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Abstract. Much of contemporary research in Artificial Immune Sys-
tems (AIS) has partitioned into either algorithmic machine learning and
optimisation, or, modelling biologically plausible dynamical systems, with
little overlap between. We propose that this dichotomy is somewhat to
blame for the lack of significant advancement of the field in either di-
rection and demonstrate how a simplistic interpretation of Perelson’s
shape-space formalism may have largely contributed to this dichotomy.
In this paper, we motivate and derive an alternative representational ab-
straction. To do so we consider the validity of shape-space from both the
biological and machine learning perspectives. We then take steps towards
formally integrating these perspectives into a coherent computational
model of notions such as life-long learning, degeneracy, constructive rep-
resentations and contextual recognition – rhetoric that has long inspired
work in AIS, while remaining largely devoid of operational definition.

1 Introduction

Perelson’s shape-space formalism has become the de facto representational ab-
straction in Artificial Immune Systems (AIS). Briefly: receptors and their ligands
are represented as points in an n-dimensional “binding parameter” space, with
a contiguous recognition region surrounding each point to account for imper-
fect matching. Ligands and receptors that have intersecting regions are said
to have a�nity. Although biologically simplistic, for theoretical immunologists
the shape-space has a certain heuristic value in quantifying gross properties of
the immune repertoire, away from the complex bio-chemical process of protein
binding (see Sect. 2 and [13] for more details).

This abstraction has been adopted wholesale by the AIS community as iso-
morphic with the vectorial representation of a data-set: each data-point being an
artificial antigen, perhaps falling under the recognition region of some artificial
antibody. These problem representations dominate all classical immune-inspired
algorithms – clonal selection, negative/positive selection and idiotypic networks1.
Indeed, such practice is prescribed as a methodology for AIS [17].

1 There are some modern exceptions, e.g. Greensmith [30] and Nanas et al. [48], though
neither of these works could be considered representative of the field of AIS.



In short, the “pattern-matching” aspect of ligand binding in the immune
system is abstracted as some variation on vector correlation or distance met-
rics. Whilst pragmatic from a computational perspective, this abstraction both
distances algorithms from the underlying biology and necessarily reduces to aug-

mented instance-based methods of machine learning; methods that have largely
fallen out of favour due to theoretically and practically undesirable properties
(discussed in Sect. 3). Proposed immune-inspired augmentations do not address
these undesirable properties; rather, they obfuscate them behind complex bi-
ological mechanisms and metaphors. As such, a potentially powerful method
for building autonomous learning systems is ultimately undermined by founda-
tional issues with its representational abstraction, rather than issues with the
underlying immunological inspiration.

Our goal in this paper is to motivate and derive an alternative representa-
tional abstraction. To do so we will consider both the biological and machine
learning perspectives, with a view towards integrating these ideas into a coherent
computational model of immunological learning – rhetoric that has long inspired
work in AIS, while remaining largely devoid of operational definition. As a pre-
cursor to more empirical work, we trace a formal path from the current status
quo to our proposed abstraction and illustrate the theoretical properties of one
explicit instantiation of our ideas.

The paper is structured as follows: in Sect. 2 we briefly review the biological
foundations of ligand binding and the shape-space abstraction. In Sect. 3 we
consider the theoretical, computational and practical issues with the shape-space
as a computational abstraction. In Sect. 4 we motivate an alternative abstrac-
tion, based on recent advances in statistical learning. Finally, in Sect. 5 we bring
these ideas together and analyse the properties of a toy algorithm based on our
alternative abstraction. We conclude, in Sect 5.4 with some general comments
and future work.

2 A Biological Perspective

The shape-space is simply a mathematical abstraction; its biological validity
is a controversial issue. It would be easy to dismiss lack of biological fidelity
as a straw-man argument from a computer scientist. However, we intend to
demonstrate that a more biologically valid abstraction makes for a more valid
computational abstraction. Before we do so, we briefly review the necessary
biological ideas that motivate our work.

2.1 Motivating shape-space

Perelson and Oster introduced the shape-space as a simple quantitative model of
the immune repertoire [50]. Its purpose was to answer questions such as “given
n receptors, what is the probability that a random antigen is recognised?”. The



following discussion is largely taken from [51], where the reader is directed for
further details.

Given a recognition region of volume v
i

and the total volume of shape-space
V , the probability p that an antigen is recognised is p = vi

V

. The probability
P that an antigen is not recognised by one of n receptors is thus (1 � p)n,
which, assuming a Poisson distribution for antibodies, is approximated by e�np.
Experimental results suggest that p ⇡ 10�5 of the immune repertoire respond
to any given epitope, so this suggests that a value of n = 106 would be su�cient
to ensure negligible chance of escaping detection. Such a repertoire would be
“complete”. This figure is in agreement with experimental estimation of the size
of the smallest known immune system which, Perelson suggests, is because a
smaller immune system would o↵er little protective advantage, e.g. if n = 105,
then P = e�1 ⇡ 0.37.

A similar argument can be made for variations on the question “what is the

probability that a repertoire of n recognises all N foreign epitopes and none of

N 0
self epitopes?”. The reader is directed to the literature for the details; here

there are two key points to appreciate: (i) this model is a heuristic that does not
attempt to define the parameters of the space – it only assumes that they could
be defined in principle; (ii) the volume of the recognition region p is based on an
experimentally derived number, not a geometric argument, which again, would
require defining the degrees of freedom in the shape-space.

In the original shape-space, an a�nity measure ↵(x, y) only implies some
form of x and y. This is in stark contrast to the computational abstraction,
where x, y and ↵ all have explicit form. Later work in immunology simulated
repertoires of bit-string shapes and string matching a�nity functions (see e.g.
[22]). It has been argued, convincingly, that these “physical” representations
are unsuitable for computational learning [23, 24]. This really highlights where
computer scientists’ and immunologists’ interpretations become incompatible.
Immunologists assume that “shapes” are relatively small and simple; computer
scientists assume that by abstracting the notion of shape, they can produce the
same logical behaviour in a di↵erent domain, where the shapes are actually large
and complex. In much of what follows, our contention is with the interpretation
of shape-space by computer scientists, however it is worthwhile to pursue the
biological argument some more, to justify our alternative.

2.2 Rethinking shape-space

The issues with shape-space as a theoretical abstraction were most notably as-
serted by Carneiro and Stewart [13]. Their argument is straight-forward: for a
theoretical immunologist, deriving an a�nity function and its dimensions from
the limited experimental knowledge of known binding relationships is clearly
ill-posed and data-dependent. Alternately, experimentally validating the param-
eters of the real shape-space is a “remote goal”, which would likely result in
a “highly complex, irregular and discontinuous” a�nity function. Carneiro and
Stewart criticise theoreticians’ tendency to not distinguish clearly between these



two, quite di↵erent, interpretations of shape-space, and thus, overlook the ob-
vious di�culties with either. Furthermore, Carneiro and Stewart’s experimental
work suggests that shape complementarity is a necessary, but not su�cient,
condition for recognition – there is a relational aspect, not accounted for by the
classical lock-and-key metaphor.

Carneiro suggests that immunological models should be robust to the exact
nature of the a�nity relationship. In his own work, this took the form of binding
occurring probabilistically without regard for position in shape-space. Receptors
bind to multiple points that have no geometric relationship to each other. As
such, the resulting model’s immune-like behaviour is not bound to, or a side-
e↵ect of, any topological properties of the space it operates in [11, 12, 40].

2.3 The degenerate immune response

An issue gaining recent interest in both immunology and it’s computational
abstractions is degeneracy in ligand binding [21, 47]. It has been increasingly
recognised that antibody can bind to many distinct epitopes (poly-recognition)
and, similarly, an epitope can select many “specificities” of clone (poly-clonality).
These ideas are quite contrary to the original clonal selection principle, which
relies on approximate specificity to ensure self-reactive clones could be identified
and deleted. For similar reasons, these ideas are also not comfortably expressed in
the shape-space, where a clone’s identity is its co-ordinate and binding strength
is a function of metric distance in shape.

There are several authors, in both AIS and immunology, who embrace this
degeneracy as an important feature of the immune system. However it remains
to determine how immunological specificity emerges from these degenerate in-
teractions [33]. Timmis and Andrews [47] have shown interest in how this degen-
eracy can be applied as a novel engineering paradigm. This work is still nascent,
however it is clearly di�cult to derive compelling engineering results based on in-
terpreting immunologists’ descriptions of phenomena. To complement this work,
we seek something more formally tangible.

2.4 The cognitive immune system(s)

A large part of justification of AIS as a research paradigm is based on the
rich cognitive metaphors attributed to the immune system – learning, memory,
recognition, regulation and so on. By studying the components and mechanisms
of the immune response, it is hoped that we can derive principles for producing
autonomous computational systems with qualitatively similar behaviours2.

There are two key figures in theoretical immunology that have promoted
these cognitive metaphors: Francisco Varela and Irun Cohen. Both have quite
di↵erent perspectives, but their influence on the AIS research program cannot
be underestimated. Still, it remains for computer scientists to instantiate these
influential ideas, and progress in this respect has been much less impressive. It
2 Rather than immune systems for computers!



is our opinion, that the reason for this limited success is because these ideas
do not translate into the shape-space abstraction. We briefly outline the key
ideas of both authors here, which we will later reconsider under our alternative
abstraction.

Varela was an influential cyberneticist, cognitive scientist and theoretical im-
munologist. His ideas were largely driven by his phenomenological/constructivist
philosophical leanings and his early work with Maturana on the so-called au-

topoietic theory of the biology of cognition and behaviour [46]. In immunol-
ogy, Varela (with Coutinho, Stewart and others) elaborated on Jerne’s con-
troversial Idiotypic Network theory, where lymphocyte co-recognition acts as
an additional feedback mechanism to antigen stimulation [57, 18]. They devel-
oped simple mathematical models of how tolerance might emerge from the “self-
knowledge” embodied in the immune repertoire – in contrast to the teleological
“self-blindness” imposed by Burnet’s clonal selection theory. Varela referred to
the immune system as a “cognitive network” [56], much like the neural sys-
tem, though an order of magnitude larger and inherently mobile. His work with
Bersini is largely responsible for bringing these ideas into the computational do-
main, where they were applied with some success to control and reinforcement
learning problems [7, 6, 5]. Like much of the cybernetics movement, this work
was, in many respects, before its time and has somewhat languished. Varela et
al’s ideas significantly predate the current interest in complex interaction net-
works and emergent behaviours.

Irun Cohen is an experimental and theoretical immunologist who has ex-
pressed several radical ideas that have generated interest in the AIS community
[16, 15]. The relation is quite natural, Cohen commonly refers to the immune
system as a “computational system” (and also as a cognitive system, though
this interpretation of cognition seems weaker than Varela’s). Essentially, he sees
the immune system as performing a non-classical distributed computation of the
state of the body, with feedback mechanisms that govern the computation’s evo-
lution [35, 14]. The purpose of this computation is maintenance (inflammation,
healing, garbage collecting and so on), with the immune response reduced to an
extremal form of this maintenance. One of the key ideas that have caught com-
puter scientists’ attention is co-respondence [15] – how coherent system-wide re-
sponses emerge from the local interactions of diverse, contradictory components
with limited sensing and e↵ecting capabilities. Cohen is also vocal regarding the
importance of degeneracy, pleitropy and other forms of beneficial redundancy.

Many of these influential ideas are more descriptive than formally (or ex-
perimentally) quantified. Later, we will return to these ideas of constructing
internal representations and integrating diverse responses of simple components;
but armed with a theoretical foundation for thinking about such ideas.

2.5 Ligand binding in vivo

It is important to realise that an epitope (binding region) is not a predefined
object. It is an arbitrary discontinuous region on the three-dimensional surface of
a molecule. It comes into being as an epitope by virtue of binding to a receptor,



that is, in the context of a particular interaction [20]. The whole surface may
have, so to speak, “epitope potential”. To appreciate what makes up the binding
surface, it is useful to elaborate on the basics of protein structure.

Fig. 1. A discontinuous epitope on a protein consists of residues that are distant in the
primary sequence, but close when the protein is folded into its native three-dimensional
structure. All of the residues are required for recognition by the antibody and thus are
not epitopes on their own. Approximately 90% of ligands are discontinuous. Repro-
duced, in part, with permission from [20].

A protein is a long chain of shorter structures, called peptides, which are
themselves, chains of amino acids. Laid out as a long chain, this is referred to
as the protein’s primary structure. During synthesis, the protein undergoes a
complex folding process which, ultimately, results in a three-dimensional ter-

tiary structure where some peptides are buried inside the structure and others
are brought together on the surface. The significance of this is that di↵erent
immune components sense di↵erent aspects of the protein: antigen presented to
T-Cells are broken back down into peptide fragments; antibody, however, bind
to the surface of the tertiary structure. As such, they recognise “features” that
are distributed across the primary structure, but local (though not necessarily
contiguous) on the Tertiary structure. To quote Janeway [36, Sect. 3.11]:

Antigen recognition by T-cell receptors clearly di↵ers from recogni-
tion by B-cell receptors and antibodies. Antigen recognition by B cells
involves direct binding of immunoglobulin to the intact antigen and [...]
antibodies typically bind to the surface of protein antigens, contacting
amino acids that are discontinuous in the primary structure but are
brought together in the folded protein. T cells, on the other hand, were
found to respond to short contiguous amino acid sequences in proteins.
These sequences were often buried within the native structure of the pro-
tein and thus could not be recognised directly by T-cell receptors unless
some unfolding of the protein antigen and its ‘processing’ into peptide
fragments had occurred.



So here we have two fundamental aspects to ligand binding that are not
accommodated in the shape-space abstraction, and by extension, not addressed
in current AIS models of immune behaviour. On the one hand, there is the
di↵erent modes of sensing between B and T cells. On the other, the fact that
antibody (and thus, B-Cells) do not bind to discrete units, but to appropriate
structures brought together on the complex surface of a folded protein. It is this
latter aspect that will be particularly relevant in what follows.

3 A Computational Perspective

The shape-space is not really immune inspired, it is just an intuitive mathemat-
ical abstraction. However, a good mathematical abstraction is not necessarily a
good computational abstraction. A large sub-field of computer science is approx-
imation of intractable mathematical operations that are, nevertheless, intuitive
in principle. The so-called “Curse of Dimensionality” [3] is a recurrent moti-
vation for such approximation – where a crucial quantity (e.g. the number of
function evaluations in an optimisation problem) grows intractable with the di-
mensionality of the space. The curse has many di↵erent faces. Here we highlight
the problem from a computational learning perspective, where low dimensional
intuitions about “distance” and “density” turn out to be highly inadequate, thus
undermining the very concepts that traditional AIS abstractions build upon.

3.1 The non-immune-inspired foundations of AIS

By treating ligands and receptors as points in shape-space, the “pattern match-
ing” behaviour of an artificial immune system necessarily reduces to an aug-
mented instance-based methods from machine learning. Instance-based methods
(such as nearest-neighbour classifiers and density estimators – see e.g. [32]) are
flexible, non-parametric and, as such, have a fairly natural mapping to biological
metaphors: the population is the model and classification is performed across the
population, at runtime. By exploiting a sense of locality between data-points
they tend to be able to fit arbitrary complex decision boundaries or represent
dense, nonlinear regions in unlabelled data.

This locality is a key parameter that can be used to trade-o↵ representational
power (high locality to model fine grained patterns) and stability (low locality
to limit the e↵ect of perturbations and noise in the data). Ideally, we would
like high representational power and stability, but more often these factors are
inversely proportional to each other. In the context of statistics, this is the
classical bias-variance trade-o↵, though we avoid using these terms as they have
quite specific technical meaning. The key point, is that how well instance-based
methods perform depends crucially on just how local this sense of locality is.

Unfortunately, locality is where the curse of dimensionality hits hardest: as
the dimensionality of a space increases, its volume increases exponentially faster.
This simple fact compounds several issues that undermine classical instance-
based methods, and thus, any AIS built upon a shape-space abstraction. We
demonstrate these issues now.



3.2 Theoretical issues

To simplify our treatment, we will assume our shape-space and recognition region
are cuboid rather than spherical. The spherical case has already been discussed
by Stibor et al. in the context of negative selection algorithms [55]. The reason
for our simplification is two-fold: firstly, in some respects the overall message
is diluted by the mathematics of approximating the volume of a hyper-sphere
and the particularly bizarre result that follows – as dimensionality increases, the
volume of the hyper-sphere approaches zero. Secondly, the hyper-sphere tends
to be implicit: at any given point we are usually only interested in straight-line
distances as defined by an appropriate metric. Our intention is to illustrate that
these simpler scenarios are also cursed.

In a rectangular space, the volume is obviously the product of the lengths
L

i

of each dimension – Ld if the space is cuboid. Similarly, the coverage of any
l < L cuboid region in this space is l

d

L

d . Clearly, the coverage of any fixed-size
region grows slower than the volume as dimensionality increases – much slower
if l << L. In turn, the stability of estimations made in that region also decrease:
partly because the region covers less of the space; and partly because as data
points are redistributed in the new dimension, they can easily move outside
regions they where once covered by. In the worst case, there are no neighbours
in any fixed locale, and thus, no generalisation power – our learning machine
reduces to a rote lookup table.

Conversely, in order to capture the same volume of space as dimensionality
increases, the range of coverage of each dimension rapidly approaches 100% [32].
For example, to capture 25% of a two dimensional “volume” requires covering
50% of each dimension. More generally, to capture v volume of a d dimensional
cuboid space requires covering v

1
d of each dimension (e.g. 0.5 = 0.25 1

2 ). Even
for modest dimensionality and small volume, this value rapidly approaches 1.0,
as illustrated in Fig. 2. This dramatically reduces the representational power of
our learner as desireable non-linearities from localisation are lost. The learning
machine reduces to either a poor approximation of a linear classifier, or worse,
the trivial maximum a priori classifier3.

These e↵ects of dimensionality are not limited to our representational power
and stability. Any metric defined across an increasing volume becomes increas-
ingly meaningless as data points tend to become equidistant [1, 8]. Figure 2
illustrates the di↵erence in pairwise distances between 10 uniformly distributed
points as the dimensionality of the unit-space is increased. It is clear that all
distances are converging. Between the pressures on both stability and represen-
tational power of the recognition region, this results in a very fine line between

3 Always predicting the most common class. This classifer is the epitome of stable –
its decision does not depend on the data – but is clearly a poor learning algorithm.
These reductions are further illustrated in Sect. 4.1.



a region capturing either none, or all, of the datapoints. That is, any discrimi-
natory power in pairwise distances is lost4.

Fig. 2. The curse of dimensionality in shape-space. Left: v

1
d for di↵erent dimensional

spaces, adapted from [32]. Capturing even a very small percent of a modest dimensional
space requires significant coverage of the range of each dimension. Right: convergence
of pairwise measures (in this case, the dot product) between 10 uniformly distributed
points as the dimensionality increases. See text for a description of the consequences
of these e↵ects.

This convergence to equidistant is in some respects an artifact of the unit-
space: outside the unit hypercube, the pairwise distances clearly grow as compo-
nent dimensions are added; however, the relative significance of those distances
is reducing at a much faster rate. Consider a low dimensional analogue: to be
10 feet apart may be a significant measurement for two people in a room, but
may be indistinguishable from noise for a GPS satellite. In this limited example,
adding dimensions is somewhat akin to moving exponentially further away.

Similarly, an inconsequentially small amount of noise, added to many dimen-
sions, can still add up to a significant displacement from the original position. In
high dimensions, a scalar metric cannot di↵erentiate between two vectors that
di↵er slightly across all dimensions (and may be the same after accounting for
noise) or di↵er significantly on just a few dimensions (and are clearly di↵erent
in some respect).

The two key assumptions in instance-based methods are based on low-dimensional
intuitions: that there are dense regions in the space that can be generalised, com-
pressed or sparsely represented; and that the distance between points is a mean-
ingful proxy for comparison, discrimination and localisation. The validity of both
assumptions is, unfortunately, a rapidly decreasing function of dimensionality.
4 Of course, one can still select e.g. the k “nearest” neighbours. The point, is that

they may not be significantly nearer than the other (N �k) neighbours – an implicit
assumption in these methods.



3.3 Computational issues

In an n-dimensional shape-space, the search space for the immune repertoire is
of the order O(cn) where c is a constant (e.g. c = 2 in a binary space). This ex-
ponential scaling is computationally abhorrent for the typically large n involved
in machine learning. Even if we assume, as is normal, that the active reper-
toire at any time is a sparse sampling of the shape-space – in high-dimensional
space antigen are also distributed sparsely. An n-dimensional hypercube has 2n

“corners” where most of the volume is concentrated – more corners than antigen.
It is often not possible to scale the available data at the same rate as the

increase in volume. Even if the data is available, instance-based methods must
keep all (or a representative majority) of the data in memory and, due to lack of
any a priori model, must perform “lazy learning” at runtime. So both space and
time scalability of these algorithms is quite poor. Even an O(m) algorithm that
scales linearly with the size of the dataset, hides the fact that m should, ideally,
scale in proportion to the increase in dimensionality. In a typical AIS algorithm,
generation of the a�nity matrix (O(m2) space), pairwise interactions (O(m2)
time) and the inner-loops of hyper-mutation and a�nity maturation (say e.g.
O(km) in space and time, where k is the average mutations per clone and each
mutation must be evaluated for fitness) place these algorithms far from O(m).

Indeed, any algorithm that scales, in space, with the number of data-points
is a questionable choice for representing a system that exhibits life-long learning
with no terminating condition: naively, m !1. One can impose conditions and
mechanisms to “forget” old and irrelevant data-points, but in addition to being
vast, the shape-space is relatively uninteresting. Points appear, persist and decay
without elucidating on the underlying process that generates these points.

Given that m should scale in proportion to n, one might consider working in
the space of feature-feature relations. Here, there is a substantial initial compu-
tational cost (e.g. O(n) or O(n2) rather than in m << n) but this cost is likely
constant, or a slowly growing function of time. This space is inherently more dy-
namic: each new feature vector reinforces the relations between its features, and
these relations illicit underlying structure in the data generation mechanism. To
our knowledge, only Nanas et al’s Nootropia [48] performs in such a space.

3.4 Practical Issues

In some respects, the preceding arguments are purely academic. Instance-based
methods are still popular in data-mining and applied machine learning. There
are perhaps no other methods that can compete, on an intuitive level, for a
practitioners attention – even if that intuition turns out to be wrong. Some very
general practical issues of instance-based methods also translate comfortably
into the AIS setting.

Firstly, it is common wisdom that these methods can be very sensitive to noise
– particularly dimensions that are not correlated with the learning task, but nev-
ertheless the algorithm attempts to accommodate. Typically, data-mining and
applied machine learning begins with a pre-processing stage, where data-derived



statistics are used to reduce the dimensionality prior to learning – either by se-
lecting only relevant features (feature selection) or by projecting the data onto
a low dimensional space of abstract feature combinations (feature extraction). A
reasonable question might be why a “learning algorithm” should not be expected
to derive these relevancies during its execution. This question is particularly per-
tinent to any algorithm that claims to be based on the immune system, where
noise is a hallmark of its operational environment (e.g. degeneracy, redundancy
and pleitropy). It seems reasonable that an immune-inspired system should be
robust to such noise and should not depend excessively on ad-hoc external pre-
processing, particularly if this can be integrated into its internal dynamics.

Secondly, and more crucially, it is well appreciated that the success of apply-
ing these methods is very sensitive to the choice of representation and metric. It
must be so, because everything else follows from these definitions. Such warn-
ings are echoed in the AIS literature: Timmis and Freitas recently stressed how
important it is for practitioners to not accept the standard representations and
a�nity measures when applying AIS to data-mining problems [24]. They suggest
that these must be carefully designed by the practitioner prior to plugging them
into the chosen AIS algorithm. But therein lies the rub: for most learning tasks,
representation is the di�cult problem.

Almost by definition, a good representation makes learning simpler; at the
very least, it significantly reduces the impact of a particular algorithm choice. It
hardly seems satisfactory to ask the practitioner to a priori solve the learning
problem, so that the algorithm need only churn through the numbers. Simplified
learning tasks can be solved without recourse to complex immunological mech-
anisms. However, Varela and Cohen have promoted the view that the immune
system can derive its own internal representations as part of its autonomous
operation. Understanding how this can be achieved in silico may well benefit
from insight into immunological mechanisms.

In both cases, the practical realities of the shape-space abstraction directly
contradict the immunological inspiration.

4 A Statistical Learning Perspective

Having now discussed the theoretical, computational and practical issues of the
shape-space abstraction, we begin to look towards an alternative. The statistical
learning community have approached these problems from several angles. It is
unlikely that the dynamics of the immune system will reduce to standard sta-
tistical procedures, but it will be useful to appreciate these ideas on their own
terms, before moving on to our own abstraction.

4.1 Simple classifiers

In many respects the parametric linear classifier and the non-parametric nearest-
neighbour classifier are the Alpha and Omega of statistical learning. Their re-
lation is easily understood algebraically if we dismiss the ad-hoc modifications



and abstractions that define specific algorithms. We begin with the ubiquitous
fitting of a line by the method of least-squares

y = X 0w

where X is an n ⇥ m column matrix of data vectors, w an n-dimensional
weight vector (to be found), and y an m-dimensional vector of class labels or
function values for each column of X. We will assume y = [�1,+1] to blur any
distinction between classification and regression. This equation is solved using
the Moore-Penrose Pseudo-Inverse of X5

w⇤ = X�1y0

= (XX 0)�1Xy0

= X(X 0X)�1y0

Plugging the optimal solution w⇤ back into the original equation we can
calculate the deviations of our estimated ŷ from the given y. It is well known
that this method minimises the squared error of such deviations:

P
i

(y
i

� ŷ
i

)2.
Alternatively, using a new matrix X̂ of test data, we can estimate the unknown
ŷ values:

ŷ = X̂ 0w⇤

= [X̂ 0(XX 0)�1X]y0

= X̂ 0X[(X 0X)�1y0]
= X̂ 0X↵

The first bracketed term is the so-called “hat matrix” because it takes y onto
ŷ. Note that this matrix is completely data dependent: it is the same for all possi-
ble y (dichotomies over X). The second bracketed term highlights the derivation
of a vector ↵ which we will use below. We are now in a position to demon-
strate the relaxation from a parametric linear classifier to a non-parametric
“non-linear” nearest-neighbour classifier

ŷ = hw⇤, x̂i = h(
X

n

↵
i

x
i

), x̂i =
X

n

↵
i

hx
i

, x̂i ⇡
X

n

y
i

hx
i

, x̂i ⇡
X

hxi,x̂i�✏

y
i

5 If the reader is not familiar with this technique, the pseudo-inverse reduces to the
regular inverse for a fully determined system and behaves sensibly in over and under-
determined systems: solving argminw ||y �X

0
w||2 when there are no solutions, and

argminw ||w||2 s.t. y = X

0
w when there are infinite solutions.



where the first step relies on the fact that w⇤ = X↵ can be represented as a
linear combination of the training data. The second step is simply a regrouping of
terms. The approximation then occurs: first by replacing the matrix inversion in
the derivation of ↵ with the unprojected y values; and then by ignoring training
data where the dot product is below – or equivalently, where the “distance” is
above – a threshold ✏.

In this case ✏ is the radius of our “recognition region”. Moving backwards
through this derivation, we can now see how increasing this radius in response
to increased dimensionality, first approaches the maximum a priori classifier

and then, by weighting y
i

values by the dot product hx̂, x
i

i, approaches a poor
approximation to the linear classifier. By avoiding the necessary (but costly)
matrix inversions, we are essentially “solving” y = X 0w as w = Xy.

Now this is hardly the status quo of modern statistical learning. However, it is a
small step to appreciate one crucial aspect of the status quo: producing power-
ful classifiers need not require complex and advanced learning mechanisms, but
rather, requires tackling the real, di�cult problem of representation.

4.2 A simple classifier with powerful representational capabilities

The highlight of our previous derivation was a duality between parametric lin-
ear and non-parametric, “non-linear” nearest neighbour classifiers. It is a small
notational and conceptual step6 to go from

ŷ =
nX

i

w
i

x̂
i

=
mX

j

↵
j

hx
j

, x̂i (1)

to a more abstract and richer

ŷ =
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w
i
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(x̂) =
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↵
j

K(x
j

, x̂) (2)

Both of these abstractions allow us to introduce non-linear transformations
in the representation (where we need them) but maintain linearity in the param-
eters (where it is analytically convenient to do so). A simple linear classification
in the transformed space is equivalent to a complex non-linear classification in
the original space.

For example, on the right-hand-side of Eq. (2) Kernel methods [53] expect the
kernel function K to return a dot-product in some high-dimensional non-linearly
transformed space, while employing the “kernel trick” to avoid the computational
6 Unfortunately, it is not such a small step formally. The full details are outside the

scope of this paper, su�ce to say, it is mostly additional layers of abstraction that
add little, in the way of understanding, over the linear algebra (but add a lot in
terms of generality and power). The generalisation of linear models with functions
is common practice in statistics, see e.g. [32, Chapter 9]. A concise description of
Hilbert space (where functions form a vector space) can be found in [37, Chapter 5].



burden of explicitly working in that space. The “trick”, is to derive a high dimen-
sional dot product in terms of the low dimensional vectors – e.g. the polynomial
kernel K(x, y) = (1+hx, yi)p. However, this ingenious technique for transforming
low(er) dimensional, non-linearly separable data into high(er) dimensional lin-
early separable data only attacks one aspect of the curse of dimensionality. The
computational cost of increasing the dimensionality is circumvented; however,
almost all popular kernel tricks work by transforming either the dot-product or
Euclidean distance of the original vectors. If the arguments to the kernel func-
tion are already high dimensional, then these measures are already cursed, in
the sense discussed in Sect. 3.2, prior to any transformation.

Conversely, on the left-hand-side of Eq. (2), any nonlinear transformation
implied by a kernel function can be explicitly represented by �

i

(x̂) – with the
computational burden of working in the higher dimensional space. In fact, �

i

can
represent any transformation, with �

i

(x̂) = x̂
i

reducing to the standard linear
model. An alternative strategy then, is rather than enriching the feature space
of our data (and parameters), to consider each �

i

as a classifier and transform
directly onto a classification decision [29]. Our search space is enriched to the
space of classifiers; our regression function becomes a weighted vote amongst an
ensemble of classifiers. Crucially, observe that this reintroduces the notion of a
population, but not a population based on the training instances.

4.3 Many simple classifiers with weak representational capabilities

The general goal of ensemble methods is to improve on the classification perfor-
mance of a single learning machine, by integrating the results of many diverse
learners. Diversity can be specified in di↵erent ways: di↵erent learning algo-
rithms; the same algorithm with di↵erent parameters or trained on di↵erent
subsets of the training data, and so on (see e.g. [54]).

Boosting [26, 38] has emerged as one of the most radical and successful in-
stantiations of ensemble learning. The radical aspect is the formal demonstration
of the equivalency of weak and strong learnability: a weak learner, performing
only slightly better than random guessing, can be aggregated into an arbitrarily
strong learning algorithm7.

ŷ = strong(x) =
X

i

w
i

weak
i

(x)

Intuitively, Boosting can be seen as the integration of many cheap heuristics
that will often fail, but have some edge over random guessing (rather than the
integration of a few, strong classifiers as employed by ensemble methods in gen-
eral). There are still gaps in the theoretical understanding of Boosting, but it is
clear that a key aspect of it’s success is that, during training, learner diversity
7 This formal demonstration only holds in the PAC learning framework (see [38, 52] for

background and proofs), though the same intuition has been applied very successfully
outside of this framework.



is augmented by dynamically reweighting the training examples (see Alg. 1).
During training, successfully classified data have their weight decreased, forcing
learners in later iterations to compensate any predecessor’s bias and concen-
trate on data that is causing continued classification error. During classification,
integration across the ensemble increases the confidence in any particular clas-
sification decision, by averaging out the variance of the weak components.

1. Initialise with uniform distribution over data
while error > desired and rounds < max do

2.1 Generate a new weak learner with current distribution
if error � 0.5 then

continue
end

2.2 Weight learner based on performance
2.3 Reweight data distribution based on performance
2.4 Add learner to ensemble

end

Algorithm 1: Pseudo-code for the Adaboost algorithm

Contrary to the trade-o↵ inherent in instance-based methods, we see both
an increase in representational power (through diversity) and an increase in
stability (through integration). Contrary to the theoretical limit of standard
weighted majority voting [43], the diversity in data seen by each learner allows
the boosted system to perform better than its single best component.

With a background in computational learning theory, Boosting shares its
foundations with the seminal online learning work of Littlestone, Warmuth et al.
[43, 42]. Leading from this, the training procedure has also been shown to have a
game theoretic interpretation as learning an optimal mixed-strategy in iterated
games [25]. The statistical perspective of gradient descent in function (rather
than parameter) space, most notably pursued by Friedman [28] and Breiman [9],
is easier to state given our preceding exposition and leads to a natural connection
between Boosting and dictionary-based basis decomposition methods, popular
in signal processing and compression [27, 58]. Exploring this connection allows us
to emphasise the representation learning behaviour within the realms of algebra,
rather than introduce the nomenclature of the Boosting community. This will
be the last piece of the puzzle in developing our representational abstraction.

4.4 Learning Representations

Consider a vector of digital samples (e.g. an audio signal). Our goal is to find a
compact representation of this signal from a “dictionary” of atomic basis func-
tions. Given a signal s, dictionary � and a representation r of basis co-e�cients,
our two operations are analysis (r = �s) and synthesis (s = ��1r). A good
representation is sparse (many of the basis coe�cients are zero) and it may be



acceptable to trade-o↵ some reconstruction error in the synthesis stage for ad-
ditional sparsity (e.g. lossy compression). A good basis generalises over possible
signals and is fast to compute and invert.

Classical methods include the Spectral Decomposition, Fourier analysis and
Wavelet analysis [44]. However, any particular form of basis function may ren-
der some representations di�cult (e.g. Fourier basis have di�culty representing
sharp spikes as sine waves) so we would like to have many diverse basis functions;
more than we actually need to represent a given signal. Such an “overcomplete”
dictionary renders any solution non-unique – a given signal will have many pos-
sible decompositions [41]. Using methods for solving under-determined systems
of equations, one can add additional constraints to regain uniqueness (such as
minimum L1 norm of r) and attempt to solve by global optimsation. An al-
ternative strategy is to greedily construct a sparse representation. A canonical
algorithm in this respect is Matching Pursuit [45] (Algorithm 2).

1. r = []
while ||s||2 > ✏ do

2.1 �t = argmax�i
h�i, si

2.2 wt = h�t, si
2.3 s = s� wt�t

2.4 r.add(wt,�t)
end

Algorithm 2: Pseudo-code for the Matching Pursuit Algorithm

The relation to Boosting is quite straight-forward: find the basis with max-
imum correlation with the signal; weight it by that correlation; subtract the
weighted basis from the existing signal; repeat till the residual is small enough8.
The end result is a sparse representation of the original signal in terms of the
chosen basis functions. Convergence is guaranteed if the basis span the space,
though the rate of convergence depends on the “coherence” between the signal
and the dictionary elements [45].

The overarching issue with matching pursuit is finding the best basis at each
cycle of the algorithm’s main loop. Typically, only a subset of the dictionary
is considered for searching, or some (hierarchical) structure is imposed on the
dictionary to limit the search space [39]. The dictionary can be fixed a priori

or, more appropriate from our perspective, adaptively learned in response to the
incoming signals (see e.g. [2]).

Matching Pursuit is necessarily sub-optimal. Of course, optimality is always
with respect to a measure and renders solutions fragile to changes in that mea-
sure or it’s underlying assumptions. In general, sparse representations from over-
complete dictionaries can be very robust to noise and perturbations of the data.
8 The primary di↵erence with boosting is that the “residual” in matching pursuit

is the reconstruction error ||st�1 � wt�t||2. As a supervised learning strategy, the
“residual” in boosting is a function of the classification error, e.g. ||yt�1 � ft(Xt)||2.



Having a large set of specialised bases carries gains in flexibility over a small set of
general bases. In contrast to “purer” algebraic orthonormal basis, overcomplete
dictionaries can more e�ciently represent non-orthogonal density distributions.
For example, an orthonormal basis, such as the eigenvectors, can provide perfect
reconstruction with a minimal set of bases; but that representation will neces-
sarily be distributed across all bases. A coherent non-orthogonal dictionary can
isolate the representation in a select few [41].

5 Representation in the (Artificial) Immune System

The preceding sections have discussed problems with learning models built upon
the shape-space abstraction and traced a reasonably formal path from these
simple instance-based methods to modern learning methods. The key idea was
powerful representations rather than powerful algorithms. We then took this
idea to an extreme of measurably weak algorithms, that nevertheless maintain
powerful representational capabilities across the ensemble. We also demonstrated
how, within the same framework, these representations can be learned in addition
to any decision function built on top of that representation.

With the preceding statistical insights, and recalling our earlier discussion of
ligand binding, our proposed change of abstraction is now quite easy to state:

Proposition 1. Epitopes are not points in a high-dimensional feature space,

they are a subset of surface correlated peptides. The immune repertoire is not

a population of centroids, prototypes, or support vectors, but an overcomplete

dictionary of basis functions; an ensemble of weak learners.

Given the preceding exposition, we hope that this proposition now seems
inevitable; even obvious. It is su�ciently general to accommodate many instan-
tiations, though in Section 5.3 we will elaborate with a more concrete example.
First we wish to highlight the general benefits of this change of perspective, away
from the details of a specific algorithm.

5.1 Potential contribution to Artificial Immune Systems

Quite simply, in order to construct an internal representation one needs building
blocks: this is precisely what basis functions are. There is nothing “constructive”
in mirroring training data and generalising dense regions. A repertoire of basis
functions can partition the space; representing compound structures as the sum
of diverse, overlapping subspaces. This leads neatly to our previous discussion in
degeneracy, redundancy and pleitropy. Basis functions incur many-to-one “bind-
ing” (poly-recognition) and many-to-one “activation” (poly-clonality) by defini-
tion – many data points overlap an individual bases’ subspace and an individual
data point overlaps many base subspaces. When that basis is also over-complete,
beneficial redundancy and robustness are also formally demonstrable, as previ-
ously discussed.



We invite the reader to consider Cohen’s co-respondence, where coherent
system-wide responses emerge from the interactions of simple components with
contradictory responses [15]. What better way to base a quantification of such an
ideas than with the strength of weak learnability? All the necessary ideas are in
place: (i) randomly generated weak components; (ii) the feedback cycle between
antigen presentation, clone activation and antibody production that modifies
the the data distribution in the environment; and (iii) integration across the
population to increase confidence in the final system’s output.

As we have repeatedly stressed throughout, the shape-space antagonises real-
ising these ideas as computational abstractions: it ties ligand and receptor iden-
tities to co-ordinates; assumes a�nity is isometric centred on these co-ordinates;
and portrays the repertoire as a collection of points attempting to cover the
space. We tentatively suggest that the proposed abstraction also renders some
of the open problems and future directions (e.g. [24, 31]) of AIS tractable. We
will illustrate this point further in Sect. 5.3.

5.2 Potential contribution from Artificial Immune Systems

As was noted in a recent workshop report [19] under the heading “What is
real-time autonomous learning?”:

...in most ML [machine learning] applications, the intelligent aspects
of learning are managed by the human supervisor (and not by the learn-
ing algorithm). Typically this human supervisor must: select the training
examples; choose the representation of the training examples; choose the
learning algorithm;choose the learning rate; decide when to stop learning
and choose the way in which the performance of the learning algorithm is
evaluated. This absolute requirement for a human expert supervisor pre-
cludes ubiquitous use of ML. It also means that ML has not yet captured
the essence of learning.

Clearly, the immune system is real-time autonomous. It is, perhaps, this au-
tonomy that should be the inspiration for algorithms based on immunological
metaphors and models, rather than, or in addition to, superficial two-class clas-
sification or anomaly detection behaviour.

However, in demonstrating how the shape-space inhibits realising these ideas,
we justified our change of abstraction with reference to statistical methods that
are also not autonomous. Both Boosting and Matching Pursuit are greedy algo-
rithms. Matching Pursuit does not learn how to structure its dictionary; is only
concerned with e�ciently representing individual signals, rather than the signal
“environment”; and because of its myopic nature, errors in earlier iterations can
persist and propagate. Boosting is usually framed in a batch supervised learn-
ing framework, resulting in a finite training period prior to static deployment
(although, see [49]). Boosting can also be very sensitive to outliers and noise in
the class labels. None of these aspects are conducive to autonomous learning.



By reframing repertoire generation and management in the context of learn-
ing an adaptive dictionary of base functions or classifiers (rather than prototyp-
ical points in a shape-space), we think the immunological perspective has much
to contribute to this autonomy – somewhere between the analytical extremes
of greedy and global optimisation. Indeed, this is an area where AIS already
contribute, albeit in a di↵erent search space.

Crucially, this change of abstraction does not render previous AIS contribu-
tions invalid9. By working at a lower level, we simply reinterpret what structures
these immune-inspired processes are performed over.

5.3 Sketch of an alternate system

To better illustrate these ideas we will sketch a caricature of a system based on
our previous algebraic analysis – with the explicit understanding that we are
not suggesting that AIS should reduce to algebra, or that the immune system is
in the business of least-squares regression. That said, any qualitative similarity
with formal techniques, at least, helps intuit that the system might be doing
something useful, which can be di�cult from an arbitrary algorithm based on a
textbook description of biological processes.

We return to the linear classifier, but leave nearest-neighbour behind

ŷ = X̂ 0w⇤

= X̂ 0[(XX 0)�1][Xy]
= X̂ 0G�1ŵ

where we have highlighted two components, G and ŵ, because they are both
amenable to online updating. Firstly, the pseudo-weight vector ŵ = Xy =P
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y
t

x
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represents the correlation between each feature (i.e. “peptide”) and the
class label. Secondly, the matrix G = XX 0 =

P
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lation between features10. Translating to an online setting is straight-forward:
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To understand the qualitative e↵ect of inverting G, we must first consider our
representation learning process. The famous Spectral Theorem [4] states that G
can be decomposed as a superposition of basis vectors
9 e.g. Structural and parametric plasticity, exploration and exploitation in hyper-

mutation and a�nity maturation, meta-stability, lifelong learning, rapid adaptation
and homeostatic behaviour. See [17] for a general overview of much of these ideas.

10 We have used braket notation to emphasise the outer-product | xihy |= xy

0 resulting
in a matrix – not to be confused with the scalar inner-product hx, yi = x

0
y.
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The canonical basis are, of course, the eigenvectors, and the eigen-decomposition
is a standard method of inverting a matrix by inverting the eigenvalues:

G�1 =
X

i

1
�

i

| '
i

ih'
i

| .

The eigen-decomposition is also the heart of many unsupervised learning tech-
niques and common pre-processing steps prior to supervised learning (e.g. Prin-
ciple Component Analysis [32]).

However, we will be concerned with an alternative decomposition – the gener-
ation and regulation of basis functions is now analogous with the development of
the immune repertoire. Ignoring the complexities of repertoire meta-dynamics11,
this can be considered as a Matching Pursuit like process over G, as illustrated
in Algorithm (3). We have deliberately left the details of this algorithm unde-
fined – the point we wish to make is that (i) it’s form is similar to many AIS
algorithms; (ii) the parallel, evolutionary search and repertoire meta-dynamics
of AIS is contrary to greedy optimisation methods such as Matching Pursuit
(Alg. 2) and Boosting (Alg. 1); and (iii) the search space and representation are
completely di↵erent from traditional AIS.

Assuming a repertoire of basis functions, we turn to the qualitative e↵ects
of inverting G. The inversion of the eigenvalues 1

�i
has a simple e↵ect on the

summation – dominant eigenvectors, with large eigenvalues, are de-emphasised
(large denominator), and weak eigenvectors, with low eigenvalues, are empha-
sised (small denominator). Typically, the dominant eigenvectors are interpreted
as capturing coarse grained (high variance, low frequency) structure in G; the
weaker eigenvectors interpreted as noise. Given each B-Clone is now a basis
(where �

i

represents the clone’s contribution to approximating G) we can achieve
a similar e↵ect to the algebraic inversion by exploiting the well known “bell-
shaped” dose response curve of the immune system [40]. Under this curve, the
extremes of overt and weak recognition invoke little response, but clones with
intermediate levels of stimulation flourish. In e↵ect, we are tolerating both coarse
grained structure and fine grained noise. This is an intuitively reasonable strat-
egy for extracting meaningful structure, without reference to any immunology.

Although we do not want to digress into a discussion on possible supervisory
or feedback signals, the vector ŵ also has an intuitive interpretation. In the
lymph nodes, T-Cells co-ordinate between the adaptive repertoire and other
innate cells that sample peptides and chemical signals from the tissues. The net
e↵ect of this sampling is an association between peptide fragments and levels of
11 The “meta-dynamics” cover random generation, evolutionary hyper-mutation, com-

petitive exclusion and regulation of the repertoire. It is one of the most well modelled
aspects of the adaptive immune system and the inspirational basis of many AIS.



repertoire = []
while true do

for Clone ci in repertoire do

si = stimulation(ci, Gt)
proliferate(ci, si)
mutate(ci, si)
 =  + secrete(ci, si)

end

Gt+1 = Gt � � 

cull(repertoire)
populate(repertoire)
metadynamics()

end

Algorithm 3: Illustration of basis discovery and decomposition in the immune
repertoire. The form is similar to standard AIS algorithms, however the search
space and representation are quite di↵erent. The evolutionary-based search
and repertoire metadynamics is di↵erent from greedy optimisation.

endogenously defined “danger”. This is not unlike the correlation between class
labels and features in ŵ, though the mechanism is quite di↵erent from (Eq.3).

Finally, in least squares, the projection of ŵ across G�1 then mixes these
two forms of correlation, resulting in final, optimal weighting w⇤ of features.
Let us consider an algebraically equivalent, though semantically quite di↵erent,
interpretation of this step, for a system attempting to classify a point x̂:

ŷ = x̂0w⇤
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Note that the classification decision depends on the contribution of each basis
in approximating G and the correlation of each basis with both the query point
h'

i

, x̂i and the vector of feature-label correlations h'
i

, ŵi. The interpretation
is straight-forward: each B-Clone’s response is a function of its fitness �

i

, its
recognition of x̂ and the contextual state ŵ of the peptides that make up its
receptor. Note also, that without leaving the algebra we have a coherent, albeit
simplified, formal basis for many key ideas in AIS: online learning, degeneracy,
constructive representations and contextual recognition.



Simplifying the final step, which is outside the scope of this paper, we abstract
our basis as a weak learning algorithm, where weakness is imposed a priori by
sensing only subspaces

ŷ =
X

i

'
i

(x̂; ŵ,�
i

) (5)

The result is an expression reminiscent of co-respondence and the strength of
weak learnability. Although we have necessarily glossed over many details, let
us analyse the gross properties of this algorithm.

Recall that each feature is analogous with a peptide. A given immune repertoire
will have roughly O(n) T-Cells capable of recognising distinct peptide fragments.
A B-Clone receptor’s capacity to bind to epitopes is entirely dependent on appro-
priate peptides being brought together on the surface of environmental proteins.
This information is encoded in G12. In a maximal simplification, if we assume
that a B-Clone can recognise aspects of k nearby surface peptides, then we can
also expect a search space of the order O

�
n

k

�
for the immune repertoire. This scal-

ing is much slower than the polynomial O(nk) in the worst case13. Furthermore,
this worst case that is only realistic if each peptide is uniformly likely to appear
close to another, which almost certainly never holds in both the biological and
computational perspective. Redundancy is typically rife: it is this redundancy
that makes learning feasible.

Note that in this form, recognition is no longer a function of an a�nity metric
in high dimensional space. Each B-Cell receptor defines a di↵erent k-dimensional
subspace. This is the individual cell’s weakness as a component, but the strength
of the repertoire as a whole: it can construct and adapt its representation based
on many low-dimensional perspectives.

Of course, nothing is for free. The implicit cost in all of the above is that
G scales O(n2) where n >> m. This may not be so bad. In certain domains,
such as statistical natural language processing, the dimension n is very high,
but sparsely represented in any given vector. This is because di↵erent vectors
populate di↵erent subspaces – a notion lost in the traditional shape-space. This
means that G may also be very sparse, and often we can explicitly control this
sparsity by choosing how long-range we are still willing to accept features as
“correlated”. The lower the correlation distance, the sparser G becomes. When
G is sparse, it can be stored and updated independently of both n and m –
roughly O(k2) where k << n is the average number of features.

In conclusion, we highlight several aspects of this toy algorithm that are not
so toy-like:

12 As a sum of vector outer-products this is essentially just feature correlation. However,
the algorithm is indi↵erent to how G is constructed. A much richer matrix-based (or
graph-based) representation of component peptides and their surface dependencies
is possible, given that X is now implicit.

13 Given n! < n

k(n� k)! then
`

n
k

´
= n!

k!(n�k)! <

nk(n�k)!
k!(n�k)! < n

k.



– This system can perform online – it is not a batch learning strategy (unlike
regular parametric methods) and does not scale with the size of the dataset
(unlike non-parametric instance-based methods).

– This basis generation method is evolutionary adaptive and performed in par-
allel (unlike Matching Pursuit and Boosting). The repertoire meta-dynamics
ensure complexity is regulated and non-beneficial redundancy is reduced.

– There are separate processes generating G (Eq. 4), ŵ (Eq. 3) and the reper-
toire (Alg. 3). The result is an unsupervised representation learning process,
that is directed by an (unspecified) reinforcement or supervised task learn-

ing process. The system can also perform “semi-supervised” because G is
enriched independently of ŵ.

– This system reduces to something statistically sound when the immunologi-
cal dynamics are removed. Furthermore, the immunological mechanisms are
justified based on the equivalent algebraic and algorithmic mechanisms, not
by appealing to metaphors.

Taken together, we propose this is as a possible sketch of an online au-
tonomous learner: by playing to the strengths of the immune metaphor it can
learn its representation and adapt to changes in the underlying data generating
mechanism; by reconsidering the representational foundations, it becomes more
computationally and analytically powerful.

5.4 Conclusion and future work

We have illustrated how the shape-space is practically and theoretically inferior
as a representational abstraction for machine learning in AIS. No amount of
immune-inspired mechanisms can compensate for this low-level inferiority and,
as such, the potential value in these mechanisms is undermined. This is an un-
necessary waste, as the potential value of immune-inspired processes is not tied
to the shape-space. We have attempted to derive an alternative representational
abstraction that, both, empowers existing AIS algorithms and provides opera-
tional definitions for some of the rhetoric that inspires contemporary AIS.

The ideas discussed in this paper are somewhat reminiscent of AIS’ roots in
Holland’s Learning Classifier Systems (LCS) [34, 10]. However, our derivation is
based on modern advances in computational and statistical learning that have
only become widespread in the 15 years since Perelson, Farmer and Packard’s
seminal paper [22]. AIS and LCS have proven notoriously di�cult to analyse.
Even if these methods can only serve as a first-order approximation to immune
dynamics, they provide a formal foundation based on online learning, signal
processing, iterated games and adaptive control systems. It is perhaps a matter
of taste, but we propose that this is a more convincing foundation than nearest-
neighbour classification in a vectorial shape-space.

Basis decomposition is a powerful methodology with a rich history across
mathematics, theoretical and applied sciences. There is little need for us to justify
this as a reasonable approach, only to highlight it as a compelling alternative to
the approaches currently dominating AIS. Similarly, the burgeoning literature



on Boosting, random subspace and ensemble methods is, to some extent, self-
validating. While AIS continue to be based on instance-based methods they will
necessarily be excluded from the theoretical advances in these fields.

Whether the immunological inspiration contributes back su�ciently to these
fields still remains to be seen. It is, at the very least, plausible given that AIS
already contribute between the extremes of greedy and global optimisation. This
is a future aspect of our work, which relies on additional material not relevant to
this paper. At this point, we simply hope the reader finds the presented argument
compelling enough to consider thinking outside the shape-space.
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