4	
1	
2	
3	
Λ	
4	
5	
6	
7	
0	
8	
9	
10	
11	
11	
12	
13	
14	
45	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
20	
30	
31	
32	
33	
33	
34	
35	
36	
27	
37	
38	
39	
40	
14	
41	
42	
43	
44	
Λ.Ε.	
40	
46	
47	
48	
40	
49	
50	
51	
52	
52	
53	
54	
55	
EC	
00	
57	
58	
59	
00	

1	Gregarines (Apicomplexa, Gregarinasina) in psocids (Insecta, Psocoptera) including a new
2	species description and their potential use as pest control agents.
3	
4	Sonja Rueckert ^{a*} , Dušan Devetak ^b
5	
6	^a School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh,
7	EH11 4BN, Scotland, UK
8	^b Department of Biology, Faculty of Natural Sciences and Mathematics, University of
9	Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
10	
11	*Corresponding author. E-mail address: s.rueckert@napier.ac.uk
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

Abstract:

Gregarine apicomplexans are unicellular organisms that infect invertebrate hosts in marine, freshwater and terrestrial habitats. The largest group of invertebrates infested on land is the insects. The insect order Psocoptera (booklice) has recently gained wider interest due to specimens occurring in stored food products and therefore being considered pest organisms. Biological control agents are often used to eliminate pest organisms. In this study we examined the psocid *Dorypteryx domestica*, an invasive psocid species that is spreading all over the world. We were able to isolate and describe a new gregarine species (Enterocystis dorvptervgis sp. n.) infecting D. domestica. The trophozoites are panduri- or pyriform and their association/syzygy is caudo-frontal. The surface is inscribed by longitudinal epicytic folds covering the complete cell. Phylogenetic analyses of the SSU rDNA gene revealed an only weakly supported relationship with two *Gregarina* species G. ormieri and G. basiconstrictonea, both from tenebrionid beetles. Gregarines have been proposed to have some potential as biological control agents for several insects. Identifying the gregarine species infecting pest organisms like psocids is a first step and prerequisite for the probable utilization of these parasites as biological control agents in the future. Keywords Apicomplexan parasites, Enterocystidae, phylogeny, biological control agent

Introduction

Psocoptera is an order of small soft-bodied hemimetabolous insects commonly called psocids, barklice or booklice. There are around 2,000 species described in the world. The geographical origin of many domestic species remains unknown, as psocids have been transported by humans, via the holds of ships, in packing materials and trade goods (New, 1987). Dorvptervx domestica (Smithers, 1958) is an interesting psocid species that was originally described from human habitations in Zimbabwe, Africa and is an invasive species spreading all over the world since 1973 (Lienhard, 1977). Since then it has been detected from at least 16 European countries.

A considerable number of psocids occur in buildings, such as human dwellings, food stores, warehouses and granaries (Baz and Monserrat, 1999; Mockford, 2003). In general, Psocoptera feed on algae, fungi, lichens, particles of organic debris, small eggs and dead bodies of insects (Mockford, 2003). Some species occur typically in domestic environments such as humid rooms, basements, damp walls where they feed on fungal hyphae and spores of moulds (Baz and Monserrat, 1999). A few psocid species occurring in buildings feed on the paste and bindings of old books as well as on the fungal spores and hyphae, which invade the pages (Mockford, 2003). In human dwellings, the main effect due to psocopteran presence in/on buildings is lowering property values (New, 1987). In Spain for example, three psocid species - one of them was *Dorypteryx domestica* – have been described as one cause for the propagation of the alga *Pleurococcus* on recently constructed buildings (Baz and Monserrat, 1999), which is at least disfiguring, but might also have effects on the decay of the building material.

This insect order has only recently become of greater interest, when a large number of specimens have been found in stored products. Even though the infestation of food products by psocids rarely causes health problems in humans such as asthmatic reactions and allergies

from house dust (Spieksma & Smits, 1975; Mockford, 2003) or skin diseases (Conci and Franceschi, 1953; Agostini et al., 1982), it is still unhygienic and certain psocid species can even serve as intermediate hosts of some ruminant infecting cestodes (Svadzhian, 1963; Kuznetsov, 1966).

Some psocids, like *Dorvptervx domestica*, may occasionally become a nuisance in habitations, or play a role as pest insects in stored food products. Parasites and predators are known be important natural regulators of pest population densities in some pest insects. So far, endoparasites (gregarines, cestodes, nematodes and fungi), ectoparasites (acari) and parasitoids (Hymenoptera) have been reported for psocids. As parasites can shape the community structure of their host organisms, it is important to gain knowledge on these parasites. Records on the occurrence of for example gregarines in psocids are sparse (e.g. Geus, 1969; Sarkar and Haldar, 1980; Devetak et al., 2013) and there is no literature about protozoan pathogens found in natural populations of *Dorypteryx domestica*. In general gregarine apicomplexans infect marine, freshwater and terrestrial invertebrates. Due to the sheer number of insects in terrestrial habitats most eugregarines are described from terrestrial hosts. However, gregarines have been reported from less than 1% of all invertebrate species, leaving the gregarine fauna of 99% of potential invertebrate hosts to be discovered (Clopton, 2000). Even though most gregarine species are described from insects, there are only five gregarine species described from around 12 psocopteran species (two only identified to genus level) belonging to 10 genera in Germany, Switzerland and India. There are four species of septate gregarines (Hyalospora psocorum, H. stenopoci, Liposcelius coronata and Ancvrophora similis) belonging to two families (Hirmocystidae Grassé, 1953; Actinocephalidae Léger, 1892) and three genera (Hyalospora Schneider, 1875; Liposcelius Sarkar & Haldar, 1980; Ancyrophora Léger, 1892). There is also one aseptate gregarine

(Enterocystis bengalensis) of the family Enterocystidae Codreanu, 1940 and the genus Enterocystis Zwetkow, 1926, known to infect psocids (Sarkar, 1983; Desportes and Schrével, 2013). All available descriptions of these species are based on line drawings only (von Siebold 1839, Geus, 1969; Sarkar and Haldar, 1980; Sarkar, 1983). There are no ultrastructural or molecular data available for the species infecting Psocoptera hosts (Desportes and Schrével, 2013). In the current study we set out to investigate *Dorypteryx domestica* from Slovenia for the presence of gregarines. We studied the general morphology and phylogenetic position of the gregarine found to parasitize D. domestica and we discuss the possibility of employing gregarines as biological control agents. Material and Methods Collection and isolation of organisms Specimens of *Doryptervx domestica* were collected by the second author from a basement of a house in Maribor, Slovenia (46°33'58.5"N 015°39'15.2"E). The gut content was released in 0.9% saline solution by teasing apart the intestines of the psocid with fine-tipped forceps under a dissecting microscope (Zeiss Stemi 2000). The gut material was examined under an inverted microscope (Zeiss Axiovert A1) and parasites were isolated with a handdrawn glass pipette and washed three times in 0.9% saline solution, before being examined and photographed under the inverted microscope or prepared for DNA extraction. Light and scanning electron microscopy Light micrographs of specimens were taken with a digital camera Nikon DN100 attached to a microscope (Nikon E 800). Differential interference contrast (DIC) light micrographs were

taken with a 5 megapixel CMOS camera AxioCam Erc 5s, attached to an inverted microscope
(Zeiss Axiovert1).

Between 10 and 20 specimens of the isolated gregarine species were prepared for scanning electron microscopy (SEM). Individuals were deposited directly into the threaded hole of a Swinnex filter holder, containing a 10 µm polycarbonate membrane filter (Millipore Corp., Billerica, MA), that was submerged in 10 ml of 0.9% saline solution within a small canister (2 cm diam. and 3.5 cm tall). A piece of Whatman No. 1 filter paper was mounted on the inside base of a beaker (4 cm diam. and 5 cm tall) that was slightly larger than the canister. The Whatman filter paper was saturated with 4% (w/v) OsO₄ and the beaker was turned over the canister. The parasites were fixed by OsO₄ vapors for 30 min. Ten drops of 4% (w/v) OsO₄ were added directly to the saline solution and the parasites were fixed for an additional 30 min. A 10-ml syringe filled with distilled water was screwed to the Swinnex filter holder and the entire apparatus was removed from the canister containing seawater and fixative. Filters were washed with water and dehydrated with a graded series of ethyl alcohol. They were critical point dried with CO₂. Filters were mounted on stubs, sputter coated with 5 nm of gold, and viewed under a scanning electron microscope (Hitachi). Some SEM data were presented on a black background using Adobe Photoshop CS5 (Adobe Systems Incorporated, San Jose, CA).

144

339 145 DNA isolation, PCR, cloning, and sequencing

Two individual trophozoites were isolated from the dissected hosts, washed three times in saline solution, and deposited into a 1.5-ml microcentrifuge tube. DNA was extracted using the MasterPureTM Complete DNA and RNA Purification Kit (Epicentre Biotechnologies, Madison, WI). Small subunit rDNA (SSU rDNA) sequences were PCR-amplified using a total volume of 25µl containing 2 µl of primer, 2.5 µl of DNA template, 20.5 µl of dH2O and

356		
357 358	151	one PuReTaq Ready-to-go PCR Bead (GE Healthcare, Quebec, Canada). The SSU rDNA
359 360	152	sequences from these species were amplified in one fragment (~1800 basepairs) using
361 362	153	universal eukaryotic PCR primers F1 5'-GCGCTACCTGGTTGATCCTGCC-3' and R1 5'-
363 364	154	GATCCTTCTGCAGGTTCACCTAC-3'. PCR was performed using the following protocol:
365 367	155	After 4 cycles of initial denaturation at 94 °C for 4.30 min, 45 °C for 1 min and 72 °C for 1.45
368 369	156	min, 34 cycles of 94 °C for 30 sec (denaturation), 50 °C for 1 min (annealing), 72 °C for 1.45
370 371	157	min (extension), followed by a final extension period at 72 °C for 10 min. PCR products
372 373	158	corresponding to the expected size were gel isolated using the UltraCleanTM 15 DNA
374 375	159	Purification kit (MO Bio, Carlsbad, California) and cloned into the pSC-A-amp/kan vector
376 377	160	using the StrataClone PCR Cloning Kit (Stratagene, AgilentTechnologies, California). Eight
378 379	161	cloned plasmids were digested with EcoRI and screened for size. Two clones were sequenced
380 381	162	with ABI big dye reaction mix using vector primers and internal primers oriented in both
383 384	163	directions using the cycle sequencing technology on an ABI 3730XL sequencing machine
385 386	164	(eurofins Genomics, Germany).
387 388	165	
389 390	166	The new SSU rDNA sequences were initially identified by BLAST analysis and subsequently
391 392	167	verified with molecular phylogenetic analyses (GenBank Accession number for Enterocystis
393 394	168	dorypterygis sp. n.: KY697695).
395 396	169	
397 398 300	170	Molecular phylogenetic analysis
400 401	171	The new SSU rDNA sequence was aligned with 116 other SSU rDNA sequences,
402 403	172	representing the major lineages of gregarines (with an emphasis on terrestrial gregarines and
404 405	173	environmental sequences) and dinozoans as relevant outgroup. The 117-sequence alignment
406 407	174	was subsequently edited and fine-tuned using MacClade 4.08 (Maddison and Maddison,
408 409 410 411	175	2005). The program PhyML (Guindon and Gascuel 2003) was used to analyze the 117-
412 413		7

414		
415		
416	176	sequence alignment (774 unambiguously aligned sites; gaps excluded) with maximum-
417		
418	177	likelihood (ML). Smart Model Selection selected a general-time reversible (GTR) model of
419		
421	178	nucleotide substitutions (Posada and Crandall, 1998) that incorporated invariable sites and a
422		
423	179	discrete gamma distribution (six categories) (GTR + G+ I + F model: $\alpha = 0.725$ and fraction
424		
425	180	of invariable sites = 0.187) under the Akaike Information Criterion (AIC) (Guindon et al.,
426	_	
427	181	2010). ML bootstrap analyses were performed on 500 pseudoreplicates, with one heuristic
429	100	search ner needed replicate (Zwield, 2006) using the same program set to the CTP model (C
430	182	search per pseudo-replicate (Zwicki, 2000), using the same program set to the GTK model +G
431	182	+ I + F. Bayesian analysis of the 117-sequence dataset was performed using the program
432	105	+ 1 + 1. Dayesian analysis of the 117-sequence dataset was performed using the program
433	184	MrBayes 3.1.2 (Huelsenbeck and Ronquist 2001) The programme was set to operate using
434		
430 436	185	the following parameters: nst=6, ngammacat=5, rates=invgamma. Parameters of Metropolis
437		
438	186	Coupling Markov Chains Monte Carlo (mcmc) were set to: nchains=4, nruns=4, temp=0.2,
439		
440	187	ngen=7000000, samplefreq=100, burninfrac= 0.5 (the first 50% of 70000 sampled trees, i.e.
441		
44Z 443	188	the first 35000, were discarded in each run). The computation was performed on the CIPRES
444	190	Science Gateway V 3.3 (Miller et al. 2010)
445	107	Science Gateway V 5.5 (Winter et al., 2010).
446	190	
447		
448	191	
449 450		
451	192	Results
452		
453	193	Of 31 investigated psocopteran specimens, 21 were infected with gregarines, giving an
454	104	infaction provalence of 680/ The mean intensity of infaction was 12 gradering per best with
455	194	infection prevalence of 68%. The mean intensity of infection was 15 gregarines per nost with
456	195	a range of 6-24 gregarines per host
458	175	u funge of 0 2 f gregurines per nost.
459	196	
460		
461	197	Morphology of Enterocystis dorypterygis sp. n.
462		
463	198	Enterocystis dorypterygis sp. n.: Trophozoites were isolated from the psocid Dorypteryx
404 465		
466	199	domestica (Smithers, 1958) (Psocoptera; Psyllipsocidae). The cell morphology showed
467	200	conoral similarities with Enterementic hangelousis from a provid species (Proceethnones on)
468	200	general similarities with <i>Emerocysus bengalensis</i> nom a psocid species (<i>Psocainropos</i> sp.)
469		
470		
472		8
		-

474		
475 476	201	described by Sarkar (1983). The cells were elongated and panduriform with a little
477 478	202	indentation at the anterior end of the cell, but no septum (Fig. 1). Trophozoites were $59.3 \pm$
479 480	203	6.9 μ m (45.6–69.0 μ m, n = 35) long (mean ± SD; min–max; number) and 25.4±2.5 μ m
481 482	204	(21.5–30.7 μ m, n = 35) wide at their widest part. The anterior end was mostly a bit globular
483 484 485	205	and rounded, while the posterior end was more blunt (Fig. 1a-c). Some of the cells were more
485 486 487	206	pyriform with a long anterior neck-like region (Fig. 1a). The round nucleus [7.8 (5.6-10) μ m x
488 489	207	8.7 (6.5-11), $n = 21$] was situated in the posterior half of the cell (Fig. 1a-b), but sometimes
490 491	208	shifted to the anterior half (Fig. 1c-d). Gametocysts were spherical and the diameter was 30
492 493	209	μ m (25.5-39.2 μ m; n=4). Associations between mature trophozoites (or gamonts) appear to be
494 495	210	caudo-frontal (Fig. 1c-d). The SEM micrographs demonstrated that the whole cell surface was
496 497	211	inscribed by longitudinal epicytic folds (~200) (Fig. 1e). Neither the anterior nor the posterior
498 499	212	end was free of folds (Fig. 1e-f). The epicytic folds appeared to be arranged in waves along
500 501	213	the longitudinal axis (Fig. 1e, g). In the middle of the cell, the density of folds was 6-8
502 503 504	214	folds/micron (Fig. 1g). Trophozoites were stiff and capable of gliding movements.
505 506	215	
507 508	216	Molecular phylogeny of Enterocystis dorypterygis sp. n.
509 510	217	Molecular phylogenetic analyses of the 117-sequence dataset produced a tree topology with a
511 512	218	moderately supported clade of dinoflagellates (outgroup) and a moderately supported clade of
513 514	219	apicomplexan sequences (Fig. 2). The deeper branches within the tree were all poorly
515 516	220	resolved. Within the apicomplexans three clades were formed, consisting of (1) piroplasmids,
517 518	221	coccidians, cryptosporidians, rhytidocystids, monocystids, neogregarines and mainly
519 520 521	222	terrestrial eugregarines, (2) archi- and eugregarines from mainly polychaete hosts and (3)
522 523	223	mainly eugregarines from ascidian, polychaete, nemertean and crustacean hosts. The new
524 525	224	sequence of Enterocystis dorypterygis sp. n. clustered within the strongly supported clade of
526 527 528 529	225	mainly terrestrial eugregarines comprised of the genera Amoebogregarina, Gregarina,

Leidyana, *Protomagalhaensia* and the as archigregarine considered *Caliculium*. The new
sequence formed a low supported clade with two *Gregarina* species *G. ormieri* and *G. basiconstrictonea* both from tenebrionid beetles. Those three sequences formed a sistergroup
to the strongly supported clade of *Leidyana* and *Protomagalhaensia* species.

231 Discussion

The majority of eugregarine species are reported from insects. Most of these belong to the septate gregarines (trophozoite devided into protomerite and deutomerite by a septum) and only a few belong to the aseptate gregarines (trophozoite composed of single compartment lacking the septum). As they have been reported from less than 1% of the known insect species the gregarine fauna of over 99% is still to be discovered (compare Clopton, 2000). A good example here are the Psocoptera, of the ~2000 described psocid species, only 10 have been reported to be infected with gregarine apicomplexans. In this study we were able to describe a new gregarine species (Enterocystis dorypterygis sp. n.) from a new psocid host species (Dorvptervx domestica).

67 241

9 242 Enterocystis dorypterygis sp. n.

The new gregarine species isolated from the psocopteran D. domestica is an aseptate gregarine, and a first record of a gregarine infection in this psocid. The characteristic of a missing septum distinguishes the new species from all described septate gregarines (Hyalospora psocorum, H. stenopoci, Liposcelius coronata and Ancyrophora similis) infecting Psocoptera (nine species including: Peripsocus alboguttatus, Amphigerontia bifasciata, Psocus longicornis, P. quadripunctatus, Caecilius flavidus, Lachesilla quercus, Mesopsocus unipunctatus, Graphopsocus cruciatus, Stenopsocus immaculatus). All nine Psocoptera species are actually infected by H. psocorum (Geus, 1969), whereas all other

sepatate gregarine species are reported from just a single psocid host species (Desportes and Schrével, 2013). There is only one known aseptate gregarine species (Enterocystis bengalensis), which belongs to the family Enterocystidae Codreanu, 1940, and was described by Sarkar (1983) from *Psocathropos (syn. Psocatropos)* sp. in India. Desportes (2013) questions this identification and new species description as all other species belonging to the family Enterocystidae infect the aquatic larvae of Ephemoptera and not any Psocopteridae. The psocid genus infected with E. bengalensis is falsly named as Psocoptrips sp. in Desportes (2013). The families/genera/species of aseptate gregarines known to infect terrestrial and freshwater invertebrates, are all recorded from other invertebrates than Psocoptera. The newly described gregarine species is most similar to Enterocystis bengalensis than any other Enterocystis species, based on the morphology of the trophozoites and associations. Due to its smaller size and the different host species the described gregarine is considered a new Enterocystis species. Molecular phylogeny of Enterocystis Up to this date there is no reference sequence of any Enterocystis species available in any of the public databases such as GenBank. The sequence of our newly described species E. dorypterygis sp. n. clustered within the highly supported clade of mainly terrestrial gregarines (Fig. 2). The closest relatives were species of the genus Gregarina infecting Tenebrionidae, Leidvana and Protomagalhaensia both infecting Blattaria, all of which are septate eugregarines. This is an example of another aseptate eugregarine clustering within a clade of septate eugregarines, all infecting arthropods and in this case insects. It has been questioned before, if the separation of septate and aseptate gregarines, estblished by Chakravarty (1959) reflects the actual phylogenetic relationships of eugregarines (e.g. Rueckert et al., 2011). The current study and the study by Rueckert et al. (2011) clearly show that the septate

eugregarines do not form a monophyletic clade. Therefore, the taxonomic separation of sepatate and aseptate eugregarines based on a morphological feature (the septum) should be deemed invalid. What still remains uncertain is the evolutionary history of certain septate and aspetate gregarines infecting insects. At the moment there are two possible scenarios: i) according to Leander (2006, 2008) a lecudinid stem group gave rise to all other eugregarine lineages and the eugregarines of insects became compartmentalized by forming a transverse septum between cell regions, so there might be some lineages that remained without a septum or ii) it could be a loss of the septum giving rise to secondary aseptate gregarines as was suggested by Grassé (1953). The latter one also indicating that the septum is not a reliable character in gregarine taxonomy. One example of such an aseptate gregarine in an insect is the genus *Gamocystis*, which only presents a septum in a very early trophozoite stage (Clopton, 2000; Desportes and Schrével, 2013). No septum was detected in any of the observed trophozoit stages of *E. dorypterygis* sp. n. in this study. Based on our current knowledge we have decided to assign the gregarine species infecting the psocopteran Dorypteryx domestica to the genus Enterocystis. The two species Enterocystis dorypterygis sp. n. and E. bengalensis will be validated, as soon as molecular sequence data of the type species of *Enterocystis* or any other species belonging to this genus become available. Gregarines as possible biological control agents Insects encompass a great number of pest species and so far several have been recorded as hosts of gregarine apicomplexans. The present knowledge on the interactions between pest insects and their pathogens is still insufficient. Gregarines infecting mosquitos have been mentioned in the literature as potential biological control agents with opposing views for a

- few decades (Lantova and Volf, 2014). Whereas, the possibility of utilizing gregarines as pest control agents in cockroaches, grasshoppers, fleas, beetles and flies has only recently entered any form of discussion. Lopes and Alves (2005) for example tested the effect of gregarines on the susceptibility of cockroaches towards control measures. Blatella germanica adults infected with gregarines were more susceptible to the treatment with the fungus Metarhizium anisopliae and triflumuron than healthy cockroaches. Studies have shown that gregarines have an impact on fecundity, feeding and mortality rates in economically important grasshopper species, justifying the utilization of gregarine apicomplexans in biological control monitoring of these pest species (Pushkala and Muralirangan, 1997; Johny et al., 2000). Cat fleas, *Ctenocephalides felis*, are infected with the gregarine *Steinina ctenocephali* and Alarcon et al. (2011) were able to confirm its potential as biological control agent for this cat parasite. A few studies have also been carried out on beetles. Due to their high infection rate in the grey corn weevil, *Tanymecus dilaticollis*, gregarines play a role as natural regulators of the beetle's population density (Takov et al., 2013). A few gregarines species have been reported in bark beetles (Curculionidae: Scolytinae) to date (Takov et al., 2011; Pernek et al., 2009; Yaman and Baki, 2010). Consequently, they could play a role as pest control agents against bark beetles in the future. Among Diptera or flies, phlebotomine sand flies (Psychodidae) and mosquitos (Culicidae) are important vectors of human pathogens. Gregarines infecting phlebotomine flies of the genera Lutzomyia and Phlebotomus were studied (Lantova et al., 2011; McCarthy et al., 2011) and the results suggested that they could possibly be an efficient control method of phlebotomine populations. Despite the fact that gregarines increased the mortality of immature stages in Phlebotomus sergenti and negatively affected the survival of adult flies, their potential for use in pest control is questionable as a result of several factors, including this pathogen's strict

768 760		
769 770	00/	hast marificity (Lantana et al. 2011) While the state of successing in Later marine in the
771 772	326	nost specificity (Lantova et al., 2011). While the study of gregarines in Lutzomyta longipalpis,
773	327	the vector of visceral leishmaniasis, suggested that they are a possible efficient control agents
775	328	under natural conditions (McCarthy et al., 2011).
776 777	329	In mosquitoes, the susceptibility of Culex bitaeniorhynchus to two species of Ascogregarina
779 780	330	parasites naturally infecting Aedes mosquitoes was determined (Mourya and Soman, 2000).
780 781 782	331	The gregarines caused high mortality of <i>Culex</i> mosquitoes, but were not able to complete their
783 784	332	life cycle in the unnatural hosts. The survival of infected mosquitoes was significantly
785 786	333	reduced.
787 788	334	
789 790	335	Gregarines do infect numerous invertebrates that are classified as pest organisms due to their
791 792 702	336	negative impact on for example crops and human health. Understanding the gregarine-host
793 794 795	337	interactions is crucial to make any progress in the possible utilization of gregarines to control
796 797	338	aforementioned pests. The identification of gregarine species infecting these pest organisms
798 799	339	examplified in this study by E. dorypterygis sp. n. infesting Dorypterix domestica is a first
800 801	340	and essential step in that direction.
802 803	341	
804 805	342	Taxonomic Summary
806 807 808	343	Superphylum Alveolata Cavalier-Smith, 1991
809 810	344	Phylum Apicomplexa Levine, 1980, emend. Adl et al., 2005
811 812	345	Class Conoidasida Levine, 1988
813 814	346	Subclass Gregarinasina Dufour, 1828
815 816	347	Order Eugregarinorida Léger, 1900
817 818	348	Family Enterocystidae Codreanu, 1940
819 820	349	Genus Enterocystis Zwetkow, 1926
822 823 824	350	Enterocystis dorypterygis sp. n. Devetak and Rueckert, 2017
825 826		14

827		
828		
829	351	Species diagnosis: Trophozoites elongated and panduriform, little indentation at anterior end,
830		
832	352	but no septum. Trophozoites on average 59.3 µm long and 25.4 µm wide. Anterior end
833		
834	353	globular and rounded, posterior end more blunt. Some cells pyriform with a long anterior
835	054	neal till a region. Downd nucleus situated in the negtorier half of the call sometimes shifted to
836	354	neck-like region. Kound nucleus situated in the posterior han of the cen, sometimes sinted to
838	355	the anterior half. Gametocysts spherical, diameter 30 um, Associations caudo-frontal, Cell
839		
840	356	surface inscribed by longitudinal epicytic folds (~200), including anterior and posterior end,
841		
842	357	arranged in waves along longitudinal axis. Density of folds 6-8 folds/micron. Trophozoites
043 844	050	
845	358	suifi, capable of gliding movements.
846	359	Type host: Dorvntervx domestica (Smithers 1958) (Psocodea: Psyllipsocidae)
847	557	Type nose. Dorypieryx domestica (binniers, 1956) (1 socodea: 1 sympsociaae).
848	360	Site: Intestine.
049 850		
851	361	Type locality: Maribor, Slovenia (46°33'58.5"N 015°39'15.2"E).
852	- / -	
853	362	Type micrographs: Figs. 1a, e.
854 855	363	DNA sequence: Small subunit rDNA (Genbank Accession number: xxx)
856	000	Divit sequence: Sman Subant (Divit (Genounk Recession number: AMA).
857	364	Etymology: Species-group name <i>dorypterygis</i> is is a noun in the genitive case (Article
858		
859	365	11.9.1.3 of the ICZN 1999) derived from the genus-group name <i>Dorypteryx</i> , referring to the
861	0//	hard of the many Declaration and the second
862	300	nost of the new <i>Enterocysus</i> species.
863	367	
864	007	
865	368	Acknowledgements
867		
868	369	We are grateful Dr. Arturo Baz (University of Alcalá, Madrid, Spain) for the identification of
869		
870	370	the psocopteran host. SR was financially supported through a Research Excellent Grant
871 872		
873	371	provided by the School of Applied Sciences, Edinburgh Napier University.
874	372	
875	572	
876	373	References
878 878	0,0	
879	374	Agostini, G., Mian, E.U., Loi, G., 1982. Manifestazioni cutanee provocate da Psocotteri
880		
881	375	(Insecta, Psocoptera). Frust. Entomol. NS. 2, 133-138.
882		
003 884		
885		15

886		
887		
888 889	376	
890 891	377	Alarcon, M.E., Huang, C.G., Tsai, Y.S., Chen, W.J., Dubey, A.K., Wu, W.J., 2011. Life
892 893	378	Cycle and Morphology of Steinina ctenocephali (Ross 1909) comb. nov (Eugregarinorida:
894 895	379	Actinocephalidae), a Gregarine of Ctenocephalides felis (Siphonaptera: Pulicidae) in Taiwan.
890 897	380	Zool. Stud. 50, 763-772.
899 900	381	
901 902	382	Baz, A., Monserrat, V.J., 1999. Distribution of domestic Psocoptera in Madrid apartments.
903 904	383	Med. Vet. Entomol. 13, 259-264.
905 906	384	
907 908	385	Chakravarty M.M., 1959 Systematic position of some genera and classification of the
909 910 911	386	suborder Cephalina Delage and Hérouard. Proc. Zool. Soc. Calcutta.12, 71-81.
912 913	387	
914 915	388	Clopton, R.E., 2000. Phylum Apicomplexa Levine, 1970: Order Eugregarinorida Léger, 1900.
916 917	389	In: Lee, J.J., Leedale, G., Patterson, D., Bradbury, P.C. (eds.), Illustrated Guide to the
918 919	390	Protozoa, 2nd edition. Society of Protozoologists, Lawrence, Kansas, pp. 205-288.
920 921	391	
922 923	392	Conci, C., Franceschi, T., 1953. Un curioso caso di dermatite umana provocata forse da
924 925 926	393	Psocotteri. Boll. Soc. Entomol. Ital. 83, 17-20.
927 928	394	
929 930	395	Desportes, I., 2013. Systematics of terrestrial and freshwater gregarines. In: Desportes, I.,
931 932	396	Schrével, J. (eds.), Treatise on Zoology - Anatomy, Taxonomy, Biology. The Gregarines (2
933 934	397	vols): The Early Branching Apicomplexa. BRILL, Leiden, pp. 377-664.
935 936	398	
937 938 930	399	Desportes, I., Schrével, J., 2013. Treatise on Zoology - Anatomy, Taxonomy, Biology. The
940 941 942 943	400	Gregarines (2 vols): The Early Branching Apicomplexa. BRILL, Leiden.
944		16

945		
946		
947 948	401	
949 950	402	Devetak, D., Omerzu, M., Clopton, R.E., 2013. Notes on the gregarines (Protozoa:
951 952 953	403	Apicomplexa: Eugregarinorida) of insects in Slovenia. Annales, Ser. Hist. Nat. 23, 73-89.
954 955	404	
956 957	405	Geus, A., 1969. Sporentierchen, Sporozoa: die Gregarinida der land- und
958 959	406	süßwasserbewohnenden Arthropoden Mitteleuropas. In: Dahl, F. (Ed.), Die Tierwelt
960 961	407	Deutschlands und der angrezenden Meeresteile nach ihren Merkmalen und nach ihrer
962 963	408	Lebensweise. Gustav Fischer Verlag, Jena, pp. 1–608.
964 965 966	409	
967 968	410	Grassé PP.,1953. Classe des Grégarinomorphes In: Traité de Zoologie (Ed. PP. Grassé).
969 970	411	Masson, Paris, pp. 550-690.
971 972	412	
973 974	413	Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large
975 976	414	phylogenies by maximum likelihood. Syst. Biol. 52, 696-704.
977 978	415	
979 980 081	416	Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., 2010. New
982 983	417	Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the
984 985	418	Performance of PhyML 3.0." Syst. Biol. 59(3), 307-321.
986 987	419	
988 989	420	Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogenetic trees.
990 991	421	Bioinformatics 17, 754-755.
992 993	422	
994 995 996	423	Johny, S., Muralirangan, M.C., Sanjayan, K.P., 2000. Parasitization potential of two cephaline
990 997 998	424	gregarines, Leidyana subramanii Pushkala and Muralirangan and Retractocephalus dhawanii
999 1000 1001 1002	425	sp. n. on the tobacco grasshopper, <i>Atractomorpha crenulata</i> (Fab.). J. Orthopt. Res. 9, 67-70.
1003		17

1004		
1005		
1006	426	
1008	107	
1009	427	Kuznetsov, M.I., 1966. On the intermediate host of species of Avitellina and Thysaniezia of
1010	128	shaan Tamatichackii Sharnik Rabat Pa Gal'mintalagii Sal'skakhazvaistvannykh Zhivatnykh
1011	420	sheep. Tematicneskii Sooniik Rabot Fo Germintologii Serskokilozyaistveniiykii Zilivõtiiykii
1012	429	12 25-37
1013	127	12, 20 37
1015	430	(in Russian, English abstract).
1016		
1017	431	
1018		
1019	432	Lantova, L., Volf, P., 2014. Mosquito and sand fly gregarines of the genus Ascogregarina and
1020	400	Develo di 11- (Ani - multime Europeani - mile Anemtetenia). Orami eurofite fite interne anem
1022	433	Psychodiena (Apicompiexa: Eugregarinorida, Aseptatorina) – Overview of their taxonomy,
1023	434	life cycle host specificity and pathogenicity. Inf. Gen. Evol. 28, 616-627
1024	101	the cycle, nost specificity and pathogeneity. Int. Gen. Evol. 20, 010 027.
1025	435	
1020		
1028	436	Lantova, L., Svobodova, M., Volf, P., 2011. Effects of Psychodiella sergenti (Apicomplexa,
1029		
1030	437	Eugregarinorida) on Its Natural Host <i>Phlebotomus sergenti</i> (Diptera, Psychodidae). J. Med.
1031	100	E_{ntomal} 48,085,000
1032	430	Entomol. 48, 983-990.
1034	439	
1035		
1036	440	Leander, B.S., Lloyd, S.A.J., Marshall, W., Landers, S.C., 2006. Phylogeny of marine
1037		
1038	441	gregarines (Apicomplexa) - Pterospora, Lithocystis and Lankesteria- and the origin(s) of
1040	440	and min manufiting Durtist 157 45 (0)
1041	442	coelomic parasitism. Protist. 157, 45-60.
1042	443	
1043	0	
1044	444	Leander, B.S., 2008. Marine gregarines - evolutionary prelude to the apicomplexan radiation?
1045		
1047	445	Trends Parasitol. 24, 60-67.
1048		
1049	446	
1050	447	Lionhard C 1077 Die Brogenteren des Schweizerigehen Netionelnerke und seiner
1051	447	Liennard, C., 1977. Die Psocopteren des Schweizenschen Nationalparks und seiner
1053	448	Umgebung (Insecta: Psocontera) Ergebn Wiss Unters Schweiz Natnparks 14 417-551
1054		
1055	449	
1056		
1057		
1059		
1060		
1061		40
1062		Lδ

1063		
1064		
1065 1066	450	Lopes, R.B., Alves, S.B., 2005. Effect of Gregarina sp. parasitism on the susceptibility of
1067 1068	451	Blattella germanica to some control agents. J. Invertebr. Pathol. 88, 261-264.
1069 1070	452	
1071 1072 1073	453	Maddison, D.R., Maddison, W.P., 2005. MacClade 4.08. Sunderland: Sinauer Associates.
1074 1075	454	
1076 1077	455	McCarthy, C.B., Diambra, L.A., Rivera Pomar, R.V., 2011. Metagenomic Analysis of Taxa
1078 1079	456	Associated with Lutzomyia longipalpis, Vector of Visceral Leishmaniasis, Using an Unbiased
1080 1081	457	High-Throughput Approach. PLOS Neglect. Trop. Dis. 5(9), e1304, DOI:
1082 1083	458	10.1371/journal.pntd.0001304
1084 1085 1086	459	
1087 1088	460	Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for
1089 1090	461	inference of large phylogenetic trees. In Proceedings of the Gateway Computing
1091 1092	462	Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp. 1-8.
1093 1094	463	
1095 1096	464	Mockford, E.L., 2003. Psocoptera (Psocids, Booklice). In: Resh, V. H., R. T. Cardé (Eds.),
1097 1098	465	Encyclopedia of insects. Academic Press, Amsterdam, pp. 966-969.
1099 1100	466	
1101 1102 1103	467	Mourya, D.T., Soman, R.S., 2000. Susceptibility of Culex bitaeniorhynchus group of
1103 1104 1105	468	mosquitoes to two species of gregarine parasites. Entomon 25, 227-229.
1106 1107	469	
1108 1109	470	New, T.R., 1987. Biology of the Psocoptera. Orient. Ins. 21, 1-109.
1110 1111	471	
1112 1113	472	Pernek, M., Matošević, D., Hrašovec, B., Kučinić, M., Wegensteiner, R., 2009. Occurrence of
1114 1115 1116	473	pathogens in outbreak populations of <i>Pityokteines</i> spp. (Coleoptera, Curculionidae,
1117 1118 1119	474	Scolytinae) in silver fir forests. J. Pest Sci. 82, 343-349.
1120		40
1121		19

1122		
1123		
1124	475	
1125	170	
1126	476	Posada, D., Crandall, K.A., 1998, MODELTEST: testing the model of DNA substitution.
1127		
1120	477	Bioinformatic 14, 817-818.
1129		
1131	478	
1132		
1133	479	Pushkala, K., Muralirangan, M.C., 1997. Impact of Gregarina subramanii, a new gregarine
1134		
1135	480	species on the biology of the grasshopper, <i>Eyprepocnemis alacris alacris</i> (Serville).
1130	40.4	
1138	481	Entomologist 116, 130-141.
1139	490	
1140	402	
1141	483	Rueckert S. Simdvanov T.G. Aleoshin V.V. Leander B.S. 2011 Identification of a
1142		
1143	484	divergent environmental DNA sequence clade using the phylogeny of gregarine parasites
1144		
1146	485	(Apicomplexa) from crustacean hosts. PLoS ONE 6:e18163.
1147		
1148	486	
1149	407	
1150	487	Sarkar, N.K., 1983. Enterocystis bengalensis n.sp. (Apicomplexa: Enterocystidae) from
1151	188	Procatronos sp. (Procontera) of West Bengal India Curr. Sci. 52(8) 372-373
1153	100	$1 \text{ socurrepos sp. (1 \text{ socoptera}) of west bengal, india. Call. Set. 52(0), 572, 575.$
1154	489	
1155		
1156	490	Sarkar, N.K., Haldar, D.P., 1980. Observations on Liposcelisus coronatus n. gen., n. sp.
1157		
1159	491	(Sporozoa: Didymophyidae) from a psocopteran insect (Insecta: Psocoptera). Riv. Parassitol.
1160	100	41 010 004
1161	492	41, 219-224.
1162	103	
1163	475	
1164	494	Spieksma F T M Smits C 1975 Some ecological and biological aspects of the booklouse
1166		
1167	495	Liposcelis bostrychophilus Badonnel, 1931 (Psocoptera). Neth. J. Zool. 25, 219-230.
1168		
1169	496	
1170		
1171	497	Svadzhian, P.K., 1963. Development of <i>Thysaniezia giardi</i> (Moniez, 1879) in the bodies of
1173	400	inggate of the order of maggidg (Descenters) Deble der Alenders !: North American bes C.C.D. 26
1174	470	insects of the order of psocials (resocoptera). Doktady Akademii Nauk Armyanskoi S.S.R., 36,
1175	499	303-306 (in Russian English abstract)
1176	ч 77	
1177		
1170		
1180		20

1181		
1182		
1183	500	
1184		
1186	501	Takov, D., Doychev, D., Linde, A., Draganova, S., Pilarska, D., 2011. Pathogens of bark
1187		
1188	502	beetles (Coleoptera: Curculionidae) in Bulgarian forests. Phytoparasitica 39, 343-352.
1189		
1190	503	
1191	504	Takoy D. I. Draganova S.A. Tochova T.B. 2012 Gragoring and Regumeric hassigna
1192	504	Takov, D. I., Diaganova, S.A., Tosnova, T.D., 2015. Oreganne and Deduverta Dassiana
1194	505	infections in the grey corn weevil <i>Tanymecus dilaticollis</i> (Coleontera: Curculionidae) Acta
1195	505	intections in the grey com weevil, runymeeus unancouis (concopiera. curcunomaac). rieu
1196	506	Phytopathol, Entomol, Hung, 48, 309-319.
1197		J •• F •• •• •• •• •• •• •• •• •• •• •• •
1198	507	
1199		
1200	508	von Siebold, C.T., 1839. Beiträge zur Naturgeschichte der wirbellosen Thiere. N. Schrift.
1201		
1202	509	Naturf. Ges. Danzig 3, 56-71.
1204		
1205	510	
1206	F 4 4	Verson M. Dali II. 2010. The first record of Cuerving two swarks Evens (Protisto)
1207	511	Yaman, M., Baki, H., 2010. The first record of Gregrina typographi Fuchs (Protista:
1208	512	Anicompleya: Gregarinidae) from the European spruce bark beetle. Ins. twoographus
1209	512	Apreomptexa. Oregannidae) nom die European spruce bark beene, ips typographas
1211	513	(Linnaeus) (Coleoptera: Curculionidae, Scolytinae) in Turkey, Turk, Parazitol, Derg 34, 179-
1212		
1213	514	182.
1214		
1215	515	
1210		
1217	516	Zwickl, D., 2006. Genetic algorithm approaches for the phylogenetic analysis of large
1219		
1220	517	biological sequence datasets under the maximum likelihood criterion. PhD thesis, University
1221	E10	of Toyog at Augtin
1222	219	of Texas at Austin.
1223	519	
1224	517	
1225	520	Figure legends
1227	520	1 igure regenus
1228	521	Fig. 1: Differential interference contrast (DIC) light micrographs and scanning electron
1229	JZ1	rig. 1. Differential interference contrast (Die) fight interographs and scanning election
1230	522	micrographs (SEM) of <i>Enterocystis dorypterygis</i> sp. n. from psocopteran <i>Dorypteryx</i>
1231	0	
1232	523	domestica. A-B) Differently shaped trophozoite cells with a flattened or rounded anterior end
1233		
1235	524	(mucron, arrowhead). The nucelus (n) is visible in the posterior half of the cell. C-D) Two
1236		
1237		
1238		~
1239		21

1240		
1241		
1242 1243	525	gamonts in caudo-frontal syzygy. The nucleus (n) here lies in the anterior part of the cell. The
1244 1245	526	attachment zone is marked with a double arrowhead. E) SEM of a trophozoite cell showing
1246	527	epicytic folds (arrow) running longitudinallyand undulating (asterisk) along the whole cell
1240 1249 1250	528	including the mucron area (arrowhead). F) Higher magnification SEM of the anterior end with
1250 1251 1252	529	epicytic folds covering the mucron area. G) Higher magnification SEM of the longitudinal
1253 1254	530	epicytic folds (arrows). Scale bars: A – 25µm; B – 15µm; C – 25µm; D – 35µm; E – 10µm; F
1255 1256	531	– 2.5μm; G – 2.5μm.
1257 1258	532	
1259 1260	533	Fig. 2: Phylogenetic tree of gregarine apicomplexans using dinoflagellate species as outgroup.
1261 1262	534	This gamma-corrected maximum likelihood tree (-ln L = 17107.63238, α = 0.725, fraction of
1263 1264 1265	535	invariable sites = 0.187 , 6 rate categories) inferred using the GTR model of substitution on an
1266 1267	536	alignment of 117 small subunit (SSU) rDNA sequences and 774 unambiguously aligned sites.
1268 1269	537	Numbers at the branches denote bootstrap percentage (top) and Bayesian posterior
1270 1271	538	probabilities (bottom). When both values were below 50% or 0.50 numbers were not reported.
1272 1273	539	Black dots on branches denote Bayesian posterior probabilities and bootstrap percentages of
1274 1275	540	0.95/95% or higher.
1270 1277 1278	541	
1270		
1280		
1281		
1282		
1283		
1285		
1286		
1287		
1288		
1289		
1290		
1292		
1293		
1294		
1295		
1296		
1298		22

