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Abstract 

This thesis considers the tasks involved in exploratory analysis of temporal graph 

data, and the visual techniques which are able to support these tasks. 

There has been an enormous increase in the amount and availability of graph 

(network) data, and in particular, graph data that is changing over time. 

Understanding the mechanisms involved in temporal change in a graph is of interest 

to a wide range of disciplines. While the application domain may differ, many of the 

underlying questions regarding the properties of the graph and mechanism of change 

are the same.   

The research area of temporal graph visualisation seeks to address the challenges 

involved in visually representing change in a graph over time. While most graph 

visualisation tools focus on static networks, recent research has been directed 

toward the development of temporal visualisation systems. By representing data 

using computer-generated graphical forms, Information Visualisation techniques 

harness human perceptual capabilities to recognise patterns, spot anomalies and 

outliers, and find relationships within the data.  Interacting with these graphical 

representations allow individuals to explore large datasets and gain further insight 

into the relationships between different aspects of the data. Visual approaches are 

particularly relevant for Exploratory Data Analysis (EDA), where the person 

performing the analysis may be unfamiliar with the data set, and their goal is to make 

new discoveries and gain insight through its exploration. However, designing visual 

systems for EDA can be difficult, as the tasks which a person may wish to carry out 

during their analysis are not always known at outset. Identifying and understanding 

the tasks involved in such a process has given rise to a number of task taxonomies 

which seek to elucidate the tasks and structure them in a useful way.   

While task taxonomies for static graph analysis exist, no suitable temporal graph 

taxonomy has yet been developed. The first part of this thesis focusses on the 
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development of such a taxonomy. Through the extension and instantiation of an 

existing formal task framework for general EDA, a task taxonomy and a task design 

space are developed specifically for exploration of temporal graph data.  The 

resultant task framework is evaluated with respect to extant classifications and is 

shown to address a number of deficiencies in task coverage in existing works. Its 

usefulness in both the design and evaluation processes is also demonstrated. 

Much research currently surrounds the development of systems and techniques for 

visual exploration of temporal graphs, but little is known about how the different 

types of techniques relate to one another and which tasks they are able to support. 

The second part of this thesis focusses on the possibilities in this area: a design space 

of the possible visual encodings for temporal graph data is developed, and extant 

techniques are classified into this space, revealing potential combinations of 

encodings which have not yet been employed. These may prove interesting 

opportunities for further research and the development of novel techniques.  

The third part of this work addresses the need to understand the types of analysis 

the different visual techniques support, and indeed whether new techniques are 

required. The techniques which are able to support the different task dimensions are 

considered. This task-technique mapping reveals that visual exploration of temporal 

graph data requires techniques not only from temporal graph visualisation, but also 

from static graph visualisation and comparison, and temporal visualisation. A number 

of tasks which are unsupported or less-well supported, which could prove interesting 

opportunities for future research, are identified. 

The taxonomies, design spaces, and mappings in this work bring order to the range 

of potential tasks of interest when exploring temporal graph data and the assortment 

of techniques developed to visualise this type of data, and are designed to be of use 

in both the design and evaluation of temporal graph visualisation systems.  
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Chapter 1 Introduction 

Temporal graphs are networks which change over time.  Largely due to technological 

advances, there has recently been an enormous increase in the amount and 

availability of such data. Understanding the mechanisms involved in temporal change 

in a graph is of interest to a wide range of disciplines, from social and biological 

sciences, to computer networking, telecoms and transportation, to business and 

marketing. It is therefore important to have suitable tools to allow people to explore 

and analyse this kind of data. Information Visualisation (IV) – which has been defined 

as “the use of computer-supported, interactive, visual representations of abstract 

data to amplify cognition” ([1], p7) – provides useful techniques to support people in 

understanding what is happening in these networks.  

 Motivation 

While static graph visualisation has a long history, recent years have seen a large 

increase in research directed toward the development of temporal graph 

visualisation systems: at the time of writing, Beck et al.’s digital library of publications 

relating to dynamic graph visualisation [2] contains 148 papers, the majority of which 

have been published since 2010. However, without referring to individual 

publications, it is difficult to understand how individual techniques relate to one 

another in terms of their similarities and differences, what types of analysis the 

different techniques support, and indeed whether new techniques are required for 

specific types of analysis.  

When designing visual tools to support data analysis we need to consider both the 

characteristics of the data domain and the data, and the intentions and tasks of the 

people who will use the tools [3].  Visual approaches are particularly useful in 

supporting Exploratory Data Analysis (EDA), which focusses on detecting and 

describing patterns and relationships in the data. When carrying out EDA, the person 

performing the analysis may be unfamiliar with the data, and – at outset at least – 
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they may have no specific goal in mind other than to further their understanding of, 

make new discoveries about, and gain insight into the data set [4]. The analysis 

process typically proceeds in an iterative fashion: gaining some general overview of 

the data, spotting something interesting, investigating in further detail, formulating 

new questions based on what was discovered, and so on. However, as the tasks are 

not necessarily known at the outset, system designers must anticipate the potential 

tasks in order to make an informed decision regarding which tools to include, and to 

ensure that a sufficiently wide range of tasks are supported [5]. An understanding of 

the potential range of tasks that may be involved is therefore required when 

designing tools and systems.  

In addition to the role played in the design of visual tools, task understanding is also 

required when evaluating tools and systems in terms of user performance and user 

experience [6]. Identifying and understanding tasks has resulted in a relatively new 

branch of information visualisation research and given rise to the creation of a 

number of task taxonomies in order to structure these tasks in a useful way [7].  

No single visualisation technique is able to support all types of data and all of the 

tasks that an individual may wish to carry out during data analysis.  An understanding 

of which techniques are able to support which data types and tasks is therefore also 

required when designing and evaluating visual tools and systems. In the early days of 

visualisation research, Wehrend and Lewis [8] proposed a “cataloguing” method 

which classifies general visual techniques by the tasks which they support. The 

resulting catalogue was intended to support sharing of methods across different 

domains, by helping system designers to identify the visual techniques capable of 

supporting the tasks for which they were designing. Twenty five years have passed 

since this approach was first proposed, and a vast number of Information 

Visualisation tools and techniques have been developed in that time. While 

organising the tools and tasks for all types of data in this way would now be an 

enormous undertaking, in this thesis a similar approach is proposed for only a subset 

of data types, specifically temporal graph data. 
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Given the importance and increasing availability of temporal graph data across a wide 

range of domains, and the need for - and current interest in - developing visual 

techniques to support the analysis of such data, this thesis seeks to address the strong 

need to understand both the tasks associated with exploratory analysis of temporal 

graph data, and the visual techniques which are able to support these tasks. In so 

doing, a number of tools are developed to bring order to the range of tasks and 

existing visual techniques, identify opportunities for research, and assist in the design 

and evaluation of temporal graph systems. 

 Research Questions 

This work addresses four key questions: 

1. What are the possible exploratory analysis tasks that temporal graph 

visualisation might need to support?  

2. Which visual techniques, tools, and approaches, have been developed to 

support exploration of temporal graph data? Are there any unexplored 

opportunities for visual techniques? 

3. Which visual techniques support which types of tasks?  

4. For the tasks identified in (1), are there suitable visual techniques or are 

new/better visual techniques required? 

To address question 1, an existing generic task framework is extended for use with 

graph data, and a design space of temporal graph tasks is developed. This is the 

subject of Chapter 4 and Chapter 5, with an evaluation of the work presented in 

Chapter 6. 

For question 2, the literature relating to temporal graph visualisation is surveyed, 

from which two dimensions for categorising tools and techniques are extracted 

(graph and time encodings). These dimensions are used to construct a design space 

of possible temporal graph visualisation techniques. Existing systems, tools, and 

techniques are mapped to this design space, revealing possible techniques which are 

less well explored. This work is presented in Chapter 7. 
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Having identified the task-space and technique-space, in order to address question 

3, the mapping between them is considered in Chapter 8. Given the number of 

individual tasks identified, the task dimensions are used as a framework for the 

discussion of task support. A somewhat surprising - yet important - finding made 

during the task-technique mapping stage is that tools and techniques from a much 

wider range of research areas than just temporal graph visualisation are required to 

support the identified tasks. Techniques from temporal visualisation, static graph 

visualisation, and visual comparison, are therefore also reviewed and included in the 

task-technique mapping. 

Through the process of considering visual techniques for the support of the identified 

temporal graph tasks, a number of gaps in task coverage are identified, along with 

tasks which are less well considered in the literature, answering question 4.  

Developing techniques to support these tasks could prove interesting avenues for 

future research. 

The use of the developed tools in the design and evaluation processes is 

demonstrated through an empirical study and case study. The empirical study in 

Chapter 6 evaluates the task framework’s use in overcoming a key problem of 

designing for EDA outlined earlier: that visualisation designers need to anticipate the 

tasks which the people they are designing for may want to perform, but these people 

may be unable to articulate all of the tasks which are of interest to them at outset.  It 

explores the use of the task framework at the task understanding stage of the design 

process, in helping to discover the analytical tasks which may be of interest.  In the 

case study of Chapter 9, using a methodology derived from the task framework an 

existing temporal graph visualisation tool is evaluated in terms of its existing task 

support. Using the task-technique mapping, recommendations are made for the 

inclusion in the system of alternative and additional techniques in order to improve 

task coverage. 

 Contributions 

The contributions of this work are fourfold: 

(1) A characterisation of temporal graph data and tasks, including: 
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• An extension to an existing formal task framework, to handle graph data. 

• A temporal graph task taxonomy, produced by applying the extended 

framework to temporal graph data. 

• A design space of potential temporal graph tasks, produced by combining the 

identified task dimensions using a series of matrix structures. 

By illuminating the potential tasks involved in exploratory analysis of temporal graph 

data, such a characterisation will be of benefit to designers of visualisation systems 

in assisting with task specification during requirements analysis.  It will also be of 

benefit to evaluators, by representing the range of tasks for inclusion in evaluations, 

and providing grounds on which to justify the inclusion of specific tasks when 

designing evaluations.  

 (2) A characterisation of temporal graph visualisation techniques, including: 

• A review of existing systems, tools, and techniques for temporal graph data 

• A design space of possibilities for temporal graph visualisation techniques 

• A mapping of existing techniques to the design space 

The mapping of existing literature to the design space brings order to the range of 

existing systems, tools, and techniques spread across different domains. It also 

reveals less explored and unexplored possibilities, which could prove interesting 

avenues for the development of novel visualisation techniques for representing 

temporal graph data.  

(3) A review of techniques to support temporal graph tasks, revealing less well 

supported and unsupported tasks. 

Such a classification will be of use in both the design and evaluation of temporal graph 

visualisation systems. In terms of design, it will offer guidance to designers in 

choosing the most appropriate tools for inclusion in the design of a system, based on 

the tasks the system is required to support. While the tasks are purposefully domain 

independent, the techniques are drawn from across a wide range of disciplines, thus, 
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techniques may come from areas with which a designer would be otherwise 

unfamiliar. In addition, because the taxonomy is extended from a generic framework, 

the tasks are much wider than those which most temporal graph visualisation 

techniques currently consider: the need for inclusion of techniques from general, 

temporal and static graph visualisation research areas when developing systems is 

therefore highlighted. The mapping may also draw attention to opportunities for 

evaluation: where more than one technique supports a single task, it can then be 

investigated which technique performs best. Finally, a number of less explored and 

unexplored tasks are revealed, which could prove worthwhile avenues for future 

research. 

 (4) A review of classification construction and evaluation practices 

Categorising tasks is a common pursuit in visualisation research, with a variety of 

taxonomies, typologies, design spaces, frameworks, and models having been 

developed over the last three decades.  The usefulness of these classifications in the 

design and evaluation processes is also widely accepted. However, while evaluation 

practices have also become a topic of increasing interest in the visualisation 

community e.g. [6], [9], very little attention has so far been given to the construction 

and evaluation practices involved in developing task classifications. While we would 

expect a publication demonstrating a new visualisation technique or system to 

include some form of evaluation with respect to its utility, performance, and 

limitations, this does not appear to be the case when newly developed classifications 

are reported. Further, while much work reflects on and provides guidance relating to 

appropriate design and evaluation practices when developing visualisation systems 

and techniques (e.g. [6], [9]–[12]) analogous guidance for developing task 

classifications does not exist. This is surprising, given that measuring the effectiveness 

of classifications has been recognised as a difficult problem [13], and the benefits of 

evaluating classifications are comparable to those of evaluating systems, including 

identifying areas for improvement resulting in better classifications, convincing 

potential adopters of the validity and utility of the approach (particularly important 

for more complex classifications which may require significant effort to adopt), and 

helping adopters select between competing classifications.  
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A final contribution of this thesis therefore is its elucidation of the classification 

construction process, the threats to validity at each stage of construction and means 

of mitigating these threats, along with detailed consideration of the appropriateness 

of evaluation strategies according to the different aspects of the classification which 

they seek to evaluate. While the work stops short of providing prescriptive advice on 

constructing and evaluating classifications, the guidance arising from these 

investigations will be of benefit to developers of classifications in determining 

appropriate construction and evaluation strategies when developing a classification, 

and also for those selecting between competing classifications for use in the design 

and evaluation processes. This contribution can be found in Sections 3.1 and 6.1. 

 Thesis Structure 

The thesis is structured as follows: 

Chapter 2 provides an overview of the temporal graph visualisation research area. It 

considers the role that taxonomies play in visualisation research and development 

generally, and reviews work to date in developing task and visualisation technique 

taxonomies for temporal graph data.  

In Chapter 3 a review of the task classification literature is presented which considers 

the stages of classification construction and identifies the associated threats to 

validity arising at each stage and in response to the different construction methods 

employed. Guidance is offered on suitable validation approaches in order to mitigate 

these threats.  An overview of the Andrienko task framework [5] - on which the task 

taxonomy in this work is based - is presented, along with a discussion of the 

limitations of their framework when used with graph data, which necessitated a 

number of extensions.   

Chapter 4 presents the extensions to the Andrienko task framework necessary to 

overcome its limitations in the graph case. 

Based on the extended version of the task framework outlined in Chapter 4, Chapter 

5 presents a task taxonomy for temporal graph. The dimensions of the taxonomy are 
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combined using a series of matrix structures to produce a design space of potential 

tasks associated with the exploration of temporal graph data. 

Chapter 6 focusses on the evaluation of the developed task framework. In order to 

determine a suitable evaluation strategy, existing evaluation approaches in the 

visualisation literature are reviewed. The various aspects of classifications which can 

be evaluated are distinguished and appropriate evaluation methods are considered 

in relation to these aspects. Based on the findings of this work, the task framework is 

evaluated firstly in relation to other extant classifications, and secondly via an 

empirical study which demonstrates its use in the design process. 

Chapter 7 reviews existing visualisation techniques for representing temporal graph 

data. A two-dimensional design space (based on time and graph structural encodings) 

is developed to categorise temporal graph visualisation techniques. Existing tools and 

techniques for temporal graph visualisation are mapped to this design space, 

revealing a number of unexplored possibilities for visual representations. 

Chapter 8 explores the visual techniques which are appropriate for the support of 

each of the task categories of the framework. Through this task-technique mapping, 

a number of less well supported and unsupported tasks are identified. 

Chapter 9 presents a case study in which the tools developed in this thesis were used 

to evaluate an existing temporal graph visualisation system and make design 

recommendations to improve the system’s task coverage.  

Chapter 10 summarises the main contributions of the work and considers future 

directions. 

 

 

 



 

Chapter 2 Background 

This chapter considers the role that taxonomies play in the design and evaluation of 

visualisation systems and techniques. Existing work in developing task taxonomies 

and visualisation technique taxonomies is reviewed, both generally, and specifically 

relating to temporal graphs. A discussion of the areas requiring further work - and 

how the work in this thesis seeks to address those areas – is also included. The 

chapter begins with a characterisation of temporal graph data and an overview of key 

challenges within the research area of temporal graph visualisation. 

 Temporal graph visualisation 

Formally, a graph, G = {V, E}, consists of a set of vertices or nodes, V, and a set of 

edges, E, which connect pairs of vertices. From organisational structures to biological 

networks and transportation routes, graphs have been used to model relational data 

from a wide range of domains. Static graph visualisation techniques have long been 

used to represent the relational aspects of data, helping people understand the ways 

in which entities in the data are connected, and the larger structural patterns that 

individual connections produce.  

There are two main ways in which graphs are visually represented: node-link 

diagrams and matrices. Node-link diagrams have a long history and are the most 

commonly employed representation: nodes are represented by some sort of shape, 

which are connected together with lines representing edges. The key challenge for 

this type of representation lies in laying out the graph, in other words calculating 

where to position nodes, in order to produce a ‘good’ graph layout i.e. one which is 

readable and clearly understood. A set of aesthetic criteria - or rules for good graph 

layout - have been defined, which include minimising edge crossings and edge length, 

distributing nodes evenly, and not allowing nodes to overlap [14].  Graph layout 

algorithms are used to calculate node positions and take into account these aesthetic 

criteria. However, some of the aesthetic criteria are mutually incompatible, requiring 
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trade-offs to be made, while satisfying even an individual aesthetic criteria can be an 

NP-hard problem. Computing node positions while satisfying the aesthetic criteria 

can therefore be computationally expensive. Moreover, computation time and 

complexity increases as the graph becomes larger.  Much of the work in static graph 

visualisation has therefore been directed at developing layout algorithms.  

Temporal graphs (also known as dynamic graphs), are graphs which change over 

time. Temporal graph data is ubiquitous: changing relationships in social networks, 

traffic flows in transportation networks, gene regularity networks in biology, 

connections between machines in computer networking, calls between subroutines 

in software systems - these are just a few examples of graph structures which change 

over time.  There are two broad categories into which the changes can be grouped: 

structural change (e.g. nodes or edges being added and/or deleted) and attribute 

change (e.g. an increase, decrease, or categorical change in node attribute values or 

edge weightings). The primary concern of temporal graph visualisation is 

communicating these changes.   

Temporal graph visualisation is a relatively new research area in the well-established 

field of graph drawing, and there is still much ground to be explored.  While most 

graph visualisation tools focus on static networks, there has been a recent increase 

in the number of tools focusing on temporal graph visualisation: Beck et al.’s dynamic 

graph visualisation literature database [2] contains references for 52 such 

applications, the vast majority of which appeared post-2003. Little attempt has been 

made to extract the unique visualisation techniques used in temporal graph 

visualisation applications, or to establish which tasks the different techniques are 

able to support. 

The main focus in the temporal graph literature to date has been on visualising 

structural change, as existing static graph visualisation techniques can be combined 

with, for example, colour encoding on nodes or edges to indicate change in  attribute 

values [15]. In addition to the challenges for static graph drawing there are a number 

of further challenges for temporal graph visualisation.  
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Firstly, time adds an additional layer of complexity to the problem of computing node 

positions. In addition to computing a layout which satisfies the aesthetic criteria at a 

single point in time, we must also maintain the internal understanding of the graph, 

or ‘mental map’, of the person using the visualisation, as the graph changes over 

time. This generally requires minimising unnecessary change in the visualisation to 

avoid disrupting the mental map, whilst showing the changes occurring in the data.   

Work in this area can be divided into two main areas: usability studies focussing on 

peoples’ understanding of changes in the  graph (such as [16]–[21]) and the 

computational difficulties of adapting and developing layout algorithms for dynamic 

graphs (e.g. [22]–[26]). When developing such layout algorithms, a distinction is 

drawn in terms of ‘online’ and ‘offline’ data, as this affects the computational 

difficulty of the layout algorithm and restricts layout possibilities. Offline data is 

where all of the data is known beforehand.  This makes it possible to compute a 

‘supergraph’ of all ‘timeslices’ (snapshots encoding the structure of the graph at a 

given time [27]) which can be used as a base for computing stable layouts. Online 

data is not known beforehand and may be continually added to. This means that 

layout algorithms can only take into account previous timeslices when computing 

layouts [28]. 

An additional challenge for temporal graph drawing is how to visually encode the 

temporal dimension, given that the two spatial dimensions are normally used to lay 

out the graph to show its structure [29].   A number of possible approaches to 

encoding the temporal aspect of the data have been proposed, each of which have 

relative strengths and weaknesses. The different approaches to encoding the 

temporal dimension are explored in detail in this thesis.   

 Taxonomy 

The word “taxonomy” can be used to describe both the general science of 

classification, and a particular system of classification. Taxonomy is used to classify 

large corpora of information.  It is a way to organise, synthesise, and contextualise 

knowledge. It goes beyond simple classification of like items into groups, by 

describing the relationships that exist between items.  The aim of taxonomy is to 
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ensure that items within a group are as similar as possible, while ensuring that the 

groups themselves are as distinct as possible; in other words, minimising within-

group variance while maximising between-group variance [30].   Bringing order to a 

disorganised body of knowledge in this way can help us make sense of complex 

subject matter and large collections of items.  

Taxonomy is employed across a wide range of domains, but has its roots in biological 

sciences, where its modern meaning dates back to Carolus Linnaeus (1707-78), and 

specifically refers to the classification of biological organisms into hierarchical sets on 

account of their shared characteristics [31]. Understanding which organisms are 

similar and which are distinct is key to many biological pursuits, from managing pests 

to ensuring safety in herbal medicine;  Smith et al. [32] collected together 48 case 

studies demonstrating the use and importance of taxonomy in biology. 

Taxonomy is also widely used in information systems and knowledge management. 

In content management systems, taxonomies are used to provide structured 

navigational paths through content collections. Taxonomies for search engines help 

improve the relevance of search results. The Dewey Decimal Classification system – 

said to be the world’s most widely used taxonomy – is a general knowledge 

organisation tool used to organise library materials by discipline. 

Other areas in which taxonomy is employed include chemical classification, 

psychology (e.g. Moffitt’s taxonomy of anti-social behaviour [33]), engineering (e.g. 

Gershenson’s taxonomy of corporate requirements which impact design 

requirements [34]),  and education (e.g.  Bloom’s taxonomy of educational objectives 

[35]). 

 The role of classification in visualisation research 

Categorising tasks and visual techniques is a common pursuit in the visualisation 

research community. Various taxonomies, typologies, design spaces, and 

frameworks, have been developed over the last three decades. These have been used 

to pre-empt and make sense of both the aims and intentions of the people using 

visual analysis techniques, and the ever increasing literature relating to visual tools, 

techniques, and systems to achieve these aims.  
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Classifications provide a useful means for bringing order to the range of existing 

visualisation systems, tools, and techniques, often from across a wide range of 

domains. They can also act as an entry point for researchers new to an area, in a 

manner similar to review and survey papers. Moreover, they play a useful role in the 

design and evaluation of visualisation tools and systems.  Before looking more closely 

at the uses of classifications, let us first consider the terminology used in the 

visualisation literature to describe these constructs. 

2.3.1 Terminology 

Classification can be used as an umbrella term to describe a construct in which items 

are collected together and grouped in some meaningful way. However, many terms 

are used in the visualisation literature to describe such constructs. Lists of tasks are 

usually intended to be non-exhaustive illustrations of exemplar or common tasks, 

which may or may not be grouped into categories (e.g. [36]). The terms typology and 

taxonomy tend to indicate a more rigorous process of categorisation has been 

followed, and are often used interchangeably in the literature. However, Bailey [30] 

distinguishes them on the grounds that a taxonomy is empirical (a set of existing 

entities are grouped according to their similarity to produce a classification), while a 

typology is conceptual (a classification is constructed a priori using multiple 

conceptual dimensions; the resulting categories represent concepts rather than 

empirical cases). Such classifications are used in the visualisation literature to 

describe and bring order to the range of tasks and visual techniques. Bailey [30] also 

describes the case where the independent dimensions of a classification are 

combined to form a property space. In the visualisation literature, this idea – often 

termed design space - is becoming increasingly common [37]. The intended use of a 

design space is not simply as a means to classify existing items, but to map “the space 

of the possible”[37], revealing potential items which may not yet exist. As such, it can 

be used as a generative method to specify novel visualisation techniques (e.g. [38], 

[39]) or previously unconsidered tasks (e.g. [37]).  

Task classifications are often used to characterise systems according to the tasks they 

support in order to help make comparisons between systems when selecting 
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appropriate visual tools (e.g. [40], [41]). An extension of this idea are task-technique 

mappings or catalogues (e.g. [42]) which take a task classification and map to each 

category the visual techniques for their support. These are often intended to provide 

a useful inventory of appropriate techniques for use during the design process, and 

like design spaces, can help point to opportunities for research by identifying as yet 

unsupported tasks which could benefit from the development of appropriate visual 

techniques.  

2.3.1 Role in communication 

Perhaps the most fundamental benefit of classifications is that they provide a 

common vocabulary to describe both analytical tasks and the visual means by which 

they can be achieved (objectives and actions, respectively, to use the language of 

Rind et al. [43]. Having an agreed upon language allows researchers to communicate 

more effectively, reducing misunderstanding [37], [44].  As discussed further in 

Sections 2.3.4 and 2.3.5, using classifications which present tasks in a consistent and 

abstract manner to describe the domain specific tasks of users, and the functionality 

of systems and tools from across domains and application scenarios, offers many 

benefits in the design and evaluation processes.  Describing tasks in an abstract rather 

than domain specific manner also allows us to generalise when situating and 

communicating the results of research. For example, Lee et al [40] suggest the use of 

their classification in helping evaluators generalise results collected in a series of 

controlled experiments. Sedlmair et al. [12] note the need to present clear 

abstractions of tasks when reporting on design studies, so that the bare minimum of 

domain knowledge is required to understand them.  Similarly, Rind et al. [43] note 

the use of abstract tasks when setting context in case studies. Using the recognised 

terminology of task classifications can be particularly beneficial in these 

circumstances. 

2.3.2 Making sense of what’s out there 

Classifications can help us make sense of what already exists in our research area. 

They provide a useful means for bringing order to the range of user intentions and 

existing visualisation systems, tools, and techniques, often from across a wide range 
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of domains. They can act as an entry point for researchers new to an area, in a manner 

similar to review and survey papers. Virtually all classifications are developed with 

this purpose in mind. 

2.3.3 Identifying what’s not out there 

Schulz et al. [45] describe how design spaces can be used to identify “the space of the 

possible”. A design space maps out the “universe of all possible design choices” [38] 

and can be constructed by combining the independent dimensions of a taxonomy to 

produce all possible variants. Design spaces have been used to map the space of the 

possible for both visual techniques e.g. [38],[39], and tasks e.g. [41], [45]. By mapping 

existing techniques to the possibilities identified in a technique design space, as-yet 

unexplored techniques may emerge, which could prove interesting opportunities for 

further research e.g. [38].  Further, visual techniques can be mapped to a task design 

space according to the categories of tasks which they support, to establish which 

tasks are currently addressed by existing techniques, and reveal areas which could 

benefit from further research e.g. [41].  In this way, mapping techniques to the ‘space 

of the possible’ can help guide the focus of future system development and 

encourage the pursuit of novel research questions [41]. Such a mapping could also 

help signpost opportunities for evaluation, as it identifies the case where multiple 

techniques support the same task: these techniques are potential candidates for use 

in controlled experiments to establish which techniques are the most effective in 

their support. 

2.3.4 Use in the Design Process 

Several authors note the role which task classifications can play in systematising the 

design process. Both Amar and Stasko [46] and Sedig and Parsons [47] note that 

classifications can act as a systematic basis for thinking about the design process, 

while the use of classifications as a “checklist” of items to consider when designing 

visualisation tools is proposed by [46], [48], [49].  

Classifications of tasks and techniques can be gainfully employed at multiple stages 

of the design process. Before discussing the use of classifications in the design 

process, let us briefly consider the design process itself.  
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While the field of visualisation draws heavily on practices in other domains for 

guidance on designing visualisation systems (HCI, engineering, design, etc.), specific 

models have recently been developed within the community to help describe and 

facilitate this process.  Possibly the best known is Munzner’s nested model [10], 

which outlines the four major stages at which design decisions need to be taken in 

the process of designing a visualisation, and the threats to validity and validation 

required at each level. The four stages identified are: 

1. Domain problem characterisation: this is the requirements gathering stage, 

where the visualisation designer learns about the domain specific tasks and 

data of the target users. 

2. Data/operation abstraction design: at this stage, the domain specific tasks 

and data are mapped to the vocabulary of information visualisation. 

3. Encoding/interaction technique design: appropriate visual encodings and 

interaction techniques are selected at this stage. 

4. Algorithm design: this stage deals with the design of the algorithm which 

automatically encodes the data in the selected manner. 

Meyer et al. [11] extend this model by introducing ‘blocks’ (outcomes of the design 

process at each level) and ‘guidelines’ (which describe the relationships between 

blocks).  McKenna et al. [50] further build on these models (and Sedlmair et al.’s nine 

stage design study methodology [12]) by introducing four ‘design activities’ – 

understand, ideate, make, and deploy – which map to the four levels of the nested 

model Figure 1. For each design activity they describe the associated motivations, 

outcomes, and methods.  Their paper lists over 100 exemplar methods which may be 

utilised at the different stages, including well known techniques such as interviewing 

and controlled experiments, and perhaps less commonly used methods such as 

graffiti walls and love/breakup letters. In addition to classification by activity, 

methods are also classified according to whether they are generative (those which 

are intended to be divergent and create many outcomes e.g. brainstorming) and/or 
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evaluative (those which are convergent and used to filter outcomes e.g. feedback 

from user studies). 

 Understand Ideate Make Deploy 

Domain characterisation x    

Data/task abstraction x x   

Encoding/interaction 

technique 
 x x  

Algorithm design   x x 

Figure 1 Mapping of McKenna et al.’s [50] design activities to four levels of Munzner’s [10] nested 

model. Redrawn from [50], Figure 2. 

 

The following discussion considers the use of classifications in the design process with 

respect to the first three stages of Munzner’s nested model [10]. 

2.3.4.1 Task understanding 

Understanding which analytical tasks an analyst may wish to carry out is a non-trivial 

problem and a key component at the domain problem characterisation stage. Despite 

the recognised importance of this stage, and calls for further work in this area e.g. 

[10], [51], this stage is known to be under-researched in the visualisation community 

[13], [9], [11]. 

In a typical design scenario, van Wijk [52] notes that visualisation researchers must 

spend time and effort bridging ‘the knowledge gap’ between themselves and the 

domain expert, in order to effectively understand the problem in what is potentially 

an unfamiliar domain with its own terminology. Generative methods [50] for eliciting 

possible tasks of interest can be roughly grouped into three strategies: deriving tasks 

in an analytical fashion, for example, by reviewing relevant literature; talking to 

domain experts, for example, through interviews or brainstorming sessions in focus 

groups; observing people at work, either using existing visualisation tools or the 

methods they currently employ.   

As discussed further in Section 3.1.1.1, each of these strategies has limitations when 

eliciting tasks. One use for task classifications is in supporting the generative phase 

of task understanding in order to mitigate some of the problems in the strategies 

outlined above.  For example, they may act as a useful means upon which to base 
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discussions with domain experts. By setting out the range of potential tasks of 

interest, they may overcome known problems associated with simply asking people 

to introspect. They may also help to keep the discussions focussed on tasks; one 

pitfall identified by Sedlmair et al. [12] at this stage of the design process is allowing 

experts to focus on possible visualisation solutions, rather than explaining their 

problems.  Potentially they may act as a useful bridge in the knowledge gap, 

presenting a collection of domain independent tasks from which concrete domain 

tasks can be derived.  Finally, using a task classification in this way may help with task 

specification at a consistent level of granularity and abstraction.   

Note that there are relatively few documented examples of task classifications being 

used at this stage in the design process. One example is Ahn et al. [41], who 

demonstrate how their task design space could be used to help in the discovery of 

new tasks i.e. those tasks that analysts had not thought of during a requirements 

gathering process.  

2.3.4.2 Data/operation abstraction design 

Once concrete, domain specific tasks have been captured, the data/operation 

abstraction stage requires that they be translated into the language of information 

visualisation. The resulting set of abstract tasks (operations) is used as the basis for 

selecting visual encodings at the encoding/interaction technique design stage. Task 

classifications can be utilised at this stage to describe domain tasks in appropriate 

abstract terms [43], for example, Brehmer et al. [53] propose using their classification 

as a “lexicon for coding” observed tasks. The process of abstraction reveals 

similarities between tasks that may initially appear to be rather different [54].  This 

allows them to be meaningfully grouped together, thus categories of frequently 

occurring tasks can be identified. This can be useful when determining which tools to 

include when developing a system at the next stage of the design process.  

2.3.4.3 Encoding/interaction technique design 

Visual technique classifications can be of assistance in revealing the range of potential 

design solutions at the encoding/interaction technique design stage. They can be 

divided into those that categorise the range of visual representations of the data, and 
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those that deal with interaction [45]. They may classify techniques according to 

algorithms used [55], data structure (e.g. [56]–[58]), similarity of encodings (e.g. [38], 

[39]), or task support (either visual operations e.g. [13], [59], or user intention e.g. 

[8], [60]).  However, where task support is not the basis on which the classification is 

made, a mapping between the technique categories and the tasks which they support 

is required for the classifications to be of assistance in directly helping designers to 

select appropriate tools for inclusion in their systems.  Wehrend and Lewis [8], were 

among the first to propose a “problem-oriented approach” to tool classification, 

categorising scientific visualisation techniques according to the sub-problems (tasks) 

and objects supported. This results in a task-technique “catalogue”, which designers 

can use to look up potential visual solutions according to the problems for which they 

are trying to design. A particular advantage of the catalogue approach is that it 

provides a way to share visual solutions to similar problems across disparate 

application domains. Developing such task-technique mappings were also thought to 

be the first step in automated system design [8], [61]. 

Direct mappings between tasks and techniques for use in tool selection, however, 

may not always be possible or appropriate.  Rind et al. [43] note the use of guidelines 

translating between abstract objectives (analytical tasks) and abstract actions (the 

means by which the objectives can be achieved), citing Andrienko and Andrienko  [5] 

who - given the intentionally generic nature of their task framework - derive a set of 

general principles which can be utilised when designing exploratory tools. Roth [62]  

also notes the use of task classifications in the generation of design guidelines. 

The importance of including process and provenance functionality in visual analysis 

systems, such as those described by [48], has recently been highlighted in the 

visualisation literature, and task classifications can play a role in identifying tasks for 

this purpose.  Gotz and Zhou [63] and von Landesberger et al. [64] develop task 

classifications with this purpose in mind. Rind et al. [43] offer a more detailed 

discussion of the integration of tasks in visualisation artefacts. 
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2.3.5 Use in Evaluation 

An often-cited motivation for developing task classifications is their use in the 

evaluation process.  They can be of use when selecting representative tasks for use 

in experiments, acting as a “checklist” covering the range of possible tasks for 

inclusion, in a manner similar to that of the design process (Section 2.3.4). Brehmer 

et al. [53] outline potential uses of their characterisation of task sequences in four of 

Lam et al.’s [6] empirical evaluation scenarios: as a lexicon for coding observations 

when understanding working practices (as described in Section 2.3.4.3); to inform the 

design of experimental procedures when evaluating user performance;  when 

specifying tasks for use when evaluating user experience, either as instructions in 

experiments or when constructing questionnaires and interview questions relating to 

user experience; and when coding observed behaviour when evaluating visual data 

analysis and reasoning.  

A primary use of task classifications for evaluation purposes found in the literature is 

their use in characterising systems in terms of task support. This allows evaluators to 

assess individual systems in terms of their capabilities and limitations e.g. [44],  or 

make comparisons across multiple systems e.g. [40], [44]–[46], [65].  

 Task classifications in the visualisation literature 

2.4.1 General task classifications 

Several general task classifications exist in the visualisation literature, including 

Shneiderman’s task by data type taxonomy [56], Amar et al.’s taxonomy of low level 

tasks [66], and Andrienko’s formal task framework for EDA [5]. However, the use of 

the term ‘task’ in the visualisation literature is “deeply overloaded”, being used at 

multiple levels of abstraction and granularity [10]. Recent work has therefore 

focussed on unifying extant task taxonomies [45], [67], and “untangling the 

terminology” surrounding the use of the term task, with Rind et al. [68] distinguishing 

three conceptual dimensions along which tasks can be categorised:  

• Perspective: whether the tasks are objectives (analytical questions asked of 

the data i.e. why the task is carried out) or actions (discrete steps towards 

addressing the objectives i.e. how the task is carried out). 
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• Abstraction: a continuum from concrete tasks couched in application domain 

specific language, to abstract tasks which are described in a more generic 

manner. 

• Composition: a continuum from tasks specified at a high level of composition 

to those broken down into specific low level subtasks. 

They use these conceptual dimensions to categorise and compare abstract task 

classifications, with an additional distinction relating to abstraction: whether the 

classification is generic, or relates to a specific data type, domain or tool architecture.  

As described in Section 2.3, abstract task classifications are necessary in order to be 

able to generalise beyond a specific use case, reuse methods, and facilitate 

communication amongst researchers.  However, Brehmer and Munzner [67] 

recognise that there is still a need for data specific task classifications. Such 

classifications are particularly useful when assessing tools and techniques in terms of 

the tasks which they are able to support. 

2.4.2 Static graph task classifications 

Lee et al.’s taxonomy of static graph tasks [40] is a good example of a data-specific 

classification. They extend Amar et al.’s [66]  low level task taxonomy for use with 

graphs, and categorise the resulting tasks into five groups: topology based; attribute-

based; browsing; overview; and high level tasks. While they include in their high-level 

task category the general question, how has the graph changed over time?, they do 

not elaborate on the sub tasks involved.  

Shneiderman and Aris [69] identify six challenges for network visualisations (basic 

networks; node labels; link labels; directed networks; node attributes; link attributes) 

and a number of associated high priority tasks, such as counting nodes and links; 

finding structural metrics; and structural and attribute based tasks similar to those 

described by Lee et al. [40].  However, they describe the number of potential tasks 

which a person may wish to carry out on a network as “unlimited”. They do not 

consider temporal graph tasks. 
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2.4.3 Temporal graph task classifications 

With regard to temporal graph task taxonomies, Yi et al. [70] categorise visual tasks 

in temporal social network analysis by the level at which temporal change in the 

network can be analysed: nodal and dyad level (node or edge attributes, and 

associations between attributes), subgroup (based on connectivity or node 

attributes), and global level. They identify the general aspects of interest at each of 

these levels in relation to network evolution:  

• At the nodal and dyad level, the emergence, growth and dissolution of nodes 

and ties. 

• At the subgroup level, the processes of subgroup formation. 

• At the global level, global changes in the network’s topology over time.  

They also note the importance of considering the relationship between attributes and 

graph structure. However, their tasks are expressed at a high level of composition, 

and they do not specify in detail the subtasks involved in the analysis of temporal 

change at each level.  

Bach et al. [71] recently adapted Peuquet’s [72] geo-temporal task framework for use 

with temporal graph data. The original framework consists of three dimensions, 

when, where, and what. Bach et al. redefine the where and what dimensions to 

capture the lack of fixed spatial positions in temporal graph data. Tasks are 

formulated based on two known dimension values, with the third dimension’s value 

to be found, giving three general task types (what + when = where; when + where = 

what; where + what = when; items to the left of the equation are specified, items to 

the right are those which are to be found). This approach is similar to that of the 

Andrienko framework [5] (discussed in Chapter 3), with the task types being 

comparable to the Andrienko ‘lookup‘ task category. However, the Andrienko 

approach is more detailed, and captures higher level tasks such as comparison and 

finding correlations and dependencies, not specified in this framework.  

The most detailed example of a temporal graph task taxonomy is Ahn et al.’s 

taxonomy for network evolution analysis [41]. The taxonomy consists of three 

dimensions: Entity, Property, and Temporal Feature. ‘Entity’ follows Yi et al. [70] in 
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their distinction of levels of analysis; ‘Property’ distinguishes between structural 

attributes and domain properties. These dimensions capture what should be 

observed. ‘Temporal Features’ explain how these items should be analysed: as 

‘Individual events’ at single time points or ‘Aggregate events’ over a period of time. 

The three dimensions are used to construct a task design space, which they use as a 

basis for characterising existing visual techniques by the tasks which they are able to 

support. The limitations of Ahn et al.’s taxonomy are discussed in detail in Section 

6.2.1. 

 Tasks in the graph and temporal graph visualisation literature 

In addition to task taxonomies, there are two additional sources of temporal graph 

tasks in the literature: the tasks which systems and techniques have been designed 

to support, and the tasks employed in studies evaluating visualisation techniques.  

2.5.1 Tasks in systems and techniques papers 

With some notable exceptions e.g. [69], [70], [73], the discussions of tasks in the 

systems and techniques papers are surprisingly limited, and often couched in domain 

specific terms. For example, Erten et al.’s [74] tasks relate specifically to the the ACM 

digital library’s co-authorship network: What were the hottest topics in computing in 

the 1990’s? Which research areas are experiencing steady decline/rapid increase? 

Which research communities are open and well-connected? Meanwhile, Gloor and 

Zhao’s [75] tasks are phrased in terms of their interest in communication 

technologies: Do social networks depend on the interaction technology? Does the 

same group of people exhibit different network attributes when interacting via 

telephone, email, face-to-face or other?  Additionally, systems are often specific in 

their focus, thus tasks are constrained to a particular subset e.g. Kang et al. [76] focus 

on the specific task of analysing change in group membership of a pair of individuals 

over time. As discussed in Section 2.4.1, the term “task” is used ambiguously in the 

visualisation literature in general, and this is reflected in the tasks described in the 

systems and technique papers, which are specified at varying levels of perspective, 

abstraction, and composition. 
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Evaluative studies tend to employ only a limited number of the range of possible 

tasks. The tasks in Ghoniem et al.’s [77] study of static graph representations consider 

the basic characteristics of vertices, paths, and subgraphs. They formulate seven 

generic tasks concerned with gaining an overview of a graph’s structure, including 

estimating the number of nodes and edges in the graph, and finding particular nodes, 

links, and paths. They do not consider tasks involving node or edge attributes.  

Purchase and Samra [20] and Archambault et al. [27] use five tasks in their studies 

investigating mental map preservation; similar (edge-based) questions were included 

in [17]. They consider: 

• global and local structures. 

• the evolution of node degrees 

• node and edge appearance/endurance 

• growth in number of nodes, and 

• the readability of paths over time.  

Unlike other studies, tasks were purposefully presented in a domain context, to make 

them more understandable to study participants. Little explanation is given in these 

studies as to how or why the tasks used were chosen. Again, tasks involving attributes 

are not considered.   

When evaluating techniques for analysis of graphs with associated time-series data, 

Saraiya et al. [73] formulate eleven tasks for use in their evaluation.  While the tasks 

are based on those commonly employed in the bioinformatics domain, they were 

purposefully abstracted for use in the study, as study participants did not necessarily 

have domain knowledge. The tasks focus on timeseries associated with node 

attribute values in the graph context, and are categorised according to the number 

of time points involved. 

Farrugia and Quigley [78] provide a comprehensive discussion of the tasks used in 

their study. They distinguish four task categories based on a combination of level of 

analysis (global network overview vs local individual node level) with temporal search 

space (specified vs unspecified time period), in conjunction with the static graph tasks 
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of Lee et al. [40], a selection of which they formulated for the dynamic context. 

However, they give only a few examples of the tasks used. 

 Taxonomies of visual techniques 

The general ways in which techniques in the visualisation literature have been 

categorised were discussed in Section 2.3.4.3.  Classifications of techniques are 

further discussed in Chapter 7. Visual technique taxonomies can be of assistance in 

revealing the range of potential design solutions. They can be divided into those that 

categorise the range of visual representations of the data, and those that deal with 

interaction [45]. They may classify techniques according to algorithms used [55], data 

structure (e.g. [56]–[58]), similarity of encodings (e.g. [38], [39]), or task support 

(either visual operations e.g. [13], [59], or user intention e.g. [8], [60]). In the graph 

case, von Landesberger et al. [79] classify graphs according to their time dependence 

and graph structure (Figure 2), and use this classification as the basis for their 

discussion of visual techniques. 

 

Figure 2 classification of graphs by time dependence and structure (von Landesberger et al., [79], 

Figure 3). 

For general graphs, Schulz and Schumann [80] distinguish four dimensions upon 

which network visualisation techniques can be categorised: dimensionality (2D or 3D 

representation), directionality (directed or undirected); edge representation (explicit 

vs. implicit); node layout (free, styled, or fixed). For trees, Graham and Kennedy [81] 

identified five basic types of tree representation: node-link, nested, adjacency, 

indented list, and matrix (Figure 3). Schulz et al. [38] surveyed implicit hierarchy 

techniques and extracted four dimensions (dimensionality, edge representation, 
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node representation, and layout) which they use to construct a design space of 

possible representations.  

 

Figure 3 Five basic types of tree representation (Graham & Kennedy, [81], Figure 3): (a) node-link, 

(b) nested, (c) adjacency, (d) indented list, (e) matrix. 

For temporal graphs, Hadlak et al. [82] classify large dynamic graphs according to the 

reduction techniques involved: whether the temporal or structural element of the 

graph is reduced, and whether the reduction is via abstraction or selection, or is 

unreduced.  They combine these dimensions to produce a design space of temporal 

graph representations (Figure 4).  
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Figure 4 Hadlak et al.’s categorisation of visual approaches for large dynamic graphs ([82], Table 1). 

Both Federico et al. [28] and Rufiange and McGuffin [83] categorise temporal graphs 

with respect to the temporal encoding used.  

Recently, Beck et al. [84] classified existing methods for representing dynamic graphs, 

firstly according to the temporal encoding used: either animated views or static 

timeline representations. Animated views are subdivided by the layout algorithm 

employed; timeline representations are subdivided according to the graph structural 

encoding used (node-link or matrix), with further subcategories considered for each 

structural encoding (Figure 5). They also map published techniques to the categories 

of their taxonomy. As their classification is based on existing techniques, the mapping 

is not intended to reveal unexplored possibilities, but shows which techniques are 

most commonly employed, and the areas in which less work has been undertaken. 
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Figure 5 Beck et al.'s classification of dynamic graph visualisation techniques ([84], Figure 1 ). The 

number of publications employing a particular technique is indicated using cell colour. 

 Mappings between temporal graph tasks and visualisation techniques 

As mentioned in Section 2.4.3, Ahn et al. [41] use the dimensions of their temporal 

graph task taxonomy to construct a design space, to which they map 53 existing  

visualisation systems according to the tasks which they support. Based on this 

mapping, they identify tasks which are well supported, and those which are not.  

Beck et al. [85] suggest matching dynamic graph visualisation tools to application 

requirements through the use of profiles. Their methodology involves generating two 

types of profile: a visualisation profile, which rates the tool in terms of its support for 

the set of aesthetic criteria for dynamic graph visualisation; and an application 

profile, which estimates the relative importance of each of the aesthetic criteria 

based on the characteristics of the dataset and the required tasks. Having translated 

the visualisation strengths and application requirements into a common set of values, 

the best fit between the two profiles can be found. However, at the time of writing, 

the task domain and technique domain had not yet been fully explored, specified, 

and categorised, therefore their methodology required expert knowledge of the 

possible range of available techniques and the tasks which may be required when 

exploring dynamic graph data. The work in this thesis could help addresses these 

deficiencies by providing two useful pieces required to implement their 

methodology: a classification of the available tools and techniques, and a 

comprehensive classification of the task domain.  

 Discussion 

So far this chapter has outlined the important role that taxonomies can play in the 

design and evaluation of visualisation systems and techniques, and how they can be 

useful tools for directing attention to potential avenues for future research (Section 



 29 

 

2.3). Having reviewed the existing work which has been carried out in developing task 

and technique taxonomies for temporal graphs (Sections 2.4.3 and 2.6), let us return 

to the questions outlined in Chapter 1 and consider whether these are sufficiently 

addressed within the existing literature. 

To date, three task taxonomies have been developed specifically for temporal graphs: 

Bach et al.’s [71] adaption of Peuquet’s [72] geo-temporal task framework for use 

with temporal graph data;   Yi et al.’s [70] categorisation of visual tasks for temporal 

social network analysis; and Ahn et al.’s taxonomy for network evolution analysis 

[41]. However, as discussed in Section 2.4.3 and demonstrated in the evaluation of 

Section 6.2.1, all of these taxonomies have shortcomings in terms of task coverage.  

Tasks in the temporal graph literature (considered in Section 2.5) are specified at 

varying levels of granularity and abstraction, while evaluative studies tend to include 

only a small number of tasks. Collating these tasks into a single taxonomy would likely 

prove difficult due to the different levels at which tasks are specified, and would in 

no way ensure task coverage, given the surprisingly limited consideration given to 

tasks in the literature. Therefore, research question 1, what are the possible 

exploratory analysis tasks that temporal graph visualisation might need to support?  

has not yet been fully addressed by the existing work. 

As discussed in Section 2.6, a number of different approaches have been taken to 

categorising both static and temporal graph techniques. Temporal graph techniques 

have been classified according to the reduction techniques employed (in the case of 

large graphs) and also the temporal encodings used. All of the classifications to date 

have considered only existing techniques.  The first part of research question 2, which 

visual techniques, tools, and approaches, have been developed to support exploration 

of temporal graph data? has therefore been partially considered by the existing 

literature, however the categories identified in the existing classifications would 

benefit from being brought together into a more unified classification. As all of the 

classifications to date have considered only existing techniques, the second part of 

research question 2, are there any unexplored opportunities for visual techniques? 

has not yet been answered, and there is room for exploration of the possibilities for 

new techniques. 
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In terms of the relationship between techniques and the tasks which they support, 

as discussed in Section 2.7, Ahn et al. [41] map existing techniques from the literature 

to their task taxonomy. However, as outlined in Section 2.4.3, the task coverage of 

their taxonomy is incomplete. Further research is therefore required to fully address 

research question 3, which visual techniques support which tasks?  

Finally, research question 4, for the tasks identified in (1), are there suitable visual 

techniques or are new/better techniques required?, cannot be answered until 

questions 1 and 3 have been fully addressed, therefore it remains an open research 

question. 

Having established the limitations of existing work in tackling the four research 

questions outlined in the introductory chapter, this thesis seeks to address these 

questions by: 

(1) developing a taxonomy and design space of temporal graph tasks, which will 

provide more complete task coverage than the existing works. 

(2) exploring the ‘space of the possible’ of temporal graph visualisation techniques, 

through construction of a design space to which existing techniques from the 

literature are mapped, revealing currently unexplored techniques.  

(3) considering the techniques which can support each of the task categories of the 

taxonomy. 

(4) identifying tasks which could benefit from new or better techniques for their 

support. 

 Summary 

This chapter has explored the motivation for the development and use of taxonomies 

in visualisation research, and reviewed the existing work relating to task and 

visualisation technique taxonomies for temporal graphs. The existing work has been 

considered in relation to the research questions proposed at the beginning of this 

thesis; this has established the extent to which the questions have already been 

addressed by existing work, and demonstrates that further work is required to fully 
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answer these questions, serving as both justification and motivation for the work in 

this thesis.   

 



 

Chapter 3 Task Taxonomy: Methodology 

This chapter reviews the possible approaches to task classification construction, 

threats to validity at each stage of development, and methods by which these threats 

can be mitigated.  The task taxonomy for temporal graph exploration presented in 

this thesis is based on the work of Andrienko and Andrienko [5]. The reasons for its 

selection are discussed, and an overview of the formal approach it employs is given 

in this chapter, along with a discussion of the limitations of the framework in the 

graph case, which necessitated the extension to the taxonomy outlined in Chapter 4, 

and allowed its application to the temporal graph case outlined in Chapter 5. 

 Constructing task classifications 

While recent work has been carried out in establishing appropriate design processes 

when developing visualisation systems and technique e.g. [10], [12], [50], [54], and 

despite the increasing number of task classifications being developed, very little 

attention has so far been given to the process of classification construction.  In order 

to investigate the construction methods employed when developing a task 

classification, a review of the literature was carried out. Rind et al.’s [43] list of 31 

abstract task categorisations was used as the basis for this review.  26 of these 

classifications are discussed below. Three of the publications, [86]–[88], were 

unavailable; [54] and [67] are considered together, as the discussion relating to the 

construction and evaluation of this classification is presented in [67]; [89] was 

excluded as it is the published version of the task classification developed in this 

thesis.   The list of publications included in the review along with a summary of the 

construction approaches and evaluation methods employed by each work is included 

in Table 1. Reference was also made to literature relating to the visualisation design 

process and evaluation practices, where appropriate.  
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Classification Terminology 

(used in paper) 

Task Generation Categorisation Description Evaluation 

Ahn et al. [41]: 

network 

evolution 

 

Taxonomy, 

design space 

Derived from 

literature – 

existing 

systems/techniq

ues 

 

Expert review 

- Verbal Properties: 

descriptive 

power; usability 

Usage: design 

process 

Alsallakh et al. 

[65] set-typed 

data 

Classification Derived from 

literature – 

existing 

systems/techniq

ues 

- Verbal Usage: 

evaluation 

Amar and 

Stasko [46]: 

prototypical 

analysis tasks 

 

Examples of 

common tasks 

Not specified - Verbal Construction 

method  

Property: 

descriptive 

power 

Usage: design 

process; 

evaluation 

Amar et al. 

[66]: low-level 

visualisation 

tasks 

Taxonomy Survey of 

visualisation 

experts 

affinity 

diagramming 

Verbal Property: 

comprehensiven

ess 

Andrienko and 

Andrienko [5]: 

exploratory 

data analysis 

Typology Formal 

modelling 

approach 

n/a  Functional; 

Verbal 

Properties: 

comprehensiven

ess; real world 

nature of tasks 

Brehmer and 

Munzner [67]; 

Munzner [54]: 

abstract 

visualisation 

tasks    

Typology Extant 

classifications – 

unifies;  

influenced 

by/derived from 

 

Author’s own 

knowledge 

- Verbal; 

Faceted 

Properties: 

descriptive 

power; 

syncretism 

Brehmer et al. 

[53]: task 

sequences for 

dimensionally-

reduced data 

Characterisatio

n of task 

sequences 

Interviews with 

domain experts 

iterative 

coding process 

Verbal Construction 

method  

Property: 

comprehensiven

ess 

Chuah and Roth 

[61]: 

interaction 

Framework Extant 

classifications - 

influenced 

by/derived from 

 

Derived from 

literature – 

existing 

systems/techniq

ues 

- Verbal - 
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Classification Terminology 

(used in paper) 

Task Generation Categorisation Description Evaluation 

Gotz and Zhou 

[63]: insight 

provenance 

Catalogue, 

taxonomy 

Extant 

classifications - 

influenced 

by/derived from 

 

Derived from 

literature – 

existing 

systems/techniq

ues; user studies 

 

Observation of 

visualisation 

users 

- Verbal Usage: design 

process 

Heer and 

Shneiderman 

[48]: interactive 

dynamics 

Taxonomy Not specified - Verbal - 

Lammarsch et 

al. [90]: time-

oriented data 

Rule set Extant 

classifications –

extends [AA06] 

 

Formal 

modelling 

approach 

n/a Functional; 

Verbal 

- 

Lee et al. [40]: 

graphs 

Taxonomy Extant 

classifications - 

influenced 

by/derived from 

 

Derived from 

literature – 

evaluation tasks 

- Verbal Usage: 

evaluation 

Liu and Stasko 

[91]: mental 

models 

Categorisation Extant 

classifications - 

influenced 

by/derived from 

- Verbal - 

Meyer et al. 

[92]: 

comparative 

genomics 

Characterisatio

n, taxonomy, 

design space 

Derived from 

literature – 

existing 

systems/techniq

ues 

 

Interviews with 

domain experts 

- Verbal - 

Pretorius et al. 

[93]: 

multivariate 

networks 

Framework  Extant 

classifications - 

influenced 

by/derived from 

- Verbal - 

Rind et al. [94]: 

electronic 

health records 

Classification Extant 

classifications –

extends [YKSJ07] 

- Verbal - 

Roth [62]: 

interactive 

cartography 

and 

geovisualisation 

Taxonomy Interviews with 

domain experts 

card sorting 

with domain 

experts 

Verbal Construction 

method  
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Classification Terminology 

(used in paper) 

Task Generation Categorisation Description Evaluation 

Sacha et al. 

[44]: 

knowledge 

generation, 

visual analytics 

Model Extant 

classifications - 

unifies 

- Verbal Properties: 

descriptive 

power; 

syncretism 

Usage: 

evaluation 

Schulz et al. 

[45]: 

visualisation 

tasks 

Design Space Extant 

classifications – 

unifies;  

influenced 

by/derived from 

- Verbal; 

Faceted 

Properties: 

descriptive 

power; 

comprehensiven

ess 

Usage: design 

process; 

evaluation 

Sedig and 

Parsons [47]: 

action patterns  

Theoretical 

framework, 

Catalogue 

Extant 

classifications - 

influenced 

by/derived from 

 

Derived from 

literature – 

existing 

systems/techniq

ues 

Identify 

common 

characteristics 

and uses; use 

of abstraction 

Verbal Property: real 

world nature of 

tasks 

Shneiderman 

[56]: 

visualisation 

tasks by data 

type 

Taxonomy Not specified - Verbal - 

Suo [95]: 

network 

security 

Taxonomy, 

design space 

Extant 

classifications - 

influenced 

by/derived from 

 

Author’s own 

knowledge 

- Verbal - 

Valiati et al. [7]: 

multidimension

al data 

Taxonomy Extant 

classifications - 

influenced 

by/derived from 

 

Observation of 

visualisation 

users 

- Verbal Property: 

descriptive 

power 

von 

Landesberger 

et al. [64]: 

interaction 

Taxonomy Extant 

classifications – 

unifies 

- Verbal Property: 

syncretism 

Usage: design 

process 

Wehrend and 

Lewis [8]: 

scientific 

visualisation 

Classification/ 

catalogue 

Derived from 

literature – 

problems 

addressed 

- Verbal Construction 

method 

Property: 

comprehensiven

ess 

Usage: design 

process 
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Classification Terminology 

(used in paper) 

Task Generation Categorisation Description Evaluation 

Yi et al. [13]: 

interaction 

Categorisation Extant 

classifications - 

influenced 

by/derived from 

 

Derived from 

literature – 

existing 

systems/techniq

ues; problems 

addressed 

 

Review of 

commercial 

systems 

affinity 

diagramming 

Verbal - 

Table 1 Summary of task classifications reviewed, including terminology used to describe the 

classification, and the construction approaches and evaluations reported in these papers. The 

original list of publications is based on that used in Rind et al.’s [43] review  of the task design space. 

There are a number of ways in which classifications can be constructed, although little 

reflection on the processes involved is to be found in the visualisation literature. 

Schulz et al. [SNHS13] consider the process of establishing recurring visualisation 

tasks and their description. They also discuss the consolidation of existing works. 

When taking a taxonomic approach to classification structure (i.e. where a set of 

existing items are gathered and grouped together based on their similarity), three 

main steps can be identified: (1) generate the tasks, (2) collate and order them, (3) 

describe them. In contrast, what shall here be referred to as conceptual approaches 

to classification construction—such as typologies and design spaces, as outlined in 

Section 2.3.1—begin with a set of important characteristics upon which tasks can be 

distinguished. In this case, rather than gathering a set of tasks, a set of conceptual 

dimensions are identified and used as the basis of classification construction. While 

these may need to be ordered in some way, the same process of rationalisation of 

tasks into categories required by step (2) of the taxonomic approach is not necessary. 

Some form of description of the resultant categories is still required, although for 

design spaces, the combination of choices along each dimension often serves to 

suitably define the category. 

Different threats to validity arise from the different approaches that can be taken at 

each stage of classification construction, which consequently require different 

approaches to validation. The following sections discuss the approaches to 

construction, threats to validity, and possible means of mitigating these threats at 
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each stage of the construction process.  The discussion is largely structured around 

the three steps in taxonomic construction and each step is summarised in Tables 

Table 2Table 3Table 4Table 5.  A discussion specific to conceptual approaches is 

included towards the end of this section, which is summarised in Table 5.  

3.1.1 Task Generation 

Task generation refers to the process of obtaining a set of tasks upon which a 

classification is based. Such a definition is most fitting when applied to taxonomies, 

where a set of items are collected and then organised.  Here the idea is expanded to 

include the process by which the dimensions of other forms of classification (such as 

typologies and design spaces) are obtained. Schulz et al. [45] describe a number of 

common approaches to obtaining recurring visualisation tasks, including surveying 

individuals, observing visualisation users, and inferring from existing visualisation 

systems.  In reviewing the literature, the most prevalent approach to task generation 

was found to involve literature based methods (20 of 26 classifications): either 

involving extant classifications (16 of 26) or deriving tasks from the literature (9 of 

26).  Extant classifications may be unified [44], [45], [64], [67]; extended (e.g. to a 

specific data type ([5] by  [49]), or for domain specific purposes ([13] by [94])); or – 

most commonly -  used to derive, or cited as influencing, the task categories [7], [13], 

[40], [45], [47], [63], [93], [95], with a small number making use of theoretical works 

from across a wider range of disciplines, such as HCI and cognitive science e.g. [47], 

[63], [67], [91]. Tasks can be derived from the literature by reviewing: existing 

systems/techniques for the tasks which they support [13], [41], [47], [61], [63], [65], 

[92]; problems addressed in the literature [8], [13]; tasks utilised in user evaluations 

[40]; or studies examining users’ visual analytic behaviour [63].  Far less common are 

the use of empirical methods to elicit tasks (8 of 26 classifications), including 

interviews with domain experts (either in a single domain [62], [92], or across 

multiple domains [53]); surveys of those familiar with visualisation [66]; 

observational studies of people using visualisation systems [7], [63]; reviews of 

commercial systems [13]; and expert reviews of the resultant classification to find 

missing tasks [41]. An alternative to literature based and empirical methods is the use 

of theoretical approaches, where a formal modelling approach is taken [5].  Finally, 
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authors frequently draw on their existing knowledge of literature, systems, and 

practices when constructing classifications. Two of the papers reviewed explicitly 

acknowledge this (drawing on “new thinking ”[67], or the author’s experience [95]), 

but many more likely do this implicitly, including the three papers which did not 

specify the means by which their tasks were generated [46], [56], [59]: especially 

likely given their inclusion of extensive reference to the literature. 

3.1.1.1 Task Generation: threats to validity 

The two main threats at this stage are (1) gathering the wrong tasks (2) gathering an 

incomplete set of task. These threats arise in different ways depending on the 

method used.  

The threats to validity when gathering tasks reported in the literature or via empirical 

methods such as interviews and observations are the same threats encountered at 

the task gathering stage of the design process, and thus the problems are well 

documented.  Relying on tasks reported in the literature requires a certain level of 

understanding of domain terminology on the classification constructor’s part (who is 

likely to be a visualisation researcher), and/or a similar problem having already been 

tackled in the visualisation literature (which preferably would include a clear 

characterisation of the problem; however, as noted by Munzner [10] problem 

characterisation papers are somewhat lacking in the visualisation literature). Talking 

to domain experts has a number of difficulties associated with it.  In practical terms, 

access to domain experts may be limited in terms of the their availability [96].  Relying 

on experts from a single domain may also skew the set of tasks towards that of the 

represented domain [89], a problem if the resultant classification is intended for 

more generic use. A more general, well-known issue in HCI and psychology is that 

people find it difficult to accurately introspect about their needs and articulate them 

[10], [12]. This difficulty is compounded when developing task classifications for 

Exploratory Data Analysis, where the purpose is exploration, and the potential 

analytical tasks involved in the exploration are not necessarily known at outset [4], 

[5]. Sedlmair et al. [12] also note the need to keep discussions focused on tasks; one 

pitfall they identify is allowing experts to focus on possible visualisation solutions, 
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rather than explaining their problems.  The gap in understanding the terminology 

used by domain experts, may also be a factor during such discussions.  

Relying on tasks generated by those familiar with visualisation, as opposed to domain 

experts (as per the strategy of Amar et al. [66] who surveyed visualisation students 

to generate a set of analysis tasks) may also result in wrong or missing tasks.  Indeed 

Amar et al. reflect on whether they would have obtained a different set of tasks had 

they surveyed professional analysts.  

Observational strategies require that working methods be observed e.g. observing 

the domain expert using an existing visualisation system or some other tool; 

however, this requires that at least some method for tackling the problem already 

exists, which may not be the case for novel problems.  Where systems do exist, 

researchers must still be careful to establish that the problem being tackled is indeed 

the right one. Moreover, the inherent lack of access to the internal mental processes 

of participants during fly-on-the-wall observation techniques makes observing the 

cognitive tasks which they are performing difficult,  (although contextual enquiry, 

where the researcher interrupts to ask questions during the observation, may 

overcome some of this difficulty) [12]. 

Adopting a multi-strand approach to task gathering may be one way to reduce the 

chances of gathering the wrong or an incomplete set of tasks upon which to base a 

task classification.  Downstream evaluation of the resulting classification (using 

approaches such as those outlined in Section 6.1) may also highlight problems at this 

stage. 

Finally, the principle of ‘garbage in, garbage out’ applies where the categories of 

extant classifications are used as the basis for constructing a classification:  the 

validity of the resultant classification will be affected by the methods involved in 

constructing the original classifications. Those which have not been validated during 

construction or evaluated in a final form may contain errors which could be 

propagated to future classifications. Downstream evaluation of the resultant 

classification is therefore necessary where extant classifications are the basis for 

construction. 
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Method Threat Mitigation 

 
General threat -wrong or missing tasks, arising 

from: 

Multi-strand approach to 

task gathering 

 

Downstream evaluation  

Derive from literature 

(existing 

systems/techniques; 

existing problems; tasks in 

evaluations) 

- Understanding domain terminology 

- Requires similar problem having already 

been tackled 

Interviews with domain 

experts 

- Expert’s availability 

- Skewing tasks towards a single domain 

- Difficulties with introspection/in 

articulating tasks 

- Maintaining focus on task discussions 

Surveys of visualisation 

experts 
Wrong people 

Observational strategies 

- Method of tackling problem must already 

exists 

- Lack of access to internal mental 

processes 

System reviews 
Method of tackling problem must already 

exists 

Author’s own knowledge 
- Missing tasks 

- skew towards particular domain 

Derive from extant 

frameworks 
Validity of original classification used Downstream evaluation 

Table 2 Task generation: summary of methods, threats to validity, and approaches for mitigating 

threats. 

3.1.2 Categorisation 

In the taxonomic approach, once tasks are gathered, some method of establishing 

meaningful categories is required. In 13 of the 26 classifications we reviewed, a set 

of tasks were gathered either from the literature or through empirical means. Of 

these, only five reported the method of categorisation employed when grouping the 

tasks. These included identifying common characteristics and uses of techniques and 

abstracting beyond the details of particular implementations [47]; an iterative coding 

process [53]; affinity diagramming [13], [36]; and card sorting with domain experts 

[62]. 

3.1.2.1 Categorisation: threats to validity 

The two main threats at this stage of classification construction are incorrect and 

missing task categories. These threats arise from two directions: upstream, from the 

set of items collected at the task generation stage, and at the current stage, from the 

method by which categorisation is performed.   

In terms of upstream threats, where a taxonomic process is being followed, the threat 

to validity may be propagated from the task generation stage, i.e. where the wrong 
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or an incomplete set of tasks is collected, categories based on these items are likely 

to be flawed. Similarly, where classifications are constructed from the categories of 

extant classifications which have not been evaluated, any issues with the original 

classifications will potentially be propagated to the classification being developed.  

These threats may be mitigated by carrying out validation at the task generation 

stage, or identified during downstream evaluation of the final classification.  

In terms of threats arising at the construction stage, when carrying out a taxonomic 

procedure, determining what constitutes ‘similarity’ between tasks can be a non-

trivial problem, particularly where tasks are drawn from across a range of application 

domains and may be specified inconsistently (i.e. with respect to Rind et al.’s [43] 

distinctions: at different levels of composition, abstraction and even in terms of 

actions vs objectives).  Reasoning about similarities and differences between tasks 

often requires some level of abstraction.  As Munzner notes when discussing 

abstraction in the visualisation design process, apparent differences between tasks 

are often misleading as “…there are a lot of similarities in what people want to do 

once you strip away the surface language differences” [54] p 43-44.  The use of 

systematic methods such iterative coding, affinity diagramming, and card sorting 

techniques (as outlined in the studies mentioned above) are one way to mitigate 

against producing the wrong categories. Some of the evaluative methods identified 

by McKenna et al. [50] for the ‘understand’ activity of their design activity framework 

could also be of potential use at this stage in the construction process. However, 

consideration also needs to be given to who is carrying out these processes.  In most 

cases, categorisation was performed by the classification constructors (normally 

visualisation researchers).  While this may be a valid approach (often the intended 

users of the resultant classification are visualisation researchers), reasoning about 

similarities and differences amongst domain tasks may best be performed by domain 

experts  

One further threat to the potential usefulness of a classification is its structure, in 

terms of the granularity (size of categories), complexity, and depth (levels in a 

hierarchy) of categories. While discussion of these aspects was not covered in the 

literature reviewed, they have been discussed in other disciplines which develop 
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classifications (such as biology and information management).  In terms of 

granularity, use of wide categories may have the advantage of producing a simpler 

classification with fewer categories, but may group together tasks with important 

distinctions (for example, where the classification is intended for use in a task-

technique mapping, grouping tasks widely may result in difficulty in finding 

techniques supporting the full range of tasks). During the task categorisation 

processes, subtle yet important distinctions between tasks may be lost, and less 

commonly occurring, but important, ‘corner case’ tasks may be discarded.  

Meanwhile, narrow categories can result in the opposite problem – creating an overly 

complex structure by differentiating sets of tasks which could meaningfully be 

grouped together.  Similarly, classifications which employ a hierarchical structure 

may wish to consider the depth and complexity of their structure. While other 

research areas have developed rules (such as ensuring consistency in depth to 

promote a ‘balance’ to the hierarchy, easing predictability when browsing and 

navigating the structure [97], or limiting the depth of the hierarchy, as in the (now 

outdated) ‘3 click rule’ for web navigation) the potential effect of hierarchical 

structure has not been considered when developing task classifications. The optimal 

structure of a classification will likely depend very much on individual circumstances 

and intended use.  Downstream validation of the resultant classification for the 

intended purpose and with the intended group of end users (such as that performed 

by Ahn et al., [41], who evaluated their classification via interviews with a number of 

experts from different domains) is therefore important.  

Finally, where extant categories are combined to either unite, or improve upon 

existing classifications, it is important to validate that this has been achieved. In the 

former case this may be done by demonstrating that all categories have been 

subsumed by the new classification (e.g.  Brehmer and Munzner [67] map all extant 

categories to the categories of their classifications, while Sacha et al. [44] use 

discussion and illustration to demonstrate how the extant categories have been 

incorporated into their framework.) In the latter case, a discussion of the 

shortcomings of extant works and necessary additions helps validate the need for the 

new classification.  Where additional categories are identified, validating the 
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processes involved in their identification may require use of the methods discussed 

in this section and also at the task generation stage.  

Method Threat Mitigation 

Ad hoc methods Structural issues (granularity and depth) 

 

Wrong or missing categories arising from: 

- Upstream threats (wrong or missing tasks 

at task generation stage; validity of extant 

classifications used) 

- Inconsistently specified tasks 

- Wrong people performing categorisation 

Upstream validation 

 

Downstream evaluation 

 

Use of systematic methods 

Systematic methods 

(iterative coding; affinity 

diagramming; card sorting 

with domain experts) 

Table 3 Categorisation - summary of methods, threats to validity and associated approaches to 

threat mitigation 

3.1.3 Category Description 

Schulz et al. [45] identify four ways in which visualisation tasks can be described: 

verbal, functional, logical, or faceted. They also note that task descriptions may be 

hierarchical, allowing larger tasks to be represented as sequences of smaller 

subtasks. Almost all of the task descriptions used in the classifications surveyed were 

verbal. Some, such as Brehmer and Munzner’s [67] typology and Schulz’s task design 

space [45], describe tasks in a faceted manner, in which case the task description is 

composed of a series of elementary components. Only the work of Andrienko and 

Andrienko [5] and Lammarsch et al. [49] (whose work extends it), provide a functional 

notation. 

3.1.3.1 Category Description: threats to validity 

The main threats at this stage of classification construction are ambiguous or unclear 

descriptions, and descriptions specified in an inconsistent manner.  

Ambiguous or unclear descriptions are a problem when the classification is intended 

for adoption by others. While the use of formal notation avoids ambiguity and allows 

highly nuanced distinctions between tasks to be made, it has the disadvantage that 

it may be difficult for those unfamiliar with the notation to read and understand.  

Inclusion of verbal descriptions alongside formal notation helps overcome this 

limitation. In a minority of cases, it was noted that some of the verbal descriptions 

found in the review were too brief to fully grasp the intended meaning of the 

category, being only a few words long.  The format used by Yi et al. [13], which 

employs verbal descriptions and examples, is an example of good practice (emphasis 
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added): “To each category, as a title, we assigned a short identifying name (e.g., 

Select) and also an illustrative phrase that captures the essence of the user’s intent 

in performing the interaction. We describe each category to provide a definition of 

what it means and we also include exemplary individual interaction techniques that 

fall within that category.” 

The problem of overloading of the term “task” (as discussed in Section 2.4.1) is 

evident when describing task categories, in that descriptions are not always specified 

in a consistent manner.  While some of this may stem from earlier stages in the 

construction process (e.g. a number of the interaction classifications have been 

accused of conflating actions and objectives, which may arise at the task generation 

or categorisation stages), in order to describe each task category in a consistent 

manner, it is useful to keep in mind Rind et al.’s [43] distinctions between actions and 

objections, and the varying levels of abstraction and composition, when constructing 

task descriptions.  

Method Threat Mitigation 

Verbal 

- Ambiguous/unclear descriptions 

- Descriptions too brief 

- Descriptions specified in an inconsistent 

manner 

Describe category in 

sufficient detail e.g. Yi et 

al.’s format 

 

Provide concrete examples 

Formal notation Difficult for those unfamiliar with notation  
Accompany with verbal 

description 

Table 4 Description - summary of methods, threats to validity and associated approaches to threat 

mitigation 

3.1.4 Conceptual Approaches 

As described above, conceptual approaches begin with a set of conceptual 

dimensions upon which tasks can be distinguished, and result in a set of categories 

which represent concepts rather than empirical cases. Some means of establishing 

these dimensions is therefore required. As outlined in Section 3.1.1, dimensions are 

often gathered from extant classifications, for example, both Schulz et al.’s [45] 

design space and Brehmer and Munzner’s  typology [67] draw on previous work to 

identify the dimensions of their classifications.  An alternative approach is the formal 

modelling process used by Andrienko and Andrienko [5] who manipulate a 

metaphorical mathematical function in order to identify the types of tasks specified 

by their task typology. 
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As the dimensions are established at outset, there is no need for the categorisation 

step of the taxonomic approach.  However, where dimensions are gathered in a 

taxonomic fashion, some means of rationalising them and establishing which 

dimensions to include in the classification is required. Where categories are derived 

from extant classifications, these need to be combined to form the new system. It 

was found in the review that the process used to synthesise extant classifications is 

rarely reported, although how the resultant classification fits with those on which it 

is based is sometimes discussed and/or illustrated. 

Some form of description of the resultant categories is still required, therefore the 

discussion in Section 3.1.3 is relevant.  For design spaces, the combination of choices 

along each dimension often serve to suitably define the category. 

3.1.4.1 Conceptual approaches: threats to validity 

There are two main threats to validity for conceptual approaches: missing categories 

and reification. 

While formal modelling approaches are able to claim completeness with respect to 

the model used [5], the classification is only as comprehensive as the model or 

dimensions upon which it is based.  As discussed in Section 3.1.1, where extant 

categories are utilised, consideration needs to be given to their provenance. 

Downstream evaluation of the resulting classification using approaches such as those 

which are discussed in Section 6.1 with regard to comprehensiveness may highlight 

problems with missing or inappropriate categories.  

Conceptual approaches also face a unique threat to validity: the question of whether 

the tasks are in fact 'real world', as opposed to constructs of the process employed. 

Bailey [30] refers to this as the problem of “reification”, where theoretical constructs 

that do not exist empirically are ‘reified’ and treated as ‘real’ empirical entities. 

Providing concrete examples goes someway to mitigating this threat, however, 

validating the real world nature of tasks is a tricky problem, which is discussed further 

in Section 6.1.3.3 
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Method Threat Mitigation 

Gather and rationalise 

dimensions e.g. use extant 

categories 

Wrong/missing dimensions 

Provenance of extant  categories Downstream evaluation 

Functional modelling Wrong/incomplete model 

Both approaches Reification Provide concrete examples 

Table 5 Conceptual Methods - summary of methods, threats to validity and associated approaches 

to threat mitigation 

 Selected approach in this work 

A primary intention of this work is to elucidate the tasks involved in exploring 

temporal graph data. As outlined in Chapter 2, (and discussed further in 6.2.1) all of 

the extant temporal graph task taxonomies have shortcomings, particularly in terms 

of task coverage.  Having considered the possible approaches to developing a task 

classification, it was decided to adopt a formal approach and apply the Andrienko 

framework [5] to the temporal graph case in order to identify the tasks involved in 

exploring temporal graph data.  

The Andrienko framework is well-respected in the visualisation community, using a 

systematic process to set out the possible tasks which may be encountered in an 

Exploratory Data Analysis scenario. Having survived 10 years of use ‘in the wild’ (see 

Section 6.1.5) it is believed to offer a solid basis upon which to derive a task 

classification specific to temporal graph data.  The primary advantage of adopting this 

formal approach is in task coverage.  Andrienko offer a formal proof to show 

completeness of their framework with respect to their chosen model. As the 

framework is intentionally domain independent, it is especially relevant to this work, 

which is particularly interested in exploring the ‘space of the possible’ across 

application domains and identifying potential areas for future research opportunities. 

Taking a formal approach mitigates many of the threats to validity discussed above 

when task gathering directly from domain experts or domain specific 

literature/extant systems, particularly when it would be necessary to carry out this 

process across multiple application domains. It also circumvents the difficulties noted 

relating to abstracting tasks, ensuring task specification at a consistent level of 

perspective, abstraction, and composition.  The design space approach utilised in this 

work (discussed further in Section 5.4) also avoids loss of important corner-case tasks 

during categorisation.  Constructing a task design space is one way in which the 
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nuanced distinctions between tasks can be maintained, whilst showing meaningful 

high level categories. Not only does a task design space elucidate all possible 

permutations of tasks, such structures allow a ‘slice and dice’ approach to be taken 

to task categorisation.  This is useful, as the multiple dimensions mean that all of the 

tasks will fall into more than one category  

Finally, the use of formal notation to describe tasks avoids ambiguity and allows 

highly nuanced distinctions to be made.  Coupling this with verbal descriptions and 

concrete examples makes the tasks descriptions accessible to those unfamiliar with 

the formal notation. 

As mentioned in the previous section, the main drawbacks of taking a formal 

approach to task specification surround the lack of involvement of people. In 

particular, this means that additional work is required to assess and validate: 

(1) whether the model is sufficient with respect to task coverage 

(2) whether the tasks are ‘real world’ or constructs of the formal process 

These aspects of the task classification developed in this thesis are addressed in 

Chapter 6. In addition, as noted in Section 3.1.2.1, typologies and design spaces do 

not provide information relating to which are the most frequently occurring and/or 

most useful tasks.  Additional work is required to establish this. 

 Requirement for extension to the Andrienko framework 

As mentioned briefly in Section 3.2, and discussed in more detail in Section 3.4, the 

Andrienko framework takes a formal approach to modelling the data and tasks 

involved in Exploratory Data Analysis. While the Andrienkos’ interests lie in modelling 

spatial and temporal data, their framework is intended to be applicable to all types 

of data. One consequence of this is that the abstract nature of their resulting task 

categories proves too generic to use as a basis for mapping the visual techniques for 

their support. The initial intention in this work was simply to apply the Andrienko 

model directly to a particular class of data sets – temporal graph data – in order to 

elucidate the range of possible tasks. Such a data specific task listing – while not 

domain specific - would be specific enough to use as the basis of a mapping to visual 
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techniques. However, in trying to apply the Andrienko framework to graph data, it 

was not clear how this could be done (see Section 3.5). Personal correspondence with 

Natalia Andrienko, one of the authors of the framework, confirmed that graph data 

was not considered when the framework was developed, and possible ways in which 

the data model could be extended were discussed. The extension to the data model 

and task framework which were required for use with graph data is the subject of 

Chapter 4.  This extended model is then applied to produce a set of tasks appropriate 

to temporal graph data, which is outlined in Chapter 5. The rest of this chapter briefly 

sets out the original Andrienko framework, and gives further details relating to the 

limitations of the framework when applying it to the graph case. 

 The Andrienko data model and task framework  

The Andrienko framework [5] consists of a data model and task framework. The 

framework was designed to be applicable to all types of data, and is rather complex, 

therefore the reader is referred to the original text for full details. The task framework 

(Section 3.4.3) uses a functional approach to specify the different types of tasks which 

may be involved in EDA, resulting in a “task typology”. Under their model, there are 

two components to every task: the target (unknown information) to be obtained, and 

the constraints (known conditions) that information needs to fulfil.  A task therefore 

involves finding a target given a set of constraints. The data model (Section 3.4.2) 

identifies the data items that can participate in tasks as a target or constraint.  

The concepts of the Andrienko framework are illustrated with reference to an 

example author publication data set, which is first outlined. 

3.4.1 Example author publication data 

In order to help illustrate the abstract concepts of the Andrienko framework, a simple 

example academic author publication dataset is used. The data consists of a set of 

authors affiliated to an academic institution. In each year, the academic department 

to which the author belongs is recorded, along with details of their publications. The 

data is illustrated in Table 6.  
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Author Year Publications Publication 

count 

Department 

A 2014 a, b, c, d, e 5 Computing 

A 2013 f, g 2 Computing 

A 2012 h 1 Computing 

B 2014 a, b 2 Computing 

B 2013 f, i 3 Biology 

B 2012 j, k, l, m 4 Biology 

… …    
Table 6 Example co-authorship data 

3.4.2 The Andrienko data model 

The Andrienko data model identifies five data items that can participate in tasks as a 

target or constraint: individual characteristics, individual references, sets of 

references, behaviours, and relations. These data items, and how they are related to 

one another in the data model, are now discussed.  

 

 

Author Year Publications Publication 

count 

Department 

A 2014 a, b, c, d, e 5 Computing 

A 2013 f, g 2 Computing 

A 2012 h 1 Computing 

B 2014 a, b 2 Computing 

B 2013 f, i 3 Biology 

B 2012 j, k, l, m 4 Biology 

… …    

 

Figure 6 Referrers and characteristics in the author publication data set 

The Andrienko data model firstly divides data into two parts: referential and 

characteristic components (illustrated in Figure 6).  The values of these components 

are known as references and characteristics respectively.  

Referential components (a.k.a. referrers) describe the context or domain in which 

the data was obtained.  These are independent components of the data, as they can 

(potentially) assume arbitrary values.  There are three main types of referrer 

considered under the model: time, space, and population (a set of objects). A dataset 

characteristics referrers 

A reference A characteristic value 
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may contain more than one referrer: in the example data set, the referrers are the 

authors (a population referrer) and time. 

Characteristic components (attributes) represent the values obtained in this context.  

These components are dependent, as their values are determined by the choice of 

values of the referrers (e.g. the value of ‘publication count’ depends on which author 

and year we are considering).  Characteristics may be of any data type: numeric, 

ordinal, categorical, sets, etc. In the co-authorship data example, they are 

department (categorical), publications (set) and publication count (numeric). 

 

 

 

 

 

 

 

The Andrienko framework considers the different ways in which data items can be 

related to one another: these are referred to as the relations between data 

components. Key to their data model is the correspondence between the referential 

and characteristic components. These components are related by the data function 

which is a mathematical metaphor to describe a simple look-up mapping between 

references and their corresponding characteristic value. This mapping can be written 

using formal notation, f(x) = y, where x is an element of the referential component 

and y an element of the characteristic component.  Figure 7 illustrates the data 

function using the author publication data. 

In addition to the data function, relations also exist between data items within the 

referential and characteristic components.  The relations between individual 

characteristic values depend on the underlying data type, and include equality, 

Referential component 

Data function 
Year 

2014 

2013 

2012 

: 

Author 
A 

B 

: 

Characteristic component 

Publications 
a  

b  

c  

d  

: 

Count 
1 
2 
3 
4 
: 

Department 
Computing 

Biology 
: 

Figure 7 Illustration of the data function mapping between the referential and characteristic 

components; author B in 2014 (highlighted) has 2 publications, a and b, and belongs to the 

Computing department. The mapping can be described using formal notation e.g. fpublications(2014, 

B) = {a,b}, fdepartment(2014, B) = Computing  etc. 
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order, distance, and set relations.  For example, we can ask whether two categorical 

data values are the same or different (equality); whether one ordinal value is greater 

than another (order); or of two numeric values, whether one is greater than the other 

(order) and if so, by how much (distance). Figure 8 gives examples of some possible 

relations between individual data components. 

 

 

Author Year Publications Publication count Department 

A 2014 a, b, c, d, e 5 Computing 

A 2013 f, g 2 Computing 

A 2012 h 1 Computing 

B 2014 a, b 2 Computing 

B 2013 f, i 3 Biology 

B 2012 j, k, l, m 4 Biology 

… … … … … 

 

 

Figure 8 Examples of some possible relations between individual references and individual 

characteristics. Note that if we had two characteristic components which shared the same domain 

(for example, count of journal articles, and count of conference proceedings) we could also consider 

the relation between their individual values e.g. ‘3 journal papers is 1 paper greater than 2 

conference papers’ (distance, order) 

Relations between individual references also depend on their data type. Three types 

of relation are considered: continuity, order and distance. Time is continuous, 

ordered, with distances; space is continuous, unordered, with distances; population 

is discrete, unordered, without distance (see Table 7). How long (distance) a 

particular time point occurs before or after (order) another, or how far apart 

(distance) two locations are in space, is captured by the relations between 

references.  

Subsets of the referential components are determined by the relations that exist 

between individual references.  Because of the different types of relations that exist 

between their elements, each of the main referrer types has a different notion of 

Authors 
are the 
same same same same 
(equality) 

Computing 
and Biology 
are different different different different 
departments 
(equality) 

2014 is 2 years2 years2 years2 years        afterafterafterafter 2012 
(distance, order) 

These sets of publications overlapoverlapoverlapoverlap (set relations) 

2 publications are    2 less  than  2 less  than  2 less  than  2 less  than      
4 publications (distance, order) 
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what constitutes a reference subset. For example, time has time intervals: the 

elements between the start and end time instants are determined by the continuity 

and ordering relations.  Other subsets include cycles in time, areas and lines in space, 

and groups of items in the population referrer.  These reference subsets can also have 

relations between them.  The relations between reference subsets include the set 

relations and those derivable from the relations between elements of the referrer.  

For example, the relations between time intervals could be described in terms of their 

temporal order, distance, and set relations (include, overlap, disjoint): the time 

period 1998-2004 is two years before the time period 2006-2008; 1998-2004 overlaps 

with the time period 2002-2006.1 

 
Referrer 

Time Space Population 

Elements Time points Locations Any objects 

Relations 

between 

elements 

Order Ordered Unordered Unordered 

Distance With distance With distance Without distance 

Continuity2 Continuous Continuous Discrete 

Subsets (examples) Time intervals Areas, lines Set of objects 

Relations between 

subsets  

Order, distance, 

set 
Distance, set Set 

Table 7 Summary of the relations within the three main referrer types 

The final part of the Andrienko data model is that of behaviours (illustrated in Figure 

9).  So far we have noted that a reference subset (such as a time interval) is 

determined by the relations that exist between individual references. A reference 

subset also has a corresponding set of attribute values, as defined by the data 

function. Taken together, these relations – those that exist between references, and 

the mapping between references and characteristics (data function) - determine the 

configuration or arrangement of the corresponding characteristic values. For 

example, temporal ordering relations between time points determine the 

configuration of the set of characteristics over time: an author’s publication count in 

                                                      
1 Note that Lammarsch et al. [49] extend the Andrienko model with a detailed analysis of the structure 

of time and elucidate the full range of possibilities for relations within the temporal referrer. 
2 Note that Andrienko and Andrienko do not explicitly treat continuity as a relation in their model 
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2013, comes before that of 2014. This real-world phenomena is termed a behaviour 

in the Andrienko framework.  

 

Patterns are subjective constructs resulting from an observation of a behaviour. They 

describe the “essential features of a behaviour... in a substantially shorter and simpler 

way than specifying every(thing)” ([5] p.85).  For example, we might describe the 

behaviour of an author’s publication count over time as an increasing or decreasing 

trend. A number of properties of patterns are outlined in the framework ([5] p90) 

including the degree of simplification; level of precision; coverage of the reference 

set (complete or partial); and the presence or absence of an overlap between sub-

patterns. Four main types of pattern are also distinguished: association, 

differentiation, arrangement and distribution summary, although this is not intended 

to be an exhaustive list. Patterns are discussed further in Section 5.2.1.  

 

Lastly, relations also exist between behaviours, and by extension, between patterns.  

For example, we could say that the trend in Author A’s publication count (an 

increasing trend) is opposite to that of Author B (which is decreasing). 
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Figure 9 Behaviours and patterns: the behaviour (3), or configuration of characteristic values, is 

determined by the relations that exist between references in the referential component (1) and the 
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data function’s mapping between individual references and corresponding characteristic values (2). 

A pattern such as an increasing trend (4), describes the behaviour. 

3.4.2.1 Data model: summary 

This section provides a brief summary of the components of the Andrienko data 

model, which are also illustrated in Figure 10. 

 

Figure 10 An illustration of the components of the Andrienko data model 

Referential Component (referrers) – the independent data component (time, space, 

population) 

• Reference – an individual item in the referential component e.g. a year, a 

point in space, a single element of a population. 

• Reference set – a set of references e.g. a time interval, an area in space, a 

set of elements in a population 

Characteristic component (attributes) – the dependent data component (may be of 

any data type: numeric, ordinal, categorical, sets etc.) 

• Characteristic – an individual attribute value e.g. 10, first, red, x-small.  

• Behaviour – the configuration of a set of characteristics which can be 

described by a pattern e.g. a temporal trend, a distribution in space, 

frequency of values in a population.  
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Relations - there are five possible relations (illustrated in Figure 11): 

R1 Between references and characteristics (the data function) 

Within the referential component: 

R2.1 Between individual references (order, distance, continuity - see Table 7) 

R2.2 Between reference sets (as for R2.1, plus set relations) 

Within the characteristic component: 

R3.1 Between individual characteristics (data dependent, including equality, 

order, distance, set relations) 

R3.2 Between behaviours (similarity, difference, opposition, correlation, 

dependency and structural connection) 

  
Referential 

component 

r
1
 

r
2
 

r
3
 

r
4
 

r
5
 

Characteristic 

component 

c
1
 

c
2
 

c
3
 

c
4
 

c
5
 

(R1) Data function 

 

(R3.1) Relation 

between  individual 

characteristics 

(equality, order, 

distance, set relations)  

 
 (R3.2) Relation between 

behaviours  (similarity, 

difference, opposition, 

correlation, dependency, 

structural connection) 

 

 

 (R2.2) Relation 

between sets of 

references (continuity, 

order, distance, set 

relations) 

 

(R2.1) Relation between  

individual references 

(continuity, order, 

distance) 

Figure 11 illustration of relations in the Andrienko data model. Data is divided into referential and 

characteristic components. The data function (R1) maps references to characteristic values; data dependent 

relations exist between references (R2.1), and subsets (R2.2) of the referential component; relations also exist 

between individual characteristics (R3.1), and behaviours (R3.2), in the characteristic component. 
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3.4.3  The Andrienko task framework 

As mentioned at the beginning of this chapter, the Andrienko framework takes a 

functional approach to task specification. Under the framework, there are two 

components to every task: the target, or unknown information to be obtained, and 

the constraints, or known conditions, that information needs to fulfil. The five types 

of data item that can participate in a task as either a target or a constraint were 

distinguished in the previous section: individual characteristics, individual references, 

sets of references, behaviours, and relations.  

 

 

 

 

 

 

 

 

 

The tasks in the framework are distinguished according to the data items that 

participate in them. Firstly, in terms of the level of analysis (Figure 12): whether the 

task involves individual references and characteristics (elementary tasks), or sets of 

items (reference sets and behaviours) considered together as a unified whole 

(synoptic tasks). Synoptic tasks are further divided into descriptive tasks (concerned 

with describing or summarising the data) and connection discovery tasks (concerned 

with finding connections between phenomena, including correlation, dependency or 

influence, and structural connection). Secondly, tasks are distinguished according to 

which data items (referential components, characteristic components, or relations) 

participate as the task targets and constraints.  This gives rise to three distinct task 

Visualisation Tasks 

Synoptic 

Involving sets of 

elements (reference 

sets and behaviours) 

Descriptive 

Describe the data 

Connection 

Discovery 

Find connections (correlation, 

dependency, influence etc.) 

Figure 12 Visualisation tasks distinguished according to level of analysis 

Elementary 

Involving individual 

elements (references 

and attribute values) 
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types: lookup, comparison, and relation seeking. In lookup tasks, the data function 

mapping is used to find the characteristic or referential component corresponding to 

a given data item. In comparison, the relation between two data items is the target. 

Relation seeking is the opposite of comparison, where the data items are the target, 

and the relation is a given constraint. The differences in targets and constraints 

between the task types are summarised in Figure 13, and each task type is described 

briefly, below. Note that each of these task types can take the form of an elementary 

or synoptic tasks. Tasks in the framework are specified using a formal notation. A 

description of this formal notation for each task can be found in Appendix A. 

 

 

 

 

 

 

 

 

 

The three main categories of tasks, which can take the form of elementary or  

 

3.4.3.1 Lookup 

On elements, lookup involves finding a characteristic given a reference (direct 

lookup) or references given a characteristic value (inverse lookup). On sets it involves 

finding the pattern associated with the behaviour of an attribute over a reference set 

(behaviour characterisation), and inversely, finding the subset of references 

corresponding to a given pattern (pattern search).  

Direct: 

Figure 13 Three general task types are distinguished according to which data items participate as targets or 

constraints (indicated in white and blue in the figure, respectively). In lookup tasks, the data function, and 

a characteristic or referential component is specified: the task target is the corresponding referential or 

characteristic component. In comparison, the relation between two data items (characteristic or referential 

components) is the target. Relation seeking is the opposite of comparison, in this case the relation is known, 

and the task is to find data items which are related in the given way. Direct and inverse variations of the 

tasks are distinguished according to the referential and characteristic components involved. 

Lookup Comparison Relation Seeking 

 C 
 R  

R 
 

 C  

 C   C 

R 
 

 R 
 

 

 

C  C  

 R 
 R 

R  Referential component 

 
C Characteristic component 

Relation 

Key: 
 

 

Constraint (specified item) 
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Examples:  

The following examples use the publication counts of an individual author over time 

to illustrate the lookup tasks. Items highlighted in yellow in the illustrations are 

known items (constraints) while those surrounded by a dotted line are the targets. 

 

 

 

 

 

Direct lookup, elementary (Figure 14): How many publications did the author have in 

2012? 

Inverse lookup, elementary (Figure 15): In what year(s) did the author publish two 

publications? 

 

 

Figure 16 Behaviour characterisation 

Behaviour characterisation (direct lookup on sets) (Figure 16): What was the pattern 

in the author’s publication count between 2011 and 2014? 
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Figure 14 Elementary direct 
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Figure 15 Elementary inverse 

lookup 
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Figure 17 Pattern search 

Pattern search (Figure 17): Find the time interval over which there was an increasing 

trend in the author’s publication counts. 

3.4.3.2 Comparison 

Comparison involves finding the relation between specified components; either 

between characteristics or patterns (direct comparison), or references or reference 

sets (inverse comparison). Under the Andrienko framework, comparison is a 

compound task, as it always requires at least one lookup task to find one of the data 

items being compared. This is because comparing known values in isolation, for 

example, red and blue, or the years 1980 and 1981, is not an analytical task; the 

answer will always be the same and is known without having to investigate the data. 

A useful comparison is one where at least one of the values involved is dependent on 

the data function mapping, for example, comparing the author’s publication counts 

in 2013 with those of 2014. We will return to this point in Section 4.2. 

A number of variations of comparison tasks are outlined in the Andrienko framework, 

based on the constraints involved. These are listed in Table 8 for reference. 

 Elementary Synoptic 

Direct 

comparison… 

With specified attribute 

values  

With a specified pattern 

Between values of the same 

attribute(s) for different 

references  

Between behaviours of the same 
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reference sets 
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Between values of different 

attributes for the same 

reference  

Between behaviours of different 

attributes over the same 

reference set 

Between values of different 

attributes for (partly) 

different references  

Between behaviours of different 

attributes over (partly) different 

reference sets 

Inverse 

comparison… 

With specified reference(s) With specified reference sets 

Between references 

corresponding to different 

values of the same 

attribute(s) 

Between the reference sets 

corresponding to specified 

behaviours of the same 

attribute(s) 

Between references 

corresponding to specific 

values of different attributes 

Between the reference sets 

corresponding to specified 

behaviours of different attributes 

Table 8 Variations of comparison tasks, extracted from [5] p121-3. 

Examples:  

The following examples use the publication counts for two authors, author A and 

author B, over time. Again, items highlighted in yellow in the illustrations are known 

items (constraints) while those surrounded by a dotted line are the targets.  

 

 

  

 

 

 

 

 

 

 

Elementary direct comparison (Figure 18): compare author A and B’s publication 

counts in 2011. 

Figure 18 Elementary direct comparison 
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Elementary inverse comparison: compare the years in which author B had their 

highest number of publications (4) and their lowest number of publications (1).  

 

 

      

Figure 20 Synoptic direct comparison 

Synoptic direct comparison (Figure 20): compare the trend in author A and B’s 

publications between 2012 and 2014. 
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Figure 19 Elementary inverse comparison 
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Synoptic inverse comparison (Figure 21): compare the time periods over which 

authors A and B had increasing trends in their publication counts. 

3.4.3.3 Relation seeking 

Relation seeking is essentially the opposite of comparison, where we wish to find 

components associated by a specified relation. Like comparison, it is a compound task 

which requires at least one lookup task. 

Andrienko and Andrienko note that to specify a relation alone is unusual in practice, 

and an additional constraint is typically required.  They therefore offer four additional 

variations of this task, included in Table 9 for reference. 

Elementary relation seeking… Synoptic relation seeking… 

Between values of attribute(s) and, at 

the  same time, between references 

Between behaviours of attribute(s) and, 

at the same time, between reference 

sets 

Between characteristic(s) of a specified 

reference and characteristics of other 

references 

Between an attribute behaviour over a 

specified reference subset and attribute 

behaviours over other reference 

subsets 

Between values of the same attribute(s) 

for partly different references (in a 

dataset with multiple referrers) 

Between behaviours of the same 

attribute(s) over partly different 

0

1

2

3

4

5

6

2010 2011 2012 2013 2014

P
u

b
li

ca
ti

o
n

 c
o

u
n

t

Author A

0

1

2

3

4

5

6

2010 2011 2012 2013 2014

P
u

b
li

ca
ti

o
n

 c
o

u
n

t

Author B 

 

? 

Figure 21 Synoptic inverse comparison 
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reference sets (in a dataset with 

multiple referrers) 

Between values of different attributes 

for the same reference 

Between behaviours of different 

attributes over the same reference set 

Table 9 Variations in relation seeking tasks, extracted from [5] p123-4 

 

Examples:  

 

 

 

   

Figure 22 Elementary relation seeking: a relation between elements is specified. In this case the 

relation specified is between characteristic values. The target(s) are the corresponding references 

which are found using inverse lookup tasks. 

Elementary relation seeking (Figure 22): find the times at which author B’s publication 

count was greater than author A’s. 
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Figure 23 Synoptic relation seeking 

Synoptic relation seeking (Figure 23): Find time periods during which the authors had 

opposite trends in publication counts 

3.4.3.4 Connection Discovery 

All of the examples given above are of descriptive tasks, as they simply describe the 

data. One final, but most important set of tasks considered in the Andrienko 

framework are the connection discovery tasks.  These tasks also involve behaviours, 

but they do more than just describe the occurrence of phenomena (as is the case 

with behaviour characterisation in the descriptive tasks). Their aim is to find 

indications of possible connections or relations either between the parts of a single 

phenomenon (homogeneous behaviours) or between two or more phenomena 

(heterogeneous behaviours). In these tasks, we are interested in two or more 

behaviours with respect to each other.  Such behaviours are termed ‘mutual’ or 

‘relational’ behaviours, and can be described using one of three ‘linkage patterns’: 

correlation, dependency or influence, or structural connection (i.e. the interplay of 

two components, such as a trend over time and variation over seasons).  Three 
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variations of these relational behaviours are described in the framework based on 

the items between which the relations occur: (1) two (or more) different attributes 

of the same reference set; (2) two (or more) different attributes of different 

reference sets; and (3) the same attributes of different reference subsets. Tasks 

involving these behaviours can be formulated for each of the three main task types. 

The connection discovery tasks are discussed in more detail in Section 5.6. 

3.4.3.5 Task framework: summary 

Aigner et al. [98] show the tasks of the Andrienko framework organised into a 

taxonomy (redrawn in Figure 24).   

 

 

Figure 25 illustrates the combined dimensions (level of analysis and task type) for the 

descriptive tasks of the taxonomy, with example tasks. 

Figure 24 The Andrienko task model organised into a taxonomy. Redrawn from Aigner et al. ([98] p74). 

 



 

 

 

*at least one of these components is found via a lookup task 

Task type Target Constraint Elementary (example) Synoptic (example) 

Lookup  Direct characteristic referential To which department did Author A belong 

in 2012? 

What is the trend in Author A’s publication 

counts 2012-2014? 

Inverse referential characteristic Which author(s) had more than 4 

publications in any year? 

Find authors who move frequently between 

departments. 

Comparison Direct relation characteristic* Compare the publication counts of 

Authors A and B in 2014. 

Compare the trend in Author A’s 

publication counts for 2012-2014 with the 

trend for 2009-2012. 

Inverse relation referential* Did Author A’s highest publishing count 

occur before or after his lowest? 

Compare the time periods over which 

Author A’s publication counts were 

increasing with the time periods over which 

they were decreasing. 

Relation seeking characteristic/ 

referential* 

relation 

 

Find the year in which Author B moved 

departments (i.e. consecutive years where 

Author B belonged to two different 

departments). 

Find authors with similar patterns in 

movement between departments. 

Figure 25 Illustrating the combined dimensions (level of analysis and task type) of the Andrienko task framework  



 

 Limitations of the Andrienko framework 

Although the Andrienko framework is intended to be applicable to all types of data, 

the application of the framework to some data types requires further consideration. 

Recently, Lammarsch et al. [49] extended the framework to support task formulation 

for time-oriented data analysis, by developing a rule set that explicitly models the 

structure of time. As discussed in Section 3.2, the Andrienko framework does not 

consider graph data. In order to be usable with graph data, it was necessary to extend 

both the data model and task framework. 

 Let us first discuss why an extension to the data model is necessary. Modelling edges 

proves difficult under the existing framework, the problematic question being: what 

type of data item is an edge?  An intuitive answer is that edges are relations between 

references (nodes). However, the types of referrers and relations considered under 

the data model are not sufficient to represent this. This can be demonstrated with 

reference to the author publications data example. 

Author Year Publications Publication 

count 

Department 

A 2014 a, b, c, d, e 5 Computing 

A 2013 f, g 2 Computing 

A 2012 h 1 Computing 

B 2014 a, b 2 Computing 

B 2013 f, i 3 Biology 

B 2012 j, k, l, m 4 Biology 

… … … … … 

Figure 26 A co-authorship network can be extracted from the author publication data set based on 

authors who have publications in common 

In our author publications data set, we may wish to extract and consider a co-

authorship network (Figure 26). Using the data model, we can consider authors 

(nodes) in the network to be references; the open question is how to represent the 

co-authoring edges. The task, did Authors A and B co-author in 2012?, strongly 

resembles a comparison task i.e. find the relation between author A and B in 2012. 

This would suggest that edges be modelled as relations between references. 

However, the relations between references of the main referrer types considered 

under the data model (see Table 7) are insufficient to describe edges. As the authors 

of the network are clearly neither temporal nor spatial in nature, population is the 
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remaining option for referrer type. The elements of a population referrer are 

discrete, unordered, and without distance. While these relations are appropriate 

when considering an unconnected set of objects, they are not sufficient to capture 

the co-authoring relations (edges) which exist between authors.  

To model edges, it is therefore necessary to extend the Andrienko data model.  A new 

referrer type (graph) is introduced, along with a new type of relation (linking) which 

exists between its elements. As a result of the extension to the data model, a set of 

structural tasks for use with the graph referrer type are also posited, thereby 

extending the task framework. The extensions to the framework are presented in 

Chapter 4. 

 Summary 

This chapter has reviewed the possible approaches to developing a task classification 

and associated threats to validity at each stage (Section 3.1).  It has set out the 

reasons for the approach to task classification construction adopted in this thesis, 

considering both the advantages and limitations of the chosen strategy (Section 3.2).   

The Andrienko framework, upon which the task taxonomy in this thesis is based, was 

outlined (Section 3.4), and the limitations with regard to modelling graph data under 

this framework were discussed (Section 3.5). The extensions to the framework which 

address these limitations are the subject of the next chapter. 
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Chapter 4 Extension of the Andrienko Framework for Graph 

Data 

In Chapter 3, the limitations of the Andrienko framework [5] with regard to modelling 

graph data were outlined. This chapter presents an extension to the framework for 

use with graph data: Section 4.1 details the extensions to the data model, and Section 

4.2 outlines the extensions to the task framework. The chapter concludes with a 

complete listing of the tasks for graph data under the extended task framework. 

 Extensions to the data model3  

Two extensions are made to the data model: the introduction of a new referrer type, 

‘graph’, and a new type of relation, ‘linking’, which exist between elements of the 

graph referrer. The example of a co-authorship network which can be extracted from 

publication data, as outlined in Chapter 3, is here continued to help illustrate these 

ideas. 

4.1.1 Linking relations 

‘Linking’ relations exist between elements of a graph referrer.  These relations are 

specified by the edges between nodes. They are asymmetric (in an unordered graph, 

one edge (a,b) specifies two linking relations i.e. from a to b and from b to a), and can 

be viewed as qualitative (exists or not) or quantitative (expressed numerically in 

terms of the strength of the link (link weight), where 0 means no link). Further – and 

unlike the other relations between references - they may change over time in terms 

of their existence or strength.  Linking relations may also have domain properties 

associated with them, such as an edge type. 

In the example author publication data set outlined in Chapter 3, a linking relation 

represents the co-authoring relation between two authors in the extracted co-

authorship network (illustrated in Figure 27). 

                                                      
3 Note that some of the ideas relating to extending the data model are based on discussion with Natalia 

Andrienko via personal communication [263]. 



 71 

 

 

Figure 27 An example co-authorship network represented as a node-link diagram. Nodes (circles) 

represent authors, edges (lines connecting nodes and their thickness) represent the level of co-

authorship between two authors. Size of node encodes and author’s publication count; colour 

indicates the department to which they belong.  In the extended data model, linking relations are 

specified by the edges between nodes.   

4.1.2 Graph referrer 

The graph referrer is distinguished from space, time, and population referrers, by the 

type of relations which exist between its elements: graph is discrete, unordered, with 

distances, and has linking relations. Table 10 shows a summary of referrer types 

extended to include the graph referrer. The distance relation between elements in a 

graph is dependent upon the linking relations. Distance between two elements can 

be defined as the geodesic distance (i.e. the number of edges in the shortest path 

between two nodes).  
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Referrer 

Time Space Population Graph 

Elements Time points Locations Any objects Nodes 

Relations 

between 

elements 

Order Ordered Unordered Unordered Unordered* 

Distance With distance With distance 
Without 

distance 
With distance 

Continuity Continuous Continuous Discrete Discrete 

Linking Without links Without links Without links With links 

Subsets (examples) Time intervals Areas, lines Set of objects 
Graph objects 

e.g. cluster, path 

Relations between 

subsets  

Order, distance, 

set 
Distance, set Set 

Distance, linking, 

set 
*ordering is present when dealing with paths in a directed graph 

Table 10 Summary of the properties of referrer types, extended to include the graph referrer and 

linking relations (highlighted in yellow) 

In addition to direct connections, indirect connections, or transitive relations, exist 

between elements of the graph referrer. These can be described in terms of the 

“chain” of linking relations. A transitive linking relation has the same properties as 

(direct) linking relations: existence, a direction, and possibly a weight/domain specific 

property (or some aggregated notion of weight, based on the weights of the 

individual connection relations), plus a distance between elements. It may 

additionally take into account edge weights. The meaningfulness of distance in 

transitive relations is domain dependent.  

In the example author publication data set, when we extract the co-authorship 

network we are treating the set of authors as a graph referrer. 

As discussed in Section 3.4.2, subsets of a reference set can be defined based on the 

relations that exist between elements: a subset of time is a time interval; the 

elements belonging to the time interval are determined by the temporal referrer’s 

ordering relations. In the same way, subsets of the graph referrer are defined based 

on the linking and distance relations that exist between its elements.  These subsets 

can be referred to as ‘graph objects’: a subset of nodes, which have a set of linking 

relations (edges) between them. Examples of graph objects include Lee et al.’s [40] 

graph specific objects: paths, groups, connected components, and subgraphs. Note 

that while the nodes of the graph referrer are unordered, an additional ordering 
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relation is present when dealing with paths and directed graphs.  Due to the nature 

of the linking relations between elements of the graph referrer, these subsets are not 

fixed (as is the case for the other referrer types). 

In the co-authorship network example, a group of authors who publish together 

would be an example of a graph object (Figure 28). 

 

Figure 28 An example of a graph object - a co-authoring group - in the co-authorship network 

The relations between graph objects (or a graph object and a node) are linking 

relations, distance, and the set relations (include, overlap, disjoint). For example, two 

clusters may be connected directly or indirectly (linking relation, distance); their 

elements may overlap, be entirely disjoint, or one cluster may include other sub 

clusters (set relations).  
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Figure 29 Illustrating the role of relations in the time and graph referrers. 

 

Behaviours (configurations of attribute values) are in part determined by the 

relations which exist between references. In the same way that temporal trends in 

attribute values are determined by the ordering relations between time points, in the 

graph case, the distribution of attribute values over the graph structure is determined 

by the linking relations between the nodes of the graph referrer (illustrated in Figure 

29). Patterns describing the behaviours  of the department and publication count 

attributes over the co-authorship network shown in Figure 27 might include that 

‘more central authors have higher publication counts’ and ‘authors belonging to the 

same department tend to co-author together’. 

As linking relations between references are not fixed, one final extension to the data 

model is made, that of structural behaviours and structural patterns. Structural 

behaviours are closely related to the original Andrienko notion of behaviour: they 

are the configurations of references (nodes), as determined by the linking relations 

between them. For example, authors belong to a co-authoring cluster by virtue of the 

co-authoring (linking) relationships that exist between them.  Structural patterns 

describe structural behaviours and include clusters, cliques, motifs and network 

structures (small world, scale-free etc). In our co-authorship network we might 
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describe a group of authors who all co-author with one another as a tightly connected 

co-authoring cluster, or describe a group of authors who are connected by virtue co-

authoring with a single  central authors as forming a star motif (Figure 30). 

 

Figure 30 Structural behaviours and patterns in a co-authorship network. Structural behaviours, 

such as a co-authoring cluster,  are determined by the co-authoring (linking) relations that exist 

between authors.  These are described by structural patterns, such as a star motif (left) where a 

group of authors all co-author with a central author, or a tightly connected co-authoring cluster 

(right).   

A summary of how data model terms apply to graphs is given in Table 11. 

Data model 

term* 

Graph term Co-authorship network 

example 

A reference node An author 

(linking) relation edge The co-publishing 

relationship between two 

authors 

A characteristic an attribute value  An author’s publication 

count, the research centre 

to which they belong 

A reference set a set of nodes A set of authors 

Structural 

behaviour 

graph objects e.g. path, cluster, 

subgraph etc. 

A group of co-authors  

Structural pattern a cluster, clique,  small world 

network etc. 

A pattern to describe the 

structure of a co-authoring 

group e.g. a tightly 

connected co-authoring 

cluster or a set of authors 
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grouped around a central 

author (star motif) 

A behaviour 

(described by a 

pattern) 

distribution of attribute values 

over the graph 

‘More central authors have 

higher publication counts’; 

‘authors belonging to the 

same department tend to 

co-author together’  
* additions to the Andrienko data model are shown in italics 

Table 11 Relating data model terms to graph terms 

 Extension to the task framework 

As outlined in Section 4.1.1, under the extended data model, edges are modelled as 

relations between references.  Relations between references appear in the inverse 

comparison and relation seeking tasks of the Andrienko framework.  This means that 

in the graph case, we can formulate questions such as are the authors with the 

highest and lowest publication counts co-authors? (inverse comparison) and which of 

author A’s co-authors belong to a different department? (relation seeking). Treating 

edges as relations also allows us to apply the Andrienko notions of behaviour and 

pattern to the graph case (as illustrated in Figure 29). Thus we can find, describe, and 

compare these attribute patterns and behaviours, and their associated subgraphs, 

using the synoptic tasks of the existing framework. 

What is important to note, however, is that all of the tasks in the Andrienko 

framework involve the data function, that is, they always require at least one lookup 

task involving an attribute value.  Yet in the graph case, there are simpler tasks which 

involve only the graph’s structure, for example, are authors A and B co-authors?  and 

who are author A’s co-authors?. Modelling these tasks - which involve only the 

relations between references - requires an extension to the task framework.  This is 

outlined in Section 4.2.2. In addition to investigating the relations between two graph 

objects, we may also be interested in the relations within a set of nodes: how the 

nodes are connected, and whether a particular pattern, or configuration of 

connection is apparent. A further extension is therefore made to the task framework 

in order to accommodate tasks involving the structural behaviours and structural 

patterns introduced under the extended data model. This is outlined in Section 4.2.3.  
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4.2.1 ‘Pure’ relational tasks in the Andrienko framework 

When outlining the tasks in their framework, Andrienko and Andrienko consider a set 

of “pure relational tasks”. These tasks involve only the relations between elements, 

and may be constructed according to one of the following general schemes : 

1. How are the elements p and q (or the subsets P and Q) of the set S related? 

2. What element (or subset) of the set S is related to the element p (or subset P) 

in the way ρ? 

3. What elements (or subsets) of the set S are related in the way ρ? 

(Andrienko & Andrienko [5] pp. 62-63) 

[Note that pure relational task (1) is the comparison subtask ?λ: p λ q, while (2) and 

(3) are the two possible variations of the relation seeking subtask ?q: pΛq and ?p, q: 

pΛq, respectively.] 

These questions, we are told, “address general properties of the sets from which the 

references and characteristics are taken and have no relevance to any particular 

dataset” ([5] p. 63). For example, answering ‘how are years 1980 and 1981 related?’ 

does not provide us with any new insight: 1980 is always the year prior to 1981 and 

we do not require a dataset to know this. As such, they are not typical of data analysis 

and are therefore not included in the framework as stand-alone tasks; hence the 

requirement for at least one look-up task in the comparison and relation seeking 

tasks. 

However, the Andrienko framework did not consider graph data when it was 

developed. In the extended data model, linking relations4 between elements of the 

graph referrer are not fixed: they differ depending on the data set, and even within a 

dataset, may change over time.  This introduces a level of unpredictability into the 

referential component of the data set, and as such, without investigating our data we 

                                                      
4 and resultantly, distance relations and set relations. 
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cannot answer these relational questions.  It therefore makes sense to formulate 

these questions in the graph case, for example: 

• How are nodes p and q (or subgraphs P and Q) of the graph related? 

• Which node(s) of the graph are connected to node p at a distance of less 

than or equal to n? To which cluster does node p belong? 

• Which nodes of the graph are directly connected? Which clusters of the 

graph overlap?  

The task framework is therefore extended to account for this feature of graph data. 

4.2.2 Extension: structural comparison and relation seeking tasks 

The “pure” comparison and relation seeking tasks are included in the extended task 

framework. To help differentiate them from the inverse comparison and relation 

seeking tasks of the original framework (which involve the data function) they are 

referred to as structural comparison (scheme 1, outlined in Section 4.2.1) and 

structural relation seeking (schemes 2 and 3). Structural comparison involves finding 

relations between graph objects, while structural relation seeking concerns finding 

graph objects related in a given way.  

Three variations of each of the Andrienko schemes can be considered according to 

the combination of nodes and/or graph objects involved: 

• Tasks involving two nodes 

• Tasks involving a node and a graph object 

• Tasks involving two graph objects. 

The relations that can be considered in each task depend on these combinations:   

• Between two nodes: linking, distance, and order (in directed graphs) 

• Between a node and a graph object, or between two graph objects: linking, 

distance, order (in directed graphs), and set relations. 
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Figure 31 illustrates structural comparison and relation seeking involving nodes. 

 

 

 

 

 

Linking relations can be specified in a number of ways: qualitatively (in terms of their 

existence), quantitatively (in terms of link strength or weight), with reference to 

direction (in directed graphs), and possibly domain properties (such as edge type). 

The possible set relations are include, overlap, and disjoint5. 

Based on the combinations of scheme (comparison or relation seeking), whether 

nodes and/or graph objects participate, and the relations of interest, a wide variety 

of tasks can be constructed.  Some examples of variations in structural relation 

seeking (scheme 2) are suggested in Figure 32.  

 

Linking relations: 

What node(s) are connected to node p? Which author(s) co-author with author A? 

What clusters(s) are connected to node p? With which co-authoring group(s) has author A 

co-published? 

What clusters (s) are connected to cluster P? Which co-authoring group(s) are connected 

to group X? 

What node(s) are connected to node p, with a weight greater than 2? Which author(s) have 

co-authored with author A at least twice? 

What node(s) have a connection from node p? 

What node(s) have a friendship relation with node p? Which author(s) have co-authored a 

book with author A? 

 

Distance relations: 

What node(s) are connected to node p at a distance of less than or equal to n? Who are 

author A’s co-authors’ co-authors?  

 

Set relations: 

Which graph objects (nodes, clusters, subgraphs, paths etc.) belong to subgraph P? Which 

authors belong to co-authoring group X? 

                                                      
5 Between a node and a graph object, there is no notion of overlap: a node either belongs to the graph 

object or does not. 

? A ? ? A B 
? 

(a) (b) (c) 

Figure 31 structural comparison and relation seeking involving nodes.  (a) structural comparison 

(scheme 1): find the relation between given nodes. (b) structural relation seeking (scheme 2): find 

nodes related to the given node in the given way. (c) structural relation seeking (scheme 3): find nodes 

related in the given way 
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Which graph objects (clusters, subgraphs, paths etc.) overlap with subgraph P? Which 

authors belong to co-authoring group X and also co-authoring group Y? 

Which graph objects (nodes, clusters, subgraphs, paths etc.) are disjoint with subgraph P? 

Which authors are not connected to the main co-authorship network? 

 
Figure 32 illustrating some possible variations of Andrienko scheme 2, What element (or subset) of 

the set S is related to the element p (or subset P) in the way ρ? (relation seeking), according to the 

relations and graph objects involved. Note that combinations of linking/distance/ordering relations 

are also possible e.g. What node(s) have a friendship relation of strength 4 from node p? 

4.2.3 Extension: tasks involving structural behaviours and structural patterns 

Under the extended data model, structural behaviours and structural patterns were 

introduced in order to capture the configurations of connectivity that are possible 

between elements of the graph referrer (Section 4.1.2). A set of tasks are therefore 

required in order to describe and explore these structural behaviours and patterns. 

These tasks are almost identical to the synoptic tasks of the existing task framework 

(outlined in Section 3.4.3), but they involve structural patterns and behaviours 

(detailed variations and examples are listed in Section 4.3). Note that the figures used 

to illustrate the tasks follow the same format as those of Section 3.4.3 (items 

highlighted in yellow in the illustrations are known items (constraints) while those 

surrounded by a dotted line are the targets.). 
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Figure 33 Structural behaviour characterisation 

Structural behaviour characterisation: involves describing the configuration of 

connections between a set of graph elements.  For example, this could be in terms of 

a particular local connectional pattern such as a cluster, clique, connected 

component, motif etc.; in general terms of the density or sparsity of connection (e.g. 

densely connected, tightly connected or many isolates etc.); or at a more global level 

view referring to the type of graph structure, such as small world, scale-free, or 

core/periphery network structure. For example what is the co-authoring pattern of 

authors in the Computing department? (Figure 33) 
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Figure 34 Structural pattern search 

Structural pattern search: this is the opposite of the above task in that we seek to 

find the set of graph elements associated with a given pattern or configuration of 

connections. For example, which authors belong to the small, densely connected 

cluster? (Figure 34) 

Comparison and relation seeking involving structural behaviours:  Analogous to the 

attribute based synoptic tasks, we may also wish to compare or find relations 

between structural patterns, and the graph subsets associated with these patterns:  

 
Figure 35 Direct structural comparison 
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Direct structural comparison: Find the relation between structural patterns 

(similar/different/opposite) associated with given sets of graph elements e.g. 

compare the co-authoring pattern of authors in Biology with that of the 

Computing department.  (Figure 35) 

 
Figure 36 Inverse structural comparison 

 

Inverse structural comparison: Find the relation between the sets of graph 

elements associated with given patterns (linking, distance, set relations) e.g. 

how are the two largest co-authoring clusters related? (Figure 36) 

 
Figure 37 Structural relation seeking 
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Structural relation seeking: Find structural patterns related in a given way e.g. 

find instances of the same network motif, or find other co-authoring clusters 

similar to that of co-authoring cluster A (Figure 37). Find subsets of graph 

elements associated with given patterns which are related in a given way e.g. 

find closely connected co-authoring clusters. 

4.2.4 Lookup, comparison, and relation seeking on edges 

One final set of tasks are those involving lookup, comparison, and relation seeking on 

edges. For example: 

• find co-authoring relations with a weight of 4 

• compare the co-authoring relationship between Authors A and B, with that of 

Authors B and C 

• find pairs of authors with similar co-authoring relationships.  

Performing lookup, comparison, and relation seeking tasks on relations does not exist 

within the original Andrienko task framework. However, as it is preferable not to add 

more task categories than necessary, for these tasks, it is suggested that the edges or 

paths be treated as references. In so doing, the elementary attribute based tasks of 

the original framework can be employed.  For example: 

• find co-authoring relations with a weight of 4, becomes an inverse lookup task 

i.e. we want to find the reference(s) (edge(s)) associated with a given 

characteristic value (weight of 4). 

• compare the co-authoring relationship between Authors A and B, and that of 

Authors B and C, becomes a direct comparison task i.e. we first find the co-

authoring relationships (expressed in terms of e.g. existence, strength etc.), 

then find the relation between the them (expressed in terms of e.g. 

similarity/difference in existence,  less than/greater than in strength etc.) 

• find pairs of authors with similar co-authoring relationships, becomes a 

relation seeking task i.e. we want to find pairs of authors where the relation 

between them is that of similarity in co-authoring relationship. 
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4.2.5 Implications for the connection discovery tasks  

So far we have considered the additional descriptive tasks required to support the 

extension of the data model to include non-fixed linking relations between 

references of the graph referrer. These relations also introduce additional 

possibilities for the set of connection discovery tasks (outlined in Section 3.4.3.4). For 

example, we may wish to investigate the effect of graph structure on attribute values, 

and vice versa; or the effect of patterns of connectivity in one part of the graph on 

the structural patterns of other parts of the graph. These are discussed further in 

Section 5.6. 

4.2.6 Summary of extensions to the data model and task framework 

To handle graph data, the data model is extended with a new referrer type – graph – 

whose elements are discrete, unordered, with distances. A new type of relation – 

linking – is also introduced, which exist between the elements of the graph referrer. 

As linking relations in the graph referrer are not fixed, structural behaviours, which 

are described by structural patterns, are introduced to capture variations in graph 

structure. 

Under the extended data model, edges are treated as relations. This allows them to 

feature in the inverse lookup and comparison tasks of the original framework. The 

synoptic tasks of the original framework (which involve attribute based behaviours 

and patterns) can also be formulated for graph data.  For tasks involving lookup, 

comparison, or relation seeking on edges, it is suggested that the edge or path be 

treated as a reference, and the tasks be formulated according to the original 

framework. 

Two extensions are made to the task framework.  These tasks involve only the 

referential components and relations between them: 

• The pure relational tasks described in the Andrienko framework are 

instantiated to produce structural comparison (find the relations between 

two graph objects) and structural relation seeking tasks (find graph objects 

related in the given way, one of which may be specified). Variations of these 
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tasks can be constructed according to whether nodes and/or graph objects 

are involved, and the relation of interest. We can think of these tasks as 

elementary structural tasks, as they involve relations between individual 

graph objects. 

• A set of synoptic tasks analogous to those of the existing task framework but 

involving structural behaviours and patterns, are added: structural behaviour 

characterisation, structural pattern search, and comparison and relation 

seeking tasks involving structural patterns and the associated sets of nodes.  

The extended framework is summarised in Figure 38. 
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Figure 38 The extended task model. Based on Aigner et al.’s ([27] p74) drawing of the Andrienko task model organised into a taxonomy, redrawn and 

extended to include structural tasks for graph visualisation. (Extensions indicated with dashed lines) 
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 The extended task framework for graph data 

Table 12 and Table 13 show the tasks of the Andrienko framework extended for graph 

data.  

Table 12 describes the tasks of the original framework applied to graphs and the 

additional set of synoptic tasks involving structural behaviours and patterns. The task 

descriptions in bold are either the Andrienko descriptions  given in [5] (Table 3.5, 

pp.121-4), or adaptations of these. This is followed by a short explanation applying 

the task to graph data, and then an example task. In order to help show the 

differences between tasks, all of the example tasks are drawn from the same domain 

(an author publications data set).  However, while it was possible to construct 

reasonable examples for each task for illustration purposes, some tasks might be 

more meaningful when applied to another data domain.  Note that the task examples 

are intentionally constructed with static graphs in mind, but examples involving time 

are used for task variations explicitly involving multiple referrers; tasks for temporal 

graphs are the subject of Chapter 5. 

Many of the tasks are not what we might typically think of as “graph tasks”.  This 

could perhaps be due to the focus on attributes in the original framework, and that 

several tasks in the resulting extended framework do not include any reference to 

the graph context (for example, elementary direct comparison tasks simply involve 

comparison of attribute values).  Graph attributes also tend to be neglected more 

generally in the literature, with the main focus of graph visualisation papers being on 

how to represent graph structures.  However, all of these tasks have the potential to 

be of interest when exploring graph data. 

Another point to note is that it is clear that there are further possible variations of 

each task when applied to a concrete data set. For example, where there are multiple 

attributes, the direct comparison task involving different attributes could be 

formulated for every pair of comparable attributes in the data set.  The synoptic tasks 

can be constructed to involve different types of graph objects of interest e.g.  

whether we are interested in clusters or paths, depending on the data set (paths 

might be of more interest when considering routes in transportation networks, while 



 89 

 

clusters may be of interest when studying communities in social networks). 

Moreover, even in abstract terms, slightly different comparison and relation seeking 

tasks can be formulated depending on the types of relations that exist between 

elements. For example, as seen in Section 4.2.2, quite different versions of the 

elementary structural comparison task can be constructed depending on the type of 

relation in which we are interested. These tasks can also be formulated with a specific 

type of relation in mind - do subgraphs A and B overlap? (set) or are subgraphs A and 

B connected? (linking) – or more generally – in what way are subgraphs A and B 

related? (i.e. set and/or linking relations could be referred to when answering this 

question). We will also see in Chapter 5 that when we consider multiple referrers, the 

number of task variations increases several fold. While it is not necessary to specify 

every variation of every task, it is important to bear these possibilities in mind when 

considering which tools are able to support which tasks, in Chapter 8.   
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Table 12 The elementary and synoptic descriptive tasks of the original framework are instantiated for the graph case. The final column describes additional synoptic tasks 

of the extended framework, which involve the structural behaviours and patterns of the extended data model. Tasks with a yellow background indicate an extension: 

they are either tasks of the extended task framework, or are formulated to involve the linking relations of the extended data model as a target or constraint. 

 Original Framework6 Synoptic tasks 

involving structural behaviours and 

patterns7 
Elementary tasks8 Synoptic tasks 

Lookup Direct lookup:  find the attribute value of a 

given node 

 

How many publications has Author A? 

Behaviour characterisation (pattern 

definition): find a pattern to describe the 

behaviour of an attribute over the graph (or a 

subset of the graph) 

 

Describe the distribution of publication counts 

over the co-authorship network. 

Structural behaviour characterisation 

(pattern definition): find a pattern to 

describe the configuration of connections 

between a set of graph elements, such as a 

particular motif or graph structure 

 

NB in the example tasks, author group A and 

author group B are used as shorthand to 

represent two subs sets of authors {A, B, C, D, 

E, F} and {G, H, I, J, K, L}, respectively. 

 

What is the co-authoring pattern of author 

group A? 

Inverse lookup: find nodes with the given 

attribute value  

 

Find authors with more than five 

publications. 

 

Pattern search: find the subset of nodes 

(graph object) corresponding to a given 

pattern of attribute values 

 

Structural pattern search: find the set of 

graph elements associated 

with a given pattern of connections. 

 

Which authors belong to the small densely 

connected cluster? 

                                                      
6 Task descriptions in bold are those given in Table 3.5 of [5], pp.121-4. 
7 Task descriptions in bold are adapted from those given for synoptic tasks in the original framework, as per Footnote 6. 
8 As noted in Section 4.2.4 these tasks can also be formulated to involve edges as references. 
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Who are the authors belonging to the co-

authoring cluster with very high numbers of 

publications? 

Direct 

comparison 

   

 with specified attribute values: find the 

attribute value of a given node and compare 

it with a given value. 

 

Compare Author A’s publication count with 

the average number of publications (five). 

 with a specified pattern : one of the patterns 

is specified, while the other results from a 

behaviour characterisation task. 

 

Compare the pattern of publication counts 

over co-authoring group A, with a typical 

pattern (e.g. where more central authors have 

higher numbers of publications) 

 with a specified pattern : one of the patterns 

is specified, while the other results from a 

behaviour characterisation task. 

 

Compare the co-authoring pattern of author 

group A with a typical co-authoring pattern. 

 

 between values of the same attribute(s) for 

different references:  find and compare the 

attribute values of two nodes. 

 

Compare the publication counts of Author A 

and Author B. 

 

Compare Author A’s publication count in 

2013 and 2014. 

 between behaviours of the same attribute(s) 

over different reference sets: find two 

patterns (associated with the same attribute) 

corresponding to two different specified graph 

objects, and compare them. 

 

Compare the distribution of publication counts 

over co-author groups A and B. 

 

Compare the distribution of publication counts 

over co-author group A in 2012 and 2014. 

 between structural behaviours over 

different reference sets: find two patterns 

corresponding to two different specified 

graph subset, and compare them. 

 

Compare the co-authoring pattern of author 

group A with that of author group B. 

Compare the co-authoring patterns of author 

group A in 2012 and 2014. 

 between values of different attributes for 

the same reference:  find and compare two 

different attribute values of the same node. 

 between behaviours of different attributes 

over the same reference set: in this case the 

 between different types of structural 

behaviour over the same reference set:  
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Compare the number of journal articles and 

conference proceedings which Author A has 

published. 

set of nodes is the same, but the behaviours of 

interest are those of different attributes. 

 

Compare the distributions of journal article 

counts and conference proceeding counts for 

co-author group A. 

(only applicable where different types of 

relations exist in the graph, such as if we 

modelled a friendship network alongside the 

co-authorship network) 

  

Compare the co-authoring pattern of author 

group A with their pattern of friendship 

connections. 

 between values of different attributes for 

(partly) different references: find and 

compare two different attribute values of 

two different nodes. 

 

Compare the number of journal articles 

published by Author A with the number of 

conference proceedings published by Author 

B. 

 between behaviours of different attributes 

over (partly) different reference sets: find and 

compare the patterns associated with two 

different attributes of two different specified 

graph objects. 

 

Compare the distribution of journal article 

counts over co-author group A with the 

distribution of conference proceeding counts 

over co-author group B. 

 between different types of structural 

behaviour over (partly) different reference 

sets: as above, but involving different subsets 

of the graph. 

 

Compare the co-authoring pattern of author 

group A with the friendship pattern of author 

group B. 

 

Compare the co-authoring pattern of author 

group A in 2013 with the pattern of friendship 

connections amongst the same authors in 

2012. 

 Inverse 

comparison 

 with specified reference(s):  find a node 

with the given attribute value and compare* 

it  with a  given node. 

 

Does Author A co-author with the author 

with the most publications? 

 with specified reference sets: compare the set 

of nodes resulting from a pattern search task 

with a specified node or set of nodes. 

 

Does Author A belong to the co-authoring 

group with particularly high publications 

counts? 

 with specified reference sets: compare the 

set of nodes resulting from a structural 

pattern search task with a specified node or 

set of nodes. 
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In what way is the co-authoring group with 

particularly high publications counts related to 

cluster A? 

In what way is Author A related to the 

authors belonging to the small densely 

connected cluster? 

 

In what way is author group A related to the 

authors of the largest co-authoring cluster? 

 between references corresponding to 

different values of the same attribute(s): 

find and compare* nodes corresponding to 

given attribute values; in this case the 

inverse lookup tasks involve the same 

attributes. 

 

Do the authors with the highest and lowest 

publication counts co-author? 

 

 between the reference sets corresponding to 

specified behaviours of the same attribute(s): 

here the same attribute is involved in both 

pattern search tasks.  

 

In what way is the area of the co-author 

network with particularly high publication 

counts related to the area with low publication 

counts? 

 

In what way is the area of the co-author 

network with authors predominantly 

belonging to the Biology department related 

to the area with authors mainly belonging to 

Computing? 

 between the reference sets corresponding to 

specified structural behaviours: compare the 

sets of nodes resulting from two pattern 

search tasks. 

 

In what way are the authors of cluster A and 

cluster B related? 

 

In what way are paths A and B related? 

 

 

 between references corresponding to 

specific values of different attributes: find 

and compare* nodes corresponding to given 

attribute values; in this case the inverse 

lookup tasks involve two different 

attributes. 

 

 between the reference sets corresponding to 

specified behaviours of different attributes: 

here a different attribute is involved in both 

pattern search tasks.  

 

In what way is the area of the co-author 

network with particularly high journal article 

 between the reference sets corresponding to 

specified structural behaviours of different 

types: (only applicable where different types 

of relations exist in the graph) 

 

In what way are the authors of co-authoring 

cluster A related to friendship cluster B? 
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In what way is the author with the highest 

count of journal articles related to the 

author with the highest count of conference 

proceedings?  

counts related to the area with high 

conference proceedings counts? 

 

 

 Relation-

seeking 

 between values of attribute(s) and, at the 

same time, between references: both the 

attribute values and nodes are constrained 

by specified relations. 

 

Find co-authors with similar numbers of 

publications. 

 between behaviours of attribute(s) and, at 

the same time, between reference sets: a 

relation between behaviours and a relation 

between graph subsets is specified; we want 

to find the graph subsets that are related in 

this way. 

 

Find clusters of co-authors with similar 

distributions of publication counts, that are 

connected to one another. 

 between structural behaviours and, at the 

same time, between reference sets: both a 

relation between structural behaviours and a 

relation between graph subsets is specified; 

we want to find the graph subsets that are 

related in this way. 

 

Find co-authoring clusters that are connected 

to one another 

 

Find paths that cross. 

 between characteristic(s) of a specified 

reference and characteristics of other 

references: a relation between 

characteristics, and one of the nodes is 

specified; the other node(s) must be found 

using a lookup task. 

 

Find authors with more publications than 

author A. 

 between an attribute behaviour over a 

specified reference subset and attribute 

behaviours over other reference subsets: in 

this case a graph subset and the relation 

between behaviours is given; we want to find 

the graph subset which has a behaviour 

related to the behaviour of the given graph 

subset, in the given way. 

 

Find clusters of co-authors with distributions of 

publication counts similar to that of co-author 

group A. 

 between a structural behaviours of a 

specified reference subset and structural 

behaviour of other reference subsets: in this 

case a graph subset and the relation between 

structural behaviours is specified; we want to 

find the graph subset which has a structural 

behaviour related to the behaviour of the 

given graph subset, in the given way. 

 

Find sets of authors with similar patterns of 

connectivity to author group A. 
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 between values of the same attribute(s) for 

partly different references (in a dataset 

with multiple referrers):  the values of 

either the time or graph component are 

given , along with the relation between 

characteristics; the target is the unknown 

time or graph. (Note that Andrienko and 

Andrienko’s formal description implies that 

the unknown reference is the same in both 

lookup tasks.) 

   

Which authors had fewer publications in 

2013 than in 2014?  

 between behaviours of the same attribute(s) 

over partly different reference sets (in a 

dataset with multiple referrers):  the values of 

either the time or graph component are given, 

along with the relation between behaviours; 

the target is the unknown time or graph 

component. 

 

Which co-authoring groups in the network had 

a substantial change in publication rates 

between 2013 and 2014?  

 between structural behaviours over partly 

different reference sets (in a dataset with 

multiple referrers):  the values of either the 

time or graph component are given, along 

with the relation between behaviours; the 

target is the unknown time or graph 

component. 

 

Which co-authoring groups in the network 

had a substantial change in their patterns of 

co-authorship between 2013-2014? 

 

 between values of different attributes for 

the same reference: find the node(s) with 

attribute values related in the given way; 

the attributes involved are different. 

 

Find authors who publish more journal 

papers than conference proceedings. 

  

 between behaviours of different attributes 

over the same reference set: in this case the 

relation is between the behaviours of two 

different attributes over the same graph 

subset 

 

Which co-authoring group has very different 

distributions of journal article counts and 

conference proceeding counts? 

 between different types of structural 

behaviours over the same reference set: 

(only applicable where different types of 

relations exist in the graph) 

 

Find a graph subset(s) which has similar 

patterns of co-authorship and friendship 

connectivity. 

 

* the term ‘compare’ here includes finding whether/in what way the two nodes are connected, in addition to the equality relation i.e. whether or 

not the two nodes the same, as discussed in Section 4.2.   
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Table 13 ‘Elementary’ structural tasks involving individual relations between graph objects. These 

tasks extend the original Andrienko framework. 

 ‘Elementary’ structural tasks9 

Structural 

comparison 

How are nodes p and q (or graph objects P and Q) related? 

 

Are authors A and B co-authors? 

Does author A belong to co-authoring cluster A? 

In what way are author groups A and B connected? 

Structural relation 

seeking  

with an additional specified element: 

What node (or graph object) is related to node p (or graph 

object P) in the way ρ? 

 

With which authors does author A co-author? 

To which co-authoring cluster does author A belong? 

Which authors belong to co-authoring cluster A? 

To which co-authoring cluster(s) is co-authoring cluster A 

connected? 

What nodes (or graph objects) are related in the way ρ? 

 

Which authors co-author a great deal? 

Which co-authoring clusters are connected? 

Which co-authoring clusters overlap? 

 

                                                      
9 Adapted from the three schemes given for “pure relational tasks” in [5], pp. 62-63, discussed in 

Section 4.2.1. 
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Chapter 5   Temporal Graph Tasks 

Having extended the Andrienko framework to handle graph data, this chapter uses 

the extended framework to elucidate the range of possible tasks involved in exploring 

temporal graph data. 

Firstly, a recap is given of the two dimensions on which tasks in both the original and 

extended frameworks are categorised - level of analysis (elementary/synoptic 

distinction) and task type. An additional classification of the synoptic tasks is then 

introduced for tasks in the temporal graph case. Combining the task dimensions 

produces a basic task taxonomy for temporal graphs. 

Next, the sub-variations in task types are considered for the temporal graph case. A 

systematic approach to combining these possible sub-variations in task type with the 

level of analysis (elementary and three variations of synoptic task), in order to 

produce a task design space, is discussed.  This process results in a comprehensive 

list of the possible temporal graph tasks.  

 Existing task classification 

Task categories in the Andrienko framework are intentionally generic in order to be 

utilised with any type of data. In Section 3.4.3, the two dimensions upon which tasks 

in the framework are classified were discussed. The approach follows Bertin [99] in 

classifying tasks on the basis of the structure of the data, considering the level of 

analysis (the elementary/synoptic task distinction), and type of data item (referential 

components, characteristic components, relations) participating as either task 

targets or constraints, which distinguishes the main task types (lookup, comparison, 

relation seeking). Two additions to the second dimension were made to handle graph 

data:  (1) simpler varieties of (inverse) comparison and relation seeking tasks were 

introduced (structural comparison and structural relation seeking), where neither of 

the referential components are found via a lookup task, and (2) an additional data 

item – structural behaviours – which participate in tasks in a manner equivalent to 

that of the attribute-based behaviours of the original framework. Figure 39 

summarises the task type dimension of the extended framework, showing how tasks 
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are distinguished according to the different types of data items which participate as 

targets or constraints. 

*at least one of these components is found via a lookup task 

Figure 39 Summary of the data components participating in tasks as targets or constraints in the 

extended framework 

 Additional classification for temporal graph tasks 

One further data-based distinction is now made for temporal graphs. Because 

temporal graphs involve two referrers, time and graph, tasks can be usefully classified 

according to the four possible combinations of referential components which 

participate: time points, time intervals, graph elements, graph subsets (Figure 40). This 

classification is essentially a sub-classification of synoptic tasks; the four classes, or 

“quadrants”, capture the Andrienko elementary/synoptic distinction, along with 

three variants of synoptic tasks: elementary tasks (Q1), tasks considering graph 

subsets (Q2), temporal subsets (Q3), and both graph and temporal subsets (Q4). A 

summary of this task dimension is given in Figure 41. 

Task type Target Constraint 

Lookup  Direct characteristic or 

structural behaviour 

referential 

Inverse referential characteristic or  

structural behaviour 

Comparison Direct relation characteristic or  

structural behaviour* 

Inverse relation referential* 

Structural comparison relation referential 

Relation seeking characteristic or  

structural behaviour or 

referential* 

relation 

 

Structural relation seeking referential relation 
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Figure 40 Four possible combinations of referential components: Q1 – individual time points and 

nodes or edges; Q2 – graph objects and individual time points; Q3 – individual nodes or edges and 

time intervals; Q4 – graph objects and time intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

Visualisation Tasks 

Elementary (Q1) 

Involving individual nodes 

and time points  

Synoptic 

Involving sets of 

elements (reference 

sets and behaviours) 

Descriptive 

Describe the data 

 

Connection 

Discovery 

Find connections (correlation, 

dependency, influence etc.) – 

tasks involve mutual behaviours 

Q2 

Involving individual 

graph objects and 

time points 

 

Q3 

Involving individual 

nodes or edges and 

time intervals 

 

Q4 

Involving graph 

objects and time 

intervals 

 

Figure 41 Summary of the Level of Analysis task dimension in the temporal graph case (note 

that Connection Discovery tasks are discussed separately in Section 5.6.) 
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Recall that one of the main purposes of the task classification in this work is to use it 

to consider which visual techniques are able to support which tasks.  This additional 

classification is useful as it produces four classes of tasks which will likely require 

significantly different visual representations.  

Each combination of referential components has different characteristic components 

and relations associated with it. In particular, the behaviours in Q2, Q3, and Q4, are 

very different. These different behaviours are now discussed. 

5.2.1 Temporal graph behaviours 

The synoptic tasks of the Andrienko framework play the primary role in exploratory 

data analysis, and behaviours are the principle notion associated with synoptic tasks 

([5], p.158), which involve constructing, finding, and comparing patterns which 

represent these behaviours([5], p.90),. In Section 4.1.2, behaviours (and their 

associated patterns) for the static graph case were described, for example, 

distributions of attribute values over the graph structure. The notion of structural 

behaviours and patterns were also introduced, which capture the configurations of 

nodes depending upon the linking relations which exist between them.  This section 

now considers the possible behaviours in the temporal graph case. 

     

Figure 42 Partial behaviours in the temporal graph case. Left: a temporal trend in an individual 

author’s publication count. Right: the distribution of publication counts (node size) over the co-

authorship network in a specific year. 

The Andrienko framework offers a detailed discussion of behaviours over 

multidimensional reference sets ([5], pp. 98-107). They distinguish ‘partial’, 

‘aspectual’, and ‘overall’ behaviours. Partial behaviours are those associated with an 

individual reference of one of the referrers, for example, a temporal trend in an 
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individual author’s publication count, or the distribution of publication counts over 

the co-authorship network in a specific year (illustrated in Figure 42).  

Aspectual behaviours consider certain aspects of the ‘overall’ behaviour (i.e. all 

behaviours over the entire data set). Where there are two referrers, there are two 

aspectual behaviours, each of which consider a set of partial behaviours taken 

together, for example, the set of temporal trends in publication counts for all authors, 

or the distributions of publication counts in all years.  Moreover, the aspectual 

behaviours consider the behaviour of the partial behaviours, i.e. the distribution of 

the temporal trends over the network, or the temporal trends in the distributions 

over the network, over time (illustrated in Figure 43). 

                     

Figure 43 Aspectual behaviours. Left: distribution of the temporal trends over the network. Right: 

temporal trends in attribute distributions over the network, over time. 

Andrienko and Andrienko demonstrates that two aspectual behaviours are not equal 

to one another: this can be clearly seen in the examples given above.  They also stress 

that neither aspectual behaviour is the same as the overall behaviour, thus we obtain 

only partial understanding of the overall behaviour and underlying phenomena 

through their study, and additional effort is required to piece together these partial 

understandings in order to comprehend the whole. 

The structural behaviours introduced in the extended framework are modelled on 

the original attribute-based notion of behaviours, thus we can consider analogous 

partial and aspectual structural behaviours. In the temporal graph case, there are 

therefore eight behaviours in total, two partial and two aspectual attribute based 

behaviours (A), and two partial and two aspectual structural behaviours (S).  These 

can be considered according to the quadrant with which they are associated 

(illustrated in Figure 44):  
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Q2 involves the behaviour of an attribute over a set of nodes at a single time 

(A2) e.g. the distribution of an attribute value (such as publication count) over 

the network; and the configuration of nodes based on the linking relations 

between them, at a single time (S2) e.g. clusters, cliques, motifs, co-authoring 

groups.  

Q3 involves the behaviour of an attribute of an individual graph element (a 

node, edge, or graph object) over time (A1) e.g. a temporal trend in the 

attribute of a node such as an individual author’s publication count over time; 

and the behaviour of linking relations between two graph elements over time 

(S1) e.g. the pattern of change in connectivity between two nodes over time, 

such as the temporal pattern of co-authorship between two authors.  

Q4 has four possible behaviours associated with it:  

(A3) the behaviour of the temporal trends (described by A1) 

distributed over the graph e.g. the distribution of individual temporal 

trends in author publication counts, over the graph.  

Q1 

 
 

 
 

 
 

 
 

 
 

 
 

time 

time 

 

Q2 

Q3 Q4 

time 

 

 

time 

(A1) 

(S1) 

(S2) (A2) 

(S4) (A4) 

(S3) (A3) 

Figure 44 Illustrating the structural and attribute based behaviours in the temporal graph case, by 

quadrant. 

(elementary) 
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(A4) the behaviour of the distribution of the attribute values over the 

graph (as in A2), over time e.g. the change in distribution of research 

group affiliation over the co-authorship network, over time.  

(S3) the behaviour of the collection of behaviours in S1 i.e. the 

aggregate pattern of all linking relations between pairs of graph 

objects over time, or the distribution of individual temporal 

behaviours over the graph e.g. the distribution of temporal trends in 

co-authorship between pairs of authors, over the network.  

(S4) the configurations of nodes (i.e. S2), over time e.g. the evolution 

of the structure of the co-authorship network over time.  

5.2.1.1 Patterns in the temporal graph case 

The previous section considered the possible behaviours associated with temporal 

graphs.  This section considers in more detail the potential patterns which we may be 

interested in when analysing such data.  As outlined in Section 3.4.2, patterns in the 

Andrienko framework are subjective constructs which result from an observation of 

a behaviour, and offer a descriptive summary of its essential features.  A number of 

properties of patterns are outlined in the framework ([20] p90), including: 

• the degree of simplification 

• level of precision 

• coverage of the reference set (complete or partial), and  

• the presence or absence of an overlap between sub-patterns 

along with four basic variants of pattern. Before considering these pattern variants 

and how they might apply to the temporal graph case, let us first review the 

discussions of behaviours and patterns of interest in the temporal graph literature. 

At a very basic level, Shannon et al. [100] state that the changes that can occur in a 

graph include: 

• nodes being added or removed 

• edges being added or removed 
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• changes in the weight of either nodes or edges 

• changes in the explicit clustering of nodes 

As the attribute based behaviours described in the previous section show, change in 

attribute distributions over the graph should also be added to this list. 

Asur et al. [101] characterise behavioural patterns of individual nodes and of 

communities (clusters), in temporal graphs.  They consider the changes which may 

be undergone between two consecutive time points:  

Between any two consecutive time points, clusters may… 

1. Continue 

2. Merge 

3. Split  

4. Form 

5. Dissolve 

Nodes may… 

1. Appear 

2. Disappear 

3. Join a cluster 

4. Leave a cluster  

We could add to their list of changes in clusters that they might grow or shrink (i.e. 

increase/decrease in number of nodes) or become more or less connected (i.e. 

increase/decrease in number of edges). 

Yi et al. [70] discuss change at three levels: node/dyad level, subgroup level, and 

global network level. In addition to the considerations so far discussed, they consider 

changes in a node’s centrality and its positions and role in the network10.  

                                                      
10 Examples given for roles and positions include star, liaison, brokerage, gatekeeper, isolate; note that 

Yi et al. are specifically interested in Social Network Analysis, and these terms are most applicable in 

this domain.  However, roles are applicable across domains, for example, Lee et al. [40] consider 

articulation points, which are nodes whose removal disconnects the graph. 
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 Structure Attribute 

Nodes Addition 

Deletion  

Joining a cluster 

Leaving a cluster 

Change in centrality  

Change in positions and roles 

Change in attribute 

value 

Edge Addition  

Deletion 

Change in role (e.g. bridge) 

Change in edge weight 

Cluster Continue 

Merge 

Split 

Form 

Dissolve 

Grow 

Shrink 

Increase in connectivity 

Decrease in connectivity 

Change in topological 

structure 

Change in attribute 

distributions and/or 

attribute values11 

Path Form 

Dissolve 

Split 

Merge 

Increase in length 

Decrease in length 

Re-ordering of nodes 

Change in attribute 

distribution along the 

path and/or attribute 

values. 

Network Grow 

Shrink 

Increase in connectivity 

Decrease in connectivity 

Change in topological 

structure 

Change in attribute 

distributions and/or 

attribute values 

Table 14 Some possible changes in a graph according to graph object and structure or attribute 

change 

While not considering change in a graph, Lee et al. [40] consider the role that an 

individual edge may play as a bridge, which is a link whose removal disconnects a 

graph. Yi et al. also discuss change at the global level i.e. in the overall network 

topology, for example, particular types of network structure may emerge, such as a 

core-periphery structure, multiple clusters, small world structure, or scale free 

                                                      
11 attribute values may increase across the graph, but the distribution may remain the same e.g. high 

values in the centre of the network, lower values at the periphery 
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network. Similarly, we could extend this idea to clusters, which may evolve into 

particular topologies, such as specific network motifs. 

Finally, we can take some of these ideas and apply them to paths. Paths between two 

nodes may form or dissolve, change in length through the addition or removal of 

nodes, or be re-routed (re-ordered), for example, where the nodes in the path are 

the same but are connected in a different order. We could also consider some of the 

notions associated with clusters, for example, a path may split (become 

disconnected) or two paths may merge. 

These considerations are combined and summarised in Table 14. 

So far we have largely considered the changes that may occur in a graph between 

two time points. Let us now consider patterns which may occur over a time interval. 

Ahn et al. [41] suggest five ‘shapes of change’ which focus on temporal patterns of 

‘entity properties’12. Under their framework, ‘entities’ are nodes or dyads, subgroups 

of the network, or the entire network. ‘Properties’ are divided into structural 

properties (including structural metrics such as degree, centrality, modularity, 

transitivity etc.13)  and domain properties (which are independent of the network 

structure) : 

1. Growth or Contraction – These can show whether an entity property increases 

or decreases over time (e.g., a community’s average number of posts per 

member per month). It can also be aggregated from temporal features of 

multiple individual events. For example, the network growth might be defined 

as the number of node/link additions per month. They typically involve counts 

and statistics.  

2. Convergence or Divergence – A property can grow or contract during its initial 

stage but gradually becomes stable. Conversely, a stable property can become 

unstable.  

                                                      
12 Note that they capture node and edge addition/deletion and the formation and dissolution of 

clusters, paths etc. separately, as “temporal features of individual events”. 
13 It is not clear whether they intend to also include the actual topology of an “entity”, or just a metric 

which can describe it – the shapes of change would suggest the latter, as they are most applicable to 

individual values over time.  
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3. Stability – There is no or little change over time.  

4. Repetition – The repetition of specific patterns over time. It can fluctuate or 

show ritual behaviours.  

5. Peak or Valley – Whether an entity property increases or decreases abruptly 

and then returns to its earlier value.  

(Ahn et al. [41] Section 4.5.2) 

The main difficulty for Ahn et al.’s list of patterns is that they are largely applicable to 

patterns of numeric values over time.  For example, we could describe the change in 

a centrality metric associated with a node over time as growing, repeating, or 

peaking, but we would have difficulty capturing the changes in topological structures 

(such as a merging of two clusters or emergence of a particular network structure), 

or change in attribute distributions over the graph over time (such as the spread of 

an attribute value from the central nodes of the network outwards), using these 

patterns. In order to investigate the potential behaviours and patterns of interest in 

the temporal graph case, the four variants of pattern discussed in the Andrienko 

framework are considered for the temporal graph case. 

5.2.1.2 Patterns in the Andrienko framework 

Andrienko and Andrienko identify four basic variants of pattern (note that these 

variants are not intended to be an exhaustive list): 

1. Association: Perception or description of a (sub)set of references as a unified 

whole on the basis of similarity of their characteristics, i.e. close values of one 

or more attributes corresponding to these references.  

2. Differentiation: Perception or description of some references or subsets of 

references as differing from others by to their characteristics.  

3. Arrangement: An idea or description of how characteristics are arranged, with 

respect to an ordering of references, for example a trend in characteristic that 

changes over time.  



108 

 

4. Distribution summary: A general idea or description of how characteristics are 

distributed over a reference set: how varied they are, what values occur most 

frequently, whether there are outliers (a few values greatly differing from the 

rest), etc. 

 (Andrienko and Andrienko, [5], p91) 

To illustrate, an example of an association pattern is an area with similar attribute 

values in space, or periods of similar attribute values in time, for example a time 

period during which Author A had consistently high levels of publications.  

Differentiation describes outliers, for example, a particular time point with a very 

high or low attribute value (‘Author A had a highly productive year in 2008’), or a 

location with a very different value from those by which it is surrounded.  

Arrangement patterns involve order – either a natural ordering, such as in time, 

which results in temporal trends in attribute values - or introduced, for example, if 

we organised the set of authors in our publication data by number of journal articles 

published, we might see a corresponding trend in conference papers published. 

Examples of distribution summaries include averages (‘the average number of 

publications in 2010 was 4’; ‘in general the authors’ publication counts are 

increasing’), distributions over space (‘high values in the north and low values in the 

south’) or frequency distributions (the count of authors belonging to different subject 

areas).  

Table 15 and Table 16 show how these patterns could be applied to the graph case, 

in each quadrant, both in terms of patterns of attributes and structural patterns. Like 

Andrienko and Andrienko, an exhaustive list of patterns is not sought here; the 

purpose of this section is to give an idea of what might be of interest in each 

quadrant, by pattern type.  Note that many of the examples below are based on those 

given in Andrienko and Andrienko [5], Table 3.3., p98.  
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Structural Q2 (graph) Q3 (time) Q4 (graph over time) Q4 (time over graph) 

Association clusters of tightly connected 

components, motifs 

a period of connectivity or 

disconnection between the 

nodes 

a period in which the graph 

structure/a particular 

structural pattern is stable 

a cluster (or group) of dyads 

with very similar patterns of 

connectivity over time. 

 

Differentiation isolates, disconnected components a brief period of 

connectivity within a longer 

period of disconnection; a 

period of extreme variation 

in connectivity 

a time point at which a 

particular structural pattern 

occurs which is very different 

to those of the time period 

within which it lies; a period 

of highly changeable 

structural patterns. 

 

a dyad with high connectivity 

over time in an area of the 

graph with low connectivity 

over time 

Arrangement with respect to the ordering of nodes 

by one structural metric e.g. degree, 

the pattern of another structural 

metric e.g. centrality (‘centrality 

increases with degree’) 

a period of alternating 

connectivity and 

disconnection 

 

a period in which structural 

patterns form or dissolve; a 

period of alternating 

structural patterns. 

 

‘dyad connectivity over time 

becomes less stable as we 

move toward the periphery of 

the graph’ 

Distribution 

summary 

graph level statistical metrics (size, 

density, number of connected 

components etc.); frequency 

distribution of node/edge based 

statistics; position of clusters/motifs 

within the graph (‘7-node cliques are 

found toward the centre of the 

graph’) 

‘nodes were connected at 

the beginning of the time 

period, intermittently 

connected in the middle, 

and disconnected toward 

the end of the time period’ 

 

‘at the beginning of the time 

period the graph is loosely 

connected; a number of 

clusters begin to form, which, 

by the end of the time period, 

have joined together to create 

a connected graph structure’  

 

‘dyads in the centre of the 

graph tend to be connected 

over the entire period, while 

those at the edges are more 

intermittently connected, with 

few connected towards the end 

of the time period’ 

 

Table 15 Examples of Andrienko's four variants of pattern applied in the graph structural case 
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Attribute-

based 

Q2 (graph) Q3 (time) Q4 (graph over time) Q4 (time over graph) 

Association a cluster of nodes with 

high values of one 

attribute and low values 

of another 

a period of high values 

in one attribute and 

low values in another; 

a period of relative 

stability. 

 

a period of stability in a particular 

attribute distribution(s).   

a cluster of similar temporal trends in 

attribute values 

Differentiation a node, or cluster of 

nodes, with low 

attribute values, within 

a subgraph of mostly 

high attribute values; a 

subgraph with high 

variability in attribute 

values. 

a time point with a 

very high attribute 

value; a period of 

highly changeable 

attribute values. 

 

a time point with a very different 

attribute distribution to those of the 

time period within which it lies (e.g. 

when the map of the market 

suddenly goes red); a period of highly 

changeable attribute distributions. 

a node whose temporal trend in attribute 

values is opposite to/much higher/lower 

than those of surrounding nodes 

Arrangement ‘Attribute values 

increase toward the 

centre of the graph’ 

a period of increasing 

or decreasing attribute 

values; a period of 

alternating attribute 

values. 

a temporal pattern (trend) in 

attribute distributions over the graph 

(e.g. a particular attribute value is 

spreading  over the graph, over time) 

temporal trends in attribute values increase 

more rapidly towards the centre of the 

graph 

 

Distribution 

summary 

‘attribute values are 

high in the centre of the 

graph, and the 

periphery, and low to 

average in between’ 

‘attribute values are 

low at the beginning 

and end of the time 

period, and high in the 

middle’ 

 

‘at the beginning of the time period, 

attribute values are high in the centre 

of the graph and at the periphery, 

and low to average in between, but 

by the end of the time period, there 

is a move toward higher values 

throughout the graph’ 

‘strongly increasing temporal trends can be 

seen in the centre of the graph, with nodes 

on the periphery having static or decreasing 

trends in attribute values over time’; 

‘temporal trends in attribute values are 

strongly increasing at the centre of the 

graph, and at the periphery, and static or 

decreasing in between’. 

Table 16 Examples of Andrienko's four variants of pattern applied in the case of graph attributes.
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Note that in the graph case (Q2), we can also consider patterns which do not involve 

the graph structure (i.e. if we were to treat the nodes as a population type referrer 

and consider them as a set of references at a single time point (in this quadrant)) e.g. 

• A set of nodes with particularly high values of one attribute and low values of 

another, regardless of connectivity (association) 

• A node with a particularly high or low attribute value (differentiation) 

• With respect to the ordering of one attribute value, the pattern of another 

attribute value; or some combination of attribute values and structural 

metrics e.g. with respect to the ordering of nodes by one structural metric e.g. 

degree, the pattern of an attribute’s values (arrangement) 

• Frequency distribution of particular attribute values or structural metrics, or 

some aggregated metric describing all of the values in the graph e.g. total, 

mean/median etc. plus some measure of variance. (distribution summary) 

In the case of graph over time (Q4), we might also be interested in these patterns 

over time e.g. a temporal trend in the frequency distribution of attribute values, such 

as an increase in the number of nodes with a particular category of value; a general 

shift toward lower attribute values over time, etc. 

Finally, Andrienko also consider average or mean values to be patterns which are 

simply specified at a low level of granularity. This means, for example, that in 

Quadrant 4, we might be interested in the average trend in attribute values over time 

of all nodes, or a cumulative graph structure which shows all nodes and all edges that 

appear in the graph at any time, and perhaps the distribution of average node values 

or average edge weights over such a graph.  

5.2.2 Combining the task dimensions 

Applying the task types to each quadrant produces the main categories of 

(descriptive) tasks in the task taxonomy for temporal graphs; these are summarised 

in Table 18. It is clear that very different visual approaches will be required to carry out 

the same task type in each quadrant. For example, direct comparison in Q2 involves 

comparing attribute distributions of graphs, in Q3, comparing temporal trends in 
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individual attribute values, and in Q4 comparing evolution of attribute distributions 

over the graph over time or distributions of temporal trends in attribute values over 

graphs (illustrated in Figure 45).  This is discussed further in Chapter 8. 
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Figure 45 Differences in the direct comparison task when applied in each of  the four quadrants 

(comparison involving structural patterns indicated to left of each quadrant in grey). 
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14 Or edge, in the case where edges are treated as references (applies to all the elementary tasks) 
15 At least one of the attribute components is found via a direct lookup task 

16 At least one of which is found via an inverse lookup task 
17 Linking, distance, order, set e.g. find whether the nodes are connected 
18 At least one of the nodes is found via an inverse lookup task 
19 No inverse lookup task is involved. 
20 Involves at least one lookup task 

Task type Elementary Synoptic 

Lookup  Direct Given a time point and node14, find its 

attribute value 

Describe the attribute or 

structural pattern associated with 

a given time and graph 

component 

Inverse Find the node(s)/ time point(s) 

associated with an attribute value 

Find the time and graph 

component with a particular 

attribute or structural pattern 

Comparison Direct Compare node attribute values15  Compare patterns of attribute 

values15 

Compare structural patterns15 

Inverse Compare nodes/ time points16 

Find the relation17 between nodes18 

Compare time components16 

Compare graph components16 

 

Structural comparison Find the relation17 between nodes (or 

sets of nodes)19 

- 

Relation seeking Find attribute values (and possibly the 

corresponding nodes/time points) 

related in the given way20 

Find nodes related in a given way20 

Find attribute or structural 

patterns (and possibly the 

corresponding graph/time 

components) related in a given 

way 

Structural relation 

seeking 

Find nodes (or sets of nodes) related in a 

given way 

- 

Table 17 Overview of elementary and synoptic tasks in the temporal graph case.  The patterns 

participating in the synoptic tasks may describe any of the behaviours outlined in Section  5.2.1. A more 

detailed breakdown of tasks by quadrant is given in Table 18. 



114 

 

 Q1 Q2 Q3 Q4 

Lookup – direct/ 

behaviour 

characterisation 

Find a node’s21 attribute value 

at a single time point. 

Describe the pattern of attribute 

values associated with a set of 

nodes, at a single time point. 

 

Describe the structural pattern 

of a given set of nodes, at a 

single time point. 

Describe the temporal trend of a 

node’s21 attribute value. 

 

Describe the pattern of connectivity 

between a pair of nodes, over time. 

Describe the changes in the 

attribute distribution over the 

graph, over time. 

 

Describe the distribution of 

temporal trends in node attributes, 

over the graph. 

 

Describe the changes in the 

structural pattern of a set of nodes, 

over time. 

 

Describe the distribution of 

temporal trends in connectivity 

between pairs of nodes, over the 

graph. 

 

Lookup – inverse/ 

pattern search 
Find the node(s)21/time 

point(s) associated with an 

attribute value. 

Find the set(s) of nodes 

associated with a given attribute 

pattern and/or the time point(s) 

at which the pattern occurs. 

  

Find the set(s) of nodes 

associated with a given 

structural pattern and/or the 

time point(s) at which the 

pattern occurs. 

Find the node(s) having a particular 

temporal trend in attribute value 

and/or the time period(s) over which 

the pattern occurs 

  

Find the node(s) having a particular 

pattern of connectivity and/or the 

time period(s) over which the pattern 

occurs 

Find the graph (subset(s)) and/or 

time interval(s) over which a pattern 

(either attribute based or structural) 

occurs. 

                                                      
21 Or edge, in the case where edges are treated as references 
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Comparison - 

direct 
Compare node21 attribute 

values 22. 

Compare patterns of attribute 

values22. 

 

Compare structural patterns. 

Compare temporal trends22 in 

attribute values. 

 

Compare patterns of connectivity over 

time. 

Compare patterns of attribute 

values22. 

 

Compare structural patterns. 

Comparison - 

inverse 
Compare nodes21/time 

points23. 

 

Find the relation24 between 

nodes23. 

Compare the time points at 

which patterns of attribute 

values occur. 

 

Compare the time points at 

which structural patterns occur. 

 

Compare25 the sets of nodes 

associated with particular 

attribute or structural patterns. 

Compare the time periods over which 

patterns occur. 

 

Compare nodes having particular 

trends in attribute values. 

 

Compare pairs of nodes having 

particular patterns of connectivity 

over time, or the time periods over 

which particular patterns of 

connectivity occur. 

Compare time intervals/graph 

subsets over which a particular 

pattern (either attribute based or 

structural) occurs 

Structural 

comparison 
Find the relation24 between 

nodes26. 

   

Relation seeking Find attribute values (and 

possibly the corresponding 

node(s)21/time point(s)) 

related in the given way. 

 

Find attribute patterns (and 

possibly the corresponding sets 

of nodes/time point(s)) related 

in a given way. 

 

Find temporal trends in attribute 

values (and possibly the 

corresponding node(s)/time periods) 

which are related in a given way. 

 

Find patterns (either attribute based 

or structural) related in a given way, 

and possibly the corresponding 

graph subsets/time periods. 

                                                      
22 At least one of which results from a direct lookup task 
23 At least one of which results from an inverse lookup task 
24 Linking, distance, order, set e.g. find whether the nodes are connected. 
25 This includes finding  the linking relations between the sets of nodes i.e. whether the sets of nodes are connected. 
26 Or sets of nodes. 
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Find nodes23 related in the 

given way. 

Find structural patterns related 

in a given way. 

Find temporal trends in connectivity 

(and possibly the corresponding 

node(s)/time periods) which are 

related in a given way. 

Structural 

relation seeking 
Find nodes26 related in the 

given way. 

   

Table 18 Combining task type and "level of analysis" (quadrants) to produce an overview of categories in the temporal graph task taxonomy.
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 Sub-variations within task type 

The previous section gave a high level overview of task categories for temporal 

graphs, by combining the task types with the four different categories of data item 

which may participate in them. This section now considers the detailed variations of 

the main task types discussed in the Andrienko framework, and how they can be 

applied to tasks involving temporal graph data. 

As described in Chapter 4, the Andrienko framework discusses in-depth a number of 

variants within the task types arising from specifying additional data items as 

constraints, or from particular properties of the data items participating in the task. 

Multiple referrers (as is the case in temporal graph data) compound the possible task 

variations. These variations are now discussed in the context of temporal graph data. 

Note that this discussion primarily relates to the attribute-based tasks of the original 

framework; variations in the structural tasks of the extended framework are 

discussed in Section 5.4.1.4. 

5.3.1 Additional constraints in lookup tasks 

Firstly, in lookup tasks, as we have two referrers, it is possible to construct inverse 

lookup tasks where one or other of the referrers is specified in addition to the 

characteristic.  This gives three variations of inverse lookup (illustrated in Table 19). 

Graph Time Characteristic Example 

� ? � find the times at which Author A had a 

publication count greater than 6 

? � � find the authors who had a publication count 

greater than 6 in 2012 

? ? � find any author at any time which had a value 

greater than 6 

Table 19 Three variations of elementary inverse lookup in the case of temporal graphs (due to 

multiple referrers).  Note that similar variations for the synoptic tasks can also be constructed e.g.  

find the author(s) who had an increasing trend  in publication count between 2010 and 2014). 

As all comparison and relation seeking tasks (at least in the original tasks of the 

Andrienko framework) involve at least one lookup task, it is possible to construct a 
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wide variety of tasks simply based on the combinations of differently specified lookup 

tasks involved e.g. we might wish to compare the times at which Author A had 

publication counts greater than 6 or compare the authors who had publication counts 

greater than 6 in 2012 etc.   

5.3.2 Same or different referential components 

An additional variation considered in the framework in the comparison and relation 

seeking tasks is whether the same or different referential components are involved 

in the task. Again, due to the two referential components, three variations of what is 

meant by ‘different’ references are possible in the temporal graph case. These are 

illustrated in Table 20. 

Graph Time Example 

Same Different compare Author A’s publication count in 2012 with his 

publication count in 2013 

Different Same compare Author A and  Author B’s publication counts in 2012 

Different Different compare Author A’s publication count in 2012 with Author B’s 

publication count in 2013. 
Table 20 Variations in tasks based on whether the same or different referential components are 

involved 

5.3.3 Same or different attributes 

There is also the possibility of tasks involving comparison between different 

attributes (assuming the value domains are comparable) e.g. compare Author A’s 

journal publication count with his conference paper count in 2012. In addition to this 

example (where time and graph components are the same in each lookup task), each 

of the tasks in Table 20 can be formulated to involve either the same or different 

attributes in the lookup tasks, resulting in seven variations (Table 21). 

Graph Time Attribute 

Same Same Different 

Same Different Same 

Same Different Different 

Different Same Same  

Different Same Different 

Different Different Same 

Different Different Different 
Table 21 Variations in tasks depending on the combinations of same or different referential and 

attribute components involved 
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5.3.4 Specified components 

The framework also considers the possibility of comparison with some specified 

attribute value or referential component i.e. where only one lookup task is involved 

(compare Author A’s publication count in 2012 with the average number of 

publications (5)). 

5.3.5 Combinations in inverse comparison and relation seeking 

In the case of inverse comparison, the combinations are multiplied by the three levels 

of specification outlined above, which may appear in a variety of combinations e.g.  

compare the years in which Author A belonged to the Computing Department, and 

the years in which he belonged to the Biology Department or compare the years in 

which any author had a journal publication count  greater than 4, and the years in 

which any author had a conference paper on count greater than 7.  

Similar variations can be applied to relation seeking tasks. An additional relation on 

the referential component (e.g. that nodes are connected, that the time periods are 

adjacent) can also be specified.  

5.3.6 Summary 

In summary, we can consider the following variations in the task types when 

formulating tasks involving temporal graph data: 

In inverse comparison: 

• Additional constraints (specified elements) in the referential component. 

In comparison and relation seeking: 

• Same or different graph component 

• Same or different time component 

• Same or different attribute 

• Additional constraints (specified elements) in the inverse lookup sub-tasks 

(in inverse comparison). 

• Additional specified relations. 
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 Combining the task dimensions to produce a task design space 

To recap: Section 5.2 combined two dimensions, task type and four categories of data 

item (quadrants) to produce a high level overview of task categories for temporal 

graphs. Section 5.3 considered the many possible sub-variants within the task types, 

which can also be combined with the four quadrants. An important point to note 

(which is discussed further in Chapter 8) is that the task variants within the same task 

type may potentially require support from quite different visual tools (for example, 

comparing the same attribute or two different attributes). A systematic way to 

investigate the possible variants of task, and a logical way to group together similar 

tasks (i.e. those requiring similar visual techniques for their support) was therefore 

sought. By systematically combining sub variations in task type with the four 

quadrants, a vast set of tasks for temporal graph data can be generated.  In this 

section, the approach taken to organising the task dimensions is discussed; the full 

task listing can be found in Appendix A. 

5.4.1 Task matrices 

The tasks are first divided into three matrices based on the main task types (lookup, 

comparison, relation seeking). Each matrix is then divided into quadrants based on 

the referential components involved in the task: time points, time intervals, graph 

elements, graph subsets. This distinguishes the elementary and synoptic tasks, with 

elementary tasks appearing in Q1, and the three variations of synoptic tasks in Q2-4 

(as illustrated in Figure 40). Each quadrant is then subdivided according to whether the 

time and graph components are specified (constraints) or unspecified (targets). This 

captures the inverse/direct task distinction in lookup and comparison tasks, with 

direct tasks appearing in the top left of each quadrant. Comparison and relation 

seeking with a specified component also naturally emerges where all elements of one 

of the lookup tasks are specified. Tasks within each quadrant move from being highly 

specified (top left) to most loosely specified i.e. with fewest constraints (bottom 

right). 

In the comparison and relation seeking matrices, an additional subdivision is made 

relating to whether the same, or two different, temporal and/or graph components 
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participate. The majority of tasks in these matrices can be formulated to involve the 

same or two different attributes (only those involving the same time and graph 

components cannot involve the same attribute, and these cases are noted in the task 

matrices). 

5.4.1.1 Lookup 

 

 

Figure 46 gives an overview of the lookup task matrix, which shows the variation in 

lookup task according to which items are specified: in Q1 there is one direct lookup 

task and three variations of inverse lookup, based on the combination of specified 

time and graph components.  Similarly each of Q2-4 contains one behaviour 

characterisation task and three variations of pattern search. 

 

Lookup 
Graph 

Elements Subsets 

constraint target constraint target 

Time 

Points 

constraint 
 

direct inverse 
 

BC PS 

target inverse inverse PS PS 

Intervals 

constraint 
 

BC PS 
 

BC PS 

target PS PS PS PS 

 

 

Figure 46 summary of the lookup task matrix: elementary tasks appear in quadrant 1; the three 

variations of synoptic tasks in quadrants 2-4. In Q1 there is one direct lookup task and three 

variations of inverse lookup, based on the combination of specified time and graph components.  

Q1 Q2 

Q3 Q4 

Key to task matrix shading:  Elementary tasks (blue); Synoptic tasks (orange);  

Direct tasks (light blue/orange); Inverse tasks (dark blue/orange); No task (grey) 
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Similarly each of Q2-4 contains one behaviour characterisation task (BC) and three variations of 

pattern search (PS).  

5.4.1.2 Comparison 

Figure 47  gives an overview of the comparison task matrix, which shows the 

variations in tasks depending upon the referential components involved and whether 

they participate as targets or constraints. Based on this, each quadrant has 16 

possible variations (4 direct and 12 inverse tasks) depending upon which, and how 

many, data items are specified. The task matrices do not show the variations of tasks 

involving the same/different attributes, but all tasks (with the exception of direct 

comparisons involving the same time point/interval and graph element/subset) could 

potentially be formulated to consider comparison involving the same attributes or 

two different attributes in the lookup subtasks. Additionally, where both graph 

and/or both time components are unspecified, tasks can be formulated with a 

relation as an additional constraint e.g. when comparing graph objects, the additional 

specified relation might be that they are the same, connected, a certain distance from 

one another, etc. 

Figure 47 Overview of the comparison task matrix: light coloured cells in the top left of each 

quadrant indicate direct comparison tasks; all other cells contain inverse comparison tasks; blue and 

orange colours indicate elementary and synoptic tasks respectively. All tasks27 can be formulated to 

involve either the same, or two different, attributes. Where both graph and/or both time 

components are unspecified, tasks can be formulated with a relation as an additional constraint e.g. 

                                                      
27 With the exception of tasks involving the same graph and time components (top left in each 

quadrant), which only make sense when formulated to involve two different attributes. 
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when comparing graph objects, the additional specified relation might be that they are the same, 

connected, a certain distance from one another etc. 

 

Comparison  

Graph 

Elements Subsets 

Both constraints One 

constraint, 

 one 

target 

Both 

are 

targets 

Both constraints 
One 

constraint,  

one target 

Both 

are 

targets 

Same 

element 

Different 

elements 

Same 

element 

Different 

elements 

T
im

e
 

P
o

in
ts

 

Both 

constraints 

Same 

time 
1a          2a      

Different 

times 
  

 1b 
      

  
  2b  

One constraint, one 

target 
                

Both are targets        1c         

In
te

rv
a

ls
 

Both 

constraints 

Same 

time 
                

Different 

times 
 3a 

  
      

  
    

One constraint, one 

target 
                

Both are targets      3b          4 

 

 

 

 

Example attribute-based comparison tasks: 

1a. Direct comparison Compare the values of different attributes for a given node at a given 

time point.  

1b. Direct comparison Compare the attribute values associated with two different nodes at 

two different times.  

1c. Inverse comparison Find the time points and nodes associated with two given attribute 

values and compare them.  

2a. Direct comparison of the attribute patterns over two different subsets of the graph at 

the same time point.  

2b. Inverse comparison of two graph subsets associated with two given patterns at two 

different, specified time points. 

3a. Direct comparison of the patterns of the same graph element over two different time 

intervals. 

3b. Inverse comparison of a specified graph element and a graph element associated with a 

given pattern (over an unspecified time interval) and comparison of the time intervals over 

which the patterns occur. 

4. Inverse comparison of graph subsets and time intervals associated with given patterns. 

 

5.4.1.3 Relation Seeking 

The task matrix for relation seeking (illustrated in Figure 48) is structured in an 

identical way to that of the comparison matrix, however the case where both graph 

and temporal components are specified is not applicable: the relation seeking task is 

to find components related in a given way, and therefore, at least one of these data 

items must participate as a target (i.e. an unknown item) in the task.  

Q1 Q2 

Q3 Q4 

Key to task matrix shading:  Elementary tasks (blue); Synoptic tasks (orange);  

Direct tasks (light blue/orange); Inverse tasks (dark blue/orange); No task (grey) 
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Relation Seeking 

Graph 

Elements Subsets 

Both constraints One 

constraint, 

 one target 

Both are 

targets 

Both constraints One 

constraint, 

one target 

Both are 

targets 
Same 

element 
Different 

elements 
Same 

element 
Different 

elements 

T
im

e
 

P
o

in
ts

 Both constraints 
Same time                 

Different times                 

One constraint, one target                 

Both are targets                 

In
te

rv
a

ls
 

Both constraints 
Same time                 

Different times                 

One constraint, one target                 

Both are targets                 

 

 

Figure 48 Relation Seeking task matrix.  As for comparison tasks, with the exception that the case 

where both graph and temporal components are specified is not applicable (grey cells): the relation 

seeking task is to find components related in a given way, and therefore, at least one of these data 

items must participate as a target (i.e. an unknown item) in the task. 

5.4.1.4 Structural Tasks 

As for the attribute based tasks, the structural task space is divided based on the 

referential components involved. Q1 contains the elementary tasks, while the other 

three quadrants contain the synoptic tasks involving the partial and aspectual 

structural patterns. The structural elementary tasks are more limited than their 

attribute based counterparts: the variations of these tasks are shown in Figure 49. The 

variations of the synoptic tasks (pattern characterisation and search, comparison, 

and relation seeking) are directly reflective of their attribute based counterparts. 

However, rather than involving patterns associated with the behaviour of attribute 

values over reference subsets, they involve structural patterns associated with the 

reference subsets. The task matrices for these tasks are therefore not repeated. 

Q1 Q2 

Q3 Q4 

Key to task matrix shading:  Elementary tasks (blue); Synoptic tasks (orange);  

Direct tasks (light blue/orange); Inverse tasks (dark blue/orange); No task (grey) 
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  Graph elements (nodes, graph objects) 

  Both elements specified One  element specified Neither  element 

specified 

T
im

e
 p

o
in

ts
 

B
o

th
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im
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 p
o

in
ts

 

sp
e

ci
fi

e
d

 

 

Find connections between 

elements (comparison)  

(How) is graph element g1 

connected to graph element 

g2 at the given time, t?  

 

?λ: (g1, t) λ (g2, t) 

 

Find elements connected in 

the given way (relation 

seeking) Find the graph 

element(s) to which graph 

element g1 is connected in 

the given way at time t: 

 

? g2 : (g1, t) Λ (g2, t)  

 

Find elements 

connected in the given 

way (relation seeking) 

Find graph objects which  

are connected in the 

given way at the given 

time 

?g1, g2,: (g1, t)Λ (g2, t) 

 

N
e

it
h

e
r 

 t
im

e
 p

o
in

t 
sp

e
ci

fi
e

d
 Hybrid Find the time points 

at which two given graph 

objects were connected in 

the given way 

 

? t :(g1, t)Λ (g2, t) 

 

Find elements connected in 

the given way (relation 

seeking) 

Find the graph element(s) to 

which graph element g1 is 

connected and the time(s) at 

which the connection(s) 

occur 

 

? g2, t : (g1, t) Λ (g2, t)  

 

Find elements 

connected in the given 

way (relation seeking) 

Find graph objects (and 

their associated time 

points) at any time that 

are connected in the 

given way 

 

? g1, g2, t :(g1, t)Λ (g2, t) 

 

Figure 49 Summary of elementary comparison and relation seeking graph structural tasks 

concerning graph elements, including variations involving specified and unspecified time points. For 

an explanation of the formal notation shown here, please see Appendix A. 

5.4.1.5 Summary 

The task matrices were developed as a systematic way to capture the many variations 

in tasks specified in the Andrienko framework, for the temporal graph case, which 

involves multiple referrers.  The matrices relate to the original Andrienko framework 

as follows:  

• Each matrix captures a general task type: lookup, comparison, relation 

seeking.  

• Elementary and the three varieties of synoptic tasks are distinguished by the 

quadrants.  

• Direct and inverse tasks are captured based on the extent to which the 

referential components are specified (i.e. for direct tasks, both time and graph 

are specified, and appear in the top left of each quadrant).  



126 

 

• Variations in the number of additional constraints, and whether the same or 

different time/graph referrers are involved in a task appear in the rows and 

columns of the matrix.  

• Comparison/relation seeking with a specified component naturally emerges 

where all elements of one of the lookup tasks are specified (these cases are 

noted in the task matrices).  

The vast majority of comparison and relation seeking tasks can be formulated to 

involve the same or two different attributes. Only those involving the same time and 

graph components cannot; this is noted in the matrices. 

Figure 50 combines the task matrix structures of  

 

Figure 46, Figure 47, and  

 

Figure 48 with the task hierarchy to illustrate where the task variations are situated. 
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Synoptic tasks 

Connectional tasks 

Homogeneous  
behaviour 

Heterogeneous  
behaviour 

Descriptive tasks 

Elementary Tasks 

STRUCTURAL COMPARISON AND 

RELATION SEEKING 

Graph visualisation tasks 

Figure 50 Task hierarchy (showing task types) combined with the task matrices (showing task variation). Note that the 

three task matrices are repeated for the set of synoptic descriptive structural tasks, which involves structural patterns, 

rather than attribute-based behaviours. 



 

 A ‘Slice and Dice’ approach to task classification 

Andrienko and Andrienko’s work seeks to help designers of visual analysis tools. They 

identify both the tasks necessary to perform exploratory analysis, and the different 

types of visual tools available. However, they are unable to map the tools to the 

techniques which they support, and instead develop a set of general principles for 

selecting and designing exploratory tools.  The reason that they do this is because of 

the difficulty inherent in mapping tasks to techniques in their general framework, 

which is applicable to all data types:  

“…The fundamental reason is that the tasks arising in data exploration are too specific 

(they are always formulated in the terms of data components), whereas the task 

categories that we identified are too generic. It is impossible to link each specific task 

to the appropriate tool(s) because the specific tasks are countless. Linking the tools to 

the generic task categories is also problematic, but for a different reason: the 

categories are so generic that no tool can perform all tasks belonging to the same 

category.” 

(Andrienko and Anrienko, [5], pp463-465) 

However, they go on to describe the cases in which it could be possible to map tasks 

to techniques – for a specific dataset or a class of data sets. 

In this work, a very specific class of data sets is considered: those involving temporal 

graph data.  Individual data sets are included in this class purely by virtue of their data 

structure, that of having a temporal and graph referential component.  While the 

type and number of attributes which individual data sets may contain may vary, the 

limitation on the referential component is sufficient to restrict the set of possible 

tasks.  Moreover, through use of the task matrices, a full range of task permutations 

can be systematically specified. However, as noted earlier, these task matrices 

produce a very large set of tasks.  In this section, useful ways in which these tasks can 

be classified are now considered.  Part of the difficulty of classifying tasks is that each 

task can be categorised in more than one way; using the matrix structures as a guide, 

a ‘slice and dice’ approach can be used to group together tasks which will potentially 

require similar visual techniques for their support.  
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5.5.1 Temporal graph task categories  

The first useful distinction relates to the classification of tasks by the referential 

components that participate, which results in the quadrants of each task matrix. This 

distinction is fundamental when selecting the most appropriate visual approach, as it 

allows us to consider the different research areas to which tasks relate, and 

therefore, to which areas we should look for appropriate visual tools and techniques: 

o Q1: general visual techniques  

o Q2: static graph visualisation 

o Q3: temporal visualisation 

o Q4: temporal graph visualisation 

Q1 General 

visualisation 

principles  

Q2 Static graph visualisation  

 

Q3 Temporal 

visualisation  

 
 

Q4 Temporal graph visualisation 

 

 

Figure 51 Research areas associated with data items by quadrant 

This distinction highlights a key point: while Q4 is specifically related to temporal 

graph visualisation, every task in the matrix is a potential task when exploring 

temporal graph data; therefore visual techniques from all of these research areas 

may be involved when exploring temporal graph data. 

As outlined above, Andrienko and Andrienko note that grouping by task categories 

(lookup, comparison, relation seeking) does not provide a useful basis on which to 
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map techniques, as the tasks that fall into these categories are too generic for a single 

tool to support all of them.  However, if we consider these tasks in each of the 

quadrants, we narrow down to a more useful classification, based on which we can 

begin to consider appropriate techniques. For example, lookup (usually) requires that 

we be able to see the data items for which we are looking: Figure 51 illustrates the 

idea that appropriate encodings for representing the different categories of data 

items will be found in different research areas.  When comparing data items and 

finding relations between them, general visualisation principles to support 

comparison (such as alignment) are applicable to Q1. Gleicher et al.'s [102] three 

basic possibilities for visual comparison - juxtaposition (placing representations side 

by side), superposition (overlaying representations in the same display space) and 

explicit encoding (where the relationship between the two items is calculated and 

explicitly represented) - are applicable to the remaining quadrants. In addition, Q2 

can draw on the large body of literature in graph comparison, using techniques such 

as animation, visual links, colour coding, and brushing and linking [103]. Comparison 

of data items in Q4 is not well documented in the literature, and there may be issues 

regarding the effectiveness of combinations of comparison techniques and the 

techniques used to show these data items (for example: would comparing sequential 

(animated) views side by side be an effective way to compare structural change over 

time in two different graphs?).  These ideas are discussed further in Chapter 8. 
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Figure 52 Task matrices showing static graph tasks (highlighted in red) 

The rows and columns of the task matrices (across task types) are another useful way 

in which we can categorise the tasks. The set of static graph tasks appear in the rows 

of the matrices involving a single time point as a constraint (Figure 52).  In graph 

comparison, while lookup, comparison, and relation seeking tasks are all relevant, 

only elementary tasks and those involving graph structure (i.e. not trends over time) 

are applicable. These can be clearly identified as the tasks which fall under Q1 and 

Q2 in the matrices. 

The distinctions relating to same/different graph/time components and additional 

constraints are neatly captured in the rows and columns of the matrices. For 

example, comparison and relation seeking tasks involving two different time points 

or intervals can be easily distinguished (Figure 53). This is an important distinction as 

comparison between time points/intervals requires showing two graphs (or two 

graphs over time), as opposed to the single graph, or graph over time, representation 

required when the task involves the same time component. 
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Figure 53 Comparison and relation seeking tasks (potentially) involving different time components 

e.g. where the time component is not specified (a target), an additional constraint can be added to 

the task specifying that the unknown time component is a different time point or interval. (Solid red 

shading indicates tasks involving a known different time component; cross hatching indicating tasks 

where time components are potentially different). 

A further distinction which can be seen in the matrices is between what can be 

termed ‘evolutionary’ and ‘contextual’ tasks. Evolution - the notion of change in some 

object over time, be it the graph structure or its substructures, the attribute value of 

an individual node, or the distribution of attribute values over the graph - is often of 

interest when investigating temporal graph data, and this is reflected in the 

predominance of evolutionary tasks found in the literature. The task matrix structure 

easily distinguishes - but does not limit us to consideration of - evolutionary tasks, 

which involve a combination of the same graph element or graph subset at different 
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time points or over different intervals28 (evolutionary tasks are highlighted in red in 

Figure 54). Contextual tasks consider an object in the context of other objects, which 

may be at the same or different times. The range of such tasks identified in the 

taxonomy reminds us not to neglect the questions which enable us to situate our 

findings and bring perspective to our observations, perhaps in turn bringing deeper 

meaning to our study of evolutionary changes.  

 

 

 

 

Figure 54 Evolutionary tasks involve the same graph element at different times 

An important distinction when selecting a visual representation is the notion of task 

search space. Search space is dependent upon which data components are specified. 

Farrugia and Quigley [78] considered temporal search space, distinguishing between 

local (focussing on a specified time period), and global (searching across the entire 

time period).  

This notion can be extended to consider the graph search space, giving four variations 

of task search space:  

• no search (both time and graph components are specified) 

                                                      
28 This should not be confused in general with the tasks of Q4 which involve graph structures over 

time. For example, comparing two different graph structures over the same time period would be a 

contextual task, whereas comparing the same graph structure over two different time periods is an 

evolutionary task; however, both tasks can be found in Quadrant 4 of the comparison matrix. 
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• graph search (time is specified but graph components are not - requires 

searching the entire graph) 

• temporal search (the graph component is specified but the temporal 

component is not - requires searching the entire time period) 

• graph and temporal search (neither component is specified - requires 

searching the whole graph at all time points).  

Search space is related to the inverse/direct distinction of the framework, but is 

independent of the elementary/synoptic distinction. Even in elementary tasks 

involving a single element at a single time point, where both components are 

unspecified, the search space extends to the entire graph over the entire time period. 

The task search space is clearly identified in the task matrices by the columns and 

rows indicating the specified and unspecified referential components, with the 

widest task search space is to be found at the bottom right of each quadrant. 

In addition to tasks in the matrices, additional tasks can be formulated to involve 

comparison with specified attribute or referential components. In this case we may 

need some additional way to visually represent the specified pattern.  

The majority of tasks in the comparison and relation seeking matrices can also be 

formulated for tasks involving two different attributes. Again, such tasks may warrant 

different visual approaches (i.e. when making comparison between two different 

attributes as opposed to a single attribute).  

One final classification regards the distinction between structural and attribute-

based tasks. In the extended taxonomy an additional category of purely structural 

graph tasks was introduced. While this category sits separately from the attribute-

based tasks, the picture is more complex than indicated by the existing structural vs 

attribute distinction made in the task literature: for example, Lee et al. [40] separate 

their topology and attribute based graph tasks into distinct categories; Ahn et al.’s 

[41] ‘property’ dimension distinguishes structural attributes and domain properties. 

However, partitioning tasks into those purely involving structure, and those purely 
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involving attributes, is not helpful when considering visual approaches, as it ignores 

the middle ground in which a large proportion of graph based tasks reside i.e. tasks 

involving consideration of attribute values in the context of graph structure. There 

are therefore three possible categories of tasks:  

• Structural (no attributes involved): these tasks solely consider the structure 

of the graph, without reference to attributes. These are the structural tasks 

identified in the extended taxonomy. Visualisations supporting such tasks 

focus on representing the graph structure alone.  

• Attribute-based in a structural context: these consider patterns of attributes 

over the graph structure and the position in the graph of the occurrence of 

attribute values. These tasks are captured in the attribute based tasks of the 

framework using the Andrienko behaviours. Visualisation approaches 

supporting these tasks require representation of the attribute values in the 

graph structural context.  

• Attribute based: these consider attribute values in isolation from the graph 

structure. We may only be interested in attribute values associated with a 

graph in their temporal context e.g. the temporal trend in an attribute value 

for an element or set of elements (A2). We may also be interested in the 

frequency distribution (rather than the structural distribution) of the attribute 

values of all graph elements at a given time point, and how this distribution 

changes over time. Visualisation approaches which do not involve the graph 

structure e.g. [104] are appropriate in this case. This category also covers 

changes in structural metrics, which in themselves capture the structure of 

the graph, hence do not require an explicit structural representation when 

visualising them. 

 Connection discovery in temporal graphs 

So far, only the descriptive tasks for temporal graphs have been considered. Examples 

of the three variations of relational behaviours involved in connection discovery tasks 
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in temporal graphs are discussed in this section, and how they are applicable in the 

temporal graph case.  The relational behaviours in the Andrienko framework only 

involve the relationships between attribute-based behaviours. As the graph referrer 

has non-fixed linking relations between its elements, two additional possibilities can 

be considered for the connection discovery tasks in the graph case: the relational 

behaviours between graph structures and the connections between graph structure 

and attribute value.  

5.6.1 Connection discovery in the Andrienko framework 

As noted in Section 3.4.3.4, connection discovery tasks involve relational behaviours.  

Relational behaviours essentially involve the relation or connection between two 

behaviours: the “linkage” patterns describing them are correlation, dependency or 

influence, or structural connection.  Andrienko note that this idea in some ways 

overlaps with the descriptive behaviour comparison task, as it involves the relation 

between two behaviours.  However they stress that relational behaviours go further 

than just describing the similarities and differences between behaviours, as they 

involve determining the connections between behaviours.  They illustrate this with a 

scatterplot example: comparing the distributions of two attribute values does not 

allow us to determine whether a correlation exists, but plotting them against one 

another in a scatterplot can indicate this relationship. Such a representation does not 

show the individual behaviour of either attribute, but reveals how they behave with 

respect to one another ([5], pp.126-127), hence the term “mutual” or relational 

behaviour. 

Andrienko consider three scenarios in which relational behaviours might be sought.  

First is the case discussed above, involving two (or more) different attributes defined 

on the same reference set. The second case widens this definition to involve different 

reference sets, however, it is noted that it is highly unlikely that the two reference 

sets would be completely unrelated. An example given is that of the connection 

between the spatial position of rings in a tree trunk and climate over time. Both of 
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these cases involve the connections between two or more phenomenon and are 

therefore termed heterogeneous behaviours.   

The last case considered is that involving internal connections within a single 

phenomenon, termed homogenous behaviours.  Andrienko give examples of 

investigating the relationship between the pre- and post-natal development of a 

baby, or frequent associations occurring in a data set, such as hot summers being 

followed by cold winters ([5], p130). The formal notation relating to connection 

discovery behaviours is included in Appendix A.  

5.6.2 Additional possibilities for connection discovery in the graph case 

Let us now consider relational behaviours in the graph case.  Recall that the graph 

referrer of the extended data model is unlike the other referrer types, as the relations 

between its elements are not fixed. There are therefore some additional possibilities 

for connection discovery in the graph case. 

In the case of descriptive behaviours, the distribution of attribute values over the 

graph is determined by the relations between referrers; a behaviour characterisation 

task therefore involves describing this distribution.  However, we may want to go 

further and investigate, for example, whether a node’s position in the network in 

some way influences its attribute value. This sort of question is the subject of 

egocentric social network analysis, which uses the structure of a node’s ego network 

to predict, for example, an individual’s health or economic status [105].   In the 

temporal graph case, we may also be interested in the effect of network structure in 

determining the distributions of attribute values. For example,  in sociocentric social 

network analysis the relationship between network structure and attribute values is 

investigated to determine how network structure affects concentration of power, 

access to new ideas, and spread of disease etc. [105] e.g. Christakis and Fowler’s [106] 

investigation into the influence of network structure on obesity.  Additionally, we 

may also be interested in the effect that attribute values have on the network’s 

structure e.g. do certain levels or patterns of attribute values precede particular 

structural changes? 
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A second possibility in the graph case is to consider the connections between 

structural behaviours.  Here we may be interested in the relationship between the 

structures of different parts of the graph, or in the temporal case, how structures at 

one point in time influence structures at another.  For example, in social network 

analysis a number of theories surround tie formation. Yi et al. [70] discuss examples 

of these including preferential attachment, accumulative advantage (actors with 

many ties gain more ties), homophily (the theory that those with similar traits 

connect to one another), follow-the-trend (i.e. the dominant choices of others), and 

multiconnectivity (a pursuit for diversity and multiplexity). In all cases, we would look 

at how structural patterns in the graph at one point in time influence the structural 

patterns at another. 

The additional possibilities for the graph case so far can all be considered to be 

variations of homogenous behaviours.  Let us now consider some examples of  

heterogeneous behaviours in the graph case. Where two different attributes are 

involved, we could consider the relationship between attribute values without 

reference to the graph structure e.g. ‘does publication count depend on department?’  

or we could additionally consider the graph structure e.g. whether there is some 

connection between the two  distributions over the graph.   

Where two different reference sets are involved, we could consider for example, how 

the attribute values in the graph are influenced by outside events over time.  This 

may be of particular interest, where some form of external intervention in the 

network is under observation, such as vaccination in a public health network.   

We can also think of examples involving the connections between two different 

graphs.  This behaviour may be of interest where we are investigating two different 

networks which are related in some way, for example, co-authorship networks from 

different domains, or the energy grid and a computer network.  Moreover, we might 

not only be interested in attribute based behaviours, but also the relation between 

structural patterns. For example, like Gloor and Zhao [75], we might be interested in 

the relationship between networks constructed to reflect different communication 
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mediums e.g. face-face, telephone, email.  In this case we might also wish to find 

some correlation between the structural patterns of the network itself, for example, 

we can imagine that the times at which the email network is densely connected, the 

face-to-face network may be less so. 

5.6.3 Summary 

While descriptive tasks aim to describe individual behaviours, the connection 

discovery tasks of the Andrienko framework concern relational behaviours, which can 

be described by linkage patterns such as correlation, dependency, and structural 

connection. The Andrienko framework considers connectional tasks according to 

whether they involve: 

• Heterogeneous behaviours:  relational behaviours involving two (or more) 

different attributes over either  

o the same reference set or  

o two different parts of the same reference set 

• Homogeneous behaviours: relational behaviour involving the same attributes 

of different reference subsets 

While all of the tasks in the Andrienko framework concern relational behaviours 

arising from the interaction of attribute-based behaviours, for temporal graphs, two 

additional possibilities can be considered:  

(1) relational behaviours arising from the interaction of graph structural 

behaviours, and  

(2) relational behaviours between graph structure and attribute values.  

Note that the task types of the connectional tasks are the same as those of the 

descriptive tasks (lookup, comparison, relation seeking), but they involve relational 

behaviours and linking patterns. 
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 Summary 

This chapter has demonstrated the application of the extended data model and task 

framework outlined in Chapter 4 to the specific case of temporal graph data.  

By considering the possible combinations of time and graph (referential) components 

(and associated data items) that may participate in temporal graph tasks, an 

additional data based distinction extends the Andrienko notion of elementary and 

synoptic tasks. This results in four fundamentally different task categories 

(“quadrants”) in the case of temporal graph data, any or all of which may be required 

during analysis.  These four task categories can be combined with the task types 

(distinguished based on the data items which participate as targets and constraints) 

to produce a wide range of tasks.  In addition, the Andrienko framework specifies a 

number of sub variations within the task types. In order to systematically specify the 

possible task variations, a set of task matrices were developed, which capture the 

possible combinations of specified and unspecified referential components, and 

additional  variations in whether the graph and time components are the same or 

different.  In addition to allowing systematic specification of task permutations, the 

matrices allow for a “slice and dice” approach to be taken to task classification. All of 

the tasks can be classified along multiple dimensions, and therefore fall into multiple 

categories. The dimensions upon which tasks can be usefully categorised were 

summarised in Section 5.5.  These categories are used in Chapter 8 as the basis upon 

which to map tools to tasks. The connection discovery tasks which may be relevant 

when exploring temporal graph data were also considered, including relational 

behaviours between graph structures, and between graph structure and attribute 

values. 

In the next chapter, the developed temporal graph task framework is evaluated. 
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Chapter 6 Evaluating the task classification 

Having used a formal approach to generate a task design space for temporal graphs 

in Chapter 4 and Chapter 5, this chapter focusses on its evaluation. Existing strategies 

for evaluating task classifications in the visualisation literature are first considered. 

Drawing on the evaluation practices identified in the literature, the task classification 

is firstly evaluated with respect to the extant temporal graph task frameworks.  

Secondly, an empirical study to evaluate the utility of the framework’s use in the 

design process was carried out and is reported on. 

 Existing evaluation practices 

While practices for evaluating visualisation systems and techniques have become a 

topic of increasing interest to the visualisation community (e.g. [6], [9], [107], [108]), 

very little attention has so far been given to the evaluation of formal models utilised 

by the community, such as task classifications.  While we would expect a publication 

demonstrating a new visualisation technique or system to include some form of 

evaluation with respect to its utility, performance, and limitations, this does not 

appear to be the case when newly developed classifications are reported. Indeed, 

several papers presenting task classifications contain no evaluative component at all.  

The lack of consideration given to evaluating classifications is surprising, given that 

measuring the effectiveness of task classifications has been recognised as a difficult 

problem [13] and the benefits of evaluating classifications parallel those of evaluating 

visualisation systems, including: identifying areas for improvement resulting in better 

classifications; convincing potential adopters of the validity and utility of the 

approach (particularly important for more complex classifications which may require 

significant effort to adopt); and helping adopters select between competing 

classifications. 

Given the lack of formalised guidance on the evaluation of task classifications, the 

literature was reviewed in order to establish: (1) the aspects of task classifications 

that have been evaluated, and (2) the methods employed in evaluating these aspects, 

particularly with regard to ‘downstream’ evaluation practices, where a final, fully 
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developed classification is evaluated. Considering the threats to validity and 

appropriate approaches to validation at each stage of the construction process also 

forms an important part of the evaluation process, and was considered in Section 3.1.  

Rind et al.’s list of 31 abstract task categorisations was again used as the basis for the 

literature review (see Section 3.1 for the publications included in the review, also 

summarised in Table 1). Literature relating to the visualisation design process and 

evaluation practices was also drawn on where appropriate.  

6.1.1 Overview 

In reviewing the literature it was found that evaluation of task classifications is 

lacking.  The definition of evaluation used in the review was broad, in that any 

discussion regarding the limitations of the classification or its relation to other works 

was considered to be a form of evaluation.  Yet 9 of the 26 papers reviewed offered 

no explicit evaluation.  In many cases, where discussions were included, these 

reflections were brief and unsystematic (they were perhaps not intended to serve 

the purpose of evaluation).  The vast majority of evaluations in the review were 

discussion based (either discussions of limitations, discursive comparisons with 

extant classifications, or discussion in relation to some predefined evaluative criteria 

(see Section 6.1.3)).  Only 8 papers used an empirical approach, such as use of the 

classification in the design or evaluation of systems, or testing it with domain experts.  

While discussions are a valid form of assessment, the brevity and lack of rigour in 

some indicate that this topic could benefit from more attention. 

In the following discussion evaluation strategies are distinguished according to what 

they seek to evaluate: the method of construction, properties of the classification 

(descriptive powers, comprehensiveness, real world nature of tasks, syncretism, 

usability), and use of the classification (e.g. in the design or evaluation processes). 

These latter two strategies are of course not entirely distinct, as through evaluating 

the use of the classification, authors often seek to evaluate the fundamental 

properties of the classification. Finally, adoption rates are discussed as an additional 

method of evaluation.  While reviewing the literature a distinction in evaluation 
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practices was also noted between classifications which seek to improve upon extant 

classifications (and thus the need to evaluate in relation to other works in order to 

demonstrate some comparative advantage) and those which seek to unify extant 

works (which need to demonstrate that they have the ability to capture all aspects of 

extant classifications). The discussion is summarised for reference in Table 22. 

6.1.2 Evaluation of construction method 

While the threats to validity and potential validation approaches at each stage of 

classification construction were identified in Section 3.1, these were not widely 

discussed in the literature reviewed. However, consideration of these methods can 

play an important part in validating the classification. Several papers did reflect on 

the construction method to some extent when discussing the limitations and 

advantages of their work. Roth et al. [62] suggest that the empirically-derived nature 

of their framework makes it ecologically valid, and therefore offers advantages over 

other works. Amar et al. [36] reflect on the limitations of using student questions as 

the basis of their classification, while Brehemer et al. [53] acknowledge the 

limitations of using interviews to gather task sequences, noting that their 

classification may be incomplete due to sampling or observer bias. Wehrend and 

Lewis [8] consider the rigour with which their categories were selected, and whether 

an abstract mathematical approach would provide a “cleaner” analysis.  

6.1.3 Evaluation of classification properties 

Let us first consider the fundamental properties of a classification that were found to 

be subject to evaluation. Two papers explicitly validate their classification in relation 

to a set of pre-identified criteria.  Yi et al. [13] discuss their classification with respect 

to Beaudouin-Lafon’s [109] dimensions to evaluate interaction models - descriptive 

power, evaluative power, and generative powers (which relates to use in the design 

process).  Sedig and Parsons’ [47] consider their classification in relation to four 

characteristics: syncretic (its ability to unify previously disconnected ideas), general 

(in its level of abstraction and applicability), comprehensive (in terms of coverage), 

and generative (in relation to use in the design process and guiding future research).   
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Ahn et al. [41] design an empirical evaluation in which they seek to validate 

comprehensiveness (task coverage);  ease of use; precision (descriptive power);  use 

in task organisation and clarification; use in task discovery (i.e. as a generative 

method during the domain problem characterisation stage of the design process). 

As mentioned above, evaluation with respect to use of the classification (e.g. in the 

design and evaluation processes) is considered separately from the evaluation of 

properties in this discussion. Beyond these three papers, descriptive powers and 

comprehensiveness were also the main properties evaluated more widely in the 

literature.  Verifying the existence of tasks in the “real world” and usability of the 

classification was also found to be of interest.  The methods for evaluating each of 

these properties are now considered. 

6.1.3.1 Evaluating descriptive powers 

The fundamental purpose of a classification system is to use a common language to 

be able to describe the full range of tasks in a consistent way. A common method to 

evaluate this ability is to use the classification to describe a set of known tasks and 

check that they can all be adequately captured. Examples include using the 

classification to describe: the tasks which can be supported by an existing system 

[46], [44]; those common to a specific domain [45] or identified by domain experts 

[41]; or sequences of tasks carried out by people using a visualisation system [7].  

Brehmer and Munzner [67] go one step further by explicitly comparing their 

classification’s ability to describe a sequence of tasks supported by an extant system, 

with task descriptions generated by other classifications. Thus they are also able to 

demonstrate how their classification overcomes the shortcomings of others in terms 

of its ability to describe. 

6.1.3.2 Evaluating comprehensiveness 

A classification’s ability to capture all possible tasks is in many respects related to its 

descriptive powers.  However, to evidence that a classification is complete is rather 

difficult; as per the problem of induction, we are always just one task away from 

finding a case which our classification cannot cover.  It is particularly difficult to 
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demonstrate when the taxonomy is intended to be useful across multiple domains, 

with a wide range of possible tasks. Additionally, classifications may not be able to 

capture tasks specified at multiple levels of composition (i.e. high or low level tasks). 

Discussions relating to limitations often seek to demarcate the limits of the claimed 

comprehensiveness of a framework e.g. with regards to tasks omitted or those that 

lie out with the intended scope of the classification e.g. [45], [36], [53]. While not 

showing completeness, demonstrating that the developed classification is able to 

cover more tasks than extant frameworks is one form of validation.  Similar to the 

evaluation strategy outlined with regard to descriptive powers, mapping a large set 

of tasks e.g. from problems identified in the literature to the task categories [8], may 

also go some way to demonstrate task coverage.  Finally, where formal modelling 

approaches have been employed in the classification’s construction, a formal proof 

can be used to demonstrate comprehensiveness of the classification, at least with 

respect to the chosen model [5]. 

6.1.3.3 Evaluating the “real world” nature of tasks 

As discussed in Section 3.1.4.1 classifications developed using formal modelling 

techniques e.g. [5], [49], or design spaces, where all possible permutations of tasks 

are generated by combining dimensions, (e.g. [37], [41]), leave open the question of 

whether the generated categories are merely constructs of the formal process or are 

in fact representative of ‘real world’ tasks.  Validation of such frameworks may 

therefore involve establishing that the tasks are indeed ‘real world’ tasks. This type 

of validation is usually dealt with in the literature by providing illustrative concrete 

examples for each possible category of abstract task. The most comprehensive 

example is probably Andrienko [5] who include several data scenarios from different 

domains which they use to provide examples to illustrate most of the possible 

iterations of tasks generated by their modelling approach. Sedig and Parsons [47] 

offer examples of existing tools which implement each of their patterns in order to 

evidence the existence and necessity of each pattern in the real world.  However, few 

frameworks offer an example task for every possible permutation of their model. 

Evaluating the ‘real world’ nature of tasks can therefore prove tricky. Simply because 
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we cannot readily think of a concrete example of a task category, it does not mean 

that it is not a real task, albeit perhaps exclusive to a particular domain or niche 

analysis scenario; Schulz et al. [37]  note that “what looks like an inconsistency in the 

design space may actually be just a very creative and unusual combination of design 

choices”. For the more extensive frameworks, examples may need to be drawn from 

multiple domains to cover all possible tasks, which may require input from multiple 

domain experts. 

6.1.3.4 Evaluating syncretism 

For classifications which seek to unite extant classifications, it is important to show 

that extant categories can be subsumed under the proposed system.  Often 

categories are compared through discursive methods e.g. [44], sometimes 

highlighting the advantages of the proposed classification e.g. [64]. A more rigorous 

approach is to explicitly map the categories of extant frameworks to those of the 

proposed framework, as done by Brehmer and Munzner [67]. The resulting mapping 

not only shows where the categories sit, but also reveals which categories are under- 

and over- represented in previous works. However, comparing categories between 

classifications may not be straightforward:  Schulz et al. [37] note difficulties including 

that categories which have been separated out in one work may be mixed in another, 

or authors may have fundamentally different ideas about what a task is (such as 

combining objectives and actions). 

6.1.3.5 Evaluating usability  

Ahn et al. [41] was the only paper reviewed which assesses the use of the 

classification by someone other than the classification developer, allowing them to 

evaluate its usability.  They do so as part of their empirical study which involves 

interviews with domain experts. Note that most classifications are intended to be 

used by visualisation researchers (as opposed to domain experts), in which case 

evaluation with other visualisation researchers in terms of their usability would be 

more appropriate. 
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6.1.4 Evaluation of usage 

While a wide range of usage scenarios for task classifications are identified in the 

literature (see Section 2.3), and the envisaged uses of the developed classification are 

often outlined in detail (e.g. [53], [67]), only a few papers evaluate their classifications 

directly with respect to their intended usage. Evaluating a task classification by 

employing it in an intended usage scenario provides us with information relating the 

utility of a classification for its intended purpose, and may also provide opportunities 

to indirectly evaluate the properties of the classification, as described in Section 

6.1.3.  

Use in the design process: Two papers include empirical evaluations of use in domain 

characterisation and abstraction. Ahn et al. [41] use interviews to explore the use of 

their classification as a generative method when establishing tasks of interest to 

domain experts, and its ability to help them organise, describe and clarify their tasks.  

Schulz et al. [45] report on a use case with domain experts. They use their 

classification to characterise and organise known tasks, establishing the most 

common and important tasks. Having also characterised existing tools according to 

the tasks that they support, they are also able to use their classification at the 

encoding/interaction technique design stage of the design process, selecting tools 

which are able to support the identified tasks.  

Other studies report more generally on the use of their classification in guiding the 

design process. Amar and Stasko [46] demonstrate the use of their framework in a 

hypothetical design scenario, in order to illustrate its use as a “systematic basis for 

thinking about and identifying issues in the data set.”  However, they do not develop 

(and therefore do not evaluate) the resultant system.  Wehrend and Lewis [8] used 

their catalogue to develop a visualisation, presumably using it to select appropriate 

techniques for inclusion (they do not give a detailed report regarding its use in the 

design process).  They do not formally evaluate the resulting representation, but 

conclude that it “appears to be an improvement over earlier representations designed 

in an ad hoc manner”.  This highlights one difficulty with this kind of validation, in that 

it can be difficult to say to what extent the classification was useful in guiding the 
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design.  For example, had the design process proceeded without the use of the 

classification, would the resulting system have been any different, or in some way 

less good? 

Two papers ([63] and [64])  - both concerned with analytical provenance - directly 

implement their classifications in the design of a system in order to track users’ 

analytical processes.  Gotz et al. [63] seek feedback from developers regarding the 

ease of implementing the model, and interview analysts who used the system with 

regard to how well it aligned with their mental models. 

Use in evaluation:  while many ways in which task classifications can be used in 

evaluations were identified in the literature (see Section 2.3.5; indeed, this is often 

cited as the primary motivation/purpose for their development), only one type of 

evaluation scenario was included in the body of work reviewed: using the 

classification to characterise extant systems, then comparing them according to task 

support [46], [45],[44],[65], [40]. Sacha et al. [44] also include a variation of this 

scenario, where they use their classification to assess a visual analytics system in 

terms of how it supports different aspects of their classification.  This allows them to 

point to shortcomings and areas for improvement in the system’s design. 

6.1.5 Evaluation with respect to adoption 

One final evaluation strategy identified in the literature is that of adoption rates: Heer 

and Schneiderman [48] suggest validation via “community feedback, critique and 

refinement”.  The adoption, evolution, and demise of task classifications ‘in the wild’, 

may provide significant information about their descriptive abilities, 

comprehensiveness, usefulness, and usability. Where limitations in task coverage are 

encountered, classifications are often adapted or extended (e.g. the extension of the 

Andrienko framework [5] to temporal data by Lammarsch et al. [49]), unified e.g. [45], 

[67], or new classifications are developed.  Where task classifications are found not 

to be useful they are likely to be superseded.  Even where a classification may offer 

better descriptive abilities or more comprehensive task coverage, in the busy world 
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of visualisation research, classifications which are easy to understand and require 

little learning overhead may be more likely to succeed.  

Aspect Method 

Construction method Critique of method employed [62], [46], [53], [8] 

Property: descriptive 

power 

- Use classification to describe a known set of tasks: from existing systems 

[46], [44]; common to a specific domain [45]; identified by domain experts 

[41]; carried out by users of visualisation systems [7]; problems in the 

literature [8] 

- Compare with other classifications’ descriptive powers [67] 

Property: 

comprehensiveness 

- Discussion of  limitations [53], [45], [66] 

- Demonstrate able to cover more tasks than extant works  

- Describe a (large) known set of tasks (as per descriptive power)  

- Formal proof (formal modelling processes only) [5] 

Property: real world 

nature of tasks 

- Provide illustrative concrete examples [5], [47] from across multiple 

domains. 

- Input from domain experts 

Property: syncretism - Discussion [44], [64] 

- Map categories of extant classifications to proposed classification [67] 

Property: usability Assess use of classification by intended users;  interviews [41], [63] 

Usage: design process - Empirical evaluation using the classification in the design process: as a 

generative method/task organisation [41]; in task organisation, tool 

selection [45] 

- Demonstrate use via hypothetical design scenario [46] 

- Report on results of using classification in design process [8] 

- Implement classification (for analytical provenance) [64], [63];  interviews to 

assess ease of implementing [63] 

Usage: evaluation Demonstrate use in evaluation process e.g. use of classification to characterise and 

compare task support in extant systems [46], [44], [45], [65], [40]; evaluate an 

individual system in terms if task support [44] 

Adoption Adoption rates as indicator of validity of classification. 

Table 22 Aspects of task classifications which can be evaluated and associated evaluation 

strategies 

 Evaluating the developed task classification 

As discussed in the previous section, a task classification can be evaluated with 

respect to four aspects: the construction process; the properties of the classification; 

the intended usage scenario; and adoption rates.  

The limitations of the construction method used in this work were discussed in 

Section 3.2. This identified the lack of involvement of people as one of the main 

drawbacks of using a formal modelling process to construct a task classification, 

particularly with respect to task coverage and establishing the real-world nature of 

tasks.    In order to validate the task classification developed in this thesis with respect 

to these properties, further work is required to establish: 

(1) whether the model is sufficient with respect to task coverage 
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(2) whether the tasks are ‘real-world’ or constructs of the formal process 

As there already exist a number of classifications of temporal graph tasks, it is also 

useful to show how this work compares with and improves upon those classifications.  

Further, as outlined in Section 6.1.4, in order to demonstrate the utility of a 

classification, it can be evaluated with respect to an intended usage scenario.   

Taking into consideration these aspects requiring validation, and the previous 

discussion relating to evaluation practices, the following strategy to evaluating the 

classification is adopted: 

Firstly, in Section 6.2.1, the developed task classification will be considered in relation 

to existing frameworks, particularly in terms of comprehensiveness and descriptive 

powers.  Demonstrating that the developed classification is able to capture the tasks 

of extant frameworks, and also tasks which the extant frameworks are not able to 

capture, will provide further information about these aspects. Given that three of the 

four extant classifications were constructed using taxonomic methods (only one uses 

a formal approach), this may also offer us some further information as to the real-

world nature of tasks.  In addition, the descriptive abilities of each of the frameworks 

in terms of Rind et al.’s three dimensions (perspective, abstraction, composition) will 

also be discussed.  

Secondly, an empirical study is presented, which uses the developed classification as 

a generative method at the task understanding and abstraction stages of the design 

process. This primarily demonstrates the utility of the classification in a usage 

scenario, but also offers further information relating to the comprehensiveness of 

task coverage, its descriptive powers and the real-world nature of the tasks.  As noted 

in Section 3.1.2.1, task typologies and design spaces do not provide information 

relating to the most frequently occurring tasks. However, the study demonstrates 

how the classification can be used to organise tasks and help establish which types 

of tasks are frequently occurring for a specific application. The design of the study 

draws on the designs of the empirical evaluations carried out by Ahn et al. [41] and 

Schulz et al. [45], and is discussed in more detail in Section 6.2.2. 
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Finally, in Chapter 9, a case study is presented, the first part of which involves using  

the classification to evaluate an extant visualisation system’s design in terms of its 

support for the task categories, in a manner similar to that described by  Sacha et al. 

[44] (as discussed in Section 6.1.4). This allows for the identification of shortcomings 

of the system and areas for improvement in the system’s design, and demonstrates 

the utility of the classification in a typical evaluation scenario.  

6.2.1 Considering the task classification in relation to extant works 

In this section, the task classification developed in this work is compared to the 

following four extant classifications (outlined in more detail in Section 2.4): 

• Lee et al.'s (2006) task taxonomy for static graph visualisation 

• Yi et al.'s (2010) tasks for temporal social network analysis 

• Bach, Pietriga, and Fekete's (2013) task taxonomy for dynamic graphs 

• Ahn et al.'s (2014) task taxonomy for network evolution analysis 

Let us first briefly consider how comparable these taxonomies are. As noted 

previously, Rind et al. [43] classify task categorisations along three dimensions: 

perspective (either objectives - i.e. questions about the data, or actions - i.e. means 

by which the questions can be answered), composition (the level to which the task 

has been decomposed into smaller sub tasks, ranging from high to low) and 

abstraction (either concrete - i.e. expressed in domain terms – or abstract – expressed 

in generic, domain-independent language).  Both Ahn et al.’s and Lee et al.’s 

taxonomies are included in Rind et al.’s survey and classification, as is the published 

version of the task classification presented in this work ([111]).  The classifications 

given in Rind’s survey are included in Table 23, to which classifications for Yi et al.’s 

and  Bach et al.’s taxonomies have been added. 
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 perspective composition abstraction 

why how HI IN LO GE DA DO TO 

Yi et al. [70] �  � ◦    �  

Ahn et al. [41] �   � ◦  �   

Kerracher et al. [111] �   ◦ �  �   

Lee et al. [40] �    �  �   

Bach et al. [110] �    �  �   
Table 23 showing the classification of the graph/temporal graph task taxonomies according to Rind 

et al.’s framework. The three levels of composition are high (HI), intermediate (IN), and low (LO); 

the four levels of abstraction are generic (GE), data type (DA), domain (DO), and tool architecture 

(TO). Table is ordered to highlight similarities and differences [���� primary class, ◦ partial match] 

All of the classifications consider analytical tasks (a “why” perspective). We can see 

that Yi et al.’s tasks are composed at a higher level than those of the other 

frameworks, and are also domain specific.  The remaining frameworks are all 

categorised as “data type” along the abstraction level, and their tasks are of low to 

intermediate composition.   

The level of abstraction used by a task classification affects its descriptive powers and 

potential task coverage. While Yi et al.’s tasks are described using rather generic 

language, they explicitly intend to describe the tasks of social network analysis, and 

the classification is derived from an understanding of that domain.  It is therefore 

likely that these tasks will be less able to cover the tasks of other domains than 

frameworks intended to be domain independent (for example, Yi et al. do not 

mention tasks involving paths, which would be of high importance e.g. in 

transportation networks).  

In terms of composition, describing tasks at a lower level of composition may be 

particularly advantageous during the design process, especially during the domain 

problem characterisation and abstraction design stages [43]. This is similarly the case 

when constructing a mapping between tasks and the techniques which are able to 

support them, as per one of the aims of this thesis. However, Rind et al. [43] also 

suggest that low-level tasks may be too trivial when intended for use in stimuli for 

certain types of experiment, while high-level tasks can be too open-ended for 

quantitative analysis of time and errors; a suitable level of composition therefore 

needs to be found when choosing tasks for use in evaluation scenarios.  
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Let us now consider how the categories of the extant classifications relate to those 

of the classification developed in this thesis.  Given the difficulties noted previously 

in comparing task classifications [37], this discussion will refer largely to the high level 

distinctions of task type and quadrants.  

Yi et al.’s taxonomy specifies three main tasks when investigating change in social 

networks, based on the levels at which graphs can be analysed ([70] p1035):  

• Task 1—Analysis of temporal changes at the global level. 

• Task 2—Analysis of temporal changes at the subgroup level. 

• Task 3—Analysis of temporal associations among nodal and dyad level 

attributes. 

These tasks are captured in the quadrants: Q1 and Q3 (node/dyad level) and Q2 and 

Q4 (subgroup and global level). As outlined previously, Yi et al.’s tasks are specified 

at a higher level of composition than those of the classification developed in this 

thesis, therefore a specific mapping to the task types of the taxonomy is not possible.  

 

 Lookup Comparison Relation  

Seeking Direct Inverse Direct Inverse 

Q1 � � � 

Q2 � � � 

Q3      

Q4i �     

Q4ii      
Table 24 General mapping of Lee et al.’s tasks to the high level categories of the classification 

developed in this thesis. Examples of direct and inverse tasks are included, as are examples of both 

relation seeking and comparison, although a distinction is not explicitly made. Note that most 

tasks are structural, as attributes are treated separately and only a limited number of examples of 

attribute based tasks are given. 

As Lee et al.’s taxonomy is intended for static graphs, almost all of their tasks can be 

positioned in Q1 and Q2; only their high level task ‘how has the graph changed over 

time?’ considers the temporal dimension. While their discussion of static tasks is 

comprehensive and offers many useful real-world examples, the taxonomy outlined 



 154 

 

 

in this thesis offers a systematic way to specify the possible permutations of these 

tasks. For example, for tasks involving attributes on nodes, the general description, 

find the nodes having a specific attribute value, does not consider the opposite, direct 

lookup task, find the values of specific nodes.  Similarly, their topological tasks are 

generally phrased for relation seeking, rather than comparison; comparison is only 

briefly mentioned for the whole graph case, omitting the possibilities amongst 

individual nodes or edges. They also separate their topology and attribute based tasks 

into distinct categories.  However, through the notion of behaviours, the framework 

in this thesis makes clear the important relationship between attribute values and 

graph structure, and includes tasks involving attribute distributions over the graph. 

Three of Lee et al.’s tasks do not fit into the task taxonomy described in this thesis, 

because they do not involve questions about the data: ‘Follow path’ and ‘revisit’ are 

visual tasks (actions, to use Rind et al.’s [43] terminology), while ‘give a meaningful 

name to a group’ is not a question asked of the data – it relates to an individual’s 

interpretation of the data. The general mapping of Lee et al.’s tasks to the high level 

categories of the classification developed in this thesis are shown in Table 24. 

 Lookup Comparison Relation  

Seeking Direct Inverse Direct Inverse 

Q1 � �    

Q2 � �    

Q3 � �    

Q4i � �    

Q4ii      

Table 25 General mapping of Bach et al.’s tasks to the high level categories of the classification 

developed in this thesis. Note that these tasks involve graph structure only. 

Bach et al.’s approach is most similar to the approach taken in developing the 

taxonomy presented in this thesis. Their ‘when’ dimension is captured by the 

temporal referrer, while the ‘where’ dimension is the equivalent of the graph 

referrer.  The ‘what’ dimension is similar to the characteristic component of the data 

model used in this thesis; note, however, that only structural behaviours are 

discussed in Bach et al.’s framework, with no mention of attributes. Their approach 

allows them to capture both direct and inverse lookup tasks. However, they do not 

consider relations and attributes as separate data items (these are incorporated into 
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the ‘what’ and ‘where’ dimensions). This makes their task framework less complex, 

but means they are not able to capture comparison and relation seeking tasks. In 

addition, through use of the quadrants, the framework in this thesis makes clear how 

the tasks can systematically be applied to different data items. The general mapping 

of Bach et al.’s tasks to the high-level categories of the classification developed in this 

thesis are shown in Table 25. 

 Lookup Comparison Relation  

Seeking Direct Inverse Direct Inverse 

Q1 �    

Q2 �    

Q3 � �   

Q4i �* �   

Q4ii      

Table 26 General mapping of Ahn et al.’s tasks to the high level categories of the classification 

developed in this thesis. Note that direct and inverse variations of lookup and comparison tasks 

are not explicitly considered. Comparison is considered at a high level, under compound tasks. 

Relation seeking tasks are not explicitly mentioned, nor are examples given. *Patterns discussed 

are more appropriate to Q3 tasks. 

Table 26 shows the general mapping of Ahn et al.’s tasks to the classification developed 

in this thesis. The main limitation of Ahn’s work is the lack of a systematic explanation 

of the actual tasks involved.  Their design space essentially specifies the data items 

which may be involved in tasks. As outlined in Section 2.4.3, they identify three 

aspects: entity (node/link, subgroup, network), property (structural or domain 

attributes) and temporal features (whether they occur at an individual time point or 

span multiple time periods (what they refer to as ‘aggregated events’). In the latter 

case, these can be described in terms of the shape of change (growth or contraction, 

convergence or divergence, stability, repetition, peak or valley) and rate of change 

(speed, acceleration or deceleration).  These aspects can roughly be equated to the 

data model used in this thesis, with entities being the equivalent of references, 

properties being similar to characteristics, and temporal features spanning multiple 

time periods reminiscent of behaviours.  One limitation of their framework (in data 

model terms) is that the shapes of change defined under temporal features (roughly 

equivalent to patterns) are too limited to adequately handle non-numeric attributes 
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and are not appropriate to describe change in relational structures (see Section 

5.2.1).  Within the design space they map tasks which are described using terms such 

as ‘find’, ‘identify’, and ‘observe’, all of which can be considered to be look up or 

behaviour characterisation tasks (examples of both direct and inverse tasks are 

included, but these are not distinguished under their model).  

During their evaluation of the taxonomy, Ahn et al. discovered they had omitted tasks 

involving comparison, correlation, and inference. While they seek to rectify this 

omission by adding a category of tasks called ‘compound tasks’, this category is 

limited to the occurrence of five types of tasks identified in the literature, and it is 

not entirely clear how these tasks combine with the dimensions identified in their 

design space.  The five tasks they identify in this category can be mapped to either 

behaviour characterisation tasks or direct comparisons in quadrants 3 and 4i of the 

classification in this thesis. They do not consider comparison in quadrants 1 or 2. 

 Lookup Comparison Relation 

Seeking 

Q1 A, B, L L L 

Q2 A, B, L L L 

Q3 A, B A  

Q4i A, B A  

Q4ii    

Connection 

Discovery 

   

Table 27 High level summary of task categories arising in extant works. A = Ahn et al. [41], B = Bach 

et al. [71], L = Lee et al. [40] 

The above discussion has shown that with the exception of the two action tasks noted 

for Lee et al.’s classification, the tasks of the extant works can be captured by the task 

classification developed in this thesis.  A very high level overview of the types of tasks 

mentioned in extant works mapped to the categories of the framework developed in 

this thesis is given in Table 27.  We can see that relation seeking in quadrants 3 and 4 

is not considered, nor are any tasks involving Q4ii (distribution of temporal trends 

over the graph). Additionally, while Ahn et al. did mention tasks involving inference 

and correlation amongst those they discovered to be missing, these do not appear in 
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the list of compound tasks they include in their framework. None of the classifications 

therefore considered tasks associated with connection discovery. Note that the 

mapping offered here gives a very general overview and perhaps paints a rather 

generous picture of task coverage in extant classifications: it maps the case where an 

example of a task appears in a framework (as opposed to a category having been 

specified).  It also does not highlight the lack of systematic coverage of task variations 

(such as inverse or direct variations of tasks) or variations in combinations of 

same/different time/graph objects in the other frameworks.  

In terms of comprehensiveness, we can conclude that not only is the classification in 

this work able to capture all of the tasks of the extant frameworks, we can also see 

that none of the extant frameworks are able to capture all of the tasks of the other 

extant frameworks, and they also fall short in capturing the additional categories 

identified in this work. 

In addition to demonstrating that the task classification is able to cover more task 

categories than any of the extant frameworks individually, it also gives us a little more 

information relating to the real world nature of tasks.  Of the classifications reviewed, 

only Bach et al.’s took a formal approach to task generation.  The others gathered 

tasks from the literature and extant systems: Lee et al. extracted their tasks from the 

literature (an extant taxonomy of tasks for tree visualisation and tasks used in user 

studies); Ahn et al. surveyed existing systems with regard to the tasks they support; 

Yi et al. appear to derive their tasks from their knowledge of social network analysis.  

Some evidence is therefore provided for the real world nature of the categories of 

the classification appearing in the extant classifications. Further investigation is 

needed to establish whether relation seeking in Q3 and Q4i, and tasks involving Q4ii 

and connection discovery, are indeed real world tasks or constructs of the formal 

process employed in the construction of the framework in this thesis.  

6.2.2 Using the task classification in the design process 

This section presents an empirical study which uses the developed classification as a 

generative method at the task understanding and abstraction stages of the design 
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process. Further, the study demonstrates how the classification can be used to 

organise tasks and help establish which types of tasks are frequently occurring for a 

specific application. The use of task classifications in these scenarios was discussed in 

Section 2.3.4.  As described earlier, this study is primarily designed to evaluate the 

utility of the classification in a usage scenario, but also offers further information 

relating to the comprehensiveness of task coverage, its descriptive powers and the 

real-world nature of the tasks.   

6.2.2.1 Overview 

The design of the study draws on the designs of the empirical evaluations carried out 

by Ahn et al. [41] and Schulz et al. [45]. This section offers a brief overview of the 

study design and how it seeks to evaluate the aspects outlined above.  Further details 

of the design and implementation of the study follow in subsequent sections. 

The chosen design scenario is that of developing a visualisation tool to help 

academics explore their department’s co-authorship network in order to better 

understand collaborative working practices and publishing rates within their 

department. This scenario is in keeping with the examples used in Chapter 4 and 

Chapter 5, and the case study of Chapter 9.  

The study was divided into two parts, both of which were conducted by email. In the 

first part, academics were presented with the analysis scenario and data set. They 

were asked to consider the data and note any questions which might be of interest 

to them.  They were also asked to rate how interesting each of their questions were 

on a scale of 1-4 (where 1 was of least interest and 4 of most interest).  The responses 

to these questions were then categorised using the high-level categories of the 

framework.  Through this process, a number of task ‘gaps’ – task categories for which 

none of the participants had identified a task – were revealed. 

For the second part of the study, a selection of the identified task gaps were 

presented to participants, and they were asked to rate how interesting they found 

them using the original scale, with the addition of 0 to indicate that a task was of no 

interest.  
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The study was specifically designed to evaluate the classification with respect to two 

usage scenarios: 

[U1] Use of the classification as a generative method in the design process: as 

outlined in Section 2.3.4.1, one potential use of a classification is in overcoming the 

known problem of the difficulty of eliciting tasks by asking people to introspect on 

their task needs (a particular issue in Exploratory Data Analysis scenarios). Being able 

to find tasks of interest which participants had not previously considered by 

presenting them with a range of tasks generated using the classification evidences 

the utility of the classification in this usage scenario. In this case, the study is designed 

to answer the question: “during requirements gathering, can the task classification 

be used to discover tasks of interest which have not previously been considered?” 

[U2] Use of the classification in task organisation: another important role that 

classifications can play during the design process is in characterising tasks in a 

consistent manner, and organising them to establish the most commonly occurring 

and important tasks.  In this regard, the study seeks to answer the question: “can the 

task classification act as a useful means of organising tasks?” 

In addition, the study evaluates the following properties of the classification: 

[P1] Descriptive power and task coverage: part 1 of the study provides us with a set 

of real world tasks to be classified.  The classification’s ability to capture these tasks 

provides some evidence relating to its descriptive powers and task coverage.  The 

study therefore helps us answer the question “to what extent is the taxonomy able 

to capture real world tasks?”.  Note that only a partial answer to this question is 

possible within the limits of the study, as the set of tasks is drawn from a single 

domain and analysis scenario; even if it is able to capture all of the tasks generated 

in the study, it is possible that tasks which cannot be captured may exist in other 

domains or analysis scenarios. 

[P2] Real world nature of tasks: the set of tasks generated by participants in part 1, 

along with the set of tasks which participants find interesting in part 2, are examples 



 160 

 

 

of real world tasks.  Categories of the classification to which these tasks can be 

mapped can therefore be said to be real-world in nature, rather than mere artefacts 

of the formal process followed in generating the classification.  The study therefore 

goes some way to answering the question “to what extent are the tasks of the 

taxonomy ‘real world’ (as opposed to artefacts of the formal process used in its 

development)?”. Again, the study may only partially answer this question due to the 

single domain and analysis scenario used.  In the case that no tasks are mapped to a 

task category, we cannot conclude that this category is an artefact of the construction 

process, as examples may exist in other domains or analysis scenarios. 

Finally, the study offers the opportunity to compare the developed framework with 

extant frameworks: 

[CEx] Comparison with extant classifications: in the case that a task category which is 

not covered by extant classifications (see Section 6.2.1) and for which a real world 

task example is found during the study, the utility of using the classification 

developed in this work over extant frameworks (in terms of task coverage) can be 

demonstrated.  In this respect, the study helps answer the question “is there any 

advantage to using the developed classification over extant frameworks?” 

6.2.2.2 Study details 

Pilot 

The study was piloted with two subjects prior to running, and appropriate 

adjustments were made to the study design (see discussions relating to data, below, 

and identifying task gaps in Section 6.2.2.3). The results of the pilot study are 

excluded from the results reported here. 

Participants 

The participants - domain experts - were academics belonging to the Institute of 

Informatics and Digital Innovation (IIDI) at Edinburgh Napier University.  19 

academics were invited to participate in the study, of which 12 accepted.  
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Data 

Participants were provided with a data set consisting of publications data relating to 

approximately two-hundred authors and nearly two thousand publications, spanning 

a period of over thirty years. A description of the data, and an illustrative excerpt 

from the data, were included in the instructions to participants (Appendix C), along 

with web links to the full data set. The following data was made available: 

Authors: 

• Name  

• Research centre affiliation (CAVES, CCER, CDCNS, CID, CSI) 

• Joining and leaving dates 

Publications: 

• The list of authors 

• The year in which it was published  

• The type of publication (conference proceeding, journal article, book 

chapter, etc.) 

To illustrate, an extract of the data is included in Table 28 and Table 29 below. 

Table 28 Authors  

Name Research 

Centre 

Joined Left 

Alan Cannon CAVES 2003 - 

Kevin Chalmers CAVES 2005 - 

Paul Craig CAVES 2008 2012 

Martin Graham CAVES 1998 2015 

Jessie Kennedy CAVES 1991 - 

Natalie 

Kerracher 

CAVES 2010 - 

Robert Kukla CAVES 1996 - 

Paul Shaw CAVES 2008 - 

Alistair Thomson CAVES 2012 2013 

… … … … 
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Table 29 Publications  

ID Year Authors Type 

1456 2015 Natalie Kerracher, Jessie Kennedy, Kevin 

Chalmers 

Journal Article 

1455 2015 Natalie Kerracher, Jessie Kennedy, Kevin 

Chalmers, Martin Graham 

Conference Paper 

1444 2014 Jessie Kennedy, Externals Book Chapter 

1401 2014 Martin Graham, Jessie Kennedy Journal Article 

1385 2014 Natalie Kerracher, Jessie Kennedy, Kevin 

Chalmers 

Conference Paper 

1343 2014 Jessie Kennedy , Externals Journal Article 

1341 2014 Paul Shaw, Martin Graham, Jessie Kennedy, 

External 

Journal Article 

1248 2013 Paul Craig, Alan Cannon, Robert Kukla, Jessie 

Kennedy 

Journal Article 

1219 2013 Jessie Kennedy, Martin Graham, Externals Conference Paper 

1107 2013 Alistair Thomson, Martin Graham, Jessie 

Kennedy 

Conference Paper 

… … … … 

 

A decision was taken following initial piloting of the study to limit the data made 

available to participants to that relating to types and amounts of publications (as 

outlined above). In the initial pilot, the full details of each publication were given 

(from which research topic could potentially be extrapolated).  However, this 

prompted a large number of questions which could not be answered directly based 

on this data (for example “Are there any related spin off projects that appeared from 

a particular research over the years, or other extensions of the same work?”).  Whilst 

this would be an invaluable finding were the purpose of the study to actually design 

a visualisation system, it was not helpful when trying to evaluate the usefulness of 

the classification in task discovery (establishing whether the correct data is being 

used - whilst a key part of the domain problem characterisation stage of the design 

process - is not an intended use of the taxonomy). A decision was therefore taken to 

reduce the scope of the data in order to reduce the amount of responses which 

required data outside of that with which the participants were being presented. It 

appears that this had the unfortunate consequence of making the dataset less 
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interesting to some of the participants (see Participants’ interest in the data in 

Section 6.2.2.3, below).  

Instructions to participants 

In the first part of the study, participants were presented with a real world design 

scenario. They were told that IIDI is developing a visualisation system to help people 

working within the Institute better understand its collaborative working practices and 

publishing rates. It was explained that as part of the design process, we want to find 

out what questions people using the visualisation system would like to be able to ask 

of the data that we have available. The data was presented, as outlined above, and it 

was explained how a co-authorship network could be constructed from this data. 

Participants were first asked a multiple choice question relating to the capacity in 

which they might be interested in the data.  Response options given were: 

• In a management capacity 

• Understanding my own data, e.g. looking at my own publishing track record, 

comparing myself with colleagues etc. 

• Finding potential collaborators 

• Understanding the data relating to my research group 

• Other (please specify): 

Participants were then asked to spend around 10-15 minutes considering the data, 

and note any questions which might be of interest.  They were also asked to rate how 

interesting each of their questions were on a scale of 1-4, as follows: 

1 = slightly interesting  

2 = moderately interesting  

3 = very interesting  

4 = extremely interesting 
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In part 2, participants were presented with a list of tasks (described as “questions” in 

the information sheet) which were generated using the task framework and based 

on the task categories identified as gaps in part 1.  They were asked to rate each task 

in terms of how interesting it was to them using the same scale as in part 1, with the 

addition of “0 = of no interest”. If a participant did not understand a question, they 

were given the option to contact the evaluator for clarification, or note “DNU” (do 

not understand) in the relevant box.  Illustrations were used in order to help 

participants understand the meaning of the tasks presented. The instructions made 

clear that these images were for illustrative purposes only, were constructed using 

synthetic data, and that there may be other, more appropriate ways to visualise the 

data to support a particular task.  

The instruction sheets for parts 1 and 2 are included in Appendices C and D. 

Task categorisation 

For the purposes of the study, the participants’ tasks returned in part 1 were 

categorised according to the following dimensions of the framework: task type 

(direct/inverse lookup, direct/inverse comparison, relation seeking), data quadrant 

(Q1, Q2, Q3, Q4i, Q4ii), and whether they involved attribute only, attribute and graph 

structure, or graph structure only.  While further subcategorisation by variations 

within task types (such as additional constraints in inverse lookup tasks or whether 

comparisons involve the same or different times etc.) is possible and potentially 

useful at later stages in the design process, (for example, when selecting specific 

visual techniques), for the purposes of task discovery, a more general classification 

by data and task type was preferred when trying to establish the main aspects of the 

data and tasks in which people are interested.  

One additional categorisation which was not considered when developing the task 

framework was made.  This involved classifying tasks according to whether the data 

was aggregated on time and/or graph, and is discussed further in Section 6.2.2.4.  
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6.2.2.3 Results 

Participants’ interest in the data 

In response to the question relating to participants’ interest in the data, of the 

options offered: 

• Half (6/12) of participants were interested in “understanding my own data” 

• Around forty percent (5/12) were interested in “understanding the data 

relating to my research group” 

• One third (4/12) were interested in “finding potential collaborators” 

• One quarter (3/12) were interested in the data “in a management capacity” 

• Three participants cited other reasons, including: supporting researchers to 

find potential collaborators, understanding who the ‘real experts’ are, and 

“nosiness”. 

As noted in Section 6.2.2.2 (Data), above, following piloting, the dataset had been 

purposefully constrained in order to reduce the number of responses which required 

data outside of that with which the participants were presented. However, five out 

of the twelve participants explicitly commented that the data used in the study was 

of limited interest to them.  The main reason given was that it lacked information on 

research topics and publication quality. One of these participants suggested that the 

data used would likely be of more interest to those working in a management 

capacity; interestingly, none of the five had selected this option.  Of these five 

participants, two did not supply any questions of interest. 

Tasks identified by participants 

A total of 72 questions were returned by the 12 participants (mean = 6; max = 12; 

min = 0).  Just over half of these questions (36/7129; 51%) were rated as very or 

extremely interesting. Note that the participants who explicitly stated their lack of 

                                                      
29 One question was not rated. 
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interest in the data (“limited interest participants”) returned fewer questions (mean 

of 3.2, compared to a mean of 6 per participant overall, and 8 per participant in the 

“interested participant” group). They also generally rated them to be of less interest, 

with only one third of questions (5/1529; 33%) rated as very or extremely interesting, 

compared to over 50% (31/56; 55.36%) in the interested participant group (Table 30).  
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  Interest Rating (count) 

 

Total 

questions 

returned 

[mean] slightly moderately very 

extremel

y not rated 

All participants 

(n=12) 72 [6] 6 (8.45%) 29 (40.85%) 29 (40.85%) 7 (9.86%) 1 

‘Limited 

interest’ 

participants* 

(n=5) 16 [3.2] 4 (26.67%) 6 (40%) 3 (20%) 

2 

(13.33%) 1 

‘Interested’ 

participants** 

(n=7) 56 [8] 2 (3.57%) 23 (41.07%) 26 (46.43%) 5 (8.93%) - 
*Participants who explicitly stated limited interest in the data 
**All other participants excluding not interested participants 

Table 30 Number of questions returned by participants and reported interest ratings. Limited 

interested participants are the five who explicitly indicated their lack of interest in the data. The 

remaining participants are considered to be interested participants. 

Mapping participant tasks to classification  

Appendix E includes the list of participant tasks, their categorisation under the task 

framework and, where necessary, explanations of how the categorisation was 

reached.  Table 31 gives a summary of the numbers of participant tasks mapped to 

each of the categories of the classification.   
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Direct Lookup/ 

Behaviour 

Characterisation 

Inverse 

Lookup/ 

Pattern 

Search 

Direct 

Comparison 

Inverse 

Comparison 

Relation 

Seeking 

Q1 (node/edge 

at timepoint) 
- 1 

10 (all 

auxiliary 

tasks) 

  3 

Q2 (graph at 

timepoint) 

Structure      

Attribute 

only 
    2 

Attribute + 

Structure 
     

Q3 (node/dyad 

over time) 

Structure 2     

Attribute 6 6    

Q4i (graph over 

time) 

Structure 5 5    

Attribute 

only 
     

Attribute + 

Structure 
     

Q4ii (set of 

temporal trends) 

Structure      

Attribute  1    

Q4ii (distribution 

of temporal 

trends over the 

graph) 

Structure      

Attribute  1     

 

Tasks involving aggregated data 

Direct Lookup/ 

Behaviour 

Characterisation 

Inverse 

Lookup/ 

Pattern 

Search 

Direct 

Comparison 

Inverse 

Comparison 

Relation 

Seeking 

Q2 aggregated 

on graph 
Attribute 3     

Q3 aggregated 

on time 
Attribute 6 3 1   

Q4 aggregated 

on time 

Structure 3 3 3   

Attribute + 

structure 
1 4    

Attribute 

only 
2 2    

Q4 aggregated 

on graph 
Attribute 1 1    

Q4 aggregated 

on time and 

graph 

Attribute 4  2   

 
 Structural comparison Structural relation seeking 

Q1 2 6 (1 auxiliary task) 

 

Connection Discovery: 

Relationship between network structure and attributes 1 

Relationship between structures  

Relationship between attributes  

 

Table 31 Number of participant tasks mapped to each category of the classification 
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Eight tasks were not mapped to the categories of the classification (see Table 32).  

The reasons for this were: 

• Task did not make sense (2 tasks) 

• Task involved an attribute not included in the data (4 tasks) 

• Task was specified at a higher level of composition than that offered by the 

classification (2 tasks) 

Task Reason for exclusion 

What is the ordering of people when the number of collaborators? (would 

be better if the external collaborators were known and so could be 

distinguished) 

Doesn’t make sense 

How many times have 2 individuals published together for the first time? Doesn’t make sense 

Do patterns of collaboration vary according to job status? Job status does not appear in the 

data 

What topic is X working on? (I didn’t see it in the data, but presumably the 

publication reference must be available in the database, or at least the title? 

If it’s not, feel free to discard this question) 

Research topic does not appear 

in the data 

What is the evolution of research topics for an individual/group over time? Research topic does not appear 

in the data 

Who else is publishing in journals that interest me Journal details does not appear 

in the data 

Is it possible to identify mentorship relationships in the data? High level task 

High level questions: 

• Who would I be able to help? 

• Who would be interested in me? 

• Who do I need to make friends with? ☺ 

High level task 

Table 32 Tasks excluded from mapping 

Identifying task gaps 

As can be seen from Table 31, using the classification, it is possible to identify a 

number of categories of tasks which were not considered by participants.  For each 

gap, an appropriate generic task description was constructed, along with two or three 

illustrative concrete examples.  For example, for Q1 Direct Comparison, participants 

were asked: “Would it be interesting to compare attribute values between authors 

or between years? E.g. compare Author A’s publication count in 2015 and 2016; 

compare author A and author B’s publication counts in 2015; compare author A’s 

journal publication count in 2015 with their conference paper count.” Where 
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appropriate, images were also used to help describe what was intended by the task 

description. For example, Q2 Behaviour Characterisation was illustrated with an 

image showing small multiples of a network changing over time, with a call out 

containing an enlarged image of the network in an individual year, to indicate that 

the task involved the network in a specific year of interest (Figure 55). Encodings were 

described where necessary.  As noted previously, participants were instructed that 

these images were used to help illustrate the questions only, and had been 

constructed using synthetic data. They were also told that there may be other, more 

appropriate ways to visualise the data when answering a particular question. 

 

Figure 55 Example of illustration used to assist with task understanding (Q2 Behaviour 

Characterisation) 

Once task examples had been constructed for each of the identified gaps, the second 

part of the study was piloted.  The instruction sheet and task examples used in the 

pilot are included in Appendix F. It became apparent during piloting that the amount 

of time required to consider every task gap in turn was far more than could 

reasonably be expected of our volunteer participants (estimated at over 4 hours; the 

pilot session was abandoned half way through when it became clear that it was taking 

an unreasonable length of time for the participant to complete.) Whilst such a 

process could justifiably be used in a real world requirements gathering process, for 
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the purpose of evaluating the classification, it was decided to limit the number of 

tasks presented to participants.   

The set of gaps involving behaviour characterisation and connection discovery were 

selected for use in Part 2 of the study.  These are summarised in Table 33, and the 

participant instruction sheet containing task wording and examples is included in 

Appendix D. Not only did this provide a manageable number of tasks (16 tasks), this 

meant it was possible to explore whether all of the different aspects of the data were 

of interest. This was particularly important, as the one of the most fundamental 

differences in visual techniques (e.g. layout) required to support tasks comes from 

the different aspects of the data being explored (see Chapter 8).  Further, it is likely 

that comparison or relation seeking in these quadrants is less likely to be of interest 

where behaviour characterisation is not of interest, therefore it makes sense to first 

ask about quadrants. 

Task type (and attribute/pattern) Question 

Q2 (graph at timepoint)  

Behaviour Characterisation 

structure 1.I 

structure & attribute (publication count) 1.II 

structure & attribute (research centre affiliation) 1.III 

attribute only (frequency distribution) 1.IV.a 

attribute only (ranking) 1.IV.b 

Q4i (graph over time)  

Behaviour Characterisation 

structure & attribute (publication count, research centre) 2.I 

attribute only (frequency distribution over time) 2.II.a 

attribute only (ranking over time) 2.II.b 

Q4ii (set of temporal trends)  

Behaviour Characterisation 

attribute (publication count) 3.I 

attribute (research centre affiliation) 3.II 

structure 3.III 

Q4ii (time over graph)  

Behaviour Characterisation 

attribute 4.I 

structure 4.II 

Connection Discovery between attributes (heterogeneous behaviours) 5.I 

between structure and attributes 5.II 

between structures 5.III 

Table 33 The 16 task gaps investigated in Part 2. Examples of each type of task can be found in 

Appendix D. Tasks highlighted in blue are those which are included in this framework but are not 

found in the other extant task classifications (as discussed in Section 6.2.1) 
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Response to Part 2 

Ten of the original twelve participants completed part 2 of the study, as two 

participants were not available (both of whom belonged to the ‘interested’ group of 

participants described in part 1).   

Of the 16 tasks, all were found to be of some level of interest to the participants 

collectively. Overall, of the 15930 ratings returned, over one third (38%) were ratings 

of very or extremely interesting. Only 8 ratings (5%) of no interest were returned.  A 

difference in interest levels between the two groups of participants (interested and 

limited interest participants) distinguished in part 1 of the study can be seen in Figure 

56. 47% of the limited interest group’s ratings were very or extremely interesting, 

compared to 29% in the interested participants group.  All “no interest” ratings were 

returned by the interested participant group. This finding was unexpected and is 

discussed further in Section 6.2.2.4. 

                                                      
30 The 16 tasks were rated by each of the 10 participants; one participant omitted to rate one of the 

tasks. 
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Total 

ratings 

Interest rating 

none slightly moderately very extremely 

All participants 

(n=10) 159* 8 (5.03%) 

55 

(34.59%) 36 (22.64%) 

43 

(27.04%) 

17 

(10.69%) 

‘Limited interest’ 

participants (n=5) 79* 0 

18 

(22.78%) 24 (30.38%) 

28 

(35.44%) 9 (11.39%) 

‘Interested’ 

participants (n=5) 80 8 (10%) 

37 

(46.25%) 12 (15%) 

15 

(18.75%) 8 (10%) 
*note that one participant omitted to rate one of the tasks 
Figure 56 Overall ratings returned by 10 participants relating to how interesting they found 16 

suggested tasks; also shown is the split by interest level in the data expressed by participants in part 

1 of the study. 

When considering task ratings at an individual task level, as would be expected, some 

tasks were found to be more interesting than others.  Figure 57 shows the tasks 

ordered31 by descending levels of interest. We can see that all tasks are thought to 

be of some level of interest. We can also see that the eight “no interest” ratings 

returned were spread over eight separate tasks (as opposed to being directed at a 

                                                      
31 The tasks were ordered using weightings on the interest levels (no interest = 0, extremely interesting 

= 4) to calculate their position. 
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single task of very limited interest to participants). Over a third of the tasks were 

thought to be very or extremely interesting by half of the participants. 

Of particular interest were connection discovery tasks between network structures 

(e.g. investigating the relationships between the structures of the co-authoring 

network at different time points, or whether changes in one part of the network 

affect other parts of the network), behaviour characterisation tasks involving changes 

in both structure and attribute values in the graph over time (e.g. how the network’s 

structure and distribution of publication counts or research centre affiliations change 

over time), and connection discovery between attributes (for example correlation or 

influence between attributes, such as the relationship between research centre and 

publication counts).  As can be seen in the table in Figure 57, it would not have been 
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possible to find two of the tasks thought to be most interesting to participants.  This 

is discussed further in Section 6.2.2.4, point [CEx].  

 

Question Task type (and attribute/pattern) 

5.III Connection Discovery between structures 

2.I Q4i (graph over time)  

Behaviour Characterisation 

structure & attribute (publication count, research centre) 

5.I Connection Discovery between attributes (heterogeneous behaviours) 

3.I Q4ii (set of temporal trends)  

Behaviour Characterisation 

attribute (publication count) 

1.I Q2 (graph at timepoint)  

Behaviour Characterisation 

structure 

1.II Q2 (graph at timepoint)  

Behaviour Characterisation 

structure & attribute (publication count) 

1.III Q2 (graph at timepoint)  

Behaviour Characterisation 

structure & attribute (research centre affiliation) 

5.II Connection Discovery between structure and attributes 

3.III Q4ii (set of temporal trends)  

Behaviour Characterisation 

structure 

3.II Q4ii (set of temporal trends)  

Behaviour Characterisation 

attribute (research centre affiliation) 

1.IV.a Q2 (graph at timepoint)  

Behaviour Characterisation 

attribute only (frequency distribution) 

4.I Q4ii (time over graph)  

Behaviour Characterisation 

attribute 

1.IV.b Q2 (graph at timepoint)  

Behaviour Characterisation 

attribute only (ranking) 

2.II.b Q4i (graph over time)  

Behaviour Characterisation 

attribute only (ranking over time) 

2.II.a Q4i (graph over time)  

Behaviour Characterisation 

attribute only (frequency distribution over time) 

4.II Q4ii (time over graph)  

Behaviour Characterisation 

structure 
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6.2.2.4 Discussion 

Let us consider the results of the study in relation to the questions outlined in Section 

6.2.2.1. 

[P1] Descriptive power and task coverage: To what extent is the taxonomy able to 

capture real world tasks? 

The set of 72 tasks returned by participants in part 1 of the study were classified 

according to the categories of the framework. All tasks - with the exception of the 

eight discussed in Section 6.2.2.3 – were successfully classified. The inability to 

classify the eight tasks did not suggest a need to extend the taxonomy with additional 

categories; the reasons for the difficulty in classifying stemmed largely from issues 

with the tasks themselves (either tasks which did not make sense or involved 

attributes that did not exist in the data).  Only two tasks could not be classified as 

they were specified at a higher level of composition than that offered by the 

classification. These tasks could have been categorised following further specification 

by the participants (the task taxonomy could potentially be useful in this regard in 

exploring decomposition with the participant), but for the purposes of the study they 

were omitted. Based on this, it can be concluded that the taxonomy was successfully 

able to capture this specific set of real world tasks, and – within the limits outlined in 

Section 6.2.2.1 – this provides evidence in favour of the taxonomy’s descriptive 

abilities. 

The process of abstracting tasks was non-trivial and required an iterative process to 

ensure that tasks were consistently categorised.  A number of choices needed to be 

made during the classification process, which are discussed further in this section. 

This was in a large part due to the difficulties associated with translating vague 

natural language into precise formal definitions. For example, task 35, “who is still 

currently in the School?” could potentially be translated in a general way as a question 

Figure 57 Part 2 tasks: stacked bars show count of interest ratings for each task, in 

descending order by interest level. Concrete examples of each type of task can be found in 

Appendix D. Tasks highlighted in blue are those which are included in this framework but 

are not found in the other extant task classifications (as discussed in Section 6.2.1) 
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asking about which members of staff are currently in the School (direct lookup), or it 

could be translated more precisely as a task which asks about members of staff in the 

current year who were also present in the previous year (relation seeking).  Where a 

more precise translation was available, this was selected.   

As noted by Andrienko, it is often possible to describe tasks either as a sequence of 

elementary tasks or as a single synoptic task.  For the purposes of this study, 

preference was given to synoptic description. This is not only because synoptic tasks 

are given primacy in the framework, but because the different quadrants - which 

reflect the different possible data items on which synoptic tasks operate - require 

markedly different visual techniques.  

Many tasks made no reference to a specific year or a particular period of time.  For 

example, task 6432, “Who’s working with whom?”, or task 21, “Who is collaborating 

without external partners?”. These questions could potentially be asked of a specific 

year, or as an aggregation of the whole time period (or a subset of the time period).   

Similarly, some tasks considered the set of authors together as a whole, for example, 

task 49, “How many papers of a particular type were published in year X?” – such a 

question could be asked of an individual author or the set (or subset) of authors. 

Finally, some tasks displayed both of these features – making no mention of time and 

considering the whole set of authors together - for example task 51a. “What’s the 

average publication rate?”.  All of these questions involve some sort of summary 

statistic, such as an average value or an aggregated total (over time and/or for the 

set of authors in the graph).  Under the Andrienko framework, these are simply 

treated as a pattern at a very high level of granularity (e.g. the pattern of an attribute 

over time could be described in detail including all changes in the trend; in less detail 

as e.g. ‘an increasing trend’; or using some summary statistic such as aggregate, 

mean, median, mode, highest/lowest values, most frequent value (for categorical 

values), etc.).  Patterns at these different levels of granularity may involve very 

different techniques. As the Andrienko framework does not attempt to relate 

                                                      
32 see Appendix E for categorisation of participants’ tasks 
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techniques directly to task categories, they do not discuss this further.  However, as 

one of the intended purpose of developing the taxonomy and visual technique 

mapping in this thesis is to help in the appropriate selection of suitable techniques, 

these cases were given further consideration.  It became clear from reviewing these 

tasks that we can aggregate (summarise) in three ways: on time, on graph, or on both 

time and graph. Interestingly, we do not need a new set of techniques to cover these 

cases; aggregating on the temporal and/or graph dimension simply reduces these 

tasks to those of the quadrants which deal with single time points or individual nodes, 

as follows: 

• Q2 aggregated on graph = elementary task (a single value is used to represent 

an attribute associated with the set (or a subset) of nodes at a single time) = 

graph or subgraph treated as a single reference (node) + time point 

• Q3 aggregated on time = elementary task (a single value represents an 

attribute’s value over a time period for an individual author) = time period 

treated as a single reference (time point) + individual node 

• Q4 aggregated on time = Q2 task (the graph is flattened into a single graph 

and individual values represent each node’s/edge’s attribute values over a 

time period) = time period treated as a single reference (time point) + graph 

• Q4 aggregated on graph = Q3 task (a single value is used to represent an 

attribute associated with the set (or a subset) of nodes at each time point) = 

graph or subgraph treated as a single reference (node) + time period 

• Q4 aggregated on time and graph = elementary task (a single value represents 

the attribute values associated with all nodes (or a subset) and all time points 

(or a time period)) = graph or subgraph treated as a single reference (node) + 

time period treated as a single reference (time point) 

Note that while for the purpose of selecting techniques these tasks would best be 

grouped together with their equivalent (reduced) quadrant, for the purposes of 

identifying gaps in the tasks identified by participants, these were grouped together 
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with the original (unreduced) quadrant, in order to better reflect participant 

intention (i.e. where their question related to the whole graph at an individual time, 

not to an individual element, these would be coded as Q2, even though a technique 

applicable to elementary tasks would be an appropriate choice to support the task).  

One final interesting point which arose during task translation was the case of a 

hybrid direct lookup/behaviour characterisation and inverse lookup/pattern search 

task.  One scenario in which this type of task arises is somewhat characteristic of 

exploratory data analysis: the case where ‘I don’t know what I’m looking for until I 

see it’.  In this case, we first need to look at the data and characterise its behaviour 

(behaviour characterisation).  In doing this, we might notice some (sub) patterns of 

interest.  We would then investigate these further, finding out who and what times 

they are associated with, and perhaps looking for this noticed pattern in other parts 

of the network. However, this second part is not strictly pattern search as we did not 

start out with a pattern in mind that we were searching for.  The second scenario that 

this hybrid arises in is questions such as “When was the first paper published by X?”.  

While we might treat this as behaviour characterisation in Q3, we need to report the 

start time (the referential component) as a feature of this pattern, which is indicative 

of a pattern search task.   

In translating the participant tasks, a decision was taken to translate these cases as 

behaviour characterisation in its most general sense, allowing referential 

components to feature as part of the characterisation of the pattern.  However, these 

would perhaps be better characterised as ‘pattern browsing’ rather than simply 

characterising attributes associated with a specific referential component or 

explicitly searching for some pattern known a priori.   

In summary, while task translation was not trivial, and a number of important 

considerations were noted during this process, all of the tasks (with the exception of 

those previously mentioned) could be captured by the high level categories of the 

framework, providing evidence in support of its descriptive powers and 

comprehensiveness. 
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[U2] Use of the classification in task organisation: Can the task classification act as a 

useful means of organising tasks? 

To demonstrate the usefulness of the classification in task organisation, Table 31 - 

which shows participants tasks mapped to each category of the classification - has 

been reorganised in Table 34 to show quadrant plus task type for use in tool selection 

(as per the discussion relating to descriptive powers, above).  Note that the found 

tasks from part 2 of the study have not been included here (recall that these were 

rated by each participant, therefore it would skew the tasks heavily in their favour if 

they were included).  Also note that for simplicity, only frequency of occurrence is 

included in this discussion, although importance of tasks could potentially be factored 

in by weighting tasks according to their importance rating.  The point of this 

discussion is simply to demonstrate the usefulness of the task classification in 

organising tasks. 
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 Direct Lookup/ 

Behaviour 

Characterisation 

Inverse Lookup/ 

Pattern Search 

Direct 

Comparison 

Inverse 

Comparison 

Relation 

Seeking 

Total 

Q1 (node/edge at timepoint) 

+ 

Q2 aggregated on graph  

+ 

Q3 aggregated on time 

+ 

Q4 aggregated on time and graph 

14 13 3  3 33 

Q2 (graph at timepoint) 

+ 

Q4 aggregated on time 

6 9 3  2 20 

Q3 (node/dyad over time) 

+ 

Q4 aggregated on graph = Q3 

9 7    16 

Q4i (graph over time) 5 5    10 

Q4ii (set of temporal trends)  1    1 

Q4ii (distribution of temporal 

trends over the graph) 
 1    1 

Total 36 36 6  5 81 

 
 Structural comparison Structural relation seeking 

Q1 2 6 (1 auxiliary task) 

 
Connection Discovery: 

Relationship between network structure and attributes 1 

Relationship between structures  

Relationship between attributes  

Table 34 Organisation of participant generated tasks according to quadrant and task type. Light-

dark green shading emphasises the number of tasks of each type (low-high). 

From Table 34 we can see that the most common data items of interest are individual 

nodes/edges (not surprising, as tasks involving elements are often included as part of 

larger tasks), followed by tasks involving a single graph structure (either a graph at a 

particular point in time or the whole graph aggregated on time), then tasks involving 

time series (either for individual authors or some metric representing the whole 

graph).  Of slightly less interest was the evolving graph over time, and much less 

interesting still is the set of temporal trends or distribution of temporal trends over 

the graph (note, however, that we found in part 2 of the study that these behaviours 

were of interest).  

In terms of task type, lookup tasks are by far the most common, with some interest 

in comparison and relation seeking involving elements and individual graphs.  
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Structural relation seeking (finding nodes connected in a particular manner) is also of 

interest.    

What this would suggest when selecting tools for an interface in this case (without 

further prompting) participant’s questions more frequently relate to understanding 

and looking for patterns in the graph at individual timepoints or in the aggregated 

graph, and the temporal data associated with individuals/pairs of individuals, than 

they are in understanding temporal changes in the graph over time (or the set of 

temporal trends).  This is particularly interesting as a typical temporal graph visual 

solution (such as a sequential or small multiple views of the graph evolving over time) 

may not be the best option for supporting tasks involving individual graph structures 

and individual temporal trends (this point is discussed further in Chapter 8). 

Considering tasks at a lower level of detail e.g. whether structure/attributes are of 

interest, could also provide us with further information upon which to make design 

decisions, and is explored further in the case study of Chapter 9. 

[U1] Use of the classification as a generative method in the design process: During 

requirements gathering, can the task classification be used to discover tasks which 

have not previously been considered? 

All of the task gaps identified using the classification were found to be of some level 

of interest to participants. At the most basic level, it can therefore be affirmed that 

the classification can be used to discover tasks that had not been previously 

considered. Moreover, at least one third of these tasks were rated as very or 

extremely interesting by at least half of the participants; this indicates that using the 

classification in this way can find not only tasks of passing interest to participants, but 

also those which could potentially be important to people carrying out an analysis.  

While the data collected in part 1 (individual interest ratings relating to participants’ 

own questions) is not directly comparable to that of part 2 (all participants’ interest 

ratings for the suggested questions), this figure looks respectable given that 

participants rated their own questions to be very or extremely interesting only in 

around half of cases. It should also be noted that participants were not asked how 

interesting they found each other’s tasks in part 1, which could potentially have 
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provided background information relating to agreement in levels of interest on 

individual tasks across the group as a whole. 

One unexpected observation relating to the interest levels in the suggested tasks of 

part 2 is that those participants who expressed only a limited level of interest in the 

data in part 1 rated the suggested questions more highly in terms of interest than 

participants in the interested group (47% of ratings returned by the limited interest 

group were interesting or very interesting, vs 19% in the interested group).  Further, 

only those in the interested group returned ratings of “no interest”. While further 

investigation is needed to explain this difference, one possibility is that the interested 

participants had a clearer idea of possible tasks at outset than those in the limited 

interest group, therefore the suggested tasks were rated less interesting as they had 

already articulated the tasks that were of most interest to them. Another is that those 

who were less interested in the data had not been able to anticipate the range of 

possible questions it might help them answer, reminiscent of the known difficulties 

in asking people to introspect and pre-empt their task needs in an Exploratory Data 

Analysis scenario. 

Given that by using the classification it was possible to discover tasks of significant 

interest to participants which they had not previously considered, it can be concluded 

that the study has found evidence in favour of the usefulness of the classification as 

a generative method during requirements gathering.  However, this should be 

qualified by the following points: 

Usability: Not considered in this study was the ease of using the classification by 

visualisation researchers (other than the author of the classification).  Firstly, using 

the classification requires familiarity with the classification and its terminology, 

particularly when translating tasks.  Secondly, the study was specifically designed to 

demonstrate that the classification can be used to generate and discover tasks of 

interest, however, the approach adopted in the study would not necessarily be the 

most appropriate method in a real-world requirements analysis scenario.  As found 

in part 2 of the study, a great many tasks can be generated using the classification, 
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which potentially could result in a very large set of tasks on which to gain feedback, 

requiring much time and input from domain experts.  Using the classification for task 

generation in a more flexible manner when requirements gathering in the real world 

would likely be a more appropriate approach. For example, considering the 

parameters in turn during discussions with experts would allow the researcher to 

narrow down those tasks of most interest e.g. they might initially establish which 

data items are of most interest before considering the variations of tasks in which 

these data items might be involved, in progressively greater levels of detail (thus 

avoiding the need for experts to individually consider and discount potentially 

hundreds of irrelevant tasks). 

Comparison with other methods: The use of the classification was not compared to 

other generative methods (such as brainstorming or focus groups). Further work is 

needed to establish how using the classification to generate and discover tasks 

compares to other methods in terms of, for example, task coverage, time and effort 

involved, and user experience of the process. 

[P2] Real world nature of tasks: To what extent are the tasks of the taxonomy ‘real 

world’ (as opposed to artefacts of the formal process used in its development)? 

Participants’ tasks which were returned in part 1 of the study were classified into a 

number of different categories, as presented in Table 31. A number of task gaps – 

where no participant task was mapped to the framework – were identified.  These 

gaps consisted largely of comparison and relation seeking tasks. As discussed in 

Section 6.2.2.3, it was not possible to investigate all of these gaps within the 

constraints of the study, so only gaps in behaviour characterisation and connection 

discovery tasks were investigated.  Examples of each of these types of tasks were 

either provided by participants themselves in part 1 of the study, or thought to be of 

interest to participants in part 2; this provides important evidence (within the limits 

outlined in Section 6.2.2.1) that all of the behaviour characterisation and connection 

discovery tasks are real world in nature.   
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Let us combine this finding with that of the discussion in Section 6.2.1 to gain a better 

idea of what can be said overall of the real world nature of tasks in the framework.  

In Section 6.2.1, as three of the extant task classifications used empirical methods to 

derive their tasks, evidence was provided for the real world nature of the categories 

of the classification which overlap with those of the extant classifications (see Table 

27).  The categories which were not covered by extant classifications are: 

• Lookup, comparison, and relation seeking in Q4ii 

• Relation seeking in Q3 and Q4i 

• Connection Discovery 

 

 Lookup Comparison Relation 

Seeking 

Q1 A, L, ESp1 L, ESp1 L, ESp1 

Q2 A, L, ESp1, ESp2 L, ESp1 L, ESp1 

Q3 A, ESp1 A , ESp1 ? 

Q4i A, ESp1, ESp2 A, ESp1 ? 

Q4ii ESp1, ESp2 ? ? 

Connection 

Discovery 

ESp1, ESp2 

Table 35 High level task categories which are represented in extant frameworks or were identified 

in the empirical study, and those requiring further investigation as to their real-world nature 

(highlighted in red).  Key: A = appears in Ahn et al.’s framework; L = appears in Lee et al.’s framework; 

ESP1 = reported to be of interest in part 1 of the empirical study; ESP2 = found to be of interest in 

part 2 of the empirical study (note that Yi et al.’s framework is not shown as it could not be directly 

mapped to the categories of the framework; Bach et al.’s framework is not included as it is 

constructed using a formal process, therefore does not provide evidence in support of the real world 

nature of tasks). 

Table 35 combines the tasks found to be real world via the extant frameworks along 

with those found to be real world via the study.  Shaded in blue are tasks which were 

found to be real world in the study, but were not represented in extant works. Shaded 

in red are the tasks which were not covered by extant frameworks or reported in the 

study.  This latter set of tasks (comparison in Q4ii and relation seeking in Q3, Q4i, and 

Q4ii) therefore require further consideration as to their real world nature.  
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As outlined in Section 6.1.3.3, evaluation of the real world nature of tasks can be 

tricky, and is often dealt with in the literature by providing illustrative concrete 

examples for each possible category of abstract task. Before moving on, let us here 

consider some examples of real world tasks drawn from the literature for those 

categories for which a question mark remains. 

• Comparison in Q4ii: one example of making comparisons (and also finding 

relations) between the distributions of temporal trends in groups of nodes 

can be seen in the application of  Burch and Weiskopf’s  [112] TimeEdgeTrees.  

Their application example discusses using their technique to inspect the water 

levels of 450 measurement stations of rivers in Germany, which form a natural 

hierarchy. They are interested in the water level movements and the water 

level minima and maxima over time, in particular if the water levels of river 

subsystems influence the water levels of the larger rivers. Part of their analysis 

requires them to compare the patterns of subsystems, i.e. the sets of 

temporal patterns of groups of rivers in the graph structure.  

 

Another example of comparison in Q4ii is that of Henry Riche et al.’s LinkWave 

[113]. They demonstrate application of their system in a neuroscience 

context.  One task which their system is designed to support is comparison of 

the temporal trends between different connected groups of neurons in an 

individual’s brain. Another is comparison of the set of temporal trends in 

neural connectivity associated with a healthy brain and that of a diseased 

brain. 

  

• Relation seeking in Q3: Hocheiser and Schneiderman’s [114] design studies 

demonstrate the use of their TimeSearcher tool in a biological context. One 

of the features of TimeSearcher (discussed further in Section 8.4) is its ability 

to allow searching for similar or opposite temporal trends to that of a selected 

trend. In their design study, they note the tool’s use in searching for temporal 
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trends in a microarray data set to find expression profiles similar to that of a 

gene which is known to be involved in cell death. 

 

• Relation seeking in Q4i: Gloor and Zhao [75] use their iQuest system to 

investigate social communication networks in organisations as they change 

over time.  Of interest to them are questions relating to the similarities and 

differences between the uses of different communication technologies in 

temporal networks, for example “does the same group of people exhibit 

different network attributes when interacting via telephone, email, face-to-

face or other”. Such a question can be considered to involve both comparison 

and relation seeking tasks in Q4i. 

 

• Relation seeking in Q4ii: Saraiya et al. [115] abstract a number of  general 

graph tasks from common needs in bioinformatics pathway analysis in order 

to evaluate their temporal graph visualisation system.  One of their tasks, 

“find a group of nodes that display most different behaviour than the rest of 

the graph over all the time points”,  is a good example of a relation seeking 

task in Q4ii. 

These illustrations of tasks from the literature provide some further evidence as to 

the real world nature of the tasks in the framework. Note, however, that this 

discussion has summarised the evidence at a high level, and further work at a finer 

level of granularity, to cover inverse and direct variations of tasks, and structure vs 

attribute, along with the further dimensions which were not explored in the 

evaluations (e.g. the extent to which data items are specified in tasks, or 

same/different time/graph components are involved in comparison tasks etc.) is also 

needed in order to confirm the real world nature of all the variations of tasks in the 

framework.  
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[CEx] Comparison with extant classifications: Is there any advantage to using the 

developed classification over extant frameworks? 

Reflecting on the discussion in Section 6.2.1, the extant classifications do not cover 

relation seeking in Q3 or Q4i, any tasks involving Q4ii (distribution of temporal trends 

over the graph; set of temporal trends considered together), or connection discovery 

tasks.  One advantage of using the framework in this thesis therefore is its ability to 

describe more tasks than those of extant works. This can be demonstrated firstly by 

considering the classification of the set of tasks identified by participants during part 

1 of the study: two pattern search tasks involving quadrant 4ii behaviours were 

identified (task 43. Years with the highest number of publications for each author, 

relative to joining the department.  (Which career phase is most productive?), and 

task 40. Who are the most experienced researchers ‘near’ me in the network? (ie who 

could I go to for advice)), along with one connection discovery task (task 1. Whose 

publication rates have been affected by someone else arriving or leaving?).  The 

extant frameworks would have difficulty capturing these tasks within their 

categories. 

Secondly, in part 2 of the study, the set of task gaps which were investigated included 

Q4ii behaviours and connection discovery, tasks which are not found in the extant 

task classifications.  Not only were all of the suggested tasks associated with these 

aspects of the data thought to be of some level of interest by participants, connection 

discovery tasks between network structures and connection discovery between 

attributes were two of the most highly rated tasks in terms of participants’ interest. 

It would not have been possible to “discover” these tasks using the extant 

frameworks. 

If we consider the extant frameworks individually, they are likely to have performed 

significantly worse in terms of classifying and discovering tasks.  Table 36,Table 37, 

and Table 38 show the tasks identified by participants in part 1 and tasks discovered 

in part 2 mapped to the high level categories of the framework.  The blue shaded area 

shows the task categories not covered by the individual frameworks (as per 
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discussion in Section 6.2.1.).  We can see that individually, many types of tasks would 

be difficult to classify and/or discover using the frameworks individually.  

 Lookup Comparison Relation 

Seeking 

Q1 P P P 

Q2 P, D P P 

Q3 P   

Q4i P, D   

Q4ii D   

Connection 

Discovery 

D 

Table 36 Lee et al.: tasks identified by participants in part 1 (P) and tasks discovered in part 2 (D) 

mapped to the high level categories of the framework. Blue shaded area indicates task categories 

not covered by Lee et al.’s framework. 

 Lookup Comparison Relation 

Seeking 

Q1 P P P 

Q2 P, D P P 

Q3 P   

Q4i P, D   

Q4ii D   

Connection 

Discovery 

D 

Table 37 Ahn et al.: tasks identified by participants in part 1 (P) and tasks discovered in part 2 (D) 

mapped to the high level categories of the framework. Blue shaded area indicates task categories 

not covered by Ahn et al.’s framework. 

 

 Lookup Comparison Relation 

Seeking 

Q1 P P P 

Q2 P, D P P 

Q3 P   

Q4i P, D   

Q4ii D   

Connection 

Discovery 

D 

Table 38 Bach et al.: tasks identified by participants in part 1 (P) and tasks discovered in part 2 (D) 

mapped to the high level categories of the framework. Blue shaded area indicates task categories 

not covered by Bach et al.’s framework. 

However, it is interesting to note that if we take this high level view of task coverage 

and combine the three extant frameworks together, we see that the majority of tasks 

identified or discovered during the study correspond to those categories covered by 
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the extant frameworks (Table 42). As noted in Section 6.2.2.3, it was not possible to 

investigate all of the task gaps (including comparison and relation seeking tasks) in 

part 2 of the study.  While evidence from the literature for the real world nature of 

these tasks was considered in Section 6.2.1, in light of the strong correspondence 

between the task types identified by extant frameworks and those returned by the 

study (at least when viewed at this very high level),  it would be very interesting to 

investigate these tasks further in terms of both their frequency of occurrence and 

real world nature. 

 Lookup Comparison Relation 

Seeking 

Q1 P P P 

Q2 P, D P P 

Q3 P   

Q4i P, D   

Q4ii D   

Connection 

Discovery 

D 

Table 39 Extant frameworks combined: tasks identified by participants in part 1 (P) and tasks 

discovered in part 2 (D) mapped to the high level categories of the framework. Blue shaded area 

indicates task categories not covered by the three extant frameworks. 

Of course, we should also bear in mind that this discussion has taken a very (perhaps 

over-) simplified view of the task categories, ignoring many of the important 

distinctions made in the framework which are not captured by the extant works (for 

example, further distinctions in task type and whether the data items participating in 

these tasks involve structure only, attribute only or attribute in a structural context).  

As we will see in Chapter 8, these distinctions are important when considering visual 

techniques for their support.  This highlights one further – and perhaps the most 

important advantage – of using the classification proposed in this thesis: that a direct 

mapping between the tasks and the visual techniques which are able to support them 

is offered, allowing it to be used when selecting techniques during the design process.  

While both Lee et al. and Ahn et al. describe existing systems in terms of the tasks 

they support, they do not offer such an overview of visual techniques organised by 

the tasks which they are able to support, for use in the design process.  Bach et al. do 

not consider visual techniques in relation to their tasks. 
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Finally, as discussed earlier, one aspect of the task classification which has not been 

evaluated is its usability.  Ahn et al. is the only one of the three extant classifications 

to have been evaluated with respect to its usability.  In their interviews with domain 

experts they found that they were “neutral on ease of use”.   While the classification 

in this work is intended to be used by visualisation researchers (as opposed to domain 

experts) and has shown to be more comprehensive than the extant works, it is 

arguably more complex. It would therefore be useful to evaluate it in terms of its 

usability in comparison to the extant works. 

6.2.2.5 Conclusion 

This study has demonstrated the utility of the classification in task generation, 

discovery, and organisation, during the visualisation design process.  The study has 

also provided evidence in support of the descriptive powers of the classification.  

While the study suggests that the behaviour characterisation and connection 

discovery tasks are indeed real world in nature, further work is required to establish 

the real-world nature of some of the tasks in the classification. While the 

classification developed in this thesis can justifiably claim that it is more 

comprehensive than extant task frameworks, additional work is required to fully 

evaluate the usefulness of the classification in relation to extant classifications, 

particularly in terms of its usability during the design process. 

 Summary 

This chapter has reflected on existing evaluation practices appropriate when 

evaluating a task classification.  Four main aspects which can be evaluated were 

identified (evaluation of construction method; evaluation of a classification’s 

properties; evaluation of usage; and evaluation with respect to adoption), and 

methods appropriate to evaluating each aspect were discussed.  Based on this 

research, the task classification in this work was evaluated firstly in relation to extant 

temporal graph task classifications with respect to the properties of 

comprehensiveness and descriptive powers, and secondly in an empirical study 

primarily designed to assess its utility in the design process.   
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While further work remains to determine the extent to which the tasks of the 

framework are real-world in nature and its usability by visualisation researchers, clear 

evidence in favour of its comprehensiveness and descriptive abilities were shown 

both in comparison to extant frameworks and in the empirical study.  The empirical 

study demonstrated the usefulness of the classification in both task discovery and 

organisation. The use of the framework in the evaluation process is explored further 

in the case study of Chapter 9.  



 193 

 

 

Chapter 7 Visual techniques for temporal graph data: a 

design space 

This chapter considers the visual techniques for representing temporal graph data. It 

discusses the development of a design space of visualisation techniques for temporal 

graph data, which brings order to the existing work in the area, and is used to identify 

possibilities for new techniques. Specifically, this chapter: 

• Reviews existing work relating to visual techniques for temporal graph 

visualisation, and classifications of these techniques.  

• Identifies two dimensions upon which the visual techniques can be classified 

and combines these dimensions to produce a design space. 

• Maps existing techniques to this design space 

• Identifies gaps in this design space, which may prove interesting opportunities 

for the development of novel techniques. 

The chapter also includes a discussion of the relative strengths and weaknesses of 

the different possible encodings identified when constructing the design space. 

The chapter is organised as follows: Section 7.1 discusses the methodology adopted. 

The literature that was reviewed to extract the dimensions of the design space and 

the development of the categories within each of these dimensions is also discussed. 

Section 7.2 presents the structure of the design space. The mapping of existing 

techniques to the design space and related findings are presented in Section 7.3. 

Finally, Section 7.4 discusses the strengths and weaknesses of the encodings 

identified when constructing the design space. 

 Developing the design space 

As discussed in Section 2.4, several works in the Information Visualisation literature 

have focussed their attention on categorising existing visualisation techniques. While 

some work specific to classifying temporal graph visualisation approaches has already 

been carried out, the ‘space of the possible’ has not yet been explored. In order to 
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address this, a design space of temporal graph visualisation techniques was 

constructed.  

A design space can be constructed by combining the independent dimensions of a 

taxonomy to produce all possible variants. The first step in constructing the design 

space, therefore, was to identify the independent dimensions. In order to identify 

these dimensions, existing classifications of temporal graph techniques were 

reviewed, from which two distinct dimensions emerged: temporal and graph 

structural encoding.   

The next step was to identify the distinct categories within each dimension.  In 

addition to the categories identified in the existing classifications, the systems and 

techniques literature was surveyed to identify any further categories. Once the 

dimensions and categories within each dimension were established, a matrix was 

constructed, into which the existing techniques were organised.  

7.1.1 Background: Existing classifications of visual techniques 

A number of surveys and classifications of visual techniques have been reviewed in 

order to extract the dimensions upon which temporal graph visualisation techniques 

can be categorised.  Included were surveys and categorisations of graph visualisation 

techniques e.g. [79], [80], [116], [117], a number of which  focus on hierarchical 

structures e.g. [38], [81], [118]. Also considered were the papers relating to the 

categorisation of visualisations of temporal data, such as [3], [98], [119]–[121]. Of 

particular interest from outside of the graph and temporal graph visualisation domain 

were Javed and Elmqvist's [39] design space of composite visualisations and Gleicher 

et al.'s [102] taxonomy of techniques for visual comparison.   

As briefly outlined in Chapter 2, some discussion exists in the literature with specific 

regard to classifying visual approaches for temporal graph data.  For example, Hadlak 

et al. [82] categorise visual approaches for large dynamic graphs based on the 

reduction techniques used: whether the temporal or structural element of the graph 

is reduced, and whether the reduction is via abstraction or selection, or is unreduced.  

Combining these dimensions results in a 3x3 matrix (structure v time; unreduced; 
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reduced by abstraction; reduced by selection). Federico et al. [28] divide their 

discussion of possible representations with respect to the mapping of the temporal 

dimension (mapping to time = animation; to space = juxtaposition; to a visual variable 

= superimposition; to an additional spatial dimension = 2.5D). Rufiange and 

McGuffin's [83] taxonomy is also based on the temporal dimension, dividing the 

techniques into small multiples, animation, embedded glyphs, linearised graph plus 

time axis, and 3D. von Landesberger et al. [79] classify graphs according to their time 

dependence (static vs time-dependent; with further subdivision of time-dependent 

graphs based on whether they involve attribute change, structural change, or both) 

and graph structure (trees, generic graphs, and compound graphs).  Recently, Beck 

et al. [84] surveyed the existing approaches for temporal graph visualisation and 

produced a hierarchical taxonomy of dynamic graph visualisation techniques. At the 

top level, they distinguish animated and timeline approaches for temporal encodings. 

Animated approaches are further subdivided by the layout algorithm used, while 

further sub-categorisations of the timeline category are made according to temporal 

and graph structural encodings used.  

In all of these discussions, a key distinction between the temporal and graph 

structural dimensions is apparent. This is therefore used as the fundamental division 

to construct the design space, which shows the possible combinations of graph 

structural and temporal encodings.   

7.1.2 Dimensions of the Design Space 

Two independent dimensions upon which visual techniques for temporal graph data 

can be classified were identified in the literature: graph encoding and temporal 

encoding. The possible categories along each of these dimensions are now 

considered. 

7.1.2.1 Graph dimension 

There is a huge amount of literature relating to static graph visualisation [69]. The 

key challenge focusses on laying out the graph to represent relations between 

elements in a readable manner - affording the viewer an accurate, usable, and readily 
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understandable, representation of the graph’s structure - while being computable in 

an acceptable timeframe. As more than one layout can correspond to the same graph 

structure, a set of aesthetic criteria [14], [122] along with numerous layout algorithms 

have been developed. The difficulties for graph layout are compounded at scale, and 

recent work has focussed on the problem of visualising large graphs e.g. [79], [82]. 

An additional challenge is that of multivariate graphs. While much of the focus for 

graph drawing has been on representing the graph’s topological structure, an 

additional problem is finding suitable ways to represent multiple node and edge 

attributes. Having used up the spatial dimensions for graph layout, possibilities for 

attribute representation are restricted. Moreover, we often wish to represent 

attribute values in the graph context, thus the tiny amount of space available to 

represent each node and edge’s attribute values is a major issue.  

The underlying structure of the graph data largely determines the visual approach 

which can be taken. von Landesberger et al. [79] divide their discussion into trees 

(those with hierarchical structure), general graphs (which may be directed, 

undirected or mixed) and compound graphs (those with both hierarchical structure 

and other relations between nodes). The two main ways to represent general graphs 

are node link diagrams or matrix representations. Schulz and Schumann [80] 

distinguish three possible ways in which network visualisation techniques can be 

categorised:  

• directed vs undirected 

• explicit vs. implicit edge representation 

• free, styled, or fixed node layout 

 

Similarly, for tree representations, Schulz [123] identifies three ‘design axes’:  

• dimensionality (2D, 3D, or hybrid) 

• edge representation (explicit, implicit, or hybrid) 

• and node alignment (radial, axis-parallel, or free) 
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Figure 58 Possible graph structural encodings (left to right): node-link, matrix, space-filling, 

compound graph representations. 

A simple classification is used in the design space, dividing the graph structural 

encoding dimension into the following general categories (illustrated in Figure 58):  

• Space filling (enclosure, adjacency, overlap) 

• Node-link  

• Matrix 

• Compound Graph representations 

• Other (including no structural encoding e.g. topological statistics only) 

 

For the sake of simplicity, directionality, dimensionality and node alignment are not 

used to classify the representations. 

7.1.2.2 Temporal dimension 

Considerable work has been carried out in visualising general time-oriented data [3], 

[98], [121]. Aigner et al. [98] distinguish the possibilities for visual representation by 

whether time is mapped to space (static) or time (dynamic), and the dimensionality 

of the presentation space (2D or 3D). However, the possibilities for temporal graph 

visualisation are restricted by the need to show both graph structure and time. 

Moody et al. [29] note that a key problem is that the two spatial dimensions - the 

most salient visual channels - are usually taken up in laying out the graph, raising the 

question of how to represent the temporal dimension.  

In classifying the approaches, in addition to extracting those commonly discussed in 

the temporal graph literature, Javed and Elmqvist’s [39] design patterns for 

composite visualisation (juxtaposition, superimposition, overloading, nesting, 

integration), and Gleicher et al.’s [102] categories of comparative designs 
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(juxtaposition, superposition, explicit encoding), were drawn on. The following 

temporal encoding categories were identified (illustrated in Figure 59 and Figure 60):  

(1) sequential views  

(2) juxtaposition  

(3) additional spatial dimension  

(4) superimposition  

(5) merged views  

(6) nested views  

(7) time as a node in the graph.  

 

These categories can be grouped based on whether multiple temporal snapshots are 

presented (1-4), or time is ‘embedded’ within the graph structure (5-7).  

            

            

Figure 59 "Timeslice" approaches to temporal encoding: (1) sequential views, (2) juxtaposition, (3) 

additional spatial dimension, (4) superimposition. 

The first four approaches show a series of what Archambault et al. [27] refer to as 

‘timeslices’: snapshots encoding the structure of the graph at a given time. These 

approaches require particular consideration to be given to the readability and 

computation of the layout of the graph structure at each timeslice. Much work to 

date has focussed on the computational difficulties of adapting and developing layout 

algorithms for dynamic graphs [25], [26], [124]–[130], given the trade-off between 

the accepted set of aesthetic heuristics for (static) graph drawing and maintaining an 

individual’s ‘mental map’ over a series of timeslices. Work has also been devoted to 

(1) (2) 

(3) (4) 
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assessing the resulting representations in terms of user comprehension [16], [19]–

[21], [131]–[133]. These ‘timeslice approaches’ can be divided based on whether the 

timeslices are mapped to time (dynamic presentation) or space (static presentation).  

Sequential views are dynamic: timeslices are presented one after the other, in 

sequence, each replacing the last. Navigation through the timeseries may be 

automated (play/pause functionality) or interactive (e.g. through use of a timeslider). 

Transitioning techniques, such as animation and interpolation of node positions, may 

be employed to assist people in following changes between timeslices. Note that the 

literature often refers to these approaches as “animation”, however, the term 

‘sequential view’ was chosen in order to avoid ambiguity, as the term “animation” is 

used in two ways:  

(1) animated navigation: where navigation through the sequence of timeslices is 

animated i.e. where the person using the system presses a play button and is 

shown an automated sequence of images, similar to playing a movie, and  

(2) animated transitions: where animation is used to smoothly interpolate the 

positions of nodes between timeslices i.e. they do not just jump from one 

position to another, but their transitions are animated across the screen.   

These two aspects often appear together, however it is useful to separate them out, 

particularly as what are referred to as ‘animated’ views in the literature often do not 

involve the animated navigation described in (1), rather, they allow interactive 

control of the navigation through timeslices. 

The other three approaches are static. Examples of juxtaposition are most often akin 

to Tufte’s [134] ‘small multiples’, with timeslices laid out adjacent to one another in 

sequence.  However, in the design space, Gleicher et al.’s [102] wider definition is 

adopted, to include in this category examples where timeslices are positioned 

separately, but in the same display space. For example, TimeRadarTrees [135] and 

Tree-ring Layouts [136] use concentric circles to indicate the temporal aspect of the 

network. Also included in this category are general time series views of graph-based 
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statistics (where statistical values represent the graph or its attributes at multiple 

points in time), and alluvial diagrams [137], which plot node-related statistics 

(topological or attribute based) as lines over time, with relatedness in the graph 

represented by positioning the nodes’ timelines closer together.  

Where an additional spatial dimension is used, timeslices are either presented as 

separate layers on an additional plane (e.g. Federico et al.’s ‘2.5D’ approach [28]) or 

the nodes of the timeslices are ‘stacked’ resulting in three dimensional objects e.g. 

[138], [139]. Superimposition [39](also termed ‘superposition’ by Gleicher et al. 

[102]) involves overlaying objects in the same display space. In the temporal graph 

case, timeslices are stacked on top of one another and ‘flattened’, with a visual 

variable (such as colour, transparency, etc.) distinguishing elements belonging to 

different timeslices [28]. This results in the same nodes and edges appearing more 

than once in the same view.  

                    

Figure 60 “Embedded” approaches to encoding the temporal dimension: (5) merged, (6) nested, (7) 

time as a node in the graph 

Approaches 5-7 embed the temporal dimension within a single graph structure. 

Merged views differ from superimposition in that they show a single (cumulated) 

graph structure (i.e. each node appears only once), and use an additional encoding 

(e.g. colour) to indicate ageing of nodes and edges. Nested views  [39] in the temporal 

graph case show the temporal aspect of the data by embedding small timeseries 

charts or glyphs in the nodes and/or edges. A bipartite graph including time as a node 

can be created; any node linked to a time node indicates that it appeared in the graph 

at that time. A variation of this is 1.5D [140], where a focus node contains an 

embedded timeline glyph and other nodes connect to the appropriate section of the 

timeline. 

(5) (6) (7) 
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Note that Javed and Elmqvist’s [39] integration category, which involves the use of 

visual links between views, and Gleicher et al.’s [102] explicit encoding, where the 

relationship between two objects is computed and visually encoded, are not included 

as categories in the design space, which is concerned solely with temporal and graph 

structural encodings. However, these techniques may be used in conjunction with 

the timeslice approaches of the design space to encode relations i.e. to show the 

differences or matches between timeslices. This is often of interest in temporal graph 

visualisation, which is closely related to graph comparison, and is discussed further 

in Chapter 8. Visual links are often used in conjunction with 2.5D views to map node 

positions between timeslices e.g. [28], [141]–[143], but could potentially be used 

with any of the static timeslice approaches (i.e. approaches 2-4). There are many 

examples of explicit encoding in the graph comparison literature: difference maps 

[144], difference layers [145], ratio contrast treemaps [146]. Used in conjunction with 

a timeslice approach e.g. [141], they can show the evolving relationships between 

timeslices over multiple different time points. Finally, in Javed and Elmqvist’s [39] 

overloading category the space of one visualisation is utilised for another.  Some 

examples of this can be seen when views are combined, as discussed in Chapter 8. 

 Structure of the design space 

Based on the two identified dimensions, a matrix has been constructed which maps 

out the possible combinations of graph and time encodings (Figure 61). 
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 Mapping Existing Techniques to the Design Space 

Having constructed the design space, existing techniques have been mapped to each 

of the cells. 95 papers relating to temporal graph visualisation have been surveyed, 

including system and technique papers, comparative evaluations of techniques, and 

those discussing the use of tools to perform analysis. The combinations of encodings 

that were used in these papers were mapped to the appropriate cells in the design 

space.  Where a paper discussed multiple techniques, it was included in all of the 

relevant cells.  In total, 128 instances of techniques were mapped to the design space. 

Note that Ahn et al. [41] include a list of online materials in their review of systems, 

however these were omitted as the vast majority are of the node link, sequential, 
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category. Examples from the mapping are included in Figure 62; the complete 

mapping is shown in Figure 63. 

 

Figure 62 Mapping of techniques to the design space: an example image is included to illustrate 

where there exists a mapping to the itereture 
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Figure 63 Mapping of existing techniques in the literature to the design space 

 

7.3.1 Findings 

All 128 techniques were mapped to the design space, indicating that the 

categorisations used are appropriate. The number of techniques mapping to each 

category are shown in Figure 64.  
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Figure 64 Mapping of techniques to design space 

The most common graph structural representation encountered in the temporal 

graph visualisation literature was node-link. This is in-keeping with findings from the 

static graph literature, where the majority of systems are node-link based [214]. 

Matrixes are particularly useful for visualising dense networks due to the absence of 

edge crossings, and they have been shown to outperform node-link diagrams on a 

number of tasks in the static context [215]. Further research could therefore be 

applied in this area. There is also room for further exploration of temporal 

visualisations utilising space filling techniques.  

While a number of examples of juxtaposition were found, sequential views were by 

far the most widely used temporal encoding. This is interesting, as juxtaposed views 

have performed well in a number of studies comparing them with sequential 

approaches [18], [78], [177].  The other approaches to temporal encoding featured 

less prominently in the literature.  

There are a number of gaps and sparsely populated cells in the design space.  While 

there may be good reason for this (e.g. incorporating time as a node in a space-filling 

representation would not be possible given that a hierarchical graph structure is 
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required), the mapping shows some possible interesting directions for further 

exploration.  

 Strengths and weaknesses of temporal and graph encodings 

Having considered the range of possible time and graph encodings, and their use in 

existing systems, let us now consider in more detail their relative strengths and 

weaknesses. This discussion is divided into two parts according to the two dimensions 

of the design space: graph structural encoding and temporal encoding. 

7.4.1 Strengths and weaknesses of graph structural encodings 

Each of the techniques for encoding graph structure has relative advantages and 

disadvantages.  When selecting a representation, our choice of graph encoding is 

likely to be influenced by the type of graph structure present in the data. General 

graphs can be represented using node-links or matrices; combined versions of these 

have also been used in static graphs e.g. [214], [216], although they are yet to be used 

in a temporal graph context. Hierarchical structures have the additional option of 

space filling techniques (similarly, combined views, utilising node-link and space 

filling techniques have also been proposed in the static case e.g. [217], [218]).  

Compound graphs require two representations of graph structure: one to show 

hierarchy and another to show the additional links within the hierarchy, and various 

combinations have been used in the literature (Figure 65 shows examples from Holten 

[219]). 

  

Figure 65 possible techniques for representing compound graph structures (illustrations from Holten 

[219], Figures 2 and 13b): (a) node link hierarchy + node link (b) & (c) space filling hierarchy + node 

link (d) space filling hierarchy + node link (arc diagram) +  (e) node link hierarchy + matrix  (f) space 

filling hierarchy + node link (with edge bundling) 

Node-link diagrams are a commonly used representation which are intuitively 

understood by people, however they do not scale well. As the size of the graph 
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increases, it becomes computationally more expensive to calculate the position of 

nodes and takes longer to render. Readability also suffers, with nodes and edges 

overlapping, and occlusion making interaction difficult; eventually we simply run out 

of screen space in which to draw nodes and edges.  

With no edge crossings, matrices do not suffer from the same readability issues and 

computational overheads associated with laying out large graphs.  However, matrices 

are less intuitively understood than node-link diagrams, and node-ordering 

algorithms are required to show clusters.   

Ghoniem et al. [215] compared the performance of node-link diagrams and matrices 

to carry out seven commonly encountered graph-related tasks: 

• estimating the number of nodes or edges in the graph 

• finding the most connected node, or a node given its label 

•  finding a link, a common neighbour, or a path between two specified nodes. 

They found that on graphs of size greater than 20 nodes, matrices outperformed 

node-link diagrams on all tasks except path following in terms of speed and accuracy 

in participant performance. Keller et al.’s [220] comparison of node-link and matrix 

representations used semantic, directed graph data and slightly different tasks, but 

their findings that node-link graphs are preferable for small, sparse, graphs and for 

path finding tasks, confirmed those of Ghoniem et al. Note, however, that neither of 

these studies considered tasks involving clusters (Keller et al. suggest these should be 

investigated in future work) or graph attributes. 

No study has yet compared the performance of matrices and node-links in 

representing clusters. Siirtola & Mäkinen's [221] study found that the use of an 

automated re-ordering algorithm for matrices allowed participants to perform 

cluster analysis with more accuracy and in less time than using a static matrix, or one 

with manual reordering capability. However, they did not compare the performance 

of the re-ordered matrix to a node link diagram. Wong et al. [222] demonstrate some 

examples of how their approach - which combines a pairwise shortest distance matrix 
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with a node-ordering algorithm - is better able to show clustering patterns than a 

node-link diagram. However they did not carry out a systematic evaluation 

comparing the two approaches.   

In addition, no studies exist which consider the performance of node-links and 

matrices with regard to their ability to represent distributions of graph attributes. 

Matrices perhaps have an advantage over node links of more encoding possibilities 

for edge weights/ attribute values (see Section 8.2.2.1). Understanding node 

attribute distributions over a graph usually requires a node-link view of the data; 

whether distributions of edge weights/attributes are perceptible using matrices has 

not been studied. 

As technique performance has been shown to be data and task dependent, Keller et 

al. [220] recommend offering multiple views i.e. both matrix and node links, so that 

people can choose the most appropriate representation for the task they are 

attempting to carry out. Alternatively,  approaches combining matrix and node-link 

structures (e.g. [214], [216]) seek to draw on their respective advantages.  NodeTrix 

[214] was developed to visualise small world networks, which are characterised by 

tightly connected clusters with sparse links between them. Matrices, representing 

tightly connected clusters (dense graph structures), are linked together using node-

links, showing the sparse, global structure of the network.  Such combined graph 

encodings have yet to be used in a temporal graph scenario. 

For hierarchical structures (Figure 66), matrix views are not normally employed due to 

the difficulties in path following and their being space-inefficient for this type of data 

[81]. Generally node-link representations take up more screen space than nested 

space-filing techniques such as tree maps, but hierarchical structure is more difficult 

to perceive in space-filling representations, which also emphasise leaf nodes over 

internal nodes [81]. Adjacency layouts (such as icicle plots), which are a type of space-

filling layout, trade off the advantages and disadvantages of node-links and tree 

maps. Edge attributes cannot be encoded when using space-filling techniques (see 

Section 8.2.2.1). 
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Figure 66 comparison of node link and space filling techniques for hierarchical graph structures 

(based on Graham & Kennedy [81]) 

Müller et al. [223] recently compared hierarchical visualisation techniques in terms 

of their ability to “facilitate a rapid overview of the structure and intuitive impression 

of proportions between nodes”.  They considered the three most popular top-down 

techniques (node-link, icicle plot, and squarified treemap) and four tasks (their 

favoured representation for each technique is in brackets): 

• Count all nodes of the hierarchy. (node-link) 

• Count leaf nodes of the hierarchy. (treemap) 

• Compare the combined area of two pairs of nodes within one level of the 

hierarchy. (icicle plot) 

•  Compare the combined area of two pairs of nodes across different levels of 

the hierarchy. (equal) 

Assuming that area represents an attribute, this study did consider attributes in their 

tasks (unlike the node-link/matrix comparison studies), however, they did not 

consider attribute distribution over the graph’s structure. Again, further work in this 
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area is required before a recommendation can be given as to which technique is best 

able to represent overall structural patterns and attribute distributions. 

7.4.2 Strengths and weaknesses of temporal encodings 

Seven distinct encoding approaches were identified along the temporal dimension of 

the design space (Section 7.1.2.2). As for graph encodings, each approach has relative 

strengths and weaknesses, which are discussed in this section.  Note that to date, 

empirical evaluations involving participants which specifically compare temporal 

encodings (e.g. [27], [78], [177]) have focussed solely on comparing sequential views 

and juxtaposition (small multiple views).  Additionally, all of the studies used node-

link graph encodings and the size of the graphs and number of time points involved 

are relatively small: Archambault’s comparison of animation and small multiple 

conditions [27] employed graphs with 29-60 nodes and nine time points; Farrugia and 

Quigley’s [78] graphs contained between 9 and 32 nodes, and six time points; 

Boyandin et al.’s qualitative study [177] used the largest data sets, with graphs of 

around 200 nodes and 35 time points.  The consideration of attributes in these 

studies is also rather limited: edge weights are considered in Boyandin et al.’s flow 

maps, and Farrugia and Quigley use colour and shape to encode attributes, however 

attributes do not feature in their example tasks or discussion of results.  One final 

issue with these studies is that limited interaction is offered in the sequential view 

conditions, which may have curtailed the potential benefits of using a sequential 

approach [78]. The results of these studies are generally rather inconclusive, other 

than indicating that for tasks involving more than two time steps, small multiple 

encoding may be preferable [84].  

Let us consider in more detail the merits and drawbacks of each of the approaches, 

beginning with sequential approaches, where time is mapped to time.  

7.4.2.1 Sequential approaches 

The advantages of sequential approaches include: 

• Time is encoded in a ‘natural’ way, instinctively understood by people. 
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• Time is an encoding channel which cannot really be used to encode any other 

attribute; this ‘frees up’ an additional visual variable when encoding 

multidimensional data. 

• The full display space is available to show the graph structure at a single time 

point, which is particularly important as graphs become larger and clutter and 

occlusion become more of an issue. 

• In terms of tasks from the empirical studies, Archambault et al. [27] found 

that animation was more accurate for a minority of tasks (those relating to 

the addition of entities), while in Boyandin et al.’s [177] study involving the 

exploration of flow maps, participants made more findings involving 

“geographically local events and changes between subsequent years” under 

the animation condition. 

• Animated transitioning techniques between timeslices can be used as an 

additional technique to draw attention to change in the graph. Windhager et 

al. [224] highlight this as an advantage, in that it can enhance perception of 

change between time slices and reduces change blindness. However, such 

interpolation also introduces additional artifacts which do not exist in the data 

[78]. 

• In trend visualisation, Robertson et al. [225] noted the usefulness of 

animation in presenting information. 

• In the same study, they note that participants found the animation paradigm 

enjoyable and “exciting”; however, the participants in Farrugia and Quigley’s 

[78] study comparing animated and small multiple approaches in the 

temporal graph case showed a preference for the static condition. 

The disadvantages of sequential encoding include: 

• A key disadvantage of sequential views is the cognitive overhead involved. 

The person using the visualisation must memorise what has taken place in the 

graph as the timeseries unfolds; even comparison of adjacent timeslices must 

be performed in memory.  While transitioning techniques and differencing 

techniques can help mitigate these problems between individual timeslices, 
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without some additional visual support (such as the thumbnails of 

GraphDiaries [71]) when exploring and analysing temporal graphs, navigation 

relies entirely on a person’s memory of the sequence of events. 

• The above is perhaps one reason that evaluative studies find that tasks take 

longer under animation conditions, as participants need to view the whole 

sequence of graphs before being able to answer the prescribed questions. 

• In animated navigation (i.e. ‘play only’ scenarios, which unfold in a film-like 

manner) the lack of interaction makes it difficult for people to explore the 

data.  

7.4.2.2 Other timeslice approaches 

The advantages of the other multiple timeslice views - juxtaposition, additional 

spatial dimension, superimposition – include: 

• The data is available at once, in a single display space (depending on the length 

of time-series/size of the graph – see discussion, below). This removes the issues 

surrounding the cognitive overhead associated with animated displays, where 

memorisation of the occurrence of events at previous time points is required for 

analysis of global change, and navigating the timeseries. 

• Evaluative studies (such as Archambault et al. [27] and Farrugia and Quigley [78]) 

suggest that small multiple approaches are generally faster and more accurate 

when performing most tasks. 

• Farrugia and Quigley [78] found a preference among participants for their small 

multiples condition. 

• Boyandin et al.’s [177] subjects were able to make more findings concerning 

longer time periods using small multiples of flow maps.  This would lend support 

to using this type of temporal encoding when visualising Q4 behaviours. 

 

The main disadvantage for these encodings come from the mapping of time to space 

and involve scaling of the data, either the graph component or the temporal 

component: 
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• Limits to the space available to show each individual timeslice, making it difficult 

to show large networks and/or details (e.g. attribute encodings, labels, etc.). 

• Limits to the number of timeslices which can be shown (see Section 7.4.2.3). 

7.4.2.3 Timeslice approaches: problems of scale in the temporal dimension 

One fundamental issue for all of the timeslice approaches is how to handle scale on 

the temporal data dimension.  In the case of animated approaches, where time is 

mapped to time, longer timeseries result in longer animations.  As evaluative studies 

(such as [27]) suggest that animation is slower than static approaches for most tasks, 

one could  infer that this difference will become more pronounced with an increasing 

number of timeslices (unless some form of temporal aggregation is used, such as that 

discussed by Bender-deMoll and McFarland [159]).  

For static approaches, with a spatial mapping of the temporal data dimension, the 

issue is one of available space. In juxtaposed views, assuming a limited total display 

space (such as a printed page or computer screen), an increasing number of 

timeslices reduces the individual display space available, thus reducing the amount 

of detail and/or legibility of the graph in each slice.  In superimposition, where 

timeslices are layered on top of one another with a visual variable distinguishing 

different time steps,  visual clutter increases with the number of timeslices (this is 

likely to become a problem before a second issue - limits to discriminability in the 

visual variable distinguishing the time steps – is reached). Where an additional spatial 

dimension is used, if the total display space is fixed, issues of occlusion/distortion 

could be introduced as more layers are compressed into the display space.  In 

addition, for this paradigm to be understandable to the viewer, there is perhaps an 

increased requirement for stability in the layout between adjacent layers, and 

indeed, over the time period.  For example Brandes and Corman’s [139] cylinders 

require a fixed layout (although Groh et al.’s [205] inter-twinning tube solution is a 

counter example to this). In both juxtaposed and superimposed views, the limits on 

display space can be removed by showing only part of the timeseries and allowing 
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some sort of interactive navigation (such as scrolling).  However, this reduces the 

advantage of being able to see  all of the data at once.   

7.4.2.4 Embedded approaches 

So far, only encodings employing multiple timeslices have been considered.  Let us 

now discuss the merits and drawbacks of embedded temporal encodings: merged 

views, nested views, and time as a node in the graph. 

As mentioned earlier, nested views show behaviours S3 and A3 (i.e. distribution of 

temporal trends over the graph).  However, they are also subject to limitations in the 

display space available to show the temporal dimension. In this case, consideration 

must be given to the length of the timeseries/number of legible timepoints that can 

be displayed.  Limits to the size of the graph which can be shown must also be taken 

into account. Yi et al. [70] use semantic zooming techniques in order to display graphs 

with many nodes (730 in their example dataset) and edges. 

Merged views use a visual encoding such as colour or intensity to indicate ageing 

and/or persistence of nodes or edges in a network.  They are most often used in 

conjunction with another temporal encoding (such as sequential views), as alone, 

merged views can show only limited aspects of a graph’s evolution.  They have the 

advantage of using the full screen space to lay out the graph, and show an overview 

of certain features of the data.  For example, they can give an overview of the 

formation of a network. A network which gradually grew over time could be indicated 

by an even distribution of the visual encoding used; where lots of nodes joined at the 

same time would be indicated by similar visual encoding; while some particular 

distribution (old nodes in the centre, new ones at the periphery, etc.) may also be 

observed. The main limitation of merged views is that they are able to show only 

limited aspects of the data i.e. either structural additions or deletions, otherwise the 

visualisation becomes too difficult to understand. For this reason, Smuc et al. [226] 

abandoned the development of their SPOCC plots which use colour to encode 

addition, deletion and persistence of edges between two timeslices.  Showing a node 

which appears at time 1, disappears at time 2, and re-appears at time 3 cannot be 
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captured in merged views.  Merged views may also suffer from problems of clutter 

and occlusion, as they show all nodes and all edges appearing in the graph. 

Additionally, there are limits to the number of time points which can be distinguished 

accurately through use of a visual encoding such as colour or intensity, and the use 

of a visual variable to encode time means one fewer encoding channel is available to 

encode attributes. 

 

Figure 67 Thiel et al.'s ([212], Figure 3) bipartite graph shows the years in which a node (in this case 

representing a keyword) appears: the edges encode a node’s appearance in a given year. 

In its basic form, representing time as a node in a graph (e.g. [212], illustrated in  Figure 

67) primarily allows us to gain an overview of structural patterns in node activity over 

time i.e. which nodes are persistent in the network, and which nodes appear only at 

individual time points.  However, it does not give any indication of evolution in 

structural patterns, or attribute distributions over time. The technique has the 

advantage of showing all of the data in a single display space (much like the timeslice 

approaches). However, all nodes (plus year nodes) are shown for the whole time 

period, which may be an issue for large graphs, and the size and/or density of the 

graph increases with the number of time points.  
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7.4.3 Summary 

As the above discussion has shown, scaling along the time and graph dimensions are 

issues for many of the encodings. Reduction and filtering techniques can be helpful 

in reducing these problems, and may also be useful when finding patterns at different 

granularities. For example, when nodes are aggregated in TimeMatrix [70], 

aggregated timeseries data is displayed for both nodes and edges, while Shi et al.’s 

1.5D [140] display allows interactive selection of focal nodes, and different levels of 

temporal granularities.    

The above discussion also indicates that more work is needed in evaluating the 

different encodings in order to indicate the scenarios in which they are most 

effective. For example, with the present information, it is not possible to make 

recommendations as to which technique is best for long timeseries, highly volatile 

data (i.e. where there are large amounts of change in the graph) or where change is 

highly  irregular (e.g. long periods of no change, followed by many changes). Further 

work is also needed to evaluate how the techniques are able to support the analysis 

of attribute values, for example, to establish which technique is best able to show 

evolution of attribute distributions. 

 Summary 

This chapter has considered the existing visual approaches for temporal graph data 

and explored the ‘space of the possible’. A design space was constructed according 

to the temporal and graph structural encodings used, to which the existing 

techniques were mapped. The mapping showed the most commonly used 

techniques, and possible combinations of encodings which could be further explored.  

The discussion relating to the strengths and weaknesses of the possible visual 

encodings highlights the need for further empirical evaluations. For example, the 

performance of different graph encodings (matrices and node-links) in terms of their 

support for representing clusters and attribute values has not yet been established; 

comparison of techniques for visualising the evolution of distributions of attribute 

values could be carried out; and further work is needed in comparing temporal 
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encodings in order to establish which techniques are most suitable for representing 

temporal evolution, and in which data scenarios (e.g. large graphs, long time-series, 

volatile data etc.). 

 

 



 

Chapter 8 Mapping tasks to visual techniques 

In this chapter, the visual techniques which are able to support the tasks of the 

taxonomy are considered. Given that a single task may be categorised in a number of 

ways, and the sheer number of individual tasks identified in the design space, the 

discussion is structured around the task dimensions. Primarily considered are task 

type and quadrants, but also considered are the implications of additional constraints 

in lookup tasks (search space), and, in the case of comparison and relation seeking, 

the involvement of a specified component or the same or two different graph 

components, time components, or attributes. 

This chapter is organised as follows. The role of the quadrants in determining the 

appropriateness of visual techniques is first discussed. Next, each task type and 

techniques for their support are considered, with reference to the quadrants. A 

discussion of the implications of task search space is included in the inverse lookup 

task section. Techniques to handle the variations of the same or different time, graph, 

or attribute components participating in tasks are discussed at the end of the 

comparison section. As each task is likely to be only one of many involved in 

exploratory analysis of data, the ways in which techniques can be combined are 

considered. Finally, when mapping techniques to tasks, a number of areas which 

could benefit from further research are identified; we conclude with a discussion of 

this in relation to the findings of the evaluation of the task framework in Chapter 6. 

An overview of the task-technique mapping is included for reference in Section 8.5. 

 The role of the quadrants in determining appropriate visual techniques 

As briefly mentioned in Section 5.5, visually representing the data items in each of 

the four quadrants involve very different techniques and research areas, as 

illustrated in Figure 68.  
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• Q1 (data elements and their attributes) is governed by general visualisation 

principles. 

• Q2 is dealt with by static graph visualisation. 

• Q3 is the domain of temporal visualisation. 

• Q4 is the only quadrant requiring the representation of both time and graph 

structure, and therefore temporal graph visualisation techniques (such as 

those reviewed in Chapter 7) are involved.  

 

However, any of these data items and associated techniques may feature in the 

exploration of temporal graph data. Within each category, decisions as to the 

appropriateness of a visual representation will depend on characteristics of the 

specific dataset.  For example, when selecting a technique to encode graph structure 

(Q2), the size and density of the graph must be taken into consideration; when 

showing structural change over time (Q4), the rate of change and length of timeseries 

may influence our choice of representation (these considerations are discussed 

further in Section 8.2.2.4).  
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Figure 68 Research areas and techniques associated with data items by quadrant 

 

 Lookup 

Direct and inverse lookup tasks require different techniques for their support as they 

take a different starting point for the analysis. The distinction is reflective of the 

bottom up ("search, show context, expand on demand" [227]) and top-down 

("overview first, zoom and filter, then details on demand" [56]) information seeking 

approaches discussed more widely in the literature.  

8.2.1 Direct lookup and behaviour characterisation  

For direct lookup and behaviour characterisation tasks we must first locate the time 

and graph object of interest, in order to find the corresponding values and patterns. 

This requires navigation in both time and in the graph. Systems employing sequential 

views offer temporal navigation via interactive controls such as time-sliders e.g. 

TempoVis [228];  play/pause/step buttons e.g. SoNIA [159], Visone [125], Republic of 

Letters [171]; or thumbnails e.g. GraphDiaries [71].  Often a timeline of statistics 
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relating to the network is shown in conjunction with navigational controls, which 

helps to summarise changes in the graph and draw attention to key time periods of 

interest. For example, TempoVis includes a histogram summarising node and edge 

activities in the graph over time (Figure 69), while Chang et al. [171] display the total 

number of edges at each time point on their scatter-line graph (Figure 70). Chang et 

al. also allow selection of a time period of interest over which to observe the 

animation of the graph, while TimeMatrix [70] includes a range slider to select a time 

period upon which to filter the matrix-based timeseries glyphs. Such techniques are 

particularly useful to support direct lookup tasks in Q4. 

 

Figure 69 Ahn et al.’s TempoVis interface ([228], Figure 2) includes a time-slider for temporal 

navigation and histogram summarising activities in the graph over time. A time stamp (top left) 

indicates the current timeslice in the main window, 
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Figure 70 screenshot of Chang et al.’s [171] Republic of Letters visualisation 

(http://web.stanford.edu/group/toolingup/rplviz/), which includes play/pause temporal 

navigation controls, and the ability to select a time interval over which to play the animation. The 

scatter-line graph shows the amount of correspondence at each time point. 

 

Figure 71 TimeMatrix ([70], Figure 6) offers filtering on time: time points out with the selected time 

range (as selected using the range slider, bottom left) are shown greyed-out in each timeseries 

glyph.   

Locating particular graph elements of interest is potentially a more challenging tasks 

than locating time points, as graph elements (in a node link interface, at least) have 

no inherent order. As on-demand labelling strategies (discussed further in Section 

8.2.2.6) are often employed, ‘manually’ finding a specific node may prove time 
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consuming in larger graphs. To assist in this task, static graph systems, such as TaxVis 

[229], often offer a separate search box or list to filter and then highlight nodes of 

interest within the graph. An example from temporal graph systems is Chang et al. 

[171], who offer this functionality (“filter by correspondent” in Figure 70) and also 

highlight in their timeline view the time points at which the selected nodes appear. 

Interaction techniques such as pan and zoom can also be of use when locating graph 

elements in large graphs.  

8.2.2 Inverse lookup and pattern search 

Inverse lookup and pattern search tasks involve observing patterns and attribute 

values and identifying the corresponding graph objects and times of occurrence. As 

noted above, the patterns and values which we may observe are very different 

depending on the data items concerned, as distinguished by the four quadrants, 

requiring very different visual techniques for their representation.  

8.2.2.1 Q1 

In Q1, we are looking for particular attribute values, and the encodings used must be 

sufficiently distinguishable to allow this. The techniques used to represent individual 

nodes and edges and their attributes depend upon the graph representation used – 

node link, matrix, space filling.  Generally speaking, to date, static graph and temporal 

graph visualisation has largely been focussed on representing graph structures, with 

less consideration given to representing attributes associated with the graph. 

In node link diagrams, numeric attributes associated with nodes are often encoded 

by size (area), colour saturation or density, while hue or shape are frequently used to 

encode categorical attributes.  Multiple node attributes may be incorporated in 

glyphs. There are some issues to consider when selecting attribute encodings: 

proximity is often used to indicate closeness of connection, but using size of node to 

encode attribute value may make it more difficult to judge the distance between two 

nodes.  Edge attributes in node link diagrams are frequently encoded using line width 

or density/saturation (numeric) and colour or pattern e.g. dashed lines (categorical).  

Issues surrounding the use of line width include a limit of around five distinguishable 

bins [54], while altering line width can affect our perception of line length, and 
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therefore potentially affect our perception of how closely two nodes are related. 

Altering the saturation of links can make them difficult to perceive. 

Matrices focus on showing the relations between nodes (i.e. they focus on 

connectivity), although node attributes can be encoded using e.g. colour or shape 

(size would not normally be appropriate, as it may affect the width of the columns 

and rows in the matrix). The options for encoding edge attributes are more varied 

than in the node-link case, including colour, density, saturation, shape, and size of 

shape.  

Space filling representations primarily encode attribute values using size, but an 

additional encoding such as hue or saturation can also be used.  Position (enclosure 

or adjacency) represents edges, therefore it is not possible to encode edge attributes 

using this type of graph representation. 

Dynamic query filtering techniques [230] can help find graph objects associated with 

particular attribute values e.g. SocialAction [161] offers  filtering on node attribute 

values in static graphs, while Burch et al. [190], offer filtering on edge weights in their 

temporal graph system.   

8.2.2.2 Q2 

The timeslice views (sequential, juxtaposed, additional spatial dimension, 

superimposition) of the design space (Chapter 7) show a snapshot of the graph at an 

individual point in time i.e. a Q2 representation (partial behaviours S2 and A2).  

In Q2, finding structural patterns depends on the graph representation used 

(discussed further in Section 8.2.2.4). Where a node link representation is employed, 

finding patterns is supported by the choice of layout algorithm; when using a matrix 

view, a clustering algorithm needs to be applied. Where node or edge attributes are 

visually encoded, the graph layout also determines how attribute distributions are 

perceived. DGD-Tool [167] offers a choice of layout paradigms for node link diagrams, 

depending on the patterns of interest to the analyst: force directed, which highlights 

clusters; layer based, for detecting hierarchic structure; and orthogonal, for detection 

of paths between connected nodes. Similarly, TVN Viewer [175] offers a choice of 
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radial and force directed layouts. As discussed in Chapter 7, in dynamic graph drawing 

there is a trade-off between local (at each time point) and global (over all time points) 

layout optimisation. The ViENA framework [28] and GraphDiaries [71] offer layout 

stability controls to allow people to optimise the layout to their needs.  

Interaction techniques including filtering, clustering, grouping, and simplification 

[231], and network motif glyphs [232] all may help find patterns in Q2 at different 

levels of granularity.  

8.2.2.3 Q3 

For Q3, nested views e.g. [70], [73] (Figure 71 and Figure 89),  show temporal trends of 

nodes or edges embedded within the graph structure. Temporal trends can also be 

combined with other representations: TimeFluxes [233] (Figure 72) connect the same 

node in two different timeslices of a 2.5D representation, and display timelines of 

attribute values for individual interactively-selected nodes.  Vertex small multiples 

[197] (Figure 73) can be selected from a matrix cube view to show connectivity 

patterns between individual nodes over time.  
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Figure 72 TimeFluxes (Itoh et al., [233], Figure 8) between 2.5D timeslices show temporal trends for 

individual nodes  

 

 

Figure 73 Bach et al.’s vertex small multiples ([197], Figure 8) allow comparison of temporal trends 

in edge weights (indicated by cell colour) between nodes 

Some systems focus specifically on showing the set of individual temporal trends. 

LinkWave [234] (Figure 74) visualises temporal trends in connectivity for all pairs of 

nodes in a graph, while NetVisia [104] displays temporal node statistics in a heatmap. 

Interaction techniques can be employed to filter the data to a particular time range, 

for example, using range sliders, as in TimeMatrix [70], or reducing timeseries data 
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to reveal temporal patterns of interest, such as LinkWave’s functionality to aggregate 

the temporal trends associated with groups of nodes to support the discovery of 

group level motifs (Figure 74).  Techniques from temporal visualisation, such as 

ChronoLenses [235], which offers magnification and filtering, amongst other tools, 

and the Semantic Time Zoom techniques described in [49], [236], could also be of 

potential use when visualising Q3 data items.  

 

 

 

Figure 74 Riche et al.’s LinkWave ([234], Figure 1). Top: the connections between each pair of node 

at each time point is visualised using a set of streamgraphs to show the temporal evolution of the 

adjacency list; such a view allows comparison across temporal trends. Individual trends can be 

aggregated to assist in the discovery of group level connection motifs (top right). Bottom: Group 

level connections are compared for a diseased subject (left) and healthy subject (right) ([234], Figure 

4) 

8.2.2.4 Q4 

When representing Q4, all of the techniques identified in the design space (Chapter 

7) show graph evolution over time i.e. aspectual behaviours A4 and S4 (as discussed 

in Section 5.2.1), with the exception of nested views, which show the distribution of 
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temporal trends (S1 and A1 partial behaviours) over the graph (i.e. aspectual 

behaviours S3 and S4).  

Given the range of techniques that were identified in the design space which are able 

to support aspectual behaviours A4 and S4 (the changes in the distributions of 

attribute values over a graph, over time, and the changes in configurations of nodes 

over time i.e. a graph’s structural evolution), careful consideration needs to be given 

when selecting a technique from the many available to represent such data. A 

number of factors may influence our choice of technique for visualising changes in a 

graph over time.  These include: 

Data considerations: 

• Graph structure (general, hierarchical, compound) 

• Graph characteristics (at each timeslice), such as size and density  

• Overall density/sparseness of the network  

• Type of change present in the data (i.e. attribute and/or structural change; 

node and/or edge addition/deletion) 

• The amount and rate of change, or volatility of the data (e.g. many or few 

additions/deletions) 

• Length of time series/granularity of the time dimension 

Analysis considerations: 

• The type of graph object under analysis e.g. paths, clusters etc.  

• The aspects of the behaviour in which we are interested (e.g. our data may 

have node additions and deletions, but we might only be interested in nodes 

leaving the network) 

• The granularity of pattern of interest: for example, in some cases, a 

topological statistic is sufficient for an analysis; in other cases, the topological 

structure is important.  Similarly, we may require a more or less fine level of 

temporal granularity e.g. an aggregated view of the network for a given time 
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interval may be sufficient for our purposes, or we may need to see a more 

detailed sequence of events and show the network at each time point33. 

Section 7.4 considered the relative strengths and weaknesses of the different visual 

encodings, which can be of assistance when selecting a technique for a specific data 

set.  

8.2.2.5 Search space 

Depending on the task search space (discussed in Section 5.5.1), for inverse lookup 

tasks, only a sub section of time or graph may need to be displayed. Where the search 

space is time, highlighting or filtering of the graph or set of time series can be used 

to show only the graph object of interest. For static graphs, “Degree of Interest” 

techniques have been developed which show only relevant portions of a large graph 

(e.g. [227], [237], [238]); these could also potentially be of use when applied to 

temporal graphs, in the case where the search space is time. If the search space is 

graph, only the time period of interest need be selected and shown e.g. as mentioned 

in Section 8.2, Chang et al. [171] allow selection of a time interval over which to watch 

their sequential temporal graph visualisation unfold. Where the search space is both 

time and graph, showing the whole graph over all time points is necessary, and may 

require interaction techniques to allow people to navigate the whole dataset while 

searching for patterns of interest. Note that the representation used to show the data 

will depend on the pattern of interest. For example, if we are interested in finding 

nodes having interesting temporal trends in a particular attribute value, the temporal 

trends for all nodes will need to be displayed. Likewise, if we wish to find times at 

which particular structural patterns appear, we need to show the graph’s structure 

at all time points. 

8.2.2.6 Identifying time steps and graph objects 

Once a pattern or value of interest is observed, the corresponding time steps and 

graph objects must be identifiable. Aris and Shneiderman [239] identify labelling as a 

challenge when representing graphs. In general there is a trade-off between being 

                                                      
33 NB Bender-deMoll and McFarland [159] discuss temporal aggregation in dynamic graphs in more 

detail. 
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able to view labels, and the clutter and occlusion which showing them may cause. 

Showing all labels all of the time may obscure the data, especially in larger graphs.   

The alternative strategy is to show some labels some of the time through interaction 

e.g. showing labels on demand on mouse-over, or use of a Degree of Interest function 

to determine which labels should be displayed. Labels can be displayed in situ (next 

to the node/edge) or in a separate area of the screen (e.g. a side window).  Fekete 

and Plaisant [240] offer a taxonomy of general labelling strategies in visualisation, 

which they divide into static (e.g. showing labels only when there is sufficient space) 

and dynamic techniques (e.g. tool tips or display in side window on mouse over, 

excentric labelling), and offer advantages and disadvantages of each.  Similar labelling 

strategies (show all labels or only show labels on-demand) can be employed where a 

timeline is present, or individual timeslices can be time stamped in sequential views 

e.g. [172], [241] (Figure 69 and Figure 75). 

 

Figure 75 Example of time stamped labelling (top left). Screenshot from 

http://www.leydesdorff.net/journals/nanotech/  

As tasks may be chained, some way of marking found graph items and/or time points 

for use in subsequent tasks can be supported, for example, nodes of interest are 

often highlighted via selection mechanisms for tracking over time e.g. [28], [71], [173] 

(Figure 76). 
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Figure 76 Superimposed view (Federico et al., [28], Figure 3). The selected node is highlighted in red 

in all four time slices. 

 

 Comparison 

The visual techniques appropriate to support comparison tasks depend largely on 

what is to be compared - graph elements or objects, time points or intervals, attribute 

values or patterns, or structural patterns. These are distinguished in the quadrants, 

and according to the direct/inverse task distinction. In many cases, at least one of the 

items is found via a lookup task, which means the techniques for locating time, graph 

and/or patterns or values (discussed in Section 8.2) must be appropriate.  

Whether the same or different graph objects, times, and attributes, or a specified 

item, are involved in the task also needs to be considered, as some mechanism for 

selecting different objects for use in comparison is required. This is discussed further 

in Section 8.3.3. 
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Figure 77 Gleicher et al.'s three basic possibilities for visual comparison ([63], Figure 1). 

Gleicher et al.’s [102] three basic possibilities  for visual comparison (Figure 77) - 

juxtaposition (placing representations  side by side), superposition (overlaying 

representations  in the same display space) and explicit encoding  (where the 

relationship between the two items is calculated  and explicitly represented) – can be 

applied in each of the  quadrants. In addition, temporal graph visualisation is heavily 

related to graph comparison [79], and Q2 can draw on a large body  of literature in 

this area. 

8.3.1 Direct comparison 

Direct comparison involves comparison of attribute values or patterns, or structural 

patterns. 

8.3.1.1 Q1 

With regard to comparing attribute values associated with individual nodes and 

edges, the context in which objects appear can affect our perception of them 

(notable examples include Adelson’s illusion of colour perception34), with precise 

judgement being easier if objects are positioned next to each other and aligned. 

However, the position in which attributes appear in a graph representation is 

determined by the graph’s structure. The ability to manually adjust the layout (e.g. 

through dragging nodes to new positions) could be useful for smaller graphs. 

However, in large graphs where nodes are very distantly positioned or do not appear 

in the same screen space (e.g. where interaction is utilised in very large graphs), this 

                                                      
34 See http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html  
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may not be possible. Functionality to select nodes or edges for use in comparison 

views could also be helpful when comparing attribute values in Q1. 

8.3.1.2 Q2 

Layout, transitioning, differencing, and matching techniques can all be used to 

support graph comparison.  

Graph layout can facilitate comparison by minimising movement in node positions 

between graphs [242]. In timeslice views, local layout stability in dynamic graph 

algorithms focusses on minimising unnecessary change between consecutive 

timeslices in order to preserve the mental map of the person using the system. Where 

the graphs being compared are from distant parts of the timeseries, the layouts may 

need to be recalculated relative to one another (see Section 8.3.3.1). 

In sequential views, transitioning techniques help people to follow changes occurring 

between timeslices, thereby supporting maintenance of the mental map. Techniques 

include staged transitions [243], and animation – either interpolation of node 

positions in node link diagrams e.g. [241], or animated changes in space-filling 

representations e.g. [150].  Motion (‘blinking’), fading, and colour highlighting are 

often used to draw attention to the addition or deletion of graph elements. Bach et 

al. [71] note the need to be aware of interference between encoding used in 

transitions and the encodings representing graph data when designing transitions; 

their GraphDiaries system is a good example of the use of transitioning techniques. 
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Figure 78 GraphAEL's difference graphs ([23] Figure 5) encode magnitude of change with node size; 

dark nodes indicate increase, light nodes, decrease. 

Differencing techniques reflect Gleicher et al.’s [102] explicit encoding category, 

using visual encoding to represent the difference between two timeslices. Such 

techniques have been used in conjunction with both node link diagrams  [23], [144], 

[145] and treemaps [146], and can be used to represent attribute change [23], [146] 

(Figure 78 and Figure 84) or structural change [144]–[146] (Figure 79). Differencing 

techniques may potentially be used in conjunction with sequential views, 

juxtaposition, and possibly 2.5D approaches to temporal encoding, although 

literature regarding their use in temporal graph systems (as opposed to their merits 

in graph comparison) is more limited; [23], [71], [145] are examples. 

 

Figure 79 A difference map ([144], Figure 1) (c) is constructed by combining Graphs G1 and G2: black 

and light grey encode the nodes which appear only in G1 and G2, respectively. Nodes A and D, which 

are common to both graphs are shown in dark grey. 

Superposition is also used to show change between timeslices. ViENA’s [192] 

superimposition view (Figure 76) and DARLS’ [145] difference layers superimpose one 

graph on top of another, and indicate the different timeslices using a visual variable, 
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such as colour or transparency. As nodes common to both timeslices appear twice, 

this approach shows not only the structural differences between two graphs 

(node/edge addition/deletion) but also change in node position. 

Related to differencing techniques are techniques for highlighting matches between 

timeslices. Hascoët et al. [103] note the use of three different approaches in graph 

comparison: use of visual links, colour coding, and brushing and linking. Examples in 

the temporal graph literature include, TimeFluxes [173] (Figure 80) and node 

trajectories [192] (Figure 81) which link nodes in different timeslices; and co-

ordinated highlighting e.g. [136], [173], which help in  locating nodes and comparing 

their positions between timeslices. 

 

Figure 80 Comparison of  TimeFluxes (Itoh et al., [233], Figure 8), which show temporal trends for 

individual nodes  

 

Figure 81 On-demand node trajectories in ViENA’s 2.5D view ([244], Figure 2) 
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The techniques described above relate specifically to timeslice views.  Other 

techniques supporting comparison include alluvial diagrams [137] (Figure 82 which 

show significant changes in clustering between adjacent time points, and ManyNets 

[245] which offers tabular views for comparison of statistics relating to  multiple 

networks. 

 

Figure 82 Alluvial diagrams (Rosvall & Bergstrom, [137], excerpt from Figure 2): each block 

represents a cluster; different colours within the same block representing significant subsets. 

In general, comparison of graph attributes is not well considered in the literature. 

Alper et al. [246] carried out a controlled study to evaluate techniques for weighted 

graph comparison using node link and matrix layouts (Figure 83), finding matrix 

approaches to be more effective for encoding and comparing edge weights.  Some 

support is offered in temporal graph systems, e.g. GraphAEL [23] (Figure 78) offers a 

version of explicit encoding on nodes which encodes the difference in values between 

two timepoints as node size, while Tu and Shen [146] offer a number of techniques 

for showing change in attribute values between two treemaps (Figure 84).  

 

Figure 83 Techniques for weighted graph comparison considered by Alper et al.([246], Figure 3). 
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Figure 84 Tu & Shen’s techniques for showing change in attribute values between two treemaps. 

Left: In two-corner contrast treemap ([146], Figure 11) the upper left corner represents time 1, lower 

right time 2. Middle: Ratio contrast treemap ([146], Figure 14) uses explicit encoding (colour, 

saturation, brightness) of the ratio change between time 1 and 2. Right: They also offer a contrast 

treemap for multiple attributes ([146], Figure 15): each vertical segment represents an attribute, the 

top half (green) represents time 1, bottom half (blue), time 2. 

8.3.1.3 Q3 

Comparison in Q3 is little considered by the temporal graph literature.  Nested views 

show all temporal trends for a node or edge in the same display space, which allows 

comparison to some extent. However, the conditions are not optimal, due to the 

limited display space available to show the time series, and - similar to the case of 

node attributes discussed in Section 8.3.1.1 - their spatial positions are determined 

by the graph layout. Comparison of temporal patterns is better supported where 

timeseries are aligned, as in LinkWave’s [234] temporal patterns of dyad connectivity 

(Figure 74 and Figure 85) and NetVisia’s [104] node attribute values. LinkWave also 

facilitates comparison between groups of temporal trends (Figure 85). Techniques 

for more flexible selection of timeseries associated with different graph objects, time 

periods, and attributes, for use in comparison tasks, could be considered when 

designing temporal graph systems (see Section 8.3.3).  
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Figure 85 Facilitating comparison between groups of temporal trends in LinkWave (Riche et al., 

[234], Figure 4).  

8.3.1.4 Q4 

Comparison of data items in Q4 (evolving graphs or temporal distributions over graph 

structures) is not well documented in the literature. Saraiya et al. [73] and Yi et al. 

[70] allow multiple attributes to be displayed in their timeseries glyphs, potentially 

supporting comparison of temporal distributions of different attributes over the 

graph.  MatrixFlow [196] offers a juxtaposed view of the evolution of three co-

occurrence matrices aligned over the same time period.  Itoh et al. [173] support 

comparison of evolution of two different graphs: at each time point, a timeslice from 

each graph is combined in one of three ways (aggregate, pile, or split view – which 

reflect Gleicher’s approaches) (Figure 86). These combined timeslices can then be 

visualised using the temporal layouts offered by their system (animation, 

juxtaposition, 2.5D, merged and superimposed views). An interesting direction for 

future research would be to adapt these techniques to explore the possibilities 

relating to comparison of different parts of the graph, different time periods, and 

different attributes (see Section 8.3.3), and also assess the effectiveness of 

combinations of comparison techniques and the temporal encodings (e.g.  is 

comparing sequential (animated) views side by side an effective way to compare 

structural change over time?). 
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Figure 86 Itoh et al.’s ([173], Figure 10): three techniques for comparing selected timeslices from two 

different graphs 

8.3.2 Inverse comparison 

Inverse comparison involves comparison of time or graph objects. In order to 

compare the times or nodes associated with a value or pattern of interest, these must 

be identifiable to the person using the tool (as discussed for lookup tasks, Section 

8.2.2.6).   

 

Figure 87 Vizster’s Linkage View [247] shows the intermediary nodes between two selected nodes 

(highlighted in red). 

Assessing the connectivity of two graph objects (elementary structural comparison) 

can be supported by highlighting the edge or path between two selected objects, as 
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seen in e.g. Vizster [247] (Figure 87). PaperLens [248], a system for static graphs, 

allows the selection of two nodes from a drop down list, and displays the degree of 

separation links between them.  

8.3.3 Variations in comparison task involving same or different time, graph, and 

attribute components 

So far, the techniques for supporting comparison in different quadrants (i.e. the 

different types of comparison resulting from the different types of data items 

involved) have been discussed.  Table 40 and Table 41 show the possible 

combinations of same and different time, graph, and attribute components, which 

can potentially be involved in comparison tasks.  In addition, comparison may involve 

a specified component. This section now considers some of the ways in which these 

variations can be supported.   

Time Graph Component Attribute 

Same Same Different 

Same Different Same or different 

Different Same Same or different 

Different Different Same or different 

Table 40 Possible combinations of same or different time, graph components, and attributes which 

may participate in direct comparison 

 

Time Graph Component 

Same Different 

Different Same 

Different Different 

Table 41 Possible combinations of time and graph components in structural comparisons  

8.3.3.1 Comparison involving different times 

For Q2, most temporal graph systems focus on comparison between adjacent 

timeslices. A few systems support comparison of non-adjacent timeslices through use 

of  transitioning techniques [71], filtering of a small multiple display to allow 

juxtaposed comparisons [136], or selection of timeslices for use in comparison views 

[145], [173]. Once timeslices have been selected, DARLS [145] offers juxtaposed and 
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superimposed views, and relative re-layout of graphs to facilitate comparison. Itoh et 

al. [173] offer juxtaposed, superimposed, and animated views, and consider methods 

for computing layouts in such cases. Positions of nodes in the timeslices are 

synchronised, and co-ordinate panning and zooming in the graph, and highlighting of 

nodes is employed. DGDtool [167] allows the selection and comparison of multiple 

timeslices and the application of different layout algorithms, allowing comparison of 

the same timeslice laid out in different ways, or comparison of two different times. 

In Q3, aligning the time periods being compared may assist in making comparisons. 

As discussed in Section 8.3.1.4, comparison in Q4 is very limited; there are no systems 

which allow the selection and comparison of evolving graphs over two different time 

periods. 

8.3.3.2 Comparisons in the same timeslice 

While comparison of graphs at different times can be facilitated by allowing selection 

of timeslices for use with comparison techniques, comparison in Q2 may also involve 

comparison of graph objects in the same time slice. Additional support for this may 

be required for large graphs where the components being compared are distantly 

positioned in a crowded display. Techniques from static graph visualization could be 

employed here: DualNet [249] allows selection and comparison of two different parts 

of the same (static) network, in linked side-by-side views. 

8.3.3.3 Comparison of two graph objects over the same time period 

No techniques have specifically been developed to support comparison of different 

graph objects evolving over the same time period (a variation of comparison in Q4).  

While existing techniques which show the evolution of the graph over time may allow 

such comparisons to be carried out manually i.e. through visual inspection, adapting 

the techniques described in Section 8.3.3.2 (such as selecting the graph objects of 

interest) to temporally evolving graphs could prove useful here.  
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8.3.3.4 Comparison of different attributes 

As previously mentioned, little attention has been paid to comparison of graph 

attributes in the literature. Even less attention has been given to supporting 

comparison of different attributes e.g. comparing the distribution of attribute A with 

attribute B, or comparing the evolution in distributions of attribute A and B over the 

graph, over a particular period of time.  

Comparison of different attributes is common in temporal visualisation, where two 

different attributes can be charted, for example, on the same line graph or in a 

stacked bar chart.  The nested views are therefore perhaps more readily able to 

incorporate such functionality. For example, TimeMatrix [70] supports comparison of 

the temporal behaviour of two different types of edges between the same pair of 

nodes, or comparison of different attributes over time for an individual node or edge, 

using overlays (Figure 88). Saraiya et al. [73] investigated a similar technique which 

combines heatmaps and line charts to show different node attributes over time 

(Figure 89); however, they found that the number of attributes displayed in their node-

glyphs affected the accuracy of participant response. 

 

Figure 88 Illustration of TimeMatrix's “overlays” functionality which allows two different timeseries 

to be overlaid in a single glyph (Yi et al., [70], excerpt from Figure 3). 
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Figure 89 Heatmaps and linecharts combined in node glyphs (Saraiya et al., [73] Figure 8)  

8.3.3.5 Comparison with a specified value or pattern 

One final variation of comparison task is where a specified value or pattern (i.e. one 

not necessarily found in the data) is involved, e.g. a particular graph motif, temporal 

trend, or pattern of graph evolution.  In this case a system may need some way to 

visually represent this for use during analysis. 

 Relation Seeking 

Relation seeking is the opposite of comparison, in that we want to find items - graph 

objects, times, attribute values, patterns - related in a given way. Many of the 

comparison techniques also support relation seeking. Matching techniques - which 

find common elements between two graph representations (as discussed in Section 

8.3.1.2)  - can be considered relation seeking techniques in Q1 (i.e. finding the same 

node at two different time points). Finding nodes or edges with 

similar/different/opposite attribute values is generally only supported via visual 

inspection of the encodings used in the graph. 

In Q2, Dunne and Schneiderman’s [232] automatically generated network motif 

glyphs may help support finding similar or opposite structural patterns visually.  von 

Landesberger et al. [250] describe a system which uses automated analysis to detect 

occurrences of user-specified graph motifs (either selected from a predefined list, or 
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arbitrarily specified). We can imagine a system which might take this process one step 

further, and allow an analyst to interactively select a particular structure in the graph 

to use as the basis of an arbitrarily specified pattern upon which to detect matching 

patterns. Tools for relation seeking involving attribute distributions (for example 

functionality to find a similar or opposite distribution of attribute values to that 

associated with a given set of nodes) have not yet been explored.  

 

 

Figure 90 Finding opposite temporal trends using TimeSearcher (Hochheiser & Shneiderman, 2004, 

Figure 6) 

TimeSearcher [114] (Figure 90) is a good example of a technique supporting relation 

seeking in Q3: specifying a slope and tolerance results in all timeseries with a similar 

slope being selected. A challenging opportunity for future research could be the 

development of similar visual analytics tools to find structural patterns in Q4 e.g. 

finding similar structural patterns of graph evolution or attribute distributions over 

time.  

8.4.1 Elementary structural relation seeking 

The elementary structural relation seeking task involves finding graph objects 

connected in a given way e.g. ‘find the nodes connected to node A’. Highlighting nodes 

linked to a selected node through use of e.g. colour, brightness, size, or oscillatory 

motion [251],  is a common technique to support this task. Vizster [247] is a good 

example of the use of such connectivity highlighting.  When a node is selected, 
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directly connected nodes, and nodes at two degrees of separation are highlighted 

using a graded colour scale.   Selecting an edge in Constellation [252] highlights the 

pair of nodes which it links. This represents support for the variation of relation 

seeking where no node is specified. 

A further example of structural relation seeking where no node is specified is Van 

Ham et al.’s Phrase Net system [253] which allows the person using the system to 

define the relationships on which a graph is constructed. The data involved is 

unstructured text.  The person using the system selects a relationship between words 

(either based on user constructed regular expressions, or by selecting a syntactic 

relationship from a menu) to define the edge set.  A graph is then constructed in 

which words are nodes, and the edges between words are representative of an 

instance of the defined relationship.  Examples given in the paper of orthographic 

linking (which uses text based pattern matching defined by regular expressions to 

construct links associated with language rules) are defining an edge (X,Y) for each 

occurrence of “…X’s Y…” or “…X at Y…” in the data set (e.g. “King’s daughter” or 

“dance at Netherfield”). The resulting directed graphs are then visualised using a 

variety of techniques in order to produce a readable graph.  

 Overview of the task-technique mapping 

Table 42 gives an overview of the techniques which have been discussed in this 

chapter, according to task type and quadrant. Cells marked with a green star indicate 

areas where opportunities for further research were identified.  
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 Q1 Q2 Q3 Q4 

LOOKUP Appropriate visual encodings: 

Determined by graph 

representation; attribute 

encodings 

Graph vis; timeslice views Temporal vis; nested 

views; 

Time Fluxes [173], Vertex 

Small Multiples [197], 

LinkWave [113], 

NetVisia [104] 

Temporal graph vis; design 

space [254] 

Direct  

(‘find attribute values or patterns, or 

structural patterns associated with given 

graph objects at given times’) 

Graph and temporal navigation 

Inverse 

(‘identify graph/time components 

corresponding to attribute values or 

patterns, or structural patterns) 

 Filtering and reduction techniques to reveal patterns 

Filtering/highlighting to reduce search space 

Labelling strategies to identify time/graph objects 

Marking found graph objects/times for use in later tasks 
 

COMPARISON Gleicher’s approaches [102]: juxtaposition, superposition, explicit encoding 

Display a specified data item 

Direct 

(‘compare attribute values or patterns, or 

structural patterns’) 

Alignment, colour context 
 

Graph comparison techniques – layout, transitioning, 

differencing, matching; co-ordinated pan & zoom  

 

 

Nested views; aligned 

timeseries 

 

 

Examples: [255], 

TimeMatrix [70], 

MatrixFlow [196], [173] 

Inverse 

(‘compare (find the relationship between) 

graph objects or times’ ) 

Identifiable graph/time labels 

Interactive highlighting of connections between selected 

graph objects; PaperLens [248] 

 

 

RELATION SEEKING 

(‘find data items related in a given 

manner’) 

Matching techniques (visual links, colour coding, 

brushing and linking); interactively highlighting nodes 

linked to a selected graph object; 

Phrase Nets[253]; Graph motif matching [250] 

 

TimeSearcher   

Table 42 Summary of techniques supporting tasks types in the four quadrants. Possibilities for further research mentioned in the discussion are highlighted with a star.



 

 Combining Techniques 

The above discussion has considered techniques for the support of individual task 

types. However, many individual tasks of varying types are involved in exploratory 

analysis. Moreover, depending on the pattern of interest, the exact same task may 

be best supported by different visual representations e.g. different layout algorithms 

draw attention to different structural features (clusters, hierarchy, etc.), while 

aggregating time or graph structures reveal patterns at different levels of granularity. 

Further, as noted in Section 8.2.2.6, tasks may be chained, with the result of one task 

being the starting point for the next (e.g. having found a graph object with a particular 

attribute value or interesting structural feature, we may then want to observe how it 

evolves over time). Andrienko [5] also highlight the need to synthesise the findings 

from our partial observations in order to form a coherent view of the overall 

behaviour of the data.  

A variety of tools are therefore necessary to support exploratory analysis. These 

different tools must be integrated in such a way as to fully support an iterative 

analysis process, and allow the person performing the analysis to piece together their 

partial understandings of the data. This section therefore considers the ways in which 

different techniques can be combined, and the ways in which tools can support the 

integration of findings. 

8.6.1 Multiple views 

The importance of offering multiple views on the data in order to maximise insight 

[256]–[258], balance the strengths and weaknesses of individual views [39] and avoid 

misinterpretation [259], is a well-established design principle in visualisation.  There 

are two general possibilities when offering multiple views: the person using the 

system can be offered a choice of ways to represent the data which they can switch 

between, or views can be combined in some manner in the same display space. Co-

ordinated multiple views (CMV) not only combine visual representations in the same 

display space, but use co-ordinated interaction techniques. Often views are 

juxtaposed side-by-side, and interacting with one view results in some change in 

another view, such as highlighting a corresponding item, or zooming or filtering the 



248 

 

views in a co-ordinated manner. Javed and Elmqvist [39] identify additional ways in 

which views can be combined, and introduce five design patterns for what they term 

“composite visualisation views” (CVV) (illustrated in Figure 91). Note that these 

patterns were utilised when determining the possibilities for the temporal encodings 

of the design space in Chapter 7. 

 

Figure 91 Four of Javed and Elmqvist's  composite visualisation views (CVV) design patterns (left-

right): juxtaposition, superimposition, overloading, nesting (Javed & Elmqvist, 2012, Figure 1). They 

also include a fifth pattern, integration, which involves the use of visual links between views. 

8.6.2 Multiple views in temporal graph systems 

Let us now consider the ways in which multiple views have been combined in 

temporal graph systems. 

8.6.2.1 Selecting a different representation 

A number of temporal graph systems allow the person using the system to select and 

switch between representations.  Systems offering different temporal encodings 

include:  

• GraphAEL [23] - sequential, juxtaposed and 2.5D views;   

• Cubix [197] - juxtaposed, 2.5D, and merged views;  

• ViENA [28] - juxtaposed, 2.5D, and superimposed views;  

• Itoh [173] - sequential, juxtaposed, 2.5D, merged and superimposed 

views.  

As discussed in Section 8.2.2.2, systems may also offer a selection of different layout 

algorithms for application in node link diagrams.  Interestingly, no system exists 

which offers switching between different graph representations (i.e. a choice of node 

link, matrix, space filling).  However, Hadlak et al. [82] support this with their in-situ 

technique, which allows different temporal and graph encodings to be embedded in 

a base visualisation (Figure 92). 
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Figure 92 Hadlak et al.'s in situ strategy: "1: base visualization showing a node-link layout of the 

supergraph and multiple embedded visualizations. 2: in situ visualization showing a complexity plot 

for the underlying subgraph. 3: in situ visualization showing a 1.5D visualization of the underlying 

subgraph, connecting links are overlaid in red by the base visualization. 4: recursive use of in situ 

visualization to show a complexity plot for a subgraph selected in a matrix view.” (Figure 1, [82] )  

At least two systems offer the person using the system a choice of views for 

comparing time slices: DARLS [145] offers juxtaposed and superimposed views, while 

Itoh et al. [173] offer juxtaposition, superimposition, and difference maps (i.e. explicit 

encoding). 

Offering different views to support different tasks, such as switching between a 

“lookup view” (e.g. a view showing Q4 data items, such as a 2.5D view) and a 

“comparison view” (e.g. a view suitable for Q2 comparison of two timeslices), is 

supported by a number of systems, such as those discussed in 8.3.3.1. 

Federico et al. [192] note the importance of supporting the mental map when 

switching between views. Their ‘vertigo zoom’ interaction technique does this 

through use of smooth transitions between the structural and temporal aspects of 

the data.  Similarly, Cubix [197] animates transitions between views to maintain user 

understanding. A “Cubelet” widget acts as a visual metaphor and interactive 

controller, which represents the current and possible views offered by the system. 
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8.6.2.2 Composite views 

Most of the techniques for visualising temporal graphs identified in Chapter 7 already 

utilise composite views: as mentioned above, the temporal encoding of the design 

space incorporates Javed and Elmqvist’s CVV patterns [39]. In addition, some systems 

have purposefully incorporated more than one graph and/or temporal encoding in 

the same view.  

 

Figure 93 GraphDiaries combines sequential (a) and juxtaposed (b) temporal encodings in the same 

display space ([71] Figure 1) 

Different temporal encodings can be displayed in the same screen space, for 

example, GraphDiaries [71] (Figure 93) combine sequential and juxtaposed views. As 

mentioned in Section 8.2.1, timeline views of statistical summary information are 

frequently shown together with sequential views.  

Systems which allow the person using the system to interactively select views and 

show them in the same screen space include DiffAni [83], which incorporates small 

multiple, animation and difference map ‘tiles’ which can be selected for different 

parts of the timeline, and Hadlak et al.’s [82] ‘in situ’ technique (discussed in the 

previous section), which allows multiple views of both the temporal and graph 

structural aspects of the data to be selected and shown together in a single, tightly 

integrated view.  Itoh et al.’s [173] 2.5D views combined with interactively selected 



251 

 

TimeFluxes showing temporal information relating to individual nodes, are also good 

example of this type of composite view. 

 Piecing together findings 

So far we have considered the techniques which support different tasks, and ways in 

which these different techniques can be combined. Support for integrating partial 

findings is also required. The “process & provenance” category of Heer and 

Shneiderman’s [59]  interaction taxonomy is relevant here. In particular, they 

consider techniques for recording ‘interaction histories’ and annotating findings. 

Wybrow et al. [260] review three systems offering means to record a person’s 

interactions with multivariate graphs: GraphDice [261], RelaNet, and CZSaw [262]. 

However, they conclude that this remains a large challenge in visual analytics 

generally. 

 Role of the task classification in task-technique mapping 

This chapter has considered the techniques to support different tasks involved in 

exploring temporal graph data, and identified a number of areas where support for 

tasks is lacking.  Let us now consider this finding in relation to the task classification 

used as the basis of task-technique mapping, specifically with regard to the findings 

of the evaluation outlined in Chapter 6.  

While evaluating the task classification, it was found that  

(1) It was more comprehensive than extant task classifications 

(2) Some further work was required to establish the real world nature of some 

categories of tasks. 

Table 43 summarises the overlap between the task categories identified as 

opportunities for further research in this chapter (marked with a star) and the 

findings of the evaluation relating to task coverage in existing frameworks in Chapter 

6 (blue shaded area highlights categories identified in the task classification of this 

thesis which are not found in extant classifications).  



252 

 

 

 Lookup Comparison Relation 

Seeking 

Q1  * * 

Q2  * * 

Q3  *  

Q4i  * * 

Q4ii  * * 
Table 43 Summary of task categories identified in this chapter as opportunities for further research 

into visual techniques for their support (marked with a star) and task categories appearing in the 

task classification developed in this thesis, but not in extant classifications (shaded in blue). Large 

stars indicate categories not appearing in other task classifications and identified as opportunities 

for research. 

Firstly, we can conclude from this that there are a set of tasks (relation seeking in Q4i 

and comparison and relation seeking in Q4ii; marked with a larger star in Table 43) 

which could benefit from further research into techniques for their support which it 

would not have been possible to identify by performing a task-technique mapping 

with the set of tasks drawn from extant task classifications.  This underlines the utility 

of the work carried out in this thesis. 

However, secondly, we should recall the discussion in Section 6.2.2.4 relating to the 

real world nature of tasks.  While evidence has been provided at a high level in favour 

of the real world nature of the tasks of the classification, further work is needed to 

establish this for all variations of task. Where a task is identified as an opportunity for 

further research as it is not currently well supported, before developing techniques, 

we should be sure to consider the evidence in support of whether it is real world in 

nature, either as identified in this thesis, or from further consideration of potential 

domains and analysis scenarios. 

 Summary 

This chapter has considered the techniques to support different tasks involved in 

exploring temporal graph data.  One of the main - and perhaps surprising - findings is 

the need for techniques not only from research specific to temporal graph 

visualisation, but from the static graph and temporal visualisation research areas.   

The distinction between techniques which support the different aspectual 



253 

 

behaviours – A3 and S3 (evolving attribute distributions or graph structures) and A4 

and S4 (temporal distributions over the graph) – is also important, as to date these 

(along with any other technique used in conjunction with temporal graph data) have 

all simply been considered together as “temporal graph visualisation techniques”.  

However each class of techniques is able to represent only one aspect of the data. 

A number of areas for future work were identified.  With regard to different task 

types, very little work has been undertaken to support comparison and relation 

seeking in Q4, and this area is ripe with possibilities for future research. More 

generally, offering mechanism for selecting data items for inclusion in “comparison 

views” to support the variety of combinations of graph, time, and attribute 

components which may participate in comparison tasks, should be considered when 

developing future systems. It was noted that some of these areas would not have 

been identified as areas for future work had the extant task classifications been used 

as the basis of the task-technique mapping. However, the need to consider the 

evidence in support of the real world nature of tasks before embarking upon further 

research was also highlighted. 

Finally, we are beginning to see the emergence of systems which combine multiple 

techniques in different ways. There is scope for further work in this area, for example, 

in developing mechanisms for re-using results; including techniques from all 

quadrants to support the different task types and developing mechanisms to switch 

between views; and “process and provenance” techniques to help track exploration 

history and integrate partial findings from the analysis process. 

 



 

Chapter 9 Case Study 

This chapter presents a case study in which the tools developed in this thesis are used 

to evaluate an existing temporal graph visualisation system. The system is evaluated 

in terms of the tasks which it currently supports, and a number of unsupported tasks 

are identified. Based on this, recommendations for the inclusion of additional tools 

can be made. The intention of this chapter is to demonstrate one way in which the 

tools in this thesis could be used in the design and evaluation of temporal graph 

systems.  The tools could also be utilised in a similar way in the design of a new 

system. The other uses of the task design space and task-technique mapping which 

centre around identifying research opportunities, for example, identifying 

unexplored visual techniques, unsupported tasks, and opportunities for evaluation 

where multiple techniques support a single task, etc., are demonstrated in Chapter 7 

and Chapter 8.  

As noted in Section 2.3, when designing and evaluating systems, taxonomies are not 

intended to be used in isolation from the input from the people who will use those 

systems; they provide an additional tool to point to tasks and techniques which may 

otherwise be overlooked. Note that the case study in this chapter is limited to the 

stages directly involving the use of the task taxonomy and task-technique mapping. 

The next stage would be to discuss these findings with those for whom the system is 

intended. 

The chapter is organised as follows:  in order to make the task framework more 

manageable to work with during evaluation, a methodology for its use was 

developed. This is presented in Section 9.1.  The features of the existing visualisation 

system being evaluated are discussed in Section 9.2. In Section 9.3, the system is 

evaluated using the proposed methodology, and a number of tasks are found to be 

unsupported. Based on this, the main recommendations for a redesign of the tool are 

given in Section 9.4. 
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 Methodology 

In order to evaluate a temporal graph visualisation system, a methodology was 

constructed based on the dimensions of the task framework, which closely follows 

the structure of the task-technique mapping outlined in Chapter 8.  The methodology 

consists of a checklist of items to consider when evaluating an existing temporal 

graph system: 

1. Consider which of the eight behaviours are visualised. Can the time 

points/periods and graph objects associated with these behaviours be 

determined? Consider search space e.g. is an overview of the partial 

behaviours offered? How are individual attribute values represented? 

2. Consider the functionality for selecting a particular node or set of nodes, and 

time point or period, in order to facilitate direct lookup/behaviour 

characterisation tasks. 

3. Consider which data items – individual attribute values, attribute behaviours, 

structural behaviours, time points/intervals, graph objects -   can be 

compared.  Consider variations according to the same or different times, 

graph components and attributes35 (see Table 20 and Table 21 for possibilities); 

a checklist is given in Figure 94. Is comparison with a specified data item (such 

as a particular attribute value, temporal trend, structural motif etc.) 

supported? Can the times and graph objects associated with particular 

values/patterns be compared?  

4. Consider support for structural comparison (finding in what way two nodes or 

graph objects are related/linked) and relation seeking (finding nodes or graph 

objects related in a specified way). 

5. Consider support for relation seeking between structural patterns.  Consider 

support for relation seeking between attribute patterns. 

6. Which relational behaviours are represented? In what ways can they be 

compared etc. 

                                                      
35 Usually only attributes sharing the same domain can be compared; consider which comparisons 

would make sense for the dataset. 
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Note that the methodology could be adapted to be of use as a starting point when 

designing a new temporal graph visualisation system. 

Comparison Checklist 

The following provides a checklist of comparison tasks which could potentially be 

supported by a temporal graph system. Note that these tasks can be asked of each 

quadrant. 

Attribute based direct comparison 

At a single time point or interval, can we compare: 

�  Two different attribute values/patterns belonging to the same graph 

object? 

�  The values/patterns of the same attribute for two different graph objects? 

�  The values/patterns of two different attributes of two different graph 

objects? 

At two different time points or intervals (t1 and t2), can we compare: 

�  An attribute value/pattern of the same graph object at t1 and t2? 

�  An attribute value/pattern of a graph object at t1 with a different attribute 

value at t2 (where the graph object is the same in both cases)? 

�  The values/patterns of the same attribute for graph object g1 at t1 and 

graph object g2 at t2? 

�  The values/patterns of an attribute of graph object g1 at t1 with a different 

attribute of graph object g2 at t2? 

Comparison involving structural patterns 

Can we compare: 

�  Structural patterns of two different graph objects at the same time point or 

over the same time interval? 

�  Structural patterns of the same graph object at two different times or over 

two different intervals? 

�  Structural patterns of two different graph objects at two different times or 

over two different intervals? 

Inverse comparison 

�  Is it possible to compare the times at which values/patterns occur? 

�  Is it possible to compare graph objects at the same times? 

�  Is it possible to compare graph objects at different times? 

Comparison with specified items 

�  Is comparison with specified data items (such as a particular attribute value, 

temporal trend, structural motif etc.) supported? 
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Figure 94 Comparison task checklist 

 

 Existing visualisation tool 

The Institute of Informatics and Digital Innovation (IIDI) at Edinburgh Napier 

University has developed a prototype visualisation system, which amongst other 

functions, allows visitors to the Institute’s website to explore the author publications 

data for the members of staff within the Institute. The tool is available at 

http://www.soc.napier.ac.uk/~cs22/socksvis/explore15.php.   

The tool was designed to allow visitors to gain an understanding of how the Institute 

works in terms of research. For example, visitors might be interested in finding out 

who the key researchers are, who collaborates with whom and how this has changed 

over time, or how the Institute has developed in terms of publications and research 

areas. 

The data is similar to that used in the examples throughout this thesis: each author 

has a set of publications associated with them, and belongs to a research centre.  

Each publication is tagged with a set of keywords, and is assigned a publication type 

(journal article, book, conference paper etc.). A screenshot of the tool is given in 

Figure 95.  
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Figure 95 Screenshot of IIDI's "people" perspective, showing (clockwise from top left) a node link 

visualisation of the co-authorship network (which can be filtered according to the time line below 

the bar chart, resulting in a sequential view); bar chart of most common keywords; bar chart 

showing numbers of publications of each type over time; parallel co-ordinates showing various 

attribute values for each author. The tool can be found at 

http://www.soc.napier.ac.uk/~cs22/socksvis/explore15.php. Free text search facilities filter the 

visualisations by a person’s name or a publication’s keyword, and various interactive filtering 

mechanisms via direct selection on the visualisations are provided. 

The tool consists of four main visualisations, plus various filtering mechanisms: 

• Node link co-author network (top left, Figure 95): The node link visualisation 

shows the co-authorship network i.e. nodes are authors and a link is drawn 

where two authors have co-authored a publication.  The weight of links 

indicates the number of co-publications, while node colour encodes research 

centre, and node size encodes total publication count over all time periods.  

The slider bar (bottom right in Figure 75) filters the graph to show only nodes 

and edges appearing in the selected time period.  Dragging the slider results 

in a sequential view of the network over time36.  

                                                      
36 Note that attribute values are shown for the entire time period, and do not change over time. 
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• Keyword bar chart (top right, Figure 95): An ordered bar chart is used to 

indicate the most frequent keywords occurring in the data.  

• Parallel co-ordinates (bottom left, Figure 95): Each line in the parallel co-

ordinates display represents an author (coloured according to research 

centre); the position at which the line cuts each axis indicates the value for 

that attribute. Distributions of (numeric) attribute values can be seen on the 

individual axes.  Relationships between pairs of attribute values can be more 

clearly seen by re-ordering the axes (e.g. there is a general relationship 

between grant value and number of grants: authors with more grants tend to 

also have higher value grants). Clusters of authors with similar values across 

several attributes can be seen by observing bundles of lines following similar 

paths (in this dataset, there are no markedly distinct bundles). 

• Publication count bar chart (bottom right, Figure 95): the stacked bar chart 

shows the amount of publications over time by research centre. 

 Evaluation 

The methodology outlined in Section 9.1 is used to evaluate task coverage in the 

system. 

1. Consider the behaviours supported 

At present, the node link visualisation allows us to see:  

• (S2) the configuration of nodes based on the linking relations between them, 

at a single time  

• (S4) the configurations of nodes (i.e. S2), over time e.g. the evolution of the 

structure of the co-authorship network over time. However, this view could 

be improved.  Use of sequential views arguably makes gaining an overview of 

the changes in structural patterns somewhat difficult, as discussed in Section 

8.2.2.4. Meanwhile, the lack of transitioning techniques between time points, 

and use of a less-than-stable force directed layout make understanding the 

changes between time points challenging.  
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• A variation of A4 (the behaviour of the distribution of the attribute values over 

the graph over time). The visualisation currently shows the attribute 

distributions over the cumulative network for the whole time period. This is 

because the size (publication count) and colour (research centre) do not 

change over time. We therefore do not gain any insight into attribute 

distributions over the graph at an individual point in time (A2) or how the 

distributions changed over time (A4).  

• To a very limited extent, (S1) behaviours (the behaviour of linking relations 

between two graph elements over time) can be seen by focussing closely on 

a pair of authors and moving the time slider, however, this does not offer an 

optimal view of this type of behaviour. 

The three other visualisations (parallel co-ordinates and bar charts) show attribute 

behaviours in isolation from the graph structure e.g. frequency distributions of 

attribute values in the data set. Each bar in the publications bar chart shows 

information relating to total numbers of each type of publication for all authors, at a 

single time point (A2), and the totals over time are shown by the set of bars (A4). The 

keyword bar chart shows the frequency of keywords associated with all authors in 

the data set, over all times (A4), or filtered for particular times (A2). The parallel co-

ordinate display shows the set of aggregated total values for the whole time period, 

for each author (A4). When a time period is selected, the display is filtered to show 

only the totals for authors who appear in the network during that time (i.e. particular 

values for the selected time period are not shown).  In addition, the parallel co-

ordinate view allows us to consider relational behaviours e.g. correlations between 

attribute values. 

Selecting an author in the node link view filters all views to show data relating to the 

selected author (Figure 96). On selection, the bar chart shows the behaviour of an 

attribute value (in this case, publication counts by type) for an individual author.  This 

is an (A1) behaviour. In addition to this behaviour, the individual attribute values 

(aggregated for the whole time period) associated with the author are also shown in 

the parallel co-ordinates view. 
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Figure 96 Selecting an author in the node link display filters all displays to show only data relating 

to the selected author 

To summarise, the current tool is able to show behaviours A1 and S2; to a more a 

limited extent, S4; a variation of A4 (involving graph structure), and A2 and A4 

behaviours in isolation from graph structure; and, to a very limited extent, S1. 

The behaviours which are not currently shown (or only shown in a limited way) 

include: 

• (S1) the behaviour of linking relations between two nodes over time or the 

set of these behaviours (S3), possibly distributed over the graph 

• (A1) the temporal behaviour of the research centre to which an author 

belongs, and the temporal behaviours of the attributes shown in the parallel 

co-ordinates view. 
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•  (A2) the behaviour of an attribute over a set of nodes at a single time e.g. the 

distribution of publication counts or research centre affiliation over the 

network at an individual time point 

• (A3) the distribution of temporal trends  in attribute values over the graph 

• (A4)  the behaviour of the distributions of the attribute values over the graph 

over time e.g. the change in distribution of publication counts over the graph, 

over time 

• (S4) the evolution of the structure of the network over time. 

2. Consider functionality for selection to facilitate direct lookup 

As discussed in Section 8.2.1, for direct lookup and behaviour characterisation 

tasks, we must first locate the time and graph object of interest, in order to find 

the corresponding values and patterns. The tool offers time slider interaction in 

order to locate a time (or period) of interest, while mousing over the nodes in the 

node link diagram offers additional information to help identify authors.  A free 

text search function is also available to find particular authors of interest. 

3. Consider which data items can be compared, and variations.   

Using the comparison checklist outlined in Figure 94, Table 44 considers which 

comparisons are supported in the existing system. Note that the only sensible 

comparison of different attributes for this data set relates to comparison of the 

numbers of different types of publications e.g. a comparison of journal article count 

with conference paper counts.  
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 Q1 Q2 Q3 Q4 graph over time Q4 time over graph 

Attribute based direct comparison 

 

At a single time point or interval, can we compare: 

• Two different attribute 

values/patterns belonging to 

the same graph object? 

Yes. Comparison of 

publication counts of an 

individual author for 

different types of 

publications is possible  

using the publications 

bar chart  

No. The distributions of 

publication counts for 

different types of 

publication are not 

shown on the node-link 

diagram 

With difficulty. Stacked 

bars are not the best 

visualisation for 

comparing individual 

temporal trends over 

time. 

No (as Q2 behaviours 

are not shown) 

No 

• The values/patterns of the 

same attribute for two 

different graph objects? 

With difficulty. We 

cannot select two 

individuals and their 

associated attribute 

values in order to make 

comparisons; selecting a 

node only highlights the 

attribute  information 

for that node on the 

parallel co-ordinate 

vis/publications bar 

chart, therefore 

comparison needs to be 

done in memory. Some 

comparison of node 

encodings within the 

node link vis (publication 

count=size, 

colour=research centre) 

can be made; although 

the lack of alignment 

To some extent we can 

visually compare the 

distributions of the two 

attribute values encoded 

in the node-link diagram, 

although no additional 

assistance (e.g. selecting 

only the two subgraphs 

of interest) is given. 

With difficulty. 

Comparison of two 

individuals’ publication 

counts over time needs 

to be done in memory, 

as only the timeline for a 

single selected author  is 

shown. 

With difficulty. We 

could compare e.g. 

the change in 

distribution of 

publication counts 

over two different 

subgraphs over time 

using the timeslider, 

although the 

cognitive overhead 

involved in 

remembering the 

evolution of two 

subgraphs is 

predicted to be very 

high. 

No 
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when comparing area 

can impede this.  

• The values/patterns of two 

different attributes of two 

different graph objects? 

With difficulty; as above 

such a comparison (e.g. 

comparing the journal 

article count of author A 

with the conference 

paper count of author B) 

would need to be done 

in memory. 

No. The only sensible 

comparison of different 

attributes involves  

publication counts for 

different types of 

publication, and these 

distributions are not 

shown on the node-link 

diagram. 

With difficulty; as above, 

such a comparison 

would need to be done 

in memory. 

No (as Q2 behaviours 

are not shown) 

No 

At two different time points or intervals (t1 and t2), can we compare: 

• An attribute value/pattern of 

the same graph object at t1 and 

t2? 

Yes. The publications bar 

chart allows easy 

comparison of an 

author’s total 

publication count at two 

different time points. 

However, the attribute 

values in the node link 

diagram are aggregate 

totals for the whole time 

period therefore they do 

not change over time. 

No. As the attribute 

values in the node link 

diagram are fixed, we 

cannot observe a change 

in distributions between 

time points. 

Yes. We can compare 

the trend in an author’s  

publication count over 

two different time 

intervals using the 

publications bar chart.   

No No 

• An attribute value/pattern of a 

graph object at t1 with a 

different attribute value at t2 

(where the graph object is the 

same in both cases)? 

Yes, but with more 

difficulty than above. 

Comparison of the 

different types of 

publication counts 

between two different 

years is more difficult 

due to the bars not being 

No. The distributions of 

publication counts for 

different types of 

publication are not 

shown on the node-link 

diagram 

Yes, but with more 

difficulty than above due 

to alignment issues (as 

for Q1) 

No (as Q2 behaviours 

are not shown) 

No 
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aligned on the horizontal 

axis.   

• The values/patterns of the 

same attribute for graph object 

g1 at t1 and graph object g2 at 

t2? 

With difficulty. 

Comparison of 

publication counts for 

two different authors 

must be performed in 

memory. 

No. The distributions of 

publication 

counts/research centre 

over the graph are 

aggregate totals, and do 

not change over time. 

With difficulty. 

Comparison of trends in 

publication counts for 

two different authors 

needs to be performed 

in memory. 

No (as Q2 behaviours 

are not shown) 

No 

• The values/patterns of an 

attribute of graph object g1 at t1 

with a different attribute of 

graph object g2 at t2? 

With difficulty. As 

above, comparison of 

different authors’ 

publication counts must 

be done in memory. 

No. The only sensible 

comparison of different 

attributes involves  

publication counts for 

different types of 

publication, and these 

distributions are not 

shown on the node-link 

diagram. 

With difficulty, as above 

(the only difference in 

this task as that the 

comparison would 

involve different types 

of publications) 

No (as Q2 behaviours 

are not shown) 

No 

Comparison involving structural patterns 

 

Can we compare: 

• Structural patterns of two 

different graph objects at the 

same time point or over the 

same time interval? 

- Yes, we can compare the 

connectivity e.g. of two 

clusters in the graph. 

However no additional 

assistance (e.g. selecting 

only the two subgraphs 

of interest) is given. 

With difficulty. To 

compare the co-

authoring relations over 

time between two sets 

of authors would require 

us to use the timeslider 

to step through the time 

and observe and 

remember the 

connectivity of each pair 

of authors in the node 

link diagram over the 

time series. The 

With difficulty. As for 

Q3, we would need to 

remember the 

changes for each 

graph object, 

construct the 

temporal pattern in 

memory, and then 

compare them. Such 

a task is likely to be 

highly cognitively 

demanding. 

No 
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cognitive overhead of 

such a task is likely to be 

high. 

 

• Structural patterns of the same 

graph object at two different 

times or over two different 

intervals? 

- With difficulty. In a 

sequential view, 

comparing the graph at 

t1 with the graph at t2 is 

performed in memory. 

The lack of transitioning 

techniques and use of a 

less-than-stable force 

directed layout will 

make this task  difficult. 

With difficulty, as above, 

but we would first have 

to memorise the 

connectivity pattern 

over the first time 

interval, then memorise 

the pattern over the 

second, and then 

compare them. 

With difficulty, as 

left/above. 

No 

• Structural patterns of two 

different graph objects at two 

different times or over two 

different intervals? 

- As above (although even 

if the tool used 

transitioning techniques 

etc. they would not help 

in this task). 

With difficulty, as above. With difficulty, as 

above. 

No 

Inverse comparison 

• Is it possible to compare the 

times at which values/patterns 

occur? 

Yes, when using the bar chart, this is clear; when making comparisons involving the network, a time stamp in the network area 

could help  

• Is it possible to compare graph 

objects at the same times? 

Yes 

 

• Is it possible to compare graph 

objects at different times? 

In memory 

Comparison with specified items 

• Is comparison with specified 

data items (such as a particular 

attribute value, temporal 

trend, structural motif etc.) 

supported? 

No capacity for constructing and showing a specified attribute value/trend/structure is included in the system 
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Comparison of relational behaviours Not applicable to this data set. 

• Is it possible to compare 

relational behaviours? 

 

Table 44 different types of comparison supported by the current IIDI system 

 

 



 

4. Consider support for structural comparison 

Some support for structural relation seeking is supported in that selecting a node 

highlights the nodes to which it is connected (Figure 97). No functionality exists to 

specify the type of relation (e.g. a filter on edge weights).  

 

Figure 97 Selecting a node highlights the nodes to which it is connected 

No specific support is offered for structural comparison (determining the relation 

between two nodes or sets of nodes).  Such tasks rely simply on visual inspection of 

the node link diagram, making the identification of nodes which are not directly 

connected (i.e. whether a path exists between two nodes) rather difficult. Interactive 

zooming and the ability to reposition nodes helps in some respects with such tasks, 

but more support could be offered, such as highlighting the connections between 

two selected nodes or groups 

5. Consider support for relation seeking. 

Other than ‘manual’ visual inspection, support for relation seeking between 

structural patterns/attribute distributions (such as finding similar patterns) is not 

facilitated in the current system. 

6. Consider support for relational behaviours  
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As noted earlier, the parallel co-ordinate view allows us to consider relational 

behaviours e.g. correlations between attribute values. The effect of graph structure 

on attribute value and vice versa is difficult to establish as the attribute values in the 

node-link diagram do not change over time.  Determining the impact of particular 

structural patterns on patterns at subsequent times is perhaps limited by the use of 

sequential views which require comparison in memory and the stability issues in the 

layout which make comparisons between time points rather difficult. 

 Main recommendations 

As the Andrienkos point out, when performing data analysis, not all aspects of the 

data are necessarily relevant: 

“…data analysis does not always pursue such ambitious goals as obtaining a full 

understanding of the overall behaviour of a phenomenon. In many particular cases, 

only certain aspects of the overall behaviour are relevant to the problem to be solved 

or only certain aspects excite the interest of the analyst.” 

(Andrienko and Andrienko, [5], p106) 

A general understanding of the goals and intentions of the people carrying out the 

analysis is therefore needed, and this requires input from those people.  As noted in 

the introduction to this chapter, the framework outlined in this thesis is not intended 

for use in isolation from the input of those by whom the system will be used, but as 

an additional tool to point to tasks and techniques which may otherwise be 

overlooked. Having identified the limitations of the system, it is possible to ask the 

people who will use the tool whether the unsupported tasks would indeed be of 

interest in their analyses. 

The major general recommendation for improving the system would to be offer 

functionality to support the eight behaviours. In particular, visualisation of 

behaviours S4 and A4 (changes in the graph’s structure and attribute distributions 

over the graph, over time) could be improved by offering an alternative temporal 

encoding, such as  juxtaposition (small multiples), and/or use of a more stable layout 
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and inclusion of transitioning techniques in the sequential view.  As the network is 

relatively dense, a matrix view could also be considered here.  

Encoding the publication counts for each author at each time point as node size 

(rather than the current aggregate value) would also allow us to understand the 

distribution of attribute values at a single time (A2), as well as allowing us to view 

how these distributions have changed over time (A4). Functionality to select and view 

other node attributes encoded in the node-link diagram could also be useful. 

The addition of a view showing the co-authoring relations between pairs of authors 

over time i.e. the adjacency list (such as that offered in the LinkWave system [234]) 

would support understanding of the S1 and S3 behaviours. Whether understanding 

the distribution of temporal trends over the graph is meaningful to the people using 

the tool in this scenario would need to be established. If it is of interest, nested views 

would be one way in which A3 and S3 behaviours could be supported. 

Visualising the temporal behaviours of attribute values such as the research centre 

to which an author belongs, and/or the other attributes shown in the parallel co-

ordinates view could be added to the system. Furthermore, visualising the set of 

temporal trends for all authors, aligned in the same display space would help us to 

find authors and time periods with particular patterns of interest (inverse lookup), 

compare patterns, perform relation seeking tasks such as finding similar - or markedly 

different – patterns, and gain a general understanding of the overall temporal trends 

in attribute values (A3). 

It should be established which of the comparison tasks are most relevant to the 

analyses of those using the system, and implement ways to select and compare the 

components involved. Additional functionality to support structural comparison and 

structural relation seeking tasks could also be considered. 

 Summary 

This chapter has presented a case study which demonstrates the use of the tools 

outlined in this thesis in the design and evaluation processes.  In order to make using 

the task framework in the evaluation process more manageable, a methodology was 
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developed. Using this methodology, a number of limitations in task coverage in an 

existing temporal graph visualisation system could be identified. Using the task-

technique mapping, a number of recommendations to improve this system could be 

made. These findings serve to evidence the usefulness of the tools developed in this 

thesis. 

  



 

Chapter 10 Conclusion 

This thesis has considered the valuable role that task and technique taxonomies play 

in both visualisation design and evaluation, and in guiding future research in the field. 

Understanding the potential tasks involved in visual exploration of temporal graph 

data, and the possible visualisation techniques to support these tasks, have to date 

been only partially addressed in the literature. This work has explored “the space of 

the possible” for both tasks and visual techniques, through a series of taxonomies, 

design spaces, and mappings between these structures and existing techniques in the 

literature.   

This chapter reflects on the original research questions posed and the extent to which 

these have been answered, the contributions of this work, and future directions. 

 Research Questions 

This work has addressed the following research questions: 

1. What are the possible exploratory analysis tasks that temporal graph 

visualisation might need to support?  

2. Which visual techniques, tools, and approaches, have been developed to 

support exploration of temporal graph data? Are there any unexplored 

opportunities for visual techniques? 

3. Which visual techniques support which tasks?  

4. For the tasks identified in (1), are there suitable visual techniques or are 

new/better visual techniques required? 

Let us consider in turn how these questions have been addressed. 
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1. What are the possible exploratory analysis tasks that temporal graph visualisation 

might need to support?  

In order to address question 1, an existing formal task framework for Exploratory 

Data Analysis [5] was extended to handle graph data, and a task design space was 

constructed to extricate the possible tasks involved in exploratory analysis of 

temporal graph data. This work was presented in Chapter 4 and Chapter 5. Drawing 

on the evaluation practices identified in the literature, the task framework was 

evaluated firstly in relation to extant temporal graph task classifications with respect 

to the properties of comprehensiveness and descriptive powers, and secondly in an 

empirical study primarily designed to assess its utility in the design process. This work 

was presented in Chapter 6, while the usefulness of the task framework in the 

evaluation process was explored further in the case study of Chapter 9. While further 

work remains to determine the extent to which the tasks of the framework are real-

world in nature and its usability by visualisation researchers (see Sections 10.3.1 and 

10.3.2), clear evidence in favour of its comprehensiveness and descriptive abilities 

were shown both in comparison to extant frameworks and in the empirical study. Its 

utility in the design and evaluation processes was also clearly demonstrated. 

2. Which visual techniques, tools, and approaches, have been developed to support 

exploration of temporal graph data? Are there any unexplored opportunities for 

visual techniques? 

To answer question 2, a design space of visualisation techniques was constructed 

from the temporal and graph encodings identified in the literature, revealing all 

possible combinations.  It was possible to map all of the existing techniques to the 

design space, indicating that the categorisations used are appropriate. The mapping 

revealed that the majority of existing techniques utilised node-link graph encodings 

and sequential temporal encodings. It also demonstrated that there is room for 

further research into the different possible combinations of time and graph 

encodings, which were less well explored. Addressing this question was the subject 

of Chapter 7. 
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3. Which visual techniques support which tasks?  

To address question 3, the visual techniques able to support the different types of 

tasks were considered.  This question was addressed in Chapter 8. One quite 

surprising, but important, finding was the need for a much wider range of visual 

techniques than those from temporal graph visualisation.  Techniques from static 

graph visualisation, temporal visualisation, and visual comparison were therefore 

also considered.  The review highlighted the need for multiple views of the data, the 

role of interaction in combining techniques and constructing comparison views, and 

the need for tools to record analysis histories and support synthesis of partial findings 

4. For the tasks identified in (1), are there suitable visual techniques or are new/better 

visual techniques required? 

The task-technique mapping presented in Chapter 8 also revealed a number of less 

well supported tasks where further research is required, answering question 4.  These 

tasks include comparison and relation seeking in Q4, and more generally, the need to 

for better support for making direct comparisons for all aspects of temporal graph 

data. While it has been shown that some of the tasks requiring better technique 

support are real world in nature, in other cases it will be important to establish this 

before developing new visual techniques. 

  Contributions 

As outlined in Section 2.3, classifications play an important role in visualisation 

research, facilitating communication amongst researchers, helping us make sense of 

what already exists in our research area and revealing opportunities for future work, 

and assisting in the design and evaluation processes.  

Three tools have been presented in this work which are intended to be of use to 

visualisation researchers: 

1. A classification of the potential tasks involved in exploratory analysis of 

temporal graph data. 

2. A design space for temporal graph visualisation techniques, and mapping of 

extant visualisation tools to this design space. 
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3. A mapping between the identified types of analysis task and the visualisation 

tools and techniques able to support them. 

Let us reflect on the development of these tools in relation to the contributions of 

this work that were outlined in Section 1.3. 

(1) A characterisation of temporal graph data and tasks 

In order to illuminate the potential tasks involved in exploratory analysis of temporal 

graph data, Andrienko’s general task framework [5] was extended for use with graph 

data, and used as the basis for a taxonomy of temporal graph tasks.  The dimensions 

of the extended taxonomy were used to construct a design space of temporal graph 

tasks, using a set of matrix structures to systematically capture the possible task 

variants.  

The taxonomy and design space seek to bring structure and clarity to the range of 

tasks associated with temporal graphs.  The main advantage of the task framework 

presented in this work is its comprehensiveness. While three temporal and one static 

graph task classification existed prior to the publication of this work, as discussed in 

Section 2.4.3 and demonstrated in Section 6.2.1, all of these classifications have 

shortcomings in terms of task coverage; none of the extant frameworks are able to 

capture all of the tasks of the others, and they also fall short in capturing the 

additional categories identified in this work.  As demonstrated in the evaluation 

presented in Section 6.2.1, the task framework proposed in this work is able to 

capture all of the tasks of the extant frameworks, while also covering a number of 

(real-world) tasks which none of the extant frameworks had considered. 

The other advantages associated with taking a formal approach to constructing the 

classification were outlined in Section 3.2, including: 

• Tasks are specified at a consistent level of perspective, abstraction, and 

composition, avoiding the difficulties of abstracting tasks from concrete 

scenarios. 

• The resultant classification is domain independent and can be of use across 

any discipline calling for graph visualisation.  
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• It not only considers tasks for temporal graphs, but provides tasks for static 

graphs, multivariate graphs, and graph comparison.  

• The use of formal notation to describe tasks avoids ambiguity and allows 

highly nuanced distinctions between tasks to be made. Coupling this with 

verbal descriptions and concrete examples makes the tasks descriptions 

accessible to those unfamiliar with the formal notation. 

• The formal approach allows us to explore the ‘space of the possible’, 

potentially revealing hidden tasks and corner cases, which may otherwise 

have been neglected from consideration had empirical techniques been 

employed exclusively. 

• The use of task matrices in presenting the task design space allows us to see 

not only the nuanced distinctions between tasks but also meaningful high 

level categories, allowing a ‘slice and dice’ approach to be taken to task 

categorisation.  This is useful, as the multiple dimensions mean that all of the 

tasks will fall into more than one category. 

The task classification developed in this thesis is intended to be of use in assisting 

both designers and evaluators of temporal graph visualisation systems. The use of 

the task classification at the task understanding stage of the design process was 

evaluated in Section 6.2.2.  Eliciting tasks during a requirements analysis process is a 

well-known problem in HCI and psychology, as people find it difficult to accurately 

introspect about their needs and articulate them [10], [12].  As discussed in Section 

1.1, designing for Exploratory Data Analysis (EDA) compounds this problem:  when 

carrying out EDA, the person performing the analysis may be unfamiliar with the data, 

and at outset, may have no specific goal in mind other than to explore and build an 

understanding of their data. When designing visual solutions, system designers must 

somehow anticipate the potential tasks in order to make an informed decision 

regarding which tools to include, and to ensure that a sufficiently wide range of tasks 

are supported. One use for task classifications is helping designers to explore the 

potential range of tasks that the people they are designing for might wish to carry 

out, but are not necessarily easily able to articulate.  The study outlined in Section 

6.2.2. demonstrated the usefulness of the task classification presented in this work 
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in such a design scenario. Using the framework it was possible to discover tasks which 

were of interest to participants which they had not previously articulated. Further, 

its usefulness in abstracting and organising concrete domain tasks as the basis for 

selecting visual encodings was also demonstrated.  

The use of the task classification in a common evaluation scenario of assessing a 

visualisation system in terms of its capabilities and limitations was demonstrated in 

the case study of Chapter 9.  The task classification was used to derive a methodology 

to assess which tasks are currently supported by an existing system, and reveal 

unsupported tasks which could potentially be of interest to those exploring the data. 

Using the methodology, the tasks supported and not supported by the visualisation 

system were revealed.   

The task classification may also be of benefit in the other evaluation scenarios 

outlined in Section 2.3.5, such as when selecting representative tasks for use in 

experiments by presenting the range of possible tasks for inclusion in evaluation and 

offering justification for selected tasks. 

Finally, the method outlined for constructing the task design space (based on 

referential components) could potentially be applied when constructing design 

spaces for other types of data with two referrers, such as spatio-temporal data.  

(2) A characterisation of temporal graph visualisation techniques 

Based on existing classifications of graph and temporal graph techniques, and also 

classifications from related areas, two independent dimensions (time and graph 

structural encodings) were identified and used to construct a design space for 

temporal graph visualisation techniques (Section 7.1). Existing techniques from the 

literature were then mapped to this design space (Section 7.3).  This mapping not 

only brings order to the array of temporal graph techniques proposed in the literature 

(particularly useful to researchers new to the area), but also reveals a number of less 

explored and unexplored possibilities; these may prove fruitful avenues for 

researchers interested in developing novel techniques. 
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(3) A review of techniques to support temporal graph tasks, revealing less well 

supported and unsupported tasks. 

The techniques to support each of the identified task categories were reviewed. As 

the tasks are domain independent, techniques from a across a wide range of domains 

could be considered. Interestingly, because the taxonomy is extended from a generic 

framework, the techniques required to support the tasks were found to be much 

wider than those which most temporal graph visualisation techniques currently 

consider.  This highlighted the need for the inclusion of techniques from general, 

temporal and static graph visualisation research areas when developing systems.  

The task-technique mapping also draws attention to an important distinction which 

had been overlooked in the literature: that nested views are able to represent the A3 

and S3 aspectual behaviours (distributions of temporal trends over the graph), while 

the other types of visual approaches for temporal graphs represent graph evolution 

over time (A4 and S4 behaviours). To date, any technique used in conjunction with 

temporal graph data has simply been considered to be a “temporal graph 

visualisation technique”, regardless of which aspects of the data it is able to show. 

Several areas in which further research is needed are highlighted by the mapping. 

Firstly, additional empirical studies are needed to evaluate the performance of 

different graph and temporal encodings. This would help establish which encodings 

are most appropriate in which data scenarios.  Secondly, little attention has been paid 

to comparison and relation seeking tasks in Q4. We can think of many real world 

analysis scenarios in which such techniques could be beneficial, for example, 

comparing the spread of disease in a public health network before and after an 

intervention; comparing different types of communication networks (phone, face-

face, email) over the same time period; comparing the changes in organisational 

structure under different management or across different companies. This area of 

research is likely to have a number of interesting challenges associated with it, not 

least for developing appropriate layout algorithms to support a person’s 

understanding of two or more simultaneously evolving graphs. Note that these 
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unsupported tasks would not have been identified had extant task classifications 

been used as the basis of the mapping.   

The mapping also highlighted that understanding of attribute values in temporal 

graphs is less well considered than visualising the structural aspects of the data. This 

is understandable as graph structure is often the main aspect of the data which tools 

seek to represent, however, the vast majority of real world analysis scenarios are 

likely to involve some sort of attribute value, either associated with the nodes or 

edges. Further work in this area would therefore be well justified. 

The variety of comparison tasks identified in the framework point to the need to 

develop systems which allow flexible selection of temporal graph components for use 

in comparison views. More generally, further work is needed in integrating tools and 

views of the data in order to support the wide variety of tasks identified in the 

framework, which require support from very different visual techniques. Finally, 

further research could usefully be directed toward tools to support synthesis of 

findings, and recording analysis histories. 

The usefulness of the mapping was demonstrated in the case study of Chapter 9, 

where it was possible to make recommendations for potential techniques to add to 

the existing system.  

(4) A review of classification construction and evaluation practices 

Despite the recent interest amongst the visualisation community in design and 

evaluation practices for developing visualisation systems and tools, the design and 

evaluation processes involved in developing frameworks such as task classifications 

to help support these endeavours has received very little attention to date.  The final 

contribution of this thesis therefore is its elucidation of the task classification 

construction process, the threats to validity at each stage of construction and means 

of mitigating these threats, along with detailed consideration of the appropriateness 

of evaluation strategies according to the different aspects of the classification which 

they seek to evaluate. These discussions were presented in Sections 3.1 and 6.1 

respectively.  It is hoped that the guidance arising from these investigations will be of 
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benefit to developers of classifications in determining appropriate construction and 

evaluation strategies, and also be of use to those selecting between competing 

classifications for use in the design and evaluation processes. 

 Future work 

Let us now consider the opportunities for future work identified in this thesis. 

10.3.1 Identifying ‘real world’ tasks 

One limitation of using a formal approach to specify tasks is that it does not provide 

information as to whether a task is a ‘real world’ task (i.e. one which people will find 

helpful to carry out), or simply a construct of the formal process used to construct 

the classification.  

The evaluations of Chapter 6 examined only part of the task framework with respect 

to the real world nature of tasks.  At a high level, evidence drawn from extant 

frameworks, tasks of interest in the empirical study, and examples from the 

literature, supported the real world nature of the main task types (lookup, 

comparison, relation seeking) in each of the quadrants, and the connection discovery 

tasks. Further work at a finer level of granularity, to cover inverse and direct 

variations of tasks, along with the further dimensions which were not explored in the 

evaluations (e.g. the extent to which data items are specified in tasks, or 

same/different time/graph components are involved in comparison tasks etc.) is also 

needed. 

As noted in Section 6.1.3.3, evaluating the ‘real world’ nature of tasks can prove 

difficult. For a large domain independent classification such as is outlined in this 

thesis, examples may need to be sought from multiple domains to cover all possible 

task variations, which may require input from multiple domain experts. Even where 

we fail to find an example of a task, it cannot be concluded that the category is 

redundant; it could simply be a task of interest in a rather niche analysis scenario or 

particular to a specific domain. 

One important point to note – as outlined in the discussion of Chapter 8 - relates to 

the gaps in task support identified in the task-technique mapping.  Where a task is 
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identified as an opportunity for further research as it is not currently well supported, 

before developing techniques, we should be sure to consider the evidence in support 

of whether it is real world in nature, either as identified in this thesis, or from further 

consideration of potential domains and analysis scenarios. 

10.3.2 Evaluating the usability of the task framework 

As noted in Chapter 6, one aspect of the task framework which remains to be 

evaluated as its usability by other visualisation researchers.  While it has been shown 

to be more comprehensive than extant frameworks, and useful in both the design 

and evaluation processes, further work needs to be carried out in order to establish 

how easy it is for other visualisation researchers to utilise the framework.  The 

adoption (or otherwise) of the published version of the task framework may be one 

indicator as to its usability. 

10.3.3 Improving evaluation 

One of the potential uses of a task-technique mapping is in identifying opportunities 

for evaluations.  In the case where tasks are supported by multiple techniques, the 

question arises as to which offers better support. Most of the evaluations in the 

temporal graph literature to date have focussed on assessing the effect of layout 

stability on the mental map [131], and comparing sequential and juxtaposed 

temporal encodings [18], [78]. The task-technique mapping revealed several areas in 

which multiple techniques were available to support the same task (not least the 

mapping of the entire temporal graph visualisation design space to the Q4 behaviour 

characterisation task), thus potentially yielding interesting opportunities for 

evaluation.   

An interesting finding made during the literature review was the surprisingly limited 

discussion of tasks in both the systems and techniques literature, and in papers 

describing controlled studies.  This suggests that there is room for further work in 

evaluating existing techniques using a wider range of tasks than have previously been 

considered. 
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10.3.4 Developing novel techniques 

The mapping of existing techniques to the technique design space revealed a number 

of opportunities for novel combinations of time and graph encodings, which could 

prove interesting avenues for further research. 

Examining which visual techniques could potentially support the task categories of 

the taxonomy uncovered a number of areas which could benefit from further 

research. For example, investigating techniques to support comparison in Q4 could 

be a particularly interesting direction. As discussed in Section 8.8, the real world 

nature of these tasks should be considered before novel techniques are developed. 

  Summary 

Temporal graph visualisation is an upcoming and important area of Information 

Visualisation, being of relevance across a wide range of domains and application 

areas. This thesis offers three main tools – a comprehensive task framework, a 

visualisation technique design space, and a task-technique mapping - which are 

intended to be of assistance to those researching in the area of temporal graph 

visualisation. They have been developed to help support communication amongst 

researchers in the area; bring order to the work that has been carried out to date; 

reveal opportunities for future work; and offer assistance in the design and 

evaluation processes.  

The work has investigated the tasks involved in exploring temporal graph data and 

the visual techniques for their support. It has provided a domain-independent 

taxonomy and design space of temporal graph tasks, which was shown to have 

greater task coverage than extant taxonomies, and demonstrated to be of use in both 

the design and evaluation processes. A design space of possible visual encodings for 

representing temporal graph data was constructed, and a mapping of the existing 

techniques in the literature brings order to the work that has been carried out to 

date, and revealed a number of interesting unexplored possibilities for representing 

this type of data. Mapping the visual techniques which support the different task 

types exposed the very wide range of techniques – spanning multiple research areas 

– which are required to fully support exploration of temporal graph data. It also 
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revealed a number of areas in which further research is required in order to develop 

techniques to support the full range of temporal graph tasks. 
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 Formal Task Notation 

Tasks in the Andrienko framework are specified using a formal notation. Known items 

(constraints) are indicated in bold, while unknown items (targets) are indicated in 

italics.   

Descriptive Tasks 

An elementary direct lookup task is written:  

?y: f(r) = y 

Where:  

• ?y indicates the task target (in this case, the unknown characteristic value, y) 

• f is the data function 

• r is the specified referential component.   

 

For an inverse lookup task, the formalism is: 

?x: f(x) = c 

Where: 

• ?x indicates the target (the unknown referrer, x) 

• c is a specified element of the characteristic set 

 

For synoptic tasks, the general formal description for behaviour characterisation is 

given: 

?p: β(f(x) | x∈R) ≈ p  
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Where: 

• β(f(x) | x∈R) denotes the behaviour of a data function f over a reference set 

R 

• p is a variable representing an unknown pattern that we wish to find  

• ≈ is used to indicate that the pattern “approximates” the behaviour 

 

Pattern search is described: 

?R: β(f(x) | x∈R) ≈ P 

Where:  

• P is a specified pattern 

• β(f(x) | x∈R) denotes the behaviour of a data function f over a reference set 

R 

• R is the reference (sub)set we wish to find 

The general formal description for an elementary direct comparison task, where we 

want to find two characteristics (associated with the same attribute) corresponding 

to two different specified references, and compare them, is given as: 

?y1, y2, λ: f(r1) = y1; f(r2) = y2; y1 λ y2 

Where 

• f(r1) = y1 is a direct lookup task to find an unknown characteristic (y1) 

corresponding to the specified reference (r1) 

• f(r2) = y2 is a direct lookup task to find an unknown characteristic 

(y2)corresponding to the specified reference (r2) 

• λ is the unknown relation between y1 and y2  

For inverse comparison, the general formal description is: 
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?x1, x2, λ: f(x1) ∈ C′; f(x2) ∈ C′′; x1 λ x2 

Where  

• f(x1) ∈ C′ and f(x2) ∈ C′′ are the inverse lookup tasks that need to be performed 

to find the references x1 and x2, before the comparison can take place 

• C′ and C′′ are subsets of specified characteristics (note that these subsets may 

correspond to single values) 

• λ is the unknown relation between x1 and x2 

For synoptic tasks, a direct behaviour comparison task is written: 

?p1, p2, λ: β1≈p1; β2≈p2; p1 λ p2 

Where 

• β1and β2 are two behaviours 

• p1 and p2 are patterns approximating behaviours 

• λ is the relation between the patterns (and therefore the behaviours) to be 

determined 

For synoptic inverse comparison: 

?R1, R2, λ: β(f1(x) | x ∈ R1) ≈ P1; β(f2(x) | x ∈ R2) ≈ P2; R1 λ R2 

Where: 

• β(f1(x) | x ∈ R1) ≈ P1 and P1; β(f2(x) | x ∈ R2) ≈ P2 are pattern search tasks to find 

reference sets R1 and R2 (f1(x) and f2(x) could be two different attributes or the 

same attribute) 

• λ is the relation between the reference sets which we want to find 

The general formal definition of relation-seeking is given: 

?y1, y2, x1, x2: f(x1) = y1; f(x2) = y2; y1Λy2   
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Where: 

• f(x1) = y1  and f(x2) = y2 are direct lookup tasks  

• Λ is the specified relation between y1 and y2 

The equivalent synoptic task can be written: 

 ?R1, R2, p1, p2: f(x) | x ∈ R1) ≈ p1; (f(x) | x ∈ R2) ≈ p2; p1Λ p2 

Where: 

• R1 and R2 stand for the unknown reference subsets  

• p1 and  p2 are the behaviours of the attribute f(x) based on these two subsets 

• Λ is the specified relation that must exist between p1 and  p2 

 

Connection Discovery 

Heterogeneous behaviours 

The formal notation to describe the behaviour involving two (or more) different 

attributes defined on the same reference set is: 

 ρ(f1(x), f2(x) | x ∈ R) 

Where f1(x) and f2(x) are two attributes defined on the same reference set R. 

Where different reference sets are involved, the notation is: 

ρ(f1(x), f2(z) | x ∈ R, z∈ Z ) 

Where f1(x) is an attribute defined on reference set R, and f2(z) is an attribute defined 

on a different reference set, Z. 

Homogenous behaviours 

The formal notation given to describe homogenous behaviours, which involve 

internal connections within a single phenomenon, is: 
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 ρ(f(x), f(x′) | x ∈ R1, x′ ∈ R2 ) 

Where R1 and R2 are subsets of reference set R. 
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 Task Design Space 

In order to capture the variations in tasks in the temporal graph case, a set of task 

matrices were constructed, one for each of the main task types (lookup, comparison, 

relation seeking).  The comparison and relation seeking matrices can also be found in 

their complete form at 

http://www.iidi.napier.ac.uk/c/downloads/downloadid/13377254 for easier reading 

and printing. 

Formal Notation 

This section provides a brief summary of the formal notation used to represent 

variations in tasks in the framework when applied to temporal graphs. 

Data function applied to temporal graphs 

In the case of temporal graphs, the following formalism is used to represent the 

Andrienko data function which maps a graph element at a particular time point to 

the corresponding values of the attributes in the data set: 

 f(t, g) = (y1, y2, …, yN)  

Where: 

 t represents a time point 

 g represents a graph element (node, edge, graph object) 

 y1, y2, …, yN represents the N attributes in the data set 
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Key to formal notation 

Bold  a specified value (constant)  

Italics an unknown value (variable) 

t a time point 

T′ a (sub)set of time points/a time interval 

g a graph element (node, edge, graph object) 

G′, G″ a (sub)set of graph elements 

y the value of an unknown characteristic 

c a specified characteristic 

C′ a subset of characteristics 

Λ, Ψ, Φ, λ, ψ, φ a relation (e.g. y1 λ y2 can be read as ‘the relation 

between’ y1 and y2) 

β(f(x1, x2) | x1∈ G′, x2 ∈ T′) the behaviour β of a data function f over the set 

of graph objects G′, and time interval T′, where x1 

is a graph object in the set of graph objects (G′) 

and x2 is a time point in the time interval (T′) 

βG{βT[f(x1, x2) | x2 ∈ T)]| x1∈ G} 

βT{βG[f(x1, x2) | x1 ∈ G)]| x2∈ T} 

formulae representing the two aspectual 

behaviours: the behaviour of  the temporal 

behaviours (trends) over the graph (i.e. the 

distribution of temporal behaviours over the 

graph), and the behaviour over time of the 

behaviours (distributions) of attribute values over 

the set of graph elements (i.e. the temporal trend 

in the distribution of the attribute values). 

P a known pattern  

p An unknown pattern 

≈ ‘approximates’ 

 

Lookup 

A quadrant-level overview of the lookup task matrix is given in . The task matrix is 

given in . 
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 Graph Elements (nodes, edges, graph 

objects) 

Graph subsets  

T
im

e
 P

o
in

ts
 

Q1 Elementary  

 

Task components: 

Referrers are graph elements and time 

points; characteristics are attribute values. 

 

Direct lookup  

?y: f(t, g) = y 

Involves finding the attribute value of a given 

graph element at a given time point. 

 

Inverse lookup 

? t, g: f(t, g) = c 

Involves finding the graph element(s)/time 

point(s) associated with a given attribute 

value 

 

Q2 Synoptic 

 

Task components: 

The referential component involves the whole 

graph (or a subset of the graph) and a single 

time point; behaviour is that of an attribute 

over the graph (at a single time). 

 

Behaviour characterisation  

?p: β(f(x1, x2) | x1∈ G, x2 = t) ≈ p 

Involves finding the pattern which 

approximates the behaviour of an attribute 

over the graph (or a specified subset of the 

graph) at the given time point 

 

Pattern search 

?G, t: β(f(x1, x2) | x1∈ G,  x2 = t) ≈ P 

Involves finding the time point(s) and/or 

subset(s) of graph elements over which a 

given pattern of attributes occur. 
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 Graph Elements (nodes, edges, graph 

objects) 

Graph subsets  

T
im

e
 I

n
te

rv
a

ls
 

Q3 Synoptic 

 

Task components: 

The referential component involves the 

whole time period (or a time interval) and a 

single graph element; behaviour is that of an 

attribute of a single graph element over time. 

 

Behaviour characterisation 

?p: β(f(x1, x2) | x1= g, x2 ∈ T) ≈ p 

Involves finding the pattern which 

approximates the behaviour of an attribute 

of a given graph element over the whole time 

period (or a specified time interval) 

 

Pattern search  

?g, T: β(f(x1, x2) | x1= g, x2 ∈ T) ≈ P  

Involves finding the graph element(s) and/or 

time interval(s) over which a given pattern of 

attributes occurs. 

 

Q4 Synoptic 

 

Task components:  

The referential component involves the whole 

time period (or a time interval) and the whole 

graph (or a subset of the graph); behaviour is 

either of the two aspectual behaviours: the 

distribution of temporal trends over the graph 

or the distributions of an attribute over the 

graph, over time. 

 

Behaviour characterisation 

Involves finding the pattern that approximates 

the aspectual behaviours: 

?p: βG{βT[f(x1, x2) | x2 ∈ T)]| x1∈ G}≈ p 

the behaviour of  the temporal behaviours 

(trends) over the graph (i.e. the distribution of 

temporal behaviours over the graph) 

 

 or  

?p: βT{βG[f(x1, x2) | x1 ∈ G)]| x2∈ T}≈ p 

the behaviour over time of the behaviours 

(distributions) of attribute values over the set 

of graph objects (i.e. the temporal trend in the 

distribution of the attribute values); in both 

cases we may be interested in the behaviour 

associated with a given subset of the time 

period or the graph. 

 

Pattern search  

?T, G: βG{βT[f(x1, x2) | x2 ∈ T)]| x1∈ G}≈ P  

or  

?G, T: βT{βG[f(x1, x2) | x1 ∈ G)]| x2∈ T}≈ P 

Involves finding the subset(s) of time and/or 

graph elements over which a (sub)pattern of 

an aspectual behaviour occurs. 

Figure 98 Quadrant-level overview of the lookup task matrix 

  



 
 Graph Elements  Graph subsets  

Constraint Target Constraint Target 
T

im
e

 p
o

in
t 

T
a

rg
e

t 
Direct look up  given a graph 

object and time,  find the 

attribute value 

 

?y: f(t, g) = y 

 

 Inverse lookup  given an 

attribute value and a time point, 

find the graph object(s) which 

have this value 

 

? g: f(t, g) = c 

Behaviour characterisation   

Find the pattern that approximates (i.e. characterise) 

the behaviour of an attribute over the graph (or a 

subset of the graph) at the given time point 

 

?p: β(f(x1, x2) | x1∈ G, x2 = t) ≈ p 

 

Pattern search  find the subset(s) of the graph over 

which a particular pattern of attribute values occurs, 

at the given time point 

 

?G: β(f(x1, x2) | x1∈ G, x2 = t) ≈ P 

 

C
o

n
st

ra
in

t 

Inverse look up given a graph 

object and attribute value, find 

the time point(s) at which it 

occurs 

 

? t: f(t, g) = c 

 

Inverse lookup given an attribute 

value, find the graph object(s), 

and the time point(s), at which 

the value occurs 

 

? t, g: f(t, g) = c 

 

Pattern search  find the time point(s) at which a 

particular pattern of attributes over the graph occurs 

 

? t: β(f(x1, x2) | x1∈ G, x2 = t) ≈ P 

 

 

Pattern search find the time point(s) and subset(s) of 

the graph over which a particular pattern of 

attribute values occurs 

?G, t: β(f(x1, x2) | x1∈ G,  x2 = t) ≈ P 

  

e.g. find (connected) subsets of the graph which 

have very similar attribute values, and the time 

points at which they occur 

 

T
im

e
 i

n
te

rv
a

l 

T
a

rg
e

t 

Behaviour characterisation  

characterise the behaviour of a  

attribute of a single node over 

time. 

 

?p: β(f(x1, x2) | x1= g, x2 ∈ T) ≈ p 

Pattern search find the node(s) 

over which a particular pattern of 

attribute values occurs, over the 

given time interval. 

 

?g: β(f(x1, x2) | x1= g, x2 ∈ T) ≈ P  

 

Behaviour characterisation 

(i) characterise the behaviour of the temporal trends 

over the graph (i.e. the distribution of temporal 

behaviours over the graph) 

?p: βG{βT[f(x1, x2) | x2 ∈ T)]| x1∈ G}≈ p 

 

(ii) characterise the behaviour of the attribute values 

over the graph, over time 

?p: βT{βG[f(x1, x2) | x1 ∈ G)]| x2∈ T}≈ p 

Pattern search  

(i)Find the subset(s) of graph elements over which a 

given pattern in the collection of temporal trends 

occurs, over the given time interval  

? G: βG{βT[f(x1, x2) | x2 ∈ T)]| x1∈ G}≈ P 

 

(ii) find the subset(s) of the graph over which a given 

(temporal) pattern in the pattern of attribute values 

over the graph occurs 

?G: βT{βG[f(x1, x2) | x1 ∈ G)]| x2∈ T}≈ P  

 

C
o

n
st

ra
in

t 

Pattern search find the time 

interval over which a given 

pattern of attribute values 

occurs for a given node. 

 

?T: β(f(x1, x2) | x1= g, x2 ∈ T) ≈ P  

 

Pattern search find the node(s) 

and time interval(s) over which 

the specified pattern of attribute 

values occurs 

 

?g, T: β(f(x1, x2) | x1= g, x2 ∈ T) ≈ P  

 

Pattern search  

(i)Find the time interval(s) over which a given pattern 

in the collection of temporal trends occurs 

? T: βG{βT[f(x1, x2) | x2 ∈ T)]| x1∈ G}≈ P 

 

(ii) find the time interval(s) over which a given 

(temporal) pattern in the pattern of attribute values 

over the graph occurs 

?T: βT{βG[f(x1, x2) | x1 ∈ G)]| x2∈ T}≈ P 

Pattern search  

(i) Find the subset(s) of graph elements and time 

interval(s) over which a given pattern in the 

collection of temporal trends occurs 

?T, G: βG{βT[f(x1, x2) | x2 ∈ T)]| x1∈ G}≈ P 

 

(ii) Find the time interval(s) and subset(s) of the 

graph over which a given (temporal) pattern in the 

pattern of attribute values over the graph occurs 

?G, T: βT{βG[f(x1, x2) | x1 ∈ G)]| x2∈ T}≈ p 

 

Figure 99 Lookup task matrix 



 

Comparison 

A quadrant-level overview of the comparison task matrix is given in . Due to issues of 

space on the printed page, each quadrant of the comparison task matrix is shown 

separately (-).  The compiled task matrix can be found at 

http://www.iidi.napier.ac.uk/c/downloads/downloadid/13377254. 

Notes on comparison task matrix: 

• In the following tasks, (G′, t1) is used to specify a graph subset at a given time 

(as opposed to just G′).  This is due to the nature of the graph referrer: as 

linking relations in the graph referrer may change over time, a graph object at 

t1 may be quite different from “the same” graph object at t2. 

 

• Where both graph elements/subsets and/or both time points/intervals are 

unspecified, an additional constraint can be added to the task i.e. that the 

components in question have a specified relation between them e.g. in the 

case of the graph referrer, that they are the same, connected, a certain 

distance from one another etc. or in the case of time that they are the same, 

overlapping, a given distance from one another etc . Where graph 

elements/subsets are restricted to being the same, and the temporal 

component is different, these become evolutionary tasks e.g. compare the 

time intervals over which two patterns occur over two time intervals for the 

same graph object: 

?g, T′, T″, λ, ψ: β(f(x1, x2) | x1= g, x2 ∈ T′) ≈ P1; β(f(x1, x2) | x1= g, x2 ∈ T″) ≈ P2; T′ ψ T″ 

• The variations of tasks involving the same/different attributes are not shown 

in the task matrix, but all tasks (with the exception of direct comparisons 

involving the same time point/interval and graph element/subset) could 

potentially be formulated to consider comparison involving the same 

attributes or two different attributes in the lookup subtask.  
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 Graph Elements (nodes, edges, graph objects) Graph subsets 

Time 

points 

Q1 Elementary   

 

Direct comparison  

? y1, y2, λ: f1(t1, g1) = y1; f2(t2, g2) = y2; y1λ y2 

- of attribute values associated with a given 

graph element at a given time (the attribute 

involved in the lookup tasks may be the same or 

different, hence the data functions f1(x) and  

f2(x)). 

Relations: 

• between attribute values are domain 

dependent. 

 

Inverse comparison  

? t1, t2, g1, g2, λ: f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′; (t1, g1) 

λ(t2, g2) 

 

- of two graph elements and/or two time points 

associated with given attribute values 

 

Relations:   

• between graph elements: equality 

(same/different element); set relations 

(between the sets of elements belonging 

to graph objects); equality of 

configuration (in graph objects); linking 

(between nodes/graph objects, at a 

single time point only);  

• between two time points: happens 

before(/after), happens at the same 

time [49]. 

 

Q2 Synoptic 

 

Direct comparison  

? p1, p2, λ:  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ p1; 

 β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ p2;  

p1λ p2 

– of two patterns of an attribute(s)37 over the 

graph (or a subset of the graph elements) at given 

time point(s)  

Relations: 

• between patterns: 

same(similar)/different/opposite38 

Inverse comparison  

? G′, G″,  t1, t2, λ, ψ:  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″,  x2 = t2) ≈ P2; 

(G′, t1) λ (G″, t2);  

t1ψ t2 

 

- of the time points at which the given patterns 

occur 

- of the graph subsets over which a given pattern 

occurs;  

- comparison of both time points  and graph 

subsets. 

 

Relations:  

• between two time points: happens 

before(/after), happens at the same time 

[49];  

• between two graph subsets: equality 

(same/different subset); set relations 

(between the sets of nodes/edges 

belonging to the subset); equality of 

configuration (of the subset); linking 

(between nodes/graph objects, at a single 

time point only).  

Time 

intervals 

Q3 Synoptic 

 

Direct comparison   

? p1, p2, λ: β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ p1; β(f(x1, 

x2) | x1= g2, x2 ∈ T″) ≈ p2; p1λ p2 

- of two (temporal) patterns associated with an 

attribute(s)Error! Bookmark not defined. of given graph 

element(s) over the whole time period (or a 

specified time interval) 

Relations: 

• between patterns: same 

(similar)/different/opposite 

 

Q4 Synoptic 

 

Direct comparison  

? p1, p2, λ: βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ p1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ p2; p1λ p2 

(comparison of patterns of distributions of 

temporal trends over the graph)  

or 

? p1, p2, λ: βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ p1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ p2; p1λ p2 

(comparison of patterns of distributions of an 

attribute over the graph, over time) 

 

                                                      
37 i.e. each pattern may correspond to a different attribute 
38 In descriptive synoptic tasks (in connectional synoptic tasks, patterns of “mutual” behaviours include 

correlation, dependency, and structural connection. 
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 Graph Elements (nodes, edges, graph objects) Graph subsets 

Inverse comparison  

? g1 , g2 ,T′, T″, λ, ψ: β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ 

P1; β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2; g1 λ g2 ; T′ψ T″ 

– of the time intervals over which given patterns 

occur; of the graph elements associated with a 

given pattern; comparison of both time intervals 

and graph elements 

Relations: 

• between two graph elements: equality 

(same/different; set relations between 

the sets of elements belonging to graph 

objects);  

• between time intervals: happens 

before(/after), happens at the same 

time;  between two intervals, or an 

instant and an interval: happens 

before(/after), starts, finishes, happens 

during; between intervals only: overlaps, 

meets [49]. 

– of two patterns associated with a given subset of 

time and/or subset of graph elements.  The 

patterns may reflect either of the two aspectual 

behaviours (the distribution of temporal trends 

over the graph or the distributions of an attribute 

over the graph, over time) 

Relations  

• between patterns: same 

(similar)/different/opposite 

 

Inverse comparison  

? G′, G″, T′, T″, λ, ψ: βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ 

G′}≈ P1; βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2; T′ λ 

T″; G′ ψ G″; 

 

or  

? G′, G″, T′, T″, λ, ψ: βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ 

T′}≈ P1; βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2; T′ λ 

T″; G′ ψ G″; 

 

– of the time intervals and/or subsets of graph 

elements associated with  a given aspectual 

(sub)pattern 

Relations:  

• between two graph subsets: equality, set 

relations 

• between time intervals: happens 

before(/after), happens at the same time;  

between two intervals, or an instant and 

an interval: happens before(/after), starts, 

finishes, happens during; between 

intervals only: overlaps, meets [49]. 

Figure 100 Quadrant-level overview of the comparison task matrix 

  



 
 

Graph elements (nodes, edges, graph objects) 

Both constraints One element specified Neither  element specified 

Single/same element Two different elements 
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Direct comparison Compare the values of 

different attributes for a given node at a 

given time point. 

 

? y1, y2, λ:  

f1(t, g) = y1; f2(t, g) = y2; 

 y1λ y2 

 

 

Direct comparison Compare the attribute 

values associated with two different 

nodes at the same time point. 

? y1, y2, λ:  

f(t, g1) = y1; f(t, g2) = y2;  

y1λ y2 

 

 

Inverse comparison This task reduces 

to comparison with a specified 

referencei . Find and compare with a 

given node, the node(s) associated 

with the given attribute value at the 

given time. 

 

? g2, λ:  

f(t, g2) ∈ C′;  

(t, g1) λ(t, g2) 

 

 

Inverse comparison Find and compare 

the nodes associated with two different 

attribute values at the given time  

 

? g1, g2, λ:  

f(t, g1) ∈ C′; f(t, g2) ∈ C′′; 

(t, g1) λ(t, g2) 
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Direct comparison Compare the attribute 

values associated with a single node at two 

different times. 

 

 ? y1, y2, λ: 

 f(t1, g1) = y1; f(t2, g2) = y2;  

y1λ y2 

 

 

 

Direct comparison Compare the attribute 

values associated with two different 

nodes at two different times. 

 

? y1, y2, λ:  

f(t1, g1) = y1; f(t2, g2) = y2;  

y1λ y2 

 

 

Inverse comparison As above but 

involving two different time pointsii. 

Find and compare with a given node, 

the node(s) associated with the given 

attribute value at the given times. 

 

? g2,  λ:  

f(t2, g2) ∈ C′;  

(t1, g1)  λ (t2, g2) 

Inverse comparison As above, but 

involving two different time points. Find 

and compare the nodes associated with 

two different attribute values at the 

given times 

 

? g1, g2, λ:  

f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′;  

(t1, g1) λ(t2, g2) 
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Graph elements (nodes, edges, graph objects) 

Both constraints One element specified Neither  element specified 

Single/same element Two different elements 
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e
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 Inverse comparison This task reduces to 

comparison with a specified referenceiii. 

Find the time point(s) associated with the 

given attribute value for the given node, 

and compare it with a given time point. 

 

? t2, λ: 

f(t2, g) ∈ C′; 

t1 λ t2 

 

 

Inverse comparison As left, this task 

reduces to comparison with a specified 

referenceiv. 

? t2, λ:  

f(t2, g) ∈ C′; 

 t1 λ t2 

 

Inverse comparison 

Either: 

A task reduced to comparison with a 

specified referencev. Find the node(s) 

and time point(s) at which it has a 

given attribute value, and compare 

this with a given node at a given time 

point. 

 

? t2, g2, λ, Ψ:  

f(t2, g2) ∈ C′;  

(t1, g1) λ(t2, g2);  

t1 Ψ t2 

 

OR 

 

Find the time point at which a given 

node has a given attribute value, and 

the node which has a given attribute 

value at a given time, and compare 

the nodes and time points. 

 

? t1, g2, λ, Ψ:  

f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′; 

(t1, g1) λ(t2, g2);  

t1 Ψ t2 

Inverse comparison Find the node(s) 

having a specified attribute value at a 

given time, and the node(s) and time 

point(s) having a given attribute value, 

and compare the nodes and time points. 

 

? t2, g1, g2, λ:  

f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′;  

(t1, g1) λ(t2, g2) 
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Inverse comparison Find and compare the 

times at which the given node had the given 

attribute values. 

 

? t1,  t2, λ: 

f(t1, g) ∈ C′; f(t2, g) ∈ C′′; 

t1 λ t2 

 

 

Inverse comparison Find and compare 

the times at which two given nodes had 

the given attribute values. 

 

? t1,  t2, λ: 

 f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′;  

t1 λ t2 

 

 

Inverse comparison Find the time 

point(s) at which a given node had a 

given attribute value, and the time 

point(s) and node(s) having a second 

given attribute value, and compare 

the nodes and time points. 

 

? t1, t2, g2, λ:  

f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′;  

(t1, g1) λ(t2, g2) 

Inverse comparison Find the time points 

and nodes associated with two given 

attribute values and compare them. 

 

? t1, t2, g1, g2, λ:  

f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′; 

(t1, g1) λ(t2, g2) 
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Figure 101 Comparison task matrix, quadrant 1: considers comparisons involving graph elements (nodes, edges, graph objects) and time points (i.e. the elementary 

comparison tasks)  

  



 318 

 
 Graph subsets 

Both constraints One constraint, one target Both are targets 

Same subset Different subsets 
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Direct comparison of the attribute 

patterns of two different attributes over 

the same subset of the graph at the same 

time point. 

 

? p1, p2, λ:  

β(f1(x1, x2) | x1∈ G′, x2 = t) ≈ p1;  

β(f2(x1, x2) | x1∈ G′, x2 = 2) ≈ p2;  

p1λ p2 

Direct comparison of the 

attribute patterns over two 

different subsets of the graph at 

the same time point. 

 

? p1, p2, λ:  

β(f(x1, x2) | x1∈ G′, x2 = t) ≈ p1;  

β(f(x1, x2) | x1∈ G″, x2 = t) ≈ p2; 

 p1λ p2 

 

Inverse comparison of a given graph subset 

with the graph subset associated with a 

given pattern at a given timevi. 

 

? G′, λ:  

β(f(x1, x2) | x1∈ G′,  x2 = t) ≈ P;  

G′, t) λ (G″, t)  

Inverse comparison of two graph subsets 

associated with two given patterns at the same 

specified time. 

 

? G′, G″, λ:  

β(f(x1, x2) | x1∈ G′,  x2 = t) ≈ P1;  

β(f(x1, x2) | x1∈ G″,  x2 = t) ≈ P2;  

(G′, t) λ (G″, t) 
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Direct comparison of the attribute 

patterns over the same subset of the 

graph at two different time points. 

 

? p1, p2, λ:  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ p1;  

β(f(x1, x2) | x1∈ G′, x2 = t2) ≈ p2;  

p1λ p2 

Direct comparison of the 

attribute patterns over two 

different subsets of the graph at 

two different time points. 

 

? p1, p2, λ:  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ p1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ p2;  

p1λ p2 

 

Inverse comparison as above, but the 

specified subset of graph elements is 

associated with a different time point: 

 

? G′, λ:  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P;  

(G′, t1) λ (G″, t2); 

Inverse comparison of two graph subsets 

associated with two given patterns at two 

different, specified time points. 

 

? G′, G″, λ:  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″,  x2 = t2) ≈ P2;  

(G′, t1) λ (G″, t2) 
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 Graph subsets 

Both constraints One constraint, one target Both are targets 

Same subset Different subsets 
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t Inverse comparison of the time point 

associated with a given pattern over a 

given subset of the graph, with a given 

time point39. 

 

? t2, λ:  

β(f(x1, x2) | x1∈ G′,  x2 = t2) ≈ P;  

t1 λ t2 

 

 

Inverse comparison, as left40 

 

Inverse comparison of a given graph subset 

at a given time with the graph subset 

associated with a given pattern, and 

comparison of a given time point with the 

time point also associated with the given 

pattern. This may involve only one lookup 

subtask41 or two: 

 

? G″, t2, λ, ψ:  

β(f(x1, x2) | x1∈ G″,  x2 = t2) ≈ P2;  

(G′, t1) λ (G″, t2); 

 t1ψ t2 

  

or 

 

? G″, t1, λ, ψ:  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″,  x2 = t2) ≈ P2;  

(G′, t1) λ (G″, t2); 

 t1ψ t2 

Inverse comparison of the graph objects 

associated with two patterns, one of them 

occurring at a given time, and comparison of the 

given time point with the unknown time point 

at which the second pattern occurs. 

 

? G′, G″,  t2, λ, ψ:  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″,  x2 = t2) ≈ P2;  

(G′, t1) λ (G″, t2); 

 t1ψ t2 
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Inverse comparison of the time points at 

which two different patterns occur, over 

the same graph subset. 

 

? t1, t2, λ:  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G′,  x2 = t2) ≈ P2;  

t1 λ t2 

Inverse comparison of the time 

points at which two different 

patterns occur, over two different 

graph subsets. 

 

? t1, t2, λ:  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″,  x2 = t2) ≈ P2;  

t1 λ t2 

Inverse comparison of the graph subsets 

associated with given patterns, where one 

of the graph subsets is specified, but the 

time at which it occurs is unknown, the 

other graph subset and time at which the 

pattern occurs is not specified.  In addition, 

we may wish to compare the time points at 

which the patterns occurred. 

 

? G′, G″,  t1, t2, λ, ψ:  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″,  x2 = t2) ≈ P2;  

(G′, t1) λ (G″, t2); 

 t1ψ t2 

Inverse comparison of the graph subsets and 

time points associated with two given patterns. 

 

? G′, G″,  t1, t2, λ, ψ:  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″,  x2 = t2) ≈ P2;  

(G′, t1) λ (G″, t2); 

 t1ψ t2 

 

Figure 102 Comparison quadrant 2: considers comparisons involving the behaviour of an attribute over the graph (or a graph subset) 
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 Graph elements (nodes, edges, graph objects) 

Both graph elements specified One  graph element specified Neither  graph element specified 

Single/same graph element Two different graph elements 
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Direct comparison of the attribute 

patterns of two different attributes 

of the same graph element over the 

same time interval. 

 

?p1, p2, λ:  

β(f1(x1, x2) | x1= g, x2 ∈ T′) ≈ p1;  

β(f2(x1, x2) | x1= g, x2 ∈ T′) ≈ p2;  

p1λ p2 

Direct comparison of the 

patterns of two different graph 

elements over the same time 

interval 

 

?p1, p2, λ:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ p1;  

β(f(x1, x2) | x1= g2, x2 ∈ T′) ≈ p2;  

p1λ p2 

Inverse comparison of a graph element 

associated with a given pattern over a 

given time interval, with a given graph 

element.42 

 

?g2,  λ:  

β(f(x1, x2) | x1= g2, x2 ∈ T′) ≈ P;  

g1 λ g2  

 

Inverse comparison of two graph elements 

associated with given patterns over the same 

given time interval. 

 

?g1 ,g2, λ:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T′) ≈ P2;  

g1 λ g2  
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Direct comparison of the patterns of 

the same graph element over two 

different time intervals. 

 

?p1, p2, λ:  

β(f(x1, x2) | x1= g, x2 ∈ T′) ≈ p1;  

β(f(x1, x2) | x1= g, x2 ∈ T″) ≈ p2;  

p1λ p2 

 

Direct comparison of the 

patterns of two different graph 

elements over two different 

time intervals. 

 

?p1, p2, λ:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ p1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ p2;  

p1λ p2 

 

Inverse comparison as above43. 

 

 

Inverse comparison of two graph elements 

associated with given patterns over the two 

different given time intervals. 

 

?g1 ,g2, λ:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

g1 λ g2  
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Inverse comparison of a time 

interval associated over which a 

given pattern occurs for a given 

graph element, with a specified time 

interval.44 

 

?T″, λ:  

β(f(x1, x2) | x1= g, x2 ∈ T″) ≈ P;  

T′ λ T″ 

 

Inverse comparison as left45. Inverse comparison of a given graph 

element with a graph element 

associated with a given pattern (over a 

time interval which may or may not be 

specified) and comparison of a given 

time interval with a time interval 

associated with a given pattern (which 

may or may not be associated with a 

given graph element). This may involve 

only one lookup subtask46 or two: 

 

Inverse comparison of two graph elements 

associated with given patterns (one of which is 

a pattern over a specified time interval) and 

comparison of the time intervals over which 

the patterns occur. 

 

?g1 , g2, T″, λ, ψ:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

g1 λ g2 ;  

T′ ψ T″ 

                                                      
42 Reduced from: ?g2, λ: β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1; β(f(x1, x2) | x1= g2, x2 ∈ T′) ≈ P2; g1 λ g2  
43 Reduced from ?g2, λ: β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1; β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2; g1 λ g2 
44 Reduced from: ?T″, λ: β(f(x1, x2) | x1= g, x2 ∈ T′) ≈ P1; β(f(x1, x2) | x1= g, x2 ∈ T″) ≈ P2; T′ λ T″ 
45 Reduced from: ?T″, λ: β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1; β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2; T′ λ T″ 
46 Reduced from: ?g2, T′, λ, ψ: β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1; β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2; g1 λ g2 ; T′ ψ T″ 
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 Graph elements (nodes, edges, graph objects) 

Both graph elements specified One  graph element specified Neither  graph element specified 

Single/same graph element Two different graph elements 

?g2, T″, λ, ψ:  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P;  

g1 λ g2 ;  

T′ ψ T″ 

 

Or 

 

?g2 , T′, λ, ψ:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

g1 λ g2 ;  

T′ ψ T″ 
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Inverse comparison of the time 

intervals over which the given 

patterns occur for a single given 

graph element. 

 

?T′, T″, λ: 

β(f(x1, x2) | x1= g, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g, x2 ∈ T″) ≈ P2;  

T′ λ T″ 

 

Inverse comparison of the time 

intervals over which the given 

patterns occur for two different 

graph elements. 

 

?T′, T″, λ: 

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

T′ λ T″ 

 

Inverse comparison of a specified graph 

element and a graph element associated 

with a given pattern (over an 

unspecified time interval) and 

comparison of the time intervals over 

which the patterns occur. 

 

? g2, T′, T″, λ, ψ:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

g1 λ g2 ;  

T′ ψ T″ 

 

Inverse comparison of graph elements and 

time intervals associated with two given 

patterns. 

 

?g1 , g2, T′, T″, λ, ψ:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

g1 λ g2 ;  

T′ ψ T″ 

 

Figure 103 Comparison quadrant 3: considers comparisons involving the behaviour of an attribute of a single graph element over time (i.e. a temporal trend) 

  



 322 

 

 Graph subsets 

Both graph subsets specified One  graph subset specified Neither  graph subset specified 

Single/same subset Two different subsets 

T
im

e
 i

n
te

rv
a

ls
 

B
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 c

o
n

st
ra

in
ts

 

S
a

m
e

 t
im

e
 

Direct comparison of distributions of 

temporal trends over the graph for two 

different attributes over the same time 

interval and for the same graph subset: 

 

? p1, p2, λ:  

βG{βT[f1(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ p1; 

βG{βT[f2(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ p2;  

p1λ p2  

 

Or 

 

temporal trends in distributions of an 

attribute over the graph for two different 

attributes for the same graph subset and 

over the same time interval: 

 

? p1, p2, λ:  

βT{βG[f1(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ p1; 

βT{βG[f2(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ p2;  

p1λ p2 

 

 

 

 

Direct comparison of distributions of 

temporal trends over two different 

graph subsets over the same time 

interval: 

 

? p1, p2, λ:  

βG{βT[f1(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ p1; 

βG{βT[f2(x1, x2) | x2 ∈ T′)]| x1∈ G″}≈ p2;  

p1λ p2  

 

Or 

 

temporal trends in distributions of an 

attribute over the graph, over two 

different graph subsets over the same 

time interval: 

 

? p1, p2, λ:  

βT{βG[f1(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ p1; 

βT{βG[f2(x1, x2) | x1 ∈ G″)]| x2∈ T′}≈ p2;  

p1λ p2 

 

Inverse comparison of the subset of graph 

elements associated with a given pattern 

involving a given time interval, and a given 

subset of graph elements47: 

 

? G″, λ:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G″}≈ P; 

G′ λ G″; 

 

or  

 

?G″, λ:  

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T′}≈ P;  

G′ λ G″; 

 

Inverse comparison of two graph subsets 

associated with two given patterns 

involving the same time interval: 

 

? G′, G″, λ:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1;  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G″}≈ P2; 

G′ λ G″; 

 

or  

 

? G′, G″, λ:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T′}≈ P2;  

G′ λ G″; 

 

D
if

fe
r Direct comparison of distributions of 

temporal trends over the graph for the 

Direct comparison of distributions of 

temporal trends over two different 

Inverse comparison as above48 

 

Inverse comparison of two graph subsets 

associated with two given patterns 

involving two different time intervals 

                                                      
47 Reduced from: ? G″, λ: βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G″}≈ P2;G′ λ G″;  

OR  

?G″, λ: βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1;βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T′}≈ P2; G′ λ G″; 

 
48 Reduced from: ? G″, λ: βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2; G′ λ G″;OR  

? G″, λ: βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1;βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2; G′ λ G″; 
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 Graph subsets 

Both graph subsets specified One  graph subset specified Neither  graph subset specified 

Single/same subset Two different subsets 

same graph subset during two different 

time intervals: 

 

? p1, p2, λ:  

βG{βT[f1(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ p1; 

βG{βT[f2(x1, x2) | x2 ∈ T″)]| x1∈ G′}≈ p2;  

p1λ p2 

 

Or 

 

temporal trends in distributions of an 

attribute over the graph, for the same 

graph subset over two different time 

intervals: 

 

? p1, p2, λ:  

βT{βG[f1(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ p1; 

βT{βG[f2(x1, x2) | x1 ∈ G′)]| x2∈ T″}≈ p2;  

p1λ p2 

 

 

 

 

 

 

 

graph subsets over two different time 

intervals: 

 

? p1, p2, λ:  

βG{βT[f1(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ p1; 

βG{βT[f2(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ p2;  

p1λ p2  

 

Or 

 

temporal trends in distributions of an 

attribute over the graph, over two 

different graph subsets over two 

different time intervals: 

 

? p1, p2, λ:  

βT{βG[f1(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ p1; 

βT{βG[f2(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ p2;  

p1λ p2 

 

 

? G′, G″, λ:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1;  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2; 

G′ λ G″; 

 

or  

 

? G′, G″, λ:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

G′ λ G″; 

 

O
n

e
 

co
n

st
ra

i

n
t,

 o
n

e
 Inverse comparison of a time interval 

associated with a given pattern and graph 

subset, and a given time interval49: 

 

Inverse comparison as left50. 

 

Inverse comparison of a time interval and 

graph subset associated with a given 

Inverse comparison of graph subsets and 

time intervals associated with two given 

patterns, where one of the patterns 

involves a given time interval: 

                                                      
49 Reduced from: ? T″, λ: βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G′}≈ P2; T′ λ T″; or ? T″, λ: βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; βT{βG[f(x1, x2) | x1 ∈ 

G′)]| x2∈ T″}≈ P2;  

T′ λ T″; 
50 Reduced from: ? T″, λ: βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;T′ λ T″;  or ? T″, λ: βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1;βT{βG[f(x1, x2) | x1 ∈ 

G″)]| x2∈ T″}≈P2;  

T′ λ T″; 
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 Graph subsets 

Both graph subsets specified One  graph subset specified Neither  graph subset specified 

Single/same subset Two different subsets 

? T″, λ:  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G′}≈ P; 

T′ λ T″;  

 

or  

 

? T″, λ:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T″}≈ P;  

T′ λ T″;  

pattern, with a given time interval and 

graph subset51 

 

? G″, T″, λ, ψ:  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P; 

T′ λ T″;  

G′ ψ G″; 

 

or  

 

? G″, T″, λ, ψ:  

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P;  

T′ λ T″;  

G′ ψ G″; 

 

OR 

 

Inverse comparison of a graph object 

associated with a pattern involving a given 

time interval, and a given graph object and 

a time interval associated with a pattern 

involving a given graph subset, and a given 

time interval. 

 

? G′, T′, T″, λ, ψ:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1;  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2; 

T′ λ T″;  

G′ ψ G″; 

 

or  

 

? G″, T′, λ, ψ:  

 

? G′, G″, T″, λ, ψ:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1;  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2; 

T′ λ T″;  

G′ ψ G″; 

 

or  

 

? G′, G″, T″, λ, ψ:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ λ T″;  

G′ ψ G″; 

 

                                                      
51 Reduced from: ? G″, T″, λ, ψ: βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2; T′ λ T″; G′ ψ G″; or ? G″, T″, λ, ψ: βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ 

P1; βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2; T′ λ T″; G′ ψ G″; 
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 Graph subsets 

Both graph subsets specified One  graph subset specified Neither  graph subset specified 

Single/same subset Two different subsets 

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ λ T″;  

G′ ψ G″; 

 

 

B
o

th
 a

re
 t

a
rg

e
ts

 Inverse comparison of two time intervals 

associated with two given patterns 

involving the same graph subset: 

 

? T′, T″, λ:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1;  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G′}≈ P2; 

T′ λ T″;  

 

or  

 

? T′, T″, λ:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T″}≈ P2;  

T′ λ T″;  

Inverse comparison of two time 

intervals associated with two given 

patterns involving two different graph 

subsets: 

 

? T′, T″, λ:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1;  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2; 

T′ λ T″;  

 

or  

 

? T′, T″, λ:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ λ T″; 

 

Inverse comparison of graph subsets and 

time intervals associated with given 

patterns, where one of the patterns 

involves a given graph subset: 

 

? G″, T′, T″, λ, ψ:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1;  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2; 

T′ λ T″;  

G′ ψ G″; 

 

or  

 

?G″, T′, T″, λ, ψ:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ λ T″;  

G′ ψ G″; 

 

Inverse comparison of graph subsets and 

time intervals associated with given 

patterns: 

 

? G′, G″, T′, T″, λ, ψ:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1;  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2; 

T′ λ T″;  

G′ ψ G″; 

 

or  

 

? G′, G″, T′, T″, λ, ψ:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ λ T″;  

G′ ψ G″; 

 

Figure 104 Comparison quadrant 4: considers comparisons involving aspectual behaviours (i) the behaviour of temporal trends for all graph elements, over the graph (ii) 

the behaviour of an attribute over the graph, over time 

  



 

Relation Seeking 

A quadrant-level overview of the comparison task matrix is given in . Again, due to 

issues of space on the printed page, each quadrant of the relation seeking task matrix 

is shown separately ( - ).  The complete task matrix can be found at 

http://www.iidi.napier.ac.uk/c/downloads/downloadid/13377254. 

Notes on Relation Seeking matrix: 

• The tasks in the matrices have been formulated to show the same attribute, 

but each task could also be formulated for the case where two different 

attributes are involved. 

• Tasks where attribute values or patterns are specified are not shown in the 

matrix.  These tasks can be formulated to produce tasks where either: 

 

i. Both attribute values or patterns are specified.  In this case, the relation 

seeking task will involve a specified relation on time points/intervals 

and/or graph elements/subsets.  Taking an example from quadrant 2, we 

could have:  

Find graph subsets and time points associated with given patterns, where 

the graph subsets/time points are related in the specified way. 

? G′, G″, t1, t2:  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

 

ii. One attribute value or pattern is specified.  In this case, the specified 

relation may be between attribute values or patterns, graph elements or 

subsets and/or time points or intervals (as appropriate to the 

specified/unspecified elements in the task). Again, an example from 

quadrant 2 is given:  

Find patterns related to a given pattern in the given way. Find also the 

graph subsets and time points over/at which the related patterns occur.  A 

relation between graph subsets and/or time points may also be specified. 
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? G′, G″, t1, t2, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

P1 Λ P2 

 

• In the case where one of the subtasks is completely specified, the task is 

reduced to relation seeking involving a specified pattern or graph subset e.g.  

? G″, t2, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

P1 Λ P2 

 

Can be reduced to:  

Find patterns/graph elements related in the given way to given 

patterns/graph elements.  A relation on time points may also be specified. 

? G″, t2, P2 :  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

P1 Λ P2 
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 Graph elements (nodes, edges, graph objects) Graph subsets 

Time 

points 

Elementary 

? t1, t2, g1, g2, y1, y2:  

f(t1, g1) = y1;  

f(t2, g2) = y2;  

t1 Ψ t2;   

g1 Φ g2;  

y1 Λ y2 

 

Relation seeking – find the attribute values 

related in the given manner (and possibly the 

corresponding graph element(s)/time point(s)).  

In this case the possible relation specified is 

domain dependent. Variations of this task 

depend on the number of time points and 

graph elements specified in the lookup sub 

tasks.  

 

Additional constraints on the relations between 

graph elements and/or time points may also be 

specified. Depending on the elements involved 

in the lookup tasks (i.e. whether they are 

specified/unspecified, same or different), 

constraints may be any of the relations noted in 

the comparison matrix e.g.: 

 

• between time points:  equality 

(same/different time point), that time 

points are consecutive, occur 

before/after a given time point, that a 

certain distance exists between them 

etc. 

• between graph elements: equality 

(same/different element); set 

relations (between the sets of 

elements belonging to graph objects); 

equality of configuration (in graph 

objects); linking (where a single time 

point is specified in the lookup task or 

a constraint of equality is added on 

unspecified time points). 

Synoptic 

? G′, G″, t1, t2, P1, P2 :  

β(f(x1, x2) | x1∈ G′,  x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″,  x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

P1 Λ P2 

 

Relation seeking – find patterns of attribute(s) 

over the graph which are related in the given 

manner (and possibly the time 

point(s)/subsets of graph elements at/over 

which they occur).  Possible specified relations 

between patterns are same 

(similar)/different/opposite.  Variations 

depend on the number of time points and 

graph subsets specified in the lookup 

subtasks.   

 

Additional constraints on relations between 

time points /or graph subsets may also be 

included in the task specification, depending 

on the elements involved in the lookup tasks.  

These are similar to  the relations noted in the 

comparison matrix e.g. 

 

• between time points:  equality 

(same/different time point), that 

time points are consecutive, occur 

before/after a given time point, that 

a certain distance exists between 

them etc. 

• between two graph subsets: 

equality (same/different subset); set 

relations (between the sets of 

nodes/edges belonging to the 

subset); equality of configuration of 

the subset, linking (between 

nodes/graph objects, at a single 

time point only). 

Time 

intervals 

Synoptic 

? g1 , g2 ; T′, T″, P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

g1 Φ g2 ; T Ψ T″; P1 Λ P2 

 

Relation seeking – find the patterns of 

attribute(s) over time which are related in the 

given manner (and possibly find the graph 

element(s) to which they correspond/the time 

period(s) over which they occur). The possible 

specified relations between patterns are the 

same (similar)/different/opposite.  Variations 

depend on the number of graph elements and 

time intervals specified in the lookup subtasks.   

 

Additional constraints on relations between 

graph elements and/or time intervals may also 

be included in the task specification, depending 

on the elements involved in the lookup tasks.  

These are similar to  the relations noted in the 

comparison matrix e.g. 

Synoptic 

? G′, G″, T′, T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1;  

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

T′ Ψ T″; G′ Φ G″; P1 Λ P2 

 

or  

 

? G′, G″, T′, T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1;  

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ Ψ T″; G′ Φ G″; P1 Λ P2 

 

Relation seeking – find (sub)patterns of either 

of the aspectual behaviours which are related 

in the given manner (and possibly find the 

graph subset/time interval associated with 

the found patterns).  The possible specified 

relations between patterns are the same 

(similar)/different/opposite. Variations 

depend on the number of graph subsets and 
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• between graph elements: equality 

(same/different element); set 

relations (between the sets of 

elements belonging to graph objects); 

equality of configuration (in graph 

objects). 

• Between the time intervals (over 

which the pattern occurs): happens 

before(/after), happens at the same 

time;  between two intervals, or an 

instant and an interval: happens 

before(/after), starts, finishes, 

happens during; between intervals 

only: overlaps, meets [49]. 

 

time intervals specified in the lookup 

subtasks.   

 

Additional constraints on relations between 

time points /or graph subsets may also be 

included in the task specification, depending 

on the elements involved in the lookup tasks.  

These are similar to  the relations noted in the 

comparison matrix e.g. 

• between two graph subsets: 

equality (same/different subset); set 

relations (between the sets of 

nodes/edges belonging to the 

subset); equality of configuration of 

the subset, linking (between 

nodes/graph objects, at a single 

time point only). 

• Between the time intervals (over 

which the pattern occurs): happens 

before(/after), happens at the same 

time;  between two intervals, or an 

instant and an interval: happens 

before(/after), starts, finishes, 

happens during; between intervals 

only: overlaps, meets [49]. 

 

Figure 105 Relation seeking quadrant-level overview 
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 Graph elements (nodes, edges, graph objects) 

Both constraints One  constraint, one target Both are targets 

Same element Different elements 

T
im

e
 p

o
in

ts
 

B
o

th
 c

o
n

st
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in
ts

 

 
S

a
m

e
 t

im
e

 

Not applicable 

Find the attribute value (and associated node) 

at a given time, which is related in the given 

way to an attribute value associated with a 

given graph object at the same given time 

point. A relation between graph elements 

may also be specified. 

 

? g2, y1, y2: 

f(t, g1) = y1;f(t, g2) = y2;  

y1 Λ y2; g1 Φ g2 

 

 

Find attribute values (and the nodes 

associated with them) at the same given 

time, which are related in the given way. 

A relation between graph elements may 

also be specified.  

 

? g1 , g2, y1, y2:  

f(t, g1) = y1; f(t, g2) = y2;  

y1 Λ y2; g1 Φ g2 

 

D
if

fe
re

n
t 

ti
m

e
 

Find the attribute value (and associated node) 

at a given time, which is related in the given 

way to an attribute value associated with a 

given graph object at a different given time 

point.  

 

? g2, y1, y2:  

f(t1, g1) = y1; f(t2, g2) = y2;  

y1 Λ y2;  

 

Find attribute values (and the nodes 

associated with them) at two given 

times, which are related in the given 

way. A relation between graph elements 

may also be specified. 

 

? g1, g2, y1, y2: 

 f(t1, g1) = y1; f(t2, g2) = y2;  

y1 Λ y2; g1 Φ g2 
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 Graph elements (nodes, edges, graph objects) 

Both constraints One  constraint, one target Both are targets 

Same element Different elements 

O
n

e
  

co
n

st
ra

in
t,

 o
n

e
 t

a
rg

e
t 

Find an attribute value (and the 

time point at which it occurs) 

associated with a given graph 

element, which is related in the 

given way to an attribute value 

associated with a the same graph 

element at a given time. A relation 

between time points may also be 

specified. 

 

? t2, y1, y2:  

f(t1, g) = y1; f(t2, g) = y2;  

y1 Λ y2 

 

Find an attribute value (and the time 

point at which it occurs) associated 

with a given graph element, which is 

related in the given way to an 

attribute value associated with a 

different given graph element at a 

given time. A relation between time 

points may also be specified. 

 

? t2, y1, y2: 

 f(t1, g1) = y1; f(t2, g2) = y2;  

t1 Ψ t2;  y1 Λ y 

Find an attribute value (and the time point 

and graph element for which it occurs) 

related in the given way to an attribute value 

which is associated with a given graph 

element at a given time point.  Relations 

between time points and/or graph elements 

may also be specified. 

 

? t2, g2, y1, y2:  

f(t1, g1) = y1; f(t2, g2) = y2; 

 y1 Λ y2 

 

Or  

 

Find attribute values related in the given way 

where one of the values occurs at a given 

time, and the other is associated with a given 

graph element. Also find the unspecified 

graph element and time point associated with 

the attribute values. Relations between time 

points and/or graph elements may also be 

specified. 

 

? t2, g1,  y1, y2:  

f(t1, g1) = y1; f(t2, g2) = y2;  

t1 Ψ t2;  g1 Φ g2; y1 Λ y2 

Find attribute values related in the given 

way where one of the values occurs at 

the given time.  Relations between time 

points and graph elements may also be 

specified. 

 

t2, g1, g2, y1, y2:  

f(t1, g1) = y1; f(t2, g2) = y2;  

t1 Ψ t2;  g1 Φ g2; y1 Λ y2 
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 Graph elements (nodes, edges, graph objects) 

Both constraints One  constraint, one target Both are targets 

Same element Different elements 

B
o

th
 a

re
 t

a
rg

e
ts

 

Find attribute values (and the time 

points at which they occur) 

associated with the same given 

graph element, which are related 

in the given way. A relation 

between time points may also be 

specified. 

 

? t1, t2, y1, y2:  

f(t1, g) = y1; f(t2, g) = y2;  

y1 Λ y2; t1 Ψ t2;   

Find attribute values (and the time 

points at which they occur) 

associated with two given graph 

elements, which are related in the 

given way. A relation between time 

points may also be specified. 

 

? t1, t2, y1, y2: 

f(t1, g1) = y1; f(t2, g2) = y2; 

 t1 Ψ t2;  y1 Λ y2 

 

Find attribute values related in the given way, 

where one of the attribute values is 

associated with a given graph element.  

Relations between time points and/or graph 

elements may also be specified. 

 

? t1, t2, g2, y1, y2:  

f(t1, g1) = y1; f(t2, g2) = y2;  

t1 Ψ t2;  g1 Φ g2; y1 Λ y2 

 

Find attribute values related in the given 

way.  Relations between time points 

and/or graph elements may also be 

specified. 

 

? t1, t2, g1, g2, y1, y2:  

f(t1, g1) = y1; f(t2, g2) = y2;  

t1 Ψ t2;  g1 Φ g2; y1 Λ y2 

 

Figure 106 Relation seeking, quadrant 1: considers elementary relation seeking involving graph elements (nodes, edges, graph objects) and time points (i.e. the elementary 

comparison tasks) 
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 Graph subsets 

Both constraints One  constraint, one target Both are targets 

Same subset Different subsets 

T
im

e
 p

o
in

ts
 

B
o

th
 c

o
n

st
ra

in
ts

 

 
S

a
m

e
 t

im
e

 

Not applicable 

 

 

Find a pattern and the graph subset over which 

it occurs at a given time point, which is related 

in the given way to a pattern over a given graph 

subset at the same time point.  A relation 

between graph subsets may also be specified. 

 

? G″, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t) ≈ P2;  

G′ Φ G″; 

P1 Λ P2 

Find patterns related in the given way at the same 

time point. A relation between graph subsets may 

also be specified. 

 

? G′, G″, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t) ≈ P2;  

G′ Φ G″; 

P1 Λ P2 

D
if

fe
re

n
t 

ti
m

e
s 

Tasks as above, but involving two different time 

points. 

 

? G″, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

G′ Φ G″;  

P1 Λ P2 

 

 

Tasks as above, but involving two different time 

points. 

 

? G′, G″, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

G′ Φ G″;  

P1 Λ P2 
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 Graph subsets 

Both constraints One  constraint, one target Both are targets 

Same subset Different subsets 

O
n

e
 c

o
n

st
ra

in
t,

  

o
n

e
 t

a
rg

e
t Find a pattern (and time 

point) associated with a given 

graph subset, which is related 

in the given way to a pattern 

associated with the same 

graph subset at a given time. 

A relation between time 

points may also be specified. 

 

? t2, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G′, x2 = t2) ≈ P2;  

t1 Ψ t2;  

P1 Λ P2 

 

Find a pattern (and time point) 

associated with a given graph 

subset, which is related in the 

given way to a pattern 

associated with a different 

given graph subset at a given 

time. A relation between time 

points may also be specified. 

 

? t2, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

P1 Λ P2 

 

Find a pattern and the time point and graph 

subset  over which it occurs related in the given 

way to a pattern associated with a given graph 

subset at a given time point.  Relations 

between time points and graph subsets may 

also be specified. 

 

? G″, t2, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

P1 Λ P2 

 

Or  

 

Find patterns related in the given way where 

one of the patterns occurs at a given time, and 

the other occurs over a given graph subset. 

Also find the unspecified graph subset and time 

point over which/at the patterns occur. 

Relations between time points and graph 

subsets may also be specified. 

 

? = G″, t1,  P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

P1 Λ P2 

 

Find patterns related in the given way where one of 

the patterns occurs at the given time.  Relations 

between time points and graph subsets may also 

be specified. 

 

? G′, G″, t1, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

P1 Λ P2 
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 Graph subsets 

Both constraints One  constraint, one target Both are targets 

Same subset Different subsets 

B
o

th
 a

re
 t

a
rg

e
ts

 

Find patterns (and the time 

points at which they occur) 

associated with a single given 

graph subset, which are 

related in the given way.  A 

relation between time points 

may also be specified. 

? t1, t2, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G′, x2 = t2) ≈ P2;  

t1 Ψ t2;  

P1 Λ P2 

Find patterns (and the time 

points at which they occur) 

associated with two given graph 

subsets, which are related in 

the given way.  A relation 

between time points may also 

be specified. 

? t1, t2, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

P1 Λ P2 

Find patterns related in the given way, where 

one of the patterns is associated with a given 

graph subset.  Relations between time points 

and graph subsets may also be specified. 

 

? G″, t1, t2, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

P1 Λ P2 

 

Find patterns related in the given way.  Relations 

between time points and graph subsets may also 

be specified. 

 

? G′, G″, t1, t2, P1, P2 :  

β(f(x1, x2) | x1∈ G′, x2 = t1) ≈ P1;  

β(f(x1, x2) | x1∈ G″, x2 = t2) ≈ P2;  

t1 Ψ t2;  

G′ Φ G″;  

P1 Λ P2 

 

Figure 107 Relation seeking quadrant 2: considers synoptic relation seeking involving the behaviour of an attribute over the graph (or a graph subset) 
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 Graph elements (nodes, edges, graph objects) 

Both constraints One  constraint, one target Both are targets 

Same element Different elements 

T
im

e
 i

n
te

rv
a

ls
 

B
o

th
 c

o
n

st
ra

in
ts

 

 
S

a
m

e
 t

im
e

 

Not applicable 

Find a pattern (and the graph element 

associated with it) which occurs over a 

given time interval and is related in the 

given way to a pattern associated with a 

given graph element over the same time 

interval. A relation between graph elements 

may also be specified.52 

 

? g2 , P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T′) ≈ P2;  

P1 Λ P2; 

g1 Φ g2 

 

Find patterns (and their associated 

graph elements) which occur over the 

same given time interval and are related 

in the given way. A relation between 

graph elements may also be specified. 

 

? g1 , g2 , P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T′) ≈ P2;  

P1 Λ P2; 

g1 Φ g2 

 

D
if

fe
re

n
t 

ti
m

e
s 

Find a pattern (and the graph element 

associated with it) which occurs over a 

given time interval and is related in the 

given way to a pattern associated with a 

given graph element over a given time 

interval. A relation between graph elements 

may also be specified 

 

? g2 , P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T′) ≈ P2;  

P1 Λ P2; 

g1 Φ g2 

Find patterns (and their associated 

graph elements) which occur over two 

given time intervals and are related in 

the given way. A relation between graph 

elements may also be specified 

 

? g1 , g2, P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

P1 Λ P2; 

g1 Φ g2 

 

                                                      
52 In all cases in this table, if we wish to specify a linking relation between the graph elements, we must also specify a time at which the linking relation occurs i.e. (g1 , t) Φ 

(g2, t): ‘a given linking relation exists between the graph elements at time t’. 
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 Graph elements (nodes, edges, graph objects) 

Both constraints One  constraint, one target Both are targets 

Same element Different elements 

O
n

e
 c

o
n

st
ra

in
t,

 o
n

e
 t

a
rg

e
t 

Find a pattern (and the time interval 

over which it occurs) for a given 

graph element, which is related in 

the given way to a pattern 

associated with the same graph 

element over a given time interval. 

A relation between time intervals 

may also be specified. 

 

 

? T″, P1, P2:  

β(f(x1, x2) | x1= g, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g, x2 ∈ T″) ≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

 

Find a pattern (and the time interval over 

which it occurs) for a given graph element, 

which is related in the given way to a 

pattern associated with a given graph 

element over a given time interval. A 

relation between time intervals may also 

be specified. 

 

? T″, P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;   

T′ Ψ T″;  

P1 Λ P2 

 

Find a pattern, and the graph element and 

time interval over which it occurs, which is 

related in the given way to a pattern 

associated with a given graph element over 

a given time interval.  A relation between 

time intervals and/or graph elements may 

also be specified. 

 

 

? g2, T″, P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

T′ Ψ T″;  

P1 Λ P2; 

g1 Φ g2 

 

Or 

 

Find patterns related in the given way where 

one of the patterns occurs over a given time 

interval, and the other is associated with a 

given graph element. Also find the 

unspecified graph element and time interval 

associated with the patterns). A relation 

between time intervals and/or graph 

elements may also be specified. 

 

? g2, T′, P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

T′ Ψ T″;  

P1 Λ P2; 

g1 Φ g2 

Find patterns related in the given way 

where one of the patterns occurs over a 

given time interval.  A relation between 

time intervals and/or graph elements 

may also be specified. 

 

? g1 , g2, T″, P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

T′ Ψ T″;  

P1 Λ P2; 

g1 Φ g2 
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 Graph elements (nodes, edges, graph objects) 

Both constraints One  constraint, one target Both are targets 

Same element Different elements 

B
o

th
 a

re
 t

a
rg

e
ts

 

Find patterns (and the time 

intervals over which they occur) 

associated with a single graph 

element, which are related in the 

given way. A relation between time 

intervals may also be specified. 

 

? T′, T″, P1, P2:  

β(f(x1, x2) | x1= g, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g, x2 ∈ T″) ≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

 

Find patterns (and the time intervals over 

which they occur) associated with two 

given graph elements, which are related in 

the given way. A relation between time 

intervals may also be specified. 

 

? T′, T″, P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;   

T′ Ψ T″;  

P1 Λ P2 

 

Find patterns related in the given way, 

where one of the patterns is associated with 

a given graph element.  A relation between 

time intervals and/or graph elements may 

also be specified. 

 

 g2, T′, T″, P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

T′ Ψ T″;  

P1 Λ P2; 

g1 Φ g2 

 

Find patterns related in the given way.  A 

relation between time intervals and/or 

graph elements may also be specified. 

 

? g1 , g2, T′, T″, P1, P2:  

β(f(x1, x2) | x1= g1, x2 ∈ T′) ≈ P1;  

β(f(x1, x2) | x1= g2, x2 ∈ T″) ≈ P2;  

T′ Ψ T″;  

P1 Λ P2; 

g1 Φ g2 

 

Figure 108 Relation seeking quadrant 3: considers relation seeking tasks involving the behaviour of an attribute of a single graph element over time (i.e. a temporal trend) 
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Graph subsets 

Both constraints One  constraint, one target Both are targets 

Same subset Different subsets 

T
im

e
 i

n
te

rv
a

ls
 

B
o

th
 c

o
n

st
ra

in
ts

 

 
S

a
m

e
 t

im
e

 

Not applicable 

Find a pattern (and the graph subset associated 

with it) which is associated with a given time 

interval and is related in the given way to a 

pattern associated with a given graph subset and 

the same time interval. A relation between 

graph subsets may also be specified. 

 

? G″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G″}≈ P2;  

G′ Φ G″;  

P1 Λ P2 

 

or  

 

? G″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; βT{βG[f(x1, 

x2) | x1 ∈ G″)]| x2∈ T′}≈ P2;  

G′ Φ G″;  

P1 Λ P2 

Find patterns (and their associated graph 

subsets) which are associated with a single 

given time interval and are related in the 

given way. A relation between graph 

subsets may also be specified. 

 

? G′, G″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G″}≈ P2;  

G′ Φ G″;  

P1 Λ P2 

 

or  

 

? G′, G″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1;  

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T′}≈ P2;  

G′ Φ G″;  

P1 Λ P2 

 

D
if

fe
re

n
t 

ti
m

e
s 

Find a pattern (and the graph subset associated 

with it) which is associated with a given time 

interval and is related in the given way to a 

pattern associated with a given graph subset and 

a given time interval. A relation between graph 

subsets may also be specified. 

 

? G″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

G′ Φ G″;  

P1 Λ P2 

 

Find patterns (and their associated graph 

subsets) which are associated with two 

given time intervals and are related in the 

given way. A relation between graph 

subsets may also be specified. 

 

? G′, G″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

G′ Φ G″;  

P1 Λ P2 

 

or  
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Graph subsets 

Both constraints One  constraint, one target Both are targets 

Same subset Different subsets 

or  

 

? G″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; βT{βG[f(x1, 

x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

G′ Φ G″;  

P1 Λ P2 

 

 

? G′, G″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

G′ Φ G″;  

P1 Λ P2 

 

O
n

e
  

co
n

st
ra

in
t,

 o
n

e
 t

a
rg

e
t 

Find a pattern (and the time interval 

with which it is associated) for a 

given graph subset, which is related 

in the given way to a pattern 

associated with the same graph 

subset and a given time interval. A 

relation between time intervals may 

also be specified. 

 

? T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G′}≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

 

or  

 

? T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1;  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T″}≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

Find patterns (and the time intervals 

over which they occur) associated 

with two given graph subsets, which 

are related in the given way. A relation 

between time intervals may also be 

specified. 

 

? T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

 

or  

 

? T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

 

Find a pattern, and the graph subset and time 

interval with which it is associated, which is 

related in the given way to a pattern associated 

with a given graph subset and a given time 

interval.  Relations between time intervals 

and/or graph subsets may also be specified. 

 

? G″, T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

T′ Ψ T″;  

G′ Φ G″;  

P1 Λ P2 

 

or  

 

? G″, T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; βT{βG[f(x1, 

x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ Ψ T″;  

G′ Φ G″;  

P1 Λ P2 

 

OR  

 

Find patterns related in the given way 

where one of the patterns involves a given 

time interval.  Relations between time 

intervals and/or graph subsets may also be 

specified. 

 

? G′, G″, T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

T′ Ψ T″;  

G′ Φ G″;  

P1 Λ P2 

 

or  

 

? G′, G″, T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ Ψ T″;  

G′ Φ G″;  

P1 Λ P2 
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Graph subsets 

Both constraints One  constraint, one target Both are targets 

Same subset Different subsets 

Find patterns related in the given way where one 

of the patterns is associated with a given time 

interval, and the other is associated with a given 

graph subset. Also find the unspecified graph 

subset and time interval associated with the 

patterns). Relations between time intervals 

and/or graph subsets may also be specified. 

 

? G′, T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

T′ Ψ T″; 

G′ Φ G″;  

P1 Λ P2 

 

or 

 

? G″, T′, T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; βT{βG[f(x1, 

x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ Ψ T″;  

G′ Φ G″;  

P1 Λ P2 

 

B
o

th
 a

re
 t

a
rg

e
ts Find patterns (and the time intervals 

over which they occur) associated 

with the same given graph subset, 

which are related in the given way. 

A relation between time intervals 

may also be specified. 

 

? T′, T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

Find patterns (and the time intervals 

over which they occur) associated 

with two given graph subsets, which 

are related in the given way. A relation 

between time intervals may also be 

specified. 

 

? T′, T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

Find patterns related in the given way, where 

one pattern is associated with a given graph 

subset. Relations between time intervals and/or 

graph subsets may also be specified. 

 

? G″, T′, T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

T′ Ψ T″;  

Find patterns related in the given way. 

Relations between time intervals and/or 

graph subsets may also be specified. 

 

? G′, G″, T′, T″, P1, P2:  

βG{βT[f(x1, x2) | x2 ∈ T′)]| x1∈ G′}≈ P1; 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

T′ Ψ T″;  

G′ Φ G″;  
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Graph subsets 

Both constraints One  constraint, one target Both are targets 

Same subset Different subsets 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G′}≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

 

or  

 

? T′, T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1;  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T″}≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

βG{βT[f(x1, x2) | x2 ∈ T″)]| x1∈ G″}≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

 

or  

 

? T′, T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ Ψ T″;  

P1 Λ P2 

G′ Φ G″;  

P1 Λ P2 

 

or  

 

? G″, T′, T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; βT{βG[f(x1, 

x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ Ψ T″;  

G′ Φ G″;  

P1 Λ P2 

P1 Λ P2 

 

or  

 

? G′, G″, T′, T″, P1, P2:  

βT{βG[f(x1, x2) | x1 ∈ G′)]| x2∈ T′}≈ P1; 

βT{βG[f(x1, x2) | x1 ∈ G″)]| x2∈ T″}≈ P2;  

T′ Ψ T″;  

G′ Φ G″;  

P1 Λ P2 

Figure 109 Relation seeking quadrant 4: considers relation seeking tasks involving aspectual behaviours (i) the behaviour of temporal trends for all graph elements, over 

the graph (ii) the behaviour of an attribute over the graph, over time 
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 Study Part 1 – Instructions to Participants  

Assessing the utility of a taxonomic approach to requirements 

gathering in visualisation 

Background to the study 

When developing a visualisation system, it is important to understand what questions a person who 

will use the system would like to be able to ask of the data. We would like to develop a visualisation 

system to help better understand collaborative working practices and publishing rates in the School 

of Computing.  We therefore would like to find out what questions people using the visualisation 

system would like to ask of the data that we have available. 

One way to help understand collaborative working practices is to construct a co-authorship network 

showing who co-authors with whom. In such a network, authors are connected to one another 

according to whether they have published together.  These networks may change over time with new 

authors joining the network and others leaving the network.  Co-authoring within the network may 

also change: authors may publish repeatedly with the same colleagues or collaborate with different 

authors at different times.  

In addition to considering the network structure and how it changes over time, we might also consider 

publishing rates in this network context – perhaps there is some relationship between the network 

structure (collaborative working practices) and the amount which individuals publish?  The number of 

publications is also likely to vary over time, with authors publishing more or less frequently in certain 

years. 

While there may be many outside factors affecting publication rates and co-authorship (teaching 

loads, ease or difficulty of publishing within a given research area, etc.), as a first step, we would like 

to use visualisation techniques to gain a basic understanding of what publishing rates and co-

authorship look like within the School and how this has changed over the past three decades.  

With this in mind, in order to inform the design of the visualisation tool, we would like you to help by 

suggesting specific questions relating to the co-authorship network and publishing rates that it might 

be interesting to ask of the data which we have available to us, which is described below. 

Data 

The School holds a large amount of data relating to the publications of its members of staff.  Each 

member of staff (an author) has a list of publications and belongs to a research centre. For the 

purposes of this study, we have access to the following metadata associated with authors and 

publications for use in our visualisation system: 

Authors: 
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• Name  

• Research Centre (CAVES, CCER, CDCNS, CID, CSI) 

• Joining and leaving dates 

 

Publications: 

• The list of authors 

• The year in which it was published  

• The type of publication (conference proceeding, journal article, book chapter, etc.) 

 

To illustrate, an extract of the data is included in Tables 1 and 2, below. The full dataset can be found 

at: https://intranet.institute.napier.ac.uk/iidi/queries 

Table 45 Authors  

Name Research Centre Joined Left 

Alan Cannon CAVES 2003 - 

Kevin Chalmers CAVES 2005 - 

Paul Craig CAVES 2008 2012 

Martin Graham CAVES 1998 2015 

Jessie Kennedy CAVES 1991 - 

Natalie Kerracher CAVES 2010 - 

Robert Kukla CAVES 1996 - 

Paul Shaw CAVES 2008 - 

Alistair Thomson CAVES 2012 2013 

… … … … 
 

Table 46 Publications  

ID Year Authors Type 

1456 2015 Natalie Kerracher, Jessie Kennedy, Kevin Chalmers Journal Article 

1455 2015 Natalie Kerracher, Jessie Kennedy, Kevin Chalmers, Martin 

Graham 

Conference Paper 

1444 2014 Jessie Kennedy, Externals Book Chapter 

1401 2014 Martin Graham, Jessie Kennedy Journal Article 

1385 2014 Natalie Kerracher, Jessie Kennedy, Kevin Chalmers Conference Paper 

1343 2014 Jessie Kennedy , Externals Journal Article 

1341 2014 Paul Shaw, Martin Graham, Jessie Kennedy, External Journal Article 

1248 2013 Paul Craig, Alan Cannon, Robert Kukla, Jessie Kennedy Journal Article 

1219 2013 Jessie Kennedy, Martin Graham, Externals Conference Paper 

1107 2013 Alistair Thomson, Martin Graham, Jessie Kennedy Conference Paper 

… … … … 
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Table 3 Authors’ Publication Counts Over Time 

Author Year Publication 

Count 

Kevin Chalmers 2015 2 

Kevin Chalmers 2014 8 

Kevin Chalmers 2013 8 

… … … 

Jessie Kennedy 2015 2 

Jessie Kennedy 2014 5 

Jessie Kennedy 2013 3 

… … … 

 

From this data, we can extract a co-authorship network where authors are connected according to 

whether they have published together.  For example, in 2015, Jessie Kennedy is connected to Natalie 

Kerracher, Kevin Chalmers, and Martin Graham.  

The full dataset contains data on approximately two-hundred authors and nearly two thousand 

publications. It spans a period of over thirty years, during which time authors have joined and left the 

network, and published varying amounts and types of publications each year.  We can therefore 

construct a large co-authorship network which changes over time, in terms of who belongs to the 

network, who is publishing with whom in each year, and the amount and type of publications being 

published. 

Part 1 

(i) In what capacity might this data set be of interest to you? (Please check all which are 

relevant): 

 

☐ In a management capacity 

☐ Understanding my own data, e.g. looking at my own publishing track record, comparing 

myself with colleagues etc. 

☐ 

Finding potential collaborators 

☐ 

Understanding the data relating to my research group 

☐ 

Other (please specify): 
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(ii) Consider the dataset described above. If you were to try and understand the publishing rates 

and co-authoring behaviour within the School over the years, what questions might you 

want to ask of this dataset? Please spend around 10-15 minutes considering the data, and 

make a note of any questions which might be of interest to you in the table below. *Please 

include only questions that it would be possible to answer from the available data as 

described above (for example, this particular dataset does not have data on research 

topics or publishing venues).* Please be aware that there are no right or wrong answers – 

all responses will be useful for the purposes of the study. 

 

If additional space is required, please use a separate sheet. Please rate your questions on a 

scale of 1-4 in terms of how interesting they are to you, using the following scale: 

 

1 = slightly interesting 

2 = moderately interesting 

3 = very interesting 

4 = extremely interesting 

 

Question Rating (1-4) 

  

  

  

  

  

  

  

  

  

 

Thank you for completing part 1 of this study. Please return your completed answers and list of 

questions to Natalie Kerracher (n.kerracher@napier.ac.uk; room C40 Merchiston) by **Friday 12th 

February**.   
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 Study Part 2 – Instructions to Participants  

Instructions 

When developing a visualisation system, it is important to understand what questions a person who 

will use the system would like to be able to ask of the data. We would like to develop a visualisation 

system to help better understand collaborative working practices and publishing rates in the School 

of Computing.  We therefore would like to find out what questions people using the visualisation 

system would like to ask of the data that we have available. 

For this part of the study, we have provided a list of questions covering different aspects of the data.  

Please rate each question on a scale of 0-4 in terms of how interesting they are to you, using the 

following scale: 

0 = of no interest 

1 = slightly interesting 

2 = moderately interesting 

3 = very interesting 

4 = extremely interesting 

 

Please put your answers in the boxes marked [Your Rating:   ] 

If you do not understand a question, please feel free to contact me for clarification (room C40; 

n.kerracher@napier.ac.uk; ext 2798). Otherwise, please simply note DNU (do not understand) in the 

relevant box.  If you have any comments on the questions, please feel free to note them and return 

them to me along with your completed form, if at all possible, by Friday 21 October. 

 

Please note that images (charts, networks etc.) are used to help illustrate the question only and are 

constructed using synthetic data. There may be other, more appropriate ways to visualise the data 

when answering a particular question. 

  



 

Questions 

 

1. Are you interested in understanding the co-authorship network (or part of the network) in a single year… 

 

I. …in terms of its structure? E.g. How big is the network? Are there any interesting patterns of co-authorship? 

Is the network tightly or sparsely connected (i.e. lots or little co-authorship)? Is the network completely 

connected or fragmented into smaller co-authoring groups? Are there any authors who don’t co-author?  

[Your Rating: ] 

 

II. …in terms of the network’s structure and distribution of publication counts? E.g. Do more collaborative 

authors have higher publication counts? What about non-collaborative authors – do they have high or low 

numbers of publications? Are there any groups of co-authors with particularly high publication counts?  

[Your Rating: ] 

 

III. …in terms of the network’s structure and distribution of research centres? E.g. Do authors from the same 

research centre tend to publish together or with authors from different research centres? What does co-

authorship in a particular research centre look like? 

= an author 

= co-authored publication(s) 

= publication count 

= research centre 

Structure of the co-authorship network in 2015 

Distribution of publication counts (circle size) and research centres (colour) over the network in 2011 
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 [Your Rating: ] 

 

IV. Would it be interesting to understand frequency distributions or ranking patterns for a single year? e.g. 

 

 

 

a. Frequencies: the number of authors in each research centre; the number of authors with 0, 1, 2, 3,…, 

n publications  

[Your Rating: ] 

 

 

 

b. Rankings: ranking of authors by number of publications/number of each type of publication 

[Your Rating: ] 

2.     

 

I. Would it be interesting to understand how the network’s structure and publication counts change over 

time? Or how the network’s structure and research centre affiliations evolve over time? 

E.g. How does the distribution of publication counts change as the network evolves? Are there any interesting 

patterns? Do authors with many co-authors have consistently higher numbers of publications over time? 

What about authors who continuously publish within the same co-author groups – is there a pattern to their 

amounts or types of publication?  Is co-authorship between research centres changing over time?   

2015 2015 

2015 

Number of authors in each research centre in 2015 Number of authors by publication counts 

Authors ranked by number of publications in 2015 



 350 
[Your Rating: ] 

II. Are you interested in understanding how the network changes over time in terms of frequency distributions 

or ranking patterns? E.g.  

 

 

 

a. Changes in frequency distributions - How do frequency distributions (e.g. the number of authors in 

each research centre; the number of authors with 1, 2, 3, …, n publications) change over time?  

[Your Rating: ] 

 

 

b. Changes in rankings - how do rankings of authors by number of publications change over time?  

[Your Rating: ] 

3. 

 

For each individual author, we can look at: how their publication 

counts and types of publications have changed over time; when they joined and left the School; which research 

centre they belong to; and whether they moved research centres during this time (see figure, above). 

 

We can also look at co-authoring between individual pairs of authors in terms of the amounts and frequency of co-

publication over time. 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

O 

P 

Q 

R 

A 

C 

M 

B 

D 

F 

G 

H 

I 

J 

K 

L 

E 

N 

O 

R 

P 

Q 

   1990 1995 2000  2005 2010                2015 

   1990 1995 2000  2005 2010                2015 

Changes in number of authors by publication count, 2001-04 

Changes in author rankings by publication count over time 

Author A’s publications over time 

Author B 

1997 – joined CISS 

2008 – left CISS 

2009 – (re)joined CID 

Author B’s research centre affiliation over time 

Co-authoring between Author A and Author B over time 
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I. Would it be interesting to explore the set of trends in publication counts over time, to see if there are any 

wider patterns within the School?  e.g.  Are there general trends in publication amounts (e.g. peaks 

corresponding to REF dates or management changes)? Are there groups of authors whose publication counts 

are significantly increasing or decreasing over time?     [Your Rating: ] 

   

II. Would it be interesting to explore the research centres to which staff belong and their starting and leaving 

dates to look for wider patterns within the School? e.g. How common is it for staff to move research centre? 

Are there any peaks or troughs in recruitment or leaving, or periods of high movement between research 

centres?           [Your Rating: ] 

 

 

 

III. Would it be interesting to look at the trends in co-authorship over time between all pairs of authors e.g. 

whether the school is generally becoming more or less collaborative, whether there are particular time 

Co-authoring over time for all pairs of authors. Each line represents co-authoring over time between a pair of authors (left 

and middle). Right: groups of trends. 

Publication count over time (all authors) 

Research centre affiliation over time (all authors) 
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periods where co-authoring is low or high, or whether the patterns can be grouped into different categories 

(e.g.by type of collaboration - continuous co-authors, one-off co-authors, intermittent co-authors etc.) 

[Your Rating: ] 

4.  

 

 

I. Still thinking about individual trends over time, would it be interesting to see how publication counts over 

time are distributed over the network? e.g. do groups of authors connected to one another in the network 

(i.e. collaborators) have similar trends in publication count? Do trends in publication counts over time differ 

depending on the number of co-authors someone has?     [Your Rating: ] 

 

 

 

II. Would it be interesting to see how trends in co-authoring are distributed over the network?  e.g. are there 

clusters of similar temporal trends in co-authoring between pairs of authors over time? 

[Your Rating: ] 

5.   

time 

Continuous co-authoring 

Infrequent co-authoring 

Key: 

Distribution of trends in publication count over the network 

= an author’s trend in 

publication count 

over time 

Distribution of trends in co-authoring over the network 
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I. Would it be interesting to investigate the relationships (such as influence/dependence and correlation) 

between the counts of different types of publications, or publication counts and research centre? E.g.  

• Is there a relationship between the publishing rates of different types of publication e.g. do people 

who publish many journal articles tend to publish fewer conference papers?  

• Does the research centre to which an author belongs have any influence on how much they publish? 

• Do high publication counts during one time period (e.g. a REF period) affect publication counts during 

later time periods?        [Your Rating: ] 

 

II. Would it be interesting to investigate the relationships (correlation, influence, dependency) between 

publication count and network structure, or research centre and network structure? E.g. 

• Is there a relationship between an author’s position in the co-authoring network (e.g. central, on the 

periphery of the network) and their publication count? 

• Does the research centre to which an author belongs affect their position in the network? (e.g. are 

CAVES authors more likely to be central or on the periphery?) 

• Do certain patterns in the distribution of publication counts or research centre affiliation over the 

network precede particular changes in the networks’ structure?  

• Does the structure of the co-authoring network affect publication counts? (e.g. does a fragmented 

network result in lower or higher publication counts)    [Your Rating: ] 

 

III. Would it be interesting to investigate the relationship between the structure of the co-authoring network at 

different time points?  Or whether changes in one part of the network affect other parts of the network? E.g. 

• Can we observe any mechanisms by which co-authoring relationships are formed?  E.g. do authors 

with many co-authors increase their number of co-authors over time? Do authors from the same 

research centre tend to co-author with one another? Does a particular author or group trigger 

increased collaboration? 

• How does co-authoring at one point in time predict likelihood of co-authoring in future? Do authors 

seek to publish with new co-authors or maintain their already established relationships?  

• Does the structure of the co-authoring network at one point in time affect the structure at later 

times? 

• How do changes in co-authoring in one part of the network affect the rest of the network?  

[Your Rating: ] 

Scatterplot showing the relationship between journal publication counts and conference publication counts 



 

 Categorisation of Participants’ tasks 

Categorisation of participants’ tasks according to quadrant, task type, and whether they involve attribute only, attribute and graph structure, or graph 

structure only. First number is task number (corresponding to explanation table), number in brackets is the participant’s interest rating e.g. 61. (3) is task 61 

which is rated as 3 (very interesting). 
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  Direct Lookup/ 

Behaviour Characterisation 

Inverse Lookup/ 

Pattern Search 

Direct Comparison Inverse Comparison Relation Seeking 

Q1 

 

- 61. (3)  

 

Auxiliary task for: 7.(2), 10.(2), 11.(2), 

13.(2), 42.(2), 67.(1), 38. (3), 39. (3), 40. 

(3), 41. (2).  

  22. (2), 48. (3), 58. (3)  

 

Q2 

 

Structure      

Attribute only     35. (2), 41. (2) 

Structure + Attribute      

Q2 aggregated on 

graph 

Attribute 49. (3), 48. (3), 58. (3)      

Q3 

 

 

 

Structure 55b. (3), 56b. (3)     

Attribute 36. (4), 45. (1), 46. (3), 59. (3), 52. (3),  

53. (3)  

27. (1), 28. (1), 33. (3), 32. (3), 54. (3), 17. 

(3), 18. (2)  

 

   

Q3 aggregated on 

time 

Attribute 34. (4), 68. (2), 60. (3), 62. (2), 29. (3),  

47 (3)  

20. (3), 26. (4), 63. (2)  51b. (3)    

Q4i 

 

Structure 9.(3), 36. (4), 45. (1), 46. (3), 59. (3)  12.(2), 23. (2), 24. (2), 25. (2) , 57. (3)     

Attribute only      

Structure + Attribute      

Q4ii (set of 

temporal trends) 

Structure      

Attribute  43. (1)     

Q4ii (distribution of  

temporal trends 

over the network) 

Structure      

Attribute  40. (3)     

Q4 aggregated on 

time 

Structure 64. (2), 31. (4), 15. (2)  4. (3) , 6. (3), 15. (2)  13. (2)  

 

  

Attribute + structure 29. (3)  2. (2), 3. (2), 21. (2), 8. (2)  

 

   

Attribute only 11. (2), 10. (2)  19. (2), 50. (3)     
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Structural Comparison and Relation Seeking tasks: 

 Structural comparison Structural relation seeking 

Q1 7. (2) , 67. (1)  38. (3), 55a. (3), 56a. (3), 61. (3), 39. (3); Auxiliary task for: 41.(2)  

 

Connection Discovery: 

Relationship between network structure and attributes 1.(2)  

Relationship between network structures  

Relationship between attributes  

 

  

Q4 aggregated on 

graph 

Attribute 53. (3)  54. (3)  

 

   

 

Q4 aggregated on 

time and graph 

Attribute 49. (3), 68. (2), 57. (3), 51a. (3) 

 

 42. (2), 44. (1)  

 

  



 

Notes on categorisation of participants’ tasks: 

  Participant task Rating  

(1-4) 

Framework category Notes 

1 P1 Whose publication 

rates have been 

affected by 

someone else 

arriving or leaving 

2 Connection discovery 

(relationship between 

network structure and 

attributes) 

 

2 P1 Who are the people 

who collaborate 

more with 

externals than 

internally 

2 Q4 aggregated on time 

Pattern Search 

Attribute = internal/external 

researcher  

 

Find author. Pattern = an 

author who collaborates 

more with externals 

than internals 

3 P1 Which people are 

more likely to have 

a journal 

publication with an 

external 

collaborator than 

with internal 

collaborators? 

2 Q4 aggregated on time 

Pattern Search 

Attribute = internal/external 

researcher (node); 

publication type (edge) 

 

Find author. Pattern = an 

author who collaborates 

more with externals 

than internals on journal 

publications 

4 P1 Which are the 

people that sit 

between groupings 

and join groups 

together? 

3 Q4 aggregated on time 

Pattern Search 

Structure 

Find author. Pattern = 

bridge/hub nodes 

6 P1 Is there any group 

that is totally 

unconnected to the 

rest of the school? 

3 Q4 aggregated on time 

Pattern Search 

Structure 

Find author group. 

Pattern = disconnected 

component. 

7 P1 What is the 

strength of 

connection 

between each of 

the research 

centres? 

2 Elementary structural 

comparison (aggregated on 

time) 

 

Plus  

 

Q1  

Inverse Lookup 

Attribute = research centre 

affiliation 

 

Structural comparison 

(between subgroups) to 

find strength of 

connection. 

 

Q1 inverse lookup to 

find authors associated 

with each research 

centre. 

8 P1 Is anyone in the 

wrong research 

centre (going by 

their paper 

collaborations)? 

2 Q4 aggregated on time 

Inverse lookup 

Attribute = research centre 

affiliation 

Find author. Pattern = 

authors who collaborate 

more often with authors 

from outside their 

research centre 

9 P1 In what ways have 

people shifted their 

collaborators over 

time? 

3 Q4i  

Behaviour Characterisation 

Structure 

Change in the structure 

of the network over time 
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  Participant task Rating  

(1-4) 

Framework category Notes 

10 P2 How do 

individuals/centres 

rank in terms of 

productivity? 

2 Q4 aggregated on time 

Behaviour Characterisation 

Attribute only (ranking 

pattern) 

Attribute = publication count 

 

Plus  

 

Q1  

Inverse Lookup 

Attribute = research centre 

affiliation 

 

Pattern reported is a 

ranking pattern, where 

individuals/centres are 

ranked in terms of their 

publication count.  

 

Q1 inverse lookup to 

find authors associated 

with each research 

centre. 

11 P2 How do 

individuals/centres 

rank in terms of 

levels of 

collaboration? 

2 Q4 aggregated on time 

Behaviour Characterisation 

Attribute only (ranking 

pattern) 

Attribute = some measure of 

collaboration e.g. (ratio of) 

single/co-authored 

publications 

 

Plus  

 

Q1  

Inverse Lookup 

Attribute = research centre 

affiliation 

 

Pattern reported is a 

ranking pattern, where 

individuals/centres are 

ranked in terms of a 

measure of 

collaboration.  

 

Q1 inverse lookup to 

find authors associated 

with each research 

centre. 

12 P2 At what point in 

their time within 

IIDI do individuals 

start producing 

collaborative work 

with others? 

2 Q4i 

Pattern Search 

Structure 

Find time. Pattern = 

appearance of co-

authoring. (NB Search 

may best be carried out 

on the set of ego 

networks.) 

13 P2 Do patterns of 

collaboration vary 

from research 

centre to research 

centre? 

2 Q4 aggregated on time  

Direct Comparison 

Structure 

 

Plus 

 

Q1  

Inverse Lookup 

Attribute = research centre 

affiliation 

 

Comparison between 

structural patterns 

associated with research 

centres. 

 

Q1 inverse lookup to 

find authors associated 

with each research 

centre. 

15 P2 Where there is little 

evidence of internal 

collaboration, are 

2 Q4 aggregated on time 

Pattern Search 

Structure 

Pattern search to first 

find authors who are not 

very collaborative 
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  Participant task Rating  

(1-4) 

Framework category Notes 

these individuals 

non-collaborative, 

or are their 

collaborators 

elsewhere? 

 

Plus  

 

Q4 aggregated on time  

Behaviour Characterisation 

Structure 

 

 

(pattern = authors with a 

limited pattern of 

collaboration). 

 

Behaviour 

characterisation on the 

identified subgraph with 

regard to proportions of 

internal/external 

collaborators. 

17 P3 Who is consistently 

a first author (does 

most of the work, 

active researcher)? 

3 Q3 

Pattern Search 

Attribute = publication count 

by author order 

 

Find author. 

Pattern = authors who 

consistently have high 

levels of first authoring 

and lower levels of other 

positions of authoring.   

 

This can be handled in 

the same way as 

publication type e.g. 

finding people who 

mainly publish journals.  

We can either think of it 

as dealing with an 

attribute whose values 

are a set, or dealing with 

multiple attributes, 

where particular 

values/patterns are 

specified for each. 

“Consistently” implies 

that we are looking for a 

pattern over time i.e. 

where first authoring 

has a high value in 

all/most time periods.  

18 P3 Who is consistently 

a last author (does 

least amount of 

work, supervision 

role only)? 

2 Q3 

Pattern Search 

Attribute = publication count 

by author order 

 

As above (17), but 

pattern is that of a 

“consistent last author”. 

19 P3 Who is publishing 

most (speculative)? 

2 Q4 aggregated on time 

Pattern Search 

Attribute only (ranking 

pattern) 

Attribute = publication count  

Find authors. 

Pattern = top ranked 

publishers. 

20 P3 Who is publishing 

only journal papers 

3 Q3 aggregated on time 

Pattern Search 

Find authors. 



 360 

  Participant task Rating  

(1-4) 

Framework category Notes 

(quality over 

quantity)? 

Attribute = publication count 

by type 

Pattern = high journal 

and no/low other types 

of publication. 

 

[NB similar to 17, but no 

notion of time included 

in this question] 

21 P3 Who is 

collaborating 

without external 

partners? 

2 Q4 aggregated on time 

Pattern Search 

Attribute = internal/external 

researchers 

Find author. 

Pattern = authors whose 

ego networks have no 

external collaborators. 

22 P3 Who is 

collaborating with 

external partners? 

2 Q1 

Relation Seeking 

Structure + attribute 

Attribute = internal/external 

Although this appears to 

be a variation of 21, this 

is strictly speaking Q1 

relation seeking 

(between values of 

attributes and at the 

same time, between 

references). We want to 

find authors that are 

connected but have 

different values of 

internal/external 

attribute i.e. relation 

between authors = 

linking; relation 

between values = 

different values of 

internal/external 

attribute. 

23 P3 Who never 

collaborates? 

2 Q4i 

Pattern Search 

Structure 

 

Find authors. 

Pattern = isolates at all 

time points. 

24 P3 Who always 

collaborates? 

2 Q4i 

Pattern Search 

Structure 

 

Find authors. 

Pattern = author who 

collaborates at all time 

points 

25 P3 Who only 

collaborates with 

the same co-

authors? 

2 Q4i 

Pattern Search 

Structure 

 

Find author. 

Pattern = ego network 

that does not change 

over time. 

26 P3 Who has a mixed 

profile, name 

position varies 

dramatically, 

suggesting that 

they are almost 

always interested in 

4 

 

Q3 Aggregated on time 

Pattern Search 

Attribute = publication count 

by author order 

See 17 (NB no mention 

of time in this question, 

hence Q3 aggregated on 

time). 

 

Find author. 
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  Participant task Rating  

(1-4) 

Framework category Notes 

contributing 

whatever is 

needed? 

Pattern (value) = a 

variety, or even 

distribution, of author 

order positions 

27 P3 Who was active but 

now never 

publishes? 

1 Q3 

Pattern Search 

Attribute = publication count 

Find author. 

Pattern = decreasing 

publication count over 

time. 

28 P3 Who now only 

publishes book 

chapters? (winding 

down career) 

1 Q3 

Pattern Search 

Attribute = publication count 

by type 

Find author. 

Pattern = increasing 

book chapter and 

decreasing other types 

of publications. 

29 P4 How many times 

have 2 or more 

selected individuals 

published 

together? 

3 For a pair of authors: 

Q3 aggregated on time 

Behaviour characterisation 

Attribute = publication count 

by type 

 

For a group of authors: 

Q4 aggregated on time 

Behaviour characterisation 

Attribute = publication count 

by type 

NB pattern reported in 

terms of total instances 

of co-publishing 

31 P4 Who is a new 

potential 

collaborator? 

Based on who they 

have published 

with previously 

4 Q4 aggregated on time 

Behaviour characterisation 

Structure 

Coded generally - the 

participant wants to 

understand the 

structure of the network 

in order to then make 

judgements about who 

potential collaborators 

might be. 

32 P4 Who might I want 

to speak to for 

advice on writing an 

article? Based on 

their 

experience/numbe

r of 

publications/type 

of publication 

3 Q3 

Pattern Search 

Attribute = publication count 

by type 

Find author. 

Pattern = one that 

suggests the author is 

experienced in writing 

articles e.g. 

increasing/high 

numbers of publications 

of a particular type over 

an extended period of 

time. 

33 P4 Who is still 

currently research 

active? Based on 

recent publications 

3 Q3 

Pattern Search 

Attribute = publication count 

Find author. 

Pattern = “currently 

research active” e.g. x 

level of publishing in 

recent years 
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  Participant task Rating  

(1-4) 

Framework category Notes 

34 P4 What types of 

articles are my 

colleagues 

publishing? 

4 Q3 aggregated on time 

Behaviour characterisation 

Attribute = publication count 

by type 

 

35 P4 Who is still 

currently in the 

School? 

2 Q2 

Relation seeking 

Attribute = existence 

Relation seeking 

involving the sets of 

authors that exist in the 

network at two different 

time points.  

 

Relation = authors that 

exist in the set of 

authors in both the 

current and previous 

year (set relation) 

36 P4 What does the 

publication history 

of my colleagues 

look like? 

4 Q3  

Behaviour characterisation 

Attribute = publication 

count/type 

 

And/or 

 

Q4i  

Behaviour characterisation 

Structure 

In this case we may want 

to look at a colleague’s 

publication counts over 

time (Q3) and/or their 

pattern of co-authoring 

over time (Q4i – ego 

network) 

38 P5 Given who I have 

co-authored with, 

who else am I likely 

to find as a good 

partner? (ie who is 

near me in the 

network) 

3 Structural relation seeking 

(aggregated on time)  

 

Plus 

Q1 

Inverse Lookup 

Attribute = author name 

First find the author of 

interest (‘me’) using Q1 

inverse lookup. Then 

find the co-authors’ co-

authors.  

Relation  = connection at 

x distance, to the 

specified author. 

39 P5 Who are the most 

productive 

publishers ‘near’ 

me in the network? 

Being able to filter 

by time period – eg 

1-3 years – and 

publication type 

(journal). I’d ideally 

like to know who 

consistently 

reaches that magic 

3* level, but that’s 

not in this data set. 

3 Structural relation seeking 

(aggregated on time)  

+ additional constraint on 

node attribute 

Attribute = publication count 

by type 

 

Plus  

 

Q1 

Inverse Lookup 

Attribute = author name 

First find the author of 

interest (‘me’) using Q1 

inverse lookup. 

 

Authors ‘near me’ = 

authors connected at x 

distance to a given 

author. 

 

We want to find authors 

who are connected (at x 

distance) to author y, 

and have a particular 

attribute value (high 

publication counts). This 

is structural relation 
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  Participant task Rating  

(1-4) 

Framework category Notes 

seeking with an 

additional constraint on 

node attribute value. NB 

we perform this task on 

the network aggregated 

on time – either the 

whole time period or a 

subset of time. 

40 P5 Who are the most 

experienced 

researchers ‘near’ 

me in the network? 

(ie who could I go to 

for advice) 

3 Q4ii (time over graph) 

Pattern search  

Attribute = publication count 

by type 

 

Plus  

 

Q1 

Inverse Lookup 

Attribute = author name 

Q1 inverse lookup to 

find author of interest 

(‘me’) 

 

 

Pattern = experienced 

researchers (e.g. high 

levels of publications 

over an extended time 

period – see 32), 

connected to the author 

(at x distance). 

 

 

 

41 P5 Who has just 

entered the 

network near me 

(and I need to find 

out more about)?  

2 Q1 

Inverse Lookup 

Attribute = author name 

 

Plus 

 

Structural relation seeking 

 

Plus 

 

Q2 

Relation seeking  

Attribute = existence 

Inverse lookup to find 

‘me’. 

 

Structural relation 

seeking to find authors 

connected at x distance 

to a given author in 

current year and in 

previous year. 

 

Relation seeking to find 

newly arrived authors 

(similar to 35). 

Relation = the set of 

authors that exist in the 

current year but not the 

previous year (set 

relation); performed on 

subgraph. 

42 P6 Percentage of 

publications co-

authored with 

externals, 

comparing research 

centres.  

 

2 

Q4 aggregated on time and 

graph 

Direct Comparison 

Attribute only 

Attribute = internal/external 

researchers 

 

Inverse lookups to find 

authors belonging to 

research centres. 

 

Comparison is between 

subgroups (research 

centres), where an 
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  Participant task Rating  

(1-4) 

Framework category Notes 

Plus 

 

Q1 

Inverse Lookup 

Attribute = research centre 

affiliation 

aggregate value 

(expressed as a 

percentage) is reported 

for each group. 

 

43 P6 Years with the 

highest number of 

publications for 

each author, 

relative to joining 

the department.  

(Which career 

phase is most 

productive)  

 

1 

Q4ii (set of temporal trends) 

Pattern search 

Attribute = publication count 

Find time period(s) 

(relative to start date). 

 

Pattern = periods of high 

publication counts 

within the set of trends 

44 P6 Average number of 

authors on each 

publication for each 

research centre, 

compared to the 

percentage of 

single author 

publications, across 

the research 

centres. (Does this 

show differences in 

disciplines?) 

 

1 

Q4 aggregated on time and 

graph 

Direct comparison 

Attribute 1 = (average) 

author count per publication 

for each research centre 

Attribute 2 = Percentage of 

single author publications for 

each research centre 

 

Comparison is between 

research centres on two 

different attributes 

(rather than comparison 

between the two 

different attributes. 

45 P7 …the existing 

dataset would be of 

passing interest to 

me in relation to 

understanding the 

past research 

activity of members 

in my group (CID) 

1 Q3  

Behaviour characterisation 

Attribute = publication 

count/type 

 

And/or 

 

Q4i  

Behaviour characterisation 

Structure  

In this case we may want 

to look at each author’s 

publication counts over 

time (Q3) and/or their 

pattern of co-authoring 

over time (Q4i – ego 

network) – see 36. 

46 P8 How has Person X 

published over the 

years? 

3 Q3 

Behaviour characterisation 

Attribute = publication count 

(by type) 

 

And/or  

 

Q4i  

Behaviour characterisation 

Structure  

Q3 for publication 

counts over time; Q4i if 

we are interested in X’s 

co-authoring patterns 

over time (see 36) 
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  Participant task Rating  

(1-4) 

Framework category Notes 

47 P8 How many co-

authored papers 

are there between 

X and Y? 

3 Q3 aggregated on time  

Dyad 

Behaviour characterisation 

Attribute = publication count 

 

 

NB pattern reported in 

terms of total instances 

of co-publishing (as per 

29) 

48 P8 How many papers 

have been cross 

centre? 

3 Q1  

Relation Seeking 

Structure + attribute 

 

Plus 

 

Q2 aggregated on graph 

Direct Lookup 

Attribute = publication count 

Relation seeking 

(between values of 

attributes and at the 

same time, between 

references).  

Relation between 

authors = connection. 

Relation between values 

= different values of 

research centre 

affiliation.  

 

Direct lookup to find 

number of publications. 

49 P8 How many papers 

of a particular type 

were published in 

year X or between 

year X or year Y? 

3 In year x: 

Q2 aggregated on graph 

Behaviour characterisation 

Attribute = publication count 

by type 

 

Between year X or year Y: 

Q4 aggregated on time and 

graph 

Behaviour characterisation 

Attribute = publication count 

by type 

 

When reporting a single 

year, this is a Q2 task; for 

a time period, this is Q4. 

50 P8 Who has published 

most? – over 

different time 

periods 

3 Q4 aggregated on time 

(whole time or time period) 

Pattern Search 

Attribute only (ranking) 

Attribute = publication count 

 

Find author. 

Pattern = top author. 

51 P8 a. What’s the 

average publication 

rate? 

b. Compared across 

individuals 

3 a. Q4 aggregated on time and 

graph 

Behaviour characterisation 

Attribute = publication count 

 

b. Q3 aggregated on time 

Direct comparison 

Attribute = publication count 

 

a. Lookup task to find 

the overall (i.e. all 

authors, all times) 

average publication 

rate. 

 

b. Comparison is either 

between the average 

for individuals, or 

between an individual’s 
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  Participant task Rating  

(1-4) 

Framework category Notes 

average and the overall 

average i.e. a specified 

value. 

 

52 P8 When was the first 

paper published by 

X 

3 Q3  

Behaviour characterisation 

Attribute = publication count 

NB partial pattern to be 

reported (start date 

only) 

53 P8 When was the last 

paper published by 

X? or by X and Y 

together, or by 

team of X,Y, and Z. 

3 By X or by X and Y together: 

Q3  

Behaviour characterisation 

Attribute = publication count 

 

By X,Y, and Z: 

Q4 aggregated on graph 

Behaviour characterisation 

Attribute = publication count 

 

NB partial pattern to be 

reported (end date only) 

For individuals and 

dyads, this is Q3; for 

groups this is Q4, with 

the subgraph treated as 

a single reference (i.e. 

aggregated on graph) 

54 P8 Find any gaps in 

publication history 

for an individual or 

team 

3 For an individual: 

Q3  

Pattern search 

Attribute = publication count 

 

For a team: 

Q4 aggregated on graph 

Pattern search 

Attribute = publication count 

 

Find time. 

Pattern = time period 

with no publications. 

 

As above (53), for 

individuals this is Q3; for 

groups this is Q4, with 

the subgraph treated as 

a single reference (i.e. 

aggregated on graph)  

55a P8 Who does X and Y 

publish with?  

 

 

3 Structural relation seeking  

Aggregated on time 

This involves two 

relations that need to be 

satisfied – i.e. find 

author(s) who publish 

with x and with y 

55b P8 How often are X 

and Y in the same 

team? 

3 Q3 

Behaviour characterisation 

Structure 

Assume this is a 

question about the 

amount and frequency 

of co-authoring 

between X and Y (rather 

than total number of co-

publications) 

56 P8 Questions as above 

concerning a range 

of years, e.g. 2009-

2015 

 

(NB questions are 

55a Who does X 

and Y publish with?  

And 

3 a. Structural relation seeking  

Aggregated on time 

 

b. Q3 

Behaviour characterisation 

Structure 

As per 55a and 55b, but 

over a subset of years. 
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  Participant task Rating  

(1-4) 

Framework category Notes 

55b How often are 

X and Y in the same 

team?) 

57 P9 Considering only 

one researcher e.g. 

JK how many of her 

publications are 

with the same 

group of 

researchers? 

3 Q4i 

Pattern search 

Structure 

 

Plus 

 

Q4 aggregated on time and 

graph 

Behaviour characterisation 

Attribute = publication count 

Q4i pattern search to 

find the set of authors 

who repeatedly publish 

with the ego (pattern = 

a set of authors who 

repeatedly publish with 

the ego). 

 

Behaviour 

characterisation to find 

co-publication counts 

for the ego network and 

report as total (i.e. 

aggregated on time and 

graph).  Note that the 

lookup task is 

performed on relations. 

58 P9 How many cross 

centre/disciplinary 

publications are 

there? 

3 Q1  

Relation Seeking 

Structure + attribute  

Attribute = research centre 

affiliation 

 

Plus 

 

Q2 aggregated on graph 

Behaviour characterisation 

Attribute = publication count 

 

Find cross-centre 

publications using 

relation seeking 

(between values of 

attributes and at the 

same time, between 

references).  

Relation between 

authors = linking; 

Relation between values 

= different values of 

research centre 

affiliation. 

 

Once cross centre 

relations have been 

found, use lookup on 

linking relations to find 

the number of 

publications, and report 

as the aggregated total 

for all relations (i.e. 

aggregated on graph). 

59 P9 The researcher’s 

publications by 

year - 

3 Q3  

Behaviour characterisation 

Attribute = publication count 

(by type) 

 

And/or 

Q3 attribute to look at 

publication counts over 

time; Q4i structure to 

look at co-authoring 

behaviour over time. 
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  Participant task Rating  

(1-4) 

Framework category Notes 

 

Q4i  

Behaviour characterisation 

Structure 

 

60 P9 Type of publication 

by researcher -  

3 Q3 aggregated on time 

Behaviour characterisation 

Attribute = publication count 

by type 

Reported as total count 

of each type of 

publication (i.e. 

aggregated on time) 

61 P9 Has the researcher 

collaborated with 

externals – if so can 

we have the details 

3 Structural relation seeking 

Structure + attribute 

Attribute = internal/external 

 

plus 

 

Q1  

Direct lookup 

Attribute = 

author/collaboration details 

 

Relation seeking with an 

additional constraint on 

the node attribute value 

(external), plus Q1 

direct lookup to find the 

details of the 

collaboration 

(publications 

etc.)/names of 

collaborators) 

 

62 P10 How much is X 

publishing? 

2 Q3 aggregated on time 

(subset) 

Behaviour characterisation 

Attribute = publication count 

Aggregated on subset of 

time - assuming we want 

to know about recent 

publishing (rather than 

aggregated over all 

times), but not 

necessarily only the 

current year. 

63 P10 Who’s doing the 

work? (who are the 

first authors? 

Although it doesn’t 

seem to be in the 

data, I’m also 

interested in the 

position of the 

authors. Usually, 

first authors are RA 

or PhD students) 

2 Q3 aggregated on time 

Pattern search 

Attribute = publication count 

by author order 

Find author. 

Pattern: authors with 

high levels of first 

author position and 

lower levels of other 

author positions (see 

26) 

 

64 P10 Who’s working with 

whom? 

2 Q4 aggregated on time 

Behaviour characterisation 

Structure 

 

67 P10 How much 

collaboration is 

taking place 

between groups? 

1 Structural comparison 

 

Plus 

 

Q1 

Inverse lookup 

Find authors belonging 

to each research centre 

using inverse lookup; 

use structural 

comparison to find how 

much collaboration is 

taking place. 
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(1-4) 

Framework category Notes 

Attribute = research centre 

affiliation 

68 P10 What types of 

publications are 

produced by an 

individual/group 

2 An individual: 

Q3 aggregated on time 

Behaviour characterisation 

Attribute = publication count 

by type 

 

A group: 

Q4 aggregated on time and 

graph 

Behaviour characterisation 

Attribute = publication count 

by type 

 

69 P11 How does my 

publication rate 

compare to others? 

2 Q3 aggregated on time 

Direct comparison 

Attribute = publication count 

 

70 P11 How does the 

quality and 

quantity of my 

publications 

compare to the 

targets set by the 

University 

4 Q3 aggregated on time 

Direct comparison 

Attribute = publication count 

Comparison with a 

specified value. 

 

Note that quality of 

publications is not 

included in the data. 

 

Excluded tasks: 

  Task Rating Reason 

5 P1 What is the ordering of people when the 

number of collaborators? (would be better if 

the external collaborators were known and so 

could be distinguished) 

2 Doesn’t make sense 

14 P2 Do patterns of collaboration vary according to 

job status? 

2 As above, but comparison 

is between structural 

patterns associated with 

authors of different job 

statuses. 

 

Note that job status is not 

included in the data. 

16 P2 Is it possible to identify mentorship 

relationships in the data? 

2 High level task 
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30 P4 How many times have 2 individuals published 

together for the first time? 

3 Doesn’t make sense 

37 P5 High level questions: 

• Who would I be able to help? 

• Who would be interested in me? 

• Who do I need to make friends with? 

☺ 

Not rated 

as too 

generic 

High level task 

65 P10 What topic is X working on? (I didn’t see it in 

the data, but presumably the publication 

reference must be available in the database, or 

at least the title? If it’s not, feel free to discard 

this question) 

4 Research topic does not 

appear in the data 

66 P10 What is the evolution of research topics for an 

individual/group over time? 

4 Research topic does not 

appear in the data 

71 P11 Who else is publishing in journals that interest 

me 

2 Journal details are not 

included in the data 



 

Appendix F Original Study Part 2 - Instructions to Participants 

Instructions 

When developing a visualisation system, it is important to understand what questions a person who 

will use the system would like to be able to ask of the data. We would like to develop a visualisation 

system to help better understand collaborative working practices and publishing rates in the School 

of Computing.  We therefore would like to find out what questions people using the visualisation 

system would like to ask of the data that we have available. 

In the first part of the study, you were asked to list the questions that you might like to ask of the 

data relating to publishing rates and co-authoring behaviour within the School over the years. A 

reminder of the data that we have available to us is included in data.docx. 

For this part of the study, we have provided a list of potential questions covering different aspects of 

the data that might be of interest to ask.  Please rate each question on a scale of 0-4 in terms of how 

interesting they are to you, using the following scale: 

0 = of no interest 

1 = slightly interesting 

2 = moderately interesting 

3 = very interesting 

4 = extremely interesting 

 

If you do not understand a question, please feel free to contact me for clarification (room C40; 

n.kerracher@napier.ac.uk; ext 2798). Otherwise, please simply note DNU (do not understand) in the 

relevant box. 

Please note that in the following questions: 

• “an attribute value” refers to the publication count or research centre affiliation associated 

with an individual author 

• Where “Author A”, “Author B” etc. are used in the examples, it may be helpful to imagine an 

author that is of particular interest to you – for example, yourself, a colleague, a senior 

researcher etc.  

• Images (charts, networks etc.) are used to help illustrate the question only and are 

constructed using synthetic data. There may be other, more appropriate ways to visualise 

the data when answering a particular question. 

 



 

Questions 

 Question Your Rating 

Q1 Direct 

Comparison  

(node) 

Would it be interesting to compare attribute values between authors or between years? E.g. compare Author A’s publication count in 2015 

and 2016; compare author A and author B’s publication counts in 2015; compare author A’s journal publication count in 2015 with their 

conference paper count. 

 

 

 

Q1 Direct 

Comparison  

(edge) 

Would it be interesting to compare co-authoring between pairs of co-authors or between years? E.g. compare co-authoring between 

Author A and B in 2015 with that of Author B and C; Compare co-authoring between Author A and B in 2015 and 2016. 

 

 

Q1 Inverse 

Lookup 

(edge) 

 

Would it be interesting to find the authors associated with a particular amount of co-authoring (perhaps of a particular type of 

publication) in an individual year? e.g. who are the authors who published 6 journal articles together in 2015? 

 

 

Q1 Inverse 

Comparison 

(node, edge) 

 

Say you spot some individual attribute values of interest e.g. particularly high publication counts.  

i. Would it be interesting to find and compare the authors associated with these attribute values or the years in which they 

occur? E.g. Are the authors with the highest publication counts in 2014 and 2015 the same or different authors?; did author A 

have their highest number of publications before or after 2010?  

 

ii. Would it be interesting to know if the authors associated with the attribute values are co-authors? E.g. Did the authors with 

the highest publication counts in 2015 co-author?  

 

i. 

ii. 

Structural 

Comparison 

 

In a particular year, would it be interesting to know whether or not two specific authors were co-authors? E.g. Did Author A and Author B 

co-author in 2015? 

 

 

Structural 

Relation 

Seeking 

i 
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i. In an individual year, would it be interesting to find who a particular author’s co-authors are? E.g. who are Author A’s co-

authors? 

 

ii. Would you like to know who an author’s co-authors’ co-authors are in a particular year? (i.e. those people who publish with a 

co-author, but not directly with the author) E.g. who are Author A’s co-authors’ co-authors? 

 

iii. More generally, would it be interesting to find pairs of co-authors? E.g. who co-authors with whom? Or pairs of co-authors 

with a certain level of co-publication e.g. who has co-authored together at least X times? 

ii 

 

iii. 

 

NB the following questions concern the network (its structure and associated attribute values) in an individual year: 

 

Q2 

Behaviour 

Characterisa

tion 

 

 

This image shows a mock-up of 

the network in 2011 – circles 

represent authors, lines between 

them represent co-publication.  

Colour represents research 

centre affiliation, while size of 

i. ii. 
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Are you interested in understanding the network (or part of the network) in a particular year… 

 

Q2 

Behaviour 

Characterisa

tion 

- structure 

…in terms of its structure?  E.g. the size of the network, patterns of co-authorship, whether the network is tightly or sparsely connected (i.e. 

lots or little co-authorship), whether the network is completely connected or fragmented, whether there are groups of co-authors (clusters), 

whether there are authors who don’t co-author (isolates), etc.  

 

 

Q2 

Behaviour 

Characterisa

tion 

- structure & 

attribute 

…in terms of the relationship between the network’s structure and attribute values? i.e. how attributes (publication counts and types, 

research centre affiliation) are distributed over the network. E.g. What does co-authoring and research centre affiliation look like in 2015? 

Do authors from the same research centre publish together or with authors from different research centres? What does co-authorship in a 

particular research centre look like? Do authors who have many co-authors in 2015 have higher publication counts?   

 

 

Q2 

Behaviour 

Characterisa

tion 

- attribute 

only 

 
…in terms of attributes only? (i.e. without considering attributes in relation to network structure).  For example, frequency distributions in 

a particular year (e.g. the number of authors in each research centre in 2015; the number of authors with 1, 2, 3, 4, 5, …, n publications) or 

ranking (e.g. of authors by number of publications/number of each type of publication). 

 

 

Q2 Direct 

Comparison 

(structure) 

i 

2015 

2015 

2015 
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Would it be interesting to compare…  

 

i. … the co-authoring network (or part of the network) at two different times? E.g. compare the co-authoring behaviour and size 

of the network in 2010 and 2014 

 

ii. …co-authoring behaviour in two different parts of the network? E.g. compare co-authoring in CDCNS with co-authoring in CSI 

in 2015 

 

iii. Would it be interesting to compare the network or part of the network to a specified pattern? e.g. does the network in 2015 resemble a 

small world network?  

Ii 

 

 

 

 

 

 

 

 

iii 

Q2 Direct 

Comparison 

(attribute 

&structure) 

 

Would it be interesting to compare attribute distributions… 

i 

2010 2014 

CDCN

CAVES 

2015 

i 
ii 



 376 

 

i. …over the network (or part of the network) at two different times? E.g. compare the distribution of publication 

counts/research centres in 2014 and 2015 

ii. …in different parts of the network e.g. compare the distribution of publication counts for CDNCS with CAVES in 2015  

iii. …with a specified pattern e.g. how does the pattern in the network in 2015 compare with a pattern where authors with high 

numbers of co-authors also have high publication counts? 

 

 

 
 

ii 

iii 

iv 

Conference papers Journal articles 

2015 

CDCNS 

CAVES 
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iv. Would it be interesting to compare the distributions of two different attributes over the graph (or part of the graph) e.g. compare the 

distributions of journal publication counts to that of conference paper counts in 2015? 

Q2 Direct 

Comparison 

- Attribute 

Only 

 

Would it be interesting to compare frequency distributions or ranking patterns …. 

 

 

i. … between two years? E.g. compare the frequency distributions of authors in each research centre in 2010 with that of 2014; 

compare the rankings of authors by publication count in 2014 and 2015 

 
 

i 

ii 

iii 

iv 

2015 2014 
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ii. … for two different attributes? E.g. compare the rankings of authors by journal publication count and conference paper count 

in 2015 

iii. ...for different groups of authors? E.g. compare the ranking patterns of publication counts for senior researchers and junior 

researchers 

iv. …with a specific pattern? E.g. compare the distribution of authors across research centres with a normal distribution 

 

Q2 Inverse 

Comparison 

 

Say you’ve found some patterns in the graph (at a particular time) that are of interest e.g. particular patterns of collaboration or attribute 

distributions over the graph. Would it be interesting to compare the authors and/or time periods associated with these patterns?  

e.g. do the same or different authors belong to the tight clusters of co-authors seen in 2012 and 2013? Did the time at which very low 

publication counts are seen throughout the network occur before or after 2010? 

 

 

Q2 Relation 

Seeking 

 

Still thinking about patterns in the network in individual years (either the network’s structure or attribute distributions over the network), 

would it be interesting to look for patterns in the network that are the same, opposite or different? e.g. 

Are there any two consecutive years between which the network changes dramatically?  

Do any research groups exhibit similar patterns of co-authorship to that of CAVES? Are there any research groups with markedly different 

patterns of co-authorship? Do any research groups have similar distributions of publication counts? 

Are there any points in time when the network doesn’t change in terms of its structure or attribute distribution? (i.e. remains the same)  

Are there any times when the distribution of journal publication counts is similar to that of the distribution of conference publication 

counts?  Are there any times when the two distributions are very different? 

 

 

 

NB The following questions consider trends over time for individual authors (e.g. trends in an individual’s publication counts or changes in their research centre 

affiliation), and co-authoring between a pair of authors (e.g. the amount and frequency of co-authoring between two authors over time): 

 

Q3 Pattern 

Search 

(structure) 

 

 
 

Are there any particular temporal trends that you would find interesting? e.g. for an  individual author, are increasing or decreasing trends 

in publication of interest? Or patterns of movement between research centres? For a pair of authors, are there any patterns of co-

authorship that you would find interesting e.g. continuous co-authoring or intermittent co-authoring?  If so, would you like to be able to 

browse or search the data and find the authors associated with these patterns and/or the time(s) at which they occur? 

 

Author A 



 379 

 

Q3 Direct 

Comparison 

(attribute) 

 

Would it be interesting to compare trends in attribute values over time associated with… 

 

 

 

 

 

 

 

 

i. …an author at two different times e.g. compare the trend in author A’s publication count between 2006-10 and 20011-15? 

 

 
 

ii. …two different authors e.g. compare the trends in author A and author B’s publication counts between 2010 and 2015? 

 

iii. …two different attributes e.g. compare the trend in author A’s journal and conference paper counts over the whole time 

period. 

 

i. 

 

 

 

 

 

 

 

 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii 

 

 

 

 

 

 

 

 

 

0

2

4

6

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

P
u

b
li

ca
ti

o
n

 

co
u

n
t

Author A



 380 

 

iv. ...some combination of the above, e.g. two different authors over two different time periods e.g. comparing the trends in 

publication counts of Author A and Author B in their first five years within the department. 

 

 

v. …a specific temporal trend e.g. compare the trend in Author A’s publication count over time with the school average 

 

 

 

 

 

iv 

 

 

 

 

 

 

 

 

v 

 

Q3 Direct 

Comparison 

(structure) 

 

Would it be interesting to compare patterns of co-authorship between pairs of authors over time associated with…  i 
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i. …a pair of authors over two different time periods e.g. comparing the co-authoring behaviour of authors A and B before and 

after 2006 

 

 

ii. …two different pairs of authors e.g. comparing the co-authoring behaviour of authors A and C and A and D over the whole time 

period. 

 

iii. …a specific pattern of co-authorship e.g. the average level of co-authoring in each year 

ii  

 

iii 

Q3 Inverse 

Comparison 

 

Say you’ve found some temporal trends of interest e.g. increasing publication counts or strong co-authorship patterns. Would it be 

interesting to compare the authors and/or time periods associated with these patterns?  

e.g. is the author with very high rates of journal publications during the last REF period the same or a different author to the one with the 

very high rates of journal publications in the current REF period? 

Did author A and B’s co-authoring collaboration begin before or after 2008?  

 

 

Q3 Relation 

Seeking 

(structure, 

attribute) 

 

Still thinking about individual trends over time (either patterns of co-authorship between pairs of co-authors or individual trends in 

attribute values), would you be interested in finding trends that are the same, opposite or different?  

 e.g. 

Are there any authors with the same trend in publication count as author A?  

Are there any times at which author A had a similar trend in publication count to that of 2010-14 

Does anyone else have a similar pattern of moving research centres to that of author D?  

Are there any pairs of co-authors who have a similar trend in co-authorship over time to that of Authors A and B? 

 

0

1

2

3

n
o

. 
ti

m
e

s

co
-a

u
th

o
re

d

0

1

2

3

4

5

6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

0

1

2

3

4

5

6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

Co-authoring between authors A and C Co-authoring between authors A and D 



 382 

Which authors have similar patterns of co-authorship over time? 

Do any authors have similar trends in both journal publication count over time and conference paper publication count over time? 

Are there any times during which an authors’ trends in journal and conference publications are markedly different? 

 

NB the following questions concern the network (its structure and associated attribute values) over time 

 

Q4i 

Behaviour 

Characterisa

tion 

(Attribute + 

structure) 

  

 
 

Are you interested in understanding how the whole co-authorship network (or part of the network) evolves over time in terms of the 

relationship between the network’s structure and attribute values such as publication count or research centre affiliation?   

E.g. How does the distribution of publication counts change as the network evolves? Do authors with many co-authors have consistently 

higher numbers of publications over time? What about authors who continuously publish within the same co-author groups – is there a 

pattern to their amounts or types of publication?  Is co-authorship between research centres changing over time?   

 

 

 

Q4i 

Behaviour 

Characterisa

tion 

(attribute 

only) 

Are you interested in understanding how the whole co-authorship network (or part of the network) evolves over time in terms of 

attributes only (i.e. without considering attributes in relation to network structure), e.g.  

Changes in frequency distributions - How do frequency distributions (the number of authors in each research centre; the number of authors 

with 1, 2, 3, 4, 5, …, n publications) change over time?  
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Changes in rankings - how do rankings of authors by number of publications/number of each type of publication change over time? 53 

 

Q4i Pattern 

Search 

(attribute & 

structure) 

Are there any patterns in the changing network (or part of the network) over time that you would find particularly interesting, in terms of 

attribute and structure? e.g. particular patterns of changing attribute distributions over the network such as rapidly increasing publication 

counts for better connected authors, while decreasing counts for less well connected authors, or changes in distribution of research centre 

affiliation over the network (which could signal a shift in collaborations between research centres). Having spotted these patterns in the 

data, would you like to be able to find the time periods over which these patterns occur and/or find out who the set of authors associated 

with the changes are? 

 

 

Q4i Pattern 

Search 

(attribute 

only) 

Are there any patterns in the attributes associated with the network over time (such as changing frequency distributions or rankings) that 

you would find particularly interesting? e.g. particular patterns in frequency distributions over time such as shifting distributions of 

research centre affiliation; volatile or fixed patterns in author rankings by publication count. Having spotted these patterns in the data, 

would you like to be able to find the time periods over which these patterns occur and/or find out who the set of authors associated with 

the changes are? 

 

 

Q4i Direct 

Comparison 

(attribute & 

structure) 

Would it be interesting to compare the evolution of attribute distributions… 

 

i. 

 

 

 

 

 

 

 

 

 

                                                      
53 Bump chart showing changes in rankings over time – adapted from http://datatodisplay.com/blog/chart-design/communicating-changes-rank-time/  
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i. …over the network (or part of the network) over two different time periods? E.g. how does the evolution in distribution of 

publication counts/research centres over the network between 1998-2008 compare with that of 2009-2015? 

 

ii. …in different parts of the network E.g. how do the changing distributions of publication counts for CDNCS compare with that of 

CAVES between 2007 and 2015? 

 

iii. …with a specified pattern  e.g. increasing publication counts over the whole network 

 

 

iv. Would it be interesting to compare the changes in distributions of two different attributes over the graph (or part of the graph), over 

time? e.g. how do the changing distributions of journal publication counts compare to that of conference paper counts? 

 

 

 

 

 

 

 

 

 

 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii 

 

 

 

 

 

 

iv. 

 

 

time 
1998-2008 2009-2015 

time 

CDCNS 

CAVES 
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Q4i Direct 

Comparison 

(attribute 

only) 

Would it be interesting to compare how frequency distributions or ranking patterns have changed over time…. 

i. … between two time periods? E.g. how do the changing patterns of frequency distributions of authors in each research centre 

between 2008-11 compare with those of 2012-15?; how do the changing patterns of author rankings by publication count 

between 2000-2007 compare to those of 2008-2015? 

i 

Journal 

publications 

Conference 

publications 
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ii. … for two different attributes? E.g. how do the changing patterns of author rankings by journal publication count compare to 

changes in rankings of conference paper count over the time series? 

 

iii. ...for different groups of authors? E.g. how do the evolving ranking patterns of publication counts for senior researchers and 

junior researchers compare over the time series? 

 

iv. …with a specified pattern? E.g. a pattern of stability in rankings/frequency distribution 

 

ii 

iii 

iv 

Q4i Inverse 

Comparison 

 

Still thinking about the changing network and attributes over time: say you’ve found some patterns that are of interest e.g. a period of 

increasing collaboration and publication count and a period of decreasing collaboration and publication count, or extreme changes in 

author rankings and a period of stability. Would it be interesting to compare the sets of authors and/or time periods associated with these 

patterns? e.g. are the same or a different set of authors associated with the increasing collaboration trend in 2004-2008 and the 

decreasing trend in 2010-15?  Did the decreasing collaboration trend begin before or after a period of rapid increase in collaboration? Did 

the extreme changes in author ranking occur before or after 2010? 

 

 

Q4i Relation 

Seeking 

 

Again, still thinking about the network changing over time, would you be interested in finding evolving patterns in the network (either in 

co-authorship or attribute distribution) that are similar, opposite or different? E.g.  

Are there any subgroups of authors with similar patterns in co-authoring over time? Is there a time period where the changing pattern of 

co-authorship is similar to that seen in 1996-2006? 

Does any subgroup have a pattern of publication count distribution over the network, over time, similar to that of CSI? Is there a time 

period that has a changing publication count distribution similar to that of 2011-16? 

Are there any time periods during which the distributions of journal publication counts and conference publication counts evolve in very 

similar or markedly different ways? 
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NB the following questions consider the set of individual authors’ trends over time and the distribution of temporal trends over the network’s structure. 

Q4ii 

Behaviour 

Characterisa

tion 

(set of 

trends) 

Thinking about trends over time, would it be interesting to explore the whole set of author trends, to see if there are any wider patterns 

within the School (or a particular research centre)… 

i …in attribute values over time e.g.  Are there general trends in publication amounts (e.g. peaks corresponding to REF dates or 

management changes)? Are there groups of authors whose publication counts are significantly increasing or decreasing over time?  Are 

there wider patterns in staff joining and leaving the network, and/or research centre affiliations? 

i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Publication count over time (all authors) 

Research centre affiliation over time (all authors) 
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ii …in the trends in co-authorship over time between all pairs of authors e.g. whether the school is generally becoming more or less 

collaborative, whether there are particular time periods where co-authoring is low or high, or whether the patterns can be grouped  into 

different categories (e.g.by type of collaboration - continuous co-authors, one-off co-authors, intermittent co-authors etc.) 

ii 

Q4ii 

Behaviour 

Characterisa

tion 

(distribution

- attribute) 

Would it be interesting to see how these individual temporal trends are distributed over the network…  
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…in terms of attribute values e.g. do authors closest to one another in the graph (i.e. collaborators) have similar trends in publication 

count? 

Q4ii 

Behaviour 

Characterisa

tion 

(distribution

- structure) 

 
…in terms of co-authoring (represented in the diagram by links between authors) e.g. are there clusters of similar temporal trends in co-

authoring behaviours between pairs of authors over time? 
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Q4ii Pattern 

Search 

(structure) 

 

Would it be interesting to browse or search the data for specific patterns in the set of temporal trends in co-authoring (e.g. clusters in the 

network where authors have similar temporal trends in co-authoring behaviours), and find the authors associated with them and/or the 

time periods over which they occur? 

 

 

Q4ii Direct 

Comparison 

(structure, 

set of 

trends) 

Would it be interesting to compare the wider patterns in the set of temporal trends in co-authoring? 

 

 

i. …between two different time periods e.g. comparing the patterns in co-authorship pre- and post- 2008? 

ii. …between different groups of authors e.g. comparing the wider co-authoring pattern for CDNCS with that of CAVES 

iii. …with a specified pattern e.g. a general increase in co-authoring 

 

 

i 

ii 

iii 

Q4ii Direct 

Comparison 

(attribute – 

set of 

trends) 

Would it be interesting to compare wider trends in attribute values over time?  

 

 

 

 

 

 

� Pre-2008 Post-2008 



 391 

 

i. …between two different time periods? e.g. how do the wider trends in publication counts pre-2005 and post-2005, or wider 

patterns in research centre affiliation/joining and leaving date,  compare? 

 

ii. …between two different sets of authors e.g. how do the wider trends in publication counts over time for CAVES and CDCNS 

compare? Or the general trend in joining/leaving patterns between two centres? 

 

 

 

i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAVES

CDCNS 
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iii. …between two different attributes? E.g. how do the wider trends in journal article publication counts compare with those of 

conference papers? 

 

iv. …with a specific pattern? E.g. a general increase in publication counts 

 

 

 

 

 

iii. 

 

 

 

 

 

iv. 

 

 

 

 

 

 

 

 

 

Q4ii Direct 

Comparison 

(attribute – 

trends over 

network) 

Would it be interesting to compare distributions of temporal trends in attribute values (publication counts, research centre affiliations) 

over the network?   

 

i. 
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i. …between different time periods e.g. how do the distributions of temporal trends in publication counts compare pre- and post-

2010? 

 

 
 

ii. …between different parts of the network e.g. how do the distributions of temporal trends in publication counts compare for 

CAVES and CSI? 

 

 

 

 

 

ii. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii. 

 

 

 

 

 

 

 

 

 

 

iv.  

Pre- Post-2010 
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iii. …between two different attributes e.g. how do distributions over the network of temporal trends in journal publications and 

conference publications compare? 

 

iv. …with a specified pattern e.g. uniformity in temporal trends across the network 

Q4ii Direct 

Comparison 

(structure – 

trends over 

network) 

Would it be interesting to compare distributions of temporal trends in co-authoring over the network (or part of the network)?   

 

 

i 

Journal Conference 

Pre-2010 Post-2010 
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i. …between different time periods e.g. how do the distributions of temporal trends in co-authoring compare pre- and post-2010 

 

ii. …between different parts of the network e.g. how do the distributions of temporal trends in co-authoring compare for CAVES 

and CSI between 2008-2016? 

 

iii. …with a specified pattern e.g. uniformity in temporal trends in co-authoring across the network 

 

ii 

iii 

Q4ii Inverse 

Comparison 

 

Say you’ve found some wider patterns in the set of temporal trends/trends over the network that are of interest e.g. areas of the network 

with increasing trends in publication, a set of authors with falling publication counts, or an area of the network with similar patterns of co-

authoring over time. Would it be interesting to compare the sets of authors and/or time periods associated with these patterns?  

e.g. is the group of co-authors with increasing trends in journal publications the same or a different set of authors to the group of co-

authors with increasing trends in conference papers? Did the general increasing trend in journal publication counts for authors in CAVES 

begin before or after 2010? 

 

 

Q4ii 

Relation 

Seeking 

(set of 

trends) 

Would you be interested in finding wider trends in the set of temporal trends that are similar, opposite or different?  

e.g. are there any periods of time with similar global trends in publication count (e.g. periods of general increase or decrease in publishing); 

are there any periods of time with a global trend in co-authoring similar to that of recent years (2010-14)? Are there any research centres 

with a similar general trend in publication counts to that of CAVES? 

 

 

 

Q4ii 

Relation 

Seeking 

(distribution

s) 

Would you be interested in finding distributions of temporal trends over the network (either in co-authorship or attributes) that are 

similar, opposite or different? E.g. 

Are there any co-author groups that have very similar distributions of temporal trends, but over different time periods? 

Are there any time periods during which the distribution of temporal trends is similar to that of 2010-16? 

 

CAVE
CSI 
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Are there any time periods during which the distribution of temporal trends in journal publication counts is very similar (or markedly 

different)  to that of conference paper counts? 

 

The following questions consider relationships such as influence/dependence and correlation between attributes, network structure, and structure and attributes 

Between 

attributes 

(Heterogene

ous 

behaviours) 

Would it be interesting to investigate the relationships between attributes? E.g.  

 

 

Is there a relationship between the publishing rates of different types of publication e.g. do people who publish many journal articles tend 

to publish fewer journal articles? 

 

Is there a relationship between research centre and publication count/type? 

 

Do high publication counts during one time period (e.g. a REF period) influence publication counts during later time periods? 

 

Between 

structure 

and 

attributes 

Would it be interesting to investigate the relationships between attribute values and network structure? E.g. 

Is there a relationship between an author’s position in the co-authoring network (e.g. central, on the periphery of the network etc.) and 

their publication count? 

Is there a relationship between an author’s research centre affiliation and their position in the co-authoring network? 

Do certain patterns in the distribution of publication counts or research centre affiliation over the network precede particular changes in 

the networks’ structure? 

Does the structure of the co-authoring network affect publication counts? 

 

Between 

structures 

Would it be interesting to investigate the relationship between the structure of the co-authoring network at different time points?  Or 

whether changes in one part of the network affect other parts of the network? E.g. 
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Can we observe any mechanisms by which co-authoring relationships are formed?  E.g. do authors with many co-authors increase their 

number of co-authors over time? (accumulative advantage); Do authors from the same research centre tend to co-author with one 

another? (homophily) 

How does co-authoring at one point in time predict likelihood of co-authoring in future? Do authors seek to publish with new co-authors or 

maintain their already established relationships?  

Does the structure of the co-authoring network at one point in time affect the structure at later times? 

How do changes in one part of the network affect the rest of the network? 
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i Reduced from:  ? g2, λ: f(t, g1) ∈ C′; f(t, g2) ∈ C′′; (t, g1) λ(t, g2) 

ii Reduced from: ? λ: f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′; t1 λ t2 

iii Reduced from ? t2, λ: f(t1, g) ∈ C′; f(t2, g) ∈ C′′; t1 λ t2 

iv Reduced from ? t2, λ: f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′; t1 λ t2 

 
v Reduced from ? t2, g2, λ: f(t1, g1) ∈ C′; f(t2, g2) ∈ C′′; (t1, g1) λ(t2, g2) 

 
vi This is reduced from:? G′, λ,: β(f(x1, x2) | x1∈ G′,  x2 = t) ≈ P1; β(f(x1, x2) | x1∈ G″,  x2 = t) ≈ P2; (G′, t) λ (G″, t); i.e. all information (the graph subset, timepoint and pattern) is known in the 

second lookup subtask. 

 

 

 

                                                      


