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ABSTRACT 
This work in progress focuses on the evaluation of a genetic 
representation for outline shapes for planar mechanical levers 
which addresses the first stage of the complex real-world 
problem of modelling and evolving planar mechanical lever 
systems. The representation defines the genotype and the 
phenotype mapping onto a lever geometry. As a proof of 
concept, the representation was evaluated using an evolutionary 
algorithm with simplified fitness function to investigate its 
capability to facilitate search space coverage, work with 
evolutionary operators; and produce shapes with certain lever 
characteristics, such as edges and curves. 
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1 INTRODUCTION 
The design of planar mechanical lever systems can be a complex 
task for human designers, e.g. the design of locking mechanisms 
in the automotive industry. The design task is to produce a 
system of levers that will fulfil a specified behavior in terms of 
component movements and force transmission, within a 
constrained dynamic spatial environment. A planar lever system 
can be described in terms of the shape and position of 
mechanical components within the system, along with their 
kinetic and kinematic properties. The behaviors of lever systems 
are determined by their individual outline shapes, position 
constraints, and outline interactions. 
    This work in progress focuses on the sub-problem of defining 
a suitable representation for the 2-dimensional outline shapes of 

levers as a first step toward solving the larger problem of how to 
evolve planar mechanical lever systems. Previous work using 
shape representations in the mechanical engineering domain 
includes topology optimization. In this work, various 
optimization techniques are applied to improve the structure of a 
mechanical part by reducing material usage whilst keeping its 
stability [1–8]. Cellular representations such as pixels or voxels 
were used. Pixel representations produce 2-dimensional shapes 
and voxel representations produce 3-Dimensional shapes. These 
has also been used in other areas such as evolving soft robots [9].  
    Other previous work has investigated the evolution and 
optimization of conceptual designs in the mechanical 
engineering domain [10–13]. These are mostly task specific 
representations which parameterized characteristics of objects or 
specific fixed components. 
    In this work, a new representation for outline shapes is 
proposed for use in an evolutionary computing context. A 
methodology for the evaluation and comparison of outline shape 
representations is presented. The distinctive characteristics of a 
suitable representation are investigated, namely: search space 
coverage; compatibility with evolutionary operators; and 
genotype to phenotype mapping. A suitable representation is 
developed using an iterative process of experimentation and 
evaluation. This includes the development of a fitness function 
for evaluating the shapes produced by the representation against 
a defined range of target shapes. This work is a first step towards 
generating planar mechanical lever systems using an 
evolutionary computing approach. 

2 REPRESENTATION SPECIFICATION 

2.1 Search Space Coverage 
One benefit of an evolutionary approach might be that novel 
designs could be found that might not have been thought of by 
human designers. This initial work is not interested in evolving 
novel shapes or every possible kind of shape. The focus is to 
develop a process for evaluating representations which can 
evolve different shape characteristics for levers within a 
mechanical engineering context. In the future, the representation 
will be extended to investigate the generation of novel 
mechanical system designs consisting of a set of levers. These 
characteristics include: corners; curves; symmetries; and a-
symmetries. A set of target shapes was defined to allow 
evaluation of the representation’s ability to cover the search 
space of characteristic shapes. These shapes may of themselves 
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not be valid lever designs, but have been chosen to allow the 
evaluation of the representation based on its ability to represent 
distinctive characteristics of lever shapes. The target shapes are 
shown in Fig. 1. 
 

 

Figure 1: Range of target shapes 

2.2 Compatibility with Evolutionary Operators 
The genetic representation needs to be compatible with the 
operators used in an evolutionary algorithm. For mutation 
operators, it is necessary that a changes in the genotype results 
in equal sized changes in the phenotype [14]. For recombination 
operators, it is necessary that some characteristics of each of the 
parent phenotypes be passed to the child phenotype.  
    As an example, a phenotype could be defined by an origin co-
ordinate and a set of vertex coordinates, describing the shape. A 
mutation operator should produce a small manipulation such as 
the change of position of a single vertex or of a small set of 
vertices on the phenotype. A recombination operation, such as 
one-point crossover should produce a swap of a set of vertices 
between two parent phenotypes which would result in child 
solutions such as shown in Fig. 2. 

 

Figure 2: The recombination of two parent solutions into 
two potential child solutions by recombination of vertices 
and position of origin. 

2.3 Genotype to Phenotype Mapping 
From the perspective of the genotype, the size of the 
chromosome is defined by the number of genes needed to 
represent a solution. The chromosome size has a direct influence 
on the size of the search space. The larger the search space, the 
more the number of iterations required to traverse the search 
space. Therefore, a genotype with a small number of genes is 
preferred, especially as the shape representation will be only one 
part of a future representation for planar lever systems which 
will require more complexity in terms of the number of 
parameters to include aspects related to kinematics. 
    From the perspective of the phenotype, the representation 
should not result in invalid outline shapes. Invalid shapes are 
self-intersecting shapes. Fig. 3 shows (a) a valid shape and (b) an 
invalid self-intersecting shape.  
 

 

Figure 3: Example of shapes: (a) Valid shape, (b) Invalid 
shape 

Using a representation with a direct mapping of coordinates to 
vertex position in a Cartesian coordinate system would 
introduce the possibility of producing many invalid self-
intersecting shapes. A representation which allows such self-
intersecting shapes would require an additional layer of 
computation to filter or to repair invalid shapes. It also increases 
the search-space as the number of invalid shapes is larger than 
the number of valid shapes, which means that many 
chromosomes would produce no valid solutions. A better 
representation would be one which avoids the possibility of 
these self-intersections. 

3 METHODOLOGY 

3.1 Representation 
The behavior of a rigid body lever system results from the 
contacts of outline shapes and their interaction without 
considering the structure of the surface area of each individual 
component. One disadvantage of using a cellular representation 
is the amount of information that needs to be used to describe 
the structure, which in turn increase the search space to be 
traversed. A new representation was designed and evaluated. 
This representation produces only non-intersecting shapes. The 
chromosome consists of relative float values between 0.01 and 
1.00 which are converted to angles, and lengths through a 
mapping process. The representation R is shown in Fig. 4. 
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Figure 4: Representation R 

The representation consists of a movable hub and spoke 
configuration with the origin P, placed within a polar coordinate 
system. P is defined by two location genomes, α and d. The hub 
and spoke configuration has a variable number of arms, each 
holding one vertex. The number of arms is defined by the user 
with a global parameter. The angles between the arms are equal 
and results from the number of arms used. The position of a 
vertex on an arm is defined by a genome n which represent the 
distance between P and the vertex itself. The maximum distance 
between P and a vertex is also specified by the user with a global 
parameter. There are two additional angles β and γ. β rotates the 
hub and spoke configuration around its origin P, and γ is an 
angle between each arm. γ allows each arm and its containing 
vertex to be rotated between the initial arm position and the 
initial position of the next arm. 

3.2  Evolutionary Algorithm 

The representation was tested using a standard evolutionary 
algorithm to evaluate its ability to produce a set of defined target 
shapes with distinctive characteristics and complexity. The 
evolutionary algorithm was configured as follows: The 
population was set to 100 individuals and 10 children were 
produced per generation. These parameters were chosen after 
some initial tests. Elite-tournament with two random individuals 
taken from the population was used to pick the fitter candidates 
for either a two-point crossover operation or a simple mutation 
operation with a chance of 50% for each operation in every 
iteration. Crossover and mutation were used to investigate the 
behavior of the representation when applying genetic operators. 
The simple mutation operator changed a random number of 
genomes from one genome up to ¼ of the length of the 
chromosome by changing it to a random float value. The 
children were placed back into the population by using a rip-
tournament between two random candidates from the 
population to replace the weaker one. 

 

3.3  Fitness Evaluation 
To test the representation’s ability to evolve target shapes, a 
simplified fitness function was developed. The fitness function is 
based on two penalty values related to the surface area of the 
shapes. Fig. 5 shows the equation for the fitness. 
 

 

Figure 5: Fitness Evaluation 

A lower penalty value represents a fitter solution. The first 
penalty value is the size-penalty (a). It describes the difference in 
surface area between the candidate solution and target shape. 
E.g. their position does not need to be the same but if their size is 
equal, the penalty would be zero. The second penalty is the 
intersection-penalty (b) which is given related to the intersection 
between solution and target. A solution which over-covers the 
target area would result in a penalty of zero. The total penalty (c) 
is a sum of both penalty values. A smaller total penalty value 
stands for a better solution. A total penalty value of zero means 
that the solution and the target shape are identical in shape and 
position. 

4 PROOF OF CONCEPT EXPERIMENTS 
Experiments were run several times on each target shape, for 
both 8 vertices per shape, and for 16 vertices per shape. Each 
experiment was stopped after 500,000 iterations. The best results 
are shown in Fig. 6 as a proof of concept that the representation 
can approximate the target shapes. Fig. 6 shows the best 
solutions from the experiments with 8 and 16 vertices. The 
number of vertices used is noted next to the shapes name. The 
evaluation of the efficiency of the algorithm and representation 
was not considered for this proof of concept work, but will be 
investigated in future. 
    It was found that the representation can approximate the 
target shapes with different shape characteristics for shapes (a) 
to (j). The representation only produces valid, non-self-
intersecting shapes e.g. as discussed in section 3.3. The results 
show that the representation can be used with evolutionary 
techniques, e.g. mutation and crossover operators to navigate 
through the search space. 
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Figure 6: Resulting Shapes 

    It was also found that a higher number of vertices lead in most 
cases to a better result especially if the target shape is more 
complex because it allows the representation to describe it with 
a higher level of detail. However, the algorithm may get stuck 
with a slightly disrupted shape when using a high number of 
vertices, e.g. in case of simple shapes such as square (b) or 
rectangle (c). This is due to the smaller chance of organizing 
multiple vertices on a straight line. For these shapes a lower 
number of vertices produce better results. Curved shapes, such 
as heart, time-glass, and more complex shapes, such as flash and 
star, need at least 16 vertices to be described accurately. In 
future, the representation should be extended with a mechanism 
which controls the number of vertices during the search process, 
starting with a lower number of vertices at the beginning of the 
search process. 
    The representation in its current state is not capable of 
representing unconnected shapes (k) and (l). This will be 
addressed in future by allowing the representation to adapt by 
generating multiple sub-shapes. 

5 CONCLUSIONS 
This work in progress proposed a representation for outline 
shapes for levers, with a view to future extension and use as a 
representation for evolving planar mechanical lever systems. A 
characteristic of the representation is that it avoids the 
production of self-intersecting shapes which reduces the search 
space. The representation’s capability to evolve and represent 

specified target shapes with distinctive characteristics was tested 
using an evolutionary algorithm based on a fitness function 
comparing the geometrical areas of candidate shape and a target 
shape. The results show that the proposed representation can 
produce the defined shape characteristics for a set of single 
shapes. Results also show that the representation is compatible 
with evolutionary computing techniques for traversing the 
search space. It was found that additional mechanisms are 
needed to make the representation more accurate. Firstly, a 
mechanism to control the number of vertices allowing a decrease 
or increase of the level of representation detail, and the secondly, 
a mechanism to allow the solution shape to be divided into 
multiple sub-shapes to represent unconnected shapes. Sub-
shapes may also increase the accuracy for describing target 
shapes made of multiple primitives. 
    Future work will implement the above mechanisms and will 
evaluate the efficiency of the representation using statistical 
analysis. Furthermore, the representation will be extended to 
evolve planar mechanical lever systems. 
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