when
the framework’s reaches this tracked state. CPU’s usage also in-
crements and varies depending of the amount pixels that need to
be inpainted on the diminished plane. We highlight the observa-
tion, that the ease of implementation through scripting of mesh and
image processes, did not impede overall system performance and
effectiveness of results.

Figure 6: Performance of the CPU and rendering calls made when
the scene database is detected and tracked through our Framework.

As Figure 7 indicates, preliminary results visually suggest that
proposed method could achieve good quality and performance on
the in-between frames between physical key poses. However, de-
veloped method needs to be compared against traditional stop mo-
tion techniques to be able to analyze and compare the benefits
and the efficiency of our approach. For instance, to compare the
deformed surface appearance accuracy against ground truth 3D
printed frames.

6 CONCLUSION AND NEXT STEPS

Our next steps will be focused on spotting the constraints and lim-
itations in which our framework could deliver efficient results. For
instance, real-time computing constraints, such as evaluating the
maximum number of props that could be using this method at the
same time in the same scenario, or animation constraints, such as
understating the amount of translation units and rotation degrees
that can be performed on top of the physical prop without incurring
degraded quality under texture deformations.

In addition, comparison between traditional stop motion tech-
niques and our approach will be performed in order to obtain qual-
itative and quantitative results, in terms of performance, costs and
visual outcomes. Next steps anticipate work closely with traditional
stop motion artists in order to provide an accurate and user-friendly
solution to their needs.

Even though our prototype results look visually acceptable, ac-
curate conclusions can not be performed until more data is collected
and compared to traditional stop motion techniques. However, the
framework presented provides a strong basis for this further explo-
ration and experimentation.

ACKNOWLEDGEMENTS

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No. 642841.

Figure 7: Animated sequence of a real-world Bossons pirate’s head.

REFERENCES

[1] Yuichiro Takeuchi and Ken Perlin. Clayvision: The (elastic) image of
the city. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 12, pages 2411-2420, New York, NY,
USA, 2012. ACM.

[2] A. Criminisi, P. Perez, and K. Toyama. Region filling and object
removal by exemplar-based image inpainting. Trans. Img. Proc.,
13(9):1200-1212, September 2004.

[3] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma
Ballester. Image inpainting. In Proceedings of the 27th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
’00, pages 417-424, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

[4] Jan Herling and Wolfgang Broll. Pixmix: A real-time approach to high-
quality diminished reality. In Proceedings of the 2012 IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), ISMAR
’12, pages 141-150, Washington, DC, USA, 2012. IEEE Computer So-
ciety.

[5] S. Magnenat, D. T. Ngo, F. Znd, M. Ryffel, G. Noris, G. Rothlin,
A. Marra, M. Nitti, P. Fua, M. Gross, and R. W. Sumner. Live texturing
of augmented reality characters from colored drawings. [EEE Trans-
actions on Visualization and Computer Graphics, 21(11):1201-1210,
Nov 2015.

[6] Zhao Wei and Yu Kuichao. Improved collision detection for cloth sim-
ulation system. In World Automation Congress 2012, pages 1-4, June
2012.

[7] Jessie B. Kennedy, Kenneth J. Mitchell, and Peter J. Barclay. A frame-
work for information visualisation. SIGMOD Rec., 25(4):30-34, De-
cember 1996.



