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Abstract
Reducing the energy consumption of water distribution networks has never had more
significance. The greatest energy savings can be obtained by carefully scheduling
the operations of pumps. Schedules can be defined either implicitly, in terms of
other elements of the network such as tank levels, or explicitly by specifying the
time during which each pump is on/off. The traditional representation of explicit
schedules is a string of binary values with each bit representing pump on/off status
during a particular time interval. In this paper, we formally define and analyze two
new explicit representations based on time-controlled triggers, where the maximum
number of pump switches is established beforehand and the schedule may contain less
switches than the maximum. In these representations, a pump schedule is divided
into a series of integers with each integer representing the number of hours for which
a pump is active/inactive. This reduces the number of potential schedules compared
to the binary representation, and allows the algorithm to operate on the feasible
region of the search space. We propose evolutionary operators for these two new
representations. The new representations and their corresponding operations are
compared with the two most-used representations in pump scheduling, namely, binary
representation and level-controlled triggers. A detailed statistical analysis of the
results indicates which parameters have the greatest effect on the performance of
evolutionary algorithms. The empirical results show that an evolutionary algorithm
using the proposed representations improves over the results obtained by a recent
state-of-the-art Hybrid Genetic Algorithm for pump scheduling using level-controlled
triggers.
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1 Introduction

Water Distribution Networks (WDNs) ensure the supply of water with adequate pressure
to consumers at demand nodes. To accomplish this task, often, water must be pumped
to overcome frictional losses and to store it at a higher elevation. For example, pumps lift



water from a treatment plant into an elevated tank, where water is stored temporarily
before supplying it to consumers. The cost of energy consumed by pumps is a significant
proportion of the total operational cost of a WDN. Pumps also need to be repaired and
replaced, incurring additional costs. Carefully scheduling pump operations may reduce
the total pump operational cost, which includes pumping cost and maintenance cost,
while guaranteeing a competent service.

Finding optimal schedules for pumps in a WDN is a difficult task for researchers and
managers alike. A careful scheduling of pump operations may shift workload to cheaper
electrical tariff periods, reducing the cost of energy consumed by pumps. Furthermore,
energy savings can be accomplished by pumping water when tank levels are lower, and
combining the operations of several pumps efficiently. On the other hand, (future) pump
maintenance costs caused by pump operations cannot be easily quantified, so surrogate
measures are used to estimate it. The most common of such measures is the total
number of pump switches: frequent switching (on/off) causes wear and tear of pumps and
pressure surges throughout the network, and, hence, increases future maintenance costs.
These maintenance costs can be considered in the optimisation problem by limiting the
number of pump switches.

Most of the research in the field of water distribution optimisation has been de-
voted towards the optimal design of WDNs (Maier et al., 2003; Farmani et al., 2006;
Vasan and Simonovic, 2010). Nonetheless, there are algorithms for operational opti-
misation of WDNs based on linear programming (Jowitt and Germanopoulos, 1992),
nonlinear programming (Chase and Ormsbee, 1993; Yu et al., 1994), dynamic program-
ming (Lansey and Awumah, 1994; Nitivattananon et al., 1996), and heuristics (Ormsbee
and Reddy, 1995; Leon et al., 2000). However, these algorithms had a limited success
because of various reasons. First, the large search space combined with high evalua-
tion time restricts the number of solutions that can be examined in a reasonable time.
Second, the complexity of real-world WDNs makes the problem highly nonlinear, due
to conservation of energy equations, and discontinuous, due to discrete events triggered
by control rules. Therefore, the application of traditional optimisation methods, such
as linear and nonlinear programming, often involve the formulation of oversimplified
models of the network and the system of hydraulic equations to suit the algorithm re-
quirements, thereby sacrificing accuracy. Algorithms based on meta-heuristics, such as
evolutionary algorithms (Savic et al., 1997; van Zyl et al., 2004; Farmani et al., 2006;
Rao and Salomons, 2007), simulated annealing (Goldman and Mays, 2000), and ant
colony optimisation (López-Ibáñez et al., 2008), have overcome, to some degree, the
above limitations, and hence, have shown promising results.

Most works on pump scheduling encode pump schedules using a binary string rep-
resenting the on/off state of a pump during a pumping interval. Recently, we proposed
an alternative representation based on time-controlled triggers for applying ant colony
optimisation to pump scheduling (López-Ibáñez et al., 2008). In this paper, we formally
define and develop this new representation and compare it with traditional represen-
tations. This new representation enables the optimisation algorithm to operate on the
feasible search space, which leads to a reduction in the number of function evaluations
and, hence, computation time. Moreover, the new representation provides an alternative
view-point to tackle the problem. In binary representation, the algorithm tries to find
the optimal status of each pump at predefined time intervals. By comparison, in the pro-
posed time-controlled triggers method, the goal becomes finding the appropriate switch
times for the pumps (in the case of absolute time-controlled triggers) or the appropri-
ate duration of the operating and idle intervals (in the case of relative time-controlled
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triggers). Therefore, we propose two variants of time-controlled triggers representation.
These two new representations require specific recombination and mutation opera-

tors in order to use them in evolutionary algorithms. We propose various operators and
empirically test them using a simple evolutionary algorithm to analyse their effect. As
benchmark instances, we consider two well-known instances from the literature. As far
as we know, not even studies proposing specialised representations for pump schedul-
ing have performed a comparative analysis of different representations using the same
algorithm and on the same network instances. In some cases, no comparison is done at
all (Wegley et al., 2000). In other cases, a new algorithm using the new representation
is compared with unoptimised settings or with a previous algorithm using a different
representation (Kazantzis et al., 2002). Since neither the algorithm nor the represen-
tation is the same in any step of the study, observed differences cannot be attributed
exclusively to the new representation or to the algorithm. By contrast, we compare four
different representations using the same algorithm. In addition, we assess the quality of
the results by using as baseline for the comparison a recent state-of-the-art algorithm
for pump scheduling that uses one of these four representations.

The paper is structured as follows. We first introduce the problem of scheduling
pump operations in WDNs in Section 2. Next, we discuss in detail the representation
of pump schedules in Section 3, where the new time-controlled triggers representation
is proposed. Section 4 proposes new recombination and mutation operators for the two
variants of time-controlled triggers, and describes the operators used in the experiments
for the other representations. Section 5 presents a statistical analysis of different pa-
rameter settings for each representation in order to identify adequate settings for a fair
comparison of the different representations, which is given in Section 6. Finally, we
present our conclusions and suggest potential research directions in Section 7.

2 Pump Scheduling Problem

The main goal in the pump scheduling problem is to minimise the cost of pumping
water, while satisfying physical and operational constraints (Ormsbee and Lansey, 1994),
by means of scheduling pump operations over a scheduling period, typically 24 hours.
There are two types of costs associated with the operation of pumps: energy costs and
maintenance costs.

The energy cost may be composed of an energy consumption charge ($/kWh),
i.e., the cost of electric energy consumed during a time interval, and a demand charge
($/kW), i.e., the cost associated with the maximum amount of power consumed within
a billing period (Walski et al., 2003). Formally, let the operations of Np pumps be
scheduled over a time period. This scheduling period is divided into a number of time
intervals (NT). A certain pump schedule s describes (explicitly or implicitly) which
pumps operate during which time interval. The total cost of energy is calculated as:

CE(s) =

Np∑
n=1

PdEd(n) +

NT∑
t=0

Pc(t)Ec(n, t) s(n, t)

 (1)

where s(n, t) = duration for which pump n is operating during time interval t (hour)
Pc(t) = energy consumption tariff during time interval t ($/kWh)

Ec(n, t) = energy consumption rate of pump n during time interval t (kWh/h)
Pd = demand charge ($/kW)

Ed(n) = maximum electric power consumption of pump n (kW)

3



The energy consumption rate of a pump depends on the flow through the pump,
the head supplied by the pump, which is measured as the energy or pressure of a vertical
column of water of a certain height in meters, and the efficiency at which it operates,
during a particular time interval (Walski et al., 2003):

Ec(n, t) =
10−3 · γ ·Q(n, t) · h(n, t)

e(n, t)
(kWh/h) (2)

where γ = specific weight of water (N/m3)
Q(n, t) = flow rate through pump n during time interval t (m3/s)
h(n, t) = total dynamic head supplied by pump n during time interval t (m)
e(n, t) = wire-to-water efficiency of pump n during time interval t (%)

The electrical power required to drive the pump is calculated as:

Ed(n) =
10−3 · γ ·Qmax(n) · h(n)

e(n)
(kW) (3)

where γ = specific weight of water (N/m3)
Qmax(n) = peak flow rate through pump n (m3/s)

h(n) = total dynamic head supplied by pump n (m)
e(n) = wire-to-water efficiency of pump n (%)

The demand charge is normally applied to the maximum power demand (kW)
over a billing period (e.g. a month) longer than the scheduling period (e.g. a day).
Nonetheless, maximum demand policies can be modelled within a scheduling period
by calculating the corresponding penalty cost to the maximum power used over the
scheduling period (McCormick and Powell, 2003a).

Maintenance costs, on the other hand, are difficult to quantify. Instead, they are es-
timated using a surrogate measure, such as the utilisation duration of pumps or number
of pump switches. Reducing the utilisation of the pumps is mainly achieved by min-
imising the energy cost. On the other hand, there is no such direct relationship between
pump switches and energy cost. A pump switch is defined as the action of turning on a
pump that was not operating during the previous time interval (Lansey and Awumah,
1994). Frequent switching causes wear and tear of pumps, which, in turn, increases
maintenance costs. Moreover, pump switches generate pressure surges that cause an
unspecified damage to network components, such as pipes and valves. Thus, the general
practice is to minimise the number of pump switches in order to reduce both the wear of
the pumps and the damage to pipes and valves, hence, minimising future maintenance
costs. Most works consider energy cost as the most important objective, and add the
number of pump switches as a constraint to the problem (Lansey and Awumah, 1994;
Mäckle et al., 1995; van Zyl et al., 2004; López-Ibáñez et al., 2008).

2.1 Constraints of the Pump Scheduling Problem

In order to be practical, feasible schedules must satisfy certain constraints. These con-
straints include hydraulic constraints, also called system constraints, which define the
hydraulic equilibrium state of the system, e.g., Conservation of Mass at each node and
Conservation of Energy around each loop in the network. On the other hand, bound
constraints represent system performance criteria. They include constraints on junction
pressures, pipe flow rates or velocities, and tank water levels.
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Constraints on tank water levels typically include minimum and maximum limits on
tank levels, and balance between supply and demand from tanks. Minimum and maxi-
mum tank limits may be explicit constraints of the problem or can be implicitly enforced
by a hydraulic simulator. Balance between water supplied to and consumed from tanks
is achieved by ensuring that tanks recover their levels by the end of scheduling period.
Balancing supply and demand also allows operators to apply a similar pump schedule
to the next scheduling period, assuming consumer demands and network conditions are
similar in consecutive periods.

For a perfect periodicity of the operations, the volume of water in each tank by the
end of the scheduling period must be equal to its initial volume (Cohen, 1982). However,
this is a very strict constraint. A relaxed formulation allows the final volume of water
at each tank to be different from its initial volume and simply requires that the total
volume of water pumped into the network is the same as the amount consumed (Gold-
man and Mays, 2000). This condition ensures the balance between water supply and
demand. However, water may be stored at a lower elevation by the end of the scheduling
period than at the start. Such a difference in elevation implies a loss of energy in the
system and prevents periodicity. An alternative formulation that does not allow such
energy losses requires that the final volume in a tank should not be lower than its initial
volume (Mäckle et al., 1995; van Zyl et al., 2004).

Following this latter definition, we formulate the constraint on the balance between
supply and demand as follows. Tank volume deficit (∆Vk) is defined as the difference in
percentage between the initial volume (Vk,S) and the final volume (Vk,E) of water in a
tank k (4a). A negative volume deficit represents a surplus of water in the tank. However,
we do not assume that this surplus compensates the loss of water in a different tank. The
volume deficit tolerance (∆V tol) is a parameter of the problem formulation that defines
the volume deficit that is allowed (4b). Only values that are higher than ∆V tol are
accumulated to calculate the total volume deficit (∆V ) of a particular schedule, which
must be zero in a feasible solution (4c).

∆Vk = 100 · Vk,S − Vk,E
Vk,S

(4a)

∆V ′k =

{
∆Vk if ∆Vk > ∆V tol,

0 otherwise.
(4b)

∆V =

Nt∑
k=1

∆V ′k = 0 (4c)

where N t is the number of tanks in the network. The parameter ∆V tol allows operators
to model different scenarios (López-Ibáñez, 2009). However, the most common setting
is ∆V tol = 0, that is, no volume deficit is allowed, which is the setting used by the
instances considered in this paper.

In addition to balancing supply and demand, a reliable network service must supply
water to consumers at adequate pressures. Therefore, the optimisation model must
satisfy minimum pressure constraints at demand nodes:

Hk,t ≥ Hmin
k (5)
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where Hk,t is the head supplied at node k during time period t, measured as the pressure
of a vertical column of water of a certain height in meters, and Hmin

k is the minimum head
required at node k. In particular, we accumulate the violations of the above constraints
into a single pressure deficit constraint:

∆Hk,t =


Hmin

k −Hk,t

Hmin
k

if Hk,t < Hmin
k ,

0 otherwise.

∆H =

NT∑
t=1

Nd∑
k=1

∆Hk,t = 0

(6)

where NT is the number of time periods and Nd is the number of demand nodes.

Finally, an additional constraint on the number of pump switches of a schedule is
often incorporated to the problem formulation in order to reduce maintenance costs, as
mentioned above. However, our goal is not limiting the total number of pump switches
(N sw), but actually limiting the number of switches of each pump (N sw

p ). The difference
is that by limiting N sw, a schedule may still contain a pump with an excessive number
of switches, whereas this cannot occur if the constraint is applied to N sw

p as follows:

N sw
p ≤ SW ∀p ∈ {1, . . . , Np} where N sw =

Np∑
p=1

N sw
p (7)

where SW is a constant to be specified that denotes the maximum number of switches
allowed per pump during the scheduling period.

The above constraints are the most frequently used constraints. Additional con-
straints, such as limits on source flows or velocity constraints, may be incorporated to
the problem formulation depending on particular requisites of a network and the optimi-
sation approach. In particular, EPANET (Rossman, 1999), the hydraulic simulator that
we use later for evaluating candidate pump schedules,1 may issue warnings for specific
undesirable situations (Rossman, 2000). Such warnings indicate that the schedule is
problematic and should not be considered a feasible solution to the problem. Therefore,
we add an additional constraint that requires feasible solutions to generate no simulation
warnings.

2.2 Constraint handling methodology

Previous works on pump scheduling have dealt with constraints by penalising the ob-
jective function (Mäckle et al., 1995; Goldman and Mays, 2000; van Zyl et al., 2004).
The penalty function method imposes a fixed trade-off between the amount of constraint
violation and the value of the objective function. Low penalty values would allow large
constraint violations in return for small reductions in the objective value, while higher
penalty values would require a larger decrease of the objective value to compensate the
same amount of constraint violation. Moreover, different penalty values are required for
different types of constraints and the degree of violation of some of these constraints
cannot be easily quantified. Penalty values, in general, are obtained either using ad-
hoc techniques or by trial-and-error, requiring additional fine-tuning and experimental

1We use our own GNU/Linux port of EPANET that maintains backwards compatibility. It is available
for download at http://iridia.ulb.ac.be/~manuel/epanetlinux
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runs of the particular algorithm. Furthermore, penalty values that are optimal for one
network instance are unlikely to be appropriate for a different network.

For these reasons, we avoid the use of a penalty function and adopt a simpler and
more general constraint handling method based on ranking solutions with respect to
their constraint violations (Deb, 2000). In this ranking method, given two candidate
solutions, the criteria to choose the best solution are:

1. select the solution with the lowest pressure violation (∆H in Eq. 6);

2. if pressure violations are equal, select the solution with the lower number of warnings
from the simulator;

3. for equal number of warnings, select the solution with the lower total volume deficit
(∆V in Eq. 4);

4. if total volume deficits are equal, select the solution with the lowest objective func-
tion value, that is, lowest electricity cost (CE in Eq. 1).

In the case of the binary and level-controlled triggers representations, the constraint
on the number of pump switches (N sw

p ≤ 3, Eq. 7 with SW = 3) is explicitly incorporated
to our constraint handling method. In particular, out of two solutions that violate
this constraint, the one containing the pump with the highest number of switches is
considered worse. This constraint is given a lower priority than the constraint on volume
deficit, and thus it is considered after all the other constraints.

These criteria effectively rank a feasible solution (zero total volume deficit, no warn-
ings and no pressure violations) better than any infeasible one. Feasible solutions are
compared with respect to their objective function values only, and infeasible solutions
are compared according to their degree of infeasibility. The order chosen for the compar-
ison of constraint violations establishes some preferences. A solution with volume deficit,
where enough water is supplied to meet the demand but a balance is not achieved by
the end of the simulation, is preferred over a solution having pressure violations, where
the adequate demand cannot be supplied. Warnings from the simulator are considered
to be worse than volume deficit, since warnings indicate some problem preventing the
correct evaluation of the solution by the simulator (e.g., a pump was forced to shut down
because it could not deliver enough head). However, a solution that generates warnings
and no pressure violations is preferred over a solution that has pressure violations. We
observed that a small modification to such a solution often removes the warnings, with-
out significantly altering the electrical cost. On the other hand, a solution with pressure
violations would require larger changes, since pumps need to be active for more hours
to supply the demand at required pressures.

3 Representation of pump schedules

A solution to the pump scheduling problem is any possible schedule of pumps for a
predefined scheduling period, typically 24 hours. A particular representation describes
how a sequence of decision variables maps to a pump schedule. For the sake of clar-
ity, we assume that the sequence of decision variables representing a schedule of the
pumps has the following general form S = {s1, s2, . . . , sNp} where each sp corresponds
to the sequence of decision variables representing the schedule of pump p. This formu-
lation has the advantage that we can assume a single pump when discussing different
representations, while extending the discussion to several pumps is straightforward.
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A schedule can be represented either explicitly or implicitly. Explicit representations
define schedules by directly specifying the status of each pump (Mäckle et al., 1995;
Pezeshk and Helweg, 1996; Wegley et al., 2000; Sakarya and Mays, 2000; Goldman and
Mays, 2000; Savic et al., 1997; McCormick and Powell, 2003b, 2004). Typically, explicit
representations divide the operation period into several time intervals. For each time
interval, a decision variable either indicates the status of the pump (active, idle or speed
for variable frequency drive pumps) or the fraction of time a pump is operating during
that time interval. On the other hand, implicit representations define the operations of
pumps in terms of properties of other elements of the network (Dandy and Gibbs, 2003;
van Zyl et al., 2004; Kazantzis et al., 2002; Atkinson et al., 2000). For example, water
levels in tanks are often used to trigger operation of pumps. Hence, the goal becomes
one of determining optimal values of those surrogate variables.

In the following section, we first discuss two well-known and widely used representa-
tions: the binary representation and the representation based on level-controlled triggers.
Then, we formally introduce two representations based on the concept of time-controlled
triggers. Although other representations have been suggested in the literature, none of
them has been shown to give a clear advantage over both the binary representation and
level-controlled triggers in the general pump scheduling problem. In fact, they were
typically developed to deal with specific requirements or limitations of the formulation
of the problem, the optimisation algorithm or the simulation model.

3.1 Binary Representation

The binary representation is the most commonly used explicit representation of pump
schedules (Mäckle et al., 1995; Savic et al., 1997; Goldman and Mays, 2000; Sotelo et al.,
2002). In the binary representation, the scheduling period is divided into a fixed number
(NT) of smaller intervals. A single binary value is used to represent the status of a pump
during each interval, and equals to one if the pump is active during the time interval,
or zero if the pump is idle.

t0 t1 t2 t3 tj tNT

sp = 0/1 0/1 0/1 0/1 · · · 0/1

Figure 1: Binary representation of a pump schedule.

Given a particular solution, the number of pump switches is the number of 01
sequences plus one if the schedule starts with 1 and ends with 0. Thus, the maximum
number of switches per pump is N sw

p ≤ bNT/2c. The size of the search space depends
on both the number of time intervals and the number of pumps, being the total number
of possible solutions 2(N

T·Np).
The binary representation can only represent schedules where pump switching oc-

curs at multiples of ratio T/NT. For example, in the typical 24 one-hour intervals, the
status of a pump cannot change in the middle of a one-hour period, thus an operat-
ing interval may last two or three hours but not 2.5 hours. This limits the flexibility
of the schedules. The flexibility can be increased just by using a larger NT, but this
exponentially enlarges the search space.

3.2 Level-controlled Triggers

The operation of a pump can be triggered at certain water levels of a storage tank.
Typically, a pair of trigger levels, lower and upper, are set up in a tank such that when
water level falls below or goes above the respective level, the pump activates or stops.

8



Level-controlled triggers are used to keep the water level in a tank within an operating
range that is a reduced interval of a contractual range. If the water level falls below
or goes over the levels of this contractual range, then a penalty cost may exist. This
penalty cost does not exist in our application, since the EPANET hydraulic simulator
prevents the water level from falling outside the contractual range by closing the tank
riser. However, this may result in violations of pressure constraints, because pressure at
some of the demand nodes decreases when a tank cannot supply water.

Electricity tariff is typically divided into peak and off-peak periods, and different
pairs of level-controlled triggers are used for each period. Thus, a solution in level-
controlled triggers representation has the following formulation:

peak off-peak

sp = Hlo Hup H ′lo H ′up
lower upper lower upper

Figure 2: Level-controlled triggers.

Each trigger level is constrained to values within the contractual range of the tank.
Additionally, for each pair of lower/upper trigger levels, the lower level is never higher
than the corresponding upper level (Hlo ≤ Hup and H ′lo ≤ H ′up).

There is no limit in the number of pump switches that the level-controlled triggers
representation may generate. Apart from the fact that narrow operating ranges will,
in general, result in more pump switches than wider ranges, there is no rule of thumb
that can be applied to estimate the number of pump switches generated by a particular
setting of level-controlled triggers. In fact, excessive number of pump switches is often a
problem in applications using level-controlled triggers. This is sometimes acknowledged
as a potential problem, but no strategies are considered to prevent it (Kazantzis et al.,
2002). In other cases, the schedules obtained by the optimisation algorithm are manually
fine-tuned a posteriori to reduce the number of pump switches (Atkinson et al., 2000).
A better approach incorporates an explicit constraint on the number of pump switches
into the optimisation algorithm and constraint handling techniques are applied, e.g.,
penalising the objective function (electrical cost) proportionally to the number of pump
switches (van Zyl et al., 2004).

3.3 A New Representation for Pump Scheduling: Time-controlled Triggers

We recently used the concept of time-controlled triggers to develop an explicit repre-
sentation in order to apply ant colony optimisation to pump scheduling (López-Ibáñez
et al., 2008), with the limitation that only schedules with an exact pre-defined number of
switches were representable. In this section, we formalise the definition of two variants
of the time-controlled triggers representation that do not have such artificial limitations.
These two representations have the advantage of implicitly satisfying the constraint on
the number of pump switches, while allowing less switches than the limit.

In contrast to the binary representation, which encodes the status of a pump during
each time interval, the time-controlled triggers representation encodes the time when a
pump changes its status. The concept of encoding time has already been proposed in the
literature. Sakarya and Mays (2000) and McCormick and Powell (2004) used continuous
variables to encode the proportion of time that a pump (or combination of pumps) is
active during a time interval. However, our proposal allows us to directly encode pump
switches in the representation. A pump switch is defined as turning on a pump that
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was previously off (Lansey and Awumah, 1994). However, in a periodic schedule each
pump switch actually implies two changes in the status of a pump: off to on for the
pump switch and on to off to achieve the situation previous to the pump switch. For
example, a schedule where a pump is initially on and is never turned off during the whole
scheduling period does not contain any pump switch or status change. On the other
hand, a schedule where a pump is initially on and it is eventually turned off contains
one pump switch and two status changes.

Therefore, a pair of decision variables is required to define a pump switch in time-
controlled triggers representation. We can thus limit the maximum number of switches
per pump simply by limiting the number of decision variables of each solution. For
example, a schedule of a single pump in a time-controlled triggers representation of
length six will allow a maximum of three pump switches. In general, for a maximum of
SW switches per pump, there will be 2 · SW decision variables for each pump.

sp = t1 t′1 t2 t′2 . . . . . . tSW t′SW

Figure 3: Time-controlled triggers for pump p with SW pump switches.

The range of the decision variables depends on the precision with which we want to
measure time and on the time horizon. If continuous values are used, then the precision
is arbitrary. On the other hand, discrete values may be preferred in order to limit search
space and because arbitrary time precision is impractical. Therefore, assuming a time
horizon of 24 hours, the range of decision variables may be an integer within [0, 86400]
for a precision of seconds, [0, 1440] for a precision of minutes, and [0, 24] for a precision
of hours. For simplicity and following the typical binary representation, we will assume
intervals of one hour.

This new representation enables the optimisation algorithm to conduct the search
in the feasible region of the search space. For example, let us consider the schedule of a
single pump for 24 intervals of one hour. In the binary representation, each interval can
have either of the two states (on/off) and, thus, there are 12 possible pump switches.
The search space contains 224 = 16 777 216 candidate solutions. However, if the number
of pump switches is restricted to three (N sw

p ≤ 3), the feasible search space with respect
to this constraint is 290 998 solutions, which is less than 1.74% of the total search
space. Table 1 gives the number of potential solutions with respect to the number of
pump switches. These values were obtained by explicitly enumerating all 224 possible
schedules of a single pump.

The size of the search space grows with NT. For example, when considering NT =
48, that is, 30 minutes intervals in a daily scheduling period, there are 24 934 442 possible
schedules of a single pump with three or less pump switches. This is more than 85 times
the number of solutions for NT = 24. On the other hand, it is only 8.86× 10−6 percent
of the total number of possible schedules for a single pump with NT = 48. That is, on
the one hand, the size of the feasible search space grows with NT, but on the other hand,
it grows far slower than the total search space. With additional pumps, the search space
grows exponentially. For just two pumps there are 224 · 224 = 248 potential schedules
in total, of which only 84 679 836 004 potential solutions (0.03%) satisfy the constraint
N sw

p ≤ 3. Although the number of potential solutions increases dramatically for higher
number of pumps, the feasible search space becomes a smaller fraction of the total search
space.

The time-controlled triggers representation may be implemented in at least two
different ways, depending on whether the time encoded by the representation is absolute
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Table 1: Search space size for the scheduling of a single pump in 24 hours with respect
to various limits on the number of pump switches (SW ).

SW N sw
p = SW N sw

p ≤ SW
Feasible space % of total Feasible space % of total

1 552 0.0033 554 0.0033
2 21252 0.1267 21806 0.13
3 269192 1.6045 290998 1.7345
4 1470942 8.7675 1761940 10.502
5 3922512 23.38 5684452 33.882
6 5408312 32.2361 11092764 66.118

12 2 0.00001 16777216 100

time since the start of the scheduling period, or relative to a previous change of pump
status. Each of these implementations may lead to different results. Moreover, we do
not want to impose an exact number of pump switches, like in earlier formulations of
time-controlled triggers (López-Ibáñez et al., 2008), but a maximum limit. Therefore,
we propose a formulation which is able to represent schedules with fewer switches than
the number of pairs of decision variables. In the following sections, we will examine how
to achieve this for two variants of time-controlled triggers.

3.3.1 Absolute Time-controlled Triggers

When decision variables are absolute time, each decision variable represents the time
from the start of scheduling period at which the status of a pump changes. Let us assume
for now that pumps are off at the start of the scheduling period. We consider that ti
corresponds to a transition from off to on, and t′i corresponds to a transition from on
to off. Therefore, a pair of decision variables 〈ti, t′i〉 represents an operating interval
during which the pump is active. Figure 4 shows an example schedule represented with
absolute time-controlled triggers, where each value is a number of hours since the start
of the scheduling period (7 am).

2316151420

07 11 13 15 17 19 21 23 01 03 05 0709

On Off

Figure 4: Example of absolute time-controlled triggers representation.

A possible formulation of the above description would be:

sp = {〈t1, t′1〉, 〈t2, t′2〉, . . . , 〈tSW , t′SW 〉} (8)

∀i ∈ {1, . . . , SW} ti, t
′
i ∈ [0, T ]

∀i ∈ {1, . . . , SW − 1} ti < t′i < ti+1 < t′i+1
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0 2 12 1 1 7

07 11 13 15 17 19 21 23 01 03 05 0709

On Off

Figure 5: Example of relative time-controlled triggers representation.

The inclusion of the value 0 in the range of values makes unnecessary the previous
assumption that pumps are off at the start of the scheduling period, since a pair 〈0, t′1〉
represents an operating interval where the pump is active at the start of the scheduling
period. However, this formulation is too strict in the sense that it cannot represent
schedules with less than SW pump switches (N sw

p ≤ SW ). In order to represent such
schedules we need to introduce empty operating intervals, that is, an operating interval
that has no effect whatsoever on the schedule apart from reducing the number of switches
in a solution. We denote empty intervals with the special symbol 〈−,−〉. Thus, we
extend the formulation above in the following way:

sp = {〈t1, t′1〉, 〈t2, t′2〉, . . . , 〈tSW , t′SW 〉} (9)

∀i ∈ {1, . . . , SW} 〈ti, t′i〉 ∈ 〈[0, T ], [0, T ]〉 ∪ 〈−,−〉
∀i ∈ {1, . . . , SW − 1} ti < t′i < ti+1 < t′i+1 iff 〈ti, t′i〉 6= 〈−,−〉

3.3.2 Relative Time-controlled Triggers

If decision variables are relative time intervals, each pair of decision variables represents
the time during which a pump is inactive and active, respectively. According to this,
the sequence of decision variables 〈ti, t′i〉 implies a change of state from an inactive one
(during ti) to an active one (during t′i), and, hence, it also implies a single switch.

It immediately follows from this definition that the sum of all time intervals for
each pump must be less than or equal to the scheduling period T . By allowing the sum
to be less than T , we can represent schedules where the pump is not active by the end
of the scheduling period. If we let the range of valid values for any decision variable be
[0, T ], then zero-length time intervals are allowed, thus enabling the representation of
schedules with less than or equal to SW pump switches (N sw

p ≤ SW ):

sp = {〈t1, t′1〉, 〈t2, t′2〉, . . . , 〈tSW , t′SW 〉} (10)

∀i ∈ {1, . . . , SW} ti, t
′
i ∈ [0, T ] and

SW∑
i=1

(ti + t′i) ≤ T

Figure 5 shows an example of relative time-controlled triggers representation. Each
value is the number of hours that the pump is either inactive or active.

4 Evolutionary Operators

In this paper, our goal is to study the effect of several representations and their corre-
sponding evolutionary operators, hopefully minimising the influence of other algorithmic
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factors. Therefore, we make use of a very basic evolutionary algorithm, henceforth called
the simple evolutionary algorithm (SEA). The algorithm starts with the initialisation
of the main population Pall with α random solutions. Then, µ solutions from the main
population are selected as parents using a binary tournament. A recombination oper-
ator is applied to pairs of parents in order to generate µ offspring solutions. Mutation
is applied to each decision variable of each offspring with a certain probability. The
µ new solutions generated are evaluated to calculate the objective function value and
constraints. These new solutions replace the µ worst solutions in the main population.
As long as α > µ, the best solution found will always be present in the population, im-
plementing elitism. The larger the difference between α and µ, the stronger the elitism.
Evolutionary algorithms applied to pump scheduling often use very strong elitism (Savic
et al., 1997; van Zyl et al., 2004), and we follow this setting here.

There are many evolutionary operators described in the Evolutionary Computation
literature. Michalewicz (1996) and Herrera et al. (2003) provide extensive surveys. Since
operators work directly on the representation of solutions, there are some differences
between the operators used for each particular representation. We first briefly describe
the operators chosen for the binary and level-controlled triggers representations. Then,
we introduce custom operators for the new time-controlled triggers representation.

4.1 Binary Representation

For the binary representation, we focus on three well-known types of recombination: one-
point, two-point and uniform crossover. In the case of one- and two-point recombination,
the schedules are recombined per pump by using the same crossover point for each pump.
That is, given a crossover point k ∈ [1, NT − 1], the offspring schedule is formed by
combining, for each pump p, the schedule of pump p from one parent up to time interval
k and the schedule of the same pump from the other parent from time interval k+ 1 up
to NT. This approach does not seem to have been explicitly used in previous algorithms
using the binary representation, which simply divided the whole binary string containing
the schedule of all pumps (Mäckle et al., 1995; Savic et al., 1997). This latter approach
disregards the interactions between the pumps and the fact that all pumps have an
effect at the same time over the network. By comparison, our approach defines building
blocks in terms of the status of all pumps during a time interval, because the result of a
simulation step is influenced by the combined status of all pumps at once. In a sense, the
schedules of the pumps are applied “in parallel” to the network. Our intuition is that
the proposed crossover captures the “parallel” nature of the problem better. Strictly
speaking, our approach could be called one-point-per-pump and two-point-per-pump.
However, for brevity we will refer to them simply as one-point and two-point crossover.

Mutation is performed using flip mutation operator, which reverses the status of a
pump at a particular time interval. For each offspring solution, the mutation operator
is applied to each time interval of each pump with a certain mutation probability. In
the binary representation, there are Np ·NT decision variables per solution, and hence,
a probability of mutation of 1/(Np ·NT) would mutate one time interval per solution.
In earlier experiments, we found out that this mutation rate was too low, and better
results were obtained with a mutation rate of two intervals modified per solution, that
is, with a mutation probability equal to 2/(Np ·NT).

4.2 Level-controlled Triggers

In the case of level-controlled triggers representation, the variables are real numbers
representing water level of a particular tank. Therefore, we use three well-known recom-
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bination operators for real-valued variables:

• Rand-arithmetical, where each decision variable i in the offspring schedule c is cal-
culated from the parent schedules a and b as ci = λai + (1 − λ)bi, where λ is a
random value between 0 and 1. It is also known as line recombination (Mühlenbein
and Schlierkamp-Voosen, 1993) or arithmetical recombination (Michalewicz, 1996,
p. 128).

• Average recombination is equivalent to arithmetical recombination with λ = 0.5,
that is, ci = (ai + bi)/2.

• Extended intermediate recombination is also known as BLX-α with α = 0.25 (Eshel-
man and Schaffer, 1992). Each offspring level ci is a value randomly chosen from the
interval [cmin−I ·0.25, cmax +I ·0.25], where cmax = max{ai, bi}, cmin = min{ai, bi}
and I = cmax − cmin.

We test three mutation operators:

• Uniform mutation, or random mutation (Michalewicz, 1996), replaces a value by
a new random value from the allowed domain. In our case, if the value is an
upper trigger, it is replaced by a random value between the lower trigger and the
maximum level of the corresponding tank. For a lower trigger, the interval is from
the minimum level to the upper trigger.

• Replace mutation is a less restricted version of uniform mutation, where a trigger
can take any value within the limits of the corresponding tank. The procedure that
ensures that the mutated solution is valid is described below.

• Gaussian mutation (Fogel, 1995) modifies a value by adding some amount of gaus-
sian noise. For the normal (Gaussian) distribution about 99.7% of values are within
three standard deviations. Therefore, if we replace a trigger level ci with a new value
obtained from the normal distribution N (ci, σ), the new value would be within the
maximum and minimum water levels of the tank k (Hrange

k = Hmax
k −Hmin

k ) asso-
ciated with the level-controlled trigger i if Hmin

k + 3σ ≤ ci ≤ Hmax
k − 3σ. As a rule

of thumb, we want to guarantee that the new value is within the limits of the tank
whenever the original value was within the range [Hmin

k + 1
4H

range
k , Hmax

k − 1
4H

range
k ].

Hence, we choose σ = 1
12H

range
k . A larger σ would generate more often values out-

side the valid range, whereas a smaller σ would generate values closer to ci.

The above mutation operators are applied with a probability equal to one divided
by the length of the solution, i.e., 1/(4 ·Np), since for each pump there are four trigger
levels. Hence, the expected number of trigger levels modified per solution is one.

After recombination and mutation, we ensure that the values do not exceed any
tank’s operational levels by setting values over the maximum to the maximum level
and values below the minimum to the minimum level. Moreover, if the value of the
lower trigger is higher than the value of the corresponding upper trigger, the values are
exchanged.

4.3 Absolute Time-controlled Triggers

Custom recombination and mutation operators are required for the time-controlled trig-
gers representation in order to maintain the implicit constraint on the number of pump
switches and other representation constraints (see Section 3.3.1). We developed variants
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ap 2 4 16 22 23 24 − −

bp 1 12 17 19 21 23 − −

cp 2 4 16 19 21 23 − −

Figure 6: Example of one-point recombination for absolute time-controlled triggers.

of one-point, two-point, uniform and rand-arithmetical recombination, and of uniform
and replace mutation. These operators are applied for each pump’s schedule in a solu-
tion. For absolute time-controlled triggers, the recombination operators are adapted as
follows:

• One-point recombination. Given a crossover point k ∈ [1, 2 · SW − 1], the schedule
of each pump p in the offspring solution is obtained by joining the values from 1
to k of the first parent and the values from k + 1 to 2 · SW of the second parent.
For example, schedule of pump p in offspring c is obtained from two parents a and
b with (SW = 4, k = 3) as shown in Fig. 6.

This recombination may eventually generate solutions with invalid representations,
since it may break the increasing order of the values. To keep the order, the val-
ues are sorted after recombination. This may result in two equal successive values,
which are replaced by empty switches 〈−,−〉, and moved to the end of the sched-
ule. This one-point recombination can be straightforwardly extended to n-point
recombination. We experimentally study both one-point and two-point variants.

• Uniform recombination. The idea of uniform crossover is modified to suit the abso-
lute time-controlled triggers representation in the following way. First, combine the
triggers for both parents and keep track of the status (on/off) of each parent at each
time interval. Next, randomly select one status, following the traditional uniform
recombination. Finally, merge contiguous time intervals with the same status into
larger time intervals by removing the intermediate trigger values. The resulting
trigger values are used to construct the offspring solution. The following example
illustrates the procedure.

Let us assume the schedules of pump p in two parents a and b shown in Fig 7a. In
absolute time-controlled triggers, each trigger value represents the time of the day
at which a pump is turned on/off. Pumps initial status is assumed to be inactive
(a pump initially active has 0 as its first trigger value). First, the trigger values of
both parents are combined into one single time line (Fig 7b). The horizontal axis of
this time line contains as many time intervals as there are different trigger values in
the parents. Trigger values that do not appear in either parent are not taken into
account. The time line describes the status (on/off) during each time interval of each
parent given in the vertical axis. In the next step, for each time interval, one single
status is randomly selected with equal probability among the status of the parents.
Let us assume that the values marked in bold were the ones randomly selected,
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ap 1 2 3 4 5 6 7 24 (N sw
p = 4)

bp 3 8 9 10 11 12 13 24 (N sw
p = 4)

(a)

ap on off on off on off on on on on on on on

bp off off on on on on on off on off on off on

1 2 3 4 5 6 7 8 9 10 11 12 13 24

(b)

cp on off on on on off on off on on on off on

1 2 3 4 5 6 7 8 9 10 11 12 13 24

(c)

cp 1 2 3 6 7 8 9 12 13 24 (N sw
p = 5)

(d)

cp 1 2 3 6 9 12 13 24 (N sw
p = 4)

(e)

Figure 7: Example of uniform recombination for absolute time-controlled triggers rep-
resentation.

producing the combined time line shown in Fig 7c. Finally, contiguous intervals
with the same on/off state are merged into larger time intervals, and the boundaries
of the intervals are used to construct the time-controlled triggers representation of
the offspring solution (Fig 7d). The resulting schedule may have any number of
pump switches, hence breaking the implicit constraint on pump switches. This is
what occurs in Fig 7d. In this case, the trigger values corresponding to the shortest
time interval are successively eliminated from the solution until it contains SW
pump switches (Fig 7e).

• Rand-arithmetical recombination. This is similar to the rand-arithmetical recombi-
nation described for level-controlled triggers. For each pump p, the offspring sched-
ule cp is calculated from the parent schedules ap and bp as cpi = λapi +(1−λ)bpi , where
λ is a random value between 0 and 1 and i ∈ {1, . . . , 2 · SW}. As a special case, if
either api or bpi is part of an empty switch 〈−,−〉, then the other value is directly
chosen (if both api and bpi are empty switches, the result is also an empty switch).
As in the n-point recombination, offspring schedules may be invalid with respect
to representation constraints. We use the same procedure as described above after
recombination to satisfy these representation constraints.

The mutation operators used for this representation are:

• Uniform mutation. The uniform mutation applied to level-controlled triggers is
adapted to the absolute time-triggers representation as follows. The domain of a
time-controlled trigger cpi is restricted to [cpi−1 + 1, cpi+1 − 1], with special cases of
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[0, cp2 − 1] for i = 1, and [cp2·SW−1 + 1, 24] for i = 2 · SW . If cpi is part of an empty
switch, then we replace the empty switch with a new, randomly generated, pair of
trigger values.

• Replace mutation. This is a more aggressive mutation than uniform mutation. It
replaces one trigger value with a uniform random integer in the range [0, T ]. In the
special case that the replaced value was part of an empty switch, the whole empty
switch (two trigger values) is replaced by generating an additional random integer.

After mutation, representation constraints are enforced by repairing solutions using
the same method as for recombination operators. Mutation is applied with a probability
such that the expected number of time-triggers modified per solution is two, that is two
divided by the number of decision variables. Since the number of decision variables
is 2 · SW trigger values per pump, we use a mutation probability of 2/(2 · SW · Np).
This value is larger than the typical one mutation per solution because, after repairing
a mutated solution to satisfy representation constraints, the mutated solution may be
equal to the original.

4.4 Relative Time-controlled Triggers

The same recombination and mutation operators used for absolute time-controlled trig-
gers are also used for the variant based on relative time. Since the representation con-
straints are slightly different (see Section 3.3.2), the particular implementation of the
operators is different as well. In particular, the solution resulting after recombination or
mutation may have a total amount of time greater than the scheduling period T , hence
violating representation constraints. To repair such solutions, we iteratively reduce the
value of a randomly chosen time interval by one time unit until the total sum is equal
to T . The recombination operators used for relative time-controlled triggers are:

• N-point recombination. This operator follows basically the same procedure as in the
absolute time-controlled triggers representation, except for the repair mechanism
used if representation constraints are broken. In the experiments, we focus on
one-point and two-point recombination.

• Uniform recombination. Because in this case values do not need to keep an in-
creasing order, we have implemented a simpler alternative than for the absolute
time-controlled triggers. Here, the schedule of pump p in the offspring solution is
obtained by randomly selecting, for each trigger, the value of either parent with
equal probability, as shown in Fig. 8.

ap 0 2 12 1 1 7

bp 1 5 6 0 10 1

cp 1 5 12 0 1 1

Figure 8: Example of uniform recombination for relative time-controlled triggers repre-
sentation.

• Rand-arithmetical recombination. It is similar to the variant for absolute time-
controlled triggers, with the difference that, in this case, we do not handle empty
switches in any special way, since they are represented by the value 0.
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We use the following mutation operators:

• Uniform mutation. For each mutated trigger, another trigger of the same pump is
randomly chosen and their total time is redistributed randomly among them. For
example, let us assume that mutation is applied to trigger k of a schedule of pump
p denoted by cpk. First, a different random position j is selected. Next, the value
of cpk after mutation (c′pk ) is a random integer generated in the interval [0, cpk + cpj ].

The new value for trigger j is c′pj = (cpk + cpj )− c′pk . Figure 9 gives an example with
k = 4 and j = 5.

cp 1 5 6 0 10 1

c′p 1 5 6 6 4 1

Figure 9: Example of uniform mutation for relative time-controlled triggers representa-
tion.

• Replace mutation. As is the case for other representations, replace mutation is
meant to be a more aggressive variant of uniform mutation. In this case, a trigger
value is replaced by an integer randomly generated from the interval [0, T−(2·SW )].

Similar to the case of absolute time-controlled triggers, mutation is applied with a
probability of 2/(2 · SW ·Np), that is, two divided by the number of decision variables.

5 Experiments on Different Representations

5.1 Experimental Setup

The simplicity of SEA allows us to focus on the differences between the representations
rather than in other algorithmic details. However, it is reasonable to expect performance
differences depending on the values of the population size (α), parent/offspring popula-
tion size (µ), and the particular recombination and mutation operators used. Therefore,
we will first study the effect of different parameters for each representation. However,
it is not our goal to “over-tune” the algorithm for each representation and network in-
stance. Hence, only a few reasonable values of α and µ will be tested in order to identify
general trends rather than particular optimal settings.

SEA is tested on two WDNs: the Vanzyl test network and the Richmond network.
The former is a network instance designed solely for benchmarking purposes, while Rich-
mond is a medium-sized real-world network instance. The criteria to choose these two
networks were the existence of earlier research, hence our results can be compared to
previous optimisation algorithms, and the availability of the complete network descrip-
tions, which allows researchers to replicate and extend our experiments. In the original
formulation of these network instances, pump operations are triggered at certain water
levels of the tanks, which is the common practice in UK. In this paper, we modify the
network instances in order to test representations of pump schedules that do not rely on
level-controlled triggers.

Vanzyl test network Van Zyl (van Zyl, 2001; van Zyl et al., 2004) proposed this
test network as a small yet complex benchmark network to fine-tune the parameters
of a hybrid evolutionary algorithm. The layout of the network is shown in Fig. 10. It
contains all the main elements of a typical WDN: a source of potable water (reservoir),
three pumps, two tanks, and a check valve, which prevents water flowing backwards.
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Tank B

Tank APump 2B

Pump 1A

Pump 3B

Demand node

Reservoir

valve
Check

Figure 10: Vanzyl test network.

In this instance the demand charge is taken to be zero and the water available at the
reservoir is assumed to be infinite. The electricity cost is divided into two periods with
a peak electricity tariff period from 7:00 to 24:00 and a off-peak tariff from 0:00 to 7:00.
The demand pattern contains two peaks at 7:00 and 18:00. More details about the test
instance are provided by van Zyl et al. (2004) and López-Ibáñez (2009).

Richmond test network Richmond water distribution system is a real system lo-
cated in the United Kingdom. The network has seven pumps, six tanks and one reser-
voir. Figure 11 shows a simplified schematic layout that gives an approximate idea of the
connections between network elements. The actual network instance used in this work
consists of 948 links and 836 nodes. Similarly to the Vanzyl network above, electric-
ity consumption charge is divided into two periods with a peak electricity tariff period
from 7:00 to 24:00 and there is no electrical demand charge. A complete description of
the Richmond network is available online at http://iridia.ulb.ac.be/~manuel/ps_

instances. This network was first studied by Atkinson et al. (2000), who applied an
evolutionary algorithm to reduce the annual operation cost with respect to the original
operational policies based on operator experience. Later, van Zyl et al. (2004) modified
the network definition so that all tanks were 95% full at the start of the peak electricity
period (7:00 am). Recently, López-Ibáñez et al. (2008) have used this latter formulation
to assess the applicability of ant colony optimisation to the pump scheduling problem.
This is the same network instance used in this work, so results obtained here are directly
comparable to those reported by van Zyl et al. (2004) and López-Ibáñez et al. (2008).

In order to obtain a running time comparable to previous works, we use the same
termination criteria, that is, 6000 function evaluations per run for the Vanzyl network,
and 8000 function evaluations per run for the Richmond network. In the case of a
real-world instance like the Richmond network, a single run of 8000 evaluations requires
around one hour of CPU-time on a single core of an AMD Opteron(tm) processor 2216HE
2.4 GHz, and the time consumed by hydraulic simulation is always more than 99.9% of
the total computation time. Therefore, there is a negligible overhead introduced by the
different representations and evolutionary operators.

Since the algorithms are stochastic, in order to assess the average behaviour, each
combination of parameters is repeated a number of times with different random seeds.
For the Vanzyl network, after some initial testing, 25 repetitions for each parameter
combination were considered to provide a sufficiently accurate median value. For the
Richmond network the results showed less variability and each run is computationally
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Figure 11: Simplified schematic representation of the Richmond network.

more expensive (the network is much larger and complex). Therefore, 15 runs for each
parameter combination were found to be sufficient for assessing the average behaviour.

5.2 Experimental Methodology

The experimental results are analysed by techniques from the field of Experimental De-
sign. Dean and Voss (1999), and Sheskin (2000) cover in detail the techniques used in
this paper, but these are standard techniques that may be found in various textbooks
on the subject. In particular, experiments are analysed by means of Analysis of Vari-
ance (ANOVA). ANOVA identifies which factors (or combination thereof) produce a
statistically significant effect on the response variable. In our case, the factors are the
parameters of SEA and the response variable is the electrical cost. A factor is signifi-
cant if the probability of the factor not having an effect on the response variable is less
than a given significance level. The p-value of ANOVA (or any other statistical test) is
the smallest significance level that would identify the factor as significant. Therefore,
low p-values are preferred. It is standard practice to consider a factor (or combination
thereof) significant if the corresponding p-value is lower than 0.05 (5%).

ANOVA also indicates whether the effect of one parameter is conditioned by the
settings of another parameter. For example, a large population size might compensate
for lack of mutation. This is called an interaction and the model analysed includes
all possible pairwise interactions among parameters. Differences in mean electrical cost
between parameter settings are measured by means of Tukey ’s Honest Significant Differ-
ence (HSD) 95% confidence intervals (Dean and Voss, 1999). These confidence intervals
are incorporated to the interaction plots as error bars around the mean electrical cost.
We use Fig. 16c as an example. The y-axis gives the electrical cost and the x-axis gives
the levels of one factor, in this case the different mutation operators. Points joined by a
line are obtained using the same level of a second factor, in this case the recombination
operator. The lines in an interaction plot only help to identify points generated with
the same level of the second factor, and they do not actually represent any intermediate
values or interpolation. Each point represents the mean electrical cost of all runs using
a particular combination of mutation and recombination. The error bars are the 95%
confidence intervals around each mean. Since the error bars of different recombinations
overlap in the case of uniform mutation, we conclude that the recombination operators
do not have a (statistically significant) different effect on the electrical cost. On the other
hand, there is no overlap among the error bars of the recombination operators when us-
ing replace mutation, and hence, we conclude that, in this case, one-point recombination
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is significantly better than the other recombination operators.
The correctness of ANOVA depends on several assumptions about the data and the

model being analysed (Dean and Voss, 1999). Precise details about their nature and the
procedures for checking them are beyond the scope of this paper. Suffice to say that
we always check these assumptions before applying ANOVA (López-Ibáñez, 2009). If
any of them is not met, we apply standard procedures for correcting the problem. The
correction procedures employed in this paper involve removing one or more parameter
settings from the experiment (e.g., parameters that result in a strong effect on the
electrical cost or large variability). Alternatively, standard transformations of the data
may also be employed.

In some cases no transformation or correction would allow us to meet ANOVA’s
assumptions. In such cases, instead of ANOVA, we use boxplots to compare the param-
eter settings, and the (possible) interaction between two parameters. Typical boxplots
are used to summarise a sample of data values. The line in the middle of the box cor-
responds to the median value. The “box” is delimited by the first and third quartiles,
where the first quartile delimits the lowest 25 percent of the data and the third quartile
delimits the lowest 75 percent of the data. Hence, the box contains at least 50 per-
cent of the data. The height of the box corresponds to the inter-quartile range (IQR),
which measures the variability of the sample. The extra lines above and below the box
are called “whiskers” and they extend to the smallest value (respectively largest value)
that is no more than 1.5 · IQR times lower than the first quartile (respectively, higher
than the third quartile). Any value beyond the two whiskers is called an outlier and
is displayed as a point. Boxplots do not provide confidence levels (it cannot be said
that one parameter setting is better than another with a confidence of 95%), however,
they are useful to examine the distribution of the data and identify trends. In general,
tall boxes (and whiskers) indicate high variability of the results, and the larger overlap
between two boxes, the smaller is the difference between two parameter settings. In
boxplots of interactions (see Fig. 18 for an example), points correspond to the median
electrical cost and only the “box”, which contains 50% of the values, of each boxplot is
shown. Whiskers and outliers are omitted for clarity. The “boxes” have different widths
to appreciate overlapping boxes.

5.3 Binary Representation

The experimental setup of SEA using the binary representation considers all possible
combinations (full factorial design (Dean and Voss, 1999)) of α = {50, 100, 200}, µ =
{5, 20}, recombination and mutation operators. Recombination can be either one-point,
two-point, or uniform, while both flip mutation and no mutation are tested.

The constraint on the number of pump switches (N sw
p ≤ 3, Eq. 7 with SW = 3) is

explicitly incorporated to our constraint handling method, as described in Section 2.2.

The Vanzyl Network ANOVA indicates that strong interactions (p-values less than
0.001) exist between mutation and recombination, and between mutation and population
size (α), whereas the number of offspring solutions (µ) does not have a significant effect
on the electrical cost. These two relevant interactions are shown in Fig. 12, which shows
that the best setting for α or recombination operator strongly depends on whether flip
mutation is used. When using flip mutation, the best results are obtained with α = 50
and one-point recombination, whereas the lowest electrical cost without mutation is
obtained with α = 200 and uniform recombination. If we had started our analysis
without mutation, and proceeded to identify the good settings for α and recombination,
we would have obtained the wrong answer. The plots also show that using flip mutation
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is better than no mutation for all combinations of other parameters. In fact, the use of
mutation was found to be essential in the four representations tested. Moreover, a few
runs without mutation were unable to generate a pump schedule satisfying volume and
pressure constraints. Therefore, in the rest of the paper we focus on the results obtained
using mutation, taking into account that our complete experimental setup included the
lack of mutation, and we tested that it does not lead to good results for any combination
of the other parameters (López-Ibáñez, 2009).

340

350

360

370

380

390

400

α

m
e
a
n
 o

f 
C

E

50 100 200

 Mutation

flip

none

(a)

350

360

370

380

390

400

Recombination
m

e
a
n
 o

f 
C

E

one−point two−point uniform

 Mutation

flip

none

(b)

Figure 12: Interaction plots of SEA using the binary representation (the Vanzyl net-
work). (a) Interaction between population size (α) and mutation operator; (b) inter-
action between recombination operator and mutation operator. The y-axis gives the
electricity cost (CE).

The Richmond Network In this case, there is only one statistically significant in-
teraction according to ANOVA between the population size (α) and the recombination
operator. This interaction is shown in Fig. 13. The combination of α = 200 and uni-
form recombination performs particularly worse than other combinations of parameters.
Similar behaviour was also observed in the case of the Vanzyl network. The interaction
plot shows that the best value for α is 50. Given α = 50, the performance of various
recombination operators is not statistically different (the Tukey HSD’s intervals overlap).
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Figure 13: Interaction plot of SEA using the binary representation (the Richmond net-
work). The y-axis gives the electricity cost (CE). The x-axis gives different recombina-
tions. Points joined with a line denote runs using the same population size (α).
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5.4 Level-controlled Triggers

For the representation based on level-controlled triggers we perform experiments using
average, rand-arithmetical and extended-intermediate recombination operators, and uni-
form, gaussian, and replace mutation operators. Population sizes of α = {50, 100, 200},
and offspring population sizes of µ = {5, 20} were used in these experiments. An explicit
constraint on the number of pump switches is added so that solutions with more than
three switches per pump are penalised (N sw

p ≤ 3). This constraint is implemented in
the same way as for the binary representation above.

A first observation is that average or rand-arithmetical recombination generated
solutions with volume deficit for at least one run (in many cases, for most of the runs).
On the other hand, runs using extended-intermediate recombination were always able
to obtain solutions with zero volume deficit. Therefore, we restrict our analysis to the
results obtained by using extended-intermediate recombination. We analyse separately
the results for the Vanzyl and Richmond networks to identify which parameters produce
a significant effect on the output of SEA.

The Vanzyl Network The only significant factor identified by ANOVA is the mu-
tation operator. In fact, there is statistically significant (but small) advantage of using
replace mutation over the other two alternatives, gaussian and uniform mutations, with
Tukey HSD 95% confidence intervals for the difference of mean electrical cost values of
[2.6, 6.2] and [1.6, 5.1], respectively.

The Richmond Network In the case of the Richmond network, even before attempt-
ing ANOVA, the results suggest that the effect of mutation is even stronger. Gaussian
mutation obtains much higher electrical cost than replace and uniform mutation, and
these differences would actually hide the effect of other parameters. Therefore, we focus
on the results obtained using uniform and replace mutation. We do not apply ANOVA
here because the data does not strictly conform to the normality assumption. Even
studying the distribution of electrical cost obtained by each combination of parameters
(Fig. 14), it is difficult to find a discernible pattern among the parameters. Still, some
combinations are better than others, e.g., µ = 20, α = 50, and replace mutation, ob-
tains better results than using α = 200 in most runs. However, the same combination is
probably statistically similar to a few others. As before, µ does not appear to have an
effect on the results.

5.5 Absolute Time-controlled Triggers

The experimental setup in the case of absolute time-controlled triggers representation
is α = {50, 100, 200}, µ = {5, 20}, uniform, one-point, two-point and rand-arithmetical
recombinations, and uniform and replace mutations (the full results also consider no
mutation).

As was done for the previous representations, the number of switches per pump is
constrained to be less than or equal to three (N sw

p ≤ 3). However, this constraint does
not need to be handled explicitly because the time-controlled triggers representation
implicitly enforces this constraint.

The Vanzyl Network ANOVA of the SEA results obtained for the Vanzyl network
identifies three interactions that have a significant effect on the electricity cost of the
resulting schedule. In particular, the interactions between: recombination operator and
population size (α); mutation operator and α; and recombination operator and mutation
operator. We explain the overall conclusions obtained from the corresponding interaction
plots:
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Figure 14: Boxplot of SEA results using level-controlled triggers (the Richmond net-
work). The y-axis gives the electricity cost (CE). The x-axis denotes all possible com-
binations of parameters mutation, population size (α) and parent/offspring population
size (µ) used in the runs summarised by each boxplot.

• Fig. 15a: Recombination operator and population size (α). The most
evident observation is that uniform recombination generates worse results than
other recombination operators, independently of the value of α. In the case of
rand-arithmetical and two-point recombination, α = 200 is statistically worse than
the other possible settings of α. On the other hand, the results of α = {50, 100}
and one-point, two-point, and rand-arithmetical are not statistically different.

• Figure 15b: Mutation operator and population size (α). This plot corrob-
orates the previous observation that α = 200 performs significantly worse than the
other settings of α. Moreover, the combination of α = 50 and replace mutation
obtains significantly better results than other combinations.

• Mutation operator and recombination operator. For brevity we do not show
this plot here, It corroborates the above conclusion that uniform recombination
produces worse results. In addition, it shows a slightly advantage of one-point and
two-point recombination versus rand-arithmetical. It does not show any significant
difference between the mutation operators.

From the above analysis, the best parameters would be α = 50, replace mutation,
and one-point or two-point recombination. The offspring population size (µ) does not
play a significant role in the performance of SEA when using absolute time-controlled
triggers. For further comparison, we choose the configuration with α = 50, µ = 20,
two-point recombination and replace mutation. This combination obtains both a low
median electrical cost (although not the lowest) and a low variability.

The Richmond Network In the case of the Richmond network, the results of SEA do
not satisfy the requirements of ANOVA, even after removing the results corresponding
to not using mutation and applying various transformations. We observed that uniform
recombination produced noticeably worse results than the rest of recombination opera-
tors. Excluding those runs using uniform recombination from our analysis and checking
the ANOVA assumptions again, the data sufficiently meets the requirements and we
proceed with ANOVA.
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ANOVA identifies the interactions between α and recombination, mutation and
α, and mutation and recombination, as having a significant effect on the results. We
examine these interactions in more detail in the following:

• Fig. 16a: Population size (α) and recombination operator. A small popula-
tion size (α = 50) seems preferable compared to larger values (α = 200). Moreover,
one-point and two-point recombination are superior to rand-arithmetical recombi-
nation when α = 50.

• Figure 16b: Population size (α) and mutation operator. A small population
size generates better results than a setting of α = 200. Although there are significant
differences between the two mutation operators for large values of α (in favour of
uniform mutation), this is not true any more for α = 50.

• Figure 16c: Mutation and recombination operators. One-point recombina-
tion obtains good results independently of the mutation operator. However, the
other recombination operators perform significantly worse when using replace mu-
tation than when using uniform mutation.

According to the above analysis, the best combination of parameters for SEA when
using absolute time-controlled triggers is α = 50, one-point or two-point recombination,
and uniform or replace mutation. Among these possible configurations of SEA, there
is no clear winner. For further comparison, we choose the settings µ = 5, one-point
recombination and replace mutation, given its low median value and variability.

5.6 Relative Time-controlled Triggers

The same experiments performed using absolute time-controlled triggers are also per-
formed for relative time-controlled triggers. That is, α = {50, 100, 200}; µ = {5, 20};
uniform, one-point, two-point and rand-arithmetical recombination; and uniform and
replace mutation. The number of switches per pump is limited to three (N sw

p ≤ 3). This
constraint is implicitly handled by the time-controlled triggers representation.

The Vanzyl Network For the Vanzyl network, before applying ANOVA, we notice
that the results of SEA with rand-arithmetical recombination are better than those ob-
tained using other recombination operators, independent of the other parameters of SEA.
In order to confirm this observation, we perform a non-parametric statistical multiple-
samples test (Kruskal-Wallis one-way analysis of variance by ranks) (Sheskin, 2000) on
the hypothesis that the median electrical cost is the same for the four recombination
operators. This hypothesis is rejected by the test with a p-value close to zero. Then
we perform pairwise nonparametric two-sample tests (Wilcoxon rank-sum test) on the
hypothesis that the median electrical cost is the same for two recombination operators.
These tests give a p-value less than 0.05 only when comparing with rand-arithmetical
recombination. We conclude that the median electrical cost obtained by SEA using rand-
arithmetical recombination is lower than the median obtained with any other recombi-
nation operator. Therefore, we focus on the results obtained using rand-arithmetical
recombination.

We cannot apply ANOVA because the requirements are not satisfied, even after
trying several transformations of the data. In fact, when plotting the distribution of
the results (Fig. 17), the only discernible pattern is that α = 200 typically produces
worse results than using 50 or 100. Apart from those, the apparent differences are very
small or are restricted to a particular configuration. For example, either α = 50, µ = 20
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and replace mutation, or α = 100, µ = 20 and uniform mutation have a small median
electrical cost. However, we would choose the former because of its small variability,
which denotes more consistent results.

The Richmond Network In the Richmond network, in addition to the strong effect
caused by rand-arithmetical recombination, we observe that also α has a strong influence
on the performance of SEA. We examine the combined effect of these two parameters
in the boxplot of Fig. 18, where the whiskers and outliers are not plotted for the sake
of clarity. This figure shows that there is a substantial degradation of the results as α
increases for any recombination operator, although it is less marked for rand-arithmetical
recombination. Furthermore, given a particular value of α, rand-arithmetical is always
the best recombination operator.

We therefore focus our analysis on the results obtained using rand-arithmetical and
α = {50, 100}. This subset of data does not satisfy ANOVA assumptions. Instead, we
examine the results for each configuration of the parameters in Fig. 19. We observe
that the results using replace mutation and α = 100 are worse than other configura-
tions of parameters. On the other hand, the results using uniform mutation are only
slightly affected by the settings of α and µ. Among these combinations, we choose the
combination α = 50, µ = 5 and uniform mutation for further comparison.

6 Comparison among Representations

In the previous sections we have examined different combinations of the parameters of
SEA for each representation and each network instance. In this section, we compare
the best combinations of parameters for each representation. We use as a baseline
for comparison the results obtained by the Hybrid GA proposed by van Zyl (2001).
The Hybrid GA is a steady-state evolutionary algorithm combined with a hill-climber
strategy (Hooke & Jeeves method) for optimising level-controlled triggers. The Hybrid
GA uses one-point crossover and a mutation operator similar to replace mutation. Since
the representations are different, we are not comparing directly the relative performance
of SEA and Hybrid GA, but rather alternative representations using Hybrid GA as a
baseline. The results of Hybrid GA shown here are those published by van Zyl et al.
(2004), and they were obtained after the same number of evaluations, that is, 6000
evaluations for the Vanzyl network and 8000 for the Richmond network. The Hybrid GA
also uses EPANET as the hydraulic simulator, and, hence, results are directly comparable.

The best combinations of parameters of SEA are shown in Table 2 for the Vanzyl
network and Table 4 for the Richmond network. Figures 20 and 21 compare graphically
the different representations with the results obtained by the Hybrid GA proposed by
van Zyl (2001). Finally, Tables 3 and 5 provide the results of pairwise non-parametric
Wilcoxon tests (with adjustments for multiple comparisons), which indicate whether the
differences observed are statistically significant.

From these results, we conclude that the binary and time-controlled representations
outperform both SEA and HybridGA with level-controlled triggers. In addition, SEA
with time-controlled triggers using relative time values obtains a lower median electrical
cost and a lower variability than using absolute time values. Although the binary rep-
resentation obtains results similar to relative time-controlled triggers, the latter ensures
that the constraint on pump switches is always satisfied. The binary representation has
to search for feasible schedules satisfying this constraint. Table 4 indicates that SEA
with the binary representation did not find a feasible schedule satisfying N sw

p ≤ 3 in at
least half of the runs in the Richmond network because the median N sw is larger than
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three times the number of pumps (Np = 7). Both Tables 2 and 4 show that the number
of pump switches obtained when using the binary representation is higher than when
using relative time-controlled triggers.

Our conclusion is that the proposed relative time-controlled trigger representation
is better than level-controlled triggers and the binary representation, with the added
benefit that the new time-controlled triggers representations always enforce a maximum
number of pump switches. Moreover, the comparison with HybridGA shows that a
carefully chosen representation, with the appropriate recombination and mutation op-
erators, may make a simplistic algorithm, such as SEA, outperform a more advanced
and complex algorithm, such as HybridGA. These results should not be understood as
SEA outperforming Hybrid GA when using the same representation. On the contrary,
we believe that adapting Hybrid GA to the time-controlled triggers representation may
further improve the results obtained by SEA.

In order to verify the above results, we run the configurations of SEA described in
Table 4 on three additional scenarios of the Richmond network:2

Scenario #1: Base demands are increased by 10%, modeling a higher water demand.

Scenario #2: Base demands are decreased by 10%, modeling a lower water demand.

Scenario #3: Demand patterns are randomly shuffled, modeling sudden demand
changes.

The figures and tables on pages 36, 37 and 38 indicate that the benefits of the
time-controlled triggers representations, specially of the relative-time variant, are even
greater on these scenarios. In general, the results confirm the conclusions above, that is,
binary and time-controlled triggers produce better results than level-controlled triggers,
and relative time-controlled triggers produce the best results overall.

7 Conclusion

In this paper, we have formally proposed two new representations based on the concept
of time-controlled triggers, and evolutionary operators suited for these new represen-
tations. In addition, we have empirically tested these new representations and two
traditional representations by means of a simple evolutionary algorithm (SEA). We
have found that mutation is an essential ingredient of the success of SEA. We have
also identified good recombination operators for each representation, in particular, one-
point and two-point recombination for binary representation, extended-intermediate for
level-controlled triggers, one-point and two-point for absolute time-controlled triggers,
and rand-arithmetical for relative time-controlled triggers. Our analysis also indicated
that a small population seems to work better for the network instances tested in this
work. However, the trade-off between generations and population size should be more
thoroughly investigated in the future. Moreover, SEA uses strong elitism and many
generations, as suggested by previous works (Savic et al., 1997; van Zyl et al., 2004),
and the use of a much smaller elite size and fewer generations has not been tested.

Finally, we have compared the best configurations of SEA for each representation,
and found that the binary and time-controlled triggers representations clearly outper-
formed the level-controlled triggers representation. In fact, SEA with either of these
representations is able to outperform a recently proposed Hybrid GA designed for level-
controlled triggers. The expected electrical cost obtained by the new representations

2These instances are available at http://iridia.ulb.ac.be/~manuel/ps_instances
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based on time-controlled triggers were not found to be statistically different from the
electrical cost obtained by the binary representation. However, the new representations
obtained schedules with a much lower number of pump switches, which in turn should
reduce maintenance costs.

We conclude that, where physically and practically possible, the use of time-
controlled triggers should be considered an alternative to traditional level-controlled
triggers. Nonetheless, more work is needed to confirm that the presented results may
be generalised to other network instances and optimisation algorithms. The time-
controlled triggers representation is not tied to the simple EA tested here. We be-
lieve that state-of-the-art EAs will likely enhance our results. The discrete nature of
the time-controlled triggers representation means that this representation may be used
with metaheuristics such as ant colony optimisation and stochastic local search. Other
optimisation problems, such as the unit commitment problem in electricity generation
systems (Michalewicz et al., 1996; Ting et al., 2003), share many similarities with pump
scheduling, and, hence, the work presented here may be adapted to those problems.

We hope that the detailed methodology and analysis described here will encour-
age engineers to take into account the interactions among algorithmic parameters when
studying the application of an algorithm. We have empirically shown that these inter-
actions exist in real-world instances and may lead to wrong conclusions if not taken
into account. We also believe that comparative studies are more scientific and meaning-
ful than single-instance and single-algorithm application studies, because comparative
studies allow to identify good algorithms or algorithmic settings for the pump scheduling
problem in general, and, therefore, provide engineers facing a new network instance with
valuable information.
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Table 2: Comparison of SEA using different representations in the Vanzyl network.

Representation

binary level-triggers time-triggers
absolute relative

SEA

α 50 50 50 50
µ 5 5 20 20

Recomb. one-point ext.-interm. two-point rand-arithm.
Mutation flip replace replace replace

CE

median 333.0 346.9 338.7 334.1
sd 11.2 5.3 5.6 6.1

min 324.7 337.2 325.3 315.9
max 359.6 357.1 351.2 341.4

N sw

median 7.0 3.0 6.0 5.0
sd 1.2 0.9 1.3 1.2

min 5.0 2.0 4.0 3.0
max 9.0 6.0 8.0 7.0
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Figure 20: Boxplot of the results of SEA for different representations and Hybrid GA in
the Vanzyl network.

Table 3: P-values of Wilcoxon rank sum tests with Holm adjustment for pairwise com-
parisons. If the difference between the representations is statistically significant at a
significance lower than 0.01, it is marked in bold-face.

binary level-triggers absolute relative

level-triggers 0.00240 - - -
absolute 0.20367 7.0e-06 - -
relative 0.74370 7.1e-12 0.00240 -
HybridGA 0.05260 0.64726 0.00027 5.3e-06
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Table 4: Comparison of SEA using different representations for the Richmond network.

Representation

binary level-triggers time-triggers
absolute relative

SEA

α 50 50 50 50
µ 5 20 5 5

Recomb. one-point ext.-interm. one-point rand-arithm.
Mutation flip replace replace uniform

CE

median 93.8 100.0 95.5 92.3
sd 2.6 2.5 3.4 1.6

min 91.4 99.1 90.4 90.3
max 100.2 107.0 104.2 95.4

N sw

median 26.0 10.0 13.0 16.0
sd 3.1 1.5 1.1 1.7

min 19.0 8.0 12.0 14.0
max 32.0 13.0 15.0 20.0
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Figure 21: Boxplot of the results of SEA for the Richmond network for different repre-
sentations.

Table 5: P-values of Wilcoxon rank sum tests with Holm adjustment for pairwise com-
parisons. If the difference between the representations is statistically significant at a
significance lower than 0.01, it is marked in bold-face.

binary level-triggers absolute relative

level-triggers 3.8e-05 - - -
absolute 0.71297 3.8e-05 - -
relative 0.07421 1.3e-07 0.07421 -
HybridGA 0.00065 0.38148 0.00245 5.5e-06
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Table 6: Comparison of SEA using different representations for the Richmond network
(Scenario #1).

Representation

binary level-triggers time-triggers
absolute relative

CE

median 111.6 119.7 112.8 108.0
sd 2.4 2.0 2.3 1.8

min 108.4 113.5 108.9 105.3
max 116.7 121.7 117.4 112.0

N sw

median 25.0 13.0 15.0 15.0
sd 2.9 1.6 1.4 1.9

min 22.0 9.0 12.0 12.0
max 33.0 15.0 17.0 19.0
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Figure 22: Boxplot of the results of SEA for the Richmond network (Scenario #1) for
different representations.

Table 7: P-values of Wilcoxon rank sum tests with Holm adjustment for pairwise com-
parisons. If the difference between the representations is statistically significant at a
significance lower than 0.01, it is marked in bold-face.

binary level-triggers absolute

level-triggers 7.7e-07 - -
absolute 0.28544 2.3e-06 -
relative 0.00018 7.7e-08 3.5e-05
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Table 8: Comparison of SEA using different representations for the Richmond network
(Scenario #2).

Representation

binary level-triggers time-triggers
absolute relative

CE

median 80.6 83.1 77.1 75.2
sd 3.9 1.6 3.5 2.0

min 76.1 80.1 74.9 71.6
max 88.0 85.8 86.8 79.1

N sw

median 26.0 11.0 14.0 15.0
sd 3.6 1.3 1.3 1.4

min 18.0 9.0 12.0 12.0
max 33.0 15.0 16.0 18.0
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Figure 23: Boxplot of the results of SEA for the Richmond network (Scenario #2) for
different representations.

Table 9: P-values of Wilcoxon rank sum tests with Holm adjustment for pairwise com-
parisons. If the difference between the representations is statistically significant at a
significance lower than 0.01, it is marked in bold-face.

binary level-triggers absolute

level-triggers 0.16069 - -
absolute 0.08168 0.00086 -
relative 6.3e-06 7.7e-08 0.01970
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Table 10: Comparison of SEA using different representations for the Richmond network
(Scenario #3).

Representation

binary level-triggers time-triggers
absolute relative

CE

median 95.5 94.9 94.2 89.8
sd 2.9 3.0 2.5 2.5

min 90.0 92.2 90.5 86.7
max 99.6 104.8 99.2 95.0

N sw

median 26.0 10.0 14.0 15.0
sd 3.1 1.0 2.1 1.8

min 19.0 9.0 9.0 13.0
max 30.0 13.0 18.0 19.0
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Figure 24: Boxplot of the results of SEA for the Richmond network (Scenario #3) for
different representations.

Table 11: P-values of Wilcoxon rank sum tests with Holm adjustment for pairwise
comparisons. If the difference between the representations is statistically significant at
a significance lower than 0.01, it is marked in bold-face.

binary level-triggers absolute

level-triggers 1.00000 - -
absolute 1.00000 0.91377 -
relative 0.00045 2.1e-05 0.00129
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