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ABSTRACT 
SmoothMoves is an interaction technique for augmented 
reality (AR) based on smooth pursuits head movements. It 
works by computing correlations between the movements 
of on-screen targets and the user’s head while tracking 
those targets. The paper presents three studies. The first 
suggests that head based input can act as an easier and more 
affordable surrogate for eye-based input in many smooth 
pursuits interface designs. A follow-up study grounds the 
technique in the domain of augmented reality, and captures 
the error rates and acquisition times on different types of 
AR devices: head-mounted (2.6%, 1965ms) and hand-held 
(4.9%, 2089ms). Finally, the paper presents an interactive 
lighting system prototype that demonstrates the benefits of 
using smooth pursuits head movements in interaction with 
AR interfaces. A final qualitative study reports on positive 
feedback regarding the technique’s suitability for this 
scenario. Together, these results show SmoothMoves is 
viable, efficient and immediately available for a wide range 
of wearable devices that feature embedded motion sensing. 
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INTRODUCTION 
Augmented Reality (AR) glasses are a rapidly maturing 
technology. The latest products, such as Microsoft 
HoloLens [22], include powerful computers, high resolution 
displays and sophisticated tracking. While these technical 
achievements are impressive, there is less clarity about the 
best ways for users to interact with AR contents and 
interfaces. There is an active community exploring viable 

modalities for head-mounted displays (HMDs) including 
on-headset touch [36], mid-air hand input [23] and the use 
of dedicated wearable peripherals such as gloves [12] or 
belts [8]. Within this space, we argue that input from 
movements of the eyes [35] and head [3] are particularly 
practical and appealing: in such scenarios, hands remain 
free and all sensing can be integrated into the headset.  

Traditional approaches to head based input focus on 
pointing by either tracking gaze location [31] or via ray-
casting techniques that infer an object of interest from the 
orientation of the head [25]. While the simplicity of these 
approaches is laudable, problems remain. Although they 
readily enable a user to hover over a specific icon or region, 
they also both require a discreet, explicit confirmation 
mechanism to trigger a selection. Common approaches such 
as dwell add a fixed time cost and decrease accuracy [13]. 
Alternatives such as hand gestures (as in the Microsoft 
HoloLens) require additional sensing equipment. 
Furthermore, while gaze tracking solutions exist for mobile 
settings, well reported challenges in accurate tracking and 
calibration in real world scenarios [10] makes gaze based 
target selection techniques practically infeasible.  

To mitigate these problems, authors have proposed gaze 
input systems based on smooth pursuits [1,11,18,32] – 
distinctive, continuous, low latency adjustments to gaze that 
are naturally produced when (and only when) visually 
tracking a moving object. Smooth pursuits systems operate 
by showing a user a set of moving targets whilst tracking 
gaze. Statistical matching between the gaze and target 
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Figure 1. An interactive lighting system prototype that uses AR 
for displaying moving controls in space. Users make selections 

by tracking these movements with their heads. 

 



trajectories is used to infer which target a user is attending 
to. The technique has been shown to be useful in tasks as 
diverse as calibrating eye tracking systems [26] and 
creating novel gaze input techniques for devices large (e.g. 
public displays [35]) and small (e.g. smart watches [9]).  

While current accounts of smooth pursuits input show its 
potential, we argue that key aspects of the behavior remain 
unstudied. In particular, we note that fundamental literature 
on visual tracking indicates that it involves a synergistic 
combination of head and eye movement [18]. Accordingly, 
we argue that it may be possible to reliably perform explicit 
smooth pursuits style tracking movements with the head 
instead of the eye - this extends Dhuliawala et al.’s [7] 
recent proposal that explores complementary movements of 
the head and eye. Using head motions accords considerable 
practical benefits, primarily that the Inertial Motion Units 
(IMUs) needed to accurately track head movements are 
small, cheap, low power and already integrated into the 
majority of AR glasses and other wearables.  

In order to explore the potential of this idea, this paper 
contributes SmoothMoves, an input technique that relies on 
data from a head-mounted IMU to enable users to select 
moving targets by continuously matching the target position 
with the orientation of their head. To explore the viability 
and value of this idea, we also contribute three studies. 
First, a fundamental study (using a PC monitor) compares 
performance with IMU based head tracking against the 
more established baseline of gaze tracking in situations 
where only a single target is shown. We report strong 
similarities across a range of target movement conditions. 
Second, we compare the performance of SmoothMoves in 
both handheld and HMD based AR systems in situations 
where multiple targets are presented. Building on these 
results, the final sections of this paper apply SmoothMoves 
input to an HMD used in a smart home scenario and report 
on results from a qualitative user study. Together this work 
represents a comprehensive exploration of the potential, 
feasibility, reliability and experience of head motion based 
smooth pursuits as an input modality for augmented reality. 

RELATED WORK 
Gaze is the inseparable product of head movements plus 
eye movements. The relationship between these activities is 
sophisticated. At the most fundamental level, the Vestibulo-
Ocular Reflex (VOR) [19] continuously stabilizes gaze by 
adjusting (basically inverting) eye position in response to 
changes in head position sensed by the vestibular system. It 
is key to providing a stable visual experience of objects. In 
contrast, during smooth pursuits tracking of rapidly moving 
objects [29], the head and eye move together [18] to keep 
an object optimally in view. Smooth pursuits movements 
also involve two distinct stages. Initially, the eyes and head 
are accelerated to align with the moving stimuli, an open-
loop process that can take up to 300-500ms [27]. 
Subsequent closed-loop tracking closely matches the target, 
particularly in situations where velocities are stable.  

A number of properties make smooth pursuits movements 
useful as an input technique. First, they are innate. Users 
know how to visually track targets and can generate this 
kind of motion without training. Second, they are 
distinctive. Users are only able to generate smooth pursuits 
eye movements in the presence of visually moving targets. 
Third, they operate on movement not position. As such, 
they are relatively immune to changes in target size [9] and 
robust to tracking errors – capturing changes in gaze is 
much simpler than accurately determining what a user is 
looking at. Fourth, they are operated hands-free. And fifth, 
they do not require users to memorize gestures. Several 
systems have been recently introduced to leverage these 
properties. Vidal et al. [35] used smooth pursuits to enable 
quick, spontaneous interaction with public displays, while 
Lutz et al.’s [20] applied the technique to text entry on 
public dashboards. Cymek et al. [6] and Khamis et al. [16] 
explored how smooth pursuits input can create safer PIN 
entry systems, and Esteves et al. [9] and Kangas et al. [14] 
relied on the scale-independent, calibration-free nature of 
smooth pursuits gaze input to deliver hands-free interaction 
on, respectively, smart watches and glasses. Finally, 
Dhuliawala et al. [7] show that alternative eye gaze sensing 
modalities, such as EOG, also have the potential to support 
smooth pursuits input. This work demonstrates that the 
technique is sufficiently powerful and flexible to be 
deployed in a wide range of input scenarios. 

However, these systems rely on smooth pursuits eye 
movements. We identify an opportunity to study the 
viability of using IMU-derived head movements to achieve 
the same objectives. This approach would convey a number 
of advantages. First and foremost is cost: wearable eye 
tracking remains expensive (computer vision: ~1500 USD 
[15]; EOG: ~1500 USD [37]) whereas head tracking can be 
achieved with an IMU costing no more than ten USD. The 
second is form-factor: eye trackers require cameras or 
electrodes mounted at specific locations on the user’s face, 
with the former also requiring a clear line of sight to the 
eyes. In contrast, IMUs can be mounted anywhere on the 
head. Furthermore, IMU’s are small and light enough 
(<10mm square, <1 gram) to be integrated into almost any 
wearable item: headphones, eyewear, jewelry, clothes and, 
indeed, existing smart glasses (e.g. Microsoft HoloLens). 
Optical systems are also susceptible to changing light 
conditions, such as those that occur outdoors, while IMU’s 
are relatively unaffected by environmental factors.  

These beneficial properties have not gone unremarked. 
Indeed, a range of techniques for input based on head 
movements has been proposed and studied. Ray-based 
pointing, in which users interact by projecting a ray from 
their head to intersect with a target of interest, is the most 
common [4] and has been integrated into current head-
mounted displays, such as the Google Cardboard [30] and 
the Microsoft HoloLens. Other authors have proposed the 
use of head tracking in mobile contexts to provide gestural 
input in the form of head tilting [5] and nodding [24]. 



Furthermore, studies on smart TVs have explored the use of 
off-the-shelf webcams to capture head motion during 
smooth pursuits [3]. Finally, while rigorous studies are 
presently lacking, recent work has proposed achieving 
head-based input during pursuits tracking by monitoring 
VOR movements [7]. In sum, while this work highlights the 
appeal of head-based input, to the best of our knowledge, 
no prior studies have explored explicit head movements for 
target tracking input in AR.  

SMOOTHMOVES 
SmoothMoves is an interaction technique for selecting 
graphical targets in AR interfaces. The targets move in 
orbital trajectories and users make selections by matching 
these motions with movements of their head that are sensed 
by a worn IMU. SmoothMoves is heavily influenced by 
prior pursuits based gaze interaction techniques [35], but 
replaces the use of eye coordinates with yaw and pitch data 
from the IMU. The matching process is simple: for each 
displayed target, Pearson’s correlations are computed for 
xtarget-yaw and ytarget-pitch relationships. If both exceed 
a certain correlation-threshold for a given target, and no 
other currently displayed targets attain the same result 
(either individually or via an average of both results), then 
the target is selected. The correlation takes place after start-
up time and on a particular data rolling window size. The 
start-up time is the period immediately after the appearance 
of a set of SmoothMoves targets when the user is engaged 
in open-loop orientating behavior that marks the beginning 
of a smooth pursuit movement. Performing target matching 
in this period would not be meaningful. The window-size 
specifies the duration of data sampled for SmoothMoves 
correlations. In the eye gaze literature, longer window sizes 
ensure fewer erroneous selections at the cost of the lower 
comfort and higher performance time [9,35].  

Visually, SmoothMoves closely mimics Orbits [9]. Each 
graphical control is comprised of a trajectory around a 
center point and a target (see Figure 4) that continuously 
traverses this trajectory. Each control can be used for either 
discrete input, where target acquisitions result in issuing a 
command, or continuous control by monitoring the time a 
target is tracked for. Target disambiguation is achieved in 
two ways. First, targets move in different phases. For 
example, with four targets, they would be spaced at 90° 
intervals. Second, targets can move in different directions: 
clockwise and counterclockwise. 

STUDY 1: EYE AND HEAD-TRACKING 
To explore the viability of SmoothMoves, we first 
conducted a lab study. It had three goals. First, to validate 
the idea that users can acquire targets using smooth pursuits 
head motions. To do so, we simultaneously captured eye- 
and head-tracking data of participants following a series of 
single moving targets with different instructions: to perform 
the tracking naturally; to track only with the eyes and; to 

track only with the head. This supports contrasting head and 
eye motion performance. Second, to explore performance 
variations in eye and head tracking with a variety of moving 
stimuli. The goal was to enable us to make 
recommendations about optimal stimuli to display. Finally, 
the third goal was to define optimal values for the key 
parameters of correlation threshold, start-up time and 
window size, to enable construction of a working system.  

Participants 
18 participants were recruited (12F), aged between 20 and 
26 years (M = 24, SD = 1.85). All participants were 
undergraduate or graduate students at a local institution, 
and except for one, had minimal experience with eye-
tracking. All had normal or corrected to normal vision. 
Nine participants wore contact lenses, one wore glasses, 
and the remaining eight did not require any visual aids. 

Experimental Setup and Design 
The experiment was conducted in a quiet and private 
laboratory space, with participants sitting 60cm away from 
a 27” display (1920×1080 resolution screen). Eye data was 
recorded using a Pupil Pro [15] wearable eye-tracker 
equipped with a single camera tracking the right-eye 
(reported mean gaze estimation accuracy of 0.6° of visual 
angle). The tracker was adjusted for focus and to ensure a 
clear field of view of the eye and a close match between the 
horizontal and vertical axes of the eye and the camera. No 
further calibration was performed; only normalized pupil 
locations were recorded. A GY-86 nine axis IMU was 
attached to the front camera mount of the pupil using a 3D 
printed fixture and wired to an Arduino. A complementary 
filter (Mahony et al. [21]) tracked head orientation and 
provided yaw and pitch data. The display and both sensors 
were all connected to the same computer. The display 
update and IMU data logging rate were 60Hz. Difficulties 
in capturing a reliably timed data stream from the eye 
tracker resulted in recording eye packets at a target rate of 
90Hz, and an actual rate of between 75HZ and 90Hz.  

All participants completed the same set of trials in three 
different input conditions: natural, eyes, and head. In all 
conditions a single moving target was displayed for four 
seconds and trials were presented in a random order. In the 
natural condition, participants were simply asked to follow 
the target. In the eyes condition, participants were asked to 
follow the target with their eyes. Similarly, in the head 
condition, participants were asked to follow the target with 
their head. All participants completed the natural condition 
first, to ensure there was no instructional bias in the way 
they opted to follow the moving target. The eyes and head 
conditions were counter-balanced to reduce possible fatigue 
and practice effects. The set of moving targets used in the 
study was selected to replicate previous studies of smooth 
pursuits eye movements [9,14]. Variations included: 



• Trajectory size: there were three on-screen sizes: 4cm 
(~3.50° visual angle), 13cm (~11.75°) and 22cm (~20°). 

• Target speed: targets moved in one of three angular 
velocities: 60°/sec, 120°/sec, or 180°/sec. 

Additional novel variations were included in the study, so 
as to expand the design knowledge about interfaces based 
on smooth pursuits. These included: 

• Trajectory shape: targets moved in either circular or 
rhomboidal trajectories (see Figure 4). 

• Trajectory visibility: target trajectories were either 
invisible, where only the target was displayed, or visible, 
where the target’s movement path was also shown. 

• Speed type: targets could move with constant speeds, or 
increase their speed midway through the trial. Speed 
adjustments always involved an increase by 60°/sec. 

• Direction type: as with speed type, targets could either 
move in a fixed orbital direction, or invert this halfway 
through the trial. 

Each possible trial combination occurred once in each 
condition. Consequently, data from a total of 7776 trials (18 
participants x 3 conditions x 3 sizes × 3 speeds × 2 
trajectories × 2 visibilities × 2 speed types × 2 direction 
types) was recorded.  

Data Pre-Processing 
Prior to analysis, the separate data streams of eye, head and 
visual target movements were pre-processed. First, the eye-
data was down-sampled to 60Hz and the three data streams 
were matched using timestamps. Second, eye data trials 
were removed in situations where there were breaks in the 
data of greater than 300ms, a threshold derived from typical 
blink durations. The goal was to include trials involving 
natural behavior such as blinks but exclude those trials 
where eye tracking was lost or degraded (as judged by the 
confidence statistic reported by the tracker) for reasons such 
as a prolonged closure of the eye, a glance away from the 
screen or a failure of the tracking algorithms. We opted for 
removing these trials as long lapses in the data would 
disrupt the planned rolling window correlation analysis. In 
total, we excluded 93 trials (1.2%). Of these, 71% were in 
the head condition, likely a consequence of the larger 
movements disrupting eye tracking. Furthermore, they were 
biased by participant (33% from one subject) due to 

variations in the robustness of the eye tracker fit/calibration. 
They were evenly distributed over all other variables and 
are not sufficient in number, or skewed enough in 
distribution, to invalidate our analysis. The final stage of 
pre-processing involved running a rolling average filter 
over eye, head and target data streams (ignoring gaps in the 
eye data) with a window size of 64ms, or 4 samples. This 
smoothed out inevitable fluctuations in sampling times 
associated with data capture from three separate sources.  

Results and Analysis 
Initial analysis of the results focused on determining an 
appropriate configuration of SmoothMoves parameters. We 
adopted a 500ms startup-time, based on fundamental 
literature [27] indicating that initial motions in a tracking 
movement involve orientating actions that differ from later 
tracking motions. Using this figure, we ran correlations 
between all eye and head data in the three experimental 
conditions using window-sizes of 500ms, 1000ms, 1500ms 
and 2000ms – see Figure 2. Prior work has identified 
1000ms as sufficient to achieve correlation results of 0.8 
with gaze and suggested this is a viable correlation 
threshold for input [9]. With these baseline parameters, 
results from the natural condition show slightly diminished 
performance: a median of 0.75. We attribute this to the 
large range of stimulus display parameters used in the study 
and discussed in the next paragraph. Performance in the 
eyes condition matches the 0.8 recorded in prior work. In 
both these conditions, we note that correlations against the 
head data are low (0.46-0.5) and insufficient to support 
recognition via the algorithmic matching process proposed 
in this paper. It also indicates that participants more 
naturally followed targets with their eyes than their head, an 
effect which may be partly due to participants being aware 
of the eye-tracking equipment during the study setup. Data 
from the head condition, however, strongly shows that head 
based tracking can be readily achieved by participants; head 
correlation coefficients were higher than those reported for 
the eyes in any of the experimental conditions. Specifically, 
with the 1000ms window-size, participants achieved a 
median correlation between head and target movements of 
0.88. This provides a firm basic validation of the 
SmoothMoves concept. Reflecting these results, we used a 
1000ms window-size and 0.8 correlation threshold for all 
further analysis and activities in this paper.  

Figure 2. Absolute median correlations coefficients for head and eye movements in Natural, Eye and Head conditions. Figure 
omits data from a start-up time of 500ms. Bars show Median Absolute Deviation. 

Natural	Condition Head	Condition Eyes	Condition 



A key goal of this paper is to characterize the performance 
of eye and head tracking movements with different 
trajectory designs. Rather than a high-dimensionality 
ANOVA, we opted to do this by analyzing each trajectory 
variable/modality pair individually with a low alpha 
threshold for significance. Specifically, we examined 
correlations from eye and head movements in, respectively, 
the eye and head conditions using six separate two-way 
repeated measures ANOVAs (either 3x2 or 2x2). For 
variables with three levels, the ANOVAs incorporated 
Greenhouse-Geisser corrections when Mauchly’s test 
showed sphericity violations and were followed by 
Bonferroni-corrected post-hoc t-tests. In total, we ran six 
separate main tests using an alpha threshold of p<0.05/6, or 
p<0.008. Effect sizes are given as partial eta squared (ηp

2). 
In the interests of brevity, we report only significant results.  

The raw data for each variable in the eye and head 
conditions are shown in Table 1. The head data (from the 
head condition) led to significantly higher correlation 
values than the eye data (from the eye condition) in all 
tests: (F (1, 17) = 15.7, p <0.001, ηp

2 = 0.481). This 
supports the idea that head condition led to improved 
tracking accuracy compared to the eye condition. Beyond 
this, as the raw figures show, the results were relatively 
uniform. Results varied in terms of direction type (F (1, 17) 

= 35.747, p <0.001, ηp
2 = 0.678). This suggests that changes 

in target direction disrupted participant’s ability to track 
accurately. Similarly, the data differed significant with 
trajectory shape (F (1, 17) = 20.321, p <0.001, ηp

2 = 0.544), 
indicating that participants tracked targets moving in 
rhomboidal trajectories more accurately. Finally, significant 
differences emerged with variations in trajectory size (F 
(1.241, 21.091) = 14.259, p <0.001, ηp

2 = 0.456). Post-hoc 
t-tests indicated tracking the smallest targets was more 
challenging that tracking those in medium (p=0.002) or 
large (0.004) conditions. Interactions were also observed in 
trajectory visibility (F (1, 17) = 15.052, p =0.001, ηp

2 = 
0.47) and speed type (F (1, 17) = 11.476, p =0.004, ηp

2 = 
0.403). These results suggest that tracking with the eyes 
modestly improves when targets move more unpredictably, 
an effect that is not present with head movements. This is 
possibly due to the eyes’ faster response time. 

Discussion  
The study strongly confirms the idea that head motions can 
accurately track moving targets. In the head condition, the 
fidelity of the behavior, as expressed by the median 
correlation coefficients, exceeded that of the eyes in both 
the natural and eyes conditions of the current study as well 
as that reported in prior work [9]. This suggests that head 
based input can act as a surrogate for eye-based input in 
many smooth pursuits input scenarios; it may even be 
preferred in terms of performance. However, data from the 
natural condition also clearly indicates that participant’s 
predilection was to track with the eyes; only when 
specifically instructed did they use clear, accurate and 
distinctive head movements.  

A second goal of the study was to expand knowledge about 
what stimulus parameters are effective in tracking based 
input systems. Although a number of significant differences 
emerged, serving to isolate more and less effective designs, 
the primary message from this data is one of the robustness 
of the technique to variations in target movements. This is a 
positive outcome as it suggests that both eye and head 
versions of the technique can be deployed with targets 
moving in a broad range of patterns and thus support a large 
variety of graphical forms and interface designs. Specific 
recommendations from the study are to avoid direction 
changes and small target trajectories. Rhomboidal 
trajectories may provide some benefits. While these 
recommendations are sensible, we note the small absolute 
differences and moderate effect sizes – they may ultimately 
have limited impact on performance.  

Beyond these analyses and recommendations, it is also 
worth describing the movements captured in the study. For 
this, we focus on data in the head condition, as this involves 
explicit bodily motion and represents the core idea 
proposed in this paper. The scale of these movements will 
impact a range of factors such as the obtrusiveness [39], 
social acceptability [28] and, possibly, long term comfort of 
the technique. While a full exploration of these issues goes 

Trajectory Size Eyes Head 

4cm (~3.50°) 0.69 (0.13) * 0.78 (0.1) * 
13cm (~11.75°) 074 (0.12)  0.84 (0.06)  

22cm (~20°) 0.73 (0.11) 0.85 (0.05)  

Target Speed Eyes Head 

60°/sec 0.69 (0.13) 0.81 (0.07) 
120°/sec 0.72 (0.12) 0.84 (0.06) 
180°/sec 0.74 (0.10) 0.82 (0.1) 

Trajectory Shape Eyes Head 

Circle 0.70 (0.11) * 0.82 (0.06) * 
Rhombus 0.74 (0.12) * 0.83 (0.07) * 

Trajectory Vis. Eyes Head 

Visible 0.70 (0.13) 0.83 (0.07) 
Invisible 0.74 (0.10) 0.82 (0.07) 

Speed Type Eyes Head 

Constant 0.71 (0.12) 0.83 (0.07) 
Varies 0.73 (0.11) 0.82 (0.07) 

Direction Type Eyes Head 

Constant 0.74 (0.11) * 0.84 (0.07) * 
Varies 0.70 (0.12) * 0.81 (0.07) * 

Table 1. Mean absolute Pearson correlations between eyes & 
target (eyes condition) and head & target (head condition) 
for the six study variables. Standard deviation in brackets. 
Asterisks indicate significant main effects of the trajectory 

variable at p<0.008.  



beyond the scope of this article, we can present and 
interpret basic data. The small (3.5°), medium (11.75°) and 
large (20°) target trajectories led to mean head rotations of 
9.19° (SD 6.18), 14.85° (SD 9.35) and 17.65° (SD 9.69) 
and showed minimal variation (<1 degree) between yaw 
and pitch. This indicates participants exaggerated head 
movements for small targets and modestly reduced them for 
larger targets (see Figure 3 for examples). The movements 
could also be relatively subtle – for the smallest targets, 
median head rotations were just 6.7°. We believe these 
movements are sufficiently small to ensure the technique is 
discrete and not unduly fatiguing. Further studies will need 
to empirically examine these claims and formally establish 
how fatiguing SmoothMoves interaction is. We also note 
that stimuli in the current study were very simple and future 
work should investigate more complex situations where, for 
example, users would need to engage in a visual search for 
targets prior to performing selection.  

SMOOTHMOVES VALIDATION STUDY 
We opted to build on these results by validating 
SmoothMoves input for AR in a follow-up study deploying 
optimal cues in a more realistic AR setup.  

Participants 
A total of 16 participants completed the study (9F), aged 
between 21 and 26 (M = 22.19, SD = 1.84). All participants 
were students at a local institution and were compensated 
approximately ten USD for their time. In general, they rated 
their experience with smartphones as very high (M = 5/5) 
but their experience of wearables such as smart watches 
(1.8/5) and smart glasses (1.2/5) as low. Three participants 
were smart watch owners, resulting in the modestly higher 
rating for these devices.  

Experimental Setup and Design 
The study involved two device conditions, intended to 
simulate different AR viewing scenarios. These were 
glasses and phone. The glasses condition used the Epson 
Moverio AR glasses [38] which feature a pair of semi-
transparent displays with a 23” field of view. In the phone 
condition, targets were displayed on a mobile phone (a 
Huawei Nexus 6P with a 5.7” display) held comfortably in 
participants’ hands. This simulates a common current AR 
experience in which standard handheld devices are used as 
the main display device in a video-see through paradigm 
[33]. In both cases, participants wore the same head 
mounted IMU used in the first study.  

The study also explored two further conditions: trajectory-
size and target-cardinality, or the number of simultaneously 
presented targets. We re-examined the former variable as it 
was shown to impact performance in the first study. 
Furthermore, perceptual trajectory sizes in the two display 
devices differ substantially from each other and from those 
used in the first study. This reflects a more realistic 
deployment of SmoothMoves targets in which it is not 
possible to fully standardize trajectory sizes across different 
devices and platforms. We again selected three trajectory 

sizes but did so based on the available screen size of the 
devices (rather than visual angle). The sizes were selected 
so the rhomboidal target paths occupied approximately 
18%, 54% and 90% of the smaller screen dimension. In the 
large condition this left sufficient space to display the 
moving target, while in the small conditions overlap of the 
targets remained minimal. We also examined cardinality as 
this is an essential practical issue for any target selection 
system. We displayed targets in equidistantly spaced groups 
of two, four, six and eight (see Figure 4) in order to 
determine the impact this exerts on performance.  

The study was arranged so that phone and glasses were 
repeated and balanced: all participants completed both 
conditions, half in each possible order. Within each device 
condition, participants completed three blocks of trials. 
Each block contained four target-cardinality trials for each 
target-size. Trials in each block were randomly presented 
and the first block was treated as practice and discarded. As 
such, we retained data from 3072 trials (16 participants x 2 
devices x 2 blocks x 4 target-cardinalities × 3 target-sizes x 
4 repetitions). For each trial, we logged error count and 
successful target selection time. Errors occurred if no target 
selection took place within 10 seconds (a timeout) or a 
wrong target was selected. In these cases, trials were re-
entered into the pool of remaining trials. In this way, all 
participants correctly completed their allotted set of trials. 

Beyond these variables, the stimuli used parameters from 
the first study. Targets moved at 120°/sec; their trajectories 
were continuously presented; there were no speed or 
direction changes. Three other display variables were 
equally distributed among each set of four cardinality/size 
trials. These were target direction (clockwise/anti-
clockwise), trajectory shape (circle/rhombus) and target 
starting angle (four cardinal directions). Rather than as 
experimental variables, these variations increased the 
realism of the study – trajectories in real systems will likely 
vary in path (or appearance) and the study examined 
performance in this relatively unpredictable situation.  

Figure 3. Normalized mean head yaw/pitch changes during 
three example trials showing 3.5°circular trajectory (left), 

11.75° rhomboidal trajectory (center) and 20° circular 
trajectory (right). All examples used a target speed of 
120°/second, included visible paths and did not involve 

speed or direction changes. Data shown to scale in colored 
lines with position as yaw/pitch angle and width as 

standard dev. Temporal progression in the trial shown 
from orange to blue. Black lines show target trajectory. 



Procedure 
This study implemented SmoothMoves using parameters 
from the first study. Participants sat at a desk holding the 
phone in their right hands, or wearing the AR glasses. They 
started each trial by tapping a key on a PC keyboard on the 
desk. A set of targets was then displayed, but no data was 
collected for 500ms of start-up time. Correlations were 
analyzed with a window-size of 1000ms and a selection 
triggered when participants reached a correlation-threshold 
of 0.8. In cases where the standard deviation of head 
movements in either axis was less than 2°, no correlations 
were calculated. This threshold was substantially under the 
mean standard deviation observed in head condition trials in 
the first study (6°-9° over the size conditions) and served to 
reduce false positives by capturing only intentional 
movements. Finally, if multiple targets led to correlations 
above the target threshold, no selection was returned.  

Results and Analysis 
Time and error data from the study were analyzed with a 
pair of three-way repeated measures ANOVAs on device, 
trajectory size and target cardinality. In cases where 
sphericity was violated, we report Greenhouse-Geisser-
corrected degrees of freedom. Post-hoc pairwise 
comparisons include Bonferroni CI adjustments. For 
brevity, only results significant at p<0.05 are reported. We 
use partial eta squared (ηp

2) to express effect size.  

The time data is charted in Figure 5. Only the main effect of 
trajectory size attained significance (F (1.07, 16.056) = 
10.901, p=0.004, ηp

2=0.421), so no interactions are included 
in the chart. The effect size is moderate and borne out by 
post-hoc t-tests showing the smallest trajectories led to 
slower selections than the medium (p=0.009) and large 
(p=0.016) trajectories. This indicates that participants took 
longer to select targets moving around the smallest paths.   

Error data was more diverse. Two way interactions are 
plotted in Figure 6 and main effects in Figure 7. The three-
way interaction did lead to a significant result (F (2.162, 
6.692) = 4.423, p = 0.018, ηp

2=0.228), but we opt to 
interpret the data in terms of the more comprehensible 
significant two-way interactions and main effects, as these 
all exhibit larger effect sizes. Specifically, the significant 
two way interactions were between trajectory size and 

target cardinality (F (1.974, 29.607) = 6.488, p<0.05, 
ηp

2=0.302) and trajectory size and device (F (1.164, 17.456) 
= 5.082, p = 0.033, ηp

2=0.253). Looking at the charts, the 
first interaction suggests that while errors increase with 
more targets, they do so more steeply with small trajectory 
sizes. The second interaction indicates that performance 
with the glasses was superior to the phone with six or less 
targets, but this relationship was inverted with eight targets.  

The significant main effects were trajectory size (F (1.408, 
21.113) = 12.272, p = 0.001, ηp

2=0.45) and target 
cardinality (F = (1.204, 18.062) = 40.167, p<0.001, 
ηp

2=0.728). These are the largest effect sizes in the study, 
and relate to simple outcomes. Specifically, post-hoc t-tests 
showed that small trajectories led to more errors than 
medium (p=0.025) and large (p=0.001) trajectories and that 
all differences in cardinality were significant (at p<0.01 or 
less) except for a non-significant comparison between four 

 
Figure 4. Screenshot from a trial in the second study, where 
up to eight targets were displayed in tandem. Participants 

were instructed to follow the target in red. 

Figure 6. Significant two-way interaction effects in error data 
from validation study between device and target cardinality 

and trajectory size and target cardinality.   

Target	Cardinality	 Target	Cardinality	

Device	 Target	Cardinality	 Trajectory	Size	

Figure 5. Main effects in validation study time data. Bars 
show standard deviation.  

Figure 7. Main effects in validation study error data. Bars 
show standard deviation.  
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and six targets. Unsurprisingly, this indicates that target 
selection became more error-prone when more targets were 
displayed. These results also confirm that participants find 
targets moving on small trajectories more difficult to track.  

DISCUSSION 
The goal of this study was to explore the performance of 
SmoothMoves head tracking in an AR scenario in order to 
contrast performance with related techniques and make 
recommendations on how to best deploy it. Time data are 
simple. Mean task selection time was approximately two 
seconds and the only significant variation was an increase 
when the smallest trajectories were used: small on-display 
target paths should be avoided. This figure includes the 
500ms start-up time and a 1000ms window-size, making it 
approximately half a second greater than the minimum time 
that the study supported. We argue this is fast enough to 
make the technique compelling in hands-free AR scenarios: 
recent studies of hand and head mediated ray based 
selection report task times of between 2.25 and 3.5 seconds 
for making a selection from a set of 16 targets [25]; and 
techniques based on smooth pursuits eye movements report 
task times ranging from 4.3 to 4.6 seconds [34]. 
Performance with more traditional, albeit 3D, direct 
selection techniques based on moving the hand to a target 
location within arm’s reach show broadly similar results: 
Özacar et al. [25] examine this modality with three types of 
selection trigger (a physical button, dwell, and a hand 
gesture) and report task times of three to four seconds.  

The error rate data paint a more complex picture. These 
range considerably, and the more extreme conditions 
studied are sufficiently challenging to render them 
inappropriate for use in a real system. If small trajectories 
are avoided, we argue the data supports the display of up to 
six targets simultaneously: this led to a mean error rate of 
2.6% with the glasses and 4.9% with the phone. The 
difference between these devices is possibly due to the 
larger perceptual sizes for the trajectories shown on the 
HMD, suggesting the technique is better suited to large 
field of view glasses-based AR than to the perceptually 
smaller displays of handhelds. It is also worth noting that 
the experience of interacting with SmoothMoves between 
the two types of device is also very different. With the 
HMD, the screen moves with the head; with the phone, it is 
likely static. We note that the study results indicate that the 
technique is robust to this difference. It is also worth 
contrasting the error rates for our recommended 
SmoothMoves configuration with comparable selection 
techniques. In terms of ray pointing, Özacar et al. [25] 
report error rates of 6%-10%; while Esteves et al. [9] report 
errors in an optimally configured gaze based pursuits input 
system to be an average of 19% for eight targets displayed 
in tandem. Özacar et al.’s [25] error data from direct 
selection tasks ranges from 4% to ~8%. The error rates 
from this study suggest SmoothMoves performs well 
enough to act as a viable companion or alterative to these 
approaches.  

In summary, the results of this study confirm that 
SmoothMoves targeting works well in two different AR 
scenarios and, in fact, may be particularly suitable for 
HMDs. This is useful as such systems already incorporate 
the required sensors to support the technique. On HMDs, 
and with target sets of between two and six in size, users 
can reliably (error rate of 2.6%) make selections in under 
two seconds, a level of performance that we believe is 
sufficient to support a rich range of possible interactions. 
The next section of this paper showcases these possibilities.  

INTERACTIVE LIGHTS USING AR AND SMOOTHMOVES 
This paper concludes with the design and evaluation of a 
prototype interactive lighting system that uses augmented 
reality for displaying moving controls, and SmoothMoves 
for input (see Figure 1). The system was implemented using 
Philips Hue smart lights [39], which were wirelessly 
controlled by a video see-through AR application that runs 
on an unmodified Microsoft HoloLens. This is a head-
mounted device that combines multiple optical sensors to 
both sense where users are looking and map their physical 
surroundings. The prototype was developed using the Unity 
game engine [40] and the Vuforia AR platform [41]. Input 
was captured using the HoloLens’ standard API.  

The idea of the prototype is simple. 2D moving controls are 
displayed in space, in proximity to the lights they control. 
These positions are set once, using pre-defined images or 
real-world objects. The controls enable the user to turn the 
lights on or off (Figure 8, top); to control the lights’ 
intensity (Figure 8, top-right); and to access two menus. 
The first is the themes menu, that features two pre-set light 
schemes: work (cool blue) and relaxing (warm yellow) 
(Figure 8, bottom-left). The second is the color menu, that 

  

  
Figure 8. An AR interface built with SmoothMoves for an 

interactive lighting system. The moving controls are displayed 
in proximity to the light bulb they control, and users interact 

with these by tracking their movement with their heads.  

 



enables the user to scroll through different hue colors in the 
HSV/HSB model using continuous head movements, and to 
also adjust the color’s saturation (Figure 8, bottom-right). 
Brightness and saturation controls have two targets moving 
in opposite directions. Following the clockwise target 
increases the value of the control (e.g., makes it brighter), 
while following the counterclockwise target decreases it. 
All selections are confirmed through audio output (a click).  

The motivations underlying the prototype are threefold. 
First, to support immediate control of smart environments 
with minimal action – a requirement highlighted by 
Koskela et al. [17] in their research on smart homes. 
Second, to provide uniform and hands-free control over 
different smart devices. And third, to support direct input in 
physical spaces: users simply look at the system they want 
to control in order to start interacting.  

Evaluation 
We evaluated the interactive lights prototype using 10 
participants (4F), aged between 21 and 47 (M = 34.3, SD = 
8.88). All participants were staff or students at a local 
institution. Based on a 7-point scale (low to high), 
participants rated their experience with AR at 2.5 (SD = 
1.51); with HMDs at 2.8 (SD = 1.55); with smart lights at 2 
(SD = 1.70); and with smart rooms at 1.8 (SD = 0.79). 
Participants interacted with the prototype in a spacious and 
quiet environment, where they were free to move around. 
Each experiment took on average 30 minutes, and was 
based on a participatory design technique to elicit in-depth 
user feedback [2]. This technique includes a sensitization 
and elaboration phase. In the former, participants were 
asked about relevant past experiences; in the latter, 
participants commented on the demo prototype. Each 
experiment started with an explanation of the prototype’s 
functionality and a small trial where participants were asked 
to turn the lights on and off until they felt comfortable with 
the SmoothMoves input technique. We recorded and 
transcribed audio of all sessions and performed a 
lightweight clustering of comments, reported below. 

Overall Opinions: In general participants responded 
positively to the technique, describing it as a “clever” (P7), 
“useful” (P4), “comfortable” (P2), and a great idea overall 
(P1, P5, P6, P7, P10). Participants also described the 
interface movement as “interesting” (P1, P5, P6), “fun” (P1, 
P6, P7, P10), and “minimalist” (P9); and did not consider it 
to be invasive (P9), or much of a distraction (P1, P4, P5). 
P2 described the movement as “futuristic” – a way to 
“attract people’s attention” and “impress (house) guests”. 
P4 appreciated the technique’s ability to display “different 
options (so) close to each other”. Finally, P6 described the 
experience as “quite magical” – “it is almost like you are 
doing it psychically”. This sentiment was shared by P9: “I 
almost feel like it is my mind; if feels that subtle, that you 
(…) just will it to happen.”. 

Target Selection with the HoloLens: Despite these 
positives, there were concerns about how long it took to 

select a target (P2), that it initially required some 
concentration (P6, P10) and that it was an unusual way to 
interact (P8). Five participants reported unintentional 
selection of a target at some point during the session (P3, 
P6, P7, P9, P10). One explanation for this is the HoloLens’ 
limited field-of-view. This issue is exacerbated as 
participants move their heads to acquire different targets – 
especially if the headset is not properly adjusted. P6 and 
P10 reported constraining their head movements because 
the targets “tend to appear and disappear”; and P7 did the 
same because the HoloLens kept “slipping down”. P10 also 
described the HoloLens as quite “heavy”. To minimize 
field-of-view issues, participants started the interaction at 
roughly two meters from the targets. This caused several 
participants to report the target trajectories as quite small 
(P3, P6, P10), and “sensitive” (P10) to input. Towards the 
end of the (short) session, these concerns began to lessen. 
P10 stated that “the more I did the easier it was”; and P9 
ultimately “started to find [the movement] quite calming”. 

Use Scenarios: In response to a question on practical uses 
of the technique, participants P1 and P7 described how 
SmoothMoves would be useful for the “quick things”: “I do 
not want to think, as you need in a smart phone application 
(…) I just want a button that turns on something, and then I 
can go back to work” (P1). P4 states that “it would 
definitely be useful” during hands busy activities in the 
home such as cleaning. Other participants saw value in 
terms of accessibility (P3, P5, P7, P8), or for professionals 
working with both hands, such as surgeons or bakers (P3). 
Finally, several participants envision using the technique 
when the hardware improves: when it is lighter (P1); when 
the field-of-view improves (P2); or when the device has the 
form factor of a normal pair of glasses (P3, P7, P9).  

Gaze = Eyes + Head: Participants frequently commented 
on the naturalness and unobtrusiveness of the head 
movements and their tight coupling to gaze. P9 said it 
simply: “I do not feel I am moving my head”. Similarly, P1 
observed “I do not have to [mimics a very explicit head 
motion], I just have to look”; and P4 “notice[d] now that 
while I am just trying to do it with my eyes, my head 
unconsciously moves in the way [of the targets]”. These 
quotes strongly reinforce the fundamental idea that gaze is a 
combination of eye and head motion – for several 
participants, even with instructions to move their heads, 
these modalities were hard to separate and distinguish.  

Multi-modal input: Participants felt the technique could 
easily be integrated with other input modalities. 
Recognizing the potential problem of inadvertent 
activation, P3 and P6 proposed coarse mid-air gestures to 
trigger SmoothMoves controls. Other participants suggested 
integrating the technique with voice to specify more 
precise, important or detailed instructions (P6, P8, P10). 
Combining and comparing SmoothMoves with other input 
techniques is a compelling direction for future work.  



Stimulus Parameters: Many participants were concerned 
about the size of both targets (P2, P3, P5, P6, P10), and 
trajectories (P3, P6, P8) and the speed at which targets 
moved (P8). Other participants were positive, feeling that 
that small trajectories would require only small head 
movements (P5). These concerns were largely alleviated 
when participants moved closer to the light and targets. 
Suggestions for dealing with this issue included various 
techniques for scaling targets and trajectories based on the 
distance to a user. Designing and refining such techniques 
is clearly a next step for this work.  

Continuous Input Designs: Six participants specifically 
appreciated the flexibility of being able to set precise colors 
using the continuous color adjustment menus, but there 
were numerous reports that the implementation was 
confusing. For hue, a core problem was a lack of feedback 
as to how this parameter would vary over time (P5, P6, P8) 
– one solution was to control more well understood 
qualities such as separate RGB channels (P7). Other users 
reported uncertainty they were maintaining a selection 
during hue adjustment (P1, P7, P8, P10), likely due to the 
gradual rate of change in this parameter. Situations in which 
two controls moved in opposite directions around the same 
trajectory also led to trouble for P3: “it looks like they are 
bouncing off each other”. In general, while participants also 
appreciated the audio feedback accompanying continuous 
parameter adjustment (P3, P7, P9), they also wanted more 
information in the form of visual or haptic (P8) cues.  

Command Input Designs: Participants, in general, 
preferred the command input over the continuous input. 
Customizing lighting via choosing preset themes was 
reported to be more useful than continuous parameter 
adjustment (P1, P2, P3, P4, P5, P6), reflecting the general 
idea that SmoothMoves is more suited to quick and direct 
interaction (P1, P4, P7). Nesting menus was also viewed as 
appropriate as it avoided presenting too many simultaneous 
targets (P1, P4, P5, P6, P7, P8, P9) while still affording 
access to the most common commands quickly and easily 
(P1, P4, P5, P6, P8). The approach also kept things neat and 
tidy (P4, P5, P7, P8) and was reported to be consistent with 
traditional desktop computer interfaces (P7). Despite the 
proximity of the targets to the physical light, participants 
also explicitly suggested that feedback on selection be 
incorporated into the graphical interface (P1, P7, P8, P10).  

In summary, SmoothMoves was well received by 
participants. Although there were some reports and worries 
regarding false activations, gripes about the headset and 
concerns about some of the specific control designs, the 
technique was viewed as convenient, relaxing, well suited 
to quick interactions in hands free situations and 
unobtrusive. This data provides evidence supporting the 
viability of the technique for real world input and points at 
key directions for improvement. Topics for future work 
include exploring integration with alternative input 
modalities (e.g. voice, ray pointing) and creating graphical 

feedback to better support different selection and activation 
mechanisms, such as continuous parameter adjustment.  

CONCLUSION 
This paper introduced SmoothMoves, the first technique 
that supports smooth pursuits input using head movements. 
The paper described a pair of lab studies. The initial study 
generated three contributions. First, by looking at novel 
movement behaviors it expanded the design knowledge of 
smooth pursuits input systems. Second, it demonstrated that 
smooth pursuits input can be easily (and affordably) 
supported by head-tracking. And third, it generated ideal 
algorithm parameters for the SmoothMoves technique. The 
follow-up study grounded the technique in the domain of 
augmented reality, capturing the error rates and acquisition 
times on different types of AR device (head-mounted and 
hand-held). Finally, a prototype system was developed to 
demonstrate the benefits of using smooth pursuits head 
movements for interaction with AR applications in the 
context of an interactive lighting system. A final qualitative 
study led to positive reports of the system’s suitability for 
this scenario. In contrast to smooth pursuits input systems 
based on eye-tracking, the SmoothMoves approach 
proposed in this paper can be immediately implemented on 
a wide range of devices that feature embedded motion 
sensing, such as AR headsets. The contributions of the 
paper, in terms of implementation, data and designs, 
represent concrete steps towards achieving this goal.  
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