
A Real-World Employee Scheduling and Routing
Application

Emma Hart
Institute for Informatics and

Digital Innovation
Edinburgh Napier University

Edinburgh, Scotland, UK
e.hart@napier.ac.uk

Kevin Sim
Institute for Informatics and

Digital Innovation
Edinburgh Napier University

Edinburgh, Scotland, UK
k.sim@napier.ac.uk

Neil Urquhart
Institute for Informatics and

Digital Innovation
Edinburgh Napier University

Edinburgh, Scotland, UK
n.urquhart@napier.ac.uk

ABSTRACT
We describe a hyper-heuristic application developed for a
client to find quick, acceptable solutions to Workforce Schedul-
ing and Routing problems. An interactive fitness function
controlled by the user enables five different objectives to
be weighted according to client preference. The application
uses a real road network in order to calculate driving dis-
tances between locations, and is designed to integrate with
a web-based application to access employee calendars.

Categories and Subject Descriptors
Computing Methodologies [Artificial Intelligence]: Prob-
lem Solving, Control Methods and Search

Keywords
Hyper-heuristics; interactive fitness; scheduling and routing

1. INTRODUCTION
The Workforce Scheduling and Routing Problem (WSRP)

was defined in [1] as a scenario that involves the mobilisa-
tion of personnel in order to perform work related activi-
ties at different locations. Personnel are considered flexible
in that they have variable working patterns, and mobile in
that travelling is required between their home base and jobs,
and in that travelling may involve significant times. The
problem thus combines features of vehicle routing problems
(VRP) that attempt to reduce distance travelled, and per-
sonnel scheduling problems that allocate work to staff to
ensure that all required tasks are completed whilst respect-
ing working patterns.

We describe software developed for a client who sell a
range of software products to large companies. The client
wishes to ‘add value’ to existing products by improving their
current software to include a cheap method of creating sched-
ules in typical WRSP situations that include time-windows,
service-times and employees based from home. Rather than
provide a specialised WRSP algorithm customised to each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2605447.

company, they wish to develop a generic algorithm that will
be widely applicable in accouting for common constraints
and practices, whilst recognising that some companies might
operate practices that fall outside of the specification. Specif-
ically, the aim of the software is not to search for global
optima but to provide a simple tool that on the one hand
automates the scheduling process, and on the other, provide
a decision support tool for an operator. The software we
developed makes use of a hyper-heuristic approach to devel-
oping a solution, and utilises an interactive fitness function
to produce a single solution.

2. PROBLEM DESCRIPTION
The brief required that the algorithm scheduled a set of

engineers to servicing jobs that occurred at locations across
Scotland. Schedules were planned for a period of one month
at a time. Each of the jobs to be serviced has a planned
schedule date, a pre-schedule tolerance and a post-schedule
tolerance defining the earliest and latest dates the job might
be scheduled, typically up to three days either side of the
planned date. A company can specify whether it is pos-
sible to ‘break’ time-window constraints by specifying an
allowable number of days. Each job has a processing time,
typically between 1 and 4 hours. Each job also has a driving
time which is dependent on the last position of the worker
assigned to the job.

The company employs n workers, each based at their home
locations which can be anywhere in Scotland. Each worker
has an associated calendar that specifies their working hours
over a period of one month, which may include holidays. In-
dividual employee availability is designed to be read via a
web interface that uses the Calendaring Extensions to Web-
DAV (CalDAV) format. This is an Internet standard allow-
ing a client to access scheduling information on a remote
server. It extends WebDAV (HTTP-based protocol for data
manipulation) specification and uses iCalendar format for
the data, allowing multiple client access to the same infor-
mation thus allowing cooperative planning and information
sharing. Availability may vary significantly across employ-
ees.

Workers always start working from home and should re-
turn to their home base at the end of each day. Some com-
panies have a policy that a working day does not include
travel time to/from the home location, while others require
that travel time is factored in, therefore the algorithm must
account for individual preferences. Some companies allow
overtime, specifying the maximum number of overtime hours
allowed.

3. ROUTING
Routing is performed using the GraphHopper library [2].

This application offers memory efficient algorithms writ-
ten in Java for routing between two locations on a graph
(e.g. Dijkstra and A*) using road network data provided by
OpenStreetMap [3]. The OSM XML data is pre-processed
into a street graph that takes account of turn and direction
restrictions within the road network. GraphHopper runs on
a wide variety of platforms and due to its use of Apache li-
cense can be embedded within products, making it an ideal
choice for a client.

We make use of the inbuilt bidirected A* algorithm to find
routes through the street graph from one latitude/longitude
point to another. The client supplies data in the form of
geocodes (longitude and latitude) — however, postcodes
can also be used if required by looking up data released by
Ordnance Survey (Crown Copyright) which contains a com-
plete list of Postcodes and their latitute/longitude position.
GraphHopper returns both the driving time and driving dis-
tance between the two locations, although we only make use
of the time in the described application.

4. OBJECTIVE FUNCTION
As the application is designed to be flexible to cater for a

range of client requirements, we define five different objec-
tives that can be optimised. The rationale behind each of
the objectives is explained below:

• Idle Time - I For a single employee, the idle time de-
scribes the ratio of time that the employee is neither
working nor driving. I defines the average idle time
over the complete schedule. Optimising this criteria is
relevant in maximising employee efficiency.

• Driving Time - D For a single employee, this criteria
measures the proportion of an employees working day
that is spent driving as opposed to servicing, and thus
is a measure of the productivity of an employee.

• OverTime - O The number of minutes worked beyond
the end of the working day for each employee is cal-
culated, and recorded as the ratio of the number of
available working hours. Some clients do not allow
overtime to be worked while others prefer to minimise
this to reduce extra costs.

• Unscheduled Job Time - O Some jobs might not be able
to be scheduled given the number of available employ-
ees and particularly if no overtime is allowed. This may
also occur if the total time to complete a job (including
driving and servicing) is greater than the working day
of any employee.

• Broken Minutes - W For some jobs, scheduling within
the tolerance period is critical. For other clients, some
deviation may be tolerated, however may incur a cost.

The five objectives are combined using a weighted sum.
Each of the weights can be specifed by the user according to
their own preferences and can be altered interactively during
the course of a run as show in in figure 1.

5. ALGORITHM
We utilise a hyper-heuristic approach that aims to reduce

the amount of knowledge required in terms of the search

Figure 1: The sliders allow the relative weights to
be adjusted during the course of a run depending on
the criteria defined by the customer. The Customer
can also specify the amount of allowed overtime and
the maximum period by which time windows can be
broken

E
R

E
JobStart

C

R

LLDT

LC
C

Day Start

Figure 2: 2 lists of rules are maintained by each in-
dividual as a cyclic list with a predefined start point;
one for the employee heuristics and the other for the
job heuristics

methodology to make it easier for the client to maintain
and/or develop in the future. Hyper-heuristics are well known
to produce quick, acceptable solutions to problems (though
rarely optimal) and our own previous work with a hyper-
heuristic system called NELLI [4] suggested that combining
heuristic components into a suitable sequence can lead to
promising new heuristics that generalise well across sets of
problems.

We define a set of low-level heuristics, shown in table 1,
using intuituve knowledge of how a human might solve the
problem. Using a straightforward evolutionary algorithm,
we evolve two cyclic lists with pre-defined start points that
define a sequence of heuristics to be used in solving the
problem, each of which has a pointer indicating the current
heuristic to be used.

A wrapper, defined in figure 1, controls application of
heuristics. The wrapper first chooses an employee according
to the current heuristic in the employee list. A job is then
selected according to the heuristic defined by the pointer
in the job list. The pointer is then advanced, and jobs re-
peatedly selected in this manner until no more jobs can be
placed into the selected employees day. The pointer in the
employee list is then advanced and a new employee day se-
lected. This process is repeated until no more jobs can be
scheduled. In each list, the pointer cycles back to the start
of the list once it reaches the end.

A standard steady-state evolutionary algorithm is used to
evolve lists, using a randomly initialised population of chro-
mosomes. A messy crossover operator produces two new
children with probability pc, from parents selected via tour-
nament selection. A mutation operator selects at random
one of nine possible mutation operators that add, delete or
swap heuristics within a sequence, or concatenate two se-
quences together.

Table 1: Employee Rules and Job Rules
Job Heuristic Abreviation Description

ClosestJob C based on current location of an employee

EarliestJob E returns job with the earliest start date (no relaxation of the time window)

EarliestJobTW ETW returns job with the earliest start date (including any time window relaxation)

LargestJob L returns job with largest processing time

LargestJobClosest LC returns job closest to last location from set of jobs with largest processing time

LargestJobLDT LLDT returns job with largest (processing time + total driving time)

RandomJob R returns a random job

SmallestJob S returns job with smallest processing time

SmallestJobClosest SC returns job closest to last location from set of jobs with smallest processing time

SmallestJobSDT SSDT returns job with the smallest (processing time + total driving time)

SmallestTwJob STW returns job with the smallest total time window duration

Employee Heuristic Abreviation Description

EarliestDayEvent E returns earliest available day from all employees

RandomDayEvent R returns a random day from a random employee

RandomNextDayEvent RN returns the next free day from a randomly chosen employee

C R LLDT LC C

ETW SC SSDT STW

C R LLDT STW

ETW SC SSDT LC C

Parent 1

Parent 2

Child 1

Child 2

Figure 3: Crossover selects with equal probability
one of the 2 heuristic lists and performs a “messy”
one point crossover as shown (Shown not to benefit
the EA)

Algorithm 1 Wrapper Pseudo Code
Require: EmployeeRuleList : The list of employee rules
Require: JobRuleList : The list of job rules
1: repeat
2: select next employee rule: returns an employees free time for a

day
3: advance employee pointer (return to beginning at end)
4: repeat
5: select next job rule: returns a job that meets the constraints

(overtime and time window)
6: advance job pointer (return to beginning at end)
7: schedule job
8: until no more jobs can be placed into the selected employees

day
9: until employees days full OR no more jobs can be placed

Figure 4: The plot shows the actual times for idle
time, driving time, overtime, broken time windows
and unscheduled jobs. The display can be switched
to show the normalised weighted fitness used to
drive evolution.

6. PRESENTATION OF RESULTS
In order to enable the client to interpret the results (and

for them to be refined by a human scheduler if preferred)
then the results need to be presented in a format that is
easy to intepret.

Objectives.
Progress of the algorithm against each of the five objec-

tives is shown in a display as in figure 4 which shows the
change in each objective over time. As the sliders control-
ling the weighting of each objective can be controlled inter-
actively during the course of the run, a scheduler is able to
investigate alternative solutions and intuitively guide the al-
gorithm towards their preferred objective. Note that some
objectives are antaganistic, e.g. as driving time increases,
idle time decreases and vice versa.

Figure 5: The Map displays the position of each
employee jobs colour coded for each employee

Assignment.
Jobs assigned to each engineer are shown using a colour-

coded map 5 (each colour represents an individual engineer).
This gives an easy to interpret view in which it can be clearly
be seen that jobs are clustered in particular geographic ar-
eas, located close to each engineers home base. Jobs tend to
be clustered around the major population centres, however
some jobs occur in regions that are located a considerable
distance from any engineer, and require significant travel-
ling.

Scheduling.
Schedules are displayed as the algorithm runs as indicated

in Figure 6. Each vertical bar shows an employees calen-
dar colour coded by employee. Coloured blocks indicate a
jobs duration and the grey blocks indicate the correspond-
ing driving time. In the example shown some employees
have full or part days where they are not scheduled to work.
This gives a visual overview of the relative amounts of driv-
ing time, servicing time, and idle time (indicated by gaps at
the end of each day) for each employee. This view is for the
purpose of the scheduler while running the algorithm. As
previously mentioned, for each employee, calendar availabil-
ity and assigned jobs are read and written using the calDav
format from the employees own calendar, thus the schedul-
ing information can also be viewed in calendar format as
shown in figure 7 and can be manually manipulated using
standard industry calendar tools if required.

7. CONCLUSION
We have described an approach that was taken to de-

velop a WRSP application for a client. Although we are un-
able to present results across multiple problems due to client
confidentiality, the paper illustrates a number of important
points regarding the development of real-world applications.
We have noted the emphasis on developing a practical so-
lution, rather than seeking global optima. In contrast to
taking a multi-objective approach, we have used a weighted
objective function in order to present the client with a single
solution. A map of the real road-network is used to calculate
driving distances and times, and the application is able to
access availability of employee calendars via a web interface.
A simple search algorithm that combines heuristics is both
effective and simple to understand and maintain from the

08:00

17:00

W
o

rk
in

g
 D

a
y

Day 1

Employee 1-4

employee 1

employee 2

employee 3

employee 4

Day 10

Employee 1-4
employee 1 unscheduled

Figure 6: Each vertical bar shows an employees cal-
endar colour coded by employee. Coloured blocks
indicate a jobs duration and the grey blocks indi-
cate the corresponding driving time. In the example
shown some employees have full or part days where
they are not scheduled to work. This shows the same
information as is shown in the calendar application
depicted in Figure 7 but is updated continuously
during the course of a run.

Figure 7: Output from the application is in the for-
mat of an individual ics file for each employee which
can be imported into a number of Calendar appli-
cations allowing the customer to easily visualise and
alter schedules manually if desired

client perspective. Finally, the algorithm can be extended
in future by adding additional heuristics if required.

8. REFERENCES
[1] A Castillo-Salazar, D Landa-Silva, and R QuA.

Survey on Workforce Scheduling and Routing
Problems. The 9th International Conference on the
Practice and Theory of Automated Timetabling
(PATAT 2012), 28-31 August 2012, Son, Norway

[2] GraphHopper http:www.graphhopper.com
applications. Ubiquity 2012 3:1–3:13.

[3] Open Street Map http:www.openstreemap.org

[4] Sim, K., Hart, E.: An improved immune inspired
hyper-heuristic for combinatorial optimisation
problems. In: GECCO ’14: Proceeding of the
sixteenth annual conference on Genetic and
evolutionary computation conference (In Press 2014)

http:www.graphhopper.com
http:www.openstreemap.org

	Introduction
	Problem Description
	Routing
	Objective Function
	Algorithm
	Presentation of Results
	Conclusion
	References

