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Abstract of Thesis 
GABA (gamma-amino butanoic acid) is the main inhibitory neurotransmitter in 

the mammalian central nervous system. GABA has been found to play an 

inhibitory role in some cancers, including colon carcinoma, cholangiocarcinoma, 

and lung adenocarcinoma. 

Growing evidence shows that GABAB receptors are involved in tumour 

development. The expression level of GABAB receptors was found to be 

upregulated in some human tumours, including the pancreas, and cancer cell 

lines, suggesting that GABAB receptors may be potential targets for cancer 

therapy and diagnosis.  

In this research programme, several diverse series of potential anticancer 

prodrugs of GABA and GABA receptor-targeting agents have been rationally 

designed and synthesised for selective activation in the tumour 

microenvironment.  

In one approach, a series of oligopeptide conjugate prodrugs have been 

synthesised as protease-activatable substrates for either the extracellular matrix 

metalloproteinase MMP-9 or the lysosomal endoprotease legumain; each of 

which are overexpressed in the tumour environment and are effectors of tumour 

growth and metastasis. Specifically, a novel fluorogenic, oligopeptide FRET 

substrate prodrug of legumain HZ101 (Rho-Pro-Ala-Asn~GABA-spacer-AQ) has 

been characterised and shown to have theranostic potential. Proof of principle 

has been demonstrated using recombinant human legumain for which HZ101 is 

an efficient substrate and is latently quenched until cleaved. HPLC methods 

have been developed to monitor prodrug activation.  

In another approach, cyclic prodrugs of the GABA-B receptor agonist baclofen 

have been designed to be activated in the acidic environment of solid tumours to 

exert antitumour effects through modulation of the receptor response.  

During the oligopeptide synthetic work, novel, coloured, anthraquinone-based 

reagents have been designed and evaluated as new chemical tools for amine 

detection and monitoring in solid phase peptide synthesis (SPPS); 

characterisation by spectroscopic and HPLC methods have demonstrated their 

advantages over existing methods and their potential applications for use on 

solid supported resins.
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Graphical Abstract Concept Diagrams 

Chapter 1: MMP-9 Activated Prodrugs  

Chapter 1 presents the results and discussion of a series of novel oligopeptide 

Matrix Metalloproteinase (MMP)-9 substrates for prodrug therapy, designed to 

be activated by overexpressed MMP-9 in the tumour microenvironment. 

 
             

Figure 1. Design strategy and concept for MMP-9 activated prodrugs 
 

Figure 1 illustrates the general concept for the design of the MMP-9 targeted 

prodrugs, where an MMP-9 cleavable peptide is amide linked at its carboxy 
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terminus to either a GABAB receptor agonist or antagonist or cytotoxic agent; the 

amino terminus is protected by either a capping group, fluorophore (for 

diagnostic purpose) or antiangiogenic agent. Activation of the prodrug at the 

MMP-9 specific cleavage site (‘hotspot’), followed by further degradation by 

ubiquitous aminopeptidase should result in release of the active agents in the 

tumour microenvironment, which may then enter into tumour cells and lead to cell 

death.  

 

Chapter 2: Baclofen Based Prodrugs 

Chapter 2 describes the synthesis and preliminary evaluation of new cancer 

chemotherapeutic prodrugs targeted to the GABAB receptor with the potential to 

increase therapeutic index. 

 
Figure 2. Design strategy and concept for cyclic baclofen based prodrugs  

 

Figure 2 outlines the rationale for the synthesis of a series of compounds where 

the GABAB receptor agonist baclofen was converted into a lipophilic cyclic 
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prodrug form in order to enhance cell membrane and blood brain barrier 

permeability for potential brain tumour therapy.  

 

Chapter 3: Design of legumain activated GABA prodrugs  

This chapter focuses on the synthesis of a legumain targeted prodrug and 

presents the results of in vitro metabolism studies by HPLC and fluorescence 

spectroscopic methods. 

 

Figure 3 Design strategy for legumain activated prodrugs 

 

Figure 3 illustrates the general design strategy and activation concept for 

legumain targeted fluorogenic prodrugs/probes. The prodrug has been 

designed to exploit the proteolytic activity of overexpressed legumain, a 

lysosomal endoprotease with strict specificity for Asn at the P1 position of 

peptide substrates. On activation by legumain, the latently fluorogenic prodrug 

releases a fluorogenic tripeptide and a GABA-containing aminoanthraquinone 

fragment, designed to be further cleaved by aminopeptidases to release the 

ligand GABA which may then enter into tumour cells and lead to cell death or 
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modulate GABA receptors to induce an antitumour effect.  

 

Chapter 4: New colour reagents for SPPS  

In the course of this research programme, synthetic peptide chemistry methods 

were used considerably (as reported in chapter 1 to 3). Due to inherent 

difficulties in monitoring peptide coupling reactions by published available 

methods, novel methods were explored. Chapter 4 describes how new colour 

test reagents were developed for the amine detection and monitoring of reaction 

steps in solid phase peptide synthesis (SPPS). Three new colour reagents (blue, 

red, and purple) were synthesized that gave a rapid colour change to resin 

beads at room temperature with both sterically hindered primary and secondary 

amines. Examples of their application are described. 

 

AQ-Ahx-OPFP (HZ22) 

 

 

 

 

Figure 4. An example reagent for amine detection and resin bead colouration 

5 



 

 
Graphical Summary of Research Undertaken 

 

Venn diagram representation of the Areas of Research presented in this thesis 

showing the fundamental relationships between them. The common theme 

running through all chapters is GABA (gamma aminobutanoic acid). This natural 

ligand may be a pro- or anti-tumour effector. Protease activated prodrugs of 

GABA are targeted either to MMP-9 or legumain endoproteases that are 

overexpressed in the tumour microenvironment. Prodrugs of the GABAB 

receptor agonist baclofen (which has antitumor properties) are designed to be 

either oligopeptide prodrugs activated by MMPs or cyclic, hydrophobic prodrugs 

activated by a pH-dependent mechanism in tumours. Peptide labelling with 

novel reagents developed for N-terminus capping in SPPS methodology spans 

the areas of endoprotease mediated GABA prodrug activation. 

  

6 



 

Abbreviations 
 

Ala Alanine 

AQ Anthraquinone 

BBB Blood brain barrier 

cAMP Cyclic adenosine monophosphate  

DCC N,N-Dicyclohexylcarbodiimide 

DCU Dicyclohexylurea 

DIPEA N,N-Diisopropylethylamine 

DMAP 4-Dimethylaminopyridine 

DMSO Dimethysulphoxide 

DMF N,N-Dimethylformamide 

EDTA Ethylene diamine tetraacetic acid 

GABA Gamma-amino butyric acid 

GAD Glutamate decarboxylase 

MeOH Methanol 

MMPs Matrix metalloproteinases 

NU:UB Napier University: University of Bradford 

PBS Phosphate buffered saline 

PFP Pentafluorophenol 

Pro Proline 

RT Room temperature 

SPPS Solid phase peptide synthesis 

TLC Thin layer chromatography 

UV Ultraviolet 
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Nomenclature 
 

The compounds synthesised here are relatively large molecules. To facilitate 

communication through the thesis, the compounds were described in their 

simplest format. The chemical structure (Example A) below represents one of 

the synthesised MMP-9 activated prodrugs (HZ16).  

 

Example A: 

 

 

The hexapeptide chain in the middle is described conventionally using 3-letter 

codes as Pro-Ala-Gly-Leu-Ala-Ala to allow easy recognition of the amino acids 

present in the prodrug. The spacer groups have been abbreviated to succinyl 

and piperazinyl. The short term ‘AQ’ is used in this thesis to represent the most 

commonly used anthraquinone group. Podophyllotoxin is the active agent of the 

prodrug. Eventually, the synthesised prodrug has the short name in the context 

described as: Podophyllotoxin-Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ 
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(HZ16). HZ16 is the descriptor and number wherein HZ is the code name for 

newly synthesised compounds. 

 

Example B: 

 

Numbering of anthraquinone conjugate 

 

A numbering system of anthraquinone conjugates were used here. This will 

particularly support the NMR spectral analysis. The Example B (AQ-Ahx-OPFP 

HZ22) is one of the synthesised compounds from Chapter 4. The numbers in red 

indicate the positions of atoms or groups of atoms allocated to the reported nmr 

signals of the HZ22 chemical structure.  
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Chapter 1. MMP-9 Activated Prodrugs 

1.1 Abstract 

One aspect of this project aims to design, synthesize and evaluate MMP-9 

activated prodrugs that target GABA receptors (with GABA modulators) and 

further incorporating either an antiangiogenic and/or cytotoxic agent. The 

objective will be to find out whether tumour-selective targeting the MMP-9 

increases the anticancer activity (a synergistic effect) and reduces the general 

toxicity compared to using the cytotoxic/antiangiogenic agent alone.  

 

1.2 Hypothesis 

The specificity of the human matrix metalloproteinase, MMP-9 (overexpressed in 

ovarian and colon cancer) for key amino acid residues in the P1- P1´ positions 

can be exploited to activate synthetic oligopeptide prodrug substrates in the 

tumour microenvironment selectively, with concomitant improvement in 

therapeutic index.  

It is proposed that MMP-mediated prodrug activation can be exploited to deliver 

GABA (free ligand) and/or GABA receptor-targeting agents to modulate tumour 

response to cytotoxic and/or vascular disrupting agents. 
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1.3  Introduction 

1.3.1 MMPs in Tumour and Neurodegenerative Disease 

Matrix metalloproteinases (MMPs) are detected to be over expressed in a variety 

of tumour types. For instance, small cell lung cancer was detected with high 

levels of MMP-3, MMP-11 and MMP-14. High expression of MMP-11 has been 

demonstrated in breast cancer. Patients with prostate cancer have high MMP-2 

level. It was also found that MMP-2 and MMP-9 levels were increased in gastric 

cancer. These findings suggest that MMPs have potential to be used as the 

markers for cancer diagnosis (Zucker et al. 1999). The role of MMPs in tumour 

growth, invasion and metastasis was proposed mainly by preclinical animal 

studies (Vihinen and Kähäri, 2002). It is now widely believed that the activity of 

MMPs facilitates the tumour progression through the extracellular matrix (ECM) 

in two aspects: First, MMPs are responsible for degrading the ECM and 

basement membrane, consequently malignant cells can move through blood 

vessel walls and connective tissues and resulting in cancer metastases (Ray 

and Stetler-Stevenson 1994). Second, MMPs stimulate the secretion or 

activation of ECM growth factors, such as vascular endothelial growth factor 

(VEGF), basic fibroblast growth factor (bFGF) and insulin-like growth factor. The 

multiple roles of MMPs in cancer progression are illustrated in Figure 1.  
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Figure 1. The role of MMPs in cancer progression 

(Adapted from Klein et al. 2004) 

 

Based on extensive literature, MMP-2 and MMP-9 are the most discussed 

MMPs in relation to cancer (for reviews, see Gialeli, Theocharis and Karamanos, 

2011; Hidalgo and Eckhardt, 2001). 

Moreover, MMP activities are linked to the pathogenesis of acute and chronic 

neurodegenerative disorders (Rosenberg, 2009). The level of MMPs, especially 

MMP-9 was detected to be elevated in patients with Alzheimer’s disease, 

epilepsy, dementia, and Parkinson’s disease (Ethell and Ethell, 2007; Mizoguchi, 

Yamada and Nabeshima, 2011; Yong et al., 1998). It is believed that MMPs can 

increase the permeability of the blood-brain barrier and eventually cause white 

matter damage, brain edema, haemorrhage, ischemia and stroke 

(Candelario-Jalil et al., 2011). Recent studies revealed that MMPs are also 

involved in the degradation of amyloid β-proteins in Alzheimer’s disease and 

dopaminergic neurons in Parkinson’s disease (Yong et al., 2001; Mizoguchi, 
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Yamada and Nabeshima, 2011). To sum up, MMPs are promising targets for the 

treatment of cancer and neurodegenerative disease because of their 

involvement in disease initiation and progression. 

 

1.3.1.1 MMPs activation and regulation 

MMPs are a family of zinc-dependent endopeptidases that are capable of 

degrading a variety of Extracellular Matrix (ECM) components and involved in 

remodeling of many tissues and organs. The MMPs were first described in 1962 

as the enzymes with proteolytic action for dissolution of the tadpole tail (Tallant 

et al., 2010). Now there are more than 20 enzymes classified as MMPs. MMPs 

were found to be over-expressed in a variety of tumours and play a pivotal role in 

tumor growth, invasion, metastasis and angiogenesis (Curran and Murray, 2000). 

The general structure of MMPs consists of five domains: a signal peptide domain, 

a propeptide domain containing a cysteine switch, a catalytic domain, a hinge 

region, and a hemopexin-like domain at the C terminus (showed in figure 2) 

(Nagase and Woessner, 1999). Most MMPs are produced as inactive enzymes 

(zymogens) with a propeptide domain that must be removed for the enzyme 

activation. The propeptide domain contains a cysteine residue which interacts 

with the catalytic zinc atom and prevents the binding and cleavage of the 

substrate. The proteolytic cleavage of propeptide domain triggers a 

conformational change and exposes the catalytic site to the substrate (Murphy 

and Knäuper, 1997).  
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Figure 2. The general domain structure of matrix metalloproteinases (MMPs), 

MMP2 and MMP-9 are gelatinases which contain a fibronectin type II domain 

inserted into the catalytic domain 

(Adapted from Murphy and Nagase, 2008) 

 

The MMPs activity is closely regulated by gene expression and proenzyme 

activators. Most of the time, the level of MMPs produced is very low. The 

expression of MMPs can be induced by a variety of growth factor, cytokines, 

hormones and oncogenes in respond to normal tissue remodelling, wound 

healing, inflammation and cancer (Clark et al., 2009). 

 

1.3.1.2 MMPs inhibitors 

The MMPs activity can be inhibited by non-specific endogenous inhibitors which 

include α1-antiprotease and α2-macroglobulin, and by specific tissue inhibitors 

of the metalloproteinases (TIMPs) (Woessner, 1991; Cao, 2001). The family of 

TIMPs is composed of TIMP-1, TIMP-2, TIMP-3, and TIMP-4. A variety of cell 

types produce the TIMPs (Bonomi, 2002). The TIMPs contain a chelating group 

which binds to the active zinc atom of MMPs resulting in the formation of a 

non-covalent complex. TIMPs are able to inhibit the proteolytic activity of all 

MMPs and many pro-MMPs (Clark et al., 2009; Brew and Nagase, 2010). The 

design of MMPs inhibitors represents an important approach of MMPs targeting 

anticancer drugs (Hinnen et al., 2001). 
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A number of synthesised MMPs inhibitors have been shown to be effective in the 

treatment of cancer. The peptidomimetic and nonpeptidic MMP inhibitors are 

most studied in clinical trials (Hidalgo and Eckhardt, 2001). The peptidomimetic 

inhibitors were synthesised to mimic the structure of collagen and irreversibly 

bind at the active site of MMPs. The most common clinical used zinc-binding 

group of inhibitors is hydroxamate (Konstantinopoulos et al., 2008). Batimastat is 

the first peptidomimetic inhibitor used in cancer patients. The beneficial aspects 

of Batimastat include mild toxic side effects, prolonged half-life up to 3-4 weeks 

and well tolerated in patients. However, this drug has poor orally bioavailability 

and needed to be intraperitoneally or intrapleurally administered. Marimastat is a 

low molecular weight analogue of Batimastat that has improved solubility. 

Marimastat has now been withdrawn due to the poor performance in clinical 

trials (Sparano et al., 2004). Furthermore, both Batimastat and Marimastat have 

nonselective binding to MMPs (Rasmussen and McCann, 1997). 

One major problem of peptidomimetic inhibitors is the lack of specificity for 

MMPs. In order to overcome this problem, a series of nonpeptidic inhibitors have 

been developed based on the differential three-dimensional conformations of the 

MMPs active zinc sites. Prinomastat (AG3340), BAY 12-9566 and BMS-275291 

were synthesised as specific inhibitors of MMP-2, 3 and 9. The antitumour 

activity of these drugs has been demonstrated in preclinical models (Gatto et al., 

1999; Giavazzi and Taraboletti, 2001). These agents then underwent clinical 

trials for cancer therapy. However, the trials of prinomastat, BAY 12-9566 and 

BMS-275291 had been stopped at phase III because of negative findings and 

did not improve the outcome of chemotherapy (Bissett et al., 2005; Giavazzi and 

Taraboletti, 2001; Leigh et al., 2004) 

 

The tetracycline derivatives have also been found to inhibit both the activity and 
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production of MMPs. The tetracycline analogues, Doxycycline and Col-3 both 

inhibit the secretion of activity of MMP-2 and MMP-9. Bisphosphonates are 

prevalently used in patients with breast cancer and multiple myeloma. The drug 

also has inhibitory effects on MMPs activity (Hidalgo and Eckhardt, 2001).  

 

1.3.1.3 The substrate preference of MMP-9 

The proteolysis domain structure of MMP-9 gives it well-defined substrate 

preference. The catalytic sites of MMPs are determined by X-ray crystallography 

and NMR spectroscopy, and are assigned to mainly six subunits (subsites or 

pockets): S1, S2, S3 and S1’, S2’, S3’. Correspondingly, the functional residues 

(individual amino acid side-chains) of an MMP substrate interacting with these 

pockets are designated as P1, P2, P3 and P1’, P2’, P3’ positions (Gupta and 

Patil, 2012). The structure relationship between MMPs and their substrates is 

shown in Figure 3. The amide (peptide) bond between the P1 and P1’ position of 

the MMP peptide substrate is called the scissile bond or cleavage ‘hot spot’.  

The substrate selectivity of MMP-9 has been investigated. It becomes clear that 

the deep S1’ pocket prefers a large hydrophobic residue, such as leucine (Leu), 

in the P1’ position of MMP-9 substrates (Gupta and Patil, 2012). Proline (Pro) is 

the most optimizing binding residue in the P3 position. This is because proline 

has a cambered structure which fits well in the S3 pocket of MMP-9. However, 

other MMPs with the same substrate preference in P3 positions are very 

common, such as MMP-7 and MMP-13. For the P2 position, an amino acid with 

long side chain is favoured for MMP-9, such as arginine (Arg). Although Arg was 

also found at P2 in substrates for MMP-13, the frequency was much lower than 

MMP-9 (Kridel et al. 2001). Besides, aspartic acid (Asp) was also reported to be 

prevalent in the P2’ position of natural MMP-9 substrates, whereas MMP-2 

prefers glutamic acid (Glu) (Chen et al. 2003). It has been revealed that glycine 
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(Gly) most often occupies the P1 position of MMP-2 and MMP-9 substrates 

(Lauer-Fields et al. 2003). The binding of serine (Ser) and threonine (Thr) to the 

S2’ pocket of MMP-9 also showed high frequency (Kridel et al., 2001). 

 

The MEROPS data base was searched for information on preferred peptide 

sequence of MMP-9. Based on 367 cleavages, for example, Gly was in the P1 

position most times (120). Previous work from this laboratory had indicated that 

long, straight chain hydrocarbon residues of the non-proteinogenic amino acids 

norvaline and norleucine were favoured in the P1´ position (Mincher et al., 2006; 

Mincher et al., 2008). The rest of the amino acids of peptide substrate for design 

and synthesis of MMP-9 activated prodrugs in this study were chosen here by 

most common occurrences in reported cleavages (Rawlings, Barrett and 

Bateman, 2012) and illustrated in Figure 3.  

 

Figure 3. MMPs proteolysis pockets and MMP-9 substrate specificity 
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1.3.2 GABA and its receptors  

GABA (gamma-amino butyric acid) is the main inhibitory neurotransmitter in the 

mammalian central nervous system (CNS). The catalytic enzyme, glutamate 

decarboxylase (GAD), is involved as the major effector in the biosynthesis of 

GABA from glutamate (Barker et al., 1998). 

GABA acts on two distinct types of receptors, GABAA and GABAB. GABAA 

receptor is a ligand-gated chloride ion channel with a fast synaptic inhibition 

effect (Jacob et al., 2008), while GABAB receptor is a G-protein coupled receptor 

with slower synaptic inhibitory transmission. They are both important therapeutic 

targets for the clinical treatment of psychiatric and neurological disease 

(Watanabe et al., 2002). 

It is also found that GABA and its receptors exist in many peripheral organs, for 

instance, liver, pancreas, intestine, kidney, prostate and ovary (Watanabe et al., 

2006). This fact indicates that GABA has more functions than being a 

neurotransmitter. Many studies suggested that GABA plays a regulatory role in 

cell proliferation and migration, which leads to the consideration of the 

involvement of GABA in tumour cell proliferation (Szczaurska et al., 2003). 

 

1.3.2.1 Regulatory role of GABA in Tumour  

The GABA content and its synthesizing enzyme (GAD) activity were reported to 

be increased in certain cancer types such as prostate, gastric, colon, ovarian, 

glioma, and breast cancers (Young and Bordey, 2009).  

In 2003, Azuma et al. reported that GABA promotes prostate cancer metastasis 

by increasing MMP production in cancer cells via the GABAB receptor pathway. 

Also, GABA showed a stimulatory effect on pancreatic cancer with upregulated 

the π subunit of the GABAA receptor (Takehara et al., 2007). 

In contrast, GABA was found to play an inhibitory role in colon carcinoma 
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(Joseph et al., 2002; Ortega, 2003), cholangiocarcinoma (Fava et al., 2005), and 

lung adenocarcinoma (Schuller et al., 2008b). At this point, it is evident that the 

connections between GABA and cancer are not well understood and this adds to 

the motivation behind this research project. 

 

1.3.2.2 GABAA receptors in Tumour 

The GABAA receptor is a ligand-gated ion channel which selectively conducts 

chloride anions (Cl―) through its pore. GABAA receptors can be found in all 

organisms that have a nervous system (Campagna-Slater and Weaver, 2007). 

In humans, the structure of GABAA receptor consists of varying combinations of 

α, β, γ, π, θ, ε, δ, and ρ protein subunits (Figure 4). Five subunits can combine 

in different ways to form GABAA receptors. Different combinations of these 

subunits may result in distinct pharmacological properties (Olsen and Sieghart, 

2009). The minimal requirement to build a GABAA receptor pentamer is the 

inclusion of both α and β subunits (Connolly et al., 1996). When endogenous 

ligand GABA binds to the GABAA receptor complex, the protein receptor 

changes conformation that cause opening the pore to allow Cl― pass through 

the membrane. Consequently, agonists activate the GABAA receptor resulting in 

increased Cl− conductance. Muscimol is one of selective agonists for the GABAA 

receptor that binds to the same site as GABA, as opposed to drug 

benzodiazepine which binds to a separate regulatory site. For antagonists, 

though they have no effect on their own, compete with GABA for binding and 

thereby inhibit its action, resulting in decreased Cl− conductance (Frølund et al., 

2002) 
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Figure 4. Structure of GABAA receptor 

(Adapted from Jacob at al. 2008) 

 

A number of reports suggested a relationship between GABAA receptors and 

oncogenesis. Considering brain tumours, the expression of GABAA receptors 

was upregulated in human glioma cells (Synowitz et al., 2001), but glioblastoma 

had downregulated GABAA receptor expression (Aronica et al., 2007). The 

decreased level of GABAA α3 subunit and increased level of GABAA β3 subunit 

were detected in human hepatocelluar carcinoma (Liu et al., 2008; Minuk et al., 

2007). The π subunit of GABAA receptor was upregulated in pancreatic and 

breast cancers (Johnson and Haun, 2005). In addition, patients with prostate 

cancer have upregulated expression of GABA and GABAA receptor (Abdul, et al., 

2008). 

The stimulatory action of propofol, a well-known anaesthetic agent and a GABAA 

receptor agonist, on colon tumours inhibited the cancer cell invasion and 

expression of MMP-2 and MMP-9 (Miao et al., 2010). Additionally, the GABAA 

receptor antagonist picrotoxin inhibited prostate cancer cell proliferation (Ippolito 

et al., 2006). 
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1.3.2.3 GABAB receptors in Tumour 

The heterodimer structure (Figure 5) of the GABAB receptor is composed of two 

subunits GABAB1 and GABAB2. The extracellular domain (ECD) of GABAB1 is 

capable of binding GABA, agonist and antagonist, whereas the ECD of GABAB2 

does not bind any ligands (Kaupmann et al., 1998). The transmembrane domain 

of GABAB2 can bind to certain modulators. The Intracellular domain of GABAB2 

coupled to G-protein and regulates the activities of the Ca2+ channel, K+ channel 

and Adenylyl Cyclase (AC). Both subunits are required for normal GABAB 

receptor function in vivo (Filip and Frankowska, 2008). 

 

Figure 5. The schematic structure of GABAB receptors 

(Adapted from Jiang et al. 2012) 

 

Growing evidence showed that GABAB receptors are involved in tumour 

development. The expression level of GABAB receptors was found to be 

upregulated in human colon cancer cell lines (Thaker et al., 2005), thyroid 

tumours (Roberts et al., 2009), breast cancer (Jiang et al., 2012) and 

hepatocellular carcinoma cell lines (Wang et al., 2008). Furthermore, Zhu et al. 

(2004) revealed that in human gastric cancers, not only GABAB receptors were 
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overexpressed, but also the localization of GABAB receptors in gastric cancer 

cells is different from normal cells. They found that the majority of GABAB 

receptors were localized on the gastric cancer cell surface other than in the 

cytoplasm which is the main location site of GABAB receptors in normal cells. 

These facts suggest that GABAB receptors may be potential targets for cancer 

therapy and diagnosis. 

The GABAB receptor agonist baclofen significantly attenuated the malignancy of 

human pancreatic (Schuller et al., 2008a), lung (Schuller et al., 2008b), liver 

(Wang et al., 2008), breast, colon, and gastric tumours (Jiang et al., 2012). The 

activation of GABAB receptors has an inhibitory effect on most of human tumour 

types except prostate cancer (Abdul et al., 2008). 

 

1.3.3 Tumour activated prodrugs 

The majority of anticancer drugs are anti-proliferative agents that are able to kill 

rapidly dividing tumours cells. However, these drugs affect normal proliferating 

cells such as hair follicles, bone marrow, lymphatic cells and red blood cells 

(Denny, 2001).The poor selectivity of these chemotherapy drugs could cause 

lethal damage of normal cells and making them not suitable for long term use. 

Hence, improving the target ability and selectivity of anticancer drugs is a major 

challenge. The tumour activated prodrugs (TAPs) strategy in anticancer 

chemotherapy represents a promising approach. TAPs are relatively non-toxic 

and the active pharmacologic agents can be selectively released in tumour cells 

(Rautio et al., 2008). The general design of TAPs is depicted in Figure 6. TAPs 

may consist of four components: 1) an active drug that exhibits the 

pharmacologic effect. 2) a chemical linker which links the active drug to the rest 

part of TAPs. 3) a peptide spacer that can be cleaved by tumour specific 

enzymes, or a polymer spacer 4) a targeting moiety that is responsible for 
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specific delivery to tumour cells. Many antigens and enzymes have been proven 

to be over expressed in tumour cells and are commonly used targets for TAPs 

(Mahato et al., 2011). 

 

Figure 6. General design of a tumour activated prodrug 

(Adapted from Mahato et al., 2011). 
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1.4  Results and discussion 

1.4.1 The design strategy of MMP-9 activated prodrugs 

In this study, the general proposed design of MMP-9 activated prodrugs is 

composed of three main parts (Figure 7): an MMP-9 cleavable peptide linker in 

the middle of the prodrug, one side of the peptide linker is attached with a ligand 

of GABA, either a GABA agonist or antagonist that targets GABA receptors, the 

other side of the cleavable oligopeptide linker can be an antiangiogenic/cytotoxic 

agent (for therapeutic purpose) or a fluorescent label such as a 

fluorescein-derived agent (for diagnostic purpose). 

 

 

Figure 7. General concept of MMP-9 activated prodrug design 

 

Once the prodrug has been administered and reached the tumour, because 

tumour cells have over expressed MMP-9, the prodrug will be cleaved 

extracellularly at the MMP-9 specific peptide cleavage site or ‘hotspot’. After that, 
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the remaining amino acids that are still attached to the active agent will be 

degraded by aminopeptidases, which are ubiquitous in almost all cell types. This 

will cause the release of the active drugs to the tumour cells. 

The MMP-9 activated prodrug will remain inactive until the peptide linker is 

cleaved by MMP-9. The presence of high levels of MMP-9 in tumours but not in 

normal tissues increases the prodrug selectivity (Lim et al. 2010) 

Based on the previous work of this lab, a prototype, latently fluorescent 

oligopeptide conjugate of a cytotoxic topoisomerase inhibitor, EV1-FITC was a 

good proof-of-principle example of MMP-9 activated prodrugs. The prodrug was 

able to target multiple myeloma and release fluorescence by MMP-9 activation 

(Van Valckenborgh et al. 2005). 

 

1.4.2 Synthesis of Model compounds 

The active drug propranolol was first considered in this study. Propranolol is a 

well-known non-selective beta-blocker (or GABAB receptor antagonist) and has 

been introduced as a novel drug for the treatment of haemangiomas, which are 

the most common tumours of infants (Zimmermann et al. 2010). Several recent 

papers reported the Inhibitory efficacy of propranolol on MMP-9 secretion 

(Annabi et al. 2001) and the anti-angiogenic property in tumours (Lamy et al. 

2010; Pasquier et al. 2011). 

Before using the active drug propranolol for the synthesis of designed MMP9 

activated prodrugs, a model compound (NU: UB 491), which serves as a mimic 

of the structure of propranolol was used first. The compound NU:UB 491 used in 

this study had been previously synthesised, in two steps, from the reaction of 

1-chloroanthraquinone with 1,3-diamino-2-propanol in DMSO, following methods 

described by Katzhendler et al. (1989), to give the 

(aminoalkyl)aminoanthraquinone intermediate. This was further reacted with 
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di-tert-butyl dicarbonate (Boc2)O, in order to protect the primary amino group, 

ensuring that only the secondary alcohol was available for reaction.  

The model compound NU: UB 491 and propranolol both have hydroxyl (-OH) 

and amine (-NH) functional group which are important sites for chemical 

reactions, including acting as potential positions for attachment of peptide linkers 

in the intended prodrug substrates here (Figure 8). 

 

 

Figure 8. Chemical structures of NU:UB 491 and propranolol 

 

In order to find conditions for selective reactions on the NH or OH functional 

group of propranolol, the model compound was used as a starting material for 

the synthesis of HZ26, HZ27 and HZ28. Moreover, the model compound is red 

which makes it easier for monitoring the synthesis of derivatives and easier to 

establish good chromatographic purification methods ahead of using the 

colourless and more expensive propranolol. 

 

1.4.2.1 Synthesis of Fmoc-Ala-[Boc-Spacer]-AQ (HZ26) 

The N-Fmoc protected β-Alanine amino acid (Fmoc-β-Ala-OH) (intended linker) 

was reacted with the model compound, NU: UB 491 using DCC and DMAP as 

ester coupling reagents (El-Faham and Albericio, 2011) in dichloromethane 

(solvent) (Scheme 1). The mixture was stirred and monitored by thin-layer 
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chromatography on silica plates (TLC test). The reaction was completed in 1 

hour. The precipitated byproduct DCU was filtered off. The crude product was 

purified by solvent extraction and silica gel column chromatography using the 

eluting solvent dichloromethane-ethyl acetate (7:1). The pure product (HZ26) 

was triturated by the addition of diethyl ether and the resulting red solid was 

collected. Fmoc-Ala-[Boc-Spacer]-AQ (HZ26) was characterized by NMR 

spectroscopy. The 1H spectrum showed a signal for a 9-proton singlet at 1.45 

ppm confirming the Boc group. All of the anthraquinone protons were 

successfully assigned; a doublet at 7.15 was assigned to H-2, H-3 and H-4 gave 

a triplet at 7.4ppm, H-6 and H-7 were found between 7.5 and 7.63 ppm, H-5 and 

H-8 appeared as a triplet at 8.22 ppm and 8.3 ppm respectively. 

 

Reagents and Conditions: (a) DCC & DMAP In dichloromethane 

                 Scheme 1. Outline of HZ26 chemical synthesis  
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1.4.2.2 Synthesis of H-Ala-Spacer-AQ TFA salt (HZ27) 

The Boc protecting group of Fmoc-Ala-[Boc-Spacer]-AQ (HZ26) was removed 

by TFA (Montalbetti and Falque, 2005) in solution after 10 minutes of reaction 

(Scheme 2). According to TLC test, the product was pure and ready to collect. 

The solution was then evaporated to a small volume and diethyl ether was 

added to precipitate the solid product. H-Ala-Spacer-AQ TFA salt (HZ27) was 

characterized by NMR spectroscopy. 

 

 

Reagents and Conditions: (a) TFA 

Scheme 2. Outline of HZ27 synthesis 

 

1.4.2.3 Synthesis of H-Ala-[Boc-Spacer]-AQ (HZ28) 

Fmoc-Ala-[Boc-Spacer]-AQ (HZ26) was Fmoc deprotected by 2% piperidine in 

DMF (Scheme 3). The reaction was completed in 30 min by checking the TLC. 

The amount of piperidine used in this reaction was much less than usual 

literature precedent which is 20% in DMF (Montalbetti and Falque, 2005). The 

crude compound was purified by extraction and column chromatography using 

chloroform-methanol (8:1) solvent system. The pure product was collected by 

precipitation in diethyl ether. The chemical structure of H-Ala-[Boc-Spacer]-AQ 

(HZ28) was confirmed by NMR spectroscopy. 
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Reagents and Conditions: (a) 2% piperidine in DMF 

Scheme 3. Outline of HZ28 synthesis 

 

1.4.2.4 Synthesis of Fmoc-Ala-Propranolol (HZ29) 

Using some of the knowledge gained from selective reaction on functional 

groups in the model compound (above), derivatisation of the antiangiogenic 

GABAB antagonist propranolol was attempted. The design strategy was to 

introduce an amino acid (β-alanine) as the first residue for peptide synthesis, by 

selective reaction on the amino group (NH) of the drug. The success of this 

reaction would depend on the intrinsic greater reactivity of the amino group over 

hydroxyl. If reaction occurs at the hydroxyl group then an ester would be formed. 

Propranolol hydrochloride (its OH and NH functions unprotected) was reacted 

with Fmoc-β-Ala-OH, using standard coupling reagents TBTU, HOBt, and 

DIPEA (Montalbetti and Falque, 2005). The mixture was suspended in DMF at 

RT overnight (Scheme 4). All reagents and product are colourless in solution 

and on TLC plates. In order to confirm which spot on the TLC plate is the product, 

a de-Fmoc mini test using piperidine (20%) in dichloromethane was performed. 

After 2 hours reaction, a TLC was checked under the UV light and found that one 

of the spots on product lane moved down to the bottom line, which indicates that 

spot is the product HZ29. The crude product was extracted with 

dichloromethane/water, dichloromethane/aqueous citric acid (to remove 

propranolol free base) and dichloromethane/aqueous sodium bicarbonate (to 
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remove excess Fmoc-β-Ala-OH). Further purification was done by column 

chromatography using eluting system dichloromethane-ethyl acetate (1:1). The 

pure product fractions were combined, filtered and evaporated to dryness. The 

white solid Fmoc-Ala-Propranolol (HZ29) was collected under vacuum. 

 

Reagents and Conditions: (a) TBTU, HOBt, DIPEA in DMF 

Scheme 4. Outline of HZ29 synthesis 

 

The structure of Fmoc-Ala-Propranolol (HZ29) was confirmed by is 1H NMR 

spectrum. The signals between 7.28 and 7.58 were assigned to the aromatic 

protons of the Fmoc protecting group. The propranolol protons were fully 

assigned; H-2 at 6.9 ppm, H-3 and H-4 gave a multiplet at 7.6-7.7 ppm, H-5, H-6, 

H-7 and H-8 gave a multiplet between 7.7 and 7.9 ppm. The signals at 1.2-1.45 

ppm reflected the protons of the two methyl group.  
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1.4.3 Synthesis of Prodrug 1: Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-Propranolol 

(HZ32) 

After the work on model compound derivatives, a series of MMP-9 activated 

prodrugs targeting GABA receptors were synthesised. The design strategy of 

prodrug 1 was to use a MMP-9 cleavable peptide substrate 

(Pro-Ala-Gly-Leu-Ala-Ala) as a linker. One side of the peptide linker is attached 

to propranolol which is both an antiangiogenic agent and a GABAB receptor 

antagonist. The other side of the linker is an Fmoc protecting or so called 

‘capping’ group. 

The synthetic process for prodrug 1 was started with the N-terminal 

Fmoc-protected hexapeptide linker, Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ31) 

which was synthesised by a solid phase peptide synthesis (SPPS) method. 

SPPS is the process by which peptide synthesis can be carried out on solid 

support, was first developed by Bruce Merrifield and earned him the Nobel Prize 

in 1984. SPPS has many advantages over traditional synthesis such as all 

reagents can be simply washed away each step, overall quicker time for 

synthesis, convenient work-up and the synthetic intermediates do not have to be 

isolated (Montalbetti & Virginie 2005). By contrast, in solution phase peptide 

synthesis, all peptide intermediates requires isolation and the synthesis cycles 

are very labour intensive. In this study, five steps were involved in the SPPS: (1) 

Resin swelling (2) Amino acid deprotection (3) Colour test to detect the presence 

or absence of free amino groups during the synthesis process (4) Peptide 

coupling (5) Hexapeptide-resin cleavage. 

 

1.4.3.1 Resin swelling 

Fmoc-Ala-Wang resin (Figure 9) was shaken at RT, 750 rpm for 1.5 hour in 10ml 

dichloromethane using an orbital shaker to maximize its surface area for peptide 
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coupling. Dichloromethane was drained off and resin was washed by DMF 3 

times (2 mins each time) for the next step. 

 

Figure 9. Fmoc-Ala-Wang Resin 

 

1.4.3.2 Deprotection of Fmoc protecting group 

The Fmoc protected group of the amino acid must be removed before growing 

the peptide. This was achieved by the addition of 20% (v/v) piperidine in DMF to 

the SPPS vessel and shaken for 15 mins. The deprotection step was repeated 

for 3 times. The reagents were drained off and the resin was washed by DMF 3 

times (2 mins each time). The chemical mechanism of Fmoc deprotection by 

piperizine is showed in Scheme 5. 
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Scheme 5. Proposed mechanism of Fmoc deprotection by piperidine 

(Adapted from Okada 2001) 

1.4.3.3 Colour Test 

In this study, an in-house Colour test (Figure 10) was performed to replace the 

Kaiser test (which often gives poor results with Wang resin and requires toxic 

reagents). [Refer also to the topic of Chapter 4]. 

 

Figure 10. The reaction mechanism of HZ22 colour test. 

 

About 1 mg of the colour test reagent AQ-Ahx-OPFP (HZ22) compound, 2 drops 

of DMF and 1 drop of DIPEA were added to a sample bottle to give a red solution. 

A small number of resin beads were then transferred to the vial. After 5 minutes, 

a large amount of DMF was added to dilute the solution. This facilitated the 
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colour observation of the beads. All beads had turned into red from their original 

light yellow colour, which indicated that the deprotection has completed. For 

each stage of amino acid coupling or Fmoc deprotection, the colour test was 

performed. The synthesis of AQ-Ahx-OPFP (HZ22) compound is discussed in 

Chapter 4. 

Compared to the Kaiser Test, this colour test is more sensitive and less toxic. For 

instance, one of the reagents for the Kaiser test is potassium cyanide which is 

highly toxic (Friedman 2004). Based on the experiments in our laboratory, the 

Kaiser test is not very effective for some amino acids, eg. Proline. Needless to 

say, the Kaiser test requires 80°C for the reaction while the colour test used in 

this study was done at RT. Hence, the colour test can be a promising technique 

for future SPPS. 

 

1.4.3.4 Peptide coupling 

At the peptide coupling stage, an Fmoc-protected amino acid containing its free 

carboxylic acid was reacted with the free amino group of the growing 

peptide-resin. Based on the formation of amide bond, the basic conditions and 

coupling agents included Fmoc-protected amino acid, TBTU, HOBt and DIPEA 

dissolved in DMF. The coupling solution was added to the SPPS vessel by two 

times, each time shaken for 40 min at RT. The colour test was performed to 

confirm the completion of peptide coupling.  

The Fmoc-protected amino acid was deprotonated by DIPEA and nucleophilic 

substituted by TBTU which had two forms, uranium salt and guanidium in 

solution. The generated uranium ester intermediate was rapidly reacted with 

HOBt and leading to the production of the coupled peptide (Scheme 6). 
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Scheme 6. Chemical mechanism of peptide coupling using reagents TBTU, 

HOBt and DIPEA 

(Adapted from Carpino et al. 2001; Montalbetti & Virginie 2005) 

 

1.4.3.5 Hexapeptide-resin cleavage 

After the hexapeptide coupling, the Fmoc-protected hexapeptide needed to be 

removed from the resin. The Wang resin is known to be sensitive to acid and 

hence the attached hexapeptide was cleaved by the addition of 95% TFA and 5% 
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dichloromethane to the vessel for 2-3 min with shaking. The solution was 

drained into the flask and checked by TLC The procedure was repeated up to 10 

times until there was no new spot on the TLC The resin was then washed with 

dichloromethane (2 times), methanol (2 times), and dichloromethane once. All 

filtrates were combined, evaporated to dryness and triturated in diethyl ether at 

5 °C for 1 hour. The product was collected by filtration and dryness in a 

desiccator. Figure 11 shows the overview of Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH 

(HZ31) on solid phase peptide synthesis. 

 

 

 

Figure 11. Solid phase peptide synthesis of Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH 

(HZ31) 
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The prodrug 1 Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-Propranolol (HZ32) was prepared 

from the reaction of propranolol hydrochloride and 

Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ31) in DMF using TBTU, HOBt and 

DIPEA as the coupling agent. DIPEA was added to make the free base of 

propranolol hydrochloride (Scheme 7). Because the reaction between NH group 

and COOH group is faster than OH group and COOH group, a large amount of 

DMF was used to facilitate the NH group of propranolol to react with the COOH 

group of Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ31). 

 

Reagents and Conditions: (a) TBTU, HOBt, DIPEA in DMF 

Scheme 7. Outline of Prodrug 1 (HZ32) synthesis 

 

The reaction was completed overnight at RT. The crude product was purified by 

extraction and silica gel column chromatography. The reaction solution was 
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extracted with water and dichloromethane. Multiple extractions were required to 

wash away impurities. For the first extraction, citric acid was added to the water 

layer to get rid of excess propranolol free base. Secondly, the excess 

Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ31) was removed from the organic phase 

by shaking the organic extract with aqueous sodium bicarbonate. The weak acid 

HZ31 can react with sodium bicarbonate to form the sodium salt, carbon dioxide 

and water. 

Because the starting material, reagents and crude product were colourless on 

TLC plate, a mini de-Fmoc colour test was performed to confirm the presence of 

the product (Prodrug 1). The product will have a free amine group which is able 

to be detected after the Fmoc deprotecting reaction. Piperidine 20% in DMF was 

added to the crude product sample solution. After 20 minutes, the solution was 

extracted with water and dichloromethane. The extract in organic layer was 

checked by TLC using the running solvent, dichloromethane and methanol 9:1. A 

few drops of 5% ninhydrin in ethanol were added on the TLC plate at the product 

lane. After 5min, there was a purple spot emerged which indicated the Fmoc free 

prodrug 1. 

The eluting solvent system, dichloromethane-ethyl acetate-ethanol (9: 2: 1) was 

used during the column chromatography. The difficulty of this purification 

process was that the crude product solution was colourless. In this case, many 

fractions were collected and every fraction was about 2-3 ml in volume. All 

fractions were confirmed by TLC under UV light. The appropriate fractions were 

combined, filtered and evaporated to dryness. Diethyl ether was used to 

precipitate the pure white product. Due to the small amount of solid precipitate in 

ether, the final product was collected in centrifuge tubes. 

Prodrug 1 compound (Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-Propranolol) HZ32 was 

characterized by its electrospray mass spectrum which gave a signal at m/z 962 
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for (M+H)+ corresponding to a molecular mass of 961 (Figure 12). 

 

 

 

Figure 12. The ESI (+) Mass spectrum of Prodrug 1 (HZ32) 

 

1.4.4 Synthesis of Prodrug 2: 

AQ-Spacer-Pro-Ala-Gly-Leu-Ala-Ala-Propranolol (HZ34) 

Prodrug 2 had the same MMP-9 cleavable hexapeptide chain in the middle and 

active drug propranolol on one side as prodrug 1. The only difference is that 
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Prodrug 2 has the capping group which is an anthraquinone derivative instead of 

Fmoc (Scheme 8).  

The N-Fmoc protected hexapeptide (Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH) HZ31 

was repeatedly synthesised by SPPS method for prodrug 2. However, this time 

instead of cleaving HZ31 off the resin, HZ31 was remained on the resin for the 

next step. The Fmoc group of HZ31 was removed by 20% piperidine in DMF to 

give an N-terminal free hexapeptide HZ32. 

The free amino group of the resin bound hexapeptide was then capped with a 

cytotoxic aminoanthraquinone via a carbamate bond, by reaction with the 

activated anthraquinone derivative (HB8) using DIPEA in DMF. 
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Reagents and Conditions: (a) 20% piperidine in DMF (b) DIPEA, in DMF (c) 87% TFA in 

dichloromethane (c) TBTU, HOBt, DIPEA in DMF 

Scheme 8. Outline of Prodrug 2 (HZ34) synthesis 

 

The compound HB8 used here had been previously synthesised from the 
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reaction of 1-[3-hydroxypropyl)amino]-anthraquinone with 4-nitrophenyl 

chloroformate (NPC) in dichloromethane and pyridine; activated NPC derivatives 

of alcohols readily react with amines to give carbamates, with the 4-nitrophenol 

by-product being easily washed out with DMF during the SPPS process after 2 

hours of reaction. The anthraquinone-spacer-Pro-Ala-Gly-Leu-Ala-Ala-OH 

(HZ33) was cleaved off the resin by TFA in dichloromethane. The TLC test was 

performed and showed a major red product had formed. The product solution 

was evaporated to a small volume and added with diethyl ether to precipitate the 

pure red solid (HZ33).  

The collected HZ33 was then reacted via its free carboxylic acid group with the 

free amino group of propranolol•HCl salt, followed by the addition of TBTU, 

HOBt, and DIPEA as the standard coupling reagents. The reaction mixture was 

suspended in DMF. The reaction was completed in 4 hours by checking the TLC. 

After solvent extraction and column chromatography using 

dichloromethane-methanol (9:1), the pure prodrug 2 (HZ34) was precipitated in 

diethyl ether to give a red solid product. 

The prodrug 2 AQ-Space-Pro-Ala-Gly-Leu-Ala-Ala-Propranolol (HZ34) was 

characterized by mass spectroscopy. A signal at m/z 1069 for the mono-cation 

(M+Na)+ confirmed the molecular mass of 1046 Daltons (Figure 13). 
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Figure 13. MALDI Mass spectrum of Prodrug 2 (HZ34) 

 

1.4.5 Synthesis of Prodrug 3: 

FITC-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ43) 

 

The middle part of the chemical structure of prodrug 3 (HZ43) contains a MMP-9 

cleavable pentapeptide (Pro-Ala-Gly-Leu-Pro) and GABA. Fluorescein 

isothiocyanate isomer I (FITC) was attached to one side of the middle chain. The 

other side of the prodrug 3 was capped by the anthraquinone derivative 
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(Scheme 9). 

Prodrug 3 (HZ43) was designed to release GABA and fluorescein in tumour cells 

which have over-expressed MMP-9. The prodrug can be a diagnostic probe of 

MMP-9 activity, and also the released GABA into tumour cells will be able to 

evaluate the expression level of GABA receptors.  

 

 

*This synthesis scheme is continued on the next page 
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Reagents and Conditions: (a) TBTU, HOBt, DIPEA in DMF (b) 20% piperidine in DMF (c) 

DIPEA, in DMF 

Scheme 9. Outline of Prodrug 3 (HZ43) synthesis 

 

The synthesis of Prodrug 3 

(FITC-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ) started with the reaction 

of NU: UB 197 and Fmoc-γ-aminobutyric acid (GABA). NU:UB 197 is an 

aminopropylamino anthraquinone derivative that has been used extensively in 

previous and current research within this laboratory.  Where NU:UB can be 

described as an ‘anthraquinone-spacer’, coupling of NU:UB 197 to amino acids, 

to give spacer-linked anthraquinone-amino acid conjugates, afforded a series of 

compounds that were shown to be DNA binding, topoisomerase inhibitors 

(Pettersson, 2004; Turnbull, 2003; Young, 2006).  These compounds had 

broad-spectrum activity in vitro at low micromolar concentrations in panels of 

human and animal tumour cell lines, including those of the NCI 60 cell line 

anticancer drug screen (https://dtp.cancer.gov/default.htm). Additionally, leading 

members of the ‘NU:UB’ series were active in vivo in experimental colon cancer 

(Mincher et al., 1999) and have been used at various times throughout this 

research programme, for example, in chapter 2, the propyl- spaced proline, 
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conjugate was incorporated into a cyclic baclofen prodrug. Here, GABA was 

coupled to NU:UB 197 to afford a novel spacer-linked anthraquinone-amino acid 

conjugate. Fmoc-γ-aminobutyric acid (GABA) was reacted with the free amino 

group of NU:UB 197 in DMF, using standard coupling reagents TBTU, HOBt, 

and DIPEA. The reaction was completed in 1 hour. The reaction solution was 

poured into water which contained a small amount of HCl. The red solid 

precipitate in the water was collected by filtration. The crude product was then 

purified by silica gel column chromatography, using the eluting solvent 

dichloromethane-methanol (9:1). The pure product (HZ35) was dried in an 

evaporating basin. Fmoc-GABA-[Propyl-spacer]-AQ (HZ35) was Fmoc 

deprotected for the further coupling reaction with amino acids, using 20% 

piperidine in DMF. After solvent extraction and evaporation, diethyl ether was 

added to precipitate the pure red solid product H-GABA-[Propyl-spacer]-AQ 

(HZ36).  

The MMP-9 specific peptide linker, Pro-Ala-Gly-Leu-Pro was added to HZ36 by 

solution phase peptide synthesis which allowed large-scale and high yield 

production of peptide. The solution phase peptide synthesis involved coupling of 

N-Boc protected amino acids and Boc group removal reaction. The Coupling 

reagents are as the same as solid phase peptide synthesis, which are TBTU, 

HOBt, and DIPEA. Solvent extraction and column chromatography were 

required. TFA was used to remove the Boc protecting group.   

Fluorescein isothiocyanate isomer I was coupled to 

Pro-Ala-Gly-Leu-Pro-GABA-spacer-Anthraquinone TFA salt (HZ42) in DMF by 

the addition of DIPEA to form the final product Prodrug 3. The reaction was 

completed overnight at RT. The reaction solution was poured into water to get 

orange solid precipitate. The crude product was purified by silica gel column 

chromatography using eluting solvent dichloromethane- methanol (6:1).  
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The nanoelectrospray negative ion mass spectrum (M-H)- of prodrug 3 

(FITC-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ) HZ43 had a strong 

signal at m/z 1188 confirmed the molecular mass of 1189 (Figure 14). 

 

 

 

Figure 14.  Mass spectrum of Prodrug 3 (HZ43) 

 

1.4.6 Synthesis of Prodrug 4: 

AQ-[Propyl-spacer]-Pro-Ala-Gly-Leu-Ala-ethylpiperidine-3-carboxylate 

(HZ45) 

The GABA receptor antagonist, (R)-ethylpiperidine-3-carboxylate (Zhang et al. 
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2007) was used as the active drug in Prodrug 4 synthesis. The 

anthraquinone-spacer-Pro-Ala-Gly-Leu-Ala-Ala-OH conjugate (HZ44) was 

linked to it to form Prodrug 4. 

AQ-[Propyl-spacer]-Pro-Ala-Gly-Leu-Ala-OPFP (HZ44) was prepared from the 

overnight reaction of AQ-Spacer--Pro-Ala-Gly-Leu-Ala-Ala-OH HZ33 (from 

prodrug 2 synthesis) and pentafluorophenol in dichloromethane using DCC and 

DMAP as coupling reagents (Scheme 10). 

 

 

*This synthesis scheme is continued on the next page 
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Reagents and Conditions: (a) DCC & DMAP in Dichloromethane (b) DIPEA, in 

Dichloromethane 

Scheme 10. Outline of Prodrug 4 (HZ45) synthesis 

 

The carboxylic group of AQ-Spacer--Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ33) was 

converted into a pentafluorophenolate active ester which will be more reactive 

for adding the active drug (R)-ethylpiperidine-3-carboxylate. The precipitated 

dicyclohexylurea (DCU) was filtered off. The crude product was kept in the 

dichloromethane for the next reaction without further purification. 

(R)-Ethylpiperidine-3-carboxylate and DIPEA was put into the solution. Solvent 

extraction and column chromatography were performed to give a pure red 

product, Prodrug 4 

(AQ-[Propyl-spacer]-Pro-Ala-Gly-Leu-Ala-ethylpiperidine-3-carboxylate). 

 

The final HZ45 compound, 

anthraquinone-spacer-Pro-Ala-Gly-Leu-Ala-Ala-ethylpiperidine-3-carboxylate 

(Prodrug 4) was characterized by its mass spectrum (M+Na)+ and (M+K)+ which 

showed signals at m/z 967 and 983, corresponding to a relative molecular mass 

of 944 Da (Figure 15).  
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Figure 15. MALDI Mass spectrum of Prodrug 4 (HZ45) 

 

1.4.7 Synthesis of Prodrug 5: 

Podophyllotoxin-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ 47) 

The designed tumour activated Prodrug 5 (HZ47) consists of the cytotoxic drug 

podophyllotoxin (Canel et al. 2000), a MMP-9 cleavable pentapeptide 

(Pro-Ala-Gly-Leu-Pro), GABA, and a capping group (anthraquinone derivative). 

For the synthesis of prodrug 5 

Podophyllotoxin-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ47), 

50 



 

H-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt HZ42 (from Prodrug 

3 synthesis) was reacted with succinic anhydride by the addition of DIPEA in 

DMF (Scheme 11). 

 

 

 

Reagents and Conditions: (a) DIPEA, in DMF (b) TEA & TBTU in DMF & Acetonitrile 

Scheme 11. Outline of Prodrug 5 (HZ47) synthesis 
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The reaction was completed in 4 hours. The crude product was firstly isolated by 

partitioning between dichloromethane and water. During the process, the water 

phase was coloured purple. This is because 

H-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt (HZ42) has relatively 

high solubility in water. The yield of HZ42 was low due to the loss during 

extraction. Further purification by column chromatography was performed using 

dichloromethane-methanol (4:1) eluting solvent. The pure HZ42 was collected in 

diethyl ether. 

Podophyllotoxin was coupled to the 

H-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt (HZ42) by using the 

reagents TEA and TBTU (Balalaie, Mahdidoust and Eshaghi-najafabadi, 2008) in 

a mixture solvent of DMF and acetonitrile. The reaction was completed in 3 

hours by checking the TLC. Acetonitrile was evaporated off. The crude product 

in DMF was extracted with dichloromethane and water. Column chromatography 

was applied for further purification using the dichloromethane-methanol (9:1) 

eluting solvent. The final product 

Podophyllotoxin-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ47) was 

collected in an evaporating basin at RT. 

 

In the mass spectrum (Figure 16) of prodrug 5 (HZ47), a signal at 1321 m/z was 

assigned to the ion (M+Na)+ confirming the molecular mass of 1296 Da. 
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Figure 16. Mass spectrum of Prodrug 5 (HZ47) 

 

1.4.8 Synthesis of Prodrug 6: AQ-Spacer-Pro-Ala-Gly-Nva-Pro-Baclofen 

(HZ54) 

Prodrug 6 was designed to use active drug baclofen which is a GABAB agonist. 

The capping group anthraquinone derivative was attached to the MMP-9 specific 

pentapeptide (Pro-Ala-Gly-Nva-Pro). Baclofen was linked to the other side of the 

peptide chain. During the anticipated prodrug 6 metabolism, baclofen is 

expected to be released in the tumour cells which have over-expressed MMP-9 
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and targets the GABAB receptor. 

 

 

*This synthesis scheme is continued on the next page 
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Reagents and Conditions: (a) 20% piperidine in DMF (b) TBTU, HOBt, DIPEA, in DMF 

(c) 5% TFA in dichloromethane (d) DCC & DMAP, in dichloromethane (e) DIPEA, in 

dichloromethane 

Scheme 12. Outline of Prodrug 6 (HZ54) solid-phase synthesis 

 

H-Pro-2ClTrt resin was used for building up the MMP 9 cleavable peptide linker 

Fmoc-Pro-Ala-Gly-Nva-Pro-Resin (HZ51) for Prodrug 6 (HZ54) based on the 

SPPS method (Scheme 12). After completed synthesis of the pentapeptide 

Fmoc-Pro-Ala-Gly-Nva-Pro on resin, the Fmoc group was removed by 20% 

piperidine in DMF. The anthraquinone capping group (TL12) was coupled to the 

pentapeptide chain by TBTU, HOBt and DIPEA in DMF. The 

Anthraquinone-spacer-Pro-Ala-Gly-Nva-Pro-OH conjugate (HZ52) was cleaved 

off the resin using 5% TFA in dichloromethane. The red solid 

AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OH (HZ52) was precipitated in diethyl ether 
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and collected for the reaction with PFP. DCC and DMAP were used as standard 

reagents for the addition of PFP to AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OH (HZ52). 

The reaction mixture was suspended in dichloromethane. The reaction was very 

slow at RT. In order to push the reaction, the round bottomed flask was put on 

40°C water bath. Due to the TLC test, there was still unreacted starting material 

AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OH (HZ52) after 2 days. DCU was filtered off. 

Solvent extraction was done between chloroform and aqueous sodium 

bicarbonate (to remove unreacted HZ52). 

 

The purity of pentapeptide Fmoc-Pro-Ala-Gly-Nva-Pro-OH (HZ51) was 

analysied by HPLC (Figure 17). A reverse phase column (Agilent Zorbax Extend 

C18, 5 µm, 4.6 mm x 50 mm) was used with gradients developed over a 15 min 

period as shown in Table 1.  

 

 

Figure 17. HPLC chromatogram of HZ51 
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Table 1. HPLC gradient mobile phase composition 

 

The HPLC result (Figure 17) above confirms that pentapeptide 

Fmoc-Pro-Ala-Gly-Nva-Pro-OH (HZ51) has high purity through the solid phase 

peptide synthesis. 

 

The prodrug 6: AQ-Spacer-Pro-Ala-Gly-Nva-Pro-Baclofen (HZ54) was prepared 

by the reaction of AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OPFP (HZ53) and baclofen 

using DIPEA in dichloromethane. Because the solubility of baclofen in 

dichloromethane is very low, the reaction mixture was stirred over 30 hours. 

DCU and unreacted baclofen were filtered off and the crude compound was 

purified by thick TLC plate using the running solvent dichloromethane-methanol 

(6:1).  

 

Furthermore, the mass spectrum showed a signal at m/z 950 (M-H)- 

corresponding to the molecular mass of 951 for prodrug 6: 

AQ-Spacer-Pro-Ala-Gly-Nva-Pro-Baclofen (HZ54) as shown in Figure 18. 
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Figure 18.  ESI (+) Mass spectrum of Prodrug 6 (HZ54) 

 

1.4.9 Synthesis of Prodrug 7: 

5(6)-Carboxyfluorescein-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ 

(HZ57) 

Prodrug 7 (HZ57) has the same chemical structure as prodrug 3 

(FITC-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ), except for using the 

different fluorescent group, 5(6)-carboxyfluorescein. 
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Reagents and Conditions: (a) ByBOP & DIPEA, in DMF 

Scheme 13. Outline of Prodrug 7 (HZ57) synthesis 

 

For the synthesis of prodrug 7 

5(6)-Carboxyfluorescein-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ57), 

the fluorescein agent 5(6)-carboxyfluorescein was coupled to the compound of 

H-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt (HZ42), using 

PyBOP and DIPEA in DMF for overnight reaction (Scheme 13). The crude 

product was purified by extraction and silica gel column chromatography 

(dichloromethane-methanol 5:1). The appropriate fractions were combined, 

filtered to an evaporating basin and evaporated to dryness at RT. 

The final product Prodrug 7:  

5(6)-carboxyfluorescein-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ57) 

was characterized by its mass spectrum (M+H)+ which has a strong signal at m/z 

1159 corresponding to a molecular mass of 1158 (Figure 19). 
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Figure 19. ESI (+) Mass spectrum of Prodrug 7 (HZ57) 

 

1.4.10 Synthesis of Prodrug 8: 

Podophyllotoxin-Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ16) 

1.4.10.1 Synthesis of Boc-Ala-Ala-Piperazinyl-AQ (HZ7) 

The synthesis of prodrug 8 started with the synthesis of a 2-piperazinyl 

anthraquinone spacer compound, NU: UB 341, where NU:UB 341  was 

synthesised following a previously described method (Mincher, Turnbull and Kay, 

2003), by nucleophilic displacement of chlorine from 2-chloroanthraquinone with 
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a large excess of piperazine hexahydrate in DMSO. Crude NU:UB 341 was 

isolated by precipitation and purified by column chromatography before reaction 

with a commercially available Boc protected dipeptide (Boc-Ala-Ala-OH) in DMF, 

using standard peptide coupling conditions, TBTU, HOBt and DIPEA. The 

reaction mixture was kept at RT overnight (Scheme 14). 

 

Reagents and conditions: TBTU, HOBt, DIPEA, dissolved in DMF, RT, overnight 

Scheme 14. Synthesis of Boc-Ala-Ala-Piperazinyl-AQ (HZ7) 
 

Once the reaction was completed by checking TLC (dichloromethane-methanol 

9:1), the mixture solution was extracted using dichloromethane and water to 

remove DMF. The organic layer was dried (by the addition of anhydrous 

sulphate), filtered, evaporated to a small volume and the purified by column 

chromatography using the same solvent system as TLC test. The eluted solution 

was filtered to get rid of silica gel and then evaporated to dryness by using the 

rotational evaporating machine. The product remained in the round bottomed 

flask for the Boc-deprotection reaction. This procedure allowed two amino acids 

to be simultaneously incorporated by the use of a pre-formed dipeptide, ala-ala. 
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Single amino acid conjugates of the 2-piperazinyl anthraquinone spacer 

compound, NU:UB 341, have previously shown anticancer activity in vitro. For 

example, a isoleucine conjugate, NU:UB 234, had broad-spectrum activity in 

vitro at low micromolar concentrations in the NCI 60 cell line anticancer drug 

screen and was a dual topoisomerase I and II inhibitor (Mincher, Turnbull and 

Kay, 2001; Young, 2006). From previous studies on this class of compound, 

where amino acids are coupled to piperazinyl spacers through a tertiary amide 

bond, it would be expected that after metabolism of prodrug 8 (HZ 16) at the key 

gly~leu bond by endoprotease cleavage by MMP-9, further protease 

degradation should result in release of a potentially cytotoxic 

anthraquinone-piperazinyl-alanine conjugate, with no further metabolism to the 

spacer compound (NU: UB 341), as tertiary amides are generally considered to 

be resistant to enzymatic cleavage. Hence, prodrug 8 has been designed as a 

dual acting ‘twin’ prodrug containing both cytotoxic anthraquinone derived and 

tubulin binding, vascular disrupting podophyllotoxin active agents. 

 

1.4.10.2 Synthesis of H-Ala-Ala-Piperazinyl-AQ TFA salt (HZ8) 

The Boc group of Boc-Ala-Ala-Piperazinyl-AQ (HZ7) was removed by TFA 

treatment for the next amino acids coupling reaction. TFA was added to the 

round bottomed flask until the solid had completely dissolved (Scheme 15). 
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Reagents and conditions: (a) TFA, RT, 1.15 hours 

Scheme 15. Synthesis of H-Ala-Ala-Piperazinyl-AQ TFA salt (HZ8) 

 

After 1.15 hours, the reaction had completed by checking TLC 

(chloroform-methanol 9:1). The solution was evaporated to dryness by using the 

rotary evaporator. Diethyl ether was added and the mixture was cooled at 5 °C 

for 1 hour. The precipitated compound was then filtered, dried and collected. The 

structure of H-Ala-Ala-Piperazinyl-AQ TFA salt (HZ8) was confirmed by is 1H 

NMR spectrum. The signals between 1.27 and 1.35 were assigned to the 

methylene groups of the Ala-Ala dipeptide. The anthraquinone protons were fully 

assigned; H-3 at 7.35 ppm, H-1 and H-4 gave a 2-proton multiplet at 7.5 ppm, 

H-6 and H-7 was a multiplet at 7.9 ppm, H-5 and H-8 a multiplet between 8.08 

and 8.2 ppm. The signals at 3.2-3.75 ppm reflected the protons of the piperazine 

spacer group.  
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1.4.10.3 Synthesis of Boc-Leu-Ala-Ala-Piperazinyl-AQ (HZ9) 

The next step of the synthesis involved coupling leucine to the dipeptide chain of 

H-Ala-Ala-Piperazinyl-AQ TFA salt (HZ8). The synthesis of 

Boc-Leu-Ala-Ala-piperazinyl-AQ (HZ9) was carried out by initially dissolving HZ8 

and Boc-Leu-OSu in DMF, followed by addition of DIPEA at RT for 3 hours 

(Scheme 16). 

 

 

Reagents and conditions: (a) DIPEA, dissolved in DMF, RT, 3 hours 

Scheme 16. Synthesis of Boc-Leu-Ala-Ala-Piperazinyl-AQ (HZ9) 

 

After the completion of the reaction indicated by TLC test using 

dichloromethane-methanol 9:1 solvent system, the solution was evaporated to 

dryness. 

 

1.4.10.4 Synthesis of H-Leu-Ala-Ala-Piperazinyl-AQ TFA salt (HZ10) 

The Boc-Leu-Ala-Ala- piperazinyl-anthraquinone compound was de-protected 
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by the addition of the strong acid, TFA at RT for 1.5 hours (Scheme 17). 

 

Reagents and conditions: (a) TFA, RT, 1.5 hours 

Scheme 17. Synthesis of H-Leu-Ala-Ala-Piperazinyl-AQ TFA salt (HZ10) 

 

The reaction was closely monitored by TLC (chloroform-methanol). Once the 

reaction was completed, the solution was evaporated to dryness and triturated in 

diethyl ether at 5°C for 1 hour. The mixture was then filtered, dried and collected.   

 

1.4.10.5 Synthesis of Boc-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ11) 

The previous tripeptide conjugate was extended by the use of another 

preformed dipeptide fragment, alanylglycine. After the reaction, the compound 

had the intended MMP-9 cleavage site which is gly and leu occupied the P1 and 

P1’ positions respectively. The Boc-protected pentapeptide anthraquinone 

conjugate was synthesised by dissolving the HZ10 and Boc-Ala-Gly-OSu in DMF, 

and the reaction mixture was added by DIPEA and reacted at RT overnight 
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(Scheme 18). 

 

Reagents and conditions: (a) DIPEA, dissolved in DMF, RT, 25 hours 

Scheme 18. Synthesis of Boc-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ11) 
 

The TLC (chloroform-methanol 10:1) result showed that the reaction was not 

complete after 20 hours. Another 0.5 equivalent of Boc-Ala-Gly-OSu and DIPEA 

were added to the solution and left at RT for a further 3 hours. The TLC 

(chloroform-methanol 9:1) showed that still have starting material on the product 

lane. Continued addition of a further 0.5 equivalent of Boc-Ala-Gly-OSu to the 

solution was made and reacted at RT for 2 hours. There was only one clean red 

spot on the TLC plate, which indicated that the reaction had fully completed. 

Extraction was performed by using chloroform and water, anhydrous sodium 

sulphate was then added to the organic solution to absorb water. The solution 

was filtered and evaporated to dryness. The dried product was continued for the 

next step of synthesis without purification by column chromatography to 
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maximize the yield. 

 

1.4.10.6 Synthesis of H-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt 

(HZ12) 

The Boc-protected pentapeptide anthraquinone compound was dissolved by the 

addition of TFA for the de-Boc reaction at RT for 2 hours (Scheme 19). 

 

Reagents and conditions: (a) TFA, RT, 2 hours 

Scheme 19. Synthesis of H-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt (HZ12) 

 

The TLC result (dichloromethane-methanol 9:1) showed that the reaction has 

completed. The solution was evaporated using a rotary evaporator. A few drops 

of methanol were added to the solution to help evaporation. The dried product 

was added with diethyl ether at 5°C for 1 hour and the mixture was filtered and 

collected. 
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1.4.10.7 Synthesis of Boc-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ13) 

Finally, proline was added to form the target hexapeptide adduct which would 

place proline in the P3 position with respect to the cleavage site. The 

Boc-protected hexapeptide piperazinyl-anthraquinone compound was 

synthesised by using Boc-Pro-OH to react with 

D-Ala-Gly-Leu-Ala-Ala-anthraquinone in DMF at RT for 1 hour, followed by the 

addition of reagents TBTU, HOBt, and DIPEA to the solution (Scheme 20). 

 

 

Reagents and conditions: (a) TBTU, HOBt, DIPEA, dissolved in DMF, RT, 1 hour 

Scheme 20. Synthesis of Boc-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ13) 
 

Once the TLC test (dichloromethane-methanol 9:1) showed the appearance of 

the new red spot and the disappearance of starting material, HZ12 on the 

product lane, the reaction solution was evaporate to a small volume. Purification 

of the product was performed using column chromatography in the same solvent 
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system as TLC analysis. The eluted solution was filtered and evaporated to 

dryness in vacuum.  

 

1.4.10.8 Synthesis of H-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt 

(HZ14) 

Removal of the Boc group from Boc-protected hexapeptide 

piperazinyl-anthraquinone conjugate was carried out by dissolving the 

compound in TFA at RT for 2.5 hours (Scheme 21). 

 

Reagents and conditions: (a) TFA, RT, 2.5 hours 

Scheme 21. Synthesis of H-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt 

(HZ14) 
 

Once the reaction was complete indicated by TLC using 

dichloromethane-methanol 9:1 solvent system, the solution was evaporated to 

dryness using a rotary evaporator. Addition of diethyl ether precipitated the 

product H-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt (HZ14). The solid 
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compound was dried in a desiccator and collected. 

 

1.4.10.9 Synthesis of Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ 

(HZ15) 

The starting material H-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt (HZ14) 

was reacted with succinic anhydride in DMF with adding the base DIPEA at RT 

(Scheme 22). 

 

Reagents and conditions: (a) succinic anhydride, DIPEA, dissolved in DMF, RT, 2 days 

Scheme 22. Synthesis of Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ 

(HZ15) 

 

The TLC (dichloromethane-methanol 6:1) showed that there was no starting 

material present at the product lane. Column Chromatography was performed to 

purify the product using dichloromethane-methanol 7:1 solvent system. The 

solution was evaporated to dryness, and the solid compound 

Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ15) was precipitated by 

diethyl ether and collected. 
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1.4.10.10 Synthesis of Prodrug 8:  

Podophyllotoxin-Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ16) 

Podophyllotoxin was used as the active drug of prodrug 8. Podophyllotoxin is a 

well-known naturally occuring lignan isolated from Podophyllin, a resin extract of 

Podophyllum species. Podophyllotoxin was commonly used in many Eastern 

countries, such as China and Japanese, as a folk antiviral remedy for gout, 

tuberculosis, syphilis and psoriasis (Gordaliza et al., 2004). The application of 

Podophyllotoxin inhibits the replication cycle of these viruses at early stage. 

Today, it is still an effective drug in the treatment of venereal warts (condyloma 

acuminate) caused by human papilloma virus (HPV) (Liu and Hou, 1997).  

Another important property of Podophyllotoxin is its antitumor activity that was 

first described by Kaplan in 1942. Podophyllotoxin and its derivatives were found 

to be effective in the treatment of genital tumours, lymphomas, lung cancer, 

multiple myeloma and some other malignant conditions (Castro et al., 2003). 

Podophyllotoxin acts as microtubule damaging agent like colchicine or 

vincristine on DNA. There are evidences that showed podophyllotoxin inhibits 

the polymerization of tubulin. However, the application of podophyllotoxin is 

often limited by severer toxicity. The podophyllotoxin derivative, etoposide is 

widely used as antineoplastic drugs with a different mode of action and less toxic 

(Bohlin and Rosen, 1996). Etoposide is a DNA topoisomerase II inhibitor which 

forms a DNA-drug-enzyme complex that induces DNA strands break and 

eventually lead to cell death (Greco and Hainsworth, 1996; Canel et al., 2000). 

 

Podophyllotoxin was attached to the succinyl end of the compound 

Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ15) to synthesise the 

podophyllotoxin-based prodrug 8. The reaction was carried out in DMF and 

acetonitrile (1:1) solution with adding the coupling agents, TEA and TBTU. 
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During the reaction, there was solid formed in the solution. The reaction mixture 

was kept at RT overnight (Scheme 23). 

 

 

Reagents and conditions: (a) TEA, TBTU, dissolved in DMF & acetonitrile, RT, 48 hours 

Scheme 23. Synthesis of Prodrug 8:  

Podophyllotoxin-Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ16) 

 

The reaction solution was checked by TLC (dichloromethane-methanol 8:1) 

which indicated the reaction has completed. Furthermore, a small amount of the 

solid in the solution was dissolved in chloroform and checked by TLC which 

showed that it was the same product as in solution. The mixture was extracted 

with chloroform and water and then the organic layers were evaporated to 

dryness. The dried solid was checked by TLC again which showed two main 

spots, one was the product HZ16 and the other one was the starting material 

HZ15. The solid was dissolved in acetonitrile followed by the addition of TEA, 
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TBTU and podophyllotoxin. The reaction was completed after 20 hours by 

checking the TLC. The solution was evaporated to dryness and dissolved by 

chloroform in a small volume. A thick TLC plate was used for product purification 

with a solvent system of dichloromethane-methanol 8:1. The product layer on 

the TLC plate was collected and dissolved in ethanol. After the filtration, the 

solution which contained the final product was evaporated, triturated by the 

addition of diethyl ether and collected. The molecular mass of the synthesised 

podophyllotoxin peptide prodrug 8 (HZ16) was expected to be 1268 Daltons 

according to its structure. The electrospray (+) mass spectrum revealed a strong 

and clear peak at m/z 1286 for the ion (MNH4)+ which confirmed the mass of 

1268 Daltons (Figure 20). Considering the mass spectrum results, the synthesis 

of podophyllotoxin-based MMP-9 activated prodrug 8 was successful and can be 

considered as a good candidate for cancer chemotherapy research. 
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Figure 20. Mass Spectrum of Prodrug 8 (HZ16) 

 

According to the chemical structure of the synthesised prodrug 8 

(Podophyllotoxin-Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ) in this study, 

the functional group of podopyllotoxin is hydroxyl which forms an ester bond with 

the carboxyl acid of succinate hexapeptide anthraquinone conjugate. An ester is 

the most common linkage of tumour activated prodrugs. The ester bond is 

relatively easy to synthesise, additionally, the functional groups, hydroxyl and 
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carboxyl acid are widely common in active drugs or chemical linkers. Moreover, 

esterases that are able to hydrolyse the ester bond are everywhere distributed in 

the human body (Han & Amidon, 2000). There are four common types of ester 

bond which are listed shown in Figure 21. The half-life of an eater bond may 

vary from minutes to hours, depends on the structure of TAPs and the esterases 

activities. The carbamate ester found to be more stable than the other three 

ester bonds (Liederer & Borchardt, 2006). On the other hand, two TAPs with the 

same ester bond may also have different half-lives (Mahato et al., 2011). 

 

Figure 21. Four different types of ester bond 

(Adapted from Liederer & Borchardt 2006) 

 

The synthesised prodrug 8 (HZ16) has a carboxyl ester bond and a MMP-9 

sensitive peptide substrate. The hexapeptide (Pro-Ala-Gly-Leu-Ala-Ala) is 

expected to be cleaved by the tumour specific enzyme, MMP-9. The carboxyl 

ester bond will be hydrolysed by esterase to release the active drug, 

podophyllotoxin. 

The anticipated activation process of synthesised prodrug 8 in cancer cells has 

been illustrated in Figure 22. However, further in vitro and in vivo evaluations are 

needed, including HPLC studies of the in vitro breakdown in tumour versus 
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healthy tissues. 

 

Figure 22. The expected activation of synthesized prodrug 8 in vivo 

 

1.4.11 HT1080 Cell Culture 

The human fibrosarcoma cell line (HT1080) provides a suitable tumour model for 

the study of MMPs activated prodrugs (Albright et al., 2005). HT1080 cells are 

identified to have overexpressed MMPs, particularly MMP-2 and MMP-9 

(Hofmann et al., 2003, Kline et al., 2004). 

 

1.4.11.1 Materials for HT1080 cell culture 

RPMI 1640 (without L-glutamine), penicillin/streptomycin, L-glutamine, foetal 

bovine serum (FBS), Sodium chloride solution, 1× Trypsin/EDTA (prepared in 

1:10 dilution with NaCl solution), all purchased from Sigma. HT1080 cells 
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(obtained from the European Tissue Culture Collection) 

 

1.4.11.2 Method for HT1080 cell culture 

The HT1080 cells were epithelial adherent cell lines and grown in RPMI 1640 

medium with 10% FBS, 1% penicillin/streptomycin, 1% L-glutamine. The cells 

were regularly examined under an inverted light microscope and passaged by 

using trypsin solution. The cell culture flaks were kept in a humidified incubator 

at 37⁰C with 5% CO2 and 95% air.  

 

1.4.12 Fluorescence Studies of Prodrug 3 (HZ43) and Prodrug 7 (HZ57) 

The fluorescent labelled Prodrug 7  

Carboxyfluorescein-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ57) and 

Prodrug 3 FITC-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ43) allowed 

the rapid detection of MMP-9 prodrug activation by fluorescence release. The 

fluorescence of the FITC/Carboxyfluorescein group was internally quenched by 

the anthraquinone chromophore by fluorescence resonance energy transfer 

(FRET). The FRET principle is discussed in chapter 3. The cleavage of the 

MMP-9 specific peptide will result in an increase level of fluorescence.  

 

PBS (Control) and HT1080 homogenate were added to the wells of a 96-well 

plate in the presence of 10 μM fluorescent labelled Prodrug 3 (HZ43) or Prodrug 

7 (HZ57). For comparison, HT1080 homogenate was pre-incubated with CTT 

(1.3 mM) which is a cyclic peptide gelatinase Inhibitor for MMP-2 and MMP-9 

(Ndinguri et al., 2012), for 1 hour before the addition of prodrugs. The 

fluorescence intensity was measured by a FLUOstar OPTIMA plate reader. 
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Figure 23. Fluorescence released by Prodrug 7 (HZ57) during metabolism. HZ57 (10 

μM) was added to HT1080 tumour homogenate (■), PBS buffer (◆), and HT1080 

homogenate with pre-incubation of MMP inhibitor CTT (1.3 mM, ▲) 

 

The background levels of fluorescence were shown by the addition of Prodrug 7 

(HZ57) into the PBS solution (tissue-free control). It was found that incubation of 

HZ57 with HT1080 tumour homogenate results in an increased fluorescence 

due to the cleavage of HZ57. Further evaluation of HZ57 was performed by 

pre-incubation of HT1080 tumour homogenate with MMP-2/MMP-9 specific 

inhibitor CTT. From Figure 23, the fluorescence of HZ57 was decreased by the 

CTT treatment.  
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Figure 24. Fluorescence released by Prodrug 3 (HZ43) during metabolism. HZ43 (10 

μM) was added to HT1080 tumour homogenate (■), PBS buffer (◆), and HT1080 

homogenate with pre-incubation of MMP inhibitor CTT (1.3 mM, ▲) 

 

Similarly, the FITC labelled prodrug 3 (HZ43) has an increased fluorescence with 

incubation of HT1080 tumour homogenate (Figure 24). However, the 

fluorescence intensity was lower than Prodrug 7 (HZ57) at the same drug 

concentration of 10 μM. The fluorescence level of HZ43 with CTT treatment 

showed no significant different with comparison of the tissue-free control. 
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1.5  Conclusion 

The over expressed MMP-9 in tumour was used as a promising target for tumour 

activated prodrugs, and aimed to increase the drug selectivity and decrease the 

toxicity to other normal cells. 

A series of tumour activated prodrugs were synthesised in this study. All 

prodrugs (1-8) have the MMP-9 cleavable peptide chain in the middle part of the 

structure. The summarized structures of Prodrugs (1-8) with HZ codes are 

illustrated in Table 2. The red line indicates the MMP-9 cleavage ‘hot spot’. 

 

Table 2. Summary of selected synthesised MMP-9 activated prodrugs 

 

Prodrugs 1 and 2 have the same active drug propranolol attached to the 

80 



 

hexapeptide substrate (Pro-Ala-Gly-Leu-Ala-Ala). The other side of the peptide 

was capped by Fmoc (Prodrug 1) or anthraquinone derivative (Prodrug 2). The 

difference between Prodrug 3 and 7 is the fluorescein compound which attached 

to the H-Pro-Ala-Gly-Leu-Pro-GABA-spacer-Anthraquinone conjugate. Prodrug 

3 used the FITC while Prodrug 7 used 5(6)-Carboxyfluorescein. In Prodrug 4, 

the GABA antagonist (R)-ethyl piperidine-3-carboxylate was linked to the 

Anthraquinone-spacer- Pro-Ala-Gly-Leu-Ala-Ala-OH conjugate. Prodrug 5 has a 

capping group (anthraquinone derivative) and cytotoxic agent (podophyllotoxin) 

at two sides of peptide chain (Pro-Ala-Gly-Leu-Pro-GABA). The GABA agonist 

baclofen was attached to Anthraquinone-spacer-Pro-Ala-Gly-Nva-Pro-OH 

conjugate to form Prodrug 6.  

 

Furthermore, fluorimetric assays evaluated and compared the MMP-9 cleavable 

substrates of different prodrugs in the HT1080 cancer cell line. The fluorescein 

labelled Prodrug 3 and 7 were selected for the assay. The results showed that 

the 5(6)-carboxyfluorescein labelled Prodrug 7 performed much better than the 

FITC labelled Prodrug 3 during the incubation with the same concentration of 

HT1080 tumour homogenate. 
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1.6 Structure Library 

 

 
Fmoc-Ala-[Boc-Spacer]-AQ (HZ26) 

 

 
H-Ala-Spacer-AQ TFA salt (HZ27) 

 

 
H-Ala-[Boc-Spacer]-AQ (HZ28) 

 

 
Fmoc-Ala-Propranolol (HZ29) 
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Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ31) 

 

 
Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-Propranolol (HZ32) 

 

 
AQ-Spacer--Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ33) 

 

 
AQ-Space-Pro-Ala-Gly-Leu-Ala-Ala-Propranolol (HZ34) 

 

 
Fmoc-GABA-[Propyl-spacer]-AQ (HZ35) 
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H-GABA-[Propyl-spacer]-AQ (HZ36) 

 

 
Boc-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ37) 

 

 
H-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt (HZ38) 

 

 
Boc-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ39) 
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H-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt (HZ40) 

 

 
Boc-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ41) 

 

 
H-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt (HZ42) 

 

 
FITC-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ43) 

 

 
AQ-[Propyl-spacer]-Pro-Ala-Gly-Leu-Ala-OPFP (HZ44) 
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AQ-[Propyl-spacer]-Pro-Ala-Gly-Leu-Ala-ethylpiperidine-3-carboxylate 

(HZ45) 
 

 
Succinyl-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ46) 

 

 
Podophyllotoxin-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ47) 

 

 
Fmoc-Pro-Ala-Gly-Nva-Pro-OH (HZ51) 
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AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OH (HZ52) 

 

 
AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OPFP (HZ53) 

 

 
AQ-Spacer-Pro-Ala-Gly-Nva-Pro-Baclofen (HZ54) 

 

 
5(6)-Carboxyfluorescein-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ 

(HZ57) 
 

 
Boc-Ala-Ala-Piperazinyl-AQ (HZ7) 
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H-Ala-Ala-Piperazinyl-AQ TFA salt (HZ8) 

 

 
Boc-Leu-Ala-Ala-Piperazinyl-AQ (HZ9) 

 

 
H-Leu-Ala-Ala-Piperazinyl-AQ TFA (HZ10) 

 

 
Boc-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ11) 
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H-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt (HZ12) 

 

 
Boc-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ13) 

 

 
H-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt (HZ14) 

 

 
Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ15) 

 

 
Podophyllotoxin-Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ16) 
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1.7 Experimental 

1.7.1 General methods 

1.7.1.1 Thin layer chromatography (TLC) 

Kieselgel 60 F254 pre-loaded aluminium sheets were used for the TLC test. The 

compounds with colour were self-evident. For colourless compounds, the TLC 

sheets needed to be placed under the UV light for spots visualization.   

 

1.7.1.2 Thick TLC plate 

100g of Silica gel 60 PF254 and 300 ml of water were mixed well to make smooth 

slurry. The slurry was then spread onto 20×20 cm glass plates. The thickness of 

the absorbent silica gel was 1 mm. The plates were then put into the oven and 

heated at 60 °C for overnight. The plates were stored in a dry, cool and dark 

place. 

Once the Thick TLC plate was used for the purification of compounds, the 

compounds were first dissolved in a very small volume of organic solution (such 

as chloroform and dichloromethane). The solution was applied onto the plate by 

using a Pipette. After the solution has completely dried, the plate was put into the 

container with the suitable running solvent (about 90 ml) and a cover glass was 

placed on the top of the container. When the solvent moved no higher than the 

top of the TLC plate, the plate was removed and dried. The product layer was 

collected. 

 

1.7.1.3 Column chromatography 

Silica gel 60 [Merck] mesh 43 – 60 was used for all column chromatography.  

 

1.7.1.4 Mass spectrometry 

The samples of synthesised pure prodrugs were analysed by the EPSRC 
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National Mass Spectrometry Service Centre at Swansea and the data was 

interpreted and compounds were characterized by the author. 

 

1.7.1.5 Proton Nuclear Magnetic Resonance (1H NMR) 
The samples were dissolved in either deuterated DMSO or deuterated 

chloroform and transferred to standard NMR testing tubes with a solution height 

range between 5 and 5.5cm. All experiments were performed by the author 

using a Bruker AC200 NMR Spectrometer (300 MHz) in Heriot-Watt University, 

Edinburgh. 

 

1.7.2 Chemical synthesis of MMP-9 activated prodrugs 

1.7.2.1 Synthesis of Boc-Ala-Ala-Piperazinyl-AQ (HZ7) 

The compound NU: UB 341 (1 g, 3.4 mmol) and Boc-Ala-Ala-OH (980.54 mg, 

3.7 mmol) were dissolved in DMF (10 ml), followed by the addition of TBTU 

(1209 mg, 3.7 mmol), HOBt (576 mg, 3.7 mmol), and DIPEA (1964.8 µl, 11.2 

mmol, 0.742 g/ml). The mixture was left at RT overnight. Mini extraction 

(dichloromethane and water) was performed for the TLC (Rf 0.714, 

dichloromethane-methanol 9:1) test. The product solution was extracted. The 

organic layer was added with anhydrous sodium sulphate and filtered. The 

filtrate was evaporated using rotary evaporator to a small volume and then 

performed the column chromatography (4.3 cm × 14.5 cm) with the 

dichloromethane-methanol 9:1 solvent system. The eluted product was filtered, 

evaporated to dryness and collected. The dried product was remained in the 

round bottomed flask for the next de-Boc reaction. 

 

1.7.2.2 Synthesis of H-Ala-Ala-Piperazinyl-AQ TFA salt (HZ8) 

TFA was added to the Boc-Ala-Ala-Piperazinyl-AQ (HZ7) until the solid was fully 
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dissolved. The solution was left at RT for 1.15 h. The product (Rf 0.18, 

chloroform-methanol 9:1) solution was evaporated to dryness and triturated by 

10 ml diethyl ether at 5 °C for 1 h. The mixture was filtered, dried and collected. 

Crude product yield: 1.83 g, 97% 

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.27 (3H, d, CH3-ala); 1.35 (3H, d, 

CH3-ala); 3.2-3.75 [11H, m, unresolved, 4×CH2 (piperazine) and NH3]; 3.88 (1H, 

q, NH3-α-CH); 4.85 (1H, quint, CONH-α-CH); 7.35 (1H, d, H-3 AQ); 7.5 (1H, s, 

H-1); 7.9 (2H, m, H-6 and H-7 AQ); 8.08 (1H, d, H-4); 8.18 (2H, m, H-5 and H-8 

AQ); 8.7 (1H, d, NHCO) 

 

1.7.2.3 Synthesis of Boc-Leu-Ala-Ala-Piperazinyl-AQ (HZ9) 

The crude H-Ala-Ala-Piperazinyl-AQ TFA salt HZ8 (1.8 g, 3.3 mmol) and 

Boc-Leu-OSu (1.2 g, 3.4 mmol) were dissolved in DMF (10 ml). DIPEA (1.2 ml, 

6.6 mmol, 0.742 g/ml) were added to the solution and left at RT for 3 h. The 

product (Rf 0.52, chloroform-methanol 9:1) solution was extracted (chloroform 

and water). The organic layer was filtered, evaporated to dryness and kept in the 

250ml round bottomed flask for the next de-Boc reaction. 

 

1.7.2.4 Synthesis of H-Leu-Ala-Ala-Piperazinyl-AQ TFA salt (HZ10) 

The 250ml round bottomed flask containing Boc-Leu-Ala-Ala-Piperazinyl-AQ 

(HZ9) was added by TFA until the solid had completely dissolved and reacted at 

RT for 1.5 h. The product (Rf 0.12, chloroform-methonal 10:1) solution was 

evaporated to dryness by rotational evaporator. About diethyl ether (10 ml) to 

precipitate the product at 5 °C for 1 h and the mixture was then filtered, dried and 

collected. Yield: 1.5 g, 70%. 
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1.7.2.5 Synthesis of Boc-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ11) 

H-Leu-Ala-Ala-Piperazinyl-AQ TFA salt HZ10 (1.5 g, 2.3 mmol) and 

Boc-Ala-Gly-OSu (0.9 g, 2.5 mmol) were dissolved in DMF (10 ml), followed by 

the addition of DIPEA (800 µl, 4.6 mmol, 0.742 g/ml) and reacted at RT overnight. 

The reaction was not completed, and Boc-Ala-Gly-OSu (0.79 g, 2.3 mmol) and 

DIPEA (0.742 g/ml, 400 µl, 2.3 mmol) were added and left at RT for 5 h. The 

product (Rf 0.44, dichloromethane-methanol 9:1) mixture was extracted 

(chloroform and water), the organic layer was combined, dried (anhydrous 

sodium sulphate), filtered, evaporated to dryness for the next reaction. 

 

1.7.2.6 Synthesis of H-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt (HZ12) 

TFA was added to the Boc-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ11) in the 

round bottomed flask until solid was fully dissolved and reacted at RT for 1.5 h. 

The product (Rf 0.18, dichloromethane-methonal 9:1) solution was evaporated 

(a few drops of methanol was added to help evaporation) and triturated by 

diethyl ether (10 ml) at 5 °C for 1 h. The mixture was filtered, evaporated to 

dryness and collected. Yield: 1.5 g, 83%. 

 

1.7.2.7 Synthesis of Boc-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ13) 

The Boc-deprotected dipeptide anthraquinone spacer compound (1.5 g, 1.9 

mmol) was dissolved in DMF (10 ml), Boc-Pro-OH (0.5 g, 2.1 mmol), TBTU (0.7 

g, 2.1 mmol), HOBt (0.3 g, 2.1 mmol), and DIPEA (1.1 ml, 2.1 mmol, 0.742 g/ml) 

were added to the solution and left at RT for 1 h. The product (Rf 0.4, 

dichloromethane-methanol 9:1) solution was extracted (dichloromethane and 

water). The organic layer was collected, dried (anhydrous sodium sulphate), 

filtered and evaporated to a small volume for the column chromatography 

purification (4.3 × 17.5 cm) using dichloromethane-methanol 10:1 solvent 
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system. The eluted solution was filtered to remove silica gel and then 

evaporated to dryness and kept in the 250 ml round bottomed flask for the 

de-Boc reaction. 

 

1.7.2.8 Synthesis of H-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt 

(HZ14) 

TFA was added to the round bottomed flask which contained 

Boc-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ13) until the solid was 

completely dissolved and the mixture was left at RT for 1 h. The product (Rf 0.1, 

dichloromethane-methanol 9:1) solution was evaporated to dryness and added 

with 10 ml diethyl ether. The mixture was cooled at 5 °C for 1.5 h and then 

filtered, dried and collected. Yield: 1.5 g, 89%. 

 

1.7.2.9 Synthesis of Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ 

(HZ15) 

H-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ TFA salt HZ14 (300 mg, 0.34 mmol) 

and succinic acid (50.8 mg, 0.5 mmol) were dissolved in DMF (5 ml), followed by 

the addition of DIPEA (147.2 µl, 0.85 mmol, 0.742 g/ml) to the solution and 

reacted at RT over weekend. The product (Rf 0.4, dichloromethane-methanol 6:1; 

Rf 0.64, butanol-acetate acid-water 4:5:1) solution was extracted, evaporated to 

a low volume and purified by column chromatography (2.3 cm × 15.6 cm) using 

dichloromethane-methanol 6:1 solvent system. The product fraction was 

combined, filtered and evaporated to dryness by rotary evaporator. The product 

paste was re-dissolved by addition of small volume of ethanol and diethyl ether 

(10 ml) in a 25 ml round bottomed flask to precipitate the solid product. The 

solution mixture was cooled at 5 °C for 2 h, filtered, dried in the desiccator, and 

collected. Yield: 98.7 mg, 33%. 
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ESMS (+): 871 m/z (100%) (M-H)- 

 

1.7.2.10 Synthesis of 

Podophyllotoxin-Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ (HZ16) 

Succinyl-Pro-Ala-Gly-Leu-Ala-Ala-Piperazinyl-AQ HZ15 (90 mg, 0.1 mmol) was 

dissolved in DMF (2.5 ml) and acetonitrile (2.5 ml), podophylotoxin (43 mg, 0.1 

mmol), TBTU (33.13 mg, 0.1 mmol) and TEA (28.7 µl, 0.2 mmol, 0.727 g/ml) 

were added to the solution and reacted at RT overnight. The TLC showed the 

reaction was not complete. Additional podophylotoxin (21.37mg, 0.05 mmol), 

TBTU (16.57 mg, 0.05 mmol) and TEA (14.35 µl, 0.05 mmol, 0.727 g/ml) were 

added to the solution and left at RT for 5 h. There was solid present in the 

solution, so the solution was filtered. The solid was orange coloured and was 

dissolved by chloroform. The filtrate was combined with the dissolved solid and 

transferred to an evaporating basin and left to dryness overnight. The product 

was collected and checked by TLC for purity. However, some product had gone 

back to the starting material. The solid was dissolved in chloroform and added 

with anhydrous sodium sulphate. The solution was filtered and evaporated to 

dryness. Acetonitrile (3 ml) was added to dissolve the solid. The reagents, 

(21.37mg, 0.05 mmol), TBTU (16.57 mg, 0.05 mmol) and TEA (14.35 µl, 0.1 

mmol, 0.727 g/ml) were added to the solution and reacted at RT overnight. The 

product (Rf 0.74, dichloromethane-methanol 8:1) solution was evaporated to 

dryness, dissolved by chloroform in a very low volume and applied to a thick TLC 

(90 ml of dichloromethane-methanol (8:1) solvent) plate for purification. The 

product layer was collected, dissolved in ethanol, filtered and evaporated to 

dryness in vacuo. 10 ml of diethyl ether was added and the mixture was cooled 

in 5°C for 1 h. The product was precipitated in ether and the mixture was filtered, 
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dried in a desiccator and collected. Yield: 57.5 mg, 45% 

 

ESMS (+): 1286 m/z (100%) (M+NH4)+ 

 

1.7.2.11 Synthesis of Fmoc-Ala-[Boc-Spacer]-AQ (HZ26) 

The AQ-spacer-Boc NU: UB 491 (500 mg, 1.26 mmol) was reacted with 

Fmoc-Ala-OH (432 mg, 1.4 mmol) in dichloromethane (30 ml). DCC (313 mg, 

1.5 mmol) and DMAP (15.4 mg, 0.13 mmol) were added and the reaction 

mixture was stirred for 1 h. The precipitated dicyclohexylurea (DCU) was filtered 

off and the filtrate was washed with water. The dichloromethane extract was 

combined, dried by sodium sulfate, and evaporated to dryness. The crude solid 

was purified by column chromatography using the eluting solvent, 

dichloromethane: ethyl acetate 7:1. The appropriate fractions were combined, 

filtered and evaporated to dryness. Diethyl ether was added to precipitate the 

solid product. The mixture was cooled at 5°C for 1 h. Yield: 392 mg, 45%. 

 

1H NMR spectrum (CDCl3, 300 MHz) δ: 1.48 [(9H, s, CH3 (Boc)]; 1.7 (1H, s); 2.7 

(2H, t, AQ-NH-CH2-CH-OCO-CH2); 3.4-3.7 (6H, m, AQ-NH-CH2-CH-CH2 and 

AQ-NH-CH2-CH-OCO-CH2-CH2); 4.15 [(1H, t, α-CH (Fmoc)]; 4.35 [(2H, d, CH2 

(Fmoc)]; 5.0 (1H, s, AQ-NH-CH2-CH); 5.3 (1H, t, NHCO-Boc); 5.79 (1H, s, 

NHCO-Fmoc); 7.15 (1H, d, H-2); 7.4 (2H, t, H-3 and H-4); 7.5-7.63 (2H, t, H-6 

and H-7); 7.63-7.78 [8H, m, CH (Fmoc)]; 8.12 (1H, d, H-5); 8.18 (1H, d, H-8); 9.9 

(1H, t, AQ-NH). 

 

1.7.2.12 Synthesis of H-Ala-Spacer-AQ trifluoroacetate salt (HZ27) 

Fmoc-Ala-[Boc-Spacer]-AQ HZ26 (60 mg, 0.15 mmol) was transferred into a 

round bottomed flask. TFA was added until all solid dissolved. The reaction was 
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completed after 10 min. The solution was evaporated to dryness. Diethyl ether 

was added to precipitate the product. Yield: 50 mg, 98%. 

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 2.4-2.65 (2H, t, 

AQ-NH-CH2-CH-OCO-CH2); 3.05-3.3 (4H, m, AQ-NH-CH2-CH-CH2); 3.3-3.6 (2H, 

m, CH2-NH-Fmoc); 3.6-3.8 [(1H, t, H-9 (Fmoc)]; 4.1-4.4 [(2H, m, CH2 (Fmoc)]; 

5.2 (1H, s, AQ-NH-CH2-CH); 7.2-7.5 [(7H, m, unresolved, H-2(AQ), H-1, H-2, 

H-4, H-5, H-7 and H-8 (Fmoc)]; 7.5-7.72 (2H, m, H-3 and H-4); 7.73-7.95 [(4H, m, 

H-3 and H-4 (AQ), H-3 and H-6 (Fmoc)]; 7.95-8.08 (2H, m, H-6 and H-7); 

8.08-8.26 (2H, m, H-5 and H-8); 9.75 (1H, t, AQ-NH). 

 

1.7.2.13 Synthesis of H-Ala-[Boc-Spacer]-AQ (HZ28) 

Fmoc-Ala-AQ HZ26 (150 mg 0.38 mmol) was dissolved in 4 ml of 2% piperidine 

in DMF. The reaction was completed in 30 min at RT by checking the TLC (Rf 

0.17, dichloromethane-methanol 9:1). The reaction solution was purified by 

extraction (dichloromethane and water) and column chromatography 

(chloroform-methanol 8:1). The product was collected in an evaporating basin. 

Yield: 70 mg, 69%. 

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.4 [(9H, s, CH3 (Boc)]; 2.38-2.52 (2H, 

m, CH-OCO-CH2); 3.05-3.8 (6H, m, AQ-NH-CH2-CH-CH2 and CH2-NH2); 5.05 

(1H, m, AQ-NH-CH2-CH); 7.15-7.25 (1H, t, NHCO); 7.35 (1H, d, H-2); 7.4-7.5 

(1H, d, H-4); 7.6-7.7 (1H, t, H-3); 7.8-7.95 (2H, m, H-6 and H-7); 8.12 (1H, d, H-8); 

8.2 (1H, d, H-5); 9.78 (1H, t, AQ-NH). 

 

1.7.2.14 Synthesis of Fmoc-Ala-Propranolol (HZ29) 

Propranolol hydrochloride (1 g, 3.4 mmol) and Fmoc-β-Ala-OH (1.26 g, 4.1 mmol) 
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were dissolved in 20ml DMF, followed by the addition of TBTU (1.3 g, 4.1 mmol), 

HOBt (621 mg, 4.1 mmol), and DIPEA (2.7 ml, 16 mmol). The reaction was 

completed overnight. The crude product (Rf 0.48, dichloromethane- ethyl acetate 

1:1) was extracted by dichloromethane and water, dichloromethane/aqueous 

citric acid and dichloromethane/aqueous sodium bicarbonate. Further 

purification was done by column chromatography (dichloromethane- ethyl 

acetate 1:1). The product was dried under vacuum. Yield: 271mg, 14%. 

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.2-1.45 (6H, dd, CH3); 2.6-2.8 (2H, 

m, NCO-CH2); 3.5-3.87 [(3H, m, NCO-CH2-CH2 and H-9 (Fmoc)]; 4.05-4.2 (1H, 

m, CH-CH3); 4.2-4.35 [(4H, m, O-CH2-CH-CH2 (propranolol)]; 4.35-4.45 [(2H, m, 

CH2 (Fmoc)]; 5.63 [(1H, m, O-CH2-CH (propranolol)]; 6.9 [1H, d, H-2 

(propranolol)]; 7.28-7.58 [8H, m, unresolved, H-1, H-2, H-3, H-4, H-5, H-6, H-7 

and H-8 (Fmoc)]; 7.6-7.7 [2H, m, H-3 and H-4 (propranolol)]; 7.7-7.9 [4H, m, H-5, 

H-6, H-7 and H-8 (propranolol)]; 8.25 (1H, d, OH) 

 

1.7.2.15 Synthesis of Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ31) 

Fmoc-Ala-Wang resin (1 g, 0.72 mmol/g) was used for the SPPS. The resin (1 g) 

was transferred into a SPPS reaction vessel, added with dichloromethane (10 ml) 

for swelling the beads and shaken at RT, 650 rpm for 1.5 h. The 

dichloromethane was drained off and the resin was washed with DMF three 

times (2 min, 5 ml for each time). Fmoc was removed by the addition of 5 ml of 

20% piperidine in DMF to the vessel and shaken for 15 min at RT. This step was 

repeated for 3 times. The resin was washed with DMF 3 times.  

A solution of Fmoc-Ala-OH (448.3 mg, 1.44 mmol), TBTU (439.2 mg, 1.4 mmol), 

HOBt (209.3 mg, 1.4 mmol) and DIPEA (500.7 µl, and 2.9 mmol, 0.742 g/ml) 

were dissolved in DMF (20 ml). The solution (10 ml) was transferred into the 
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vessel and shaken for 30 min. After 30 min, the solution was drained off. Another 

10ml stock solution was added and shaken for 30 min. The resin was then Fmoc 

deprotected for the coupling reaction with next amino acid. The rest of the Fmoc 

protected amino acids were coupled by the same procedure as above in the 

order of: Fmoc-Leu-OH (509 mg, 1.44 mmol), Fmoc-Gly-OH (428 mg, 1.44 

mmol), Fmoc-Ala-OH (560 mg, 1.8 mmol), and Fmoc-Pro-OH (607.5 mg, 1.8 

mmol). Colour test was performed for Fmoc deprotection and amino acid 

coupling reaction. 

TFA (20 ml, 95%) in dichloromethane was prepared. 2-3 ml of the solution was 

added to the vessel and shaken at RT for 3 min. The solution was drained off 

and the procedure was repeated for 9 times. The resin was then washed with 

dichloromethane (×2), methanol (×2), and dichloromethane (×1). All the filtrates 

and cleavage fractions were combined, transferred into a round bottomed flask 

and evaporated to a small volume using a rotary evaporator. About 30 ml of 

diethyl ether was added to precipitate the white solid HZ31 at 5 °C for 1 h. The 

mixture was filtered and the product was dried in a desiccator. Yield: 176 mg, 

34%.  

 

1.7.2.16 Synthesis of Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-Propranolol (HZ32) 

Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH HZ31 (106 mg, 0.15 mmol) was dissolved in 

DMF (20 ml), propranolol hydrochloride (48 mg, 0.17 mmol), TBTU (52 mg, 0.17 

mmol), HOBt (25 mg, 0.17 mmol), and DIPEA (0.742 g/ml, 110 µl, 0.65 mmol) 

were added to the solution and reacted at RT overnight. The product (Rf 0.43, 

dichloromethane-ethyl acetate-ethanol 7:2:1) solution was extracted 

(dichloromethane/ water, dichloromethane/aqueous citric acid, and 

dichloromethane/aqueous sodium bicarbonate). The organic layer was collected, 

dried by anhydrous sodium sulphate, filtered and evaporated to a small volume 
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for the column chromatography purification using dichloromethane-ethyl 

acetate-ethanol 9:2:1 solvent system. The pure fractions were combined, filtered, 

evaporated, and precipitated in diethyl ether (10 ml). The white solid product was 

collected by centrifuging. Yield: 13 mg, 9%.  

 

ESMS (+): 962 m/z (100%) (M+H)+ 

 

1.7.2.17 Synthesis of AQ-Spacer--Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ33) 

The anthraquinone derivative HB8 (64.3 mg, 0.14 mmol) was dissolved in 4ml 

DMF. The solution was transferred into the SPPS reaction vessel which 

contained approximate 0.14 mmol of de-Fmoc hexapeptide on resin (HZ31). 

DIPEA (25 µl, 0.14 mmol) was also added. The mixture was shaken for 1 hour. 

The resin was washed with DMF 2 time and added with another portion of 

64.3mg HB8 and 25µl DIPEA, continued shaking for 1 h. The resin was washed 

with DMF (×5) and dichloromethane (×3). 15ml of 87% TFA in dichloromethane 

was measured in a 25ml cylinder. About 2ml solution was added to the resin and 

shaken for 3-4min. The solution was drained off into a small beaker. This step 

was repeated 5 times and all fractions were checked by TLC The resin was 

washed with dichloromethane (×2), methanol (×1), and dichloromethane (×2). All 

filtrates and fractions were combined and transferred to a round bottomed flask. 

The solution was evaporated to a small volume and added with diethyl ether (50 

ml). The flask was put into fridge at 5°C for cooling overnight. The product was 

collected by filtration and dried in a desiccator. Yield: 256.8 mg, 98% 

 

1.7.2.18 Synthesis of AQ-Space-Pro-Ala-Gly-Leu-Ala-Ala-Propranolol 

(HZ34) 

AQ-Space-Pro-Ala-Gly-Leu-Ala-Ala-OH HZ33 (150 mg, 0.19 mmol) was 
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dissolved in 60 ml DMF, propranolol hydrochloride (61 mg, 0.21 mmol), TBTU 

(65.8 mg, 0.21 mmol), HOBt (31.3 mg, 0.21 mmol), and DIPEA (0.742 g/ml, 107 

µl, 0.21 mmol) were added to the solution and left to react at RT for 4 hour. The 

crude product (Rf 0.6, dichloromethane-methanol 9:1) was extracted with 

dichloromethane/water, dichloromethane/aqueous citric acid, and 

dichloromethane/aqueous sodium bicarbonate.  The organic layers were 

combined, dried by anhydrous sodium sulphate, evaporated to a low volume and 

purified by column chromatography (2.1 cm × 11 cm) using dichloromethane 

ethanol 10:1 eluting solvent. The pure product fractions were combined, filtered 

and evaporated to dryness by rotational evaporator. The red solid product was 

precipitated in diethyl ether and the mixture was filtered, dried in a desiccator 

and collected. Yield: 24 mg, 12%. 

 

ESMS (+): 1069 m/z 100% (M+Na)+ 

 

1.7.2.19 Synthesis of Fmoc-GABA-[Propyl-spacer]-AQ (HZ35) 

The AQ-propyl spacer NU: UB 197 (1500 mg, 5.36 mmol) was dissolved in 50 ml 

DMF, Fmoc-γaminobutyric acid (2100 mg, 6.4 mmol), TBTU (2100 mg, 6.4 

mmol), HOBt (984 mg, 6.4 mmol) and DIPEA (0.742 g/ml, 3.4 ml, 10.7 mmol) 

were added to the solution and reacted at RT for 1 hour. The crude product (Rf 

0.64, dichloromethane-methanol 9:1) solution was poured into water to get red 

solid precipitate. Further purification was done by column chromatography 

(dichloromethane-methanol 10:1). The pure fractions were combined, filtered 

and poured into an evaporating basin. Yield: 2880 mg. 91%. 

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.7-1.85 (2H, m, AQ-NH-CH2-CH2); 

2.05-2.15 (2H, m, NHCO-CH2-CH2); 2.9-3.05 (2H, m, NHCO-CH2); 3.1-3.45 (7H, 
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m, NH-Fmoc, AQ-NH-CH2-CH2-CH2 and NHCO-CH2-CH2-CH2); 4.17-4.25 [1H, t, 

H-9 (Fmoc)]; 4.25-4.33 [2H, d, CH2 (Fmoc)]; 7.2-7.48 [(6H, m, unresolved, H-3 

(AQ), NHCO, H-1, H-2, H-7 and H-8 (Fmoc)]; 7.6-7.72 [(3H, m, H-4 (AQ), H-4 

and H-5 (Fmoc)]; 7.8-7.98 [(4H, m, H-6 and H-7 (AQ), H-3 and H-6 (Fmoc)]; 

8.1-8.17 (1H, m, H-8 AQ); 8.17-8.25 (1H, m, H-5 AQ); 9.73 (1H, t, AQ-NH) 

 

1.7.2.20 Synthesis of H-GABA-[Propyl-spacer]-AQ (HZ36) 

Fmoc-GABA-[Propyl-spacer]-AQ HZ35 (1100 mg, 1.9 mmol) was suspended in 

20ml of 20% piperidine in DMF at RT for 1.5 hours. The crude product (Rf 0.14, 

butanol-acetic acid-water 15:4:1) was extracted with dichloromethane and water. 

The organic layers were combined, dried by sodium sulfate, evaporated to a 

small volume and added with diethyl ether. The red precipitate was collected in 

vacuum. Yield: 400 mg, 59%. 

 

1.7.2.21 Synthesis of Boc-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ37) 

H-GABA-[Propyl-spacer]-AQ HZ36 (400 mg, 1.1 mmol) was reacted with 

Boc-Leu-Pro-OH (396 mg, 1.2 mmol) in DMF by addition of the reagents TBTU 

(387 mg, 1.2 mmol), HOBt (184 mg, 1.2 mmol), and DIPEA (0.742 g/ml, 629 µl, 

3.3 mmol). The reaction had completed in 1 hour 20 min by checking the TLC (Rf 

0.6, dichloromethane methanol 5:1). The reaction solution was extracted by 

dichloromethane and water. The crude product was then purified by column 

chromatography (3.2 cm × 15.5 cm). The eluting solvent system 

dichloromethane to methanol 12:1 was used. The appropriate fractions were 

combined and dried in the round bottomed flask for the next de-Boc reaction. 

 

1.7.2.22 Synthesis of H-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt (HZ38) 

TFA was added to the flask containing Boc-Leu-Pro-GABA-[Propyl-spacer]-AQ 
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(HZ37) until all solid dissolved. After 40 min, the reaction completed (Rf 0.2, 

dichloromethane methanol 9:1). TFA was then evaporated off by using the rotary 

evaporator. Solid product was precipitated in diethyl ether. Yield: 637 mg, 92%. 

 

1.7.2.23 Synthesis of Boc-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ 

(HZ39) 

H-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt HZ38 (600 mg, 0.87 mmol) and 

Boc-Ala-Gly-OSu (329 mg, 0.96 mmol) were dissolved in DMF with adding 

DIPEA (0.742 g/ml, 303 µl, 1.74 mmol). After 5 hours, the TLC (Rf 0.56, 

dichloromethane methanol 9:1) showed the reaction had completed. The 

solution was extracted by dichloromethane and water. Further purification was 

performed by column chromatography (3.2 cm × 13.3 cm) using 

dichloromethane-methanol 12:1 solvent system. The appropriate fractions were 

combined, dried (using anhydrous sodium sulphate), filtered, and evaporated to 

dryness for the next reaction. 

 

1.7.2.24 Synthesis of H-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA 

salt (HZ40) 

TFA was added to the flask of Boc-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ 

(HZ39) until all solids were dissolved. The reaction completed in 45 min by 

checking the TLC (Rf 0.4, dichloromethane methanol 9:1). TFA was evaporated 

off and about 6 drops of ethanol was added to the sticky solution by pipetting. 

50ml of diethyl ether was then transferred to the flask. The flask was cooled in 

the fridge overnight. The solid precipitate in diethyl ether was collected. Yield: 

512 mg, 72%.  

ESMS (+): 704 m/z 100% (M-CO2CF3)+ 
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1.7.2.25 Synthesis of Boc-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ 

(HZ41) 

H-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt HZ40 (500 mg, 0.61 

mmol) was reacted with Boc-Pro-OH (145 mg, 0.67 mmol) in DMF followed by 

the addition of TBTU (216 mg, 0.67 mmol), HOBt (103 mg, 0.67 mmol), and 

DIPEA (0.742 g/ml, 351 µl, 2 mmol). The reaction completed in 1 hour by 

checking the TLC (Rf 0.6, dichloromethane methanol 9:1). After extraction by 

dichloromethane and water, column chromatography (3.2 cm × 12 cm) was 

performed for product purification. The appropriate fractions were combined, 

filtered and evaporated to dryness and ready for the de-Boc reaction. 

 

1.7.2.26 Synthesis of H-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ 

TFA salt (HZ42) 

TFA was added to dissolve 

Boc-Pro-Ala-Gly-Leu-Pro-GABA-spacer-anthraquinone (HZ41) in a round 

bottomed flask. The reaction was complete in 45 min monitored by the TLC (Rf 

0.3, dichloromethane-methanol 9:1). The solution was then evaporated to 

dryness by using the rotary evaporator. A few drops of ethanol and diethyl ether 

(70 ml) were added to the flask. The red solid precipitate was collected by 

filtration and dried in a vacuum desiccator. Yield: 489 mg, 88%. 

ESMS (+): 801 m/z 100% (M-CO2CF3)+ 

 

1.7.2.27 Synthesis of FITC-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ 

(HZ43) 

H-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt HZ42 (100mg, 0.11 

mmol) and FITC (38.3 mg, 0.1 mmol) were dissolved in 5ml DMF, followed by 

the addition of DIPEA (0.742 g/ml, 38µl, 0.22 mmol). The reaction was left to 
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react at RT overnight. The solution was poured into water to get orange 

precipitate. The crude product (Rf 0.46, dichloromethane-methanol 6:1) was 

purified by column chromatography using the eluting solvent 

dichloromethane-methanol 9:1. The pure fractions were combined, filtered and 

evaporated to dryness. The solid product was scratched off the flask and 

collected. Yield: 12.5 mg, 9%. 

ESMS (-): 1188 m/z 100% (M-H)- 

 

1.7.2.28 Synthesis of AQ-[Propyl-spacer]-Pro-Ala-Gly-Leu-Ala-OPFP 

(HZ44) 

AQ-Spacer--Pro-Ala-Gly-Leu-Ala-Ala-OH HZ33 (100 mg, 0,12 mmol) was 

reacted with PFP (50.3mg, 0.3 mmol), followed by the addition of DCC (61.4 mg, 

0.3 mmol) and DMAP (30 mg, 0.24 mmol) in 20ml DMF. The reaction mixture 

was stirred at RT for 7 hours. The precipitate DCU was filtered off. The crude 

product (Rf 0.64, dichloromethane-methanol 9:1) was kept in dichloromethane 

for the next reaction without further purification. 

 

1.7.2.29 Synthesis of AQ-[Propyl-spacer]-Pro-Ala-Gly-Leu-Ala-ethyl 

piperidine-3-carboxylate (HZ45) 

(R)-Ethyl piperidine-3-carboxylate (29.5 mg, 0.19 mmol) and DIPEA (0.742 g/ml, 

32.6 µl, and 0.19 mmol) were added to the 

AQ-[Propyl-spacer]-Pro-Ala-Gly-Leu-Ala-OPFP HZ44 (100 mg, 0.124 mmol) in 

dichloromethane. The reaction was completed in 2.5 hours by checking the TLC 

(Rf 0.27, dichloromethane-ethyl acetate-ethanol 7:2:1). The solution was washed 

with water and aqueous sodium bicarbonate. The dichloromethane layers were 

combined, dried by sodium sulfate, and evaporated to a small volume for column 

chromatography (dichloromethane-ethyl acetate-ethanol 7:2:1). The pure 
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fractions were combined, filtered and transferred into an evaporating basin. Yield: 

34.8 mg, 30%. 

ESMS (+): 967 m/z 100% (M+Na)+, 983 m/z 100% (M+K)+ 

 

1.7.2.30 Synthesis of 

Succinyl-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ46) 

H-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt HZ42 (200mg, 0.22 

mmol) and succinic anhydride (24 mg, 0.24 mmol) were dissolved in DMF (3 ml), 

followed by the addition of DIPEA (0.742 g/ml, 80 µl, 0.46 mmol). After 4 h, the 

reaction was completed. The crude product (Rf 0.48, dichloromethane-methanol 

4:1) was extracted with dichloromethane and water. Column chromatography 

(dichloromethane-methanol 4:1) was performed for further purification. The 

product fractions were combined, filtered and evaporated to dryness by the 

rotary evaporator. The red solid was added with 50 ml diethyl in the round 

bottomed flask to precipitate the product. The mixture was cooled at 5 °C 

overnight, filtered, dried in the desiccator, and collected. Yield: 107 mg, 55%. 

 

1.7.2.31 Synthesis of 

Podophyllotoxin-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ (HZ47) 

Succinyl-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ HZ46 (80 mg, 0.09 

mmol) was dissolved in DMF (1 ml) and acetonitrile (2 ml), followed by the 

addition of podophyllotoxin (40.5 mg, 0.1 mmol), TEA (26 µl, 0.19 mmol) and 

TBTU (31.4 mg, 0.19 mmol), and reacted at RT for 3 hours. Acetonitrile was 

evaporated off first. The crude product (Rf 0.65, dichloromethane-methanol 6:1) 

in DMF was extracted with dichloromethane and water. The organic layers were 

combined, dried by anhydrous sodium sulphate, evaporated to a small volume 

for column chromatography. The eluting solvent dichloromethane-ethyl 
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acetate-methanol 7:2:1 was used. The product fractions were combined, filtered 

and evaporated to dryness in an evaporating basin. Yield: 16.3 mg, 14%.  

ESMS (+): 1321 m/z 45% (M+Na)+, 

 

1.7.2.32 Synthesis of Fmoc-Pro-Ala-Gly-Nva-Pro-Resin (HZ51) 

H-Pro-2Cl-Trt resin (1 g, 0.84 mmol/g) was used for the SPPS. The pentapeptide 

(Fmoc-Pro-Ala-Gly-Nva-Pro-OH) was synthesised using the same method as 

Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ31). About 23% of the resin (HZ51) was 

transferred into another resin for the synthesis of HZ52. The rest of 77% resin 

was treated with 5% TFA in dichloromethane. The cleavage process was done 

as same as HZ31 synthesis. The white product was precipitated in diethyl ether, 

filtered, dried in a desiccator and collected. Yield: 233 mg, 42%.     

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.2-1.4 [6H, m, CH3-CH2-CH2 (Nva) 

and CH3-CH (Ala)]; 1.4-1.68 [4H, m, 2×CH3-CH2-CH2 (Nva)]; 1.7-2.03 [4H, m, 

2×β-CH2 (Pro)]; 2.03-2.3 [4H, m, 2×γ-CH2 (Pro)]; 3.32-3.57 [2H, m, δ-CH2 (Pro)]; 

3.6-3.8 [4H, m, 2×CH2 (Gly)]; 3.9-4.32 [5H, m, CH2-(Fmoc), CH (Nva) and α-CH 

(Pro)]; 4.32-4.55 [2H, m, CH (Ala) and α-CH (Fmoc)]; 7.28-7.48 [4H, m, H-1, H-2, 

H-7 and H-8 (Fmoc)]; 7.6-7.7 [2H, m, H-4 and H-5 (Fmoc)]; 7.85-7.93 [2H, t, H-3 

and H-6 (Fmoc)]; 8.07 [1H, t, CONH (Gly)]; 8.18 [(1H, d, CONH (Ala)]; 8.34 [(1H, 

d, CONH (Nva)]; 

 

1.7.2.33 Synthesis of AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OH (HZ52) 

Piperidine (15 ml, 20%) in DMF was added to Fmoc-Pro-Ala-Gly-Nva-Pro-Resin 

HZ51 (23%, 0.19 mmol) on resin. The vessel was shaken for 20 min (3 times, 5 

ml each time). The resin was washed 3 times with DMF for the next coupling 

reaction with TL12. TL12 (65 mg, 1 equivalent), TBTU (59 mg, 0.19 mmol), HOBt 
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(28.2mg, 0.19 mmol), and DIPEA (67.5 µl, 0.38 mmol, 0.742 g/ml) were 

dissolved in DMF (8 ml), the solution was added to the de-Fmoc HZ51 resin, and 

shaken for 1 h. The remaining solution in the vessel was drained off. Another 

same amount of reagents in DMF was added to the resin and shaken for 1 hour. 

The resin was washed with DMF (×3) and dichloromethane (×3).  

25 ml of 5% TFA in dichloromethane was prepared. Each time 3-4ml of the stock 

solution was added to the resin and shaken for 8-10 min. All fractions were kept 

in different beakers for TLC (Rf 0.36, dichloromethane-methanol 9:1) test. The 

resin was washed with dichloromethane (×3). All filtrates and fractions were 

combined, evaporated to dryness, precipitated in diethyl ether and collected. 

Yield: 143 mg, 98%. 

ESMS (-): 755 m/z (100%) (M-H)- 

 

1.7.2.34 Synthesis of AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OPFP (HZ53) 

AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OH HZ52 (130 mg, 0.17 mmol), PFP (34.8 mg, 

0.19 mmol), DCC (39 mg, 0.19 mmol), and DMAP (21 mg, 0.19 mmol) were 

dissolved in dichloromethane (10 ml) and refluxed on 40°C water bath for 30 h. 

The crude product (Rf 0.53, chloroform-methanol 6:1) was extracted with 

chloroform and water. The organic layers were combined, dried by anhydrous 

sodium sulphate, and evaporated to dryness. The solid product was kept in the 

round bottomed flask for the next reaction with baclofen. 

 

1.7.2.35 Synthesis of AQ-Spacer-Pro-Ala-Gly-Nva-Pro-Baclofen (HZ54) 

The flask which contained pure AQ-Spacer-Pro-Ala-Gly-Nva-Pro-OPFP HZ53 

solid (assumed 0.17 mmol) was added with baclofen (36.7 mg, 0.17 mmol), 

DIPEA (60 µl, 0.34 mmol, 0.742 g/ml) in dichloromethane (15 ml). The mixture 

was stirred at RT for 40 h. The DCU precipitate was filtered off. The crude 
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product (Rf 0.46, dichloromethane-methanol 6:1) was purified by column 

chromatography using the eluting solvent dichloromethane-methanol 9:1. The 

product was still not pure and further purification was needed. Thick TLC plate 

(dichloromethane-methanol 6:1) was used. The product layer was scratched off 

the plate and collected by filtration and dried in an evaporating basin. Yield: 4 mg, 

2%. 

ESMS (-): 950 m/z 45% (M-H)- 

 

1.7.2.36 Synthesis of 

5(6)-Carboxyfluorescein-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ 

(HZ57) 

5(6)-Carboxyfluorescein (62 mg, 0.16 mmol) was reacted with 

H-Pro-Ala-Gly-Leu-Pro-GABA-[Propyl-spacer]-AQ TFA salt HZ42 (150 mg, 0.16 

mmol) in DMF (8 ml), followed by the addition of PyBOP (102.3 mg, 0.2 mmol) 

and DIPEA (91 µl, 0.51 mmol, 0.742 g/ml) to the solution, and reacted with stir at 

RT for 1 hour. The crude product (Rf 0.37, dichloromethane-methanol 5:1) was 

extracted with dichloromethane and water. The organic layers were combined, 

dried by sodium sulfate and evaporated to a small volume. Further purification 

was done by column chromatography using the eluting solvent 

dichloromethane-methanol 9:1. The pure product fractions were combined, 

filtered, and evaporated to dryness in an evaporating basin at RT. Yield: 56.6 mg, 

31%. 

ESMS (-): 1159 m/z 100% (M+H)+ 
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Chapter 2. Baclofen Based Prodrugs 

2.1 Abstract 

Gamma aminobutyric acids (GABA) are found to play an inhibitory role in most 

cancers, but the activation of GABAB receptor has been reported to have 

contradictory effects on the tumour progression. Baclofen, a GABAB receptor 

agonist, is demonstrated to reduce the incidence of some cancers. In this 

chapter, a series of baclofen based prodrugs and cyclic baclofen prodrugs have 

been designed and synthesised with the potential to cross the BBB and 

eventually target brain tumours.  

 

2.2  Introduction 

2.2.1 GABA 

GABA is the main inhibitory neurotransmitter throughout the human central 

nervous system (CNS). It functions via activation of GABAA and GABAB 

receptors. Many studies suggest that GABA is a tumour signalling amino acid in 

the brain and periphery. In most cases, the levels of GABA content and GAD 

activity are increased in human tumours (for a review, see Young and Bordey, 

2009).  

Both GABAA and GABAB receptors were found to be overexpressed in different 

tumours which make them important therapeutic targets for cancer treatment. 

The GABAB receptors were considered first in this research (described briefly 

below).  

 

2.2.2 GABAB receptor and tumours 

The GABAB receptor is composed of two subunits GABABR1 and GABABR2. 
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The extracellular domain (ECD) of GABAB1 is capable of binding GABA, agonist 

and antagonist (Jiang et al., 2012). Growing evidence showed that GABAB 

receptors are involved in tumour proliferation and migration of tumour cells.  

Both GABABR1 and GABABR2 were found to be commonly expressed in 

human hepatocellular carcinoma (HCC) by RT-PCR (Wang et al., 2008). The 

expression level of GABAB receptors were upregulated in human colon cancer 

cell lines (Thaker et al., 2005) and breast cancer (Jiang et al., 2012). Zhu et al., 

(2004) detected that in gastric cancer tissue, not only the level of GBABB 

receptors is higher than normal tissues but also there are majority of GBABB 

receptors distributed on the surface of cancer cells. 

Schuller et al., (2007) first reported that GABAB receptors are potent targets for 

human pancreatic cancer therapy. The Western blotting and cell migration 

assays in pancreatic ductal adenocarcinoma cell line PANC-1 and BXPC-3 

showed that the migration of cells was significantly blocked by GABA and 

baclofen. The base level DNA synthesis was reduced in two cell lines after 

incubation with GABA and baclofen by BrdU incorporation assays. GABA and 

baclofen also inhibited intracellular cAMP signalling by immunoassays. All the 

data suggested that stimulation of GABAB receptors may have significant 

inhibitory effects on the migration of pancreatic tumour cells. 

By immunohistochemistry in 70 human thyroid tumour samples, GABABR2 was 

detected to be differentially expressed between normal, benign, and malignant 

thyroid tissues. The normal tissues have undetectable expression. Interestingly, 

the malignant adenomas have the highest expression and benign tumours 

display an intermediate level. The development of thyroid cancer is thought to be 

a multi-step process and the high expression of GABABR2 in thyroid adenomas 

suggests that GABAB receptors are involved in early stages of thyroid 
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carcinogenesis (Roberts et al., 2009) 

The National Cancer Institute (NCI) data base provides the mRNA level of 

GABAB receptors expression in about 60 different cancer cell lines. According to 

the data, some cell lines of non-small cell lung cancer (HOP-92 and NCI-H226), 

CNS cancer (SF-268), Melanoma and breast cancer (MDA-MB-231/ATCC) have 

the high mRNA level of GABAB receptors (Ross et al., 2000). The breast cancer 

cell line MCF-7 will be considered in this project for biological testing. 

However, there are fewer studies examining the function of GABAB receptors on 

tumour cell proliferation than GABAA receptors. 

 

2.2.3 Baclofen and tumours 

Baclofen is an agonist of GABAB receptors. It is a derivative of gamma-butyric 

acid (Figure 25). It is also a licensed drug for the treatment of spasticity (Nielsen 

et al., 2002). 

 

Figure 25. Chemical Structure of Baclofen 

 

Several studies revealed that activation of GABAB receptors by baclofen plays 

an inhibitory role in most human tumour cell types such as human pancreatic 
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(Schuller et al., 2008), lung, liver, breast (Azuma et al., 2003), colon (Joseph et 

al., 2002), and gastric tumours (Tatsuta et al., 1990, 1992) which makes it a 

promising drug for tumour chemotherapy.  

Although the mechanism of baclofen inhibiting tumour cells remains to be 

determined, there is evidence implied that GABAB receptor activation may 

induce the down-regulation of intracellular cyclic adenosine monophosphate 

(cAMP) and Increase MMP production (Loderwyks et al., 2011). 

In contrast, baclofen showed no inhibitory effect on human prostate cancer cells 

and even promote the invasion (Abdul et al., 2008, Jiang et al., 2012). 
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2.3 Results and discussion 

2.3.1 Baclofen prodrug design strategy  

To increase the drug selectivity, tumour activated prodrug strategies in cancer 

chemotherapy represent a promising approach (Rautio et al. 2008). The 

prodrugs should be less toxic before activation by tumours. 

 

Figure 26. General concept of baclofen prodrug design 

 

Figure 26 shows the general concept of baclofen prodrug design. The baclofen 

prodrug for brain tumour therapy is designed to have an anthraquinone capping 

group and a linker connected to baclofen. Because baclofen itself is a polar drug 

and can poorly absorb across the cell membrane, the designed prodrugs here 

will increase the lipophilicity and more likely to cross the BBB (Blood Brain 

Barrier) and target the brain tumour. The acidic environment in tumours will 

cause the amino peptide linker to be hydrolysed and release the active agent 
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baclofen. 

The uncyclised baclofen prodrugs can be converted into the cyclic baclofen 

prodrugs using the dehydrating agent acetic anhydride (Abdel-Hafez and 

Abdel-Wahab, 2008). The cyclic analogues of baclofen should have greater 

lipophilic properties and the prodrug permeation through the BBB will be 

improved. 

 

2.3.2 Synthesis of AQ-Ahx-Baclofen (HZ68) 

1-Chloroanthraquinone was used as the starting material. It was reacted with the 

6-aminohexanoic acid using the strong base NaOH in DMSO to form the 

anthraquinone spacer conjugate (HZ66) as shown in Scheme 24. 

 

*This synthesis scheme is continued on the next page 
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Reagents and Conditions: (a) 6-aminohexanoic acid, NaOH, DMSO, 95°C (b) 

pentafluorophenol, DCC, DMAP, dichloromethane; (c) baclofen, NaOH(aq), DMF 

Scheme 24. Outline of Baclofen Prodrug (HZ68) Synthesis 

 

The acid end of AQ-Ahx-OH (HZ66) was converted into a pentafluorophenolate 

ester (OPFP) before adding the baclofen. The solubility of baclofen is very low in 

both DMF and DMSO. For the coupling of baclofen, firstly NaOH was dissolved 

by a drop of water in a round bottomed flask. Secondly, baclofen in DMF was 

added to the flask. The mixture was heated on the hot water bath (95ºC). 

Another flask with AQ-Ahx-OPFP (HZ67) in DMF was also put on same water 

bath. The baclofen mixture was slowly added to HZ67 drop wise. The reaction 

was completed in 5 days by checking the TLC The crude product was extracted 

and purified by column chromatography. The appropriate fractions were 

combined, filtered and collected in diethyl ether. 

The final product AQ-Ahx-Baclofen (HZ68) was characterized by NMR and its 

mass spectrum (M+H)+ which has a strong signal at m/z 533 corresponding to a 

molecular mass of 532 (Figure 27). The 1H NMR spectrum had the amino proton 

at C-1 of the anthraquinone group that gave a triplet signal at 9.65 ppm. The 

methylene protons of the hexanoic spacer were identifiable between 1.4 and 3.4 

ppm. The anthraquinone protons were fully assigned between 7.42 and 8.25 
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ppm. Signals for H-2, H-3, H-5 and H-6 of the chlorobenzene group were found 

from 7.2 to 7.38 ppm. 

 

 

 

Figure 27. The ESI (+) Mass spectrum of prodrug AQ-Ahx-Baclofen (HZ68) 

 

2.3.3 Synthesis of AQ-Ahx-cyclic Baclofen (HZ69) 

The baclofen prodrug (HZ68) was converted to the cyclic baclofen prodrug 

AQ-Ahx-cyclic Baclofen (HZ69) using the dehydrating agent acetic anhydride 

(Scheme 25). The reaction was heated on the water bath and completed in 1 
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hour by checking the TLC The reaction solution was cooled at RT and poured 

into distilled water. The precipitated compound was collected. The cyclic 

baclofen prodrug is expected to have stronger lipophilic properties and enhance 

the permeation through the BBB with improved therapeutic potency. 

 

Reagents and Conditions: (a) (Ac)2O reflux 

Scheme 25. Outline of Baclofen Prodrug (HZ69) Synthesis 

 

The structure of AQ-Ahx-cyclic Baclofen (HZ69) was confirmed by NMR and its 

ESI (+) Mass spectrum which gave a signal at m/z 515 for the molecular mass of 

514. (Figure 28) The lactone type structure of HZ69 compound exhibited a 

multiplet signal at 3.45-3.65 ppm assigned to the methine proton (H-5). The 

signals at 2.7-2.84 ppm and 3.7-3.8 ppm recognised to be H-6 (O-CO-CH2) and 

H-4 (C=N-CH2), respectively. The protons of chlorobenzene were also found 

between 7.15 and 7.4 ppm. 
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Figure 28. ESI (+) Mass spectrum of prodrug AQ-Ahx-cyclic Baclofen (HZ69) 

 

2.3.4 Synthesis of AQ-Ava-cyclic Baclofen (HZ75) 

The prodrug AQ-Ava-cyclic Baclofen (HZ75) used 5-aminopentanoic acid as the 

spacer which is shorter than the prodrug AQ-Ahx-cyclic Baclofen (HZ69). The 

synthesis process was the same as the prodrug HZ69 (Scheme 25). The 

prodrugs with different spacers were supposed to have varying solubility 

properties. 
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Reagents and Conditions: (a)6-aminohexanoic acid, NaOH, DMSO, 95°C (b)PFP, DCC, 
DMAP, dichloromethane (c)baclofen, NaOH(aq), DMF (d)(AC)2O reflux 
Scheme 26. Outline of Baclofen Prodrug (HZ75) Synthesis 
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The prodrug AQ-Ava-cyclic Baclofen (HZ75) chemical structure was confirmed 

by its 1H NMR spectrum. The lactone type structure of HZ75 compound gave a 

multiplet signal at 3.5-3.67 ppm assigned to the methine proton (H-5). The 

signals at 2.72-3.15 ppm and 3.7-4.38 ppm recognised to be H-6 (O-CO-CH2) 

and H-4 (C=N-CH2), respectively. The p-substituted pattern of aromatic protons 

of the phenyl ring together with the anthraquinone protons showed signals from 

7.15-7.22 ppm and from 7.3 to 8.33 ppm. Furthermore, the mass spectrum 

(M+H)+ showed a signal at m/z 501 corresponding to the molecular mass of 500 

for prodrug HZ75 (Figure 29), together with m/z 501 for (M+Na)+. 

 

 

Figure 29. ESI (+) Mass spectrum of prodrug AQ-Ava-cyclic Baclofen (HZ75) 
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2.3.5 Synthesis of AQ-GABA-cyclic Baclofen (HZ79) 

Gamma-Aminobutyric acid was used to build up the prodrug AQ-GABA-cyclic 

Baclofen (HZ79) Scheme 27. For the chemical structure of HZ79, it has a 

shorter spacer in the middle than AQ-Ava-cyclic Baclofen (HZ75) and 

AQ-Ahx-cyclic Baclofen (HZ69).    

 

 

 

*This synthesis scheme is continued on the next page 
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Reagents and Conditions: (a) Gamma-aminobutyric acid, NaOH, DMSO, 95°C (b) 

pentafluorophenol, DCC, DMAP, dichloromethane; (c) baclofen, NaOH(aq), DMF; (d) (AC)2O 

Scheme 27. Outline of Baclofen Prodrug (HZ79) Synthesis 
 

The final compound AQ-GABA-cyclic Baclofen (HZ79) was characterized by its 

mass spectrum (M+H)+ which showed a signal at m/z 487, corresponding to a 

relative molecular mass of 486 Da (Figure 30).  
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Figure 30. ESI (+) Mass spectrum of prodrug AQ-GABA-cyclic Baclofen (HZ79) 

 

2.3.6 Synthesis of AQ-[PEG Spacer]-Succinyl-Baclofen (HZ82) 

The starting material for the synthesis of prodrug AQ-[PEG 

Spacer]-Succinyl-Baclofen (HZ82) as shown in Scheme 28 was the 

anthraquinone derivative (NU:UB 432). This compound which consists of 

anthraquinone and polyethylene glycol (PEG) has been used extensively in 

previous research within this laboratory, particularly in the design of fluorogenic 

probes (Ding, 2014). The anthraquinone-PEG spacer (NU:UB 432) was reacted 
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with succinic anhydride in DMF by the addition of DIPEA to the solution (Scheme 

5). The reaction was completed overnight. The crude product AQ-[PEG 

Spacer]-Succinyl (HZ80) was purified by solvent extraction and silica gel column 

chromatography. The pure HZ80 was collected in diethyl ether. DCC and DMAP 

were used as standard regents for the addition of PFP to the AQ-[PEG 

Spacer]-Succinyl (HZ80). The reaction mixture was suspended in 

dichloromethane. The byprodruct dicyclohexylurea (DCU) was filtered off.  

 

 

 

*This synthesis scheme is continued on the next page 
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Reagents and Conditions: (a) succinic anydride, DIPEA, DMF; (b) pentafluorophenol, DCC, 

DMAP, dichloromethane; (c) baclofen, NaOH(aq), DMF 

Scheme 28. Outline of Baclofen Prodrug (HZ82) Synthesis 

 

Baclofen was finally coupled to the AQ-[PEG Spacer]-Succinyl-OPFP (HZ81). 

Two round bottomed flask were used. One of them had baclofen, NaOH and 

water in DMF. Another flask had the AQ-[PEG Spacer]-Succinyl-OPFP (HZ81) in 

DMF. Both flasks were put on a hot water bath. The baclofen mixture in flask one 

was added to the HZ81 flask drop wise. The reaction was very slow. By the TLC 

test, the reaction had mostly completed in 1 week. The mixture was extracted 

and purified by column chromatography. 

Prodrug AQ-[PEG Spacer]-Succinyl-Baclofen (HZ82) was characterized by NMR 

and its electrospray mass spectrum which gave a signal at m/z 650 for (M+H)+ 

corresponding to a molecular mass of 649 (Figure 31). The 1H NMR spectrum 

showed signals between 2.15 and 3.8 ppm were assigned to the methylene 

groups of the PEG spacer. The anthraquinone protons were fully assigned; H-2 
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at 7.2 ppm, H-4 at 7.45 ppm, H-3 at 7.6-7.7 ppm, H-6 and H-7 gave a multiplet at 

7.78-7.95 ppm, H-8 at 8.08-8.15 ppm, H-5 at 8.15-8.25 ppm. The signals at 

7.2-7.37 reflected the chlorobenzene protons of baclofen group.  

 

 

 

Figure 31. ESI (+) Mass spectrum of prodrug AQ-[PEG Spacer]-Succinyl-Baclofen 

(HZ82) 

 

2.3.7 Synthesis of AQ-[PEG Spacer]-Succinyl-cyclic Baclofen (HZ83) 

The baclofen prodrug AQ-[PEG Spacer]-Succinyl-Baclofen (HZ82) was further 

reacted with acetic anhydride to form the lipophilic analogue of baclofen 
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AQ-[PEG Spacer]-Succinyl-cyclic Baclofen HZ83 (Scheme 29). 

 

 

Reagents and Conditions: (a) (Ac)2O 

Scheme 29. Outline of Baclofen Prodrug (HZ83) Synthesis 

 

The final compound AQ-[PEG Spacer]-Succinyl-cyclic Baclofen (HZ83) was 

characterised by NMR and mass spectrometry. The lactone type structure of 

HZ83 compound exhibited a multiplet signal at 3.5-3.7 ppm assigned to the 

methine proton (H-5). The signals at 2.9-3.25 ppm and 3.8-4.25 ppm recognised 

to be H-6 (O-CO-CH2) and H-4 (C=N-CH2), respectively. All of the aromatic 

protons of anthraquinone were successfully assigned; H-2 appeared at 

7.06-7.22 ppm, H-3 and H-4 were found between 7.53-7.68 ppm, H-6 and H-7 at 

7.68-7.85 ppm, H-5 and H-8 at 8.22-8.35 ppm. In the mass spectrum (Figure 32) 

of prodrug HZ83, a signal at 632 m/z was assigned to the ion (M+H)+ confirming 

the molecular mass of 631. 
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Figure 32. ESI (+) Mass spectrum of prodrug AQ-[PEG Spacer]-Succinyl-cyclic Baclofen 

(HZ83) 

 

2.3.8 Synthesis of AQ-[propyl spacer]-Pro-succinyl-Baclofen (HZ86) 

The starting material for the synthesis of prodrug AQ-[propyl 

spacer]-Pro-succinyl-Baclofen (HZ86) (Scheme 30) was the anthraquinone 

D-proline derivative, NU:UB 46. NU:UB 46 is the D-isomer of one of the leading 

members of the NU:UB series of spacer-linkedanthraquinone-amino acid 

conjugates, NU:UB 31. Both NU:UB 31 (L-pro conjugate) and NU:UB 49 (D-pro 

conjugate) were active in vitro against the MAC15A colon adenocarcinoma cell 

line, with IC50 values of 2.5 and 3.5µM, respectively, for the L and D isomers. 

Additionally, NU:UB 31 has broad-spectrum activity in vitro at low micromolar 
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concentrations in panels of human and animal tumour cell lines, including those 

of the NCI 60 cell line anticancer drug screen; NU:UB 31 retains activity in cell 

lines that over-express P-glycoprotein.  It is a dual topoisomerase I and II 

inhibitor and is active in vivo in experimental colon cancer (Mincher et 

al., 2000; Turnbull, 2003). Previously, NU:UB 31 has successfully been 

incorporated into a MMP activated prodrug, EV1-FITC  (Van Valckenborgh et al., 

2005). Here, the D-isomer of NU:UB 31, NU:UB 46, has been conjugated with 

baclofen via a succinate linker to afford a prodrug with dual topoisomerase 

inhibiting cytotoxicity together with potential GABA modulating activity. The 

reactions condition was same as the synthesis of AQ-[PEG 

Spacer]-Succinyl-Baclofen (HZ82). 

 

 

*This synthesis scheme is continued on the next page 
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Reagents and Conditions: (a) succinic anhydride, DIPEA, DMF; (b) pentafluorophenol, DCC, 

DMAP, dichloromethane; (c) baclofen, NaOH(aq), DMF 

Scheme 30. Outline of Baclofen Prodrug (HZ86) Synthesis 

 

The 1H NMR spectrum of AQ-[propyl spacer]-Pro-succinyl-Baclofen (HZ86) 

showed signals between 1.7 and 4.25 were assigned to the methylene groups of 

the propyl and proline spacer. The anthraquinone protons were fully assigned; 

H-2 at 7.05-7.38 ppm, H-3, H-4, H-6 and H-7 gave a multiplet at 7.7-7.95 ppm, 

H-5 and H-8 gave a quartet between 8.1 and 8.3 ppm. The signals at 7.05-7.38 

reflected the chlorobenzene protons of baclofen group. 

 

The mass spectrum (M+H)+ showed a signal at m/z 673 corresponding to the 

molecular mass of 672 for prodrug HZ86 (Figure 33). 
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Figure 33. ESI (+) Mass spectrum of prodrug AQ-[propyl spacer]-Pro-succinyl-Baclofen 

(HZ86) 

 

2.3.9 Synthesis of AQ-[propyl spacer]-Pro-succinyl-cyclic Baclofen (HZ87) 

The prodrug AQ-[propyl spacer]-Pro-succinyl-Baclofen (HZ86) was converted to 

the cyclic baclofen prodrug AQ-[propyl spacer]-Pro-succinyl-cyclic Baclofen 

(HZ87) using the dehydrating agent acetic anhydride (Scheme 31). 
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Reagents and Conditions: (a) (Ac)2O 

Scheme 31. Outline of Baclofen Prodrug (HZ87) Synthesis 

 

Figure 34 below shows the tumour pH activation of AQ-[propyl 

spacer]-Pro-succinyl-cyclic Baclofen (HZ87). HZ87 has the cyclic baclofen 

indicated by the red colour. The acidic environment of the tumour cells will cause 

the hydrolysis reaction. The cyclic ring will be opened and further hydrolysis to 

break the prodrug and release anthraquinone-D-proline and baclofen. They are 

both anticancer agents. So the cyclic baclofen prodrug AQ-[propyl 

spacer]-Pro-succinyl-cyclic Baclofen (HZ87) is actually a twin drug. 
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Figure 34. Tumour pH (5-6) activation of HZ87 

 

The cyclic baclofen prodrug HZ87 was characterized by NMR and Mass 

spectroscopy. The structure of HZ87 was confirmed by its 1H NMR spectrum.   

Most of the aromatic protons of anthraquinone were successfully assigned; H-3 

and H-4 appeared at 7.5-7.67 ppm, H-6 and H-7 were found between 7.68-7.84 

ppm, H-5 and H-8 at 8.12-8.3 ppm. The protons of chlorobenzene were also 

found between 6.9 and 7.35 ppm. 
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For mass spectrum, a signal at m/z 655 for the mono-cation (M+H)+ confirmed 

the molecular mass of 654 Daltons (Figure 35). 

 

 

Figure 35. ESI (+) Mass spectrum of prodrug 

AQ-[propyl-spacer]-Pro-succinyl-cyclic Baclofen (HZ87) 

 

2.3.10 Lipophilicity test: Determination of the Distribution Coefficient 

Because high lipophilic properties are crucial for the prodrugs to cross the BBB 

the lipophilicity assay was performed. The prodrugs were partitioned between 

octanol and PBS. The Eppendorf tubes were shaken for 24 hours. The Figure 
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36 below is an example of the images of the Eppendorf tubes with prodrugs. The 

top phases are Octanol used to mimic the lipophilic environment. It can be seen 

from the colour difference; all the four compounds have more prodrugs in the 

octanol phase than in the PBS water phase. The concentrations of prodrugs 

present in each layer were determined from the calibration curves and the 

distribution coefficient was calculated using the equation given in [Graph 1~4]. 

Figure 37 is for calculation of distribution coefficient (Leo, Hansch and Elkins, 

1971). 

 

 

 HZ82         HZ83         HZ86         HZ87 

Figure 36. Eppendorf tubes of Lipophilicity test 

 

 

 

Figure 37. Equation of distribution coefficient 
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Graph 1. Calibration curve and distribution coefficient of HZ82 in both Octanol 

and PBS 
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Graph 2. Calibration curve and distribution coefficient of HZ83 in both Octanol 

and PBS 

 

154 



 

 

 

 

Graph 3. Calibration curve and distribution coefficient of HZ86 in both Octanol 

and PBS 
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Graph 4. Calibration curve and distribution coefficient of HZ87 in both Octanol 

and PBS 

 

2.3.11 DNA binding assay 

The DNA binding properties of the prodrugs were tested by using the ethidium 

bromide displacement DNA binding assay. Ethidium bromide is a dye that can 

intercalate into the DNA double helix. The double stranded DNA will be saturated 

by ethidium bromide binding. The fluorescence of the DNA-bound ethidium 

bromide can be measured and by competing with the drug, the intensity should 

decrease with drug concentration and time (Olmsted and Kearns, 1997).  

The binding affinity of each compound was determined by the QE50 and the 

binding constant values (Kapp). QE50 is the mean concentration of compound that 
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causes 50% reduction of initial fluorescence intensity. The binding constant can 

be calculated using the equation: Kapp= (KEB[EB])/[Drug]. The KEB value (1.0 × 

107M-1) is the binding constant of ethidium bromide (Ghosh et al., 2010). 

The compound will has greater binding affinity if QE50 value is smaller and 

binding constant is bigger. The Graphs 5~9 below showed both QE50 value and 

binding constant of tested prodrugs. 

 

 

Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/49.4=0.61×107M-1 

Graph 5. Variation of relative fluorescence intensity with different concentration 

of HZ74 in Tris-HCl buffer 
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Kapp=0.72×107M-1 

Graph 6. Variation of relative fluorescence intensity with different concentration 

of HZ82 in Tris-HCl buffer  
 

 

Kapp=0.75×107M-1 

Graph 7. Variation of relative fluorescence intensity with different concentration 

of HZ83 in Tris-HCl buffer 
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Kapp=0.56×107M-1 

Graph 8. Variation of relative fluorescence intensity with different concentration 

of HZ86 in Tris-HCl buffer 
 

 

Kapp=0.54×107M-1 

Graph 9. Variation of relative fluorescence intensity with different concentration 

of HZ87 in Tris-HCl buffer 
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Drug QE50(µM) Kapp(×107M-1) 

Mitoxantrone 1.7 17.34 

HZ74 49.4 0.61 

HZ82 41.4 0.72 

HZ83 39.8 0.75 

HZ86 53.2 0.56 

HZ87 55.1 0.54 

Table 3. Comparison of drug DNA binding affinity 

 

Mitoxantrone is widely used as a chemotherapeutic drug in the treatment of 

breast cancer, lymphoma and leukaemia. The nuclear DNA was indicated as the 

major target of Mitoxantrone based on numerous studies (Mazerski et al., 1998). 

Mitoxantrone has a planar anthraquinone ring which can intercalate between 

DNA base pairs and its side chains further bind to the phosphate groups of DNA. 

This will cause the DNA condensation and thus inhibits DNA replication. 

Mitoxantrone also shows strong binding affinity to histone proteins besides DNA 

(Hajihassan and Rabbani-Chadegani, 2009). 

The DNA-binding properties of synthesized baclofen based prodrugs were 

investigated. When comparing the results to the well-known anticancer drug 

mitoxantrone, as shown in Table 3 here, the binding constant value of prodrugs 

HZ74 to HZ87 is much smaller than mitoxantrone, which indicates they all have 

low DNA binding affinities.  
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2.4 Conclusion 

Table 4 below shows the synthesised baclofen prodrugs (on the left) and cyclic 

baclofen prodrugs (on the right). The synthesis process was difficult because of 

the poor solubility of baclofen. The reaction of AQ-spacer-OPFP and baclofen 

was very slow (up to 10 days). The prodrug structures were characterised by 

their Mass spectrum, further analysis by NMR was performed. However due to 

the low yield of prodrugs, some them need to be resynthesised in greater 

quantities for full NMR analyses. 

 

 

Table 4. List of synthesised baclofen based prodrugs 

 

Because of the difficulty for prodrugs to pass through the blood brain barrier 

(BBB), the most effective way to make a drug move through a lipophilic barrier is 

to increase its lipophilicity. Lipophilicity assay was conducted to investigate the 
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compound’s ability to transverse the blood–brain barrier. The lipophilicity assay 

proved that the prodrugs tested all have high lipophilic properties. This is crucial 

for the prodrugs to cross the BBB and eventually target the brain tumours. The 

DNA binding results of prodrugs showed relatively low DNA binding affinities 

when comparing them to the anticancer drug mitoxantrone.  
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2.5 Structure Library 

 
6-(9,10-Dioxo-9,10-dihydro-anthracen-1-ylamino)-hexanoic acid  

 
AQ-Ahx-OH (HZ66) 

 

 
6-(9,10-Dioxo-9,10-dihydro-anthracen-1-ylamino)-hexanoic acid pentafluorophenyl ester  

 
AQ-Ahx-OPFP (HZ67) 

 

 
3-(4-Chloro-phenyl)-4-[6-(9,10-dioxo-9,10-dihydro-anthracen-1-ylamino)-hexanoylamino]-butyric acid  

 
AQ-Ahx-Baclofen (HZ68) 

 

 
1-{5-[5-(4-Chloro-phenyl)-7-oxo-4,5,6,7-tetrahydro-[1,3]oxazepin-2-yl]-pentylamino}-anthraquinone  

 
AQ-Ahx-cyclic Baclofen (HZ69) 
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5-(9,10-Dioxo-9,10-dihydro-anthracen-1-ylamino)-pentanoic acid  

 
AQ-Ava-OH (HZ72) 

 

 
5-(9,10-Dioxo-9,10-dihydro-anthracen-1-ylamino)-pentanoic acid pentafluorophenyl ester  

 
AQ-Ava-OPFP (HZ73) 

 

 
3-(4-Chloro-phenyl)-4-[5-(9,10-dioxo-9,10-dihydro-anthracen-1-ylamino)-pentanoylamino]-butyric acid  

 
AQ-Ava-Baclofen (HZ74) 

 

 
1-{4-[5-(4-Chloro-phenyl)-7-oxo-4,5,6,7-tetrahydro-[1,3]oxazepin-2-yl]-butylamino}-anthraquinone  

 
AQ-Ava-cyclic Baclofen (HZ75) 
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AQ-GABA-OH (HZ76) 

 
 

 
 

 
AQ-GABA-OPFP (HZ77) 

 

 
 

 
AQ-GABA-Baclofen (HZ78) 

 

1-{3-[5-(4-Chloro-phenyl)-7-oxo-4,5,6,7-tetrahydro-[1,3]oxazepin-2-yl]-propylamino}-anthraqui
none 

 
AQ-GABA-cyclic Baclofen (HZ79)  
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AQ-[PEG Spacer]-Succinyl (HZ80) 

 

 
N-(2-{2-[2-(9,10-Dioxo-9,10-dihydro-anthracen-1-ylamino)-ethoxy]-ethoxy}-ethyl)-succinamic acid pe

ntafluorophenyl ester  
 

AQ-[PEG Spacer]-Succinyl-OPFP (HZ81)  
 

 

 
 

AQ-[PEG Spacer]-Succinyl-Baclofen (HZ82) 
 

 
3-[5-(4-Chloro-phenyl)-7-oxo-4,5,6,7-tetrahydro-[1,3]oxazepin-2-yl]-N-(2-{2-[2-(9,10-dioxo-9,10-dihy

dro-anthracen-1-ylamino)-ethoxy]-ethoxy}-ethyl)-propionamide 
 

AQ-[PEG Spacer]-Succinyl-cyclic Baclofen (HZ83)  
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AQ-[propyl spacer]-Pro-succinyl (HZ84) 

 

 
 

 
 

AQ-[propyl spacer]-Pro-succinyl-OPFP (HZ85) 
 

 

 
 

AQ-[propyl spacer]-Pro-succinyl-Baclofen (HZ86) 
 

 
 

 
AQ-[propyl spacer]-Pro-succinyl- cyclic Baclofen (HZ87)  
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2.6 Experimental 

2.6.1 DNA binding assay 

Materials for DNA binding assay 

The Tris-HCI buffer (pH7.4) was prepared by dissolving NaCl (25 mM), CaCl2 (1 

mM) and Tris-HCI (10 mM) in distilled water (200 ml). The buffer was stored in 4 

ºC fridge. A stock solution of ethidium bromide 10 mg/ml in distilled water was 

also prepared and stored at 4 ºC for further use. About one centimetre portion of 

calf thymus DNA was dissolved in Tris-HCI buffer (4 ml) at 4 ºC for 24 h. The 

undissolved DNA was filtered off. The concentration of the DNA stock solution 

was measured at 260 nm by using the Beckman Coulter DU800 UV/Vis 

Spectrophotometer. The blank was Tris-HCI buffer (3 ml) in cuvette. The 

unquantified DNA stock solution (200~300 µl) was added to another cuvette and 

diluted with buffer to 3 ml. The ideal absorbance should be between 0.4 and 0.7. 

The absorbance was read three times and the mean value was used to calculate 

the DNA concentration using the Beer-Lambert Law. The test prodrug (1 mg) 

was dissolved in DMSO (1 ml) to make a 1 mg/ml stock solution. 

 

Method for DNA binding assay 

The Perkin Elmer Luminescence Spectrometer LS50B was used to measure the 

DNA-bound ethidium bromide fluorescence intensity.  The solutions were 

added into the 3 ml cuvette by order with different final concentrations: 1) 60 µM 

DNA; 2) 30 µM Ethidium bromide; 3) Tris-HCl buffer up to 3 ml.  

Certain volume of test compound to give the final concentration of 5 µM was 

added into the cuvette. The fluorescence intensity was recorded. After 5 min, 

another same portion of test compound was added to give the final 

concentration of 10 µM. The process was repeated until it reached 50% 
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reduction of the relative fluorescence intensity. 

 

2.6.2 Lipophilicity test 

Materials for lipophilicity test 

One tablet of Phosphate Buffered Saline (PBS) was dissolved in distil water (200 

ml) to give a solution of 0.01 M phosphate, 0.0027 M KCl and 0.137 M NaCl. 

PBS buffer (100 ml) and octanol solutions (100 ml) were transferred into a 

separating funnel and shaken for 24 h. The two layers of octanol-saturated PBS 

and PBS-saturated octanol solutions were then separated.  

 

Method for lipophilicity test 

1mg/ml of each compound in DMSO (1 ml) was prepared for creating the 

calibration curve. A series of standard solutions with concentration of 20 µM, 30 

µM, 40 µM, 50 µM, 60 µM and 70 µM were prepared in cuvettes. The 

absorbance of the solutions was measured. The value should be from 0 to 0.7. 

Both octanol and PBS calibration curves were prepared. Calibration curves were 

used to determine the concentration of drugs in two phases.   

The test compound (0.5 mg) was put into a 2 ml eppendorf tube. 

Octanol-saturated PBS (900 µl) and PBS-saturated octanol (900 µl) were added. 

The tube was shaken for 24 h at RT. 

The tube was centrifuged for 2 min to separate the solutions. The upper octanol 

layer (100 µl or 200 µl) was carefully removed by pipetting and transferred into a 

3 ml cuvette and made up to 3 ml by PBS-saturated octanol or octanol-saturated 

PBS. By measuring the absorbance, the concentration of drug can be 

determined. The distribution coefficient was calculated.  
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2.6.3 Synthesis of AQ-Ahx-OH (HZ66) 

1-Choloroanthraquinone (3 g, 12 mmol) was reacted with 6-aminohexanoic acid 

(3.24 g, 24 mmol) by the addition of NaOH (1.5 g, 36 mmol) in 70 ml of DMSO. 

The reaction was heated on a 100ºC water bath for 8 h. The solution was cooled 

to RT and poured into 250 ml of acidic water (HCI was added). The precipitate 

red compound was collected by filtration. The dried crude product (Rf 0.31, 

dichloromethane-methanol 9:1) was purified by column chromatography using 

the eluting solvent chloroform and methanol 10:1. The pure product fractions 

were combined, filtered and evaporated. The red solid compound was collected 

from diethyl ether (60 ml). Yield: 558 mg, 16.6%. 

 

2.6.4 Synthesis of AQ-Ahx-OPFP (HZ67) 

The starting compound AQ-Ahx-OH HZ66 (400 mg, 1.19 mmol) and PFP (327 

mg, 1.78 mmol) were dissolved in 50 ml of dichloromethane, followed by the 

addition of coupling reagents DCC (490 mg, 2.38 mmol) and DMAP (435 mg, 

3.57 mmol). The reaction completed in 4 h by checking the TLC (Rf 0.73, 

dichloromethane-ethyl acetate 5:1). DCU precipitate was filtered off. The product 

was purified by column chromatography using dichloromethane and ethyl 

acetate 6:1. The product fractions were combined, filtered and evaporated to 

dryness. Hexane (40 ml) was used to precipitate the solid compound. Yield: 245 

mg, 41%. 

 

1H NMR spectrum (CDCl3, 300 MHz) δ: 1.58-1.7 (2H, m, AQ-NH-CH2-CH2-CH2); 

1.8-1.98 (4H, m, AQ-NH-CH2-CH2-CH2-CH2); 2.75 (2H, t, 

AQ-NH-CH2-CH2-CH2-CH2-CH2); 3.4 (2H, q, AQ-NH-CH2); 7.1 (1H, d, H-2); 

7.52-7.63 (2H, m, H-3 and H-4); 7.7-7.8 (2H, m, H-6 and H-7); 8.28 (2H, m, H-5 

and H-8); 9.8 (1H, t, AQ-NH) 
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2.6.5 Synthesis of AQ-Ahx-Baclofen (HZ68) 

Two round bottomed flasks were used. One of them had AQ-Ahx-OPFP HZ67 

(200 mg, 0.4 mmol) in 10 ml of DMF. The other one had NaOH (14 mg, 0.36 

mmol), H2O (about 20 µl) and baclofen (94 mg, 0.44 mmol) in DMF (10 ml). The 

two flasks were both refluxed on the hot water bath (90ºC). The baclofen solution 

was added to the flask of HZ67 by drop wise. The reaction was checked by TLC 

(Rf 0.22, dichloromethane-methanol 6:1) and had mostly completed in 5 days. 

The reaction solution was extracted between dichloromethane and water (1:4, 

300 ml). The organic phase was dried by anhydrous sodium sulphate, filtered, 

and evaporated to a small volume. The crude product was purified by column 

chromatography using the eluting solvent dichloromethane methanol 12:1. The 

pure fractions were combined, filtered, evaporated to dryness and collected. 

Yield: 53.6 mg, 25%. 

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.4-1.68 (4H, m, 

AQ-NH-CH2-CH2-CH2-CH2); 2.0-2.1 (2H, m, AQ-NH-CH2-CH2); 2.4-2.55 (2H, m, 

CH2-COOH); 3.17-3.4 (5H, m, unresolved, AQ-NH-CH2, CONH-CH2 and 

CH-Benzene-Cl); 7.2-7.29 [(3H, q, H-2 (AQ), H-3 and H-5 (Benzene-Cl)]; 

7.29-7.38 [(2H, d, H-2 and H-6 (Benzene-Cl)]; 7.42 (1H, d, H-4); 7.6-7.7 (1H, t, 

H-3); 7.75-7.96 (3H, m, unresolved, CONH, H-6 and H-7); 8.05-8.25 (2H, m, H-5 

and H-8); 9.65 (1H, t, AQ-NH) 

ESMS (+): 533 m/z 100% (M+H)+ 

 

2.6.6 Synthesis of AQ-Ahx-cyclic Baclofen (HZ69) 

AQ-Ahx-Baclofen HZ68 (25 mg, 0.05 mmol) was dissolved in acetic anhydride (3 

ml) and refluxed on 95 ºC water bath for 1 hour. The solution was cooled to RT 

and poured into distilled water. The precipitated product (Rf 0.6, 
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dichloromethane-methanol 6:1) was collected by centrifuge. Yield: 14 mg, 54%. 

 

1H NMR spectrum (CDCl3, 300 MHz) δ: 1.55-1.68 (2H, m, 

AQ-NH-CH2-CH2-CH2); 1.72-1.9 (4H, m, AQ-NH-CH2-CH2-CH2-CH2); 2.7-2.84 

(1H, m, O-CO-CH2); 2.93-3.08 (3H, m, O-CO-CH2 and 

AQ-NH-CH2-CH2-CH2-CH2-CH2); 3.38-3.45 (2H, q, AQ-NH-CH2); 3.45-3.65 (1H, 

m, CH-Benzene-Cl); 3.7-3.8 (1H, q, C=N-CH2); 4.25-4.35 (1H, q, C=N-CH2); 

7.05-7.15 (1H, d, H-2); 7.15-7.23 [(2H, q, H-3 and H-5 (Benzene-Cl)]; 7.3-7.4 

[(2H, q, H-2 and H-6 (Benzene-Cl)]; 7.52-7.65 (2H, m, H-3 and H-4); 7.7- 7.82 

(2H, m, H-6 and H-7); 8.3 (2H, m, H-5 and H-8); 9.8 (1H, t, AQ-NH) 

ESMS (+): 515 m/z 100% (M+H)+ 

 

2.6.7 Synthesis of AQ-Ava-OH (HZ72) 

1-Choloroanthraquinone (4 g, 17 mmol), 5-aminopentanoic acid (6 g, 51 mmol) 

and NaOH (2.7 g, 68 mmol) were suspended in 90 ml of DMSO. The reaction 

was heated on 100ºC water bath for 10 h. The mixture was poured into the 300 

ml of acidic water (HCI was added). The red precipitate was collected by filtration. 

The crude compound (Rf 0.42, dichloromethane-methanol 9:1) was purified by 

column chromatography using solvent system dichloromethane and methanol 

9:1. The appropriate fractions were combined, filtered and evaporated to 

dryness. The product was precipitated in diethyl ether (70 ml) and collected. 

Yield: 909 mg, 17%. 

 

1H NMR spectrum (CDCl3, 300 MHz) δ: 1.8-1.95 (4H, m, AQ-NH-CH2-CH2-CH2); 

2.5 (2H, t, AQ-NH-CH2-CH2-CH2-CH2); 3.32-3.45 (2H, q, AQ-NH-CH2); 7.0-7.1 

(1H, d, H-2); 7.5-7.65 (2H, m, H-3 and H-4); 7.68-7.8 (2H, m, H-6 and H-7); 

8.2-8.33 (2H, m, H-5 and H-8); 9.75 (1H, t, AQ-NH) 
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2.6.8 Synthesis of AQ-Ava-OPFP (HZ73) 

AQ-Ava-OH HZ72 (800 mg, 2.5 mmol), PFP (684 mg, 3.75 mmol), DCC (1030 

mg, 5 mmol) and DMAP (915 mg, 7.5 mmol) were dissolved in dichloromethane 

(60 ml). The reaction had completed in 4 h by checking the TLC (Rf 0.67, 

dichloromethane- ethyl acetate 5:1). The DCU precipitate was filtered off. The 

product was purified by column chromatography using dichloromethane and 

ethyl acetate 5:1. The product fractions were combined, filtered and evaporated 

to dryness. Hexane (40 ml) was used to precipitate the solid compound. Yield: 

610 mg, 50%. 

 

1H NMR spectrum (CDCl3, 300 MHz) δ: 1.9-2.1 (4H, m, AQ-NH-CH2-CH2-CH2); 

2.78-2.85 (2H, t, AQ-NH-CH2-CH2-CH2-CH2); 3.4-3.5 (2H, q, AQ-NH-CH2); 7.1 

(1H, d, H-2); 7.55-7.68 (2H, m, H-3 and H-4); 7.7-7.83 (2H, m, H-6 and H-7); 

8.25-8.35 (2H, m, H-5 and H-8); 9.82 (1H, t, AQ-NH) 

 

2.6.9 Synthesis of AQ-Ava-Baclofen (HZ74) 

Two round bottomed flasks were used. One of them had AQ-Ava-OPFP HZ73 

(500 mg, 1 mmol) in DMF. The other one had NaOH (36 mg, 0.9 mmol), H2O 

(about 15 µl) and baclofen (235 mg, 1.1 mmol) in DMF. The two flasks were both 

refluxed on the hot water bath (90ºC). The baclofen solution was added to the 

flask of HZ73 by drop wise. The reaction was checked by TLC (Rf 0.75, 

dichloromethane methanol 9:1) and had mostly completed in 8 days. The 

reaction solution was extracted between dichloromethane and water (1:5, 200 

ml). The organic phase was dried by anhydrous sodium sulphate, filtered, and 

evaporated to a small volume. The crude product was purified by column 

chromatography using the eluting solvent dichloromethane and methanol 13:1. 

The pure fractions were combined, filtered, evaporated to dryness and collected. 
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Yield: 110 mg, 21%. 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.5-1.6 (4H, m, 

AQ-NH-CH2-CH2-CH2); 2.1 (2H, t, AQ-NH-CH2-CH2-CH2-CH2); 2.4-2.5 (2H, m, 

CH2-COOH); 3.2-3.4 (5H, m, unresolved, AQ-NH-CH2, CONH-CH2, and 

CH-Benzene-Cl); 7.2-7.28 [(3H, m, H-2, H-3 and H-5 (Benzene-Cl)]; 7.28-7.34 

[(2H, m, H-2 and H-6 (Benzene-Cl)]; 7.4-7.48 (1H, d, H-4); 7.6-7.7 (1H, t, H-3); 

7.8-7.95 (3H, m, CONH, H-6 and H-7); 8.1-8.17 (1H, d, H-8); 8.17-8.25 (1H, d, 

H-5); 9.67 (1H, t, AQ-NH) 

ESMS (+): 517 m/z 100% (M-H)- 

 

2.6.10 Synthesis of AQ-Ava-cyclic Baclofen (HZ75) 

AQ-Ava-Baclofen HZ74 (60 mg, 0.12 mmol) was dissolved by acetic anhydride 

(3 ml) and refluxed on water bath (95ºC) for 1 h. The solution was cooled to RT 

and poured into distilled water. The precipitate product (Rf 0.55, 

dichloromethane-methanol 6:1) was collected by centrifuge. Yield: 48 mg, 80%. 

 

1H NMR spectrum (CDCl3, 300 MHz) δ: 1.6 (2H, m, AQ-NH-CH2-CH2-CH2); 

1.85-2.0 (4H, m, AQ-NH-CH2-CH2); 2.72-2.85 (1H, dd, O-CO-CH2); 2.95-3.15 

(3H, m, O-CO-CH2 and AQ-NH-CH2-CH2-CH2-CH2); 3.38-3.5 (2H, m, 

AQ-NH-CH2); 3.5-3.67 (1H, q, CH-Benzene-Cl); 3.7-3.8 (1H, dd, C=N-CH2); 

4.26-4.38 (1H, dd, C=N-CH2); 7.05-7.15 (1H, d, H-2); 7.15-7.22 [(2H, m, H-3 and 

H-5 (Benzene-Cl)]; 7.3-7.4 [(2H, q, H-2 and H-6 (Benzene-Cl)]; 7.54-7.68 (2H, m, 

H-3 and H-4); 7.7-7.83 (2H, m, H-6 and H-7); 8.25-8.33 (2H, m, H-5 and H-8); 

9.8 (1H, t, AQ-NH) 

ESMS (+): 501 m/z 100% (M+H)+ 
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2.6.11 Synthesis of AQ-GABA-OH (HZ76) 

1-Choloroanthraquinone (3 g, 12 mmol), gamma-aminobutyric acid (3.8 g, 37 

mmol), NaOH (1.44 g, 36 mmol) and DMSO (80 ml) were transferred into a 

round bottomed flask. The flask was put on a 100ºC water bath and heated for 6 

h. The solution mixture was poured into the 300ml of acidic water (HCl was 

added). The red precipitate (Rf 0.27, dichloromethane-methanol 9:1) was filtered 

and purified by column chromatography using solvent system dichloromethane 

and methanol 11:1.  The pure product fractions were combined, filtered and 

evaporated to dryness by using the rotational evaporator. The red solid product 

was precipitated in diethyl ether (50 ml) and the mixture was filtered, dried in a 

desiccator and collected. Yield: 605 mg, 20%. 

 

2.6.12 Synthesis of AQ-GABA-OPFP (HZ77) 

AQ-GABA-OH HZ76 (500 mg, 1.6 mmol), PFP (442 mg, 2.4 mmol), DCC (659 

mg, 3.2 mmol) and DMAP (586 mg, 4.8 mmol) were dissolved in 

dichloromethane (50 ml). The reaction had completed in 7 h by checking the 

TLC (Rf 0.7, dichloromethane- ethyl acetate 4:1). The DCU precipitate was 

filtered off. The product was purified by column chromatography using 

dichloromethane and ethyl acetate 4:1. The product fractions were combined, 

filtered and evaporated to dryness. Hexane (40 ml) was used to precipitate the 

solid compound. Yield: 335 mg, 44%. 

 

2.6.13 Synthesis of AQ-GABA-Baclofen (HZ78) 

Two round bottomed flasks were used. One of them had AQ-GABA-OH HZ77 

(300 mg, 0.63 mmol) in DMF (15 ml). The other one had NaOH (23 mg, 0.57 

mmol), H2O (about 15 µl) and baclofen (148 mg, 0.69 mmol) in 10ml of DMF. The 

two flasks were both refluxed on the hot water bath (90ºC). The baclofen solution 
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was added to the flask of HZ77 by drop wise. The reaction was checked by TLC 

(Rf 0.35, dichloromethane- methanol 6:1) and had mostly completed in 10 days. 

The reaction solution was extracted between dichloromethane and water (1:5, 

200 ml). The organic phase was dried by anhydrous sodium sulphate, filtered, 

and evaporated to a small volume. The crude product was purified by column 

chromatography using the eluting solvent dichloromethane and methanol 13:1. 

The pure fractions were combined, filtered, evaporated to dryness and collected. 

Yield: 43 mg, 14%. 

 

2.6.14 Synthesis of AQ-GABA-cyclic Baclofen (HZ79) 

AQ-GABA-Baclofen HZ78 (25 mg, 0.05 mmol) was dissolved by acetic 

anhydride (5 ml) and refluxed on water bath (95ºC) for 1 h. The solution was 

cooled to RT and poured into distilled water. The precipitate product (Rf 0.45, 

dichloromethane-methnol 6:1) was collected by centrifuge. Yield: 11.7 mg, 48%. 

ESMS (+): 487 m/z 100% (M+H)+ 

 

2.6.15 Synthesis of AQ-[PEG Spacer]-Succinyl (HZ80) 

Succinic anhydride (249 mg, 2.7 mmol) and anthraquinone derivative (800 mg, 

2.26 mmol) were dissolved in DMF (40 ml) followed by the addition of the DIPEA 

(864 µl, 5 mmol, 0.742 mg/ml) and reacted at RT overnight. The product (Rf 0.27, 

dichloromethane-methanol 9:1) solution was extracted by dichloromethane and 

water (1:5, 200 ml). The organic layer was collected, dried by anhydrous sodium 

sulphate, filtered and evaporated to a small volume for the column 

chromatography purification using dichloromethane-ethyl acetate-ethanol 6:2:1 

solvent system. The pure fractions were combined, filtered, evaporated, and 

precipitated in diethyl ether (50 ml). The solid product was collected. Yield: 520 

mg, 61%. 
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2.6.16 Synthesis of AQ-[PEG Spacer]-Succinyl-OPFP (HZ81) 

AQ-[PEG Spacer]-Succinyl HZ80 (450 mg, 0.73 mmol), PFP (200 mg, 1.1 mmol), 

DCC (300 mg, 1.46 mmol) and DMAP (267 mg, 2.19 mmol) were dissolved in 

dichloromethane (60 ml). The reaction had completed in 6 h by checking the 

TLC (Rf 0.75, dichloromethane- ethyl acetate 4:1). The DCU precipitate was 

filtered off. The product was purified by column chromatography using 

dichloromethane and ethyl acetate 5:1. The product fractions were combined, 

filtered and evaporated to dryness. Hexane (50 ml) was used to precipitate the 

solid compound. Yield: 250 mg, 53%. 

 

2.6.17 Synthesis of AQ-[PEG Spacer]-Succinyl-Baclofen (HZ82) 

Two round bottomed flasks were used. One of them had AQ-[PEG 

Spacer]-Succinyl-OPFP HZ81 (200 mg, 0.32 mmol) in 15 ml of DMF. The other 

one had NaOH (11 mg, 0.29 mmol), H2O (about 15 µl) and baclofen (110 mg, 

0.35 mmol) in DMF (8 ml). The two flasks were both refluxed on the hot water 

bath (90ºC). The baclofen solution was added to the flask of HZ81 by drop wise. 

The reaction was checked by TLC (Rf 0.38, dichloromethane-methanol 6:1) and 

had mostly completed in 8 days. The reaction solution was extracted between 

dichloromethane and water (1:3, 200 ml). The organic phase was dried by 

anhydrous sodium sulphate, filtered, and evaporated to a small volume. The 

crude product was purified by column chromatography using the eluting solvent 

dichloromethane and methanol 10:1. The pure fractions were combined, filtered, 

evaporated to dryness and collected. Yield: 120 mg, 56%. 

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 2.15-2.4 (4H, m, unresolved, 

AQ-NH-CH2-CH2 and CONH-CH2); 2.4-2.55 (2H, m, CH2-COOH); 3.1-3.3 (4H, m, 

NHCO-CH2-CH2); 3.32-3.48 (2H, m, AQ-NH-CH2); 3.5-3.7 (7H, m, 
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CH-Benzene-Cl, AQ-NH-C2H4-O-C2H4-O-CH2 and AQ-NH-C2H4-O-C2H4); 

3.7-3.8 (2H, q, CH2-NHCO); 7.2-7.37 [(4H, m H-2, 3, 5, 6 (Benzene-Cl)]; 7.45 

(1H, d, H-4); 7.6-7.7 (1H, t, H-3); 7.78-7.95 (4H, m, unresolved, NHCO, CONH, 

H-6 and H-7); 8.08-8.15 (1H, d, H-8); 8.15-8.25 (1H, d, H-5); 9.79 (1H, t, AQ-NH) 

ESMS (+): 650 m/z 100% (M+H)+ 

 

2.6.18 Synthesis of AQ-[PEG Spacer]-Succinyl-cyclic Baclofen (HZ83) 

AQ-[PEG Spacer]-Succinyl-Baclofen HZ82 (60 mg, 0.09 mmol) was dissolved by 

acidic anhydride (5 ml) and refluxed on water bath (95ºC) for 1 h. The solution 

was cooled to RT and poured into distilled water. The precipitate product (Rf 0.55, 

dichloromethane-methanol 6:1) was collected by centrifuge. Yield: 37 mg, 65%. 

 

1H NMR spectrum (CDCl3, 300 MHz) δ: 2.45-2.52 (2H, t, AQ-NH-CH2-CH2); 

2.68-2.78 (2H, q, NHCO-CH2); 2.9-3.0 (1H, dd, O-CO-CH2); 3.15-3.25 (1H, dd, 

O-CO-CH2); 3.45-3.7 (7H, m, unresolved, AQ-NH-CH2, NHCO-CH2-CH2, and 

CH-Benzene-Cl); 3.7-3.8 (4H, m, AQ-NH-C2H4-O-C2H4); 3.8-3.9 (3H, m, 

C=N-CH2 and CH2-NHCO); 4.16-4.27 (1H, dd, C=N-CH2); 6.45 (1H, t, NHCO); 

7.06-7.22 [(3H, m, H-2 (AQ), H-3 and H-5 (Benzene-Cl)]; 7.25-7.4 [(2H, q, H-2 

and H-6 (Benzene-Cl)]; 7.53-7.68 (2H, m, H-3 and H-4); 7.68-7.85 (2H, m, H-6 

and H-7); 8.22-8.35 (2H, m, H-5 and H-8); 9.93 (1H, t, AQ-NH) 

ESMS (+): 632 m/z 100% (M+H)+ 

 

2.6.19 Synthesis of AQ-[propyl spacer]-Pro-succinyl (HZ84) 

Anthraquinone-spacer-D-Pro (400mg, 1.1 mmol) and succinic anhydride (127 

mg, 1.3 mmol) were dissolved in 30 ml of DMF followed by the addition of DIPEA 

(0.742 mg/ml, 420 µl, 2.2 mmol) and reacted at RT overnight. The product (Rf 

0.25, dichloromethane methanol 9:1) solution was extracted by dichloromethane 
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and water (1:3, 300 ml). The organic layer was collected, dried by anhydrous 

sodium sulphate, filtered and evaporated to a small volume for the column 

chromatography purification using dichloromethane-ethanol 7:1 solvent system. 

The pure fractions were combined, filtered, evaporated, and precipitated in 40 ml 

of diethyl ether. The solid product was collected. Yield: 218 mg, 42%. 

 

2.6.20 Synthesis of AQ-[propyl spacer]-Pro-succinyl-OPFP (HZ85) 

AQ-[propyl spacer]-Pro-succinyl HZ84 (200 mg, 0.42 mmol), PFP (116 mg, 0.63 

mmol), DCC (173 mg, 0.84 mmol) and DMAP (154 mg, 1.26 mmol) were 

dissolved in dichloromethane (40 ml). The reaction had completed in 4 h by 

checking the TLC (Rf 0.8, dichloromethane- ethyl acetate 5:1). The DCU 

precipitate was filtered off. The product was purified by column chromatography 

using dichloromethane and ethyl acetate 5:1. The product fractions were 

combined, filtered and evaporated to dryness. Hexane (50 ml) was used to 

precipitate the solid compound. Yield: 120 mg, 44% 

 

2.6.21 Synthesis of AQ-[propyl spacer]-Pro-succinyl-Baclofen (HZ86) 

Two round bottomed flasks were used. One of them had AQ-[propyl 

spacer]-Pro-succinyl-OPFP HZ85 (100 mg, 0.16 mmol) in DMF (20 ml). The 

other one had NaOH (5.6 mg, 0.14 mmol), H2O (about 10 µl) and baclofen (38 

mg, 0.18 mmol) in DMF (8 ml). The two flasks were both refluxed on the hot 

water bath (90ºC). The baclofen solution was added to the flask of HZ85 by drop 

wise. The reaction was checked by TLC (Rf 0.43, dichloromethane-methanol 6:1) 

and had mostly completed in 6 days. The reaction solution was extracted 

between dichloromethane and water (1:5, 300 ml). The organic phase was dried 

by anhydrous sodium sulphate, filtered, and evaporated to a small volume. The 

crude product was purified by column chromatography using the eluting solvent 
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dichloromethane and methanol 14:1. The pure fractions were combined, filtered, 

evaporated to dryness and collected. Yield: 96 mg, 89%. 

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.7-2.0 (6H, m, unresolved, 

AQ-NH-CH2-CH2, β-CH2 and γ-CH2); 2.1-2.7 (6H, m, unresolved, NCO-CH2-CH2 

and CH2-COOH); 3.1-3.3 (4H, m, AQ-NH-CH2-CH2-CH2 and CONH-CH2); 

3.3-3.8 (5H, m, unresolved, CH-Benzene-Cl, AQ-NH-CH2 and δ-CH2); 4.25 (1H, 

m, α-CH pro); 7.05-7.38 [(5H, m H-2, 3, 5, 6 (Benzene-Cl) and H-2 (AQ)]; 7.4 

(1H, t, CONH); 7.65 (1H, t, NHCO); 7.7-7.95 (4H, m, H-3, H-4, H-6 and H-7); 

8.1-8.3 (2H, q, H-5 and H-8); 9.72 (1H, t, AQ-NH) 

ESMS (+): 673 m/z 100% (M+H)+ 

 

2.6.22 Synthesis of AQ-[propyl spacer]-Pro-succinyl- cyclic Baclofen 

(HZ87) 

AQ-[propyl spacer]-Pro-succinyl-Baclofen HZ86 (50 mg, 0.07 mmol) was 

dissolved by acetic anhydride (5 ml) and refluxed on water bath for 1 hour. The 

solution was cooled to RT and poured into distilled water. The precipitate product 

(Rf 0.71, dichloromethane-methanol 9:1) was collected by centrifuge. Yield: 37 

mg, 80%. 

1H NMR spectrum (CDCl3, 300 MHz) δ: 1.75-2.1(6H, m, unresolved, 

AQ-NH-CH2-CH2, β-CH2 and γ-CH2); 2.35-2.95 (6H, m, unresolved, 

NCO-CH2-CH2 and O-CO-CH2,); 3.15-3.9 (7H, m, unresolved, 

AQ-NH-CH2-CH2-CH2, CH-Benzene-Cl and C=N-CH2); 4.0-4.3 (1H, m, α-CH); 

4.68-4.75 (2H, m, δ-CH2); 6.9-7.35 [(5H, m H-2, 3, 5, 6 (Benzene-Cl) and H-2 

(AQ)]; 7.45 (1H, t, NHCO); 7.5-7.67 (2H, m, H-3 and H-4); 7.68-7.84 (2H, m, H-6 

and H-7); 8.12-8.3 (2H, m, H-5 and H-8); 9.75 (1H, t, AQ-NH) 

ESMS (+): 655 m/z 100% (M+H)+ 
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Chapter 3 Legumain Activated GABA Prodrugs 

3.1 Abstract 

Legumain represents a recently identified lysosomal protease that is upregulated 

in most human cancers. Legumain activity is thought to promote tumour invasion 

and metastasis. Consequently, legumain is a promising target for probe design 

in cancer diagnosis.  

A quenched activity-based probe for legumain Rho-Pro-Ala-Asn-GABA-[Propyl 

spacer]-AQ (HZ101) was chemically synthesised. The probe comprises the 

fluorochrome Rhodamine B, a legumain specific peptide substrate and the dark 

quencher anthraquinone. This probe is highly selective for legumain due to the 

asparagine residue at the P1 position. Peptide cleavage by legumain relieves 

the self-quenching of the probe and generates fluorescence. The evaluation of 

probe activity by MTT, HPLC and lipophilicity assays demonstrated that HZ101 is 

an ideal biomarker for the imaging and diagnosis of human breast cancer and is 

a potential prodrug for the delivery of GABA to tumours to modulate the GABAB 

receptor response. 

 

3.2  Introduction 

3.2.1 Legumain 

Legumain, an asparaginyl endopeptidase, is a member of the C13 cysteine 

protease family and was first identified in plants (Ishii, 1993). Mammalian 

legumain has been discovered in the liver, spleen and kidney. Legumain has 

been proposed to play an important role in the degradation of the extracellular 

matrix (Morita et al., 2007). Each legumains is first produced as a pro-enzyme 

(50-60 kDa), which is converted into the active form by auto cleavage under 

acidic conditions (pH 4.0 to 5.8). The size of mature active legumain varies from 
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30 kDa to 40 kDa. Legumain is irreversibly denatured at a pH of 7 or higher 

(Chen et al., 1997, Chen et al., 2001). In cells, mammalian legumain is mainly 

localized in the endo-lysosomal system. The acidic pH environment of 

lysosomes facilitates legumain activity (Dall and Brandstetter, 2015). 

 

3.2.2 Legumain Substrate Specificity 

The crystal structure of legumain provides insights into its substrate specificity. 

The S1 pocket of legumain has a dual charge character and is consequently an 

ideal binding site for the asparagine at the P1 substrate position (Dall and 

Brandstetter, 2013).  

 

Legumain has less selectivity at other substrate positions. A peptide library was 

constructed to determine the optimal substrate sequences for the P3-P2-P1 

positions. The tripeptide Thr-Ala-Asn was identified as the ideal substrate for 

Schistosoma legumain whereas human legumain prefers a proline (Pro) residue 

at P3. These observations suggest that legumain substrate specificity is species 

dependent (Mathieu et al., 2002). At the P1' position, amino acids with small side 

chains such as Gly and Ala, are tolerated, but proline is excluded (Schwarz et al., 

2002).  

 

The endogenous cystatin E/M is the most potent inhibitor of legumain and also 

serves as a tumour suppressor. The auto-activation of prolegumain is inhibited 

by cystatin E/M in both intra- and extracellular environments (Smith et al., 2012). 

The crystal structure of the legumain-cystatin complex revealed that cystatin 

acts as a substrate and the cleavage product remains bound to the legumain 

active site. The development of legumain inhibitors has been considered. 

Recently, a series of aza-peptidyl inhibitors with non-natural amino acids were 
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synthesised. It was found that inhibitors with small alkyl groups in the P3 position 

had the improved inhibitory activity (Lee and Bogyo, 2012).  

 

3.2.3 Legumain expression in tumours 

Several studies have shown that legumain is highly expressed in tumours in vitro 

and in vivo, such as colorectal, prostate, gastric, ovarian, and breast cancers 

(Zhen et al., 2015). 

Immunohistochemical and western blotting methods have revealed that the 

expression of legumain is increased in primary colorectal cancer compared with 

normal mucosa. Patients with lower legumain expression and weak staining 

have a better survival rate. These findings suggest that legumain may play a 

greater role in the early development of colorectal cancers and that its 

prognostic importance should be considered (Murthy et al., 2005). 

The expression and activity of legumain in melanoma were first addressed in 

2010. The endogenous cystatin E/M was detected to inhibits the legumain 

activity and suppresses tumour growth and metastasis (Briggs et al., 2010). 

Legumain expression has also been confirmed in prostate cancer by RT-PCR 

and Western blot. An immunohistochemical study revealed that a vesicular 

staining pattern of legumain was associated with prostate tumour invasion and 

metastasis (Ohno et al., 2013). In gastric cancer, legumain is over-expressed 

and is significantly correlated with tumour cell invasion and malignant 

transformation. Legumain has been proposed as a biomarker to predict the 

prognosis for metastasis in gastric cancer (Guo et al., 2013). 

 

Gawend et al. (2007) investigated legumain expression in breast cancer. 

Non-neoplastic breast tissues exhibited a pattern of negative or low staining 

pattern for legumain, whereas a positive vesicular pattern was observed in 
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invasive breast tumour cells by immunohistochemistry. Another study supported 

the hypothesis that targeting tumour associated macrophages and reducing their 

density in tumour tissues leads to a reduction of tumour mass. Macrophages are 

responsible for the secretion of many tumour invasive factors such as MMP-9, 

VEGF, and TNF-α. Legumain overexpressed by tumour-associated 

macrophages was used as the target molecule and a legumain based DNA 

vaccine was used to target tumour associated macrophages (Luo et al., 2006). 

In ovarian cancer, patients with high legumain expression had a worse prognosis 

and survival rate. Legumain was found to be upregulated in ovarian cancer 

tissues at both the mRNA and protein levels (Wang et al., 2012).  

 

3.2.4 Legumain Activated Prodrugs 

The protease activated prodrug approach for cancer therapy was first described 

in 1980 (Carl et al., 1980). The created prodrugs aim to be locally activated by 

tumour-associated protease and have less toxicity to normal cells. 

 

Legubicin (as shown in Figure 38) was designed as the legumain activated 

prodrug for cancer chemotherapy (Liu et al., 2003). The prodrug was 

synthesized by addition of a peptide extension (Boc-Ala-Ala-Asn-Leu) to the 

amino group of doxorubicin. The Boc protecting group at the NH2 terminus 

prevented the hydrolysis of peptide component. After cleavage by legumain, the 

prodrug will be converted into two molecules Boc-Ala-Ala-Asn-OH and 

Leu-doxorubicin.  
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Figure 38. Chemical structure of 
N-(-t-Butoxycarbonyl-L-alanyl-L-alanyl-L-asparaginyl-L-leucyl)doxorubicin 

(Legubicin) prodrug 
 

The cytotoxicity of legubicin was analysed in vitro. On tumour cells not 

expressing legumain, the cytotoxic effect of legubicin was less than 1% 

compared with doxorubicin. In contrast, on legumain positive cells, the effect of 

legubicin with conversion to Leu-doxorubicin was similar to doxorubicin. This 

result indicated that the peptide conjugation on legubicin prodrug had 

successfully eliminated the cytotoxic effect of doxorubicin (liu at al., 2003). 

 

The in vitro effects of legubicin were investigated on mice model with CT26 colon 

carcinoma. The injection of legubicin at 5 mg/kg three times in 2 days to mice 

arrested the tumour growth. The weight of mice was monitored during the 

therapy and there was no evidence of weight loss which indicated that legubicin 

was tolerated in mice and has little toxicity. Moreover, the organs that express 

legumain such as liver and kidney were not injured. At the same dose, 

doxorubicin was fatal to mice and failed to produce similar antitumour effect as 

legubicin. The TUNEL assays showed that the apoptotic index of legubicin was 

higher that doxorubicin. 
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Figure 39. legumain cleavable colchicine prodrug 

 

Figure 39 shows another example of a legumain-cleavable prodrug 

incorporating colchicine as the cytotoxic agent (Smith et al., 2014). The 

synthesised prodrug has the legumain peptide substrate Val-Asn-Ala-Ala. The 

amino acid valine was linked to deacetyl colchicine to increase the lipophilicity of 

the released active agent after legumain cleavage. The prodrug activity was 

investigated by MTT assay on the colorectal cell lines HCT116 and SW620. The 

legumain activity in HCT116 showed approximately 25% higher than SW620 cell 

line. At the same prodrug concentration (10 μM), the cell viability for HCT116 

was lower than in SW620 cells. Furthermore, the legumain inhibitor cystatin E/M 

was able to reduce the toxicity of the colchicine prodrug by approximately 33% in 

legumain over-expressing cell line M38L (Smith et al., 2014). 

 

3.2.5 Legumain Activated Probes 

In 2013, (Edgington et al., 2013) developed a legumain probe (LE28) that is 

fluorescently quenched. The chemical structure of LE28 was shown in Figure 

40.  

190 



 

 

Figure 40. Chemical structure of LE28 

 

 

Figure 41. Mechanism of LE28 binding to legumain 

 

The mechanism of LE28 has been illustrated in Figure 41. The catalytic thiol in 

the active site of legumain attacks the acyloxymethyl ketone of LE28 and results 

in loss of quenching group. The probe covalently binds to legumain and 

becomes fluorescent. LE28 was found to be highly quenched. The capacity of 

LE28 bind to legumain was tested by incubation of RAW cell extracts with 
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increasing concentrations (0-5 μM) of LE28 at pH 4.5. The proteins were 

resolved by fluorescent SDS-PAGE and a legumain size at 36 kDa was 

observed.  

 

In vivo imaging with LE28 was first performed on healthy nude mice. The mice 

were injected with LE28 and the fluorescence was imaged on an IVIS machine. 

LE28 already started to produce low fluorescence at early time (5-25 min) of 

injection. After 1 hour, the fluorescent imaging intensity in the kidney became 

strong and continued to increase. The major organs were collected after 8 hours 

of injection and a biochemical analysis was performed. Kidney appeared to have 

the highest LE28 labelling. Liver had a lesser level of LE28 labelling than kidney.  

The imaging ability of LE28 on tumour cells was evaluated using the HCT-116 

(human colorectal carcinoma cells) and tumour bearing mice. The injected mice 

were monitored for 28 hours. After 30 min of injection, the fluorescence signal of 

LE28 became detectable. The fluorescent imaging intensity reached the 

maximal value at 7 hours and remained constant until 28 hours. The probe LE28 

effectively imaged the legumain activity in normal tissues and tumours. Future 

efforts on design of the fluorescently quenched probe target legumain for 

different tumour types have great importance (Edgington et al., 2013).  

 

Another recent study developed a new MRI contrast agent 

Gd-NBCB-TTDA-Leg(L) and a near-infrared fluorescent probe 

CyTE777-Leg(L)-CyTE807 for detection of legumain activity in tumours (Chen et 

al., 2014). Both of the two compounds have the same legumain specific 

substrate peptide Leg(L). The MTT assay evaluated the cytotoxicity of 

Gd-NBCB-TTDA-Leg(L) and CyTE777-Leg(L)-CyTE807 on colon carcinoma cell 

line. They all showed low cytotoxicity even at high concentrations. The in vitro 
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and in vivo MR imaging were carried out for Gd-NBCB-TTDA-Leg(L), the results 

indicated that the new MRI contrast agent attained 55.3 fold higher imaging 

enhancement than control. In vivo optical imaging of the NIR fluorescent probe 

CyTE777-Leg(L)-CyTE807 showed efficiently fluorescent intensity.  
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3.3 Results and Discussion 

3.3.1 Design of Legumain activated Probe HZ101 

Fluorescent probes have been developed as powerful tools for in vivo imaging of 

tumour microenvironment (Ueno and Nagano, 2011). The probe designed in this 

study for fluorescence imaging is based on the FRET principle (Figure 42). 

 

 

Figure 42. Schematic of the FRET process 

 

FRET (Fluorescence Resonance Energy Transfer) is one of the most commonly 

exploited mechanisms for the design of fluorescent probes. FRET is the process 

of energy transfer from an excited donor to an acceptor through dipole-dipole 

interactions. The transfer of energy reduces the fluorescence intensity of the 

donor (Demchenko, 2010). The emission spectrum of the donor should overlap 

with the acceptor absorption spectrum, whereas, the absorption spectra of the 

donor and acceptor should be well separated. The donor is a fluorophore with 

brightness comparable to that of the acceptor dye. The linker between the donor 

and acceptor is selected to prevent fluorescence quenching (Kobayashi et al., 

2010).  
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Figure 43. Designed structure of the legumain activated probe (HZ101) 

 

The legumain activated probe (HZ101) designed here Figure 43 contains a 

legumain specific substrate (Pro-Ala-Asn↓) in the middle. The arrow denotes the 

cleavage site adjacent to the carboxy terminus of asparagine. The C-terminal 

side of asparagine at the P1 site is cleaved by legumain in a number of 

substrates. One side of the substrate (N-terminus) was attached to rhodamine B 

as the fluorophore. The quenching group anthraquinone spacer was added to 

the other side (C-terminus) of the tripeptide substrate.  

 

The designed probe HZ101 (Rho-Pro-Ala-Asn-GABA-[Propyl spacer]-AQ) aims 

to exploit the proteolytic activity of overexpressed legumain in the breast cancer 

cell line MCF-7. The fluoro group of rhodamine B can be silenced by the dark 

quenching group of the anthraquinone spacer due to the principle of FRET. After 

peptide cleavage by legumain, which is indicated by fluorescence restoration, 

the anthraquinone spacer is further activated by aminopeptidases to release the 

ligand GABA.  
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Reagents and conditions: (1) Boc-GABA-OH, PyBOP , DIPEA, in DMF, RT(2) TFA, RT (3) 

Fmoc-Asn(Trt)-OH, TBTU, HOBt, DIPEA, DMF, RT, (4) 20% piperidine in DMF, RT (5) Fmoc- Ala-OH, TBTU, 

HOBt, DIPEA, DMF, RT (6) 20% piperidine in DMF, RT (7) Fmoc-Pro-OH, TBTU, HOBt, DIPEA, DMF, RT (8) 

20% piperidine in DMF, RT (9) Rhodamine B, TBTU, HOBt, DIPEA, DMF (10) TFA, RT 

Scheme 32. Overview of the synthesis of the legumain activated prodrug (HZ101) 
 

Scheme 32 presents the overall scheme of the whole synthesis of the legumain 

prodrug HZ101. The tetrapeptide (Pro-Ala-Asn(Trt)-GABA) was built on the 

anthraquinone spacer by solution phase peptide synthesis. The trityl protecting 

group of asparagine was removed at the last step after adding rhodamine B to 

the tetrapeptide anthraquinone conjugate H-Pro-Ala-Asn(Trt)-GABA-[Propyl 

spacer]-AQ.  
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3.3.2 Synthesis of H-[Propyl spacer]-AQ (HZ103) 

The starting point in the synthesis of the legumain targeted theranostic prodrug 

(HZ101) as shown in Scheme 33 was the preparation of the 

aminoanthraquinone (HZ103), which serves as both the quencher of the 

rhodamine fluorophore in FRET for diagnostic applications and a DNA binding 

cytotoxic agent in anticancer therapeutics. 

In general, the introduction of hydroxy groups into the anthracenedione ring 

system enhances cytotoxic potency; hydroxylation of the nucleus, as in the case 

of mitoxantrone may be expected to increase cytotoxicity due to stronger binding 

to DNA and slower dissociation kinetics due to the presence of the hydroxyl 

groups (Smithet al., 1990). 

Here, the strategy adopted for the synthesis of the 4, 8-dihydroxylated 

aminoanthraquinone-spacer compound (HZ 103) was based on the controlled 

mono-amination of leuco-1,4,5-trihydroxyanthraquinone 

(leuco-5-hydroxyquinizarin). The methods were based on the reported 

regiospecific amination of this leuco-trihydroxyanthraquinone by Morris, Mullah 

and Sutherland (1986), who synthesised a series of 

aminohydroxyanthraquinones from leuco-5-hydroxyquinizarin. It was found that 

if the leuco-intermediates were oxidised and then hydrolysed using HCl or NaOH, 

they each gave 5-hydroxyquinizarin. However, if these intermediates were 

stirred with triethylamine in dichloromethane in the presence of air, the 

aminoanthraquinones were formed. These conditions were adopted for the 

synthesis of HZ103. 
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Reagents and Conditions: (a) CH2Cl2, water bath (1 hour), then Et3N (0.5 ml) and O2 for 

2 hours 

Scheme 33. Outline of HZ103 synthesis 

 

Leuco-1,4,5-trihydroxyanthraquinone was reacted with diaminopropane in 

dichloromethane. The reaction mixture was refluxed in 60ºC water bath for 1 

hour. Triethylamine was then added to the reaction. The mixture was oxidized by 

O2 for 2 hours. The brown insoluble solid was removed by filtration and the 

remaining solution was extracted with dichloromethane and water. The organic 

layers were combined and dried. The dark blue product H-[Propyl spacer]-AQ 

(HZ103) was collected for the next reaction. 

 

3.3.3 Synthesis of Boc-GABA-[Propyl spacer]-AQ (HZ104) 

The coupling reaction of H-[Propyl spacer]-AQ (HZ103) and Boc-GABA-OH was 

performed in DMF by the addition of reagents PyBOP and DIPEA (Scheme 34). 
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Reagents and Conditions: (a) PyBOP, DIPEA, in DMF 

Scheme 34. Outline of HZ104 synthesis 

 

The reaction was monitored by TLC and pure HZ104 was obtained by silica gel 

chromatography and collection of appropriate fractions. The product 

Boc-GABA-[Propyl spacer]-AQ (HZ104) was then used in the de-protection 

reaction. 

 

3.3.4 Synthesis of H-GABA-[Propyl spacer]-AQ TFA Salt (HZ105) 

The Boc protecting group of Boc-GABA-[Propyl spacer]-AQ (HZ104) was 

removed by using TFA (Scheme 35). After confirmation of Boc removal by TLC 

the excess TFA was removed by evaporation. 
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Reagents and Conditions: (a) TFA 

Scheme 35. Outline of HZ105 synthesis 

 

To obtain pure H-GABA-[Propyl spacer]-AQ TFA salt (HZ105) for HPLC analysis, 

further purification was performed using thick layer chromatography. The 

compound H-GABA-[Propyl spacer]-AQ TFA salt (HZ105) was characterised by 

NMR. The 1H NMR spectrum revealed signals between 1.7 and 3.4 were 

assigned to the methylene groups of the GABA and propyl spacer. The 

anthraquinone protons were fully assigned; H-2 and H-3 gave a 2-proton 

multiplet at 7.18 to 7.3 ppm, H-7 was a doublet at 7.3 to 7.4 ppm, and H-6 was a 

multiplet between 7.58 and 7.7 ppm.  

 

3.3.5 Synthesis of H-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ99) 

The amino acid coupling reaction with the anthraquinone spacer compound 

(HZ105) was performed by solution phase peptide synthesis as shown in 
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Scheme 36. 

 

Scheme 36. Outline of HZ99 synthesis 

 

HZ105 was reacted with Fmoc-Asn-OH in DMF, followed by the addition of the 

coupling reagents TBTU, HOBt, and DIPEA. The product 

Fmoc-Asn-spacer-anthraquinone was treated with 20% piperidine in DMF to 

remove the Fmoc protecting group. The next amino acid was added using the 

same method. The solution phase peptide synthesis produced the substrate 

conjugate Pro-Ala-Asn-GABA-Spacer-anthroquinone (HZ99). 

 

3.3.6 Synthesis of Rho-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ100) 

The fluorescent agent rhodamine B was coupled with 

H-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ99) in DMF using the reagents 
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PyBOP and DIPEA (Scheme 37). 

 

 

Reagents and Conditions: (a) PyBOP, DIPEA, in DMF 

Scheme 37. Outline of HZ100 synthesis 

 

The reaction was considered successful if monitoring of the TLC plate under the 

light of a UV lamp (360 nm) revealed an absence of fluorescent spots in the 

product lane. Rho-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ100) was 

further purified by silica gel chromatography. Chloroform to methanol (8:1) was 

used as the solvent system. The product was collected under vacuum.  

 

3.3.7 Synthesis of Rho-Pro-Ala-Asn-GABA-[Propyl spacer]-AQ (HZ101) 

The N-protecting group triphenylmethyl (trityl) on the asparagine of 

Rho-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ100) was removed by TFA 

treatment. The synthesis of HZ101 was illustrated in Scheme 38. 
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Reagents and Conditions: (a) TFA 

Scheme 38. Outline of legumain activated prodrug (HZ101) synthesis 
 

After confirmation of reaction completion by TLC, the reaction solution was 

evaporated to dryness. The solid compound was precipitated in diethyl ether. To 

obtain a high purity of Rho-Pro-Ala-Asn-GABA-[Propyl spacer]-AQ (HZ101) for 

HPLC analysis, further purification by thick layer chromatography was performed. 

Dichloromethane to methanol (6:1) was used as the solvent system for thick 

layer chromatography.  

 

Mass Spectral characterization of HZ101 

The Rho-Pro-Ala-Asn-GABA-[Propyl spacer]-AQ (HZ101) was successfully 

characterised by nanoelectrospray positive ionisation mass spectrometry 

(Figure 44). The signal at m/z 1104 in the nanoelectrospray positive ion mass 
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spectrum for the species (M-CO2CF3)+ corresponds to a molecular mass of 1217 

Da. In addition, the observed data and theoretical isotope model were in good 

agreement. 

 

 

 

Figure 44. ESI (+) Mass spectrum of Probe:  

Rho-Pro-Ala-Asn-GABA-[Propyl spacer]-AQ (HZ101) 
 

3.3.8 Legumain PCR results 

The legumain expression in MCF-7 cells was determined by end-point PCR. 

Before the PCR experiment, RNA was extracted from the MCF-7 cells. The 
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isolated RNA was then used for cDNA synthesis. As shown in Figure 45, beta 

actin was used as the positive control.  

 

 

Figure 45. PCR results for legumain  

The legumain primers were designed using the program Primer-BLAST to 

amplify only the legumain transcript.  

Forward primer: Sequence (5’3’): ATCCGGCAAAGTCCTGAAGAG 

Reverse primer: Sequence (5’3’): ATGAACCACCTGCCGGATAAC 

 

From Figure 45 above, it is obvious to see the brands of legumain which 

indicate the presence of legumain expression in the breast cancer (MCF-7) cell 

line. 

 

3.3.9 HZ101 Activity Study: Fluorophore Quenching Study 

In Figure 46, the graph showed that the highest relative fluorescence intensity of 
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rhodamine B is 825 at the wavelength of at 577nm. 

 

Figure 46. Comparison of fluorescence intensities of rhodamine B (0.5 µM) and 

probe HZ101 (5 µM) in legumain assay buffer, pH 5.0. Excitation/Emission (nm): 

550/590. 

 

By contrast, the fluorogenic probe HZ101 had a maximum relative fluorescence 

intensity of 5, at a wavelength of 580 nm, demonstrating excellent quenching of 

rhodamine fluorescence by the aminodihydroxyanthraquinone chromophore. 

There was a 165 fold difference between the two compounds. In addition, the 

concentration of HZ101 (5 µM) was 10 times higher than that of rhodamine B 

(0.5 µM) in the fluorophore quenching study. This result determines the high 

efficiency of the anthraquinone spacer in quenching the fluorophore rhodamine 

B in the probe HZ101. 

 

3.3.10 HZ101 Fluorimetric Assay 

The legumain activated prodrug (HZ101) was incubated with recombinant 

human legumain (40 ng) at 37ºC in 96 well plates (Figure 47). The total volume 

of each well was 100 µl. The concentration of HZ101 was varied from 5 µM, 10 

206 



 

µM, 25 µM, 50 µM to 100 µM. At concentrations of 5 µM and 10 µM, the 

fluorescence intensity of HZ101 increased significantly during the first 30 min 

and gradually reached a maximum value (550) with in the next 30 min. At the 

concentration of 25 µM, the maximum fluorescence intensity was only 350. 

When the concentration was increased to 50 µM and 100 µM, the fluorescence 

intensity of HZ101 remained unchanged at 250 and 200, respectively, between 3 

min and 120 min.  

 

Figure 47. Relative fluorescence intensity released by HZ101 during the 

incubation with legumain. pH 5.0. Excitation: 544, Emission: 590, Gain: 800.  

 

3.3.11 HZ101 Cytotoxicity Assays 

The MTT cell proliferation assay has been widely used to estimate the number of 

viable cells in 96-well plates during cell culture. MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)  is a yellow 

reagent that can be cleaved by living cells to produce a dark blue formazan 

product (Ciapetti et al., 1993). The quantity of formazan (directly proportional to 
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the number of viable cells) is measured by recording the absorbance at 550 nm 

using a plate reading spectrophotometer.  

 

As shown in Figure 48, the wells in lane 1 contained fresh medium only as the 

blank control. The MCF-7 cell suspension was pipetted into each well of the 

96-well plate from lanes 2 to 12. The plate was incubated at 37 ºC and 5% CO2 

overnight before treatment with HZ101. Drug dilutions were added to the wells 

from lanes 3 to 7 to achieve final drug concentrations of 1 µM, 5 µM, 25 µM, 50 

µM and 100 µM. Lanes 8 to 12 were loaded with the same array of HZ101 

concentrations. For the lane 2, cell culture was added as a control.  

 

 

Figure 48. MCF-7 cells incubated with HZ101 on a 96-well plate 

 

The plate was incubated for 72 hours at 37 ºC and then centrifuged at 1000rpm 

for 5 min. The cells were washed with NaCl before MTT treatment. The MTT 

solution was pipetted into each well, including the control (Figure 49). The plate 

was returned to the incubator for 4 hours and then centrifuged for 5 min. The 
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medium was removed by pipetting and DMSO was added to each well. The plate 

was shaken gently and placed in the incubator for 30min. The plate was read at 

550 nm in a plate reader.  

 

 

Figure 49. MCF-7 cells incubated with HZ101 on a 96-well plate after MTT 

treatment 

 

Baclofen and GABA were incubated with the MCF-7 breast cancer cell line. The 

MTT results in Graph 10 show that after 72 hours of incubation, the cell viability 

in both the baclofen and GABA groups did not differ significantly between 

concentrations of 1 μM to 100 μM. Even at the highest concentration of 100 μM, 

more than 90% of the cells remained alive, which indicates that baclofen and 

GABA had no cytotoxic effect on MCF-7 cells. However, to obtain statistically 

significant data, the chemosensitivity of the MTT assays had to be determined 

twice (n = 3 for the MTT assay). 
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Graph 10. MTT cell proliferation assay of Baclofen and GABA (measured at 

550nm, n=3) 

 

 

Graph 11. MTT cell proliferation assay of HZ101 (measured at 550nm, n=3) 

 

The cytotoxicity of the legumain activated probe HZ101 against MCF-7 breast 

cancer cells was evaluated by MTT assay. As shown in Graph 11 after 72 hours 

of incubation with HZ101 (at the concentration of 1 µM), more than 95% of cells 
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remained alive. The percentage of living cells decreased slightly to 85% when 

the concentration of HZ101 was 5 µM. At concentrations of 25 µM and 50 µM, 

only 25% and 18% of living cells were detected, respectively. At the highest 

concentration 100 µM of HZ101, the percentage of living cells dropped to 6%. 

According to this MTT results, HZ101 has low cytotoxicity, which makes it a good 

biomarker probe for breast cancer diagnosis and treatment. 

 

3.3.11.1 Cytotoxicity Assays of HZ105 and HZ93 

More studies are required into the stability of the GABA conjugates. The GABA 

anthraquinone conjugates were designed as templates for delivering the ligand 

GABA upon protease-mediated cleavage of GABA from the template. However, 

it is possible that the intact GABA conjugates may exert a cytotoxic effect, given 

that many anthraquinone-amino acid conjugates are known to be cytotoxic 

(members of the NU:UB series). To date it is not possible to identify the 

structures responsible for conferring toxicity. HPLC analysis of the stability of the 

AQ-GABA conjugates is necessary to determine whether or not the GABA is 

removed upon exposure to cancer cells and if so, on what timescale. The GABA 

conjugates here were only moderately potent (above single figure micromolar 

concentrations) but perhaps exposure times of greater than the 48 hours 

employed are necessary to observe fuller cytotoxic effects. In other words, it 

may be necessary to allow time for the GABA to be released.  

The trend in cytotoxic potency observed in this study, however, correlates well 

with many reported studies of anthracenediones. Cheng and Zee-Cheng (1983) 

reported that the more OH side chains present in the anthraquinone ring the 

greater the cytotoxicity. Moreover, studies showed that removal of both OH 

groups in MTX to afford ametantrone reduced activity more than ten-fold 

(Cavalletti et al., 1996). Hydroxyl groups according to Cheng and Zee-Cheng 
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(1978) do not necessarily improve intercalation itself but add to the overall DNA 

binding affinity where strong DNA binding is major driver for the intercalating 

agents to have long residence times between the base pairs to exert their 

cytotoxic effects.  

 

Compounds were tested for their cytotoxicity to compare the effects of there 

being two, one or no hydroxyl groups in the anthraquinone structure as show in 

Table 5. The IC50 value is the concentration of drug at which 50% of the cell 

population dies. From the data, the compound (HZ105) with two hydroxyl groups 

in the anthraquinone has the higher IC50 value than compound (AL4) with one 

hydroxyl group and the IC50 value of AL4 is higher than the compound (HZ93) 

with no hydroxyl groups. These results indicate that the presence of hydroxyl 

groups in the anthraquinone increased the drug toxicity. 

Tested Compound Structure Synthesis Code IC50 µM 

 

Mitoxantrone 0.005 

 

HZ93 68 

 

AL4 38 

 

HZ105 27 

Table 5. IC50 values of the tested compounds against MCF 7 cells (n = 3), 48 h. 
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3.3.12 HPLC Analysis of HZ101 and Its Metabolites 

Further analysis of probe HZ101 activity was carried out by HPLC. Peptide 

cleavage of the probe HZ101 by legumain releases two potential compounds 

HZ105 and Rho-PAN-OH as illustrated in Figure 51. In order to determine a 

proper wavelength for the UV detecting HPLC assay, a UV spectrum of HZ101, 

HZ105 and Rho-PAN-OH was produced (Figure 52). The wavelength of 585 nm 

was selected, where the absorbance of HZ105 and Rho-PAN-OH were at 

identical value. The absorbance of HZ101 is higher than that of its metabolites. 

 

Figure 51. HZ101 and its metabolites after legumain activation 
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Figure 52. The UV spectra of HZ101, HZ105 and Rho-PAN-OH at same 

concentration (50 μM) 

 

During the HPLC analysis, stock solutions of compound were prepared in 100% 

DMSO. The drug solutions needed for HPLC were further diluted in 50% 

acetonitrile in dH2O. HPLC was performed using a Waters 2695 instrument 

(Napier University). The mobile phase A was acetonitrile with 0.01% TFA and 

mobile phase B was H2O. A reverse-phase column (C18 HiChrom HIRPB-250A; 

25 cm × 4.6 mm) was used with gradients developed over a 42 min period as 

shown in (Table 6). Samples were injected onto the column in volumes of 25 µl 

with a flow rate of 1 ml/min and a column temperature of 25ºC. The UV detector 

of the HPLC system recorded the absorbance at the wavelength of 585 nm.  
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Table 6. HPLC gradient mobile phase composition 

 

The retention times of the legumain activated probe HZ101 and its potential 

metabolites (HZ105 and Rho-PAN-OH) determined by HPLC analysis were 

essential for the identification of metabolites produced during the cleavage of 

probe HZ101 in legumain assay buffer. Because all compounds were dissolved 

in 50% acetonitrile in H2O, a solution of 50% acetonitrile in H2O was tested first 

as the blank control.  

The probe Rho-Pro-Ala-Asn-GABA-[Propyl spacer]-AQ (HZ101) was analysed 

by HPLC with different concentrations of 1 μM, 5 μM, 10 μM, 25 μM and 50 μM.  

As shown in Figure 53, the five chromatograms all have the same retention time 

of the peak which is 12.4 min. A calibration curve was created with the peak 

absorbance on the y-axis and the concentration of HZ101 on the x-axis. The R2 

value was 0.9996. These data indicate that the HPLC column was in good 

condition and the operation of the experiment was accurate.  

 

The calibration curve for the probe HZ101 is shown in Figure 54. The curve 

equation (y = 51255 x + 5149.5) provided the source to calculate the precise 

concentration of probe HZ101 when area was the only certain value.  
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Figure 53. HPLC chromatograms of 1 μM, 5 μM, 10 μM, 25 μM and 50 μM 

probe HZ101. RT: 12.4 min 
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Figure 54. HPLC calibration curve for probe HZ101 

 

The HPLC analysis of H-GABA-[Propyl spacer]-AQ (HZ105) is displayed in 

Figure 55. HZ105 is one of the metabolites from the legumain cleavage of probe 

HZ101. Five different concentrations (1 μM, 5 μM, 10 μM, 25 μM and 50 μM) of 

HZ105 were analysed and the retention time of the peak was 6.2 min. The 

calibration curve is shown in Figure 56.  

 

217 



 

 

Figure 55. HPLC chromatograms of 1 μM, 5 μM, 10 μM, 25 μM, 50 μM HZ105 
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Figure 56. HPLC calibration curve for HZ105 

 

The compound Rho-PAN-OH (Rhodamine B-Pro-Ala-Asn-OH) is the other 

metabolite from the legumain cleavage of probe HZ101 and was characterised 

by HPLC at the concentration of 50 μM. According to its HPLC chromatogram 

(Figure 57), the retention time of the peak was 7.26 min.  

 

 

Figure 57. HPLC chromatograms of Rho-Pan-OH 
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A mixture of HZ101 and its metabolites HZ105 and Rho-Pan-OH was analysed 

by HPLC as shown in the chromatogram (Figure 58). At a wavelength of 585 nm, 

the peak absorbance of HZ105 and Rho-Pan-OH were nearly identical. The 

peak absorbance of probe HZ101 was nearly 4 times higher than those of the 

other two peaks. The three peaks were well separated using the designed HPLC 

mobile phase composition and the same conditions were considered in later 

drug-legumain assay.  

 

 

 

Figure 58. HPLC chromatograms of the mixture of HZ101, HZ105 and 

Rho-Pan-OH at concentration of 10 µM and 50 µM 

 

The probe HZ101 was incubated with legumain in the assay buffer for 3 hours. 
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The mixture of legumain, MES and NaCl in assay buffer might be risky for the 

HPLC column because of its low pH and salt content and attempts were made to 

remove these components before the HPLC analysis. The buffer solution was 

poured into a clean evaporating basin. The evaporating basin was transferred to 

a fume cupboard and the solution was evaporated at room temperature. The 

dried solid in the evaporating basin was suspended in methanol and the mixture 

was transferred to Eppendorf tubes and centrifuged for 10 min at 1000 rpm. The 

supernatant was removed to a new evaporating basin and dried at room 

temperature. The solid was re-dissolved in 50% acetonitrile in H2O to a 

concentration of 30 µM (HZ101 before cleavage) and prepared for HPLC 

analysis. 

 

In Figure 59, the HPLC chromatogram of probe HZ101 after 3 hours of 

incubation with legumain is shown. The concentration of HZ101 during the 

incubation was 10 µM which is the optimal concentration for legumain activation 

according to the fluorimetric assay (see Figure 47). The appearance of the 

peaks for Rho-Pan-OH and HZ105 clearly indicated that probe HZ101 was 

cleaved by legumain and converted into the two anticipated metabolites.  

 
Figure 59. HPLC chromatogram of HZ101 (10µM) after 3 hours of incubation 

with rh-legumain 
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After 24 hours’ of incubation of probe HZ101 with legumain, the probe was 

mostly cleaved into two compounds HZ105 and Rho-Pan-OH. As shown in 

Figure 60, the peak for probe HZ101 was very small and the absorbance value 

decreased to 0.001, whereas the absorbance values of the other two peaks 

were 0.012 and 0.04. Thus, HPLC analysis of HZ101 indicated that the probe 

was successfully activated by legumain and that the cleavage site was at the 

carboxyl end of asparagine. The HZ101 was converted into the anthraquinone 

quenching group HZ105 and the released fluoro group (Rho-Pan-OH).  

 

 

Figure 60. HPLC chromatogram of HZ101 (10µM) after 24 hours incubation with 

rh-legumain 

 

3.3.13 Lipophilicity Assay 

The partition coefficient of a chemical compound provides a measurement of its 

preference for the lipophilic or hydrophilic phases (Liu et al., 2011). A certain 

balance of lipophilicity and hydrophilicity is required for a drug to successfully 

pass through biological membranes. The most widely used model for lipophilicity 

is the partitioning of a compound between PBS buffer (pH 7.4) and octanol. The 

partition coefficient (LogP) refers to the unionised (neutral) form of the 
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compound. In the case of ionisable compounds, the term ‘distribution coefficient 

(LogD)’ is often used. The distribution coefficient takes into account the solution 

pH, which is important for the analysis of drug lipophilicity in biological 

environments. LogD is the logarithm of the ratio of the concentrations of the 

ionised form of the compound in water and octanol media. 

 

In the experiment, the compounds were distributed between octanol and PBS in 

the Eppendorf tubes and shaken for 24 hours. The concentrations of the 

compounds in each layer were determined from the calibration curves by UV 

spectroscopic methods and the distribution coefficient was calculated. Figure 61 

to 63 shows the calibration curves for HZ101, HZ105 and Rho-PAN-OH in the 

two phases PBS and octanol. The distribution coefficient was 1.2 for probe 

HZ101 (Table 7) and 0.49 for HZ105 (Table 8). Rho-PAN-OH is hydrophilic and 

has a negative value of LogD which was -0.75 (Table 9). 

 

 

Figure 61. Calibration curves for HZ101 in octanol and PBS 
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Table 7. Distribution coefficient LogD of HZ101 

 

 

Figure 62. Calibration curves for HZ105 in octanol and PBS 
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Table 8. Distribution coefficient LogD of HZ105 

 

 

Figure 63. Calibration curves for Rho-PAN-OH in octanol and PBS 
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Table 9. Distribution coefficient LogD of Rho-PAN-OH 
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3.4 Conclusion 

Legumain, an asparaginyl endopeptidase, is overexpressed in the majority of 

human tumours and is associated with tissue invasion and metastasis. An acidic 

environment is optimal for legumain proteolytic activity. Legumain has a unique 

enzyme substrate specificity towards the asparagine residue in the P1 position. 

Based on these properties, legumain is an attractive candidate for prodrug or 

probe design in the therapeutic or diagnostic applications. 

 

A legumain-activated probe, HZ101, was designed, synthesised and evaluated. 

The chemical structure of HZ101 (Rho-Pro-Ala-Asn-GABA-[Propyl spacer]-AQ) 

consists of a fluoro group (rhodamine B), a legumain-specific peptide substrate 

and a quenching aminodihydroxyanthraquinone spacer compound. The 

synthesis of HZ101 began with the reaction of 

leuco-1,4,5-trihydroxyhydroxyanthaquinone and diaminopropane to produce 

H-[Propyl spacer]-AQ (HZ103). The amino acid GABA was added to HZ103 as 

the anthraquinone-quenching group to form H-GABA-[Propyl spacer]-AQ TFA 

salt (HZ105). As the potential active agent and/or template for the release of 

GABA, the tripeptide Pro-Ala-Asn was attached to HZ105 by solution phase 

peptide synthesis. The product, H-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ 

(HZ99), was then reacted with rhodamine B. The N-protecting group 

triphenylmethyl (trityl) on the asparagine of HZ100 was removed by TFA 

treatment to yield the final compound probe HZ101, which was characterised by 

mass spectrometry. 

 

The biochemical properties of HZ101 were evaluated. The fluorimetric assay 

showed that incubation of HZ101 with legumain resulted in increased 

fluorescence intensity with time. The best result was obtained at a HZ101 
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concentration of 10 μM. This concentration was later considered in the HPLC 

analysis. The MTT assay revealed that probe HZ101 had relatively poor 

cytotoxicity against breast cancer cell lines, supporting its potential as a good 

candidate prodrug and biomarker probe. HPLC analysis of HZ101 and its two 

metabolites (HZ105 and Rho-Pan-OH) confirmed the retention times of the three 

compounds. Furthermore, HZ101 was incubated with legumain for 3 hours and 

24 hours. The results demonstrated that HZ101 was successfully cleaved by 

legumain at the proposed site. The lipophilicity tests confirmed that the probe 

HZ101 has a good balance of lipophilic and hydrophilic properties, which is 

crucial to allow the probe to cross biological barriers and eventually target 

tumours. 
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3.5 Structure Library 

 
 

H-GABA-[Propyl spacer]-AQ TFA salt (HZ93) 
 

 
 

Fmoc-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ94) 
 

 
 

H-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ95) 
 

 
Fmoc-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ96)  
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H-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ97) 
 

 
 

Fmoc-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ98)  
 

 
 

H-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ99) 
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Rho-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ100) 
 

 
 

Rho-Pro-Ala-Asn-GABA-[Propyl spacer]-AQ (HZ101) 
 

 
 

H-[Propyl spacer]-AQ (HZ103) 
 

 
 

Boc-GABA-[Propyl spacer]-AQ (HZ104)  
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H-GABA-[Propyl spacer]-AQ TFA salt (HZ105) 
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3.6 Experimental 

3.6.1 Synthesis of Fmoc-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ94) 

H-GABA-[Propyl spacer]-AQ TFA salt HZ105 (400 mg, 0.78 mmol) was 

dissolved in DMF, followed by the addition of Fmoc-Asn-OH (513 mg, 0.86 

mmol), TBTU (276 mg, 0.86 mmol), HOBt (132 mg, 0.86 mmol), and DIPEA (449 

µl, 2.58 mmol). The reaction was allowed to proceed at RT for 4 h and was 

monitored by TLC in chloroform: methanol (9:1): Rf 0.5. The reaction solution 

was extracted with chloroform and water. The organic layers were combined and 

poured into an evaporating basin and left to dry in a fume cupboard overnight. 

The solid crude product was collected. Yield: 730 mg, 96%. 

 

3.6.2 Synthesis of H-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ95) 

Fmoc-Asn(Trt)-GABA-[Propyl spacer]-AQ HZ94 (730 mg, 0.74 mmol) was 

suspended in 20% piperidine in DMF for 3 h. TLC was performed in chloroform: 

methanol (9:1): Rf 0.1. The solution was extracted with chloroform and water. 

The organic layers were combined and dried by rotary evaporator. The crude 

HZ95 was purified by silica gel chromatography (4.3 cm × 9.5 cm) and eluted 

with dichloromethane-methanol (6:1). The appropriate fractions were collected, 

filtered and evaporated to dryness. Yield: 503 mg, 90% 

ESMS (+): 754 m/z 100% (M-2H+H)+ 

 

3.6.3 Synthesis of Fmoc-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ96) 

H-Asn(Trt)-GABA-[Propyl spacer]-AQ HZ95 (500mg, 0.66mmol), Fmoc-Ala-OH 

(227 mg, 0.73 mmol), TBTU (230 mg, 0.72 mmol), HOBt (109 mg, 0.72 mmol) 

and DIPEA (373 µl, 2.16 mmol) were dissolved in DMF and the reaction mixture 

was allowed to proceed at RT overnight. TLC was performed in 

chloroform-methanol (9:1): Rf 0.4. The solution was extracted with 
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dichloromethane and water. The crude products in organic layers were collected. 

Yield: 595 mg, 86%. 

 

3.6.4 Synthesis of H-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ97) 

The crude Fmoc-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ HZ96 (595 mg, 0.57 

mmol) was suspended in 20% piperidine in DMF for 2 h. The reaction solution 

was extracted with dichloromethane and water. The organic layers were 

combined, dried and evaporated to a small volume (～ 3 ml) for further 

purification by column chromatography (4.3 cm×151 cm). The solid product was 

collected. Yield: 356 mg, 76%. 

 

3.6.5 Synthesis of Fmoc-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ 

(HZ98) 

A quantity of 356mg, 0.43mmol of H-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ 

HZ97, Fmoc-Pro-OH (160 mg, 0.47 mmol), TBTU (153 mg, 0.48 mmol), HOBt 

(73 mg, 0.48 mmol) and DIPEA (248 µl, 1.44 mmol) were dissolved in DMF. The 

reaction was complete in 3 h confirmed by TLC in chloroform-methanol (6:1): Rf 

0.8. After extraction with chloroform and water, the organic layers were 

combined, and dried by rotary evaporation. The crude product was retained in 

the round-bottom flask for the next Fmoc de-protection reaction. 

 

3.6.6 Synthesis of H-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ99) 

H-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ HZ98 was dissolved in 20% piperidine 

in DMF for 2.5 h. TLC was performed in chloroform-methanol (6:1): Rf 0.2. The 

solution was extracted with dichloromethane and water and the organic layers 

were combined and dried by rotary evaporation. The crude HZ99 was purified by 

silica gel chromatography (4.3 cm × 13.5 cm) and eluted with 
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chloroform-methanol (10:1). The appropriate fractions were collected, filtered 

and evaporated to dryness. Yield: 336mg.  

ESMS (+): 922 m/z 100% (M-2H+H)+ 

 

3.6.7 Synthesis of Rho-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ (HZ100) 

Rhodamine B (150 mg, 0.31 mmol), PyBop (253 mg, 0.49 mmol) and DIPEA 

(120 µl, 0.7 mmol) were dissolved in DMF. A stir bar was placed in the 

round-bottom flask to aid dissolving. After 15 min of stirring, 

H-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ HZ99 (320 mg, 0.35 mmol) was 

added to the reaction. The reaction was complete in 1 h as confirmed by TLC in 

chloroform-methanol (6:1): Rf 0.45. The solution was poured into an evaporating 

basin to dry overnight. HZ100 was further purified by silica gel chromatography 

(4.3 cm×13 cm) using chloroform-methanol (8:1) as the solvent system. The 

fractions containing pure HZ100 were combined, filtered and evaporated to 

dryness. Yield: 380 mg, 79%. 

 

3.6.8 Synthesis of Rho-Pro-Ala-Asn-GABA-[Propyl spacer]-AQ (HZ101) 

Rho-Pro-Ala-Asn(Trt)-GABA-[Propyl spacer]-AQ HZ100 (380 mg, 0.28 mmol) 

was treated with TFA at RT for 1 h. The reaction was monitored by TLC in 

chloroform-methanol (6:1): Rf 0.1. The solution was evaporated to dryness and a 

few drops of ethanol were added to the flask. Diethyl ether was then poured into 

the flask to dissolve the precipitated solid compound HZ101. The mixture was 

stored in the flask in a refrigerator overnight. The mixture was filtered and the 

product was dried in the desiccator and collected. Yield: 275 mg, 81% 

ESMS (+): 1104 m/z 100% (M-CO2CF3)+ 
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3.6.9 Synthesis of H-[Propyl spacer]-AQ (HZ103) 

Leuco-hydroxyl anthraquinones (1 g, 3.7 mmol) and diaminopropane (1 ml) were 

suspended in dichloromethane (50 ml). The reaction solution was refluxed in a 

60ºC water bath. After 1 h, trimethylamine (0.5 ml) was added to the reaction. 

The round-bottom flask with the reaction mixture was removed from the water 

bath. After oxidation by pumping air into the flask, the colour of the compound 

became dark blue. The paste solid was filtered, extracted 

(dichloromethane-water), and dried. The crude product was collected. Yield: 200 

mg, 17%. 

 

3.6.10 Synthesis of Boc-GABA-[Propyl spacer]-AQ (HZ104) 

H-[Propyl spacer]-AQ HZ103 (200 mg, 0.64 mmol), Boc-GABA-OH (143 mg, 0.7 

mmol), PyBop (399 mg, 0.77 mmol) and DIPEA (256 µl, 1.5 mmol) were 

dissolved in DMF. The reaction was complete in 2 h as confirmed by TLC in 

chloroform-methanol (6:1): Rf 0.7. After extraction with chloroform and water, the 

crude HZ104 was purified by column chromatography with an elution system of 

dichloromethane and water (6:1). The appropriated fractions were combined, 

filtered and dried. The solid was collected. Yield: 150 mg, 47% 

 

3.6.11 Synthesis of H-GABA-[Propyl spacer]-AQ TFA salt (HZ105) 

HZ104 (150 mg, 0.3 mmol) was treated with TFA for 1 h. TLC was performed in 

chloroform-methanol (3:1): Rf 0.9. The solution was evaporated to dryness and 

further purification was performed by thick layer chromatography. The solvent 

system dichloromethane-methanol (9:1) was used. The product layer was 

scratched off the plate and the solid HZ105 was collected by filtration and 

evaporation. Yield: 70 mg, 45%. 
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1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.7-1.85 (4H, m, AQ-NH-CH2-CH2 

and NH3-CH2-CH2); 2.15-2.3 (2H, t, NH3-CH2-CH2-CH2); 2.72-2.9 (2H, t, 

NH3-CH2); 3.12-3.25 [7H, m, unresolved, AQ-NH-CH2-CH2-CH2 and NH3 

(exchanged)]; 7.18-7.3 (2H, m, H-2 and H-3); 7.3-7.4 (1H, d, H-7); 7.58-7.7 (2H, 

m, H-6 and H-5); 8.1(1H, t, NHCO); 9.8 (1H, t, AQ-NH) 

ESMS (+): 398 m/z 100% (M-CO2CF3)+ 

 

3.6.12 Synthesis of Boc-GABA-Propyl-AQ (HZ92) 

The staring material H-Propyl-AQ NU:UB 197 (500 mg, 1.79 mmol) and 

Boc-GABA-OH (399 mg, 1.97 mmol) were dissolved in DMF (25 ml), followed by 

the addition of the coupling reagents TBTU (630 mg, 1.97 mmol), HOBt (300 mg, 

1.97 mmol) and DIPEA (1024 μl, 6.5 mmol). The reaction was complete in 4 h as 

determined by TLC (Rf 0.45). The reaction solution was extracted with 

dichloromethane and water. The organic layers were combined and poured into 

an evaporating basin to dry overnight. The crude product was purified by column 

chromatography (3.2 cm × 15 cm) using the solvent system 

dichloromethane-methanol (14:1). The appropriate fractions were combined, 

filtered and collected for the next de-protection reaction. 

 

3.6.13 Synthesis of H-GABA-Propyl-AQ TFA salt (HZ93) 

Boc-GABA-Propyl-AQ (HZ92) was dissolved in TFA for 40 min. After confirming 

the reaction b TLC, the solution was evaporated to a small volume 

(approximately 2 ml). Then diethyl ether (50 ml) was added to the flask to 

precipitate the product HZ93. The solid was collected by filtration. Yield: 450 mg, 

52%. 

 

1H NMR spectrum (DMSO-d6, 300 MHz) δ: 1.7-1.9 (4H, m, AQ-NH-CH2-CH2 and 
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NH3-CH2-CH2); 2.18-2.38 (2H, m, NH3-CH2-CH2-CH2); 2.75-2.9 (2H, m, 

NH3-CH2); 3.15-3.28 (2H, q, AQ-NH-CH2-CH2-CH2); 3.28-3.5 (2H, q, 

AQ-NH-CH2); 7.26 (1H, d, H-2); 7.45 (1H, d, H-4); 7.6-7.7 (1H, t, H-3); 7.8-7.95 

(2H, m, H-6 and H-7); 8.05-8.16 (2H, m, H-5 and H-8); 8.16-8.27 (1H, t, CONH); 

9.7 (1H, t, AQ-NH) 

 

3.6.14 HZ101 Fluorimetric Assay 

Materials 

 Activation buffer: 50 mM sodium acetate, 100 mM NaCl, pH 4.0 

 Assay buffer: 50 mM MES hydrate, 250 mM NaCl, pH 5.0 

 Recombinant human legumain (R&D systems): The stock (10 µl) was 

diluted in activation buffer (100 µl) and stored at -80 ºC. The stock was 

incubated for 2 h at 37 ºC before assaying. The aliquots were then 

diluted to 1ng/µl in assay buffer. 

 Drug stock solutions:1mg/ml in DMSO 

 FluoStar Omega multi-mode microplate reader 

 

Method 

A 96-well plate was used for the assay. Wells A1～C1 contained assay buffer 

(100 µl), A2～C2 contained assay buffer (98.78 µl) and HZ101 (1.22 µl, 10 µM), 

and A3～C3 contained assay buffer (58.78 µl), HZ101 (1.22 µl, 10 µM) and 

rh-legumain (40 µl, 1 ng/µl).  

 

The plate was read in a FluoStar Omega multi-mode microplate reader and 

spectra were recorded every 5 min for 2 h. 
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3.6.15 Cytotoxicity assays 

Method for MCF-7 cell culture 

MCF-7 mammary carcinoma cells were grown in 75 cm2 flask containing 30 ml 

of RPMI 1640 medium supplemented with 10% FBS, 1% penicillin/streptomycin 

and 1% L-glutamine at 37ºC in the incubator (5% CO2). The MCF-7 cells were 

adherent to the flask. Fresh medium was supplied every two to three days and 

the cells were passaged weekly. 

The cells were harvested when needed. The medium was poured out and the 

cells were washed with sodium chloride 3 times. After washing, 10% trypsin in 

NaCl was added to the flask and incubated for 8min at 37 ºC to suspend the 

cells. The mixture was poured into a 50 ml tube and centrifuged for 2 min at 

2000 rpm. The pelleted cells were then collected for MTT assays or passaged 

and resuspended in fresh medium. 

 

3.6.16 MTT Assay 

Materials for MTT assay 

The stock solution (1mM) of HZ101 in DMSO was sterilised by filtration. Further 

dilutions were prepared to obtain concentrations of 100, 50, 25, 5, and 1 µM in 

phenol red free RPMI medium. The cells were seeded, counted and diluted to 

achieve a cell suspension of 1.4×104 cells/ml.  

 

Methods for MTT assay 

The wells in lane 1 of a 96-well plate contained 200 µl of medium only as a blank 

control. In lanes 2 to 12, 150µl of cell suspension (1.4×104 cells/ml) was pipetted 

into each well. The plate was incubated at 37 ºC, 5% CO2 overnight before 

treatment with HZ101 compounds. The final drug concentrations in lanes 3 to 7 

were 1, 5, 25, 50, 100µM. If needed, 50 µl of the correct drug dilution was added 
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to individual wells to achieve the above concentrations. Lanes 8 to 12 were 

loaded in the same manner as HZ101. In lane 2, 50 µl of cell culture was added 

as a control. 

 

After incubation for 72 hours at 37 ºC, the plate was centrifuged at 1000 rpm for 

5 min. The cells were washed with NaCl before MTT treatment. Then, 2 ml of 

MTT (5 mg/ml in 0.01 M PBS) was added to 5ml of RPMI medium. The solution 

(50 µl) was pipetted into each well, including the control. The plate was returned 

to the incubator for 4 hours and then centrifuged at 1000rpm for 5 min. The 

medium was removed by pipetting and DMSO (150 µl) was added to each well. 

The plate was shaken gently and placed in the incubator for 30min. The plate 

was read at 550 nm in a plate reader.  
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Chapter 4 New colour reagents for Amino group 

detection and use in SPPS 

4.1 Abstract 

During the solid phase peptide synthesis (SPPS), it is essential to monitor the 

completion of the Fmoc cleavage and the coupling reaction. Some drawbacks 

with classical methods for amino group detection, notably unsatisfactory results 

with secondary amino acids and complex procedures have provided the 

motivation to develop a new colour test here as a simple, sensitive and efficient 

method for visual detection of the resin beads. Three compounds (HZ20, HZ22 

and HZ24) with different colours were synthesised and evaluated. The new 

compounds were each based on highly coloured aminoanthraquinones. The 

data presented here shows that these reagents are capable of detecting free 

amino groups on resin beads used for SPPS. In addition to reaction monitoring, 

for one of these reagents, it was shown that on-bead labelling can be performed, 

leading to recovery of a labelled peptide after cleavage, suitable for 

characterisation. HPLC methods were developed for separation of labelled 

structurally related compounds. 

 

4.2 Introduction 

Solid phase peptide synthesis (SPPS), pioneered by Merrifield, is largely used in 

construction of chemical libraries, particularly in medicinal chemistry (Merrifield, 

1963). SPPS has many advantages over traditional synthesis such as all 

reagents can be simply washed away each step, overall quicker time for 

synthesis, convenient work-up and the synthetic intermediates do not have to be 

isolated (ref). Fmoc-SPPS is the universally applied method of choice for SPPS, 

mainly due to the low cost of commercially available Fmoc amino acids and 
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continuing improvements in Fmoc solid-phase technology (Behrendt, White, & 

Offer 2016). Fmoc-protected amino acids are increasingly used in automated 

technologies to synthesise medicinally useful peptides including chemically 

engineered peptides (Mäde, Els-Heindl S, & Beck-Sickinger AG, 2014). However, 

the efficiency of SPPS is often limited by the low level of completeness of amino 

acid coupling steps. Efficiency of coupling is especially important in the 

application of combinatorial methods to the synthesis of peptide based drug 

susbtances on solid-phase (Gordon et al., 1994). In this case, the development 

of a more reliable and sensitive visual colourimetric assay to detect free amines 

on solid support is essential.  

To date, several colourimetric assays are available for detection of the amino 

acid coupling in SPPS. The ninhydrin-based Kaiser test (Kaiser et al., 1970) and 

a later modification (Sarin et al., 1981), and use of TNBS (2,4,6 

trinitrobenzenesulphonic acid; (Hancock and Battersby, 1976) are two of the 

most common colourimetric tests. The ninhydrin based tests are not very 

sensitive to sensitive to aromatic amines, nor are they able to detect secondary 

amines such as proline. TNBS is not effective for sterically hindered amines. An 

alternative is 4-N,N’-dimethylaminoazobenzene-4’-isothiocyanate (DABITC) 

which is able to detect primary and secondary amines and has been used for 

detection HPLC detection of side-chain-labelled lysines in peptides (Nair et al., 

1994) and N-terminal sequencing of peptides (Chang, 1981). However, the 

visual colour of the treated resin is yellow to orange which cannot be desirable 

because the resin will become a similar colour during successive rounds of the 

SPPS process. The MGI (malachite green isothiocyanate) method is wasteful 

and time-consuming and needs 1 hour reaction time and 4 mg of resin. The 

so-called DMT (dimethoxytrityl) and NPIT (nitrophenylisothiocyanate-O-trityl) 

tests rely on UV-measurements. More recently, the use of a p-nitrophenylester of 
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Disperse Red 1 (known as NF31) has been reported as a more sensitive method 

but requires a reacting condition of 70°C (Madder et al., 1999; Steven et al., 

2007). The latter, because it contains a diazo-group, cannot be used under 

reducing conditions. The shortcomings of all the above methods encouraged this 

work to develop a new colourimetric assay for SPPS. 

This chapter reports three new reagents with different colours (blue, red, and 

purple) for monitoring coupling step of SPPS were synthesized and evaluated. 

They are all rapid (within 2 min), sensitive and reactive at room temperature. 

Furthermore, these methods are applicable to both sterically hindered primary 

and secondary amines. These new colour reagents have very low toxicity and 

are safe to handle during SPPS; dry, they are stable stored in the solid state at 

4°C for more than 12 months.  
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4.3 Results and discussion 

Three colour test reagents HZ20, HZ22 and HZ24 (blue, red and purple 

respectively) were developed for SPPS and their syntheses, properties and 

some applications are described in the following sections. The chromophores 

were aminoanthraquinones with varying numbers of additional hydroxy groups 

that enhance the colur of the compound (the visible absorption maxima being 

shifted to longer wavelength). The design of the new chemical tools for amine 

detection and peptide coupling reaction monitoring on-resin was based upon 

creating new O-pentafluorophenyl active esters of anthraquinone-spacer 

carboxylic acids (AQ-spacer-COOPfp). Reaction of on-resin amino groups with 

these reagents was expected to colour the beads unless all amino groups had 

been fully acylated during couplings. Removal of a sample of beads after a 

coupling step allowed treatment with the given 

anthraquinone-pentafluorophenolate and a positive colour on visual inspection 

indicated that the reaction had not gone to completion due to capping of residual 

amino groups in the beads.  

 

4.3.1 Synthesis of AQ-Gly-methyl (HZ18) 

Reaction of leucoquinizarin with amines is a well-known reaction to produce 

either 1-substituted or 1,4-disubstituted anthraquinones (Greenhalgh and 

Hughes, 1968), Zee-Cheng and Cheng,1978; Zee-Cheng et al., 1979; Murdock 

et al., 1979).  

Leucoquinizarin and glycine-methylester hydrochloride were mixed and 

dissolved in DMF, followed by the addition of K2CO3 as the base (Scheme 39). 

The reaction mixture was heated on a steam bath for 1 hour and then aerated for 

another 1 hour. The reaction solution was extracted with chloroform and water. 

The extraction process was very difficult as both aqueous and organic layers 
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were darkly coloured. The organic layers were combined and dried with 

anhydrous sodium sulphate. After filtration and evaporation, the solid compound 

HZ18 was collected and purified by column chromatography using the solvent 

system chloroform to ethyl acetate 9:1. The appropriate fractions containing the 

major product were combined and collected. 

 

Reagents and Conditions: (a) K2CO3 in DMF 

Scheme 39. Outline of HZ18 synthesis 
 

The synthesis required conditions that allow the formation of the 

mono-amination product in order to prevent reaction at the 1-, and 4-positions of 

the leucoqunizarin ring. The TLC of the reaction mixture showed traces of the 

blue bis-aminated byproduct but the target compound was the major product 

unless reaction times were extended. The structure of HZ18 was confirmed by 

its 1H nmr spectrum (in CDCl3) which showed, for example, the expected pattern 

of signals for the AA’BB’ system at δ 8.41-8.39 (1H, d, H-8); 8.36-8.33 (1H, d, 

H-5) and 7.85-7.81 (1H, m, H-7); 7.80-7.75 (1H, m, H-6). The methyl ester 

protons were assigned to a three-proton singlet at 3.86 ppm and the 
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anthraquinone NH proton was a clear one-proton triplet at 10.49 ppm. The 

4-hydroxy group proton was shifted to higher ppm as a result of chelation to the 

C-10 carbonyl group of the quinone. Remaining protons were all assigned. The 

product ester HZ18 formed the source of the required carboxylic acid (HZ19) by 

hydrolysis of the methyl ester. 

 

4.3.2 Synthesis of AQ-Gly-OH (HZ19) 

In order to introduce the required acid group into the new anthraquinone-glycine 

conjugate colour test reagent, the methyl ester had to be hydrolysed. 

AQ-Gly-methyl (HZ18) and lithium hydroxide (LiOH•H2O) were dissolved in 

aqueous methanol (Scheme 40). The mixture was stirred for 1.5 hours and then 

extracted by chloroform and water. All the organic layers were combined and 

evaporated to dryness. The dry crude product HZ19, clean on TLC was 

considered ready for the next reaction (conversion to the OPfp active ester) 

without further purification.   

 

Reagents and Conditions: (a) aqueous methanol  

Scheme 40. Outline of HZ19 synthesis 
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4.3.3 Synthesis of AQ-Gly-OPFP (HZ20) 

The SPPS colour test reagent HZ20 was synthesised by mixing the glycine 

conjugate HZ19, DCC and pentafluorophenol (PFP) together in ethyl acetate 

(Scheme 41). The reaction was completed in 2 hours by checking the TLC. 

Silica gel chromatography was performed for the purification of HZ20 running 

with a solvent mixture of chloroform to ethyl acetate 7:1. The chromtographically 

homogeneous final product was collected by evaporation and drying under 

vacuum. 

 

Reagents and Conditions: (a) DCC, DMAP in ethyl acetate  

Scheme 41. Outline of HZ20 synthesis 

 
The structure of pentafluorophenolate HZ20 was confirmed by its 1H NMR 

spectrum (in CDCl3) that included two one-proton singlets at 13.46 and 10.52 

ppm for the 4-OH and NH protons, respectively. In addition to the assignment of 

all aromatic protons, the methylene group protons of the glycine residue were 

assigned to a distinct two-proton singlet at 4.61 ppm. In the proton decoupled 

and 13C decoupled, 19F nmr spectrum of HZ20 the three environments for the 
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fluorine signals of the ortho, meta and para fluorine atoms were recorded at  

-152.4; -156.8 and -161.5, respectively. 

 

4.3.3.1 Colour test with HZ20 

H-Leu-2-ClTrt resin was first used for the colour test. A small amount of the 

commercially available resin (Novabiochem) was transferred into an SPPS 

reaction vessel. Dichloromethane was poured into the vessel to swell the resin 

beads for 1 hour. Dichloromethane was drained off by use of a vacuum pump 

and the resin was washed with DMF. A few beads were transferred into a small 

sample bottle. HZ20 in DMF (1 mmol, 200 μl) and about a drop of DIPEA were 

added to the bottle. After 2 minutes, the purple solution was pipetted out and the 

beads were washed with DMF. The beads became purple in colour and under 

the microscope the beads were captured in the image shown in Figure 64.  

 

 

Figure 64. Resin beads coloured by HZ20 

 

The resin beads clearly had become strongly coloured through reaction between 
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the pentafluorophenolate active ester of HZ20 and the free amino groups on the 

surface of the native beads. The coloured reagent was clearly chemically 

attached to the beads since it the colour persisted when repeatedly washed with 

solvent.  

 

4.3.4 Synthesis of AQ-Ahx-OH (HZ21) 

For the synthesis of the second pentafluorophenolate colour test reagent HZ22, 

the starting material 1-chloroanthraquinone was reacted with 6-aminohexanoic 

acid in DMSO on the 100⁰C water bath (Scheme 42). The reaction was 

confirmed by TLC, showing the formation of a new major product spot of 

anthraquinone-acid HZ21, and the solution was cooled to room temperature. 

The purification of HZ21 used the silica gel chromatography with the solvent 

system of dichloromethane and methanol (9:1). The product fractions containing 

the new product were combined, dried and collected for further reaction and 

characterisation.  

 

Reagents and Conditions: (a) DMSO, 100⁰C water bath  

Scheme 42. Outline of HZ21 synthesis 
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The structure of the anthraquinone aminohexanoic acid conjugate HZ21 was 

confirmed by its 1H NMR spectrum (in CDCl3), which showed, for example, a 

one-proton triplet (AqNH) at 9.77 ppm and a two proton multiplet at 3.40-3.36 

ppm for the adjacent methylene group protons. The Anthraquinone H-2 proton 

was a doublet at 7.09 ppm. The methylene group protons adjacent to the ester 

carbonyl group were assigned to a two-proton triplet at 2.46-2.43 ppm. All other 

protons could be assigned with the exception of the carboxylic acid proton which 

was deemed to have undergone proton exchange broadening. However, the 

presence of the carboxylic acid group was confirmed by identification of a third 

carbonyl quaternary carbon atom in the proton decoupled 13C NMR spectrum at 

178.4 ppm, in addition to the C-9 and C-10 quinone carbonyl carbons at 185.05 

and 183.85 ppm respectively. The anthraquinone acid HZ21 was then ready for 

esterification with pentafluorophenol to afford the target reagent HZ22. 

 

4.3.5 Synthesis of AQ-Ahx-OPFP (HZ22) 

The second SPPS colour test compound HZ22 was synthesised by the reaction 

of HZ21 and pentafluorophenol in dichloromethane, by using DCC and DMAP as 

the coupling reagents (Scheme 43). The final product was purified by column 

chromatography using the solvent system dichloromethane to ethyl acetate 9:1. 

The purified solid compound was collected by precipitation in hexane. 
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Reagents and Conditions: (a) DCC & DMAP in Dichloromethane  

Scheme 43. Outline of HZ22 synthesis 
 

The structure of the pentafluorophenolate HZ22 was confirmed by its 

nanoelectrospray ESI (+) spectrum that showed a strong signal at m/z 504 

corresponding to (M + H)+; M 503 Da.  

The structure was also confirmed by its 1H NMR spectrum, which showed 

signals for example at 9.79 ppm (one-proton triplet AqNH) and a two proton 

multiplet at 3.42-3.37 ppm for the adjacent methylene group protons. The 

anthraquinone H-2 proton was a doublet at 7.08 ppm. Adjacent to the ester 

carbonyl group, the methylene group protons were assigned to a two-proton 

triplet at 2.77-2.73. The remaining methylene group signals for the hexyl spacer 

in HZ22 were all assigned together with the AA’BB’ system for H5, H8 and H6, 

H7 and remaining aromatic protons. Furthermore, in the proton decoupled and 

13C decoupled, 19F NMR spectrum of HZ22 the three environments for the 

fluorine signals of the ortho, meta and para fluorine atoms were recorded at 
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-152.8; -158.1 and -162.2, respectively. 

 

4.3.5.1 Colour test with HZ22 

A small amount of Fmoc-Ala-Wang resin was allowed to swell in 

dichloromethane. The resin beads were washed by DMF. A few beads were 

transferred to a small sample bottle which contained the solution of HZ22 

dissolved in DMF (1 mmol, 200 μl). One drop of DIPEA was added to the 

reaction. After 2 minutes, the red solution was pipetted out and the beads in the 

bottle were washed with DMF. The beads had no red colour by visual 

observation, indicative of there being no residual free amine groups on the Fmoc 

resin and confirming that there was no red colouration as a result of any possible 

staining or physical absorption of the reagent into the resin matrix. 

The Fmoc-Ala-Wang resin was N-terminal deprotected by using standard 

conditions of 20% piperidine in DMF. The resin beads were then washed by DMF 

3 times. The colour test by HZ22 showed that all beads turned red as shown in 

Figure 65. The beads were also observed under the microscope as shown in 

Figure 66. 

 

Figure 65. Resin beads coloured by HZ22 in the sample bottle 
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Figure 66. Resin beads coloured by HZ22 

 

4.3.6 Synthesis of AQ-[4-Hydroxyl]-Ahx-OH (HZ23) 

Preparation of a third candidate colour test pentafluorophenolate was carried out 

to create an analogue of HZ22 which had an additional hydroxyl group in the 

4-position of the anthraquinone chromophore. The procedure was analogous to 

that used for the synthesis of the 1-amino-4-hydroxy analogue, HZ20, to afford a 

mono aminated product. 

Leuoquinizarin was reacted with 6-aminohexanoic acid by the addition of K2CO3 

in DMF on the 100⁰C water bath (Scheme 44). The reaction solution was cooled 

to RT and aerated for 1 hour. The crude product AQ-[4-Hydroxyl]-Ahx-OH (HZ23) 

was purified by column chromatography using the solvent system 

dichloromethane to methanol 10:1. The resulting acid then required esterification 

with pentafluorophenol to afford the third candidate test reagent (HZ24). 
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Reagents and Conditions: (a) K2CO3 in DMF 

Scheme 44. Outline of HZ23 synthesis 
 

4.3.7 Synthesis of AQ-[4-Hydroxyl]-Ahx-OPFP (HZ24) 

The synthesis of the third SPPS colour test reagent HZ24 was completed by the 

coupling reaction of AQ-[4-Hydroxyl]-Ahx-OH (HZ23) and pentafluorophenol by 

the addition of DCC and DMAP. The reaction mixture was dissolved in 

dichloromethane (Scheme 45). Purification of the final target compound 

AQ-[4-Hydroxyl]-Ahx-OPFP (HZ24) was performed by silica gel chromatography. 

The column was eluted by a solvent mixture of dichloromethane and ethyl 

acetate. Hexane was then used to precipitate the purified solid product. 
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Reagents and Conditions: (a) DCC & DMAP in Dichloromethane  

Scheme 45. Outline of HZ24 synthesis 

 

The structure of HZ24 was confirmed by its 1H NMR spectrum (CDCl3), which 

showed signals for example, the singlet at 13.76 ppm for the strongly 

de-shielded 4-hydroxy group proton, chelated to the quinone carbonyl, and a 

one proton triplet at 10.37 ppm for the amino group proton. The anthraquinone 

H-2 and H-3 protons were assigned as one-proton multiplets at 7.25 and 7.23 

respectively. Methylene group signals adjacent to the anthraquinone and to the 

ester carbonyl appeared at 3.48-3.43 and 2.77-2.73 ppm respectively. 

Furthermore, in the proton decoupled and 13C decoupled, 19F NMR spectrum of 

HZ24, the three environments for the fluorine signals of the ortho, meta and para 

fluorine atoms were recorded at -152.7; -158.01 and -162.30, respectively. 
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4.3.7.1 Colour test using HZ24 

Figure 67 shows the photograph of chlorotrityl resin beads with free amino 

groups and coloured by AQ-[4,Hydroxyl]-Ahx-OPFP (HZ24). The beads were all 

a dark purple colour. For comparison, samples of the resin beads coloured 

separately by the three new test reagents HZ20, HZ22 and HZ24 were mixed to 

obtain the photograph shown in Figure 68. 

 

 

Figure 67. Resin beads coloured by HZ24 
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Figure 68. Mixture of resin beads coloured by HZ20, HZ22 & HZ24 

 

4.3.8 HPLC analysis of HZ22 labelled peptides 

It was recognised that the newly synthesised colour reagents can have wider 

applications than just monitoring the coupling reaction of SPPS. It was 

envisaged the reagents could be used to label deprotected peptides on resin 

and then perhaps be cleaved from the resin to afford N-labelled peptides 

suitable for peptide characterisation. There are several methods reported for the 

characterisation of N-labelled peptides and the most common ones rely on 

analysis of their Fmoc derivatives since these are the ones that emerge from 

SPPS methods. Methods have relied on UV properties of the Fmoc group and 

have been combined with mass spectrometric characterisation for both free and 

resin-bound amino acid and peptides. Use of combined HPLC-tandem mass 

spectrometry after derivatisation with Fmoc chloride is a recent example (Ziegler 

and Abel 2014).  In this project, it was reasoned that, for example, the red 

reagent AQ-Ahx-OPFP (HZ22) is able to label peptides which will be further 
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analysed by HPLC, provided an HPLC method could be developed. 

 

Figure 69 shows the chemical structure of an HZ22 labelled pentapeptide which 

was synthesised to investigate the potential for HZ22 labelling at the N-terminus 

followed by further characterisation by HPLC. The peptide sequence was 

chosen because it was relevant to the work described in Chapter one of this 

thesis. The sequence contained a gly-nva cleavage site for MMP-9. The 

pentapeptide was synthesied by standard SPPS methods. AQ-Ahx-OPFP (HZ22) 

was reacted with the free amine group of the pentapeptide on resin by using only 

the DIPEA catalyst in DMF. The resulting labelled product, 

AQ-Ahx-Pro-Ala-Gly-Nva-Pro-OH (HZ60) was cleaved from the resin by TFA 

treatment. Figure 70 illustrates the overall planned synthesis of HZ60. 

 

Figure 69. The chemical structure of HZ60 
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Figure 70. Synthesis route for N-labelled pentapeptide HZ60 

 

The N-labelled pentapeptide, AQ-Ahx-Pro-Ala-Gly-Nva-Pro-OH (HZ60) was 

successfully characterised by nanoelectrospray negative ionisation mass 

spectrometry (Figure 71). A signal at m/z 757 [M – 1]-, (100%) corresponded to a 

molecular mass of 758 Da.  
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Figure 71. The ESI (-) Mass spectrum of AQ-Ahx-Pro-Ala-Gly-Nva-Pro-OH 

(HZ60) 
 

The anthraquinone-pentapeptide conjugate HZ60 was shown to be accessible to 

characterisation by negative ion electrospray MS, affording a strong signal (100% 

R.A. and base peak), together with good agreement between the theoretical 

isotope pattern and the observed ions for M-1. 
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4.3.8.1 Further examples of N-labelled members of the series 

Another two compounds AQ-Ahx-Pro-Ala-Gly-OH (HZ106) and AQ-Ahx-Pro-OH 

(HZ107) were synthesised by same SPPS method as 

AQ-Ahx-Pro-Ala-Gly-Nva-Pro-OH (HZ60) starting with the appropriate amino 

acid loaded resin. The chemical structures are shown in Figures 72 and 73. 

These compounds were prepared for an HPLC study to explore the feasibilty of 

deriving a simple, reliable method for separating closely structurally related 

series of labelled peptides.   

 

 

Figure 72. Chemical structure of HZ22 N-labelled prolylalanine HZ106 

 

 

Figure 73. Chemical structure of HZ22 N-labelled proline HZ107 

 

4.3.8.2 HPLC/UV analysis of HZ22 N-labelled amino acids and peptides 

HPLC was performed using a WATERS e2695 Alliance HPLC instrument and 

WATERS 2489 UV/VIS detector (Edinburgh Napier University). Mobile phase A 

consisted of 100% Acetonitrile, 0.1% TFA and mobile phase B of 100% HPLC 

water, 0.08% TFA, pH 2.00 (±0.05). A reverse phase column (Agilent Zorbax 
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Extend C18, 5 µm, 4.6 mm x 50 mm) was used with gradients developed over a 

15 min period. Mobile phase A was changed from 40% to 42% over 5 minutes 

and isocratic hold at 42% A for 5 column volume time, then re-equilibration at 

initial conditions for 10 column volume time. Samples were injected onto the 

column in volumes of 10 μl with a flow rate of 1 ml/min and a column 

temperature of 40 ⁰C. The absorbance in the UV was recorded at wavelength 

505 nm. 

 

Stock solutions of compound (1 mg/ml) were prepared in 100% DMSO. The 

compound solutions were then diluted further in 50% acetonitrile in dH2O to the 

concentration of 100 μM.  

 

HPLC analysis of anthraquinone-pentapeptide conjugate 

AQ-(CH2)5-Pro-Ala-Gly-Nva-Pro-OH (HZ60) was conducted and the retention 

time was recorded. Figure 74 shows the HPLC chromatogram of the compound.   

 

 

Figure 74. HPLC chromatogram of 100 μM HZ60 (pentapeptide), Retention time: 

3.92 min 

 
The HPLC chromatogram of AQ-(CH2)5-Pro-Ala-Gly-OH (HZ106) was shown in 
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Figure 75. There is a single peak in the chromatogam which indicated the high 

purity of the compound. The retention time is different from HZ60 above under 

the same column conditions. Figure 76 shows a chromatogam of the HPLC 

analysis of ‘red’-labelled proline: AQ-(CH2)5-Pro-OH (HZ107).  

 

 

Figure 75. HPLC chromatogram of 100 μM HZ106 (tripeptide), Retention time: 

2.62 min 

 

 

Figure 76. HPLC chromatogram of 100 μM HZ107 (proline conjugate), 

Retention time: 5.5 min 
 

A mixture of the three N-labelled compounds: pentapeptide 

AQ-(CH2)5-Pro-Ala-Gly-Nva-Pro-OH (HZ60), tripeptide 
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AQ-(CH2)5-Pro-Ala-Gly-OH (HZ106) and single amino acid AQ-(CH2)5-Pro-OH 

(HZ107) was further analysed by HPLC as shown in Figure 77.  

 

 

Figure 77. HPLC chromatogram of the mixture of 100μM HZ60, 100μM HZ106 

and 100μM HZ107 

 
The data presented in Figure 77 shows that the HZ22 labelled proline amino 

acid conjugate (HZ107), the tripeptide (HZ106) and pentapeptide conjugates 

(HZ60) were separated with satisfactory base line resolution. 

This indicates that it is likely to be feasible to separate and identify components 

in a reaction mixture if, for example, a larger peptide such as the pentapeptide 

HZ60 is subjected to cleavage by action of a protease such as MMP-9.  
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4.4 Conclusion 

The newly synthesised compounds HZ20, HZ22 and HZ24 were considered as 

useful colour test reagents to monitor coupling reactions involving free amines 

during SPPS. The red labelling agent HZ22 was used to demonstrate its 

versatility for labelling amines on resin and for isolation of N-labelled peptides to 

create derivatives that are helpful for characterising the peptide. A simple, 

time-efficient HPLC method using uv/visible detection was developed for 

separation of examples of closely related amino acids and peptides. The pattern 

of behaviour shown by HZ22 would be expected to occur in a similar manner for 

the other two reagents HZ20 and HZ24. In future work, it would be instructive to 

try to use e.g. HZ22 in reactions to label amino groups in natural peptides for 

biological process investigations. Furthermore, it is of interest to extend the 

characterisation to a combined HPLC-MS method, given the ease of ionisation 

of the carboxylic acid group of the pentapeptide HZ60 in negative ion 

electrospray ionisation mass spectrometry.  
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4.5 Structure library 

 

(4-Hydroxy-9,10-dioxo-9,10-dihydro-anthracen-1-ylamin
o)-acetic acid methyl ester  

AQ-Gly-methyl (HZ18) 

 

 

(4-Hydroxy-9,10-dioxo-9,10-dihydro-anthracen-1-ylamino)-acetic acid  

AQ-Gly-OH (HZ19) 

 

(4-Hydroxy-9,10-dioxo-9,10-dihydro-anthracen-1-ylamino)-acetic acid 
pentafluorophenyl ester  

AQ-Gly-OPFP (HZ20) 
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6-(9,10-Dioxo-9,10-dihydro-anthracen-1-ylamino)-hexanoic 
acid  

AQ-Ahx-OH (HZ21) 

 

 

6-(9,10-Dioxo-9,10-dihydro-anthracen-1-ylamino)-hexanoic acid pentafluorophenyl 
ester  

AQ-Ahx-OPFP (HZ22) 

 

 

6-(4-Hydroxy-9,10-dioxo-9,10-dihydro-anthracen-1-ylamino)-hexanoic acid  

AQ-[4, Hydroxyl]-Ahx-OH (HZ23) 
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6-(4-Hydroxy-9,10-dioxo-9,10-dihydro-anthracen-1-ylamino)-hexanoic acid pentafluorophenyl 
ester  

AQ-[4, Hydroxyl]-Ahx-OPFP (HZ24) 

 

AQ-Ahx-Pro-Ala-Gly-Nva-Pro-OH (HZ60) 

 

AQ-Ahx-Pro-Ala-Gly-OH (HZ106) 

 

AQ-Ahx-Pro-OH (HZ107) 
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4.6 Experimental 

4.6.1 Synthesis of AQ-Gly-methyl (HZ18) 

HZ18 was prepared from the reaction of Leucoquinizarin (1 g, 4.13 mmol) with 

glycine-methylester-hydrochloride (2.07 g, 16.5 mmol) and potassium carbonate 

(2.05 g, 14.9 mmol) in DMF (30 ml) on the boiling water bath for 1 h. TLC of the 

crude product (Rf 0.54) used the solvent system, toluene-ethyl acetate 4:1. The 

foregoing reaction mixture was aerated for 1 h and then extracted with 

chloroform-water. All the organic extracts were combined, dried with anhydrous 

sodium sulphate, filtered and evaporated to dryness. The compound was 

purified by column chromatography using the eluting system, chloroform-ethyl 

acetate 9:1. The product (purple) was dried under vacuum. Yield: 579 mg, 45%. 

 

1H NMR spectrum (CDCl3, 400 MHz) δ: 3.86 (3H, s, H-14); 4.21 (2H, s, H-12); 

7.08 (1H, d, H-2); 7.31 (1H, d, H-3); 7.80-7.75 (1H, m, H-6); 7.85-7.81 (1H, m, 

H-7); 8.36-8.33 (1H, d, H-5); 8.41-8.39 (1H, d, H-8); 10.49 (1H, s, NH); 13.52 (1H, 

s, OH). 

13C NMR spectrum (CDCl3, 100.6 MHz, 25°C) δ: 11.7 ; 52.6 ; 110.0 ; 114.1 ; 

123.3 ; 126.4 ; 127.0 ; 128.7 ; 132.7 ; 132.8 ; 134.3 ; 135.2 ; 146.1 ; 156.8 ; 

170.0 ; 183.0 ; 187.8 ppm. 

 

4.6.2 Synthesis of AQ-Gly-OH (HZ19) 

AQ-Gly-methyl HZ18 (100 mg, 0.32 mmol) and LiOH·H2O (44 mg, 0.32 mmol) 

were dissolved in 40ml of aqueous methanol (3:1) and reacted at RT for 1.5 h. 

TLC (Rf 0.15) was checked using the solvent system, chloroform-methanol 6:1. 

The reaction solution was extracted with chloroform, acetic acid and water. All 

the organic layers were combined, dried with anhydrous sodium sulphate, 

filtered and evaporated to dryness. The product (purple) was collected with a 
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yield of 88.8 mg, 93%. The product was considered sufficiently pure for further 

use without further purification. 

 

4.6.3 Synthesis of AQ-Gly-OPFP (HZ20) 

AQ-Gly-OPFP HZ20 was prepared from the reaction of AQ-Gly-OH HZ19 (85 mg, 

0.29 mmol), DCC (65 mg, 0.32 mmol) and PFP (58 mg, 0.32 mmol) in ethyl 

acetate (30 ml) for 3 h. TLC of the crude product (Rf 0.93) used the solvent 

system, dichloromethane-ethyl acetate 5:1. Column chromatography was 

performed for the purification of HZ20 by using the solvent system, 

dichloromethane-ethyl acetate 7:1. The product (purple) solution was filtered and 

evaporated to dryness. Yield: 56 mg, 42%. 

 

1H NMR spectrum (CDCl3, 400 MHz) δ: 4.61 (2H, s, H-12); 7.14 (1H, d, H-2); 

7.38 (1H, d, H-3); 7.80-7.77 (1H, m, H-7); 7.86-7.81 (1H, m, H-7); 8.37-8.35 (1H, 

d, H-5); 8.40-8.38 (1H, d, H-8); 10.52 (1H, s, NH); 13.46 (1H, s, OH). 

13C NMR spectrum (CDCl3, 100.6 MHz, 25°C) δ: 25.0 ; 29.7 ; 34.0 ; 44.2 ; 114.3 ; 

122.6 ; 126.5 ; 127.1 ; 128.8 ; 133.2 ; 134.4 ; 135.0 ; 145.5 ; 157.0 ; 183.7 ; 187.9 

ppm. 

19F NMR spectrum (CDCl3) δ: -152.4; -156.8 and -161.5 

 

4.6.4 Synthesis of AQ-Ahx-OH (HZ21) 

1-Chloroanthaquinone (1 g, 4.12 mmol) and 6-aminohexanoic acid (2.16 g, 16.5 

mmol) were dissolved in 40 ml of DMSO and refluxed for 1 h. TLC of the crude 

product (Rf 0.57) used the solvent system, dichloromethane-methanol 9:1. The 

reaction solution was cooled to RT for extraction with chloroform. The crude 

product was purified by column chromatography using the same solvent system 

as TLC The product solution was evaporated to dryness. Diethyl ether (30 ml) 
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was slowly added to the product and the mixture was refrigerated for 1 h after 

which gave the chromatographically pure dark red product precipitate. Yield: 352 

mg, 25%. 

 

1H NMR spectrum (CDCl3, 400 MHz) δ: 1.63-1.55 (2H, m, H-14); 1.79-1.74 (2H, 

m, H-15); 1.87-1.81 (2H, m, H-13); 2.46-2.43 (2H, t, H-16); 3.40-3.36 (2H, m, 

H-12); 7.09 (1H, d, H-4); 7.29 (1H, d, H-4); 7.63-7.57 (1H, m, H-3); 7.75-7.71 (1H, 

m, H-6); 7.81-7.77 (1H, m, H-7); 8.29-8.25 (1H, d, H-5); 8.32-8.30 (1H, d, H-8); 

9.77 (1H, s, NH). 

13C NMR spectrum (CDCl3, 100.6 MHz, 25°C) δ: 24.4 ; 26.6 ; 28.8 ; 33.7 ; 42.7 ; 

112.9 ; 115.7 ; 117.8 ; 126.7 ; 132.9 ; 133.1 ; 134.0 ; 134.7 ; 135.1 ; 135.3 ; 151.8 ; 

178.4 ; 183.9 ; 185.1 ppm. 

 

4.6.5 Synthesis of AQ-Ahx-OPFP (HZ22) 

AQ-Ahx-OPFP HZ22 was prepared from the reaction of AQ-Ahx-OH HZ21 (300 

mg, 0.89 mmol), DCC (202 mg, 0.98 mmol), DMAP (120 mg, 0.98 mmol), and 

PFP (180 mg, 0.98 mmol) in dichloromethane for 4 h. TLC of the crude product 

(Rf 0.94) used the solvent system, dichloromethane-ethyl acetate 9:1. Column 

chromatography was performed for the purification of crude HZ22 by using the 

eluting system, dichloromethane-ethyl acetate 8:1. The red product fractions 

were combined, filtered and evaporated to dryness. Yield (precipitation from 

hexane): 346 mg, 77.3%. 

 

1H NMR spectrum (CDCl3, 400 MHz) δ: 1.70-1.63 (2H, m, H-14); 1.87-1.83 (2H, 

m, H-15); 1.95-1.89 (2H, m, H-13); 2.77-2.73 (2H, t, H-16); 3.42-3.37 (2H, m, 

H-12); 7.08 (1H, d, H-2); 7.58-7.547(1H, m, H-4); 7.63-7.60 (1H, m, H-3); 

7.78-7.74 (1H, m, H-6); 7.80 (1H, m, H-7); 8.27-8.25 (1H, d, H-5); 8.30-8.28 (1H, 
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d, H-8); 9.79; (1H, s, NH). 

13C NMR spectrum (CDCl3, 100.6 MHz, 25°C) δ: 24.5 ; 26.5 ; 28.7 ; 33.2 ; 42.6 ; 

113.0 ; 115.7 ; 117.7 ; 126.6 ; 126.7 ; 132.9 ; 133.0 ; 133.9 ; 134.7 ; 135.0 ; 135.3 ; 

139.1 ; 139.9 ; 140.7 ; 142.3 ; 151.7 ; 169.3 ; 183.8 ; 185.1 ppm. 

 

19F NMR spectrum (CDCl3) δ: -152.8; -158.1 and -162.2 

ESMS (+): 504 m/z 100% (M+H)+ 

 

4.6.6 Synthesis of AQ-[4-Hydroxyl]-Ahx-OH (HZ23) 

Leucoquinzarin (1 g, 4.1 mmol) was reacted with 6-aminohe`xanoic acid (2.2 g, 

16.7 mmol) by the addition of K2CO3 (2.05 g, 14.9 mmol) in DMF on the 100ºC 

water bath. The TLC was checked in the solvent system chloroform: methanol 

(9:1): Rf 0.65. After 1.5 hours the reaction had mostly completed. The round 

bottomed flask was cooled to RT and the reaction mixture was aerated for 1 h. 

The mixture was then filtered to get rid of solid impurity. The column 

chromatography was performed for the product purification. Solvent system 

dichloromethane to methanol 10:1 was used. The appropriate fractions were 

combined and collected. Yield: 900 mg, 62%. 

 

4.6.7 Synthesis of AQ-[4-Hydroxyl]-Ahx-OPFP (HZ24) 

AQ-[4-Hydroxyl]-Ahx-OH HZ23 (50 mg, 0.14 mmol) was dissolved in 

dichloromethane by the addition of the reagents PFP (28 mg, 0.15 mmol), DCC 

(32 mg, 0.15mmol) and DMAP (18.3 mg, 0.15 mmol). After 2 h, the TLC 

(chloroform to ethyl acetate 9:1, Rf 0.9) showed the reaction has completed. The 

crude product was purified by column chromatography using the solvent system 

dichloromethane to ethyl acetate 15:1. The appropriate fractions were combined, 

filtered and evaporated to dryness. The solid HZ24 compound was precipitated 
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in Hexane. Yield: 38 mg, 52% 

 

1H NMR spectrum (CDCl3, 400 MHz) δ: 1.69-1.63 (2H, m, H-14); 1.88-1.83 (2H, 

m, H-15); 1.97-1.90 (2H, m, H-13); 2.77-2.73 (2H, t, H-16); 3.48-3.43 (2H, m, 

H-12); 7.23 (1H, m, H-3); 7.25 (1H, m, H-2); 7.74-7.73 (1H, m, H-7); 7.78-7.76 

(1H, m, H-6); 7.86-7.80 (2H, d, H-5 and H-8); 8.36-8.34 (1H, d, H-8); 10.37 (1H, 

s, NH); 13.76 (1H, s, OH). 

13C NMR spectrum (CDCl3, 100.6 MHz, 25°C) δ: 24.4 ; 26.4 ; 29.1 ; 33.2 ; 42.6 ; 

108.5 ; 113.7 ; 123.9 ; 126.4 ; 126.6 ; 129.0 ; 132.5 ; 132.7 ; 134.2 ; 147.6 ; 

156.8 ; 169.3 ; 182.2 ; 187.5 ppm. 

19F NMR spectrum (CDCl3) δ: -152.7; -158.01 and -162.30 

 

4.6.8 Synthesis of AQ-(CH2)5-Pro-Ala-Gly-Nva-Pro-OH (HZ60) 

The H-Pro-2-ClTrt resin (500 mg, 0.6 mmol/g) was used for the SPPS of 

AQ-(CH2)5-Pro-Ala-Gly-Nva-Pro-OH (HZ60). The pentapeptide 

(H-Pro-Ala-Gly-Nva-Pro-reisin) was synthesized on resin using the same 

method as Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH (HZ31). The red reagent HZ22 

(151 mg, 0.3 mmol) in DMF (8 ml) was added to the SPPS reaction vessel 

containing the bound, deprotected pentapeptide and shaken for 1.5 h. The red 

solution was drained off by the aid of a vacuum pump and another portion of 

HZ22 (151 mg, 0.3 mmol) in DMF (8 ml) was added to the vessel. The final 

target compound AQ-(CH2)5-Pro-Ala-Gly-Nva-Pro-OH (HZ60) was cleaved off 

the resin by 1% TFA in dichloromethane (30 ml in total). The solution was dried 

and the solid HZ60 was collected in diethyl ether (50 ml). The crude HZ60 was 

purified by thick layer silica gel chromatography using the solvent mixture of 

dichloromethane and methanol (9:1). The title compound was recovered from 

the silica in a chromatographically homogeneous form. Yield: 52 mg, 23 %.  
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ESMS (-): 757 m/z (100%) (M-H)-  

HPLC Retention time: 3.92 min 

 

4.6.9 Synthesis of AQ-(CH2)5-Pro-Ala-Gly-OH (HZ106)  

The H-Gly-2-ClTrt resin (100 mg, 1.1 mmol/g) was used for the SPPS of 

AQ-(CH2)5-Pro-Ala-Gly-OH (HZ106). The tripeptide (H-Pro-Ala-Gly-reisin) was 

synthesized using the same method as Fmoc-Pro-Ala-Gly-Leu-Ala-Ala-OH 

(HZ31). The red reagent HZ22 (55 mg, 0.11 mmol) was dissolved in DMF (5 ml) 

first and then added to the SPPS reaction flask. After 1 h, the solution was 

drained off, and other portion of HZ22 (55 mg, 0.11 mmol) was dded to the 

reaction. The SPPS vessel was shaken for another 1 h. The final comound 

AQ-(CH2)5-Pro-Ala-Gly-OH (HZ106) was cleaved by 2% TFA in dichloromethane 

(20 ml in total). The solution was dried (Na2SO4, anhydrous) and the solid was 

collected in diethyl ether (30 ml). Yield: 20 mg, 32 % 

ESMS (-): 561 m/z (100%) (M-H)- 

HPLC Retention time: 2.62 min 

 

4.6.10 Synthesis of AQ-(CH2)5-Pro-OH (HZ107) 

The H-Pro-2-ClTrt resin (100 mg, 0.6 mmol/g) was used for the synthesis of 

AQ-(CH2)5-Pro-OH (HZ107). The resin was transferred into a SPPS reaction 

vessel, added with dichloromethane (10 ml) for swelling the beads and shaken 

at RT, 650 rpm for 1.5 h. Dichloromethane was drained off and the red reagent 

HZ22 (50 mg, 0.1 mmol) in DMF was added to the vessel. The vessel was 

shaken for 1.5 h. The product AQ-(CH2)5-Pro-OH (HZ107) was cleaved off the 

resin by 2% TFA in dichloromethane (15 ml in total). The solution was dried and 

the solid was collected under diethyl ether (20 ml). Yield: 11 mg, 42 %. 

ESMS (-): 433 m/z (100%) (M-H)-; HPLC Retention time: 5.5 min 
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