
An Applied Pattern-Driven Corpus to Predictive

Analytics in Mitigating SQL Injection Attack

Solomon Ogbomon Uwagbole

School of Computing

Edinburgh Napier University

Edinburgh, United Kingdom

05012238@live.napier.ac.uk

William J. Buchanan, Lu Fan

School of Computing

Edinburgh Napier University

Edinburgh, United Kingdom

b. buchanan; l.fan@napier.ac.uk

Abstract— Emerging computing relies heavily on secure back-

end storage for the massive size of big data originating from the

Internet of Things (IoT) smart devices to the Cloud-hosted web

applications. Structured Query Language (SQL) Injection Attack

(SQLIA) remains an intruder’s exploit of choice to pilfer

confidential data from the back-end database with damaging

ramifications. The existing approaches were all before the new

emerging computing in the context of the Internet big data mining

and as such will lack the ability to cope with new signatures

concealed in a large volume of web requests over time. Also, these

existing approaches were strings lookup approaches aimed at on-

premise application domain boundary, not applicable to roaming

Cloud-hosted services’ edge Software-Defined Network (SDN) to

application endpoints with large web request hits. Using a Machine

Learning (ML) approach provides scalable big data mining for

SQLIA detection and prevention. Unfortunately, the absence of

corpus to train a classifier is an issue well known in SQLIA research

in applying Artificial Intelligence (AI) techniques. This paper

presents an application context pattern-driven corpus to train a

supervised learning model. The model is trained with ML

algorithms of Two-Class Support Vector Machine (TC SVM) and

Two-Class Logistic Regression (TC LR) implemented on Microsoft

Azure Machine Learning (MAML) studio to mitigate SQLIA. This

scheme presented here, then forms the subject of the empirical

evaluation in Receiver Operating Characteristic (ROC) curve.

Keywords— SQL Injection; SQLIA Data analytics; SQLIA

Pattern-driven data set; SQLIA big data; SQLIA hashing

I. INTRODUCTION

Recent years have seen a continuous upward trend in big
internet data, and the volume of the Cloud-driven applications
will only continue to grow with more individuals, governments
and businesses adopting and hosting files and applications in the
Cloud. A Google search of ‘SQLi hall of shame’ [1] throws light
on how topical SQLIAs issues are. SQL Injection (SQLI) is not
only a vulnerability arising from developers’ lack of security
awareness in web application development to sanitised input data,
but an exploit of the free text processing capability of the SQL
engine which has ramifications in both legacy and new web
application lacking sanitation becoming SQLI vulnerable.

The SQL language syntax is in plain English, and the SQL
keywords and tokens are also in plain text. Therefore, the SQLIA
problem is a plausible candidate to apply predictive analytics
employing a supervised learning model trained with historical
attack signatures, including SQL tokens and safe web requests
patterns to predict SQLIA at SQL query injection points.

Unfortunately, web applications are designed for different
requirements. Thus, web application domain context is so diverse
to have a standardised pre-existing pattern-driven data set to train
a supervised learning model. Moreover, as such, non-availability
of a data set that covers every application domain context is an
issue well known in SQLIA research in applying AI techniques.

We opine patterns exist in every input data in both legacy and
new web applications that can be leveraged to generate as many
derivations of member strings. Applying ML techniques requires
data set with sufficient learning data arising from patterns that
exist in the input data. There is a need to build a prediction model
trained from data set of the desired application domain context to
predict SQLIA. In our labelling of the data set, the presence of
known attack signature at injection points will contain patterns of
SQL tokens and symbols which are deemed SQLIA positive.
Conversely, the valid web requests (SQLIA negative) would take
the form of generating all possible member strings. We apply
Non-Deterministic Finite Automata (NFA) implemented in
Regular Expression (RegEx) to define the constraint patterns, and
employing Symbolic Finite Automata (SFA) with a constraint
solver termed Satisfiability Modulo Theories (SMT-Z3) [2], [3] to
generate member strings from the defined RegEx patterns.

We trained a supervised learning model with this pattern-
driven learning data in demonstrating a proof of concept by
applying predictive analytics to a test web application expecting
dictionary word list as input data. The learning data are obtained
by automata states walk to derive as many member strings in a
given pattern. The trained models are evaluated in ROC curve
with the TC SVM having the best performance metrics in Area
Under Curve (AUC) value of 0.986 deployed as a Web Service
(WS). The WS is consumed in a Fiddler proxy Application
Programming Interface (API) [4] for the ongoing SQLIA
prediction as to reject intercepted requests that are positive.

This paper lays out in six sections ending with a conclusion
and future work summary. Section II covers related work and
Section III focused on the background, including corpus
generation; with Sections IV and V are detailing predictive
analytics experiment, evaluation and results.

II. RELATED WORK

The research area of SQLIA has seen various methodologies
proposed over the years by researchers which we broadly
categorised into three groups. Firstly, SQLI Vulnerability
(SQLIV) testing and detection [5], [6]. Secondly, defensive

coding in web application code sanitation for SQLI prevention
[7], [8]. Thirdly, dynamic runtime analysis [9], [10] including
taint-based [11], [12] and approaches that apply AI (a similar
approach implemented in this paper) in the detection and
prevention of SQLIA.

The approach presented in this article applies AI which
requires a robust data set with various patterns in feature values to
train a classifier. Applying ML requires robust learning data with
patterns to train a classifier implementing TC SVM and TC LR
algorithms to predict SQLIA accurately. Unfortunately, as there is
no unified pre-existing data set, researchers over the years have
resorted to various approaches in generating sample data sets with
most proposals lacking patterns to enhance learning data, and
fraught with complex computational overheads. Also, plausible
approaches in the past that relied on source code will be
inapplicable over time in emerging computing platforms like the
Cloud where source code access for static scanning is restricted.
Finally, some existing ML implementation lack completeness in
being theoretical or not moving beyond the performance metrics
or ROC curve evaluations to implement the trained models in a
real-life application. Below gives a high-level review of some
existing ML approaches.

 Bockermann et al. [13] proposed using tree kernels for
analysing SQL statements in addition to exploring feature
vectorization of data input to an SVM classifier but found there to
be drawbacks in the tree-kernels computational overhead. Also,
their data set extraction depends on URL strings which are
repeating strings lacking patterns.

Komiya [14] proposed SVM to detecting SQLIA from user
inputs extracted from blank separation (counting number of
terms) and tokens. Its drawback was requiring access to source
code in detecting SQLIA.

Choi et al. [15] train an SVM classifier using feature
vectorization by N-Grams. The data set is a collection of full
query structure vectorised to N-Grams, but the training data is not
robust enough for a good performance metrics in big data mining.
Also, it needs access to full source code.

Wang and Li [16] proposed SQL query program tracing in
which related queries are grouped based on runtime program
trace. However, the approach’s drawback is the reliance on the
source code for the SQL tracing grouping that is hashed to the
vector matrix for a classifier implementing the SVM algorithm.

Pinzón et al. [17] present a multi-agent approach that uses
both SVM and neural networks to predict SQLIA from SQL
queries behaviour that are stored as cases. The architecture named
CBR cycle is computationally expensive and need access to
source code.

Kim and Lee [18] proposed an approach that uses the SVM
classifier for a binary classification of internal query
representation known as query trees. The training data comprised
of feature vectors of transformed query trees of the internal query
structure. It drawbacks in requiring access to the source code and
it is computational complex because of the size of the query trees.

The scheme presented here is an improvement on a previous
workshop paper on applying ML predictive analytics to SQLIA
prediction and prevention [19]. We detail in this article; the novel

data set generation and a further improvement of the trained
model’s prediction results on True Positives (TP) and True
Negatives (TN), but with low False Positives (FP) and False
Negatives (FN). The methodology adopted here has been
empirically evaluated in the numeric encoding of both expected
input and patterns of SQLIA types [20], [21]. The good results of
the encoded patterns-driven data set to a supervised learning
model in performance metrics motivated this paper.

We present in this article a supervised learning model that
uses a data set input from patterns of expected input data,
including SQLIA types and SQL keywords to train various
classifiers with a better performance metrics trained model
deployed as WS. The scheme relies on the intercepted input data
at runtime to detect and prevent SQLIA as against static queries
comparison including source code scanning for vulnerabilities
(white-box and black-box penetration testing) as proposed in
most existing approaches applying runtime analysis.

III. BACKGROUND THEORY

The scheme presented here uses a web proxy to intercept web
requests of any intent and applies predictive analytics techniques
to predict SQLIA at the SQL injection points.

 A web proxy is the most suitable to intercept web requests,
including those originating from any injection mechanisms to
SDN Cloud applications’ endpoints. An application-level proxy
performs better in intercepting and decrypting of obfuscated web
requests than low-level network packet interception tools which
suffer from messages fragmentation in a large volume of gigabits
per seconds of packets in the wire. Injection mechanisms to a
vulnerable application can originate from web page forms,
second-order injection, exploiting web-enabled server variables,
query strings, and through cookies.

An intruder would employ the following SQLIA types
techniques to carry out the attack at the injection points in any
combination. These SQLIA exploits techniques are Tautology;
Union; Piggybacked; Invalid/Logical queries; Time-based;
Obfuscation encoding and Stored procedure. The SQLIA types
are also a source of SQLIA positive labelled feature values in the
scheme presented here.

A. SQL Language structure and injection point

SQL element comprises of tokens which are labelled SQLIA
positive in the data set discussed in this article. SQL tokens
comprise of keywords that include identifiers, operators, literals
and punctuation symbols. The SQL syntax language element has
the following: SQL Clause (WHERE, SET, UPDATE, etc.);
predicate (as in LoginName = ‘bob’); and, expression (as in ‘bob’
OR 2=2) which is illustrated in Fig. 1 below.

The presence of SQL tokens in web requests’ expected input
data when the SQL query injection point is analysed is predicted
as SQLIA. In a SQL query, the WHERE clause predicate and the
expression used to control query results are the SQL injection
spots. A malicious query string can be passed to a SQL
expression in tautological SQLIA type (e.g., ‘x’=’x’ OR 2=2) to
return results from a table far beyond the developer’s intention.
This location has been explored in SQLIA research including
SQLProb by Liu et al. [22] in detection and preventing SQLIA.

SELECT loginName, password FROM tblUser

 WHERE LoginName= 'bob ' OR 2=2--
 WHERE
 clause

SQL
Statement

Predicate

Expression

http://localhost/bsid/DataPage.aspx?LoginName=bob'OR%201=1--

Query string

Fig. 1. Query string, SQL query element and injection hotspot.

B. Obtaining the learning data (corpus)

 We explore automata states walk to generate a data set of
patterns of expected input data where none exists to train a
supervised learning model. Also, a pattern-driven approach
prevents the security implications of making the learning data
input to ML being a repository that lay bare the expected input
data.

Fig. 2 below illustrates the fundamentals of Finite State
Automata (FSA) [23], [24] states walk that forms the building
block to our learning data extraction techniques. These automata
states walk collation to generate all possible accepted member
strings shown in Table I is automated, employing a utility named
Regular expression explorer (Rex) [3] by Veanes et al. [26]. Rex
is an implementation of SFA which uses Z3 [25] constraint solver
[2] to generate as many member strings as possible from a
defined RegEx constraint patterns. In Rex, the RegEx implements
an NFA with an epsilon move and a further conversion of NFA to
a Deterministic Finite Automata (DFA) for optimisation.

Fig. 2. States walk from expected input string to generate member strings.

TABLE I. TRANSITIONS / STATES WALKS INTERPRETATION

Alphabet

∑= {b,o}

Transitions Accepted

member strings

0,1 1,2 2,3

b o b bob

b o o boo
o o b oob

o o o ooo
o b o obo

b b b bbb
b b o bbo
o b b obb

To simplify the presented derivation techniques of generating
the member strings, we use a string “bob” throughout this
section. The process can be replicated as many feature values as
desired in the intended data set. It also must be pointed out that
the context of this paper is big data scenario with a large volume

of feature values of strings, numeric and alphanumeric in nature
that a normal string signatures lookup will not be scalable. The
string “bob” is a minute representation for the simplification of
the big picture in the significant learning data generation.

The RegEx pattern input file to Rex command line is written
as: Rex /r: InputFile.csv /k: 8 where r and k are the source input
file and the size command options to generate member strings
respectively. The input file would contain patterns around original
strings and size where exist, e.g. ̂ [bob]{3}$. Alternatively, where
there are no precursor strings, RegEx patterns are inferred from
the structure and size of the expected input data, e.g. (^[b](?:[a-
z]{2})$). These methods are described in the subsequent sections
below.

1) RegEx pattern from strings and size of dictionary word list:

A string S is a finite combination of symbols {b,o} that is

extracted from the alphabet which is denoted by Σ. Therefore, the

string “bob” with symbols is expressed as alphabet Σ = {b, o}.

The Language L is a set of strings with a defined length denoted

by |S|. In this example, the string “bob” has length three

represented as |S| = 3. Applying Kleene Closure or Plus denoted

by Σ + then, Σ + = Σ * - ɛ = Σ 1 ∪ Σ 2 ∪ Σ 3 ∪…. n where Σ * - ɛ is

the Kleene Star (Σ *) minus epsilon or an empty string (ɛ), Σ 1..n

are the finite sets of possible member strings with the length that

can be generated. Therefore if alphabet Σ = {b,o},|S|=3, then the

accepted member strings is expressed as Σ + = {bob, boo, oob,

ooo, obo, bbb, bbo, obb} as shown in Fig. 2 collated in Table I.

2) RegEx pattern from strings structure and size of expected

input data: We apply RegEx to produce constraints of patterns

that exist in an expected input data passed to Rex utility to derive

member strings. The RegEx pattern (^[b](?:[a-z]{2})$) accept

strings that start with symbols b with any combinations of

symbols [a – z] where string length |S| = 2, then the total string

length is |S| = 3. Therefore, Σ += {bhz,bwc,bdy,bsj,blm,bzc,

bam,bby} are accepted member strings as shown in Fig. 3

automata states walk diagram.

Fig. 3. States walk from RegEx pattern to generate member strings.

 3) Member strings transposition: We further measure the

string distance to compare the pattern of the original string with

derived member strings by string transposition as to filter the

anagram patterns of the generated member strings. We explore

R stringdist (string matching package in R) [27] in the member

string transposition to improve the performance of the data set

in a binary classifier including an intruder attempt to circumvent

the classifier by transposition (shuffled strings). Table II is a

snippet of the original string “bob” with the derived member

strings distance values. Table III illustrates string distance

patterns measure by comparing Hamming H and qgrams Q to

obtain the transposed (anagram) member strings [27].

TABLE II. STRING DISTANCE MEASURES BETWEEN ORIGINAL AND

DERIVED MEMBER STRINGS

TABLE III. FILTERED FEATURE VALUES CONTAINING TRANSPOSITION OF

ORIGINAL STRING WHEN H= 0 AND Q != 0

 4) SQLIA labelling: The derived member strings as detailed

above is labelled SQLIA negative (0) while the presence of

SQL tokens, symbol and existing known SQLIA signatures

during member strings preprocessing is labelled SQLIA

positive (1). The binary class of 0 or 1 is to be predicted at

SQL query injection points. The learning data labelling routine

in R language is illustrated in the Fig.4 flow chart below.

 Y N

Start

x= Input file containing

RegEx Patterns

WHILE <> EOF Run rex.exe on each

line of x to generate member strings.

Measure string distance of member

strings & compute anagram y.

IF exist SQL tokens,

symbols, attack

signatures in y?

Labelled SQLIA

positive (1)

Labelled SQLIA

negative (0)

End End

Fig. 4. Data set feature values labelling Flow Chart.

IV. APPROACH: PREDICTIVE ANALYTICS EXPERIMENT AND

DEPLOYMENT

Predictive Analytics provides a robust approach to big data
mining. We apply predictive analytics in this paper in mitigating
SQLIA. The approach is built on MAML studio, which is a
Cloud-based machine learning platform. The experimental steps
are detailed below.

A. A high-level overview of the experimental steps:

1) Data set extraction: The learning data containing feature

values is used here in the MAML studio to train a supervised

learning model contains pattern-driven data set described in

detail in Section III (B). We obtained 479,000 member strings

with additional 862 unique SQL tokens extracted from Microsoft

SQL reserved keywords [28]. The feature values labelling is

described above in Section III (B4) which is represented by

binary values of 0 or 1.

2) Text preprocessing: This stage involves R Scripting that

incorporates all the defined RegEx constraints detailed in Section

III (B) to parsed learning data. The feature values are parsed for

patterns, duplicates, normalised to lower cases and the removal

of the missing attribute values which results in the pruning of the

feature values to 362,603. The data set is sampled to provide an

even distribution of the feature values. The imbalanced feature

values of majority labelled SQLIA negatives over positives were

corrected with Synthetic Minority Over-Sampling Technique

(SMOTE)[17]. The entire data of 725206 is split equally with

362,603 row items labelled SQLIA negatives and 362,603 row

items as SQLIA positives. The SMOTE improves the accuracy

and F1 score statistical measures in an evenly distributed corpus.

3) Features hashing to the matrix: The hashing is to

transform the data set feature values into a binary vector matrix

of 215 (32,768) columns required for training a classifier in ML

by setting the hashing bit size to 1 (unigrams of N-grams) where

N = 1. The hashing procedure creates a dimensional input of the

matrix with a faster lookup of feature weights by substituting the

string comparison with the hash value comparison. Applying

hashing to text features improves the performance and scalability

of predictive analytics that is lacking in existing SQLIA

signature-based detection approaches. We use a unigram hashing

of strings into the binary matrix as the intention is to analyse

intercepted strings as a unit at the proxy. We observed analysing

a string as a unigram offers a better prediction of TP and TN than

analysing a phrase of a group of strings together (N-Grams > 1).
4) Split of vector matrix between training and testing data:

We divide the matrix values of the hashed features into a ratio of
80:20 (training: test) of which 80% forms the training data input
to the classifier while 20% as test data for evaluations. We further
optimised the classifier in the MAML studio with Tune Model
Hyperparameters (TMH) module to improve TP and TN
predictions, but with low FN results of 162 achieved in TC SVM
as shown in Section V Table 1V.

5) Training the prediction model: Both TC LR and TC SVM

algorithms employ linear kernel which offers a binary prediction

at the proxy a linear separation between SQLIA positive and

negative presence in a web request. This linearity of the classes

which can be demarcated in a straight line makes algorithms

(classifiers) using linear kernel a preferred choice in binary

classification. Also, the two classifiers show good accuracy and

fast training times in performance metrics. TC SVM has the

advantage of being scalable with significant features set as used

here in vectorization (hashing) that generates higher

dimensionality of hashed columns. TC SVM and TC LR

algorithms are trained with the training data of the partitioned

matrix values. We achieved in the trained model AUC values of

0.984 and 0.986 for TC LR and TC SVM respectively in ROC

curve but with TC SVM having fewer FP and FN.

B. Publishing and consuming the prediction web service

The system requirements regarding RAM and the hard disk
are very low as the one-off workload of training the classifier
including retraining is handled in the Cloud by the MAML
platform. The solution is scalable, and it is meant to detect and
prevent SQLIA in web requests as illustrated in Fig. 5 below
detailing how the excellently trained model is consumed in a web
proxy and web form in an ongoing SQLIA detection and
prevention. Critical to the deployment in every new web
application domain context, the administrator or system expert
needs to feed the data engineering or text preprocessing module

with new rules that match the patterns present in the new
expected input data which triggers the retraining of the classifier
to adapt to a new application domain context [19].

Fig. 5. A design overview including consuming a trained model at the web

proxy API and client forms in an ongoing SQLIA detection and

prevention [19].

V. EVALUATION AND PERFORMANCE METRICS

ROC curve and AUC are widely used by data scientists to
measure the performance metrics in ML analytics. It provides a
valid empirical statistical measure for the evaluation of results.
ROC curve, which has its origin in World War II to predict radar
images for threats has been widely accepted in interpreting
medical test results [29] and recently in computing data sciences.

We extracted an evenly distributed data set of 725206
attribute values or row items by preprocessing and equal
balancing of feature values as described in Section IV (A2).
These feature values to be predicted contain an equal
representation of labelled strings deemed valid web requests and
SQLIA threat as described in data extraction labelling in Section
III (B4). The string attributes values were hashed to obtain a
matrix represented by Xij that refers to the element in rows i and
columns j of the input variables matrix X. The output variable to
predict Y is a single vector representation by Yi where i is the
index or row count. Thus, the learning data l is represented by
Equation (1) below as a dimension of matrix Xij to predict an
output vector matrix Yi where n is the top row count of index i. A
function of X denoted as f(X) to predict a labelled output Y.
Therefore, f(X)=Y, where x is input and y is the predicted output.

l = (xj(i), y (i)….. xj(i), y (i)) = Xij , Yi …. Xnj , Yn 

We split the hashed string features matrix and associated
predictor variables into a ratio 80:20 % of 725206 with 580164
matrix values as a training set while the remaining 145042 as a
test set. We observed a split ratio of 80:20 (training: test) resulted
in better performance metrics compared with other split ratios that
were tried. The training set is evaluated under various binary
classification algorithms or classifiers to select a better
performing classifier determined by the AUC performance value.
The linear kernel driven algorithms presented here are
implemented in MAML (Azure ML) Studio using the TC LR and
TC SVM classifiers. We observed linear kernel driven classifiers
are better performing in the binary classification of two classes in
predicting the discrete value of 0/1. The AUC provides an overall
performance measure between the classifier algorithms as

illustrated in Fig. 6 for which the TC SVM with AUC value of
0.986 was observed to be better performing than the TC LR of
AUC value 0.984.

While the 80% training sample is the part fed to the classifier
to train the prediction model, the remaining 20% is the test data
vectors, values unseen by the classifier which is the subject of this
empirical evaluation presented here. The test data input variables
of 145042 rows are scored to generate score probabilities of a
range 0 ≤ x ≤ 1 where x is the input matrix to predict output y.
The score probabilities provide a measure of observations that are
correctly predicted as TP and TN including the two prediction
errors of FP and FN within the range {0,1}. These prediction
observations of TP, TN, FP and FN are presented in tables below,
are calculated to determine how many of these observations score
probability values fall within each score bins set of {0,1}.

Therefore, the expected output is y = 0 or SQLIA negative if
the function of the predictor variables x is closer to 0 expressed as
f(x) ≈ 0. Conversely, the prediction output is y = 1 or SQLIA
positive when the function of predictor variables x is closer to 1
denoted as f(x) ≈ 1. Also, the prediction errors rate is used to
gauge the performance of a classifier as illustrated in Table IV (a
snippet of Table V and VI) with TC SVM achieving low FN
(162). However, 1923 FP events were observed in TC SVM
which indicates such web requests that are falsely alarmed will be
referred to the system monitor for a further review.

TABLE IV. A SNIPPET OF PREDICTION OBSERVATIONS AT DEFAULT

THRESHOLD AT 0.5 REPEATED ACROSS {0,1}

 Events Positive Negative

Positive TP

TC SVM=72359, LR = 69421

FP
TC SVM = 1923, LR = 2088

Negative FN

TC SVM= 162, LR = 3100

TN
TC SVM=70598, LR = 70433

The MAML studio sets by default the cut-off threshold for the
prediction of TP and TN including the errors of FP and FN to be
0.5. This cut-off of 0.5 is a predetermined threshold employed by
classification algorithms; it is a trade-off between the cost
function of x to predict y against the performance metrics
statistical measures; which the latter is the default. Therefore f(x)
< 0.5 score probability value is predicted as SQLIA negative (0)
while f(x) ≥ 0.5 is predicted as SQLIA positive (1). The 145042
values of score probabilities are partitioned into ten score bins of
0.1 increments of the set {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}.
The predicted observations are aggregated across these score bins
using the score probability values as shown in Table V and VI.

TABLE V. OBSERVATIONS AT VARIOUS CUT-OFF POINTS BETWEEN {0,1}

OF THE TC LR TRAINED MODEL

Score Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 72521 0 72521 72521 72521 0 145042 0 0 0.5 0 0

0.9 52479 20042 1399 71122 72521 72521 53878 91164 0.01929096 0.72363867 0.85217385 0.974034 0.830370493

0.8 58756 13765 1568 70953 72521 72521 60324 84718 0.02162132 0.81019291 0.89428579 0.974007 0.884579773

0.7 62924 9597 1674 70847 72521 72521 64598 80444 0.02308297 0.86766592 0.92229147 0.974086 0.917801326

0.6 66303 6218 1760 70761 72521 72521 68063 76979 0.02426883 0.91425932 0.94499524 0.974142 0.94325101

0.5 69421 3100 2088 70433 72521 72521 71509 73533 0.02879166 0.95725376 0.96423105 0.970801 0.963979726

0.4 71704 817 4794 67727 72521 72521 76498 68544 0.06610499 0.9887343 0.96131465 0.937332 0.962347083

0.3 72325 196 8374 64147 72521 72521 80699 64343 0.11547 0.99729733 0.94091367 0.896232 0.944067354

0.2 72371 150 12508 60013 72521 72521 84879 60163 0.17247418 0.99793163 0.91272873 0.852637 0.919580686

0.1 72390 131 18708 53813 72521 72521 91098 53944 0.25796666 0.99819363 0.87011348 0.794639 0.88486056

0 72521 0 72521 0 72521 72521 145042 0 1 1 0.5 0.5 0.666666667
Abbrevation

s &

Formula

True

Positive

(TP)

Faslse

Negative

(FN)

False

Positive

(FP)

True

Negative

(TN)

Positive

 Event

(PE)

 =TP+FN

Negative

 Event

(NE)

=FP+TN

Positive

Observ

ations(PO)

=TP+FP

Negative

Obser

vations (NO)

=FN+TN

False

Positive

Rate (FPR)

=FP / (FP+TN)

True

Positive

Rate (TPR)

=TP / PE

(TP+TN)

/ Total

events (TE)

TE = 145042

Precision

(P)

=TP / PO

FI Score

=2*(TPR*P) /

(TPR+P)

TABLE VI. OBSERVATIONS AT VARIOUS CUT-OFF POINTS BETWEEN {0,1}

OF THE TC SVM TRAINED MODEL

Score Bins TP FN FP TN PE NE PO NO TE FPR TPR/Recall Accuracy P FI Score

1 0 72521 0 72521 72521 72521 0 145042 145042 0 0 0.5 0 0

0.9 56446 16075 1505 71016 72521 72521 53878 91164 145042 0.02075261 0.77834007 0.878794 0.97403 0.86525845

0.8 63346 9175 1692 70829 72521 72521 60324 84718 145042 0.023331173 0.87348492 0.925077 0.973984 0.92100117

0.7 67886 4635 1806 70715 72521 72521 64598 80444 145042 0.024903132 0.93608748 0.955592 0.974086 0.95470878

0.6 71088 1433 1887 70634 72521 72521 68063 76979 145042 0.026020049 0.98024021 0.97711 0.974142 0.9771815

0.5 72359 162 1923 70598 72521 72521 71509 73533 145042 0.026516457 0.99776616 0.985625 0.974112 0.98579729

0.4 72324 197 1921 70600 72521 72521 76498 68544 145042 0.026488879 0.99728355 0.985397 0.974126 0.98556886

0.3 72340 181 2179 70342 72521 72521 80699 64343 145042 0.030046469 0.99750417 0.983729 0.970759 0.98394995

0.2 72355 166 6175 66346 72521 72521 84879 60163 145042 0.08514775 0.99771101 0.956282 0.921368 0.9580208

0.1 72376 145 13108 59413 72521 72521 91098 53944 145042 0.180747646 0.99800058 0.908626 0.846661 0.91612291

0 72521 0 72521 0 72521 72521 145042 0 145042 1 1 0.5 0.5 0.66666667

Fig. 6. ROC curve of the trained models comparing the performance in AUC

of TC LR against TC SVM classifiers.

The statistical measures provide the performance metrics of a
trained model. We calculated the statistical measures at the
various thresholds {0,1} as shown in Table V where TC LR at
default has the following: Accuracy = 0.964, Precision = 0.971,
Recall = 0.957and F1 Score = 0.964. Table VI is calculated as
the preceeding, where TC SVM has an improved performance
metrics with Accuracy = 0.986, Precision = 0.974, Recall = 0.998,
F1 Score = 0.986 and AUC of 0.986 as shown in Fig. 6.

VI. CONCLUSION AND FUTURE WORK

We demonstrated in this paper a pattern-driven data set
generated using SFA in the absence of a pre-existing data set to
apply predictive analytics to SQLIA detection and prevention in a
big data context. We empirically evaluated our results in ROC
curve. Future work involves employing multi-class classifier in
predicting the different SQLIA types.

REFERENCES

[1] CodeCurmudgeon, “SQLi Hall-of-Shame,” The Code Curmudgeon,
2016. [Online]. Available: http://codecurmudgeon.com/wp/sql-
injection-hall-of-shame/. [Accessed: 12-Aug-2016].

[2] M. Veanes, N. Bjorner, and L. de Moura, “Symbolic Automata
Constraint Solving,” vol. 6397. 2010.

[3] M. Veanes, “Rex @ rise4fun from Microsoft,” Microsoft Research.
[Online]. Available: http://rise4fun.com/rex.

[4] E. Lawrence, “Fiddler free web debugging proxy,” Telerik. [Online].
Available: http://www.telerik.com/fiddler. [Accessed: 11-Feb-2015].

[5] G. Wassermann and Z. Su, “An analysis framework for security in
Web applications,” SAVCBS 2004 Specif. Verif. Component-Based
Syst., p. 70, 2004.

[6] I. Medeiros, N. Neves, and M. Correia, “Detecting and Removing
Web Application Vulnerabilities with Static Analysis and Data
Mining,” IEEE Trans. Reliab., vol. 65, no. 1, pp. 54–69, Mar. 2016.

[7] S. Thomas, L. Williams, and T. Xie, “On automated prepared
statement generation to remove SQL injection vulnerabilities,” Inf.
Softw. Technol., vol. 51, no. 3, pp. 589–598, 2009.

[8] A. Owasp, “OWASP Top 10 Proactive Controls 2016,” 2016.

[9] W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and
Monitoring for NEutralizing SQL-injection Attacks,” Proc. 20th
IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 174–183, 2005.

[10] Y. S. Jang and J. Y. Choi, “Detecting SQL injection attacks using
query result size,” Comput. Secur., vol. 44, pp. 104–118, 2014.

[11] W. G. J. Halfond, A. Orso, and P. Manolios, “WASP: Protecting
web applications using positive tainting and syntax-aware
evaluation,” IEEE Trans. Softw. Eng., vol. 34, no. 1, pp. 65–81,
2008.

[12] A. Kie, P. J. Guo, and M. D. Ernst, “Automatic Creation of SQL
Injection and Cross-Site Scripting Attacks,” 2009.

[13] C. Bockermann, M. Apel, and M. Meier, “Learning SQL for
database intrusion detection using context-sensitive modelling
(extended abstract),” in Lecture Notes in Computer Science, 2009,
vol. 5587 LNCS, pp. 196–205.

[14] R. Komiya, I. Paik, and M. Hisada, “Classification of malicious web
code by machine learning,” in Proceedings of 2011 3rd
International Conference on Awareness Science and Technology,
iCAST 2011, 2011, pp. 406–411.

[15] J. Choi, C. Choi, H. Kim, and P. Kim, “Efficient malicious code
detection using N-gram analysis and SVM,” in Proceedings - 2011
International Conference on Network-Based Information Systems,
NBiS 2011, 2011, pp. 618–621.

[16] Y. Wang and Z. Li, “SQL Injection Detection via Program Tracing
and Machine Learning,” LNCS, vol. 7646, pp. 264–274, 2012.

[17] C. I. Pinzón, J. F. De Paz, Á. Herrero, E. Corchado, J. Bajo, J. M.
Corchado, C. I. Pinz??n, J. F. De Paz, ??lvaro Herrero, E. Corchado,
J. Bajo, and J. M. Corchado, “IdMAS-SQL: Intrusion Detection
Based on MAS to Detect and Block SQL injection through data
mining,” Inf. Sci. (Ny)., vol. 231, pp. 15–31, 2013.

[18] M.-Y. Y. Kim and D. H. Lee, “Data-mining based SQL injection
attack detection using internal query trees,” Expert Syst. Appl., vol.
41, no. 11, pp. 5416–5430, 2014.

[19] S. O. Uwagbole, W. J. Buchanan, and L. Fan, “Applied Machine
Learning Predictive Analytics to SQL Injection Attack Detection
and Prevention,” in 3rd IEEE/IFIP Workshop on Security for
Emerging Distributed Network Technologies (DISSECT), 2017.

[20] S. O. Uwagbole, W. Buchanan, and L. Fan, “Applied web traffic
analysis for numerical encoding of SQL injection attack features,” in
European Conference on Information Warfare and Security,
ECCWS, 2016, vol. 2016–Janua.

[21] S. Uwagbole, W. Buchanan, and L. Fan, “Numerical Encoding to
Tame SQL Injection Attacks,” in IEEE/IFIP DISSECT, 2016.

[22] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb : A
Proxy-based Architecture towards Preventing SQL Injection
Attacks,” Conf. Proc. 2009 ACM Symp. Appl. Comput., pp. 1–8,
2009.

[23] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” Bull. Math. Biophys., vol. 5, no. 4,
pp. 115–133, 1943.

[24] M. O. Rabin and D. Scott, “Finite Automata and Their Decision
Problems,” IBM J. Res. Dev., vol. 3, no. 2, pp. 114–125, 1959.

[25] M. Veanes, P. de Halleux, N. Tillmann, P. De Halleux, and N.
Tillmann, “Rex: Symbolic regular expression explorer,” in ICST
2010 - 3rd International Conference on Software Testing,
Verification and Validation, 2010, pp. 498–507.

[26] M. Veanes, “Applications of symbolic finite automata,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2013,
vol. 7982 LNCS, pp. 16–23.

[27] M. van der Loo, “{stringdist}: an {R} Package for Approximate
String Matching,” R J., vol. 6, no. 1, pp. 111–122, 2014.

[28] Microsoft, “Reserved Keywords (Transact-SQL),” MSDN. [Online].
Available: https://msdn.microsoft.com/en-us/library/ms189822.aspx.

[29] T. G. Tape, “Using the Receiver Operating Characteristic (ROC)
curve to analyze a classification model,” Univ. Nebraska Med.
Cent., pp. 1–3, 2000.

