
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTESMS, MANUSCRIPT ID…… 1

Adaptive Resource Allocation and
Provisioning in Multi-Service Cloud

Environments
Ayoub Alsarhan, Awni Itradat, Ahmed Y. Al-Dubai, Senior Member, IEEE

Albert Y. Zomaya, IEEE, Fellow and Geyong Min

Abstract—In the current cloud business environment, the cloud provider (CP) can provide a means for offering the required

quality of service (QoS) for multiple classes of clients. We consider the cloud market where various resources such as CPUs,

memory, and storage in the form of Virtual Machine (VM) instances can be provisioned and then leased to clients with QoS

guarantees. Unlike existing works, we propose a novel Service Level Agreement (SLA) framework for cloud computing, in which

a price control parameter is used to meet QoS demands for all classes in the market. The framework uses reinforcement learning

(RL) to derive a VM hiring policy that can adapt to changes in the system to guarantee the QoS for all client classes. These

changes include: service cost, system capacity, and the demand for service. In exhibiting solutions, when the CP leases more

VMs to a class of clients, the QoS is degraded for other classes due to an inadequate number of VMs. However, our approach

integrates computing resources adaptation with service admission control based on the RL model. To the best of our knowledge,

this study is the first attempt that facilitates this integration to enhance the CP's profit and avoid SLA violation. Numerical analysis

stresses the ability of our approach to avoid SLA violation while maximizing the CP’s profit under varying cloud environment

conditions.

Index Terms—Resource Management, Cloud Computing, Quality of Service, Cloud Service Trading, Economic Model.

————————————————————

1 INTRODUCTION

LOUD computing has paved the way to enable users
to access virtual computing resources on the Internet.

This technology helps the cloud providers (CPs) to utilize
resources efficiently and to generate extra income. How-
ever, the QoS for clients depends on the allocated re-
sources. A CP may trade anything from infrastructure
[1,2,3] such as processors, memory, and Internet access.
Despite many studies found in the literature under the um-
brella of cloud computing, resource management in multi-
service environments is still in its infancy. In particular,
key issues such as the integration of client satisfaction, QoS
provisioning, and adaptive resource allocation policies
have not yet been explored. Unlike existing contributions,
this work places a great deal of emphasis on integrating the
above issues with the aim of avoiding the Service Level
Agreement (SLA) violation while maximizing CP profit
under varying cloud environment conditions. Thus, in our
work, a CP hires Virtual Machines (VMs) to execute clients’
jobs and the cost of hiring VMs is amortized through client

payments. The set of VMs in the cloud environment is
managed by the CP. In particular, we propose an approach
for resource management in multi-service environments
based on a RL model. The model realizes continuous profit
optimization for the CP. It integrates the adaptation of the
offered number of VMs for each class of clients with the
Request Admission Control policy (RAC). To satisfy QoS
demands, the approach includes adaptations of the CP’s
resources to continuously meet request blocking probabil-
ity constraints using the price parameter. The following are
keys objectives for the proposed RL model:

• Client satisfaction by providing the committed QoS for
users. This objective is achieved by offering an adequate
number of VMs for serving users’ jobs. For this purpose
sufficient VMs must be available to serve all classes of us-
ers. Hence, the CP serves new requests on the basis of the
RAC policy that ensures the request effectiveness and VMs
availability.
• System Grade of Service (GoS). RAC policy blocks re-
quests that give less gain provided that the blocking prob-
ability constraint is met for all classes of clients. To ensure
good GoS to users, requests blocking probabilities must be
constrained to acceptable values.
• CP gain which is basically defined as reward minus
cost. This objective aims to optimize the CP’s gain. In our
work, users pay for individual requests. Hence, a CP’s gain
is computed using the amount of admitted requests.

The success of the proposed RL model framework de-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Ayoub Alsarhan is with the Dept. Computer Information System, Hashe-
mite University, Jordan, E-mail: ayoubm@hu.edu.jo.

 Awni Itradatis with the Dept. Computer Information System, Hashemite
University, Jordan, E-mail: itradat@hu.edu.jo.

 Ahmed Al-Dubai is with the School of Computing, Edinburgh Napier Uni-
versity, 10 Colinton Road, Edinburgh, EH10 5DT, U.K. E-mail: a.al-du-
bai@napier.ac.uk.

 Albert.Y. Zomaya is with School of Information Technologies, University of
Sydney, E-mail: albert.zomaya@sydney.edu.au

 Geyong Min is with Dept. Mathematics and Computer Science, University
of Exeter, Exeter, EX4 4QF, U.K, Email: g.min@exeter.ac.uk

C

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

pends on the optimization of both objectives: QoS for cli-
ents, and CP gain. However, these objectives conflict with
each other. Businesses typically prioritize the gain. In the
cloud environment, assurance of QoS standards is not a
trivial task. This task requires solid definitions of QoS met-
rics tightly coupled with resource management policy ca-
pable of coping with changes that occur in the cloud envi-
ronment. The interaction with the changes in the service
cloud environment requires a dynamic framework capable
of monitoring environmental conditions. Since typical sys-
tem load fluctuates and changes over time, an optimal
static solution is inadequate to solve this problem, espe-
cially in cases of system overload and inefficient cloud re-
sources. The major contributions of this paper are as fol-
lows:

• Define and formulate the problem of resource adapta-
tion in multi-service cloud environments where different
requirements of different classes of clients are considered.
In this formulation, gain maximization can be achieved by
adaption of leased VMs that influences the admission rate
of jth class by increasing the service price for other classes.
Gain maximization should be done in such a way that
blocking probabilities for all classes do not exceed the con-
straints blocking probabilities. Service price is used in this
problem to adapt cloud resources (VMs) with the gain
maximization objective. We show how this concept can be
generalized to state-dependent cloud market prices. This
study demonstrates how the service price parameter pro-
vides a means for controlling almost independently and
continuously QoS of different classes of clients. This fea-
ture is crucial in the control of a multi-service cloud market
where request classes with different VM requirements can
encounter very different QoS levels. The new advantages,
achieved by the application of gain maximization and Mar-
kov decision theory to cloud market control, motivated us
to extend and generalize these concepts to multi-service
cloud markets. Increasing the price for the wealthiest clas-
ses during high demand reduces the hiring rate of VMs for
these classes, which helps to meet the QoS constraint for
other classes. Although the presentation focuses on multi-
service cloud markets, most results and conclusions are of
course applicable to the special case of one service market.

• Propose RL mechanism for CPs to model their long-
term behaviors. RL is a promising approach to tackle this
problem. It involves the synthesis of adaptive control algo-
rithms for serving clients’ requests, and it responds to
measured cloud market conditions. Two new elements
have been added to the RL algorithm for serving client re-
quests for VMs in a cloud market: Markov decision theory
and CP gain maximization. Markov decision theory is em-
ployed to compute a state dependent leasing policy by ex-
ecuting the RL algorithm. The model considers the eco-
nomic factors for CPs that include the reward and the cost
of hiring VMs. Furthermore, it is used to guarantee QoS for
all classes of user. A major challenge for a CP is to charge
the different classes appropriately. Service prices should
generate maximum economic benefits to the CP. However,

prices should also be reasonable with respect to the clients’
budget. In this work, we use price as a parameter to enable
CPs to generate gain optimally while providing the QoS to
all client classes.

• Describe how a QoS-aware scheme is used to obtain a
computationally feasible solution to the considered re-
source adaptation problem in multi-service cloud systems.
• Analyze the performance of the RL model under differ-

ent cloud environment conditions.
Companies can use our RL framework to lease any virtu-

alized computing resources that are delivered over the
web. The rest of this paper is organized as follows. Section
2 describes the system model and assumptions. Works re-
lated to the problem are reviewed in Section 3. The RL for-
mulation is presented in Section 4. Section 5 presents the
performance evaluation results. Finally, the paper is con-
cluded and future research directions are given.

2 SYSTEM MODEL AND RELATED WORK

This section presents our assumptions. Clients access a
CP’s VMs using networked client devices, such as desktop
computers, laptops, and smartphones. Clients rely on CPs
for a majority of their jobs. Requests are sent using a web
browser to interact with the CP. Clients can send their re-
quests anytime anywhere. Fig. 1 depicts the architecture of
a cloud computing environment.

Fig. 1. Cloud computing architecture

The system consists of CP and X clients. The CP has 𝑁
VMs that are offered to serve multiple classes of clients.
The CP specifies the number of VMs 𝑁𝑗 for the class 𝑗, QoS

requirements for each class based on SLA (blocking prob-
ability), and the reward of deploying hired VMs for jth
class 𝑟𝑗. Each client of class 𝑗 can request a bundle of VMs.

The demand vector of the required VMs for a client of jth
class is 𝑑𝑗 and it is represented as follows:

𝑑𝑗 = (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛) (1)

where 𝑣𝑖 indicates whether a client requests ith VM or not,
𝑣𝑖=1 means ith VM is requested by a client, and 𝑣𝑖=0 means
ith VM is not requested. The reward 𝑟𝑗 is computed as fol-
lows:

𝑟𝑗 = ∑ 𝑝𝑗

𝑖𝑣𝑖
𝑛
𝑖=1 (2)

http://en.wikipedia.org/wiki/Desktop_computers
http://en.wikipedia.org/wiki/Desktop_computers
http://en.wikipedia.org/wiki/Laptop
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser

AUTHOR ET AL.: TITLE 3

where 𝑝𝑗
𝑖 is the price for ith VM paid by jth class. We as-

sume that these parameters are changed over time corre-
sponding to the system conditions, such as workload, VM
demand, and the service cost. Thus, a CP needs to change
the price and the number of VMs offered in each class
when needed. A client can use the VMs if he/she agrees to
pay. We assume that a client's requests arrival follows
Poisson distribution and each client class 𝑗 has arrival rate
𝜆𝑗. The service time 𝜇𝑗 for each request of jth class is as-

sumed to be exponentially distributed. The CP faces the
challenge of deciding the accepted requests. The CP should
consider user demand for service and GoS. User demand
is closely related to the reward received from clients.

Indeed, QoS guarantees are important for the cloud mar-
ket, especially if the number of VMs is insufficient to serve
clients’ requests. Unfortunately, providing QoS guarantees
is a challenging problem since the demand for VMs fluctu-
ates over time. The work in [4] investigates various algo-
rithms for resource provisioning in cloud computing sys-
tems. The main concern of the proposed algorithm is min-
imizing the penalty cost and improving customer satisfac-
tion levels by minimizing QoS constraint violations. The
proposed scheme considers customer profiles and provid-
ers’ quality parameters to handle the dynamic nature of
cloud environments. Researchers propose a new technique
in [5] that jointly addresses the resource allocation and ad-
mission control optimization problems in cloud environ-
ments. The proposed technique takes into account the CP’s
revenues, the cost of servers, and clients' requirements. In
[6], a new framework is proposed for dynamic resource
provisioning in a virtualized computing environment.
They consider switching costs and explicitly encode the
notion of risk in the optimization problem.

An analytical model is presented in [7] to evaluate
the performance of an IaaS in the cloud system. Several
performance metrics are suggested to analyze the behavior
of a cloud data center. These metrics include: availability,
utilization, and responsiveness. An auction model is used
in [8] for resource allocation in cloud environments. The
key objective of the model is maximizing the CP’s profit.
The concept of virtual valuation is used in the proposed
auction mechanism. In [9], researchers present a cloud re-
source procurement approach which helps clients to select
an appropriate cloud vendor. The proposed approach im-
plements dynamic pricing for profit maximization. Three
mechanisms are suggested for a resource procurement
scheme:

 Cloud-dominant strategy incentive compatible

(C-DSIC).

 Cloud-Bayesian incentive compatible (C-BIC).

 Cloud optimal (C-OPT).

C-DSIC is a low-bid Vickrey auction. C-BIC is Bayesian
incentive compatible and it achieves budget balance. C-
BIC neglects the individual rationality of clients. Collabo-
rative cloud computing (CCC) aims to use the resources
that belong to different organizations or individuals in a

cooperative manner. Authors in [10] propose a CCC plat-
form, called Harmony. The proposed system integrates the
resource management and reputation management in a
harmonious manner. Three key innovations are incorpo-
rated: integrated multi-faceted resource/reputation man-
agement, multi-QoS-oriented resource selection, and
price-assisted resource/reputation control. Video stream-
ing services require huge storage capacity. Hence, more
than one data center should be used to support this service,
which is called multi-cloud. Data centers should be moni-
tored and controlled to support QoS. In [11], a closed-loop
approach is proposed for optimizing QoS and cost. More-
over, the authors suggest an algorithm to help CPs in man-
aging data centers in a multi-cloud environment.

In [12], the authors formulate the optimal networked
cloud mapping problem as a mixed integer programming
(MIP) problem to provide a unified resource allocation
framework for networked clouds. The proposed model
aims to decrease the cost of the resource mapping proce-
dure, while abiding by user requests for QoS-aware virtual
resources. It presents a method for the efficient mapping of
resource requests onto a shared substrate interconnecting
various islands of computing resources, and adopts a heu-
ristic methodology to address the problem.

In [13], different Internet services are hosted in a shared
platform and offered to multiple classes of clients. The fo-
cus of the work has been to manage the capacity of the
shared Internet data centers in such a way as to explore the
available resources to the provider’s best advantage so that
a business goal is maximized. In [14], multiple customers
are hosted on a collection of sequentially shared resources.
The hosting environment is divided into secure domains.
Each domain supports one customer. In this cloud envi-
ronment, the resources are assigned dynamically to cus-
tomers based on the work load. This dynamic resource al-
location scheme enables flexible Service Level Agreements
(SLAs).

An elastic web hosting provider is presented in [15]. A
cloud hosting provider (HSP) makes use of the outsourc-
ing technique. In order to take advantage of cloud compu-
ting infrastructures, a HSP provides scalable and highly
available services to the web applications deployed on it.
New middleware architecture is proposed in [16]. The ar-
chitecture enables platforms to meet the QoS requirements
of the applications they host.

The architecture incorporates a load balancer that distrib-
utes the computational load across the platform resources.
Moreover, the QoS of clients is monitored in the proposed
system. However, if the CP cannot support the required
QoS, the platform is reconfigured dynamically in order to
incorporate additional resources from the cloud. A new
framework for resource management is proposed in [17].
The main goal of the proposed framework is to facilitate
resource management by reducing the cost of serving us-
ers and to meet the QoS agreed with clients. The proposed
scheme assigns resources to the clients based on the infor-
mation provided by service providers. The resources are
allocated to the clients according to the business goals and
clients requirements. The end-to-end QoS for transaction-
based services in multi-domain environments is modeled

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

in [18]. The Mean Opinion Score (MOS) is used as a metric
for QoS that is expressed by response time and download
time.

 The problem of an end-to-end QoS guarantee for Voice
over IP (VoIP) services is addressed in [19]. In [20], the av-
erage response time of a service request is used as a QoS
metric. However, measurement techniques are hard to use
in computer service performance prediction especially for
cloud environments. The authors in [27] propose a new
scheme for resource reservation that maximally exploits
discounted rates offered in the tariffs, while ensuring that
sufficient resources are reserved in the cloud market. In or-
der to make accurate resource allocation decisions, the
scheme predicts the demand for streaming capacity. Au-
thors in [28] propose a new scheme for QoS monitoring
management for a system-of-systems (SoS) where any user
from any location can share computing resources at any
time. The proposed scheme enables QoS monitoring, man-
agement, and response for enterprise systems that deliver
computing as a service through a cloud computing envi-
ronment. In [29], authors model the workflow scheduling
problem which optimizes both makespan and cost as a
Multi-objective Optimization Problem (MOP) for cloud en-
vironments. Furthermore, they propose an evolutionary
multi-objective optimization (EMO)-based algorithm to
solve workflow scheduling problems on an infrastructure
as a service (IaaS) platform.

In [30], a novel resource management framework
(SPRNT) is proposed to ensure high-level QoS in cloud
computing systems. It utilizes an aggressive resource pro-
visioning strategy which encourages SPRNT to substan-
tially increase the resource allocation in each adaptation
cycle when the demand for service workload increases.
The authors propose a new decentralized cloud firewall
framework for individual cloud customers in [31]. They es-
tablish a novel queuing theory based model M/Geo/1 and
M/Geo/m for quantitative system analysis, where the ser-
vice times follow a geometric distribution. In [32], the au-
thors propose PriDyn, a novel scheduling framework for
monitoring QoS in the cloud market. PriDyn is designed to
consider I/O performance metrics of applications such as
acceptable latency and convert them to an appropriate pri-
ority value for disk access based on the current system
state.

The framework provides differentiated I/O service to
various applications and ensures predictable performance
for critical applications in multi-tenant cloud environment.
An adaptive framework is proposed in [33] for Service
Maximization Optimization (SMO). The framework is de-
signed to improve the QoS of the soft real-time multimedia
applications in multimedia cloud computing.

In [34], the authors propose a new pervasive cloud con-
troller for dynamic resource reallocation in cloud environ-
ments. The proposed system adapts to volatile time and lo-
cation-dependent factors, while considering the QoS im-
pact of too frequent migrations and the data quality limits
of time series forecasting methods. Authors present new
generic cloud performance models in [35] for evaluating
Iaas, PaaS, SaaS, and mashup or hybrid clouds. Moreover,
they test clouds with real-life benchmark programs and

propose some new performance metrics.
The authors propose a new cloud model called SLAaaS –

SLA aware Service in [36]. The model considers QoS levels
and SLA for clients. Moreover, a novel domain-specific
language that allows description of a QoS-oriented SLA as-
sociated with cloud services is proposed. However, none
of the cloud approaches attempts to meet the agreed QoS
of clients while maximizing the profit for the CP using
price control parameters. Moreover, these approaches
have implemented static provisioning of resources result-
ing in low resource utilization. Moreover, all of these
works concentrated on a single class of clients. Finally, a
dynamic behavioral adaptation to the cloud environment
conditions was ignored in these strategies.

There are significant differences in our approach not
only due to the differences in the system structure but also
due to the dynamic nature of the cloud environment. The
CP has to deal with the demand uncertainty problem and
adapt its resources to meet the QoS for all clients' classes.
In this work, we present the client satisfaction oriented re-
source allocation heuristic as a novel profit-driven trading
algorithm. Our approach effectively meets QoS for differ-
ent classes of clients. Specifically, client's classes, for which
their QoS cannot be met, may be allocated more VMs by
rejecting the requests for other classes whose QoS are met.

Our main concern in this work is modeling the long
term average behavior of the CP as it evolves over time.
We extract the optimal control policy to help CP for adapt-
ing resources (i.e. VMs) in each state of the system for
meeting the QoS constraint for all classes of clients. Hence,
the cloud market is an Ergodic dynamical system and this
problem should be solved under the umbrella of the Mar-
kov Decision Processes (MDP).

Here, our main objective is to maximize profit for the
CP by accommodating as many service requests as possi-
ble and maintaining a certain quality of service for all cli-
ents. This scenario might be best suited to small and mid-
size CPs. Our main contribution is the integration of client
satisfaction with our RL model. To the best of our
knowledge, the work in this study is the first attempt that
makes this integration to enhance the CP's profit and avoid
SLA violation.

4 THE PROPOSED RESOURCES ADAPTATION

In the cloud environment, a resource adaptation control
policy is required in conjunction with the RAC algorithm
to meet a variety of objectives. When the cloud environ-
ment is in an under-loaded condition, RAC tries to accept
every request and it allocates as many VMs as possible for
all clients' classes. However, client demand for VMs may
increase. In this case, some requests should be rejected by
RAC to meet QoS for other clients.

We formulate the RAC problem as a Markov decision
process (MDP) [21]. However, traditional solutions (value
iteration, policy iteration, etc.) are infeasible within MDP
due to very large state spaces that make traditional solu-
tions suffer from the curse of the dimensionality problem.
Moreover, from a modeling point of view, it is hard to es-

AUTHOR ET AL.: TITLE 5

timate the transition probability in a real cloud environ-
ment due to varying environment conditions such as client
demand, service cost, etc. Therefore, we choose RL to solve
MDP using Q-learning [22]. The Q-learning method does
not require the explicit expression of the state transition
probabilities and it can handle MDP problems with large
state spaces efficiently. Q-learning is one of the most pop-
ular RL algorithms [22]. The formulation of this method is
presented in the following Section. The symbols used in
this paper are listed in Table 1.

 TABLE 1

SYMBOLS USED IN THE PAPER

Parameter Description

𝑁 Number of VMs in the market

X Number of clients

𝑟𝑗 Reward for leasing VMs for jth class

𝑑𝑗 The demand vector of the required
VMs for a client of jth class

𝑝𝑗
𝑖 The price for ith VM paid by jth class

λ𝑗 Arrival rate for jth class

𝜇𝑗 The service time for jth class

𝑆 State space of the cloud environ-
ment

𝑠𝑗 The number of VMs required for jth
class

𝐽 The set of client classes

Ω All possible events in the system

𝑒0
𝑗
 Request arrival event for class-j

𝑒1
𝑗
 Request departure event for class-j

𝐴 Action space

𝑅(𝑆(𝑡), 𝑒𝑖
𝑗
(𝑡), 𝑎) The intermediate reward for action a

at time t

𝜋 A policy that maps the current event
and state of cloud environment to an
action

𝜋∗ Optimal policy

𝑣(𝜋∗) Average reward of policy π∗

𝐷 The time horizon

ℎ∗ Vector of differential reward func-
tions

𝜏̅ Average transition time correspond-
ing to state-action pair

𝐸
𝑒𝑖

𝑗 The expected reward over the proba-
bility events

𝑆(𝑡 + 1) Next state

𝜃 A vector for the tunable parameters
for a policy π

𝑌 State action tuple

∇𝑣(𝜋(𝜃)) Gradient of the reward of policy π
with respect to θ

𝑄𝜃(𝑌, 𝑎) Value function for an action of start-
ing state in state-event action tuple
(Y, a) for the policy π(θ)

∇𝑣(𝜋(𝜃∗)) Gradient of the average reward for

∇v(π(θ))

𝜑𝜃(𝑌, 𝑎) The gradient ∇ with respect to θ at
time t for an action of starting state
in state-event action tuple (Y, a)

 ∆t The transition time between state

Yand Ý

qYÝ(τ, a) Transition probability between state

Yand Ý

RAD(j) Reward for admitting a new request
of class j

u Unity vector

∂j
θ(Y, a) Feature vector of state action pair

RDE(j) Reward of departure clients of class
 j

h∗(Y) Optimal reward vector

π∗ Optimal policy for VM leasing

hq Vector parameterized by vector q

hq́ New vector parameterized by vector
q at time t+1

D Time horizon

q A parametric vector

δt Discount factor

G Net gain of accepting client j request

Cj The cost of serving a request from cli-
ent j

G∗ Optimal net gain

Bj Blocking probability for class j

Bc
j
 Blocking probability constraint for

class j

λ̅j The acceptance rate of clients’ j re-
quests

pj
í New price

α Maximum number of clients arriving
to the system

ω Rate of decrease of the arrival rate as
reward rj increases

 ϑj A threshold for the maximum num-
ber of the class j requests

A. Modeling VMs Allocation ON Cloud Market

Due to the cloud environment, changing service demand

can be regarded as quasi-stationary snapshots of the sys-
tem that will be visible (available) in a periodical order.
The set of VMs allocated for class 𝑗 varies over time as the
demand changes to meet blocking probabilities for all clas-
ses. Note also that in the proposed scheme the final deci-
sion as to whether to accept a request or not is made by the
CP based on some constraints and objective function.

In our work, the cloud environment is modeled as a dis-
crete-time event system. The events can be represented as
stochastic variables with appropriate probability distribu-
tion. In order to utilize the RL algorithm, we need to iden-
tify the system states, actions, and objective function.
Given a service demand, the required number of VMs for
each class, the state space 𝑆 of the cloud environment is
given by:

𝑆 = {∑ 𝑠𝑗 ≤ 𝑁∀ 𝑗∈𝐽 } (3)

where 𝑠𝑗 is the number of VMs required for jth class, and 𝐽 is
the set of clients’ classes. Let Ω denote the finite set of all
possible events in the system where:

Ω = {𝑒0

1, 𝑒1
1, 𝑒0

2, 𝑒1
2, 𝑒0

3, 𝑒1
3, … … , 𝑒0

𝐽
, 𝑒1

𝐽
} (4)

where 𝑒0
𝑗
 denotes the request arrival event for class-j,

and 𝑒1
𝑗
 indicates the departure of classj request (e.g. 𝑒1

𝑗
=1

means a request for class j departs the system while 𝑒1
𝑗
=0

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

means no request for class j departs the system). We note
that in this cloud environment the status is changed at
epochs of new request arrival and request departure which

are associated with event 𝑒𝑖
𝐽
. However, when a request is

served and departs the system, its VMs are released and a
decision must be made whether to admit a new request or
not. Let 𝐴 denote the set of allowed actions when the cur-
rent state of cloud environment and the current event are
given. This set 𝐴 can be defined as:

𝐴 = {𝑎: 𝑎 ∈ {0,1}} (5)

where 𝑎 = 0 denotes that a request is rejected, and a=1 in-
dicates that the CP accepts the request. Let 𝜋 be a stationary
policy that maps the current event and state of cloud envi-
ronment to an action. The mapping process using policy 𝜋
is an embedded finite state Markov chain evolving in con-
tinuous time. Despite the chain evolving in continuous
time, we need only to consider the system transition at
epochs where the events and decision take place. Let 𝑒𝑖

𝐽
(𝑡)

be the event that occurs at time 𝑡 and assume 𝑆(𝑡) is the
state of the cloud environment at time 𝑡 during interval
[𝑡 − 1, 𝑡]. Then, the intermediate reward for action 𝑎 at time
𝑡 is computed as follows:

𝑅(𝑆(𝑡), 𝑒𝑖
𝑗
(𝑡), 𝑎) = {

𝑟𝑗 , 𝑒𝑖
𝐽(𝑡) = 𝑒0

𝑗
= 1 𝑎𝑛𝑑 𝑎 = 1

0, 𝑒𝑖
𝑗(𝑡) = 𝑒0

𝑗
= 1 𝑎𝑛𝑑 𝑎 = 0

} (6)

Our objective is to find the optimal policy 𝜋∗ that maxim-
izes the average reward 𝑣(𝜋∗) such that 𝑣(𝜋∗) ≥ 𝑣(𝜋) and
this can be expressed as follows:

𝑣(𝜋∗) = lim
𝐷→∞

∑ 𝑅(𝑆(𝑡),𝑒𝑖
𝑗

(𝑡),𝑎)𝐷
𝑡=0

𝐷
 (7)

where 𝐷 is the time horizon. For policy 𝜋, any state can be
reached by any other state and the limit in (7) exists and is
independent of the initial state. The optimal policy 𝜋∗ can
be generated by solving Bellman's equation for average re-
ward [24]:

ℎ∗(𝑆(𝑡)) + 𝑣(𝜋∗)𝜏(̅𝑆(𝑡), 𝑎) =
arg max

𝑎∈𝐴
{𝐸

𝑒𝑖
𝑗[𝑅(𝑆(𝑡), 𝑒𝑖

𝑗(𝑡), 𝑎) + ℎ∗(𝑆(𝑡 + 1))]} (8)

where 𝑣(𝜋∗) is the optimal reward, ℎ∗is the vector of dif-
ferential reward functions, 𝜏̅𝑆(𝑡) is the average transition
time corresponding to state-action pair, 𝐸

𝑒𝑖
𝑗 is the expected

reward over the probability events, and 𝑆(𝑡 + 1) is the next

state which is a function of 𝑆(𝑡), 𝑒𝑖
𝑗(𝑡), and 𝑎.

B. Optimizing VM Allocation in Cloud Environments

In this section, we propose a new algorithm for extracting

an optimal policy for VM trading in cloud environments
using RL. The extracted policy is performed at the CP and
it helps the CP to map each state of the cloud environment

with action. The embedded Markov chains {𝑆(𝑡), 𝑒𝑖
𝑗(𝑡), 𝑎}

in the cloud environment evolve within state
space (𝑆 𝑥 Ω) x A. Assume 𝜃 be a vector for the tunable pa-
rameters for a policy 𝜋. Our objective is to find
a policy 𝜋(𝜃∗) which will translate into actions for given
states and events such that 𝑣(𝜋(𝜃∗)) > 𝑣(𝜋(𝜃)). Assume
𝑌 = (𝑆(𝑡), 𝑒𝑖

𝑗(𝑡)) ∈ 𝑆 𝑥 Ω. We can find the optimal policy
𝑣(𝜋(𝜃∗)) by improving the gradient of the average reward
for ∇𝑣(𝜋(𝜃)) which is given by:

∇𝑣(𝜋(𝜃)) =
∑ ∑ 𝑝𝜃(𝑌)𝜋(𝜃)(𝑎|𝑌)𝜑𝜃(𝑌,𝑎)𝑄𝜃(𝑌,𝑎)∀𝑎∈𝐴(𝑌)∀𝑌∈𝑆𝑥 Ω

∑ 𝑝𝜃(𝑌) ∑ 𝜋(𝜃)(𝑎|𝑌)𝜏̅(𝑌,𝑎)∀𝑎∈𝐴(𝑌)∀𝑌∈𝑆𝑥 Ω

 (9)

The gradient ∇ with respect to 𝜃 can be improved as fol-
lows:

𝜑𝜃(𝑌, 𝑎) = [𝜑0

𝜃(𝑌, 𝑎), … , 𝜑𝑊−1
𝜃 (𝑌, 𝑎)]𝑡 (10)

𝜑𝑧
𝜃(𝑌, 𝑎) =

𝜕

𝜕𝜃(𝑧)
𝜋(𝜃)(𝑎|𝑌)

𝜋(𝜃)(𝑎|𝑌)
 , 𝑧 = 0, … . , 𝑍 − 1 (11)

The value function for an action of starting state in state-
event action tuple (𝑌, 𝑎) for the policy 𝜋(𝜃) is computed
as follows:

𝑄𝜃(𝑌, 𝑎) =

𝑅(𝑌, 𝑎) − 𝑣(𝜃)𝜏̅(𝑌, 𝑎) + ∑ 𝑝𝑌𝑌́(𝑎)ℎ𝜃(𝑌́)∀𝑌́ (12)

𝜏̅(𝑌, 𝑎) = ∑ ∫ 𝜏𝑞𝑌𝑌́
∞

0∀𝑌́ (𝑑𝜏, 𝑎) (13)

The function 𝑞𝑌𝑌́(𝜏, 𝑎) is computed as follows:

𝑞𝑌𝑌́(𝜏, 𝑎) = Pr [𝜏(𝑡 + 1) ≤ 𝜏(𝑡)|𝑌(𝑡 + 1) = 𝑌́, 𝑌(𝑡) =
 , 𝑎𝑛𝑑 𝑎(𝑡) = 𝑎] (14)

where ∆𝑡= 𝑡 − 𝑡 − 1 is the transition time between state
𝑌 ́ and 𝑌́. Since the exact model for the cloud environment
is unknown, we estimate 𝑄𝜃(𝑌, 𝑎) as follows:

𝑄𝑢
𝜃̀ (𝑌, 𝑎) = ∑ 𝑢(𝑗)𝜕𝑗

𝜃(𝑌, 𝑎)𝐽
𝑗=1 (15)

where the unity vector 𝑢 is parametric and 𝜕𝑗
𝜃(𝑌, 𝑎) is the

feature vector of state action pair. The following lemma is
needed to guarantee extraction of the optimal policy.

Theorem 1: For all 𝑆 (𝑡) ∈ 𝑆, 𝑡 ≥ 0, 𝐽 ≥ 𝑗 ≥ 1,𝑣(𝜋∗(𝑆(𝑡 +
1))) ≥ 𝑣(𝜋∗(𝑆(𝑡)))

Proof: Obviously, 𝑣(𝜋∗(𝑆(𝑡) + 𝑒𝑖
𝐽
)) ≥ 𝑣(𝜋∗(𝑆(𝑡)). Since 𝑒𝑖

𝐽

either takes the value 0 (request depart) or 1 for request ar-

rival. If a request of class 𝑗 arrives (𝑒1
𝐽
) then CP gets a re-

ward 𝑟𝑗𝑁𝑗 based on (4) otherwise it gets 0. Let 𝑅𝐴𝐷(𝑗) repre-

sent the reward for admitting a new request of class 𝑗.
Then:

𝑅𝐴𝐷(𝑗)𝑣(𝜋∗(𝑆(𝑡))) =

𝑚𝑎𝑥 (𝑟𝑗𝑁𝑗 + 𝑣(𝜋∗(𝑆(𝑡) + 𝑒𝑖
𝐽
)), 𝑣(𝜋∗(𝑆(𝑡))) (16)

AUTHOR ET AL.: TITLE 7

Assume 𝑅𝐷𝐸(𝑗) models the departure of a class 𝑗 request,

which is defined as:

𝑅𝐷𝐸(𝑗)𝑣(𝜋∗(𝑆(𝑡))) = 𝑣(𝜋∗(𝑆(𝑡) − 𝑒0
𝑗
)) (17)

Thus (7) could be re-written as:

𝑣(𝜋∗(𝑆(𝑡))) =

∑ 𝜆𝑗
𝐽
𝑗=1 𝑅𝐴𝐷(𝑗)𝑣(𝜋∗(𝑆(𝑡 − 1))) + ∑ 𝜇𝑗

𝐽
𝑗=1 𝑅𝐷𝐸(𝑗)𝑣(𝜋∗(𝑆(𝑡 −

1))) (18)

 For 𝑡 =0, 𝑣(𝜋∗(𝑆(0)))=0, ∀𝑆(𝑡) ∈ 𝑆. It is clearly

𝑣(𝜋∗(𝑆(0) + 𝑒𝑖
𝐽
)) ≥ 𝑣(𝜋∗(𝑆(0))). Generally, we need to

prove the pervious inequality for all values of 𝑡 taking into
account the arrival (𝑅𝐴𝐷(𝑗)) and departure (𝑅𝐷𝐸(𝑗)) of clients

requests. Since 𝑅𝐷𝐸(𝑗) and 𝑅𝐷𝐸(𝑗) have positive values and

under linear combination, the lemma can be proved using

induction on 𝑡. Suppose that 𝑣(𝜋∗(𝑆(𝑡 − 1) + 𝑒𝑖
𝐽
)) ≥

𝑣(𝜋∗(𝑆(𝑡 − 1))). It is clear from (16) that 𝑚𝑎𝑥 (𝑟𝑗𝑁𝑗 +

𝑣(𝜋∗(𝑆(𝑡) + 𝑒𝑖
𝐽

+ 𝑒́𝑖
𝐽
)), 𝑣(𝜋∗(𝑆(𝑡))) ≥ 𝑚𝑎𝑥 (𝑟𝑗𝑁𝑗 +

𝑣(𝜋∗(𝑆(𝑡) + 𝑒𝑖
𝐽
)), 𝑣(𝜋∗(𝑆(𝑡))). Hence, the arrival event also

satisfies the inequality. For the departure event, it is easy
to prove that the departure satisfies the inequality by using
(17). Therefore, we showed that the optimal policy should
maximize the average reward for all events in the system

which mean 𝑣 (𝜋∗(𝑆(𝑡))) is a non-decreasing function.O

The main idea of using RL is to extract the optimal policy
by finding a scalar 𝑣́ and the optimal reward vector ℎ∗(𝑌)
that is obtained using the simulation. Optimal policy can
be obtained using greedy policy:

𝜋∗ = arg max
𝑎∈𝐴

𝑅(𝑆(𝑡), 𝑒𝑖
𝑗
(𝑡), 𝑎) + ℎ𝑞́(𝑆(𝑡 + 1)) (19)

where ℎ𝑞́ is a vector parameterized by vector 𝑞 and it is

computed as follows:

ℎ𝑞́(𝑆(𝑡)) = ∑ 𝑞(𝑑)𝛿𝑡(𝑆(𝑡))𝐷

𝑡=0 (20)

where 𝑞 = [𝑞(0), … . , 𝑞(𝐷)] is a parametric vector and it is
the feature vector for the cloud environment state.
In our cloud computing market, if a CP admits a new client
request of class j, it gets 𝑟𝑗𝑁𝑗 using (6). The net gain of ac-

cepting the client j request is computed as follows:

𝐺 = 𝑟𝑗𝑁𝑗 + ℎ𝑞́(𝑆(𝑡 + 1)) − ℎ𝑞(𝑆(𝑡)) (21)

Net gain can be derived using the cost of serving a client
request as follows:

𝑟𝑗𝑁𝑗 + ℎ𝑞́(𝑆(𝑡 + 1)) − ℎ𝑞́(𝑆(𝑡)) = 𝑟𝑗𝑁𝑗 − 𝐶𝑗 (22)

where 𝐶𝑗 is the cost of serving a request of client 𝑗. The RL

policy in (19) can be expressed in terms of net gain where
the CP attempts to maximize the net gain as follows:

𝐺∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑗∋𝐽

𝑟𝑗𝑁𝑗 − 𝐶𝑗 (23)

CP uses RL policy to make decisions that give high net

gain. RL policy must explore all actions and favor the one
that generates the highest gain. Therefore, the learning
process gradually favors actions that appear more worthy
than others by trying out a variety of actions over time. In
our model, RL policy chooses the best action that gives the
maximum gain with high probability and other actions are
selected with less probability. However, the CP should
consider the blocking probability constraint where the
blocking probability for class j requests should not ex-

ceed 𝐵𝑐
𝑗
. For class j, blocking probability is computed as

follows [23, 24, 25]:

𝐵𝑗 =
(𝜆𝑗−𝜆̅𝑗)

𝜆𝑗
= 1 – (

𝜆̅𝑗

𝜆𝑗
) (24)

where 𝜆̅𝑗 is the acceptance rate of clients j requests. CP uses

a reward parameter adaptation to achieve this objective,
since in general an increase of 𝑟𝑗 causes a decrease of arrival

rate 𝜆𝑗 that causes decreasing of 𝐵𝑗, and vice versa. The ar-

rival rate depends on the reward. The new arrival rate of
users is calculated as follows [26]:

𝜆𝑗 = 𝛼𝑒−𝜔𝑝𝑗
𝑖́
 (25)

where α is the maximum number of clients arriving to the
system, 𝜔 represents the rate of decrease of the arrival rate

as price 𝑝𝑗
𝑖 increases, and 𝑝𝑗

𝑖́ is the new price. Here we as-

sume ω is given a priori. There is an inverse relationship
between the reward and the demand for the VMs. Since a
change of 𝑟𝑗 influences the optimal solution for the VM

trading problem, the reward parameter adaptation should
be integrated with the VM adaptation.

Theorem 2: To maximize the net gain of the CP in the cloud

environment and to maintain QoS for all client classes, a request

of class j can be accepted if and only if 𝑠𝑗 < 𝜗𝑗 , where 𝜗𝑗 is a

threshold for the maximum number of class j requests.

Proof: Assume 𝑟𝑗 > 𝑟𝑖 , ∀ 𝑖 ≠ 𝑗. Let 𝜆𝑗 = 𝜆𝑖, ∀ 𝑖 ≠ 𝑗. It is

clear that 𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗
𝐽
)) − 𝑣 (𝜋∗(𝑆(𝑡))) ≤ 𝑣 (𝜋∗(𝑆(𝑡) +

𝑒𝑗
𝐽

+ 𝑒𝑗
𝐽
)) − 𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗

𝐽
)) because admitting more re-

quests of clients 𝑗 involves more gain. We know that if

𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗
𝐽
)) is greater than 𝑣 (𝜋∗(𝑆(𝑡))),𝑣 (𝜋∗(𝑆(𝑡) +

𝑒𝑗
𝐽

+ 𝑒𝑗
𝐽
)) and is also greater than 𝑣 (𝜋∗(𝑆(𝑡) +

𝑒𝑗
𝐽
)). 𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗

𝐽
)) > 𝑣 (𝜋∗(𝑆(𝑡))), means that accept-

ing class 𝑗 requests will give more gain than rejecting them

after t+𝑡́ stages from the initial state 𝑆(𝑡) while

𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗
𝐽

+ 𝑒𝑗
𝐽
)) > 𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗

𝐽
)) means that ac-

cepting a class 𝑗 request generates more gain after

t+𝑡́ stages from the initial state 𝑆(𝑡) + 𝑒𝑗
𝐽
than accepting

other classes requests. However, if the CP continues ac-

cepting class 𝑗 requests then the blocking probability of

class 𝑗 becomes zero (𝜆̅𝑗=𝜆𝑗). Despite the CP maximizing

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

its gain by accepting class 𝑗 requests, the QoS for other clas-

ses is degraded significantly and their blocking probabili-

ties becomes high(𝜆̅𝑗 ≅ 0). Thus, we can find a thresh-

old 𝜗𝑗 at the system state 𝑆(𝑡), such that the class 𝑗 request

can be accepted, if the number of class 𝑗 requests in the sys-

tem is smaller than the threshold. Otherwise, the gain for

accepting an arrival class 𝑗 request will degrade QoS for

other users. Hence, some requests should be rejected. The

following algorithm is used to find the optimal policy 𝜋∗:

Algorithm. Finding the optimal policy

1 Arbitrarily initialize 𝑆(0) ∈ 𝑆, 𝑎𝑛𝑑 𝑣̅0;

2 for t = 1 to D do

3 At state 𝑆(𝑡) generate an event 𝑒𝑖
𝑗
(𝑡)

4 𝜏(𝑡) = 𝑡 − 𝑡 − 1

5 Perform updates:

6 𝑙 𝑡= 𝑅(𝑆(𝑡), 𝑒𝑖
𝑗
(𝑡), 𝑎) −𝑣̅𝑡−1𝜏(𝑡)

 +ℎ̃𝑢𝑡−1
(𝑆(𝑡)) − ℎ̃𝑢𝑡−1

(𝑆(𝑡 − 1))

7 𝑢𝑡 = 𝑢𝑡−1 + 𝜚𝑡𝑙𝑡𝛻𝑢ℎ̃𝑢𝑡−1
(𝑆(𝑡 − 1))

8 𝑣̅𝑡 = 𝑣̅𝑡−1 + 𝛶𝑡(𝑅(𝑆(𝑡 − 1), 𝑒𝑖
𝑗
(𝑡 − 1), 𝑎)) −

 𝑣̅𝑡−1 𝜏(𝑡)

9 𝑎 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈𝐴

{𝑅 (𝑆(𝑡), 𝑢𝑒𝑖
𝑗
(𝑡), 𝑎) + ℎ̃𝑢𝑡(𝑆(𝑡 +

 1))}

10 Compute 𝑅(𝑆(𝑡), 𝑒𝑖
𝑗(𝑡), 𝑎)

11 End for

where 𝜚

𝑡
 ,𝛶𝑡 are small step size parameters to decrease the

convergence speed of the resulting training scheme and

𝛻𝑢ℎ̃𝑢𝑡
(𝑆) is computed as follows:

𝛻𝑢ℎ̃𝑢𝑡

(𝑆) = 𝜑(𝑆) (26)

5 PERFORMANCE EVALUATION

In this section, the performance of the proposed resource
adaption scheme is evaluated using discrete event based
simulations. Requests are served based on the gained re-
ward and the QoS constraints. The uniform distribution is
used to generate the number of the requested VMs for each
request. The parameters used in the simulation experi-
ments are given in Table 2. Note that some of these param-
eters are varied according to the considered scenarios in
our experiments. The key performance measures of inter-
est in the simulations are:

(1) CP’s net gain which is computed using equation

(23).

(2) QoS for users, which is represented using a block-

ing probability that is computed using equation

(24).

Each simulation run consists of 100000 requests. The re-
sults are averaged over enough independent runs so that
the confidence level is 95% and the relative errors do not
exceed 5%. We examine the performance under different
parameter settings.

TABLE 1
SIMULATION PARAMETERS

 Fig 2. CP’s net gain under different system capcities

Parameter Value

Number of VMs 100

Number of clients 150

Number of requests per client Random

λ1 (arrival rate of class 1) 1

λ2 (arrival rate of class 2) 1

λ3 (arrival rate of class 3) 1

λ4 (arrival rate of class 4) 1

Blocking probability constraint for

class 1

0.25

Blocking probability constraint for

class 2

0.2

Blocking probability constraint for

class 3

0.15

Blocking probability constraint for

class 4

0.1

Service price of class 1 5

Service price of class 2 10

Service price of class 3 15

Service price of class 4 20

Number of served requests 100000

𝛼 150

𝜔 0.5

δt 0.9

𝜚𝑡 300 ms

Simulation

Devices

Intel i5 Core 2.50GHz

Process cores 2 x 2.50GHz

RAM 6 GB

OS Windows 7 64 bit

50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

80

System capacity (O
P
)

N
e
t

g
a
in

 f
ro

m
 s

e
rv

in
g
 e

a
c
h
 c

la
s
s

net gain for serving class 1

net gain for serving class 2

net gain for serving class 3

net gain for serving class 4

AUTHOR ET AL.: TITLE 9

A. Net gain as a function of system capacity and service de-

mand:

System capacity refers to the numbers of VMs that a CP
can offer to clients. Fig. 2 shows the net gain for the CP with
different offered VMs. Now, the question is whether the
interplay between the increased gain and the increased
system capacity can generate higher gain. Utilizing more
VMs means serving more clients and, hence, serving more
requests. This interplay has two mutually opposite effects
on the gain.

Clearly, increasing the number of admitted requests has
a positive effect on the gain. On the other hand, serving
more requests pushes down the demand for service, and
thus, individual payments decrease. If the net effect is pos-
itive, the gain will increase. The results in Fig. 2 show the
ability of the RL scheme to maximize CP gains as the sys-
tem capacity increases. The RL scheme prioritizes class 4
since the clients of this class pay more than others. The net
gain of class 4 is higher than others because the CP serves

more requests for this class. It is clear that the net gain in-
creases for all classes as the number of offered VMs in-
creases but after a certain number the gain becomes stable
and the increment in the number of VMs does not affect
the gain due to the limited number of clients. Hence, CP
reaches the maximum gain for the given arrival rate.

Scalability is the capability of a scheme to increase the
output under an increased load. We conduct experiments
to analyze the ability of our scheme to work on larger sys-
tems.

Fig. 3 displays the reported net gain for different service
demands under different system capacities. It is clear that
the gain is increased for a higher workload (i.e. arrival rate)
and for the system with higher capacity (i.e number of
VMs). A CP can serve more clients when it has more VMs.
From Fig. 3, we can find out that our scheme can maximize
a CP’s gain under different service demands and within
different system capacities.

B. RL for maximizing CP’s net gain:

The RL scheme serves the requests that generate higher

gain over time. Fig. 4 shows the percentage of accepted re-
quests for each class of clients over time. The RL policy fo-
cuses not only on a specific class of clients but it considers
the QoS of the whole clients. Thus, it can guarantee the
blocking probability for each class to be less than certain
thresholds. Clearly, the CP prefers to serve class 4 requests
since they pay more. However, the CP should meet the
blocking probability constraint for other classes. However,
when the workload is high and the cloud environment is
becoming saturated, the CP selects more requests from
class 4 provided that QoS constraints for other classes are
met. Many factors prevent the CP from reaching the maxi-
mum gain. These factors include the cost of renting a proces-

sor (𝑐𝑗), the service paid by a client, and client behavior. Fig.
5 shows reported total net gain from serving all classes for
different values of 𝑐𝑗 . It can be observed that in any period

50 55 60 65 70 75 80 85 90 95 100
40

60

80

100

120

140

160

180

System capacity (O
P
)

N
e
t

g
a
in

Lambda=1

Lambda=2

Lambda=3

 Fig 3. CP’s net gain under different service demand

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

Time step (second)

A
c
c
e
p
ta

n
c
e
 r

a
ti
o

Class 1 acceptance rate

Class 2 acceptance rate

Class 3 acceptance rate

Class 4 acceptance rate

 Fig 4. Percentage of accepted requests over time

Fig 5. CP’s net gain under different service cost

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

when the cost is high, the reported gains are always less than the

periods with lower cost. Clearly, the net gain is decreased as
the service cost is increased. Hence, a CP should expect less
gain in a period with high service cost.

Fig. 6 shows the net gain under different values of service

price paid by clients of class 4. We observe that the net gain
increased by increasing the service price but in this exper-
iment the sensitivity of the arrival rate to the increment re-
ward is 0.1 and the reported net gain is taken for different
values of arrival rate. Although this experiment focuses on
a single class of client, the results and conclusions are of
course applicable to the multiple classes of clients.

To study the relationship between the net gain and client's
behavior we plot the net gain against different values of 𝜔
in Fig. 7. It is clear as the value of ω increases the net gain
decreases significantly. Large values of ω decrease the de-
mand for service (arrival rate). Large values of ω model the
clients who care more about the cost of service instead of
the satisfaction level they may get from the product (VMs).

Apparently, there is an inverse relationship between prices
charged and service demand. Once a CP increases prices,
clients may start looking for another provider. Therefore, a
CP should think about the tradeoff between the benefits a
client receives from a service and the price they are willing
to pay.

C. Tradeoff between service level and net gain:

In this experiment, we investigate how the QoS levels for
clients affect the CP’s gain. From Fig. 8, we notice that
when the CP provides high level of QoS in terms of block-
ing probability its gain is degraded significantly. As 𝐵𝑐

𝑗
 de-

creases, the QoS requirement for clients becomes stricter in
such a way that more requests should be protected from
rejection. For this, user requests must be admitted more of-
ten to meet blocking probability constraints and the CP
cannot select worthy requests. By contrast, as 𝐵𝑐

𝑗
increases,

the QoS requirements become less strict so that more re-
quests can be rejected upon their arrival and the CP selects
the worthy requests in terms of reward. A RL-based
scheme should keep the blocking probabilities for all clas-
ses below the target value regardless of the offered load.

D. Maintaining QoS for clients

A CP with well dimensioned system capacity and correctly
chosen service price provides the desired QoS and main-
tains blocking probabilities in acceptable range for all clas-
ses of clients. While our adaptation scheme tries to maxim-
ize the CP’s gain by increasing the number of offered VMs
for wealthiest clients during periods of high demand, it
maintains QoS by bringing blocking probabilities back to
its constrained range by increasing the service price. In any
market, the price of the good or service is determined to
meet the objectives of sellers. In this experiment, we con-
sider the disequilibrium scenario in the market case where
the service price for a certain class does not conform to the
QoS constraints. Such a case may arise, for example, due to

20 25 30 35 40 45 50
120

140

160

180

200

220

240

260

280

300

Service price

N
e
t

g
a
in

Lambda=1

Lambda=2

Lambda=3

 Fig 6. CP’s net gain for different values of service price

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140



N
e
t

g
a
in

 f
ro

m
 s

e
rv

in
g
 e

a
c
h
 c

la
s
s

net gain for serving class 1

net gain for serving class 2

net gain for serving class 3

net gain for serving class 4

Fig 7. CP’s net gain for different values of omega

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

140

Blocking probablity

N
e
t

g
a
in

 f
ro

m
 s

e
rv

in
g
 e

a
c
h
 c

la
s
s

net gain for serving class 1

net gain for serving class 2

net gain for serving class 3

net gain for serving class 4

Fig 8. Net gain from serving each class of clients under

different blocking probabilities

AUTHOR ET AL.: TITLE 11

the limitation in the amount of VMs to be allocated to this
class. In our system, class 1 pay less than other classes.
Hence, the demand for VMs of class 1 increases. Conse-
quently, more requests of this class are rejected and the
blocking probability of this class is getting higher. Since the
excess VMs demand for class 1, VMs for other classes
should be relocated to this class (i.e., clients of class 1 that
are not satisfied with the allocated VMs can deviate to buy
VMs of other classes without changing the price). To
achieve this, CP has to increase prices for other classes. Cli-
ents are often less likely to rent VMs at higher prices.
Fig. 9 shows the price adaptation for all classes when the
blocking probability for class 1 is growing. The CP in-
creases the price of service for classes of clients where QoS
constraints are met to decrease the demand for these clas-
ses. The CP increases the prices for class 2, class 3, and class
4. This action decreases the demand for VMs and this ena-
bles the CP to meet the QoS for class 1 by allocating more
VMs for this class. The results show our scheme’s ability to
bring blocking probabilities back to their constrained
range by adapting service price.

Fig 9. Adapting service price to meet QoS constraint for class 1

6 CONCLUSION

In this paper, we have formulated the QoS provisioning
problem for the adaptive resource allocation in cloud envi-
ronments as a constrained MDP to find the optimal policy
that can maximize the gain for the CP and guarantee QoS
constraints. The emphasis has been placed on employing
RL approaches to learn a nearly optimal decision policy
that helps a CP to adapt its resources to meet the system
objectives and to solve the QoS provisioning problem. The
optimal scheme is extracted under conditions where the
service demand made by clients is “uncertain”. For the CP,
our solution is proved optimal and supports QoS for cli-

ents. It is interesting that when the QoS requirements be-
come stricter, the CP prefers less profit. On the other hand,
when clients become less strict for QoS, a CP can generate
more gain. However, gains made by more competing CPs
are less than that made by one CP. We are in the process of
carrying out similar analysis taking into account the com-
petition among CPs. We plan to derive the optimal solu-
tions for CPs in an uncertain market. In this market, clients

will be compensated for any degradation in QoS and ser-

vice price will be derived based on the QoS constraints. Be-

side adopting fair pricing policy, we will consider a cloud
market in which there are multiple CPs and potential cli-

ents. Furthermore, we intend to carry similar analysis on

real systems.

REFERENCES

[1] S. Chee, and C. Jr, “Cloud Computing: Technologies and

Strategies of the Ubiquitous Data Center,” CRC Press,Boca

Raton, U.S.A, 2009.

[2] B. Sosinsky, “Cloud Computing Bible,” John Wiley & Sons, San

Francisco, U.S.A, 2011.

[3] A. Alsarhan and A. Al-Khasawneh, ”Resource trading in cloud

environments for utility maximisation using game theoretic

modelling approach,” International Journal of Parallel, Emergent

and Distributed Systems, vol. 31, no. 4, pp.319-333, 2016.

[4] L. Wu, SK.Garg, S. Versteeg and R. Buyya, “SLA-based resource

provisioning for hosted software as a service applications in

cloud computing environments,”IEEE Transactions on services

computing, vol. 99, no.1, pp. 465-485, 2013.

[5] J. Almeida, V. Almeida, D. Ardagna, I. Cunha, C. Francalanci, and

M. Trubian, “Joint admission control and resource allocation in

virtualized servers, ”Journal of Parallel and Distributed Computing,

vol. 70, no. 4, pp. 344-362, 2010.

[6] D. Kusic, JO. Kephart, JE. Hanson, N. Kandasamy, and G. Jiang,

“Power and performance management of virtualized computing

environments via lookahead control,”Cluster Computing, vol.12,

no 1, pp.1–15, 2009.

[7] B. Dario, ”A stochastic model to investigate data center

performance and QoS in IaaS cloud computing systems,”IEEE

Transactions on Parallel and Distributed Systems, vol. 25, no. 3,

pp.560-569, 2014.

[8] A. Alsarhan, K. Al-Sarayreh, A. Al-Ghuwairi, and Y. Kilani,

“Resource trading in cloud environments for profit maximisation

using an auction model,”International Journal of Advanced

Intelligence Paradigms , vol.,6, no. 3, pp. 176-190, 2014.

[9] A. S. Prasad and S. Rao, “A Mechanism Design Approach to

Resource Procurement in Cloud Computing’, IEEE Transactions on

Computers, vol. 63, no. 1, pp. 17-30., 2014.

[10] H. Shen and G. Liu, “An Efficient and Trustworthy Resource

Sharing Platform for Collaborative Cloud Computing,”IEEE

Transactions on Parallel and Distributed Systems, vol. 25, no. 4, pp.

862-875, 2014.

[11] W. Chen, J. Cao and Y. Wan, “QoS-aware virtual machine

scheduling for video streaming services in multi-cloud’, Tsinghua

Science and Technology, “ vol. 18, no. 3, pp. 308-317, 2013..

http://dblp.uni-trier.de/pers/hd/a/Al=Khasawneh:Ahmad
http://dblp.uni-trier.de/pers/hd/a/Al=Ghuwairi:Abdel=Rahman
http://dblp.uni-trier.de/pers/hd/k/Kilani:Yousef
http://dblp.uni-trier.de/db/journals/ijaip/index.html
http://dblp.uni-trier.de/db/journals/ijaip/index.html

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

[12] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C.

Cervelló-Pastor and A. Monje, “On the optimal allocation of

virtual resources in cloud computing networks,” IEEE

Transactions on Computers, vol. 62, no. 6, pp. 1060-1071, 2013.

[13] B. Abrahao, V. Almeida, J. Almeida, A. Zhang, D. Beyer and F.

Safai, ”Self-adaptive SLA-driven capacity management for

Internet services,”,Proc.NOMS, pp. 557–568, 2006.

[14] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, S.

Krishnakumar, D. Pazel, J. Pershing and B. Rochwerger,”

Oceano—SLA-based management of a computing

utility,”Proc.IEEE/IFIP, pp. 855–868, 2001.

[15] J. O. Fit َ , I. Goiri and J. Guitart, “SLA-driven elastic cloud

hosting provider,” Proc.PDP’10, pp. 111–118, 2010.

[16] G. Lodi, F. Panzieri D. ,Rossi and E. Turrini, “SLA-driven

clustering of QoS-awareapplication servers,”IEEE Transactions

on Software Engineering, vol. 33, no. 3, pp.186–197, 2007.

[17] J. Ejarque, M. de Palol, I. Goiri, F. Juli`a, J. Guitart, R. Badia and

J. Torres, “SLA-Driven semantically-enhanced dynamic

raesource allocator for virtualized service

providers,”Proc.eScience, pp. 8–15, 2008.

[18] D. Mei, B. Meeuwissen and F. Phillipson, “User perceived

Quality-of-Service for voice-over-IP in a heterogeneou multi-

domain network environment,” Proc ICWS, pp. 1–13, 2006.

[19] D. Mei and H. B. Meeuwissen, “Modelling end-to-endQuality-

of-Service for transaction-based services in multidomain

environement,” Proc ITC19, pp. 1109-1121, 2005.

[20] J. Martin and A. Nilsson, “On service level agreements for IP

networks,” Proc INFOCOM, pp. 1-6, 2002.

[21] L. Put, “Morkov Decision Processes: discrete stochastic dynamic

progrmming,” New York Wiley, 1994.

[22] H. Watkins, and P. Dayan, “Technical Note: Q-leaming”,Machine

Lemming, vol. 8, no. 3-4,pp.279-292, 1992.

[23] S. Ferretti, V. Ghini, F. Panzieri, P. Michele, and E. Turrini, “QoS

- Aware Clouds,” Proc IEEE CLOUD, pp. 321-328, 2010.

[24] S. Sutton and G. Barto, “Reinforcement Learning: An

Introduction,” The MIT Press, Cambridge, 1998.

[25] P. Beckmann, “Elementary Queuing Theory and Telephone

Traffic” A volume in a series on telephone traffic published by

Lee's ABC of the Telephone, Geneva, IL, 1977.

[26] G. Gallego and G. Ryzin, “Optimal dynamic pricing of

inventories with stochastic demand over finite

horizons,”Management Science, Vol. 40,No. 8 ,pp. 999-1020, 1994.

[27] A. Alasaad, K. Shafiee, H. Behairy, H. M., and V. C. M Leung,

”Innovative Schemes for Resource Allocation in the Cloud for

Media Streaming Applications”,IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 4, pp. 1021-1033, 2015.

[28] P. C. Hershey, S. Rao, C. B. Silio and A. Narayan, ”System of

systems for Quality-of-Service Observation and response in

cloud computing environments,” IEEE Systems Journal, vol. 9, no.

1, pp. 212-222, 2015.

[29] Z. Zhu, G. Zhang, M. Li and X. Liu,“Evolutionary multi-objective

workflow scheduling in cloud,”IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 5, pp. 1344-1357, 2016.

[30] J. Liu,J. Y. Zhang, Y Zhou, D. Zhang and H. Liu, “Aggressive

resource provisioning for ensuring QoS in virtualized

environments, “IEEE Transactions on Cloud Computing, vol. 3, no.

2, pp. 119-131, 2015.

[31] M. Liu, W. Dou, S.Yu, and Z. Zhang,“A decentralized cloud

firewall framework with resources provisioning cost

optimization,“IEEE Transactions on Parallel and Distributed

Systems,” vol. 26, no. 3, pp. 621-631, 2015.

[32] N. Jain, and J. Lakshmi, “PriDyn: enabling differentiated I/O

services in cloud using dynamic priorities‘,IEEE Transactions on

Services Computing,” vol. 8, no. 2, pp. 212-224, 2015.

[33] G. Jia, G. Han, D. Zhang, L. Liu., and L. Shu, “An adaptive

framework for improving quality of service in industrial

systems‘,IEEE Access,”vol. 3, no. , pp. 2129-2139, 2015.

[34] D. Lučanin, and I. Brandic,“Pervasive cloud controller for

geotemporal inputs, “IEEE Transactions on Cloud Computing, vol.

4, no. 2, pp. 180-195, 2016.

[35] K. Hwang, X. Bai, Y. Shi, Li,M., G. Chen, and Y. Wu, “Cloud

performance modeling with benchmark evaluation of elastic

scaling strategies,” IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 1, pp. 130-143, 2016.

[36] Damián Serrano, Sara Bouchenak, Yousri Kouki, Frederico

Alvares de Oliveira Jr., Thomas Ledoux, Jonathan Lejeune, Julien

Sopena, Luciana Arantes, Pierre Sens, “SLA guarantees for cloud

services,” Future Generation Computer System, vol. 54, no. C, pp.

Issue C, pp. 233-246, 2016.

http://www.informatik.uni-trier.de/~ley/db/conf/IEEEcloud/IEEEcloud2010.html#FerrettiGPPT10
http://dl.acm.org/author_page.cfm?id=81387592384&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81100169350&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81496686524&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81493652530&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81493652530&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81100397440&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81503650290&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81323496386&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81323496386&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81100289647&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81100087895&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/citation.cfm?id=2831911&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/citation.cfm?id=2831911&CFID=767026067&CFTOKEN=20447213

