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Abstract—In the current cloud business environment, the cloud provider (CP) can provide a means for offering the required 

quality of service (QoS) for multiple classes of clients. We consider the cloud market where various resources such as CPUs, 

memory, and storage in the form of Virtual Machine (VM) instances can be provisioned and then leased to clients with QoS 

guarantees. Unlike existing works, we propose a novel Service Level Agreement (SLA) framework for cloud computing, in which 

a price control parameter is used to meet QoS demands for all classes in the market. The framework uses reinforcement learning 

(RL) to derive a VM hiring policy that can adapt to changes in the system to guarantee the QoS for all client classes. These 

changes include: service cost, system capacity, and the demand for service. In exhibiting solutions, when the CP leases more 

VMs to a class of clients, the QoS is degraded for other classes due to an inadequate number of VMs. However, our approach 

integrates computing resources adaptation with service admission control based on the RL model. To the best of our knowledge, 

this study is the first attempt that facilitates this integration to enhance the CP's profit and avoid SLA violation. Numerical analysis 

stresses the ability of our approach to avoid SLA violation while maximizing the CP’s profit under varying cloud environment 

conditions.           

Index Terms—Resource Management, Cloud Computing, Quality of Service, Cloud Service Trading, Economic Model. 

———————————————————— 

1 INTRODUCTION

LOUD computing has paved the way to enable users 
to access virtual computing resources on the Internet. 

This technology helps the cloud providers (CPs) to utilize 
resources efficiently and to generate extra income. How-
ever, the QoS for clients depends on the allocated re-
sources. A CP may trade anything from infrastructure 
[1,2,3] such as processors, memory, and Internet access. 
Despite many studies found in the literature under the um-
brella of cloud computing, resource management in multi-
service environments is still in its infancy. In particular, 
key issues such as the integration of client satisfaction, QoS 
provisioning, and adaptive resource allocation policies 
have not yet been explored. Unlike existing contributions, 
this work places a great deal of emphasis on integrating the 
above issues with the aim of avoiding the Service Level 
Agreement (SLA) violation while maximizing CP profit 
under varying cloud environment conditions. Thus, in our 
work, a CP hires Virtual Machines (VMs) to execute clients’ 
jobs and the cost of hiring VMs is amortized through client 

payments. The set of VMs in the cloud environment is 
managed by the CP. In particular, we propose an approach 
for resource management in multi-service environments 
based on a RL model. The model realizes continuous profit 
optimization for the CP. It integrates the adaptation of the 
offered number of VMs for each class of clients with the 
Request Admission Control policy (RAC). To satisfy QoS 
demands, the approach includes adaptations of the CP’s 
resources to continuously meet request blocking probabil-
ity constraints using the price parameter. The following are 
keys objectives for the proposed RL model: 

 
• Client satisfaction by providing the committed QoS for 
users. This objective is achieved by offering an adequate 
number of VMs for serving users’ jobs. For this purpose 
sufficient VMs must be available to serve all classes of us-
ers. Hence, the CP serves new requests on the basis of the 
RAC policy that ensures the request effectiveness and VMs 
availability. 
• System Grade of Service (GoS). RAC policy blocks re-
quests that give less gain provided that the blocking prob-
ability constraint is met for all classes of clients. To ensure 
good GoS to users, requests blocking probabilities must be 
constrained to acceptable values. 
• CP gain which is basically defined as reward minus 
cost. This objective aims to optimize the CP’s gain. In our 
work, users pay for individual requests. Hence, a CP’s gain 
is computed using the amount of admitted requests. 

The success of the proposed RL model framework de-
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pends on the optimization of both objectives: QoS for cli-
ents, and CP gain. However, these objectives conflict with 
each other. Businesses typically prioritize the gain. In the 
cloud environment, assurance of QoS standards is not a 
trivial task. This task requires solid definitions of QoS met-
rics tightly coupled with resource management policy ca-
pable of coping with changes that occur in the cloud envi-
ronment. The interaction with the changes in the service 
cloud environment requires a dynamic framework capable 
of monitoring environmental conditions. Since typical sys-
tem load fluctuates and changes over time, an optimal 
static solution is inadequate to solve this problem, espe-
cially in cases of system overload and inefficient cloud re-
sources. The major contributions of this paper are as fol-
lows: 
 
• Define and formulate the problem of resource adapta-
tion in multi-service cloud environments where different 
requirements of different classes of clients are considered. 
In this formulation, gain maximization can be achieved by 
adaption of leased VMs that influences the admission rate 
of jth class by increasing the service price for other classes. 
Gain maximization should be done in such a way that 
blocking probabilities for all classes do not exceed the con-
straints blocking probabilities. Service price is used in this 
problem to adapt cloud resources (VMs) with the gain 
maximization objective. We show how this concept can be 
generalized to state-dependent cloud market prices.  This 
study demonstrates how the service price parameter pro-
vides a means for controlling almost independently and 
continuously QoS of different classes of clients. This fea-
ture is crucial in the control of a multi-service cloud market 
where request classes with different VM requirements can 
encounter very different QoS levels. The new advantages, 
achieved by the application of gain maximization and Mar-
kov decision theory to cloud market control, motivated us 
to extend and generalize these concepts to multi-service 
cloud markets. Increasing the price for the wealthiest clas-
ses during high demand reduces the hiring rate of VMs for 
these classes, which helps to meet the QoS constraint for 
other classes. Although the presentation focuses on multi-
service cloud markets, most results and conclusions are of 
course applicable to the special case of one service market. 
 
• Propose RL mechanism for CPs to model their long-
term behaviors. RL is a promising approach to tackle this 
problem. It involves the synthesis of adaptive control algo-
rithms for serving clients’ requests, and it responds to 
measured cloud market conditions. Two new elements 
have been added to the RL algorithm for serving client re-
quests for VMs in a cloud market: Markov decision theory 
and CP gain maximization. Markov decision theory is em-
ployed to compute a state dependent leasing policy by ex-
ecuting the RL algorithm. The model considers the eco-
nomic factors for CPs that include the reward and the cost 
of hiring VMs. Furthermore, it is used to guarantee QoS for 
all classes of user. A major challenge for a CP is to charge 
the different classes appropriately. Service prices should 
generate maximum economic benefits to the CP. However, 

prices should also be reasonable with respect to the clients’ 
budget. In this work, we use price as a parameter to enable 
CPs to generate gain optimally while providing the QoS to 
all client classes. 

 
• Describe how a QoS-aware scheme is used to obtain a 
computationally feasible solution to the considered re-
source adaptation problem in multi-service cloud systems. 
• Analyze the performance of the RL model under differ-

ent cloud environment conditions. 
Companies can use our RL framework to lease any virtu-

alized computing resources that are delivered over the 
web. The rest of this paper is organized as follows. Section 
2 describes the system model and assumptions. Works re-
lated to the problem are reviewed in Section 3. The RL for-
mulation is presented in Section 4. Section 5 presents the 
performance evaluation results. Finally, the paper is con-
cluded and future research directions are given. 

2 SYSTEM MODEL AND RELATED WORK 

This section presents our assumptions. Clients access a 
CP’s VMs using networked client devices, such as desktop 
computers, laptops, and smartphones. Clients rely on CPs 
for a majority of their jobs. Requests are sent using a web 
browser to interact with the CP. Clients can send their re-
quests anytime anywhere. Fig. 1 depicts the architecture of 
a cloud computing environment. 

 
 

 

Fig. 1. Cloud computing architecture 

The system consists of CP and X clients. The CP has 𝑁 
VMs that are offered to serve multiple classes of clients. 
The CP specifies the number of VMs 𝑁𝑗  for the class 𝑗, QoS 

requirements for each class based on SLA (blocking prob-
ability), and the reward of deploying hired VMs for jth 
class  𝑟𝑗. Each client of class 𝑗 can request a bundle of VMs. 

The demand vector of the required VMs for a client of jth 
class is 𝑑𝑗 and it is represented as follows: 

 
𝑑𝑗 = (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛)                                                                    (1) 

where 𝑣𝑖 indicates whether a client requests ith VM or not, 
𝑣𝑖=1 means ith VM is requested by a client, and 𝑣𝑖=0 means 
ith VM is not requested. The reward 𝑟𝑗 is computed as fol-
lows: 

 
𝑟𝑗 = ∑ 𝑝𝑗

𝑖𝑣𝑖
𝑛
𝑖=1                                                                            (2) 

http://en.wikipedia.org/wiki/Desktop_computers
http://en.wikipedia.org/wiki/Desktop_computers
http://en.wikipedia.org/wiki/Laptop
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser
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where 𝑝𝑗
𝑖  is the price for ith VM paid by jth class. We as-

sume that these parameters are changed over time corre-
sponding to the system conditions, such as workload, VM 
demand, and the service cost. Thus, a CP needs to change 
the price and the number of VMs offered in each class 
when needed. A client can use the VMs if he/she agrees to 
pay. We assume that a client's requests arrival follows 
Poisson distribution and each client class 𝑗 has arrival rate 
𝜆𝑗. The service time 𝜇𝑗 for each request of jth class is as-

sumed to be exponentially distributed. The CP faces the 
challenge of deciding the accepted requests. The CP should 
consider user demand for service and GoS. User demand 
is closely related to the reward received from clients.  

Indeed, QoS guarantees are important for the cloud mar-
ket, especially if the number of VMs is insufficient to serve 
clients’ requests. Unfortunately, providing QoS guarantees 
is a challenging problem since the demand for VMs fluctu-
ates over time. The work in [4] investigates various algo-
rithms for resource provisioning in cloud computing sys-
tems. The main concern of the proposed algorithm is min-
imizing the penalty cost and improving customer satisfac-
tion levels by minimizing QoS constraint violations. The 
proposed scheme considers customer profiles and provid-
ers’ quality parameters to handle the dynamic nature of 
cloud environments. Researchers propose a new technique 
in [5] that jointly addresses the resource allocation and ad-
mission control optimization problems in cloud environ-
ments. The proposed technique takes into account the CP’s 
revenues, the cost of servers, and clients' requirements. In 
[6], a new framework is proposed for dynamic resource 
provisioning in a virtualized computing environment. 
They consider switching costs and explicitly encode the 
notion of risk in the optimization problem. 

An analytical model is presented in [7] to evaluate 
the performance of an IaaS in the cloud system. Several 
performance metrics are suggested to analyze the behavior 
of a cloud data center. These metrics include: availability, 
utilization, and responsiveness. An auction model is used 
in [8] for resource allocation in cloud environments. The 
key objective of the model is maximizing the CP’s profit. 
The concept of virtual valuation is used in the proposed 
auction mechanism. In [9], researchers present a cloud re-
source procurement approach which helps clients to select 
an appropriate cloud vendor. The proposed approach im-
plements dynamic pricing for profit maximization. Three 
mechanisms are suggested for a resource procurement 
scheme: 

 

 Cloud-dominant strategy incentive compatible 

(C-DSIC). 

 Cloud-Bayesian incentive compatible (C-BIC). 

 Cloud optimal (C-OPT).  
 

C-DSIC is a low-bid Vickrey auction. C-BIC is Bayesian 
incentive compatible and it achieves budget balance. C-
BIC neglects the individual rationality of clients. Collabo-
rative cloud computing (CCC) aims to use the resources 
that belong to different organizations or individuals in a 

cooperative manner. Authors in [10] propose a CCC plat-
form, called Harmony. The proposed system integrates the 
resource management and reputation management in a 
harmonious manner. Three key innovations are incorpo-
rated: integrated multi-faceted resource/reputation man-
agement, multi-QoS-oriented resource selection, and 
price-assisted resource/reputation control. Video stream-
ing services require huge storage capacity. Hence, more 
than one data center should be used to support this service, 
which is called multi-cloud. Data centers should be moni-
tored and controlled to support QoS. In [11], a closed-loop 
approach is proposed for optimizing QoS and cost. More-
over, the authors suggest an algorithm to help CPs in man-
aging data centers in a multi-cloud environment. 

In [12], the authors formulate the optimal networked 
cloud mapping problem as a mixed integer programming 
(MIP) problem to provide a unified resource allocation 
framework for networked clouds. The proposed model 
aims to decrease the cost of the resource mapping proce-
dure, while abiding by user requests for QoS-aware virtual 
resources. It presents a method for the efficient mapping of 
resource requests onto a shared substrate interconnecting 
various islands of computing resources, and adopts a heu-
ristic methodology to address the problem.  

In [13], different Internet services are hosted in a shared 
platform and offered to multiple classes of clients. The fo-
cus of the work has been to manage the capacity of the 
shared Internet data centers in such a way as to explore the 
available resources to the provider’s best advantage so that 
a business goal is maximized. In [14], multiple customers 
are hosted on a collection of sequentially shared resources. 
The hosting environment is divided into secure domains. 
Each domain supports one customer. In this cloud envi-
ronment, the resources are assigned dynamically to cus-
tomers based on the work load. This dynamic resource al-
location scheme enables flexible Service Level Agreements 
(SLAs). 

An elastic web hosting provider is presented in [15]. A 
cloud hosting provider (HSP) makes use of the outsourc-
ing technique. In order to take advantage of cloud compu-
ting infrastructures, a HSP provides scalable and highly 
available services to the web applications deployed on it. 
New middleware architecture is proposed in [16]. The ar-
chitecture enables platforms to meet the QoS requirements 
of the applications they host.  

The architecture incorporates a load balancer that distrib-
utes the computational load across the platform resources. 
Moreover, the QoS of clients is monitored in the proposed 
system. However, if the CP cannot support the required 
QoS, the platform is reconfigured dynamically in order to 
incorporate additional resources from the cloud. A new 
framework for resource management is proposed in [17]. 
The main goal of the proposed framework is to facilitate 
resource management by reducing the cost of serving us-
ers and to meet the QoS agreed with clients. The proposed 
scheme assigns resources to the clients based on the infor-
mation provided by service providers. The resources are 
allocated to the clients according to the business goals and 
clients requirements. The end-to-end QoS for transaction-
based services in multi-domain environments is modeled 
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in [18]. The Mean Opinion Score (MOS) is used as a metric 
for QoS that is expressed by response time and download 
time. 

 The problem of an end-to-end QoS guarantee for Voice 
over IP (VoIP) services is addressed in [19]. In [20], the av-
erage response time of a service request is used as a QoS 
metric. However, measurement techniques are hard to use 
in computer service performance prediction especially for 
cloud environments. The authors in [27] propose a new 
scheme for resource reservation that maximally exploits 
discounted rates offered in the tariffs, while ensuring that 
sufficient resources are reserved in the cloud market. In or-
der to make accurate resource allocation decisions, the 
scheme predicts the demand for streaming capacity. Au-
thors in [28] propose a new scheme for QoS monitoring 
management for a system-of-systems (SoS) where any user 
from any location can share computing resources at any 
time. The proposed scheme enables QoS monitoring, man-
agement, and response for enterprise systems that deliver 
computing as a service through a cloud computing envi-
ronment.  In [29], authors model the workflow scheduling 
problem which optimizes both makespan and cost as a 
Multi-objective Optimization Problem (MOP) for cloud en-
vironments. Furthermore, they propose an evolutionary 
multi-objective optimization (EMO)-based algorithm to 
solve workflow scheduling problems on an infrastructure 
as a service (IaaS) platform. 

In [30], a novel resource management framework 
(SPRNT) is proposed to ensure high-level QoS in cloud 
computing systems. It utilizes an aggressive resource pro-
visioning strategy which encourages SPRNT to substan-
tially increase the resource allocation in each adaptation 
cycle when the demand for service workload increases. 
The authors propose a new decentralized cloud firewall 
framework for individual cloud customers in [31]. They es-
tablish a novel queuing theory based model M/Geo/1 and 
M/Geo/m for quantitative system analysis, where the ser-
vice times follow a geometric distribution. In [32], the au-
thors propose PriDyn, a novel scheduling framework for 
monitoring QoS in the cloud market. PriDyn is designed to 
consider I/O performance metrics of applications such as 
acceptable latency and convert them to an appropriate pri-
ority value for disk access based on the current system 
state.  

The framework provides differentiated I/O service to 
various applications and ensures predictable performance 
for critical applications in multi-tenant cloud environment. 
An adaptive framework is proposed in [33] for Service 
Maximization Optimization (SMO). The framework is de-
signed to improve the QoS of the soft real-time multimedia 
applications in multimedia cloud computing. 

In [34], the authors propose a new pervasive cloud con-
troller for dynamic resource reallocation in cloud environ-
ments. The proposed system adapts to volatile time and lo-
cation-dependent factors, while considering the QoS im-
pact of too frequent migrations and the data quality limits 
of time series forecasting methods. Authors present new 
generic cloud performance models in [35] for evaluating 
Iaas, PaaS, SaaS, and mashup or hybrid clouds. Moreover, 
they test clouds with real-life benchmark programs and 

propose some new performance metrics.  
The authors propose a new cloud model called SLAaaS – 

SLA aware Service in [36]. The model considers QoS levels 
and SLA for clients. Moreover, a novel domain-specific 
language that allows description of a QoS-oriented SLA as-
sociated with cloud services is proposed. However, none 
of the cloud approaches attempts to meet the agreed QoS 
of clients while maximizing the profit for the CP using 
price control parameters. Moreover, these approaches 
have implemented static provisioning of resources result-
ing in low resource utilization. Moreover, all of these 
works concentrated on a single class of clients. Finally, a 
dynamic behavioral adaptation to the cloud environment 
conditions was ignored in these strategies. 

There are significant differences in our approach not 
only due to the differences in the system structure but also 
due to the dynamic nature of the cloud environment. The 
CP has to deal with the demand uncertainty problem and 
adapt its resources to meet the QoS for all clients' classes. 
In this work, we present the client satisfaction oriented re-
source allocation heuristic as a novel profit-driven trading 
algorithm. Our approach effectively meets QoS for differ-
ent classes of clients. Specifically, client's classes, for which 
their QoS cannot be met, may be allocated more VMs by 
rejecting the requests for other classes whose QoS are met.  

Our main concern in this work is modeling the long 
term average behavior of the CP as it evolves over time. 
We extract the optimal control policy to help CP for adapt-
ing resources (i.e. VMs) in each state of the system for 
meeting the QoS constraint for all classes of clients. Hence, 
the cloud market is an Ergodic dynamical system and this 
problem should be solved under the umbrella of the Mar-
kov Decision Processes (MDP).   

Here, our main objective is to maximize profit for the 
CP by accommodating as many service requests as possi-
ble and maintaining a certain quality of service for all cli-
ents. This scenario might be best suited to small and mid-
size CPs. Our main contribution is the integration of client 
satisfaction with our RL model. To the best of our 
knowledge, the work in this study is the first attempt that 
makes this integration to enhance the CP's profit and avoid 
SLA violation. 

4 THE PROPOSED RESOURCES ADAPTATION 

In the cloud environment, a resource adaptation control 
policy is required in conjunction with the RAC algorithm 
to meet a variety of objectives. When the cloud environ-
ment is in an under-loaded condition, RAC tries to accept 
every request and it allocates as many VMs as possible for 
all clients' classes. However, client demand for VMs may 
increase. In this case, some requests should be rejected by 
RAC to meet QoS for other clients. 

We formulate the RAC problem as a Markov decision 
process (MDP) [21]. However, traditional solutions (value 
iteration, policy iteration, etc.) are infeasible within MDP 
due to very large state spaces that make traditional solu-
tions suffer from the curse of the dimensionality problem. 
Moreover, from a modeling point of view, it is hard to es-
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timate the transition probability in a real cloud environ-
ment due to varying environment conditions such as client 
demand, service cost, etc.  Therefore, we choose RL to solve 
MDP using Q-learning [22]. The Q-learning method does 
not require the explicit expression of the state transition 
probabilities and it can handle MDP problems with large 
state spaces efficiently. Q-learning is one of the most pop-
ular RL algorithms [22]. The formulation of this method is 
presented in the following Section. The symbols used in 
this paper are listed in Table 1. 

 
                       TABLE 1 

SYMBOLS USED IN THE PAPER 

Parameter Description 

𝑁 Number of VMs in the market  

X Number of clients   

𝑟𝑗 Reward for leasing VMs for jth class 

𝑑𝑗  The demand vector of the required 
VMs for a client of jth class 

𝑝𝑗
𝑖  The price for ith VM paid by jth class 

λ𝑗  Arrival rate for  jth  class 

𝜇𝑗  The service time  for  jth class 

𝑆 State space  of the cloud environ-
ment 

𝑠𝑗   The number of VMs required for jth 
class 

𝐽  The set of client classes 

Ω All possible events in the system 

𝑒0
𝑗
 Request arrival event for class-j 

𝑒1
𝑗
 Request departure event for class-j 

𝐴 Action space 

𝑅(𝑆(𝑡), 𝑒𝑖
𝑗
(𝑡), 𝑎) The intermediate reward for action a 

at time t 

𝜋 A policy that maps the current event 
and state of cloud environment to an 
action 

𝜋∗ Optimal policy 

𝑣(𝜋∗) Average reward of policy π∗   

𝐷 The time horizon 

ℎ∗ Vector of differential reward func-
tions 

𝜏̅ Average transition time correspond-
ing to state-action pair 

𝐸
𝑒𝑖

𝑗  The expected reward over the proba-
bility events 

𝑆(𝑡 + 1) Next state  

𝜃 A vector for the tunable parameters 
for a policy π 

𝑌 State  action tuple   

∇𝑣(𝜋(𝜃)) Gradient of the reward of policy  π   
with respect to θ 

𝑄𝜃(𝑌, 𝑎) Value function for an action of start-
ing state in state-event action tuple  
(Y, a) for the policy π(θ) 

∇𝑣(𝜋(𝜃∗)) Gradient of the average reward for 

∇v(π(θ)) 

𝜑𝜃(𝑌, 𝑎) The gradient ∇ with respect to θ at 
time  t  for an action of starting state 
in state-event action tuple  (Y, a) 

 ∆t The transition time between state 

Yand Ý 

qYÝ(τ, a) Transition probability between state 

Yand Ý 

RAD(j) Reward for admitting a new request 
of class j 

u Unity vector  

∂j
θ(Y, a) Feature vector of state action pair 

RDE(j) Reward  of departure clients of class 
 j    

h∗(Y) Optimal reward vector 

π∗ Optimal policy for VM leasing 

hq Vector parameterized by vector q 

hq́ New vector parameterized by vector 
q at time t+1 

D Time horizon 

q A parametric vector  

δt Discount factor 

G Net gain of accepting client j request 

Cj The cost of serving a request from cli-
ent j 

G∗ Optimal net gain 

Bj Blocking probability for class j 

Bc
j
 Blocking probability constraint  for 

class j 

λ̅j The acceptance rate of clients’ j re-
quests 

pj
í  New price 

α Maximum number of clients arriving 
to the system 

ω Rate of decrease of the arrival rate as 
reward rj increases 

 ϑj A threshold for the maximum num-
ber of the class j requests 

 

 
A. Modeling VMs Allocation ON Cloud Market 

 
Due to the cloud environment, changing service demand 

can be regarded as quasi-stationary snapshots of the sys-
tem that will be visible (available) in a periodical order. 
The set of VMs allocated for class 𝑗 varies over time as the 
demand changes to meet blocking probabilities for all clas-
ses. Note also that in the proposed scheme the final deci-
sion as to whether to accept a request or not is made by the 
CP based on some constraints and objective function. 

In our work, the cloud environment is modeled as a dis-
crete-time event system. The events can be represented as 
stochastic variables with appropriate probability distribu-
tion. In order to utilize the RL algorithm, we need to iden-
tify the system states, actions, and objective function. 
Given a service demand, the required number of VMs for 
each class, the state space 𝑆 of the cloud environment is 
given by: 
 
𝑆 = {∑ 𝑠𝑗 ≤ 𝑁∀ 𝑗∈𝐽 }                                                                  (3) 
 
where 𝑠𝑗 is the number of VMs required for jth class, and 𝐽 is 
the set of clients’ classes. Let Ω denote the finite set of all 
possible events in the system where: 
 
Ω = {𝑒0

1, 𝑒1
1, 𝑒0

2, 𝑒1
2, 𝑒0

3, 𝑒1
3, … … , 𝑒0

𝐽
, 𝑒1

𝐽
}                                    (4) 

 

where 𝑒0
𝑗
 denotes the request arrival event for class-j, 

and 𝑒1
𝑗
 indicates the departure of classj request (e.g. 𝑒1

𝑗
=1 

means a request for class j departs the system while 𝑒1
𝑗
=0 
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means no request for class j departs the system). We note 
that in this cloud environment the status is changed at 
epochs of new request arrival and request departure which 

are associated with event 𝑒𝑖
𝐽
. However, when a request is 

served and departs the system, its VMs are released and a 
decision must be made whether to admit a new request or 
not. Let 𝐴 denote the set of allowed actions when the cur-
rent state of cloud environment and the current event are 
given. This set 𝐴 can be defined as: 
 
𝐴 = {𝑎: 𝑎 ∈ {0,1}}                                                                   (5) 
 
where 𝑎 = 0 denotes that a request is rejected, and a=1 in-
dicates that the CP accepts the request. Let 𝜋 be a stationary 
policy that maps the current event and state of cloud envi-
ronment to an action. The mapping process using policy 𝜋 
is an embedded finite state Markov chain evolving in con-
tinuous time. Despite the chain evolving in continuous 
time, we need only to consider the system transition at 
epochs where the events and decision take place. Let 𝑒𝑖

𝐽
(𝑡) 

be the event that occurs at time 𝑡 and assume 𝑆(𝑡) is the 
state of the cloud environment at time 𝑡 during interval 
[𝑡 − 1, 𝑡]. Then, the intermediate reward for action 𝑎 at time 
𝑡 is computed as follows: 
 
 

𝑅(𝑆(𝑡), 𝑒𝑖
𝑗
(𝑡), 𝑎) = {

𝑟𝑗 ,   𝑒𝑖
𝐽(𝑡) = 𝑒0

𝑗
= 1 𝑎𝑛𝑑 𝑎 = 1

0, 𝑒𝑖
𝑗(𝑡) = 𝑒0

𝑗
= 1 𝑎𝑛𝑑 𝑎 = 0  

}           (6) 

 
Our objective is to find the optimal policy 𝜋∗ that maxim-
izes the average reward 𝑣(𝜋∗) such that 𝑣(𝜋∗) ≥ 𝑣(𝜋) and 
this can be expressed as follows: 
 

𝑣(𝜋∗) = lim
𝐷→∞

∑ 𝑅(𝑆(𝑡),𝑒𝑖
𝑗

(𝑡),𝑎)𝐷
𝑡=0

𝐷
                                            (7) 

 
where 𝐷 is the time horizon. For policy 𝜋, any state can be 
reached by any other state and the limit in (7) exists and is 
independent of the initial state. The optimal policy 𝜋∗ can 
be generated by solving Bellman's equation for average re-
ward [24]: 
 
ℎ∗(𝑆(𝑡)) + 𝑣(𝜋∗)𝜏(̅𝑆(𝑡), 𝑎) =
arg max

𝑎∈𝐴
{𝐸

𝑒𝑖
𝑗[𝑅(𝑆(𝑡), 𝑒𝑖

𝑗(𝑡), 𝑎) + ℎ∗(𝑆(𝑡 + 1))]} (8) 
 
where 𝑣(𝜋∗) is the optimal reward,  ℎ∗is the vector of dif-
ferential reward functions, 𝜏̅𝑆(𝑡) is the average transition 
time corresponding to state-action pair, 𝐸

𝑒𝑖
𝑗 is the expected 

reward over the probability events, and 𝑆(𝑡 + 1) is the next 

state which is a function of 𝑆(𝑡),  𝑒𝑖
𝑗(𝑡),  and 𝑎. 

 
B. Optimizing VM Allocation in Cloud Environments 

 
In this section, we propose a new algorithm for extracting 

an optimal policy for VM trading in cloud environments 
using RL. The extracted policy is performed at the CP and 
it helps the CP to map each state of the cloud environment 

with action. The embedded Markov chains {𝑆(𝑡), 𝑒𝑖
𝑗(𝑡), 𝑎} 

in the cloud environment evolve within state 
space (𝑆 𝑥  Ω) x A. Assume 𝜃 be a vector for the tunable pa-
rameters for a policy 𝜋. Our objective is to find 
a policy 𝜋(𝜃∗) which will translate into actions for given 
states and events such that 𝑣(𝜋(𝜃∗)) > 𝑣(𝜋(𝜃)). Assume 
𝑌 = (𝑆(𝑡), 𝑒𝑖

𝑗(𝑡)) ∈ 𝑆 𝑥  Ω. We can find the optimal policy 
𝑣(𝜋(𝜃∗)) by improving the gradient of the average reward 
for ∇𝑣(𝜋(𝜃)) which is given by: 
 

∇𝑣(𝜋(𝜃)) =
∑ ∑ 𝑝𝜃(𝑌)𝜋(𝜃)(𝑎|𝑌)𝜑𝜃(𝑌,𝑎)𝑄𝜃(𝑌,𝑎)∀𝑎∈𝐴(𝑌)∀𝑌∈𝑆𝑥  Ω

∑ 𝑝𝜃(𝑌) ∑ 𝜋(𝜃)(𝑎|𝑌)𝜏̅(𝑌,𝑎)∀𝑎∈𝐴(𝑌)∀𝑌∈𝑆𝑥  Ω
               

                                                                                             (9) 

 
The gradient ∇ with respect to 𝜃 can be improved as fol-
lows: 
 
𝜑𝜃(𝑌, 𝑎) = [𝜑0

𝜃(𝑌, 𝑎), … , 𝜑𝑊−1
𝜃 (𝑌, 𝑎)]𝑡                                (10) 

 

𝜑𝑧
𝜃(𝑌, 𝑎) =

𝜕

𝜕𝜃(𝑧)
𝜋(𝜃)(𝑎|𝑌)

𝜋(𝜃)(𝑎|𝑌)
 ,   𝑧 = 0, … . , 𝑍 − 1                         (11) 

 
The value function for an action of starting state in state-
event action tuple  (𝑌, 𝑎) for the policy 𝜋(𝜃) is computed 
as follows: 
 
𝑄𝜃(𝑌, 𝑎) = 

𝑅(𝑌, 𝑎) − 𝑣(𝜃)𝜏̅(𝑌, 𝑎) + ∑ 𝑝𝑌𝑌́(𝑎)ℎ𝜃(𝑌́)∀𝑌́                           (12) 

 

𝜏̅(𝑌, 𝑎) = ∑ ∫ 𝜏𝑞𝑌𝑌́
∞

0∀𝑌́ (𝑑𝜏, 𝑎)                                               (13) 

 
The function 𝑞𝑌𝑌́(𝜏, 𝑎) is computed as follows: 
 
𝑞𝑌𝑌́(𝜏, 𝑎) = Pr [𝜏(𝑡 + 1) ≤ 𝜏(𝑡)|𝑌(𝑡 + 1) = 𝑌́, 𝑌(𝑡) =
                        , 𝑎𝑛𝑑 𝑎(𝑡) = 𝑎]                                                 (14) 

 
where ∆𝑡= 𝑡 − 𝑡 − 1 is the transition time between state 
𝑌 ́ and 𝑌́. Since the exact model for the cloud environment 
is unknown, we estimate 𝑄𝜃(𝑌, 𝑎) as follows: 
 

𝑄𝑢
𝜃̀ (𝑌, 𝑎) = ∑ 𝑢(𝑗)𝜕𝑗

𝜃(𝑌, 𝑎)𝐽
𝑗=1                                               (15) 

where the unity vector 𝑢 is parametric and 𝜕𝑗
𝜃(𝑌, 𝑎) is the 

feature vector of state action pair. The following lemma is 
needed to guarantee extraction of the optimal policy. 
 
Theorem 1: For all 𝑆 (𝑡) ∈ 𝑆, 𝑡 ≥ 0, 𝐽 ≥ 𝑗 ≥ 1,𝑣(𝜋∗(𝑆(𝑡 +
1))) ≥ 𝑣(𝜋∗(𝑆(𝑡))) 

 

Proof: Obviously, 𝑣(𝜋∗(𝑆(𝑡) + 𝑒𝑖
𝐽
)) ≥ 𝑣(𝜋∗(𝑆(𝑡)). Since 𝑒𝑖

𝐽
 

either takes the value 0 (request depart) or 1 for request ar-

rival. If a request of class 𝑗 arrives (𝑒1
𝐽
) then CP gets a re-

ward 𝑟𝑗𝑁𝑗 based on (4) otherwise it gets 0. Let 𝑅𝐴𝐷(𝑗) repre-

sent the reward for admitting a new request of class 𝑗. 
Then: 
 

𝑅𝐴𝐷(𝑗)𝑣(𝜋∗(𝑆(𝑡))) = 

𝑚𝑎𝑥 (𝑟𝑗𝑁𝑗 + 𝑣(𝜋∗(𝑆(𝑡) + 𝑒𝑖
𝐽
)), 𝑣(𝜋∗(𝑆(𝑡)))                       (16)                                              
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Assume 𝑅𝐷𝐸(𝑗) models the departure of a class 𝑗 request, 

which is defined as: 

 

𝑅𝐷𝐸(𝑗)𝑣(𝜋∗(𝑆(𝑡))) = 𝑣(𝜋∗(𝑆(𝑡) − 𝑒0
𝑗
))                               (17) 

 
Thus (7) could be re-written as: 
 

𝑣(𝜋∗(𝑆(𝑡))) = 

∑ 𝜆𝑗
𝐽
𝑗=1 𝑅𝐴𝐷(𝑗)𝑣(𝜋∗(𝑆(𝑡 − 1))) + ∑ 𝜇𝑗

𝐽
𝑗=1 𝑅𝐷𝐸(𝑗)𝑣(𝜋∗(𝑆(𝑡 −

1)))                                                              (18) 

 

 For 𝑡 =0, 𝑣(𝜋∗(𝑆(0)))=0, ∀𝑆(𝑡) ∈ 𝑆. It is clearly 

𝑣(𝜋∗(𝑆(0) + 𝑒𝑖
𝐽
)) ≥ 𝑣(𝜋∗(𝑆(0))). Generally, we need to 

prove the pervious inequality for all values of  𝑡 taking into 
account the arrival (𝑅𝐴𝐷(𝑗)) and departure (𝑅𝐷𝐸(𝑗)) of clients 

requests. Since 𝑅𝐷𝐸(𝑗) and 𝑅𝐷𝐸(𝑗) have positive values and 

under linear combination, the lemma can be proved using 

induction on 𝑡.  Suppose that 𝑣(𝜋∗(𝑆(𝑡 − 1) + 𝑒𝑖
𝐽
)) ≥

𝑣(𝜋∗(𝑆(𝑡 − 1))). It is clear from (16) that 𝑚𝑎𝑥 (𝑟𝑗𝑁𝑗 +

𝑣(𝜋∗(𝑆(𝑡) + 𝑒𝑖
𝐽

+ 𝑒́𝑖
𝐽
)), 𝑣(𝜋∗(𝑆(𝑡)))  ≥   𝑚𝑎𝑥 (𝑟𝑗𝑁𝑗 +

𝑣(𝜋∗(𝑆(𝑡) + 𝑒𝑖
𝐽
)), 𝑣(𝜋∗(𝑆(𝑡))). Hence, the arrival event also 

satisfies the inequality. For the departure event, it is easy 
to prove that the departure satisfies the inequality by using 
(17). Therefore, we showed that the optimal policy should 
maximize the average reward for all events in the system 

which mean 𝑣 (𝜋∗(𝑆(𝑡))) is a non-decreasing function.O 

The main idea of using RL is to extract the optimal policy 
by finding a scalar 𝑣́ and the optimal reward vector ℎ∗(𝑌) 
that is obtained using the simulation. Optimal policy can 
be obtained using greedy policy: 
 

𝜋∗ = arg max
𝑎∈𝐴

𝑅(𝑆(𝑡), 𝑒𝑖
𝑗
(𝑡), 𝑎) +  ℎ𝑞́(𝑆(𝑡 + 1))    (19) 

 

where ℎ𝑞́ is a vector parameterized by vector 𝑞 and it is 

computed as follows: 
 
ℎ𝑞́(𝑆(𝑡)) = ∑ 𝑞(𝑑)𝛿𝑡(𝑆(𝑡))𝐷

𝑡=0         (20) 

 
where 𝑞 = [𝑞(0), … . , 𝑞(𝐷)] is a parametric vector and it is 
the feature vector for the cloud environment state.                                
In our cloud computing market, if a CP admits a new client 
request of class j, it gets 𝑟𝑗𝑁𝑗 using (6). The net gain of ac-

cepting the client j request is computed as follows: 
 

𝐺 = 𝑟𝑗𝑁𝑗 + ℎ𝑞́(𝑆(𝑡 + 1)) − ℎ𝑞(𝑆(𝑡))                                    (21) 

 
Net gain can be derived using the cost of serving a client 
request as follows: 
 

𝑟𝑗𝑁𝑗 + ℎ𝑞́(𝑆(𝑡 + 1)) − ℎ𝑞́(𝑆(𝑡)) = 𝑟𝑗𝑁𝑗 − 𝐶𝑗                         (22)                 

 
where 𝐶𝑗 is the cost of serving a request of client  𝑗. The RL 

policy in (19) can be expressed in terms of net gain where 
the CP attempts to maximize the net gain as follows: 
 

𝐺∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑗∋𝐽

𝑟𝑗𝑁𝑗 − 𝐶𝑗                                                         (23) 

 
CP uses RL policy to make decisions that give high net 

gain. RL policy must explore all actions and favor the one 
that generates the highest gain. Therefore, the learning 
process gradually favors actions that appear more worthy 
than others by trying out a variety of actions over time. In 
our model, RL policy chooses the best action that gives the 
maximum gain with high probability and other actions are 
selected with less probability. However, the CP should 
consider the blocking probability constraint where the 
blocking probability for class j requests should not ex-

ceed 𝐵𝑐
𝑗
. For class j, blocking probability is computed as 

follows [23, 24, 25]: 

𝐵𝑗 =
(𝜆𝑗−𝜆̅𝑗)

𝜆𝑗
= 1 – ( 

𝜆̅𝑗

𝜆𝑗
 ) (24) 

 
where 𝜆̅𝑗 is the acceptance rate of clients j requests. CP uses 

a reward parameter adaptation to achieve this objective, 
since in general an increase of 𝑟𝑗 causes a decrease of arrival 

rate 𝜆𝑗 that causes decreasing of 𝐵𝑗, and vice versa. The ar-

rival rate depends on the reward. The new arrival rate of 
users is calculated as follows [26]: 
 

𝜆𝑗 = 𝛼𝑒−𝜔𝑝𝑗
𝑖́
                                                                           (25) 

 
where α is the maximum number of clients arriving to the 
system, 𝜔 represents the rate of decrease of the arrival rate 

as price  𝑝𝑗
𝑖  increases, and 𝑝𝑗

𝑖́  is the new price. Here we as-

sume ω is given a priori. There is an inverse relationship 
between the reward and the demand for the VMs. Since a 
change of 𝑟𝑗 influences the optimal solution for the VM 

trading problem, the reward parameter adaptation should 
be integrated with the VM adaptation. 
 
Theorem 2: To maximize the net gain of the CP in the cloud 

environment and to maintain QoS for all client classes, a request 

of class j can be accepted if and only if 𝑠𝑗 < 𝜗𝑗 , where 𝜗𝑗 is a 

threshold for the maximum number of class j requests. 

 

Proof: Assume 𝑟𝑗 > 𝑟𝑖 , ∀ 𝑖 ≠ 𝑗. Let 𝜆𝑗 = 𝜆𝑖, ∀ 𝑖 ≠ 𝑗. It is 

clear that 𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗
𝐽
)) − 𝑣 (𝜋∗(𝑆(𝑡))) ≤ 𝑣 (𝜋∗(𝑆(𝑡) +

𝑒𝑗
𝐽

+ 𝑒𝑗
𝐽
)) − 𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗

𝐽
)) because admitting more re-

quests of clients 𝑗 involves more gain. We know that if 

𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗
𝐽
)) is greater than 𝑣 (𝜋∗(𝑆(𝑡))),𝑣 (𝜋∗(𝑆(𝑡) +

𝑒𝑗
𝐽

+ 𝑒𝑗
𝐽
)) and is also greater than 𝑣 (𝜋∗(𝑆(𝑡) +

𝑒𝑗
𝐽
)). 𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗

𝐽
)) > 𝑣 (𝜋∗(𝑆(𝑡))), means that accept-

ing class 𝑗 requests will give more gain than rejecting them 

after t+𝑡́ stages from the initial state 𝑆(𝑡) while 

𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗
𝐽

+ 𝑒𝑗
𝐽
)) > 𝑣 (𝜋∗(𝑆(𝑡) + 𝑒𝑗

𝐽
)) means that ac-

cepting a class 𝑗 request generates more gain after 

t+𝑡́ stages from the initial state 𝑆(𝑡) + 𝑒𝑗 
𝐽
than accepting 

other classes requests. However, if the CP continues ac-

cepting class 𝑗 requests then the blocking probability of 

class 𝑗  becomes zero (𝜆̅𝑗=𝜆𝑗). Despite the CP maximizing 
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its gain by accepting class 𝑗 requests, the QoS for other clas-

ses is degraded significantly and their blocking probabili-

ties becomes high(𝜆̅𝑗 ≅ 0).  Thus, we can find a thresh-

old 𝜗𝑗  at the system state 𝑆(𝑡), such that the class 𝑗 request 

can be accepted, if the number of class 𝑗 requests in the sys-

tem is smaller than the threshold. Otherwise, the gain for 

accepting an arrival class 𝑗 request will degrade QoS for 

other users. Hence, some requests should be rejected. The 

following algorithm is used to find the optimal policy 𝜋∗: 

 

 
Algorithm. Finding the optimal policy  

1   Arbitrarily initialize 𝑆(0) ∈ 𝑆, 𝑎𝑛𝑑 𝑣̅0;  

2    for t = 1 to D do 

3        At state 𝑆(𝑡) generate an event 𝑒𝑖
𝑗
(𝑡) 

4               𝜏(𝑡) = 𝑡 − 𝑡 − 1 

5          Perform updates: 

6                            𝑙 𝑡= 𝑅(𝑆(𝑡), 𝑒𝑖
𝑗
(𝑡), 𝑎) −𝑣̅𝑡−1𝜏(𝑡) 

                                                   +ℎ̃𝑢𝑡−1
(𝑆(𝑡)) − ℎ̃𝑢𝑡−1

(𝑆(𝑡 − 1)) 

7                         𝑢𝑡 = 𝑢𝑡−1 + 𝜚𝑡𝑙𝑡𝛻𝑢ℎ̃𝑢𝑡−1
(𝑆(𝑡 − 1)) 

8                  𝑣̅𝑡 = 𝑣̅𝑡−1 + 𝛶𝑡(𝑅(𝑆(𝑡 − 1), 𝑒𝑖
𝑗
(𝑡 − 1), 𝑎)) −

                                     𝑣̅𝑡−1 𝜏(𝑡) 

9                     𝑎 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎∈𝐴

{𝑅 (𝑆(𝑡), 𝑢𝑒𝑖
𝑗
(𝑡), 𝑎) + ℎ̃𝑢𝑡(𝑆(𝑡 +

                                   1))} 

10                        Compute 𝑅(𝑆(𝑡), 𝑒𝑖
𝑗(𝑡), 𝑎) 

11   End for  

 
where 𝜚

𝑡
 ,𝛶𝑡  are small step size parameters to decrease the 

convergence speed of the resulting training scheme and 

𝛻𝑢ℎ̃𝑢𝑡
(𝑆) is computed as follows: 

 
𝛻𝑢ℎ̃𝑢𝑡

(𝑆) = 𝜑(𝑆)                                                                    (26) 

5 PERFORMANCE EVALUATION 

In this section, the performance of the proposed resource 
adaption scheme is evaluated using discrete event based 
simulations. Requests are served based on the gained re-
ward and the QoS constraints. The uniform distribution is 
used to generate the number of the requested VMs for each 
request. The parameters used in the simulation experi-
ments are given in Table 2.  Note that some of these param-
eters are varied according to the considered scenarios in 
our experiments. The key performance measures of inter-
est in the simulations are: 
 

(1) CP’s net gain which is computed using equation 

(23). 

(2) QoS for users, which is represented using a block-

ing probability that is computed using equation 

(24).  

Each simulation run consists of 100000 requests. The re-
sults are averaged over enough independent runs so that 
the confidence level is 95% and the relative errors do not 
exceed 5%. We examine the performance under different 
parameter settings. 
 

TABLE 1 
SIMULATION PARAMETERS 

 
 

                   Fig 2. CP’s net gain under different system capcities 

 
 

Parameter Value 

Number of VMs 100 

Number of clients 150 

Number of requests per client Random 

λ1 (arrival rate of class 1) 1 

λ2 (arrival rate of class 2) 1 

λ3 (arrival rate of class 3) 1 

λ4 (arrival rate of class 4) 1 

Blocking probability constraint for 

class 1 

0.25 

Blocking probability constraint for 

class 2 

0.2 

Blocking probability constraint for 

class 3 

0.15 

Blocking probability constraint for 

class 4 

0.1 

Service price of class 1 5 

Service price  of class 2 10 

Service price  of class 3 15 

Service price  of class 4 20 

Number of served requests 100000 

𝛼 150 

𝜔 0.5 

δt 0.9 

𝜚𝑡  300 ms 

Simulation            

Devices 

Intel i5 Core 2.50GHz 

Process cores 2 x 2.50GHz 

RAM 6 GB 

OS Windows 7 64 bit 
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A. Net gain as a function of system capacity and service de-

mand:  

 

System capacity refers to the numbers of VMs that a CP 
can offer to clients. Fig. 2 shows the net gain for the CP with 
different offered VMs. Now, the question is whether the 
interplay between the increased gain and the increased 
system capacity can generate higher gain. Utilizing more 
VMs means serving more clients and, hence, serving more 
requests. This interplay has two mutually opposite effects 
on the gain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clearly, increasing the number of admitted requests has 
a positive effect on the gain. On the other hand, serving 
more requests pushes down the demand for service, and 
thus, individual payments decrease. If the net effect is pos-
itive, the gain will increase. The results in Fig. 2 show the 
ability of the RL scheme to maximize CP gains as the sys-
tem capacity increases. The RL scheme prioritizes class 4 
since the clients of this class pay more than others. The net 
gain of class 4 is higher than others because the CP serves 

more requests for this class.  It is clear that the net gain in-
creases for all classes as the number of offered VMs in-
creases but after a certain number the gain becomes stable 
and the increment in the number of VMs does not affect 
the gain due to the limited number of clients. Hence, CP 
reaches the maximum gain for the given arrival rate. 

Scalability is the capability of a scheme to increase the 
output under an increased load. We conduct experiments 
to analyze the ability of our scheme to work on larger sys-
tems.  

 

 
Fig. 3 displays the reported net gain for different service 
demands under different system capacities. It is clear that 
the gain is increased for a higher workload (i.e. arrival rate) 
and for the system with higher capacity (i.e number of 
VMs). A CP can serve more clients when it has more VMs. 
From Fig. 3, we can find out that our scheme can maximize 
a CP’s gain under different service demands and within 
different system capacities. 

 
B. RL for maximizing CP’s net gain:  

 
The RL scheme serves the requests that generate higher 

gain over time. Fig. 4 shows the percentage of accepted re-
quests for each class of clients over time. The RL policy fo-
cuses not only on a specific class of clients but it considers 
the QoS of the whole clients. Thus, it can guarantee the 
blocking probability for each class to be less than certain 
thresholds. Clearly, the CP prefers to serve class 4 requests 
since they pay more. However, the CP should meet the 
blocking probability constraint for other classes. However, 
when the workload is high and the cloud environment is 
becoming saturated, the CP selects more requests from 
class 4 provided that QoS constraints for other classes are 
met. Many factors prevent the CP from reaching the maxi-
mum gain. These factors include the cost of renting a proces-

sor ( 𝑐𝑗), the service paid by a client, and client behavior. Fig. 
5 shows reported total net gain from serving all classes for 
different values of 𝑐𝑗 . It can be observed that in any period 
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when the cost is high, the reported gains are always less than the 

periods with lower cost. Clearly, the net gain is decreased as 
the service cost is increased. Hence, a CP should expect less 
gain in a period with high service cost. 

               
Fig. 6 shows the net gain under different values of service 

price paid by clients of class 4. We observe that the net gain 
increased by increasing the service price but in this exper-
iment the sensitivity of the arrival rate to the increment re-
ward is 0.1 and the reported net gain is taken for different 
values of arrival rate. Although this experiment focuses on 
a single class of client, the results and conclusions are of 
course applicable to the multiple classes of clients. 
 

 
To study the relationship between the net gain and client's 
behavior we plot the net gain against different values of 𝜔 
in Fig. 7.  It is clear as the value of ω increases the net gain 
decreases significantly. Large values of ω decrease the de-
mand for service (arrival rate). Large values of ω model the 
clients who care more about the cost of service instead of 
the satisfaction level they may get from the product (VMs). 

Apparently, there is an inverse relationship between prices 
charged and service demand.  Once a CP increases prices, 
clients may start looking for another provider. Therefore, a 
CP should think about the tradeoff between the benefits a 
client receives from a service and the price they are willing 
to pay. 

 
 

C. Tradeoff between service level and net gain: 

 

In this experiment, we investigate how the QoS levels for 
clients affect the CP’s gain. From Fig. 8, we notice that 
when the CP provides high level of QoS in terms of block-
ing probability its gain is degraded significantly. As 𝐵𝑐

𝑗
 de-

creases, the QoS requirement for clients becomes stricter in 
such a way that more requests should be protected from 
rejection. For this, user requests must be admitted more of-
ten to meet blocking probability constraints and the CP 
cannot select worthy requests. By contrast, as 𝐵𝑐 

𝑗
increases, 

the QoS requirements become less strict so that more re-
quests can be rejected upon their arrival and the CP selects 
the worthy requests in terms of reward. A RL-based 
scheme should keep the blocking probabilities for all clas-
ses below the target value regardless of the offered load. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

D. Maintaining QoS for clients 

 

A CP with well dimensioned system capacity and correctly 
chosen service price provides the desired QoS and main-
tains blocking probabilities in acceptable range for all clas-
ses of clients. While our adaptation scheme tries to maxim-
ize the CP’s gain by increasing the number of offered VMs 
for wealthiest clients during periods of high demand, it 
maintains QoS by bringing blocking probabilities back to 
its constrained range by increasing the service price. In any 
market, the price of the good or service is determined to 
meet the objectives of sellers. In this experiment, we con-
sider the disequilibrium scenario in the market case where 
the service price for a certain class does not conform to the 
QoS constraints. Such a case may arise, for example, due to 
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the limitation in the amount of VMs to be allocated to this 
class. In our system, class 1 pay less than other classes. 
Hence, the demand for VMs of class 1 increases. Conse-
quently, more requests of this class are rejected and the 
blocking probability of this class is getting higher. Since the 
excess VMs demand for class 1, VMs for other classes 
should be relocated to this class (i.e., clients of class 1 that 
are not satisfied with the allocated VMs can deviate to buy 
VMs of other classes without changing the price). To 
achieve this, CP has to increase prices for other classes. Cli-
ents are often less likely to rent VMs at higher prices. 
Fig. 9 shows the price adaptation for all classes when the 
blocking probability for class 1 is growing. The CP in-
creases the price of service for classes of clients where QoS 
constraints are met to decrease the demand for these clas-
ses. The CP increases the prices for class 2, class 3, and class 
4. This action decreases the demand for VMs and this ena-
bles the CP to meet the QoS for class 1 by allocating more 
VMs for this class. The results show our scheme’s ability to 
bring blocking probabilities back to their constrained 
range by adapting service price.  
 

 
 

Fig 9. Adapting service price to meet QoS constraint for class 1 
 

6 CONCLUSION 

In this paper, we have formulated the QoS provisioning 
problem for the adaptive resource allocation in cloud envi-
ronments as a constrained MDP to find the optimal policy 
that can maximize the gain for the CP and guarantee QoS 
constraints. The emphasis has been placed on employing 
RL approaches to learn a nearly optimal decision policy 
that helps a CP to adapt its resources to meet the system 
objectives and to solve the QoS provisioning problem. The 
optimal scheme is extracted under conditions where the 
service demand made by clients is “uncertain”. For the CP, 
our solution is proved optimal and supports QoS for cli-

ents. It is interesting that when the QoS requirements be-
come stricter, the CP prefers less profit. On the other hand, 
when clients become less strict for QoS, a CP can generate 
more gain. However, gains made by more competing CPs 
are less than that made by one CP. We are in the process of 
carrying out similar analysis taking into account the com-
petition among CPs. We plan to derive the optimal solu-
tions for CPs in an uncertain market. In this market, clients 

will be compensated for any degradation in QoS and ser-

vice price will be derived based on the QoS constraints. Be-

side adopting fair pricing policy, we will consider a cloud 
market in which there are multiple CPs and potential cli-

ents. Furthermore, we intend to carry similar analysis on 

real systems.  

 

REFERENCES 

[1] S. Chee, and C. Jr, “Cloud Computing: Technologies and 

Strategies of the Ubiquitous Data Center,” CRC Press,Boca 

Raton, U.S.A, 2009. 

[2] B. Sosinsky, “Cloud Computing Bible,” John Wiley & Sons, San 

Francisco, U.S.A, 2011. 

[3] A. Alsarhan and A. Al-Khasawneh, ”Resource trading in cloud 

environments for utility maximisation using game theoretic 

modelling approach,” International Journal of Parallel, Emergent 

and Distributed Systems, vol. 31, no. 4, pp.319-333, 2016. 

[4] L. Wu, SK.Garg, S. Versteeg and R. Buyya, “SLA-based resource 

provisioning for hosted software as a service applications in 

cloud computing environments,”IEEE Transactions on services 

computing, vol. 99, no.1, pp. 465-485, 2013. 

[5] J. Almeida, V. Almeida, D. Ardagna, I. Cunha, C. Francalanci, and 

M. Trubian, “Joint admission control and resource allocation in 

virtualized servers, ”Journal of Parallel and Distributed Computing, 

vol. 70, no. 4, pp. 344-362, 2010. 

[6] D. Kusic, JO. Kephart, JE. Hanson, N. Kandasamy, and G. Jiang, 

“Power and performance management of virtualized computing 

environments via lookahead control,”Cluster Computing, vol.12, 

no 1, pp.1–15, 2009. 

[7] B. Dario, ”A stochastic model to investigate data center 

performance and QoS in IaaS cloud computing systems,”IEEE 

Transactions on Parallel and Distributed Systems, vol. 25, no. 3, 

pp.560-569, 2014. 

[8] A. Alsarhan,  K. Al-Sarayreh, A. Al-Ghuwairi, and Y. Kilani,  

“Resource trading in cloud environments for profit maximisation 

using an auction model,”International Journal of Advanced 

Intelligence Paradigms , vol.,6, no. 3, pp. 176-190, 2014. 

[9] A. S. Prasad and S. Rao, “A Mechanism Design Approach to 

Resource Procurement in Cloud Computing’, IEEE Transactions on 

Computers, vol. 63, no. 1, pp. 17-30., 2014. 

[10] H. Shen and G. Liu, “An Efficient and Trustworthy Resource 

Sharing Platform for Collaborative Cloud Computing,”IEEE 

Transactions on Parallel and Distributed Systems, vol. 25, no. 4, pp. 

862-875, 2014. 

[11] W. Chen, J. Cao and Y. Wan, “QoS-aware virtual machine 

scheduling for video streaming services in multi-cloud’, Tsinghua 

Science and Technology, “ vol. 18, no. 3, pp. 308-317, 2013.. 

http://dblp.uni-trier.de/pers/hd/a/Al=Khasawneh:Ahmad
http://dblp.uni-trier.de/pers/hd/a/Al=Ghuwairi:Abdel=Rahman
http://dblp.uni-trier.de/pers/hd/k/Kilani:Yousef
http://dblp.uni-trier.de/db/journals/ijaip/index.html
http://dblp.uni-trier.de/db/journals/ijaip/index.html


12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  MANUSCRIPT ID 

 

[12] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. 

Cervelló-Pastor and A. Monje, “On the optimal allocation of 

virtual resources in cloud computing networks,” IEEE 

Transactions on Computers, vol. 62, no. 6, pp. 1060-1071, 2013. 

[13] B. Abrahao, V. Almeida, J. Almeida, A. Zhang, D. Beyer and F. 

Safai, ”Self-adaptive SLA-driven capacity management for 

Internet services,”,Proc.NOMS,  pp. 557–568, 2006. 

[14] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, S. 

Krishnakumar, D. Pazel, J. Pershing and B. Rochwerger,” 

Oceano—SLA-based management of a computing 

utility,”Proc.IEEE/IFIP, pp. 855–868, 2001. 

[15] J. O. Fit  َ , I. Goiri and J. Guitart, “SLA-driven elastic cloud 

hosting provider,” Proc.PDP’10, pp. 111–118, 2010. 

[16] G. Lodi, F. Panzieri D. ,Rossi and E. Turrini, “SLA-driven 

clustering of QoS-awareapplication servers,”IEEE Transactions 

on Software Engineering, vol. 33, no. 3, pp.186–197, 2007. 

[17] J. Ejarque, M. de Palol, I. Goiri, F. Juli`a, J. Guitart, R. Badia and 

J. Torres, “SLA-Driven semantically-enhanced dynamic 

raesource allocator for virtualized service 

providers,”Proc.eScience, pp. 8–15, 2008. 

[18]  D. Mei, B. Meeuwissen and F. Phillipson, “User perceived 

Quality-of-Service for voice-over-IP in a heterogeneou multi-

domain network environment,” Proc ICWS, pp. 1–13, 2006. 

[19] D. Mei and H. B. Meeuwissen, “Modelling end-to-endQuality-

of-Service for transaction-based services in multidomain 

environement,” Proc ITC19,   pp. 1109-1121, 2005. 

[20] J. Martin and A. Nilsson, “On service level agreements for IP 

networks,” Proc INFOCOM,  pp. 1-6, 2002. 

[21] L. Put, “Morkov Decision Processes: discrete stochastic dynamic 

progrmming,”  New York Wiley, 1994. 

[22] H. Watkins, and P. Dayan, “Technical Note: Q-leaming”,Machine 

Lemming, vol. 8, no. 3-4,pp.279-292, 1992. 

[23] S. Ferretti, V. Ghini, F. Panzieri, P. Michele, and E. Turrini, “QoS 

- Aware Clouds,” Proc IEEE CLOUD, pp. 321-328, 2010. 

[24] S. Sutton and G. Barto, “Reinforcement Learning: An 

Introduction,” The MIT Press, Cambridge, 1998.  

[25] P. Beckmann, “Elementary Queuing Theory and Telephone 

Traffic” A volume in a series on telephone traffic published by 

Lee's ABC of the Telephone, Geneva, IL, 1977. 

[26] G. Gallego and G. Ryzin, “Optimal dynamic pricing of 

inventories with stochastic demand over finite 

horizons,”Management Science, Vol. 40,No. 8 ,pp. 999-1020, 1994. 

[27] A. Alasaad, K. Shafiee, H. Behairy, H. M., and V. C. M Leung, 

”Innovative Schemes for Resource Allocation in the Cloud for 

Media Streaming Applications”,IEEE Transactions on Parallel and 

Distributed Systems, vol. 26, no. 4, pp. 1021-1033, 2015. 

[28] P. C. Hershey, S. Rao, C. B. Silio and A. Narayan, ”System of 

systems for Quality-of-Service Observation and response in 

cloud computing environments,” IEEE Systems Journal, vol. 9, no. 

1, pp. 212-222, 2015. 

[29] Z. Zhu, G. Zhang, M. Li and X. Liu,“Evolutionary multi-objective 

workflow scheduling in cloud,”IEEE Transactions on Parallel and 

Distributed Systems, vol. 27, no. 5, pp. 1344-1357, 2016. 

[30] J. Liu,J. Y. Zhang, Y Zhou, D. Zhang and H. Liu, “Aggressive 

resource provisioning for ensuring QoS in virtualized 

environments, “IEEE Transactions on Cloud Computing, vol. 3, no. 

2, pp. 119-131, 2015.  

[31] M. Liu, W. Dou, S.Yu, and Z. Zhang,“A decentralized cloud 

firewall framework with resources provisioning cost 

optimization,“IEEE Transactions on Parallel and Distributed 

Systems,” vol. 26, no. 3, pp. 621-631, 2015. 

[32] N. Jain, and J. Lakshmi, “PriDyn: enabling differentiated I/O 

services in cloud using dynamic priorities‘,IEEE Transactions on 

Services Computing,” vol. 8, no. 2, pp. 212-224, 2015. 

[33] G. Jia, G. Han, D. Zhang, L. Liu., and L. Shu, “An adaptive 

framework for improving quality of service in industrial 

systems‘,IEEE Access,”vol. 3, no. , pp. 2129-2139, 2015. 

[34] D. Lučanin, and I. Brandic,“Pervasive cloud controller for 

geotemporal inputs, “IEEE Transactions on Cloud Computing, vol. 

4, no. 2, pp. 180-195, 2016. 

[35] K. Hwang, X. Bai, Y. Shi, Li,M., G. Chen, and Y. Wu, “Cloud 

performance modeling with benchmark evaluation of elastic 

scaling strategies,” IEEE Transactions on Parallel and Distributed 

Systems, vol. 27, no. 1, pp. 130-143, 2016. 

[36] Damián Serrano, Sara Bouchenak, Yousri Kouki, Frederico 

Alvares de Oliveira Jr., Thomas Ledoux, Jonathan Lejeune, Julien 

Sopena, Luciana Arantes, Pierre Sens, “SLA guarantees for cloud 

services,” Future Generation Computer System, vol. 54, no. C, pp.  

Issue C, pp. 233-246, 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.informatik.uni-trier.de/~ley/db/conf/IEEEcloud/IEEEcloud2010.html#FerrettiGPPT10
http://dl.acm.org/author_page.cfm?id=81387592384&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81100169350&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81496686524&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81493652530&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81493652530&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81100397440&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81503650290&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81323496386&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81323496386&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81100289647&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/author_page.cfm?id=81100087895&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/citation.cfm?id=2831911&CFID=767026067&CFTOKEN=20447213
http://dl.acm.org/citation.cfm?id=2831911&CFID=767026067&CFTOKEN=20447213

