

Dan Ridley-Ellis

Centre for Wood Science and Technology

National Forestry Conference "Minor Conifers in Ireland"

What is wood quality?

- Wood quality depends on the application
- Most important thing is to have knowledge

Before we begin...

- 1) Focus on density (alone) is misleading
- 2) Species is not everything (to some it does not matter *at all*)

Density

- not always a good thing

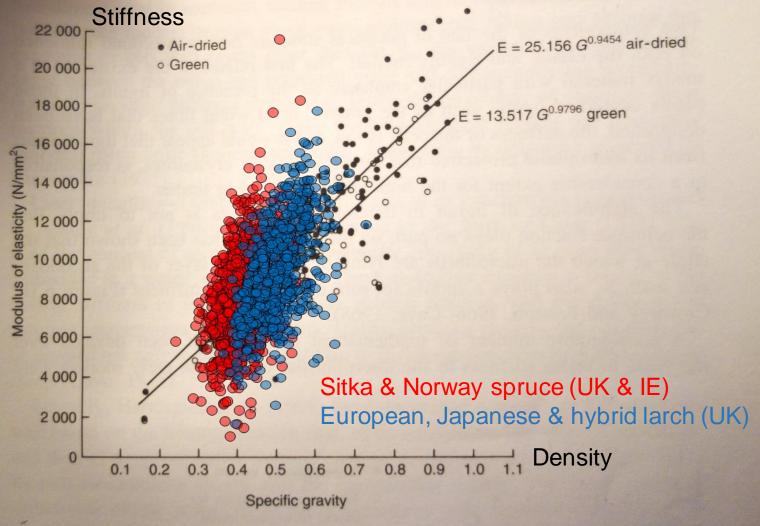
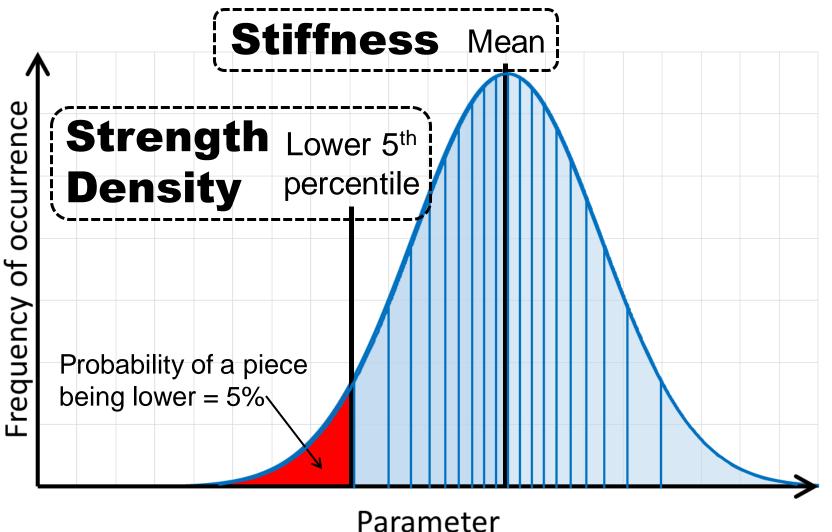


Figure 6.9 Effect of specific gravity on the longitudinal modulus of elasticity for over

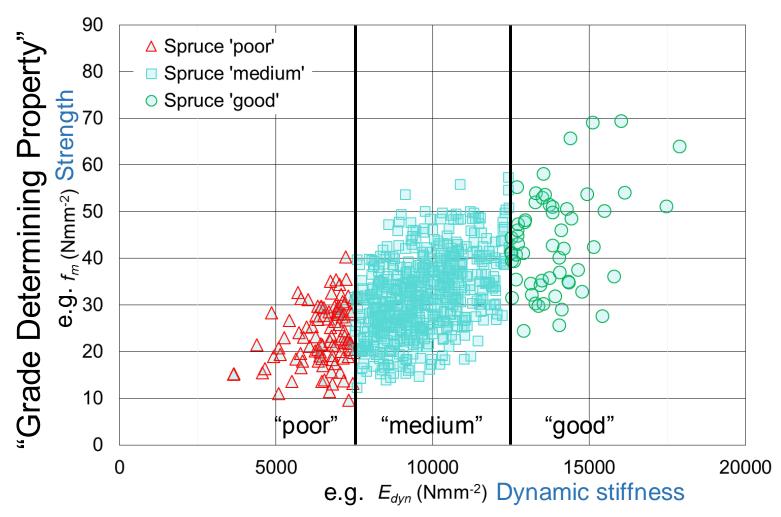
Structural engineering design


- About buildings
 - Staying safe
 - Staying fit for use
- Dealing with uncertainty
 - Of material
 - Of the actions on a structure
 - Of analysis and construction
- True irrespective of the material

(There is always some uncertainty)

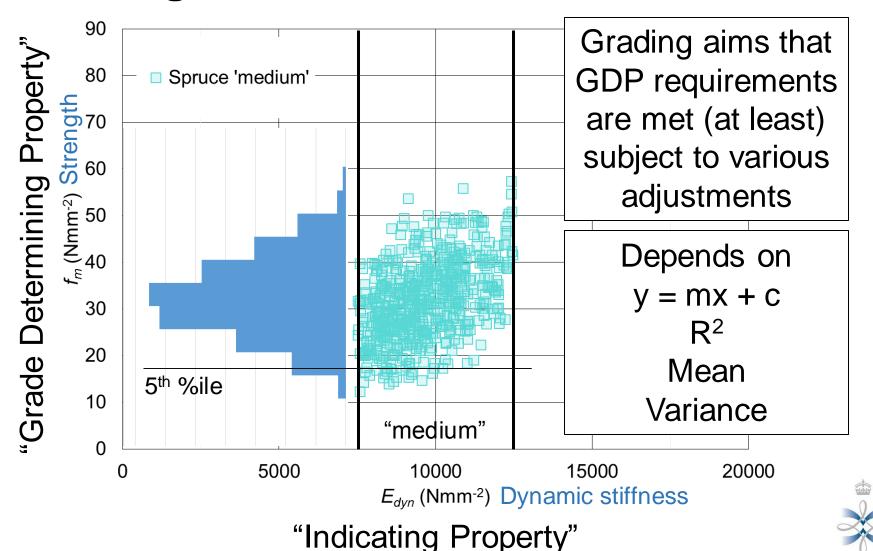
Characteristic values

Current methods in Europe

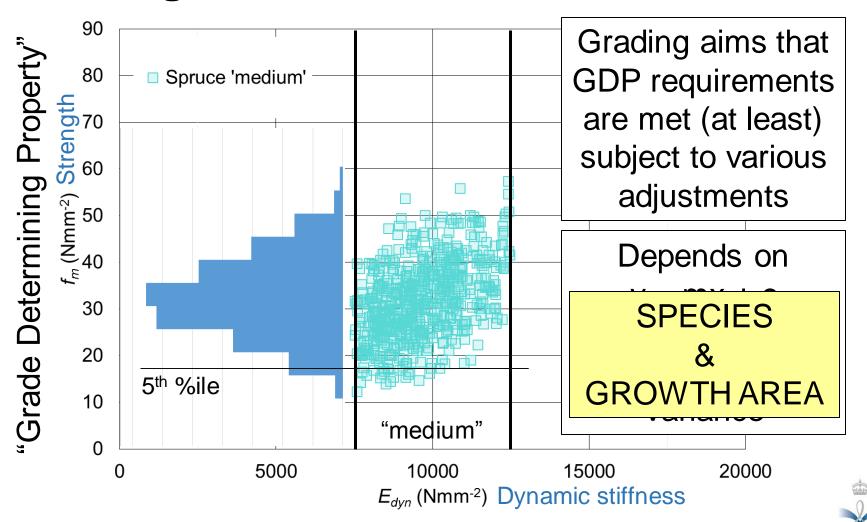

- Visual grading
 - Visually grade then assign to strength class
- Machine grading
 - Machine control (large initial testing, fixed settings)
 - Output control (regular testing, settings can change)

- Slightly different basis
- ...but same fundamentals

Grading – IP boundaries


"Indicating Property"

ANNIVERSARY PRIZES


Grading – IP boundaries

Grading – IP boundaries

"Indicating Property"

10

Means that...

- Grading not about properties of individual pieces – it is about collective properties
- Often only one of the GDPs is limiting
 - –Strength
 - -Stiffness
 - Density
- ...indeed sometimes none of them are

What other challenges?

 Perhaps the biggest challenge is overcoming what people think is possible with home-grown wood

 Perhaps the biggest problem is junk and/or unverified knowledge (both negative and positive)

What matters about properties? Edinburgh Napier

- Properties and performance
 - Knowledge / predictability of
 - Variation in
 - Consistency of

Generic market categories (e.g. C16)

Some properties that matter

- Strength (bending, tension, shear, perp to grain, fracture etc...)
- Stiffness
- Density (fasteners, charring rate, self-weight, calorific value...)
- Dimensional stability / distortion
- Durability
- Colour and colour change
- Creep
- Finishing, gluing, painting etc

What might not be the same Edinburgh Napier as same species grown elsewhere

- Density
- Strength
- Stiffness
- Knottiness (and appearance)
- Durability
- Drying distortion
- Reaction wood, splitting
- Log sizes and form

"Sitka"

• "British spruce" WPCS Species combination code EN14081

Species code EN13556

- Sitka spruce (Picea sitchensis) (PCST)
- Norway spruce (Picea abies) (PCAB)
- Typically graded C16/reject
 - But does contain potential for higher grades

 Maybe other species can be added? (doesn't need to be spruce, just needs to be similar enough)

"Pine"

"British pine" WPNN

- Scots pine (Pinus sylvestris) (PNSY)
 - Blue stain
 - Dead knots

- Austrian pine (Pinus nigra) (PNNN)
- Corsican pine (Pinus nigra laricio) (PNNL)?

"Larch"

- "Larch" WLAD
- Hybrid larch (Larix x eurolepis) (LAER)
- Japanese larch (Larix kaempferi) (LAKM)
- European larch (Larix decidua) (LADC)

- Durability
- But heavy
- Reputation for distortion, splitting

Douglas-fir

Douglas-fir (*Pseudotsuga menziesii*)
 (PSMN)

- Has visual grading assignments
- Grading settings coming...

 Used as imported construction timber, in combination with Western larch (*Larix* occidentalis) (WPSM)

Up coming...

- Noble fir (Abies procera) (ABPR)
- Western hemlock (*Tsuga heterophylla*) (TSHT)
- Western red cedar (Thuja plicata) (THPL)

Noble fir and western hemlock are included in the "Hem-fir" combination (WABA)

https://www.forestry.gov.uk/pdf/FCRN026.pdf/\$file/FCRN026.pdf

ANNIVERSARY PRIZES

On the list

- European silver fir (Abies alba) (ABAL)
 - in European spruce and fir whitewood (WPCA)
- Pacific silver fir (aka amabilis fir) (Abies amabilis) (ABAM)

- Grand fir (Abies grandis) (ABGR)
 - Also in "Hem-fir" mix (WABA)

On the list

 Japanese incense cedar (aka sugi / Japanese red cedar) (Cryptomeria Japonica) (CYJP)

Serbian spruce (Picea omorika)

Not forgetting hardwoods

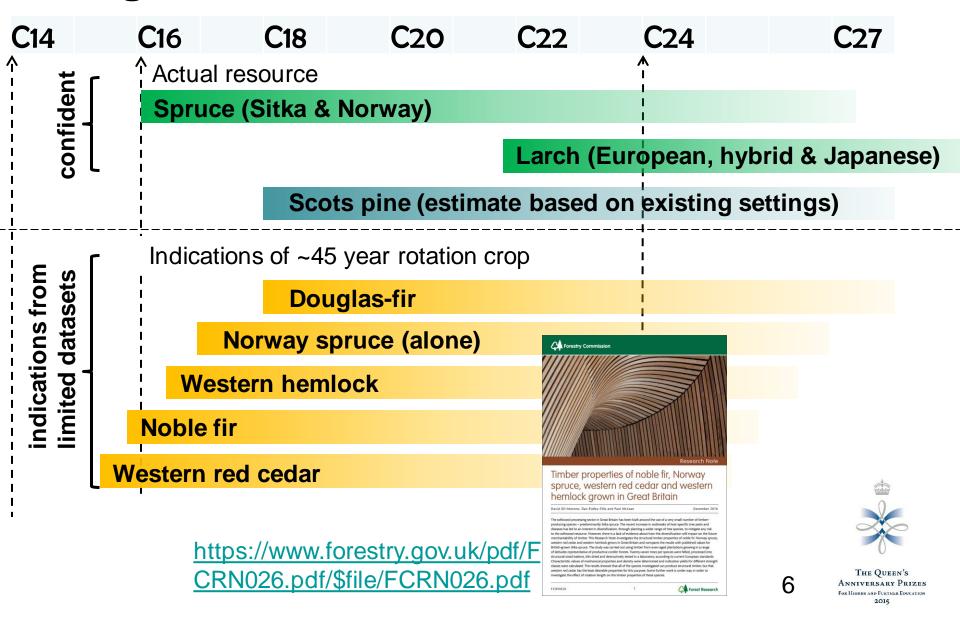
- Sycamore (Acer pseudoplatanus) (ACPS)
- Birch (Betula pendula/pubescens) (BTXX)

EN338 now allows hardwoods to be graded to the C-classes (the "softwood" grades)

...particularly useful for the less dense species

Declaration of performance usually via

Strength classes (or "grades")



e.g. EN 338:2016

	Class	C14	C16	C18	C20	C22	C24	C27	
Strength properties in N/mm ²									
Bending	$f_{m,,k}$	14	16	18	20	22	24	27	
Tension parallel	$f_{t,0,k}$	7,2	8,5	10	11,5	13	14,5	16,5	
Tension perpendicular	ft,90,k	0,4	0,4	0,4	0,4	0,4	0,4	0,4	
Compression parallel	fc,0,k	16	17	18	19	20	21	22	
Compression perpendicular	$f_{c,90,k}$	2,0	2,2	2,2	2,3	2,4	2,5	2,5	
Shear	$f_{v,k}$	3,0	3,2	3,4	3,6	3,8	4,0	4,0	
Stiffness properties in kN/mm ²	•								
Mean modulus of elasticity parallel bending	Em,0,mean	7,0	8,0	9,0	9,5	10,0	11,0	11,5	1
5 percentile modulus of elasticity parallel bending	$E_{m,0,k}$	4,7	5,4	6,0	6,4	6,7	7,4	7,7	
Mean modulus of elasticity perpendicular	E _{m,90,mean}	0,23	0,27	0,30	0,32	0,33	0,37	0,38	1
Mean shear modulus		0,44	0,50	0,56	0,59	0,63	0,69	0,72	
Density in kg/m ³	•		•	•			•		
5 percentile density	ρ_k	290	310	320	330	340	350	36	
Mean density	$ ho_{mean}$	350	370	380	400	410	420	4.	
		<u> </u>							

UK-grown timber

UK-grown timber

C14	C16	C18	C20	C 22	C24	C27
↑	Actual res	ource	^			
 	Spruce (S	Sitka & No	rway)		į	
T	Educated	guesses			 	
	Europea	<mark>ın silver fir</mark>				
 	Pacific s	silver fir				
 	Grand fi	r				
Japanese	red cedar				Stiffness	limited
	Serbia	n spruce			Strength	limited?
 	 	Sycan	nore			
	ı	Birch				

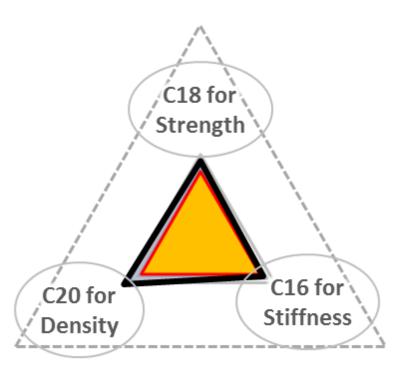
Routes for structural timber

- Routes for CE marking
 - Visual grading
 - No minimum requirement, but need some 200-400 pieces
 - Machine grading (machine control)
 - If machine already used, requires 450 pieces (ideally 1000)
 - Machine grading (output control)
 - Requires continuous testing, not suited to small volumes

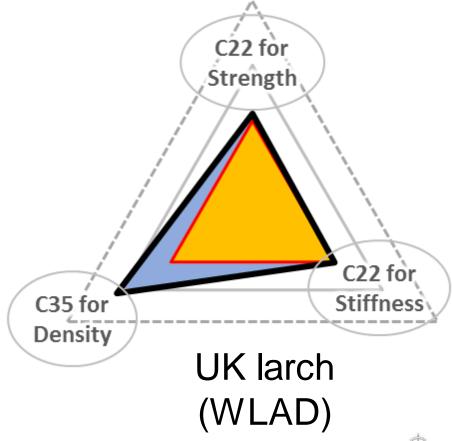
Expensive...requires lots of timber

Bypassing CE marking

- One off buildings
- Within a manufacturing process


...but still need to be safe

And convince an engineer

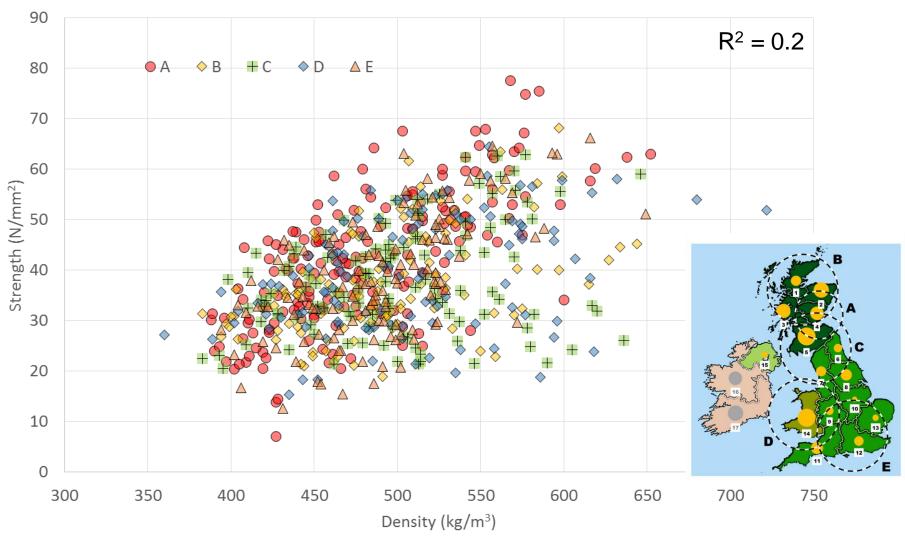


Commodity strength classes

British spruce (WPCS)
"C16+"

THE QUEEN'S

ANNIVERSARY PRIZES


Example, UK larch with MTG

Strength and density

User defined strength classes for home grown timber (can be graded with Brookhuis MTG960)

Option 1 – approximately ¼ & ¾			Option 2 – approximately ½ & ½					
C24	Strength > C24 C24 Stiffness = C24 Density > C27 Strength = C16 C16 Stiffness = C16 Density = C18 NapierSC NapierSC	British spruce	NapierSB	Strength = C22 Stiffness = C22 Density = C27	C22			
C16		NapierSC	Sitka spruce (<i>Picea sitchensis</i>) Norway spruce (<i>Picea abies</i>) GB & IE	NapierSD	Strength > C14 Stiffness = C14 Density = C16	C14		
C30	Strength = C30 Stiffness = C35 Density > C50	NapierLA	UK larch European larch (Larix decidua) Hybrid larch (Larix x eurolepsis) Japanese larch (Larix kaempferi) GB	NapierLB	Strength > C27 Stiffness = C30 Density > C50	C27		
C18	Strength > C20 Stiffness = C18 Density = C40	NapierLC		NapierLD	Strength = C20 Stiffness = C16 Density = C35	C16		

What is not going on to help?

- Standardisation demanding more and more test information
- Unfamiliarity of engineers with wood
- Habitual specification of the usual species
- Over specification of grade

WoodProps Ireland

- New joint project (IE with UK)
 - Timber Engineering Research Group at NUI Galway
 - Centre for Wood Science & Technology, Edinburgh Napier University

Funded by the Forestry Division of the Department of Agriculture, Food and the Marine.

WoodProps Ireland

- Characterisation of Irish-grown timber
- Work at National and European level in standardisation for structural timber quality and production
- Exchange of knowledge related to wood quality, products and standards with forestry and processing industries
- Expert advice to regulatory bodies related to construction of modern timber buildings

WoodProps Ireland

Sitka / Norway spruce

- Link to UK work
- Monitoring, prediction of trends
- Differences public & private estates?
- Other sources of degrade

Other species:

- Norway spruce
- Douglas-fir
- Scots pine & lodgepole pine
- ...broadleaves?

Research Report

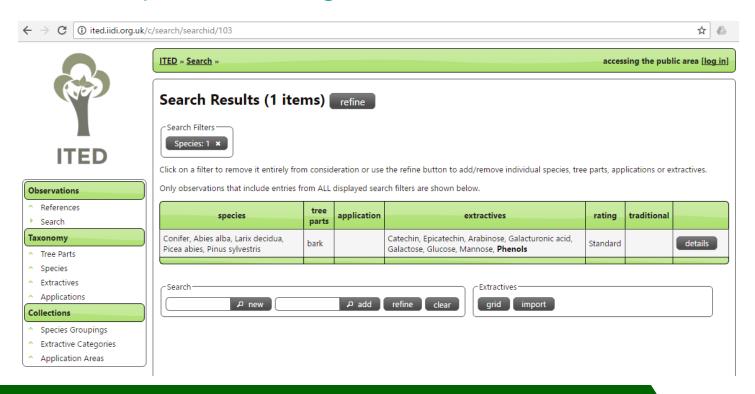
Wood properties and uses of Sitka spruce in Britain

http://www.forestry.gov .uk/pdf/FCRP015.pdf/ \$FILE/FCRP015.pdf

THE QUEEN'S

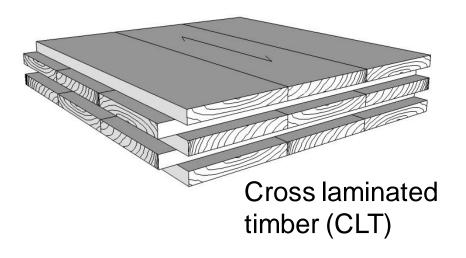
ANNIVERSARY PRIZES

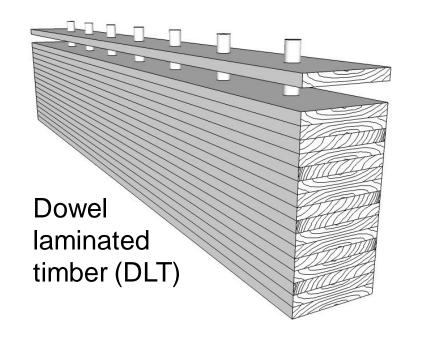
Other markets

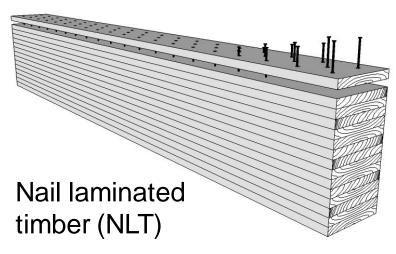

- Laminated products
- Engineered wood products
- Panel products
- Modified wood
 - Thermal modification
 - Chemical modification
- Bioenergy

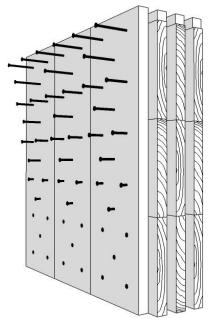
Other markets

- Biorefinery
 - Extractives
 - http://ited.iidi.org.uk/


Finally: it's what you do with it





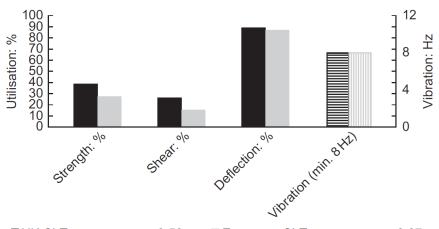

Laminated products

Nailed cross laminated timber (nCLT)

Dowel laminated timber (DLT)

Nailed cross laminated timber (nCLT)

Cross laminated timber (CLT)


Journal:

Crawford, D., Hairstans, R., Smith, S. & Papastavrou, P. (2015) "UK Cross-Laminated Timber (CLT): Market Assessment, Resource Compatibility and Structural Performance" ICE Construction Materials Volume 168, Issue 3.

Conference:

Crawford, D., Hairstans, R. & Smith, R. (2013) "Feasibility of Cross-Laminated Timber Production from UK Sitka Spruce" COST Action FP1004 Focus Solid Timber Solutions -European Conference on Cross Laminated Timber, 23rd – 24th May, Graz University of Technology

CLT design criteria: 120 L3s

■UK CLT – max. span = 3.59 m

■ European CLT – max. span = 3.67 m

■ European CLT – max. span = 3.67 m

