Digital Investigation 12 (2015) S22—S29

Contents lists available at ScienceDirect Digital
Investigation

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Fast contraband detection in large capacity disk drives

@ CrossMark

Philip Penrose’, William J. Buchanan, Richard Macfarlane

Edinburgh Napier University, Edinburgh, United Kingdom

ABSTRACT

Keywords:

Disk sampling
Contraband detection
Digital forensics
Triage

Bloom filter
Sampling

Sample size

In recent years the capacity of digital storage devices has been increasing at a rate that has
left digital forensic services struggling to cope. There is an acknowledgement that current
forensic tools have failed to keep up. The workload is such that a form of ‘administrative
triage’ takes place in many labs where perceived low priority jobs are delayed or dropped
without reference to the data itself. In this paper we investigate the feasibility of first
responders performing a fast initial scan of a device by sampling on the device itself. A
Bloom filter is used to store the block hashes of large collections of contraband data. We
show that by sampling disk clusters, we can achieve 99.9% accuracy scanning for contra-
band data in minutes. Even under the constraints imposed by low specification legacy
equipment, it is possible to scan a device for contraband with a known and controllable
margin of error in a reasonable time. We conclude that in this type of case it is feasible to
boot the device into a forensically sound environment and do a pre-imaging scan to pri-
oritise the device for further detailed investigation.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Kryder (2009) shows that the areal density (the number
of bits stored per unit area of disk) has been increasing at
40% per year and this is projected to continue for the
foreseeable future since the technology is, as yet, nowhere
near fundamental limits. This is referred to as ‘Kryder's
Law’ (Walter, 2005) — analogous to Moore's Law for semi-
conductors. By 2020 it is estimated that a 2.5 inch disk will
have a capacity of 14 TB and cost $40. Garfinkel (2010)
claims that, because of this, much of the progress made
in digital forensic tools over the last decade is becoming
irrelevant. These tools were designed to help forensic ex-
aminers to find evidence, usually from a relatively low ca-
pacity hard disk drive, and do not scale to the capacity of
digital storage devices commonly available today. To put
this in perspective Roussev et al. (2013) benchmarked the

* Corresponding author.
E-mail address: p.penrose@napier.ac.uk (P. Penrose).

http://dx.doi.org/10.1016/j.diin.2015.01.007

acquisition of a fast 3 TB hard disk drive using a standard
acquisition utility at over 11 h. In the UK the Association of
Chief Police Officers (ACPO) has acknowledged this situa-
tion. Many digital forensics units already have large back-
logs and the rate of technological change is likely to
accelerate and so exacerbate the situation. Where there is
insufficient time or resources to cope with the volume of
digital devices being presented a system of forensic triage
should be introduced. We will use the term triage to mean a
fast initial scan by sampling a digital device, conducted
perhaps under severe time and resource constraints, to
prioritise the device for possible further detailed investi-
gation. Young et al. (2012) argue that it is critical for
forensic investigators to have such a triage process so that
they can quickly detect bad or illegal files on a large disk.
While consulting with digital forensic analysts from Police
Scotland it was queried whether it was feasible to imple-
ment such a forensic triage tool directly on a suspect ma-
chine so that a responding officer could quickly assess
whether it held any contraband. The requirements would
be that the system should:

1742-2876/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:p.penrose@napier.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.01.007&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.01.007
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.diin.2015.01.007
http://dx.doi.org/10.1016/j.diin.2015.01.007

P. Penrose et al. / Digital Investigation 12 (2015) S22—529 S23

Be 99.9% accurate
Give results in a reasonable time
Execute on low specification legacy equipment.

Restrictions on our methodology are imposed by these
requirements. To achieve results in a reasonable time we
must sample the device rather than inspect every sector. If
we sample complete files on a disk then the file metadata is
read from the file system and then the file is accessed. This
involves considerable physical head movement in the disk
drive. Fujitsu (Fujitsu Technology Solutions GmbH, 2011)
benchmarked a fast hard disk drive which showed random
access throughput at 3 MB/s and sequential access at
200 MB/s. Thus, random sampling of files would be
considerably slower for triage purposes. In addition, it re-
lies on the file system metadata and so would not cover
unallocated space on the disk where illicit material may
well be hidden. Statistically sampling disk sectors over-
comes both problems. If the random selection of sector
addresses is sorted before accessing the disk, then this in-
curs only a single sequential pass over the disk since the
disk is treated as simply a sequence of blocks. Additionally,
since the sample is chosen from the whole address range of
the disk it would sample all areas including unallocated
space. Also, using sector sampling bypasses the file system
by sampling raw disk sectors and so the nature of the file
system on the disk is irrelevant.

Another consequence of the restrictions is that any
reference data set should be held in RAM so that lookups
can be done to match disk read speed. Lookup of a disk
based database would be slower than the sequential sam-
pling. Hence a compact representation of any reference
data set is needed if we are to legacy equipment with
limited RAM.

Previous work
Triage

Pollitt (2013) argues that the process of digital forensic
triage is an admission of failure. The backlog of cases is due
to the systemic failure of the digital forensic process and of
digital forensic software. These have not adapted to the vast
increase in digital data that is involved in a modern case.
Triage has become necessary because investigators often
prefer some useful evidence quickly rather than wait,
perhaps some considerable time, for all detectible evidence
to be found. He argues that by focussing on a particular
outcome such as the existence of specific types of data, we
miss important information, such as logs or e-mail that
might reveal a wider group of suspects. However, we argue
that triage must not be the only tool used in an investiga-
tion. If any incriminating evidence is found during the
process of triage then the device should be subject to a full
digital forensic analysis.

Shaw and Browne (2013) note that ‘administrative’
triage already takes place in many organisations and
criteria are used to either prioritise or exclude a device
from examination. Horsman et al. (2014) maintain that
organisations may also be cautious because there is a

perception that there is a risk of missing evidence where
triage only samples a device. We argue that in our scenario
of detecting contraband, there is less risk in a system of
triage allowing the timely analysis of a device using
forensically sound boot media, and with a controllable
probability of missed evidence, than a system of adminis-
trative triage which operates without any reference to the
physical media.

Existing triage solutions

There are a number of triage packages available, both
open source and proprietary, such as Strike, EnCase
Portable, AD Triage, Triage IR, Kludge. These packages
typically perform data collection, often with no interven-
tion by the operator, of such things as internet history, the
registry, file metadata, recently used files, image files, hash
lookup of user home directory files and comparing to a
selected file hash database, indexing, keyword matching
and so on. Some even do full disk imaging as part of triage.
File carving from unallocated disk space is also an option on
some. They uniformly behave as versions of full forensic
analysis packages, collecting appropriate data for later ex-
amination. Most are designed so that they can be used by
an untrained operative and give on-screen display of im-
ages or analysis results as they are produced. Casey et al.
(2013) view this type of product as freeing forensic ana-
lysts from the routine task of acquiring forensic evidence
and empowering them to concentrate on the more inter-
esting aspects of their work. However these tools should be
regarded as automating the acquisition stage of a forensic
investigation rather than as triage. All the operations per-
formed tend to be I/O and processor intensive and defeat
the purpose of our definition of triage — a fast initial scan to
ascertain if a device contains images or documents of in-
terest. Gillam and Rogers (2005) developed File Hound, a
forensic tool for first responders. This application was file
based and would not be suitable for direct sector sampling.
It reported all images found and did not use a reference
data set. Roussev et al. (2013) treat triage as an intrinsic
part of the digital forensic process. They advocate that
target acquisition and forensic processing should be done
in parallel, with results being reported as soon as they are
available. Their model requires that data is analysed as it is
being acquired so that analysis should finish at the same
time as the data acquisition. This requires that analysis,
including cryptographic hashing and lookup, similarity
hashing, decompression, file content extraction and
indexing all be done in parallel at the speed of data
acquisition. To do this needs considerably more computing
power than is available in the field. We would argue that
there is still a demonstrated need for a separate initial
triage stage prior to the computing power for this acqui-
sition and forensic processing becoming available to the
investigator. Garfinkel (2013) developed bulk_extractor to
scan an entire disk image. A disk image is scanned without
reference to partitions or the file system metadata. Since
this method does not have to find, extract identify and
process files, it is shown to be at least ten times faster than
traditional file based methods. It used a number of filters
running in parallel, each optimised to detect patterns

S24 P. Penrose et al. / Digital Investigation 12 (2015) $22—529

indicative of one of the common artefacts required for a
digital investigation such as telephone numbers, e-mail
addresses or credit card numbers. However, the process did
not use a database of known content.

Hashing and Bloom filters — identifying known content

Identification of known files attempts to ascertain
whether the device contains material that has originally
come from some known ‘good’ corpus (whitelists) such as
the National Software Reference Library hash database
(NSRL) issued by The National Institute of Standards and
Technology (NIST), or from a corpus of illegal material.
Examples of this include the database of child pornography
image hashes held by Police Scotland or the Team Cymru
Malware Hash Registry (blacklists). These databases hold
fixed length cryptographic hashes of each file, for example
the 128 bit MD5 hash or the 160 bit SHA-1, rather than the
files themselves. An unknown file may be identified by
calculating its hash and comparing this hash against the
database. Such file based systems cannot be used when
sectors/clusters are being sampled since we are accessing
the disk without reference to any file system.

In Roussev et al. (2006) it was noted that the hash data-
base for block level MD5 hashes of a 512 GB hard disk would
require 32 GiB of RAM which was too big to use in a common
workstation but that the use of a Bloom filter could reduce
this by an order of magnitude for the cost of a small false
positive rate. Bloom filters were therefore an efficient way to
store large sets of hashes. Kornblum (2006) developed
ssdeep, a system of fuzzy hashing which created a similarity
hash of a file that could be used to detect similar files.
Roussev (Roussev et al., 2010) developed the application
sdhash which improved on the performance of ssdeep by
using similarity digests created from statistically improbable
features. Roussev et al. (2013) used this tool in streaming
mode to hash data blocks and query a reference database at
disk read speed. They showed that using a 48-core server the
maximum size of reference database that could be queried at
a read speed of 100 MB/s was 15 GB. Similarity digests pro-
duced by sdhash are up to 2.6% of the original data size thus
the Police Scotland database could just be accommodated
but the system requirements are beyond what can be ex-
pected in the field. They suggested that similarity digests
should only be used in the field with reference databases up
to 1 GB which would not be useable in our scenario.

Farrell et al. (2008) investigated the use of Bloom filters
for the distribution of the NSRL hash database. Although
they rejected the idea of distributing the database in this
format since it is relatively easy to engineer any malicious
file to give a false positive if the content of the Bloom filter
is known, they found that Bloom filters were good for
providing high speed matches against hash sets.

Garfinkel et al. (2010) look mainly at file fragment type
discrimination but mention that statistical sector sampling
could be used for detecting contraband data. EnCase
(Guidance Software) includes a script — File Block Hash
Map Analysis — which block hashes known files and then
searches selected areas of the disk. However, they state that
due to performance issues it is only suitable for a small
number of target files. Young et al. (2012) came closest to

meeting our requirements. They created a database of 1
billion sector hashes with the intention of deploying the
system on a laptop. They used a hybrid approach by using a
Bloom filter to screen out negative results so that only
queries for hashes that may be in the corpus were passed to
their customised hash database. This use of pre-filtering
had been suggested by Farrell et al. (2008) and Garfinkel
et al. (2010) and makes use of the Bloom filters very fast
lookup for items not in the set. Using an SQL database on a
Dual Xeon processor setup, each with 16 cores and 128 GiB
RAM they could not perform hash lookups fast enough to
keep up with the sector reads. However, they found that
using the customised database that they developed on a
well specified laptop with 8GiB of RAM and an SSD, they
could perform lookups faster than sectors can be read from
the drive being triaged.

Background

This section gives a background and justification to
some of the ideas, methods and mathematical tools that
will be used.

Sampling-choice of block size

A cluster is the minimum amount of data that can be
accessed (either read or written) by the file system. Many
file systems use a cluster size of 4 KiB by default. The
default cluster size in all Microsoft operating systems since
NT3.51 is 4 KiB in all disk sizes up to 16 TB (Microsoft, 2013).
Since 2011, all disk drive manufacturers have standardised
on a sector size of 4096 bytes, using an emulation mode (AF
512e) to present 512 byte sector size to a legacy file system
where needed (IDEMA, 2013). Most files of interest will be
considerably larger than 4 KiB and so the decreased gran-
ularity of working with 4096 byte blocks will be less sig-
nificant (Garfinkel et al., 2010). Garfinkel (2010) also
showed that the random sampling of disk drives using 512
byte sectors or 4096 byte blocks gave very similar results.
Using 4 KiB block size will reduce the hash database size by
a factor of 8 compared to that needed to store hashes of 512
byte sectors. For these reasons we intend to use a block size
of 4096 bytes. There is a potential problem in that if the file
system with cluster size of 4 KiB is used to write to an old
disk with 512 byte sectors then the cluster might not be
aligned on an 8-sector boundary and thus not be detected
by our system (Young et al., 2012). We are taking a prag-
matic approach to this and will address this issue if it ap-
pears significant in field-testing.

Choice of sample size

Choosing a sample of k items from a population of n
items without replacement (no sector will be read twice) is
represented by the Hypergeometric distribution (Zhang,
2008). Suppose a disk drive has n clusters. Further sup-
pose that it has t clusters of interest — the target — from
some illicit file or files. When we sample k clusters
randomly from the total of n on the disk then the chance of
not obtaining any target clusters is the same as drawing our
sample entirely from the none-target clusters. Using the

P. Penrose et al. / Digital Investigation 12 (2015) S22—529 S25

Table 1
Target size 4 MiB. Probability of a sample containing a block of the target.
Sample size
100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000
Disk size (GB) 120 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
250 0.79 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
320 0.71 091 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
500 0.54 0.79 0.90 0.96 0.98 0.99 1.00 1.00 1.00 1.00
1000 0.32 0.54 0.69 0.79 0.86 0.90 0.94 0.96 0.97 0.98
standard representation for combinations (Weisstein, Therefore

2014), the probability of drawing our sample from the
non-target clusters is

()
long logr(n—t+1)—logr(k+1)—logI'n—t—k+1)]—[logI'(n+1) —log I'(k+ 1) — log I'(n — k + 1)]

)

=logrin—t+1)—logI'n—t—k+1)+logI'n—k+1)—logI'(n+1)

k
- 1
. (1)
k
The standard definition for these binomial coefficients
-1
is

ny n!
(k) ~k'(n—k)! 2)

Ir(n+1)
Irk+1)r(n—-k+1)

We have re-written the factorials in terms of the
Gamma function (I') since, when we are using sample sizes
of 1 million in populations of hundreds of millions, such as
the number of 4096 blocks in a 1 TB disk drive, then the
factorials quickly become large and so we need to work
with logarithms to avoid numerical overflow. The Gamma
function for positive integers is defined as I'(n) = (n — 1)!
(Weisstein, 2014) and many numerical applications have a
highly accurate log Gamma function. Using the basic laws
of logs in equation (2) we get

1og<';> —log I'(n+1) —log I'(k+ 1) —log I'(n — k + 1)

n

1 The formula p=1— H((N —(i—1))—=m)/(N—(i—1)) can also be

i1
used (Young et al., 2012) but does not lead to such an easily computable
result.

If we represent this calculated log value by x, then our
probability of no hits in the sample is e*, the inverse log of .
Hence, the probability of 1 or more hits is 1 — e*. Using this
formula, Tables 1 and 2 show the probabilities of ‘hitting’ a
small 4 MiB and a larger 20 MiB target for a variety of
sample sizes for common disk capacities.

Bloom filters

The Scottish Police database of child pornography holds
5.1 million images in Category 1 (the most serious) and a
further one million in categories 2—5. If we take an average
jpeg file size of 100 KiB, then each of these 6 million im-
ages will take up 25 disk clusters of 4 KiB. A database of
these cluster hashes would therefore contain 150 million
hashes. If MD5 is used as the hash algorithm, then each
hash is 128 bits or 16 bytes. Thus our hash database would
take up 150 million x 16 bytes or 2.4 GB. We are con-
strained for the feasibility study to use ‘legacy’ equipment
which may well have a 32 bit operating system or limited
RAM and so such a block hash database would be too large
to hold in RAM. If the database were disk based then hash
lookups would be far slower than the sequential read
being used for our disk sampling thus would prove a se-
vere bottleneck. One solution to provide a space efficient
means of testing whether or not an element is a member of
a set, at the controllable risk of false positives, is to use a
Bloom filter (Bloom, 1970).

A Bloom filter consists of a set of hash functions and a
bit array of a fixed length. All bits in the bit array are
initialised to zero. Let us look at a very simple example to
illustrate the principle which will ease the understanding
of the theory.

S26 P. Penrose et al. / Digital Investigation 12 (2015) $22—529

Suppose we have a bit array of 16 bits.

Bit Number
9 10 11 12 13 14 |5

OOOOOOOOOOCOOO0
We now need a number of independent hash functions
which hash input of arbitrary length and produce a value
between 0 and 15, the address range of our bit array. Let's
call them hq(), ha() and hs().

Now we add the string ‘Jupiter’ to our filter. We hash

‘Jupiter’ with each of our hash functions. Suppose they
generate

hy(‘Jupiter’) = 3 hy(‘Jupiter’) = 12 hs(‘Jupiter’) = 11

We now set the corresponding bits 3,12 and 11 in our bit
array.

Bit Number
13 14 15

olole! ‘elelelelelele! I Tole!

Now adding ‘Venus’ in the same manner gives us

hi(‘Venus’) = 11 hy(‘Venus’) =2 hs(‘Venus’) = 8

Bit Number
12 13 14 15

ele) [elolelel ol | lol®

Notice that Bit 11 was already turned on. It is now
storing information about both ‘Jupiter’ and ‘Venus’. As we
add more items to the filter it may store information about
some of those as well. It is this overlap which gives Bloom
filters their compactness. Any one bit may be storing in-
formation about multiple items simultaneously.

To check if an item already exists we just follow the same
process of hashing it and check if the bits at all those posi-
tions are turned on. If they are then it is probably in the filter.
Itis only ‘probably’ in the filter because there is the possibility
of a false positive. Suppose we test if ‘Mars’ is in the filter.

hi(‘Mars’) = 11 hy(‘Mars’) =3 hs(‘Mars’) = 8

All these bits are set so the filter reports that ‘Mars’
belongs to the set. Thus we see that a false positive is

possible in a Bloom filter. However a false negative is not. If
any bit is O for an examined hash, then that element cannot
possibly be in the set otherwise the bit positions at its hash
values would have been set to 1. This illustrates why
searching elements not in the set is considerably faster. We
can terminate the search as soon as an unset bit is
encountered.
In this example we had a number of variables:

m = the number of bits in the array which represents the
Bloom filter. Initially all bits are set to 0

n = the number of elements added to the filter

k = the number of independent hash functions hy, hy, ..., hi
used.

These variables are important building blocks for the
theory. Notice that our Bloom filter had m = 24 bits and our
hashes needed to generate a hash with a bit length of 4 bits.
In general a Bloom filter of size 2P needs a hash of length p
bits.

Each hash function generates a hash value in the range
(0, ...,m — 1) for any input. To insert an element e; from the
set E = {ey, ea, ..., en} of elements to be added to the filter,
the hash values hq(e;), ha(e;), ..., hi(e;) are calculated and the
corresponding locations in the bit array are set to 1. This is
repeated for each element to be added to the filter. To check
if an element belongs to the set, we calculate its k hashes. If
all these bits are set to one then the item may be in the set.
If not all bits are 1, we know that the element is not in
the set.

Design
Designing the filter

The sample sizes required for a variety of target and disk
sizes are shown in Table 3. Initial contact with forensic
investigators at Police Scotland has indicated that cases
have many files. The most recently reported had over
46,000 category 1-5 images with an average size of 270 KB.
On disk this gives a target size of approximately 12 GB. If we
take this to be excessive and for the moment assume that
an average case would involve a target size of 500 MB, then
we see from Table 3 that on a 1 TB disk we would need a
sample size of only 13,300 to give a probability of 99.9% of
detecting the target and this could be done in minutes.

We can use the sample sizes to choose design parame-
ters for our Bloom filter.

Table 2
Target size 20 MiB. Probability of a sample containing a block of the target.
Sample size
100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000
Disk size (GB) 120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
320 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
500 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1000 0.86 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P. Penrose et al. / Digital Investigation 12 (2015) S22—529 S27

Table 3

Sample size required for 99.9% probability of detecting a target for a variety of target and disk sizes.

Disk size (GB) Target size (MB)

4 20 50 100 200 300 400 500
250 416,700 79,700 32,600 16,300 8200 5600 4100 3400
320 520,100 106,700 40,700 20,400 10,200 7100 5100 4200
500 833,300 159,400 65,200 32,600 16,300 11,200 8100 6700
1000 1,666,600 318,900 130,400 65,200 32,600 22,500 16,300 13,300

Mitzenmacher and Vadhan (2008) show that the false
positive rate for a Bloom filter in terms of our values m, n
and k is

Sps kn k
P(false positive) = (1 — e*ﬁ) (3)
and that k is optimal when
mlog(2)
k= S n

Using these formulae, we can engineer our Bloom filter
for our application. We calculated that our envisaged
database would contain 150 million 4 KiB blocks and so if
we take n = 200,000,000 we allow for growth in the
database. We look at the false positive rate for a variety of
combinations of k and m. Table 4 is generated using formula
(3).

We need to know what false positive rate is acceptable.
If possible, we would like no false positives in our sample.
In the worst case scenario, a 1 TB drive with a small 4 MiB
target we will be taking over one million samples (see Table
1). We would hence like a false positive rate of less than 1 in
a million. From Table 3 we can see that to meet this
requirement the Bloom filter is going to be approximately
800 MiB in size and use 10 hashes, or 1 GiB in size and use 8
hashes. If the device being examined has a 1 TB drive then it
is very likely to have 2 GiB RAM or more and a 1 GiB array
would be acceptable. The larger Bloom filter size is a trade-
off giving us fewer hashes. This is important since the speed
of our algorithm is inversely proportional to the number of
hashes. The more hashes that need calculated the slower
the process. In addition we noted earlier that a bloom filter
of size 2P bits needed a hash of length b bits. Our 1 GiB array
has 233 bits and so we need a hash of length 33 bits. This
can be generated efficiently by using SHA-384 as our hash
algorithm. This generates a 384 bit hash. We will use the
first 264 bits of the hash as 8 x 33 bit hashes. These hashes

meet the requirement for independence since the SHA-384
hash can be assumed to be collision resistant and therefore
any single bit or subset of bits may be taken to be inde-
pendent random variables (Roussev et al., 2006). Since we
are using eight hashes, each of which is used to set one bit
in the Bloom filter, each entry in the filter requires a
maximum of eight bits or the equivalent of one byte (as
noted before, some of the bits might already be set) and so
adding 200 million bytes created from the Police Scotland
cluster hash database to a 1 GiB array leaves the Bloom
filter lightly loaded.

Having designed our filter to cope with the worst case
scenario of a small 4 MiB target on a large disk then, given
the target sizes envisaged by Police Scotland, our sample
sizes will be much smaller. Our false positive rate should
then be much better than required.

Testing and results

A system was set up using the design created above.

Bloom filter creation

We used data from random.org (Random.org) to
generate entries for 200 million blocks in our Bloom filter
and then added the block hashes for 100 MB of real images.
The Bloom filter was tested first by checking the hashes of
one million of the block hashes originally included in the
filter and all were reported to be present. Then one million
block hashes were created with further data from random.
org and tested for inclusion in the filter. There was only
one positive match which agreed with theory since the false
positive rate for the Bloom filter is 0.000000696 or 1 in
1,437,184 although this could be caused by one of the
generated blocks matching one previously used. In either
case the filter is operating as designed.

Table 4

False positive probabilities for varying values of m and k.
k m = Bloom filter size (MiB)

512 600 700 800 900 1024

4 0.000834149 0.000466407 0.000263157 0.000159487 0.000102189 0.000062537
6 0.000209786 0.000091112 0.000039869 0.000019271 0.000010073 0.000004912
8 0.000087538 0.000030242 0.000010473 0.000004100 0.000001769 0.000000696
10 0.000051133 0.000014373 0.000004016 0.000001292 0.000000466 0.000000149
12 0.000037893 0.000008855 0.000002034 0.000000546 0.000000166 0.000000044
14 0.000033433 0.000006629 0.000001274 0.000000289 0.000000075 0.000000017
16 0.000033607 0.000005763 0.000000942 0.000000183 0.000000041 0.000000008

http://random.org
http://random.org
http://random.org

S28 P. Penrose et al. / Digital Investigation 12 (2015) $22—529

Table 5

Core i3 Desktop PC sampling accuracy and speed.
Disk and size Target Samples Hits False Time

size positives min:sec

250 GB SSD 4 MB 416,700 31 0 00:42
250 GB SSD 20 MB 79,700 7 0 00:07
250 GBUSBHDD 4 MB 416,700 7 0 35:02
250 GB USBHDD 20 MB 79,700 4 0 08:31
1 TB HDD 4 MB 1,666,600 6 1 108:54
1 TB HDD 20 MB 318,900 8 2 27:42

Testing

Testing was done on two different computers — a
desktop PC with a Core i3 processor and 4 GB RAM, HDD,
SSD and external USB HDD drives and a netbook with an
Intel Atom CPU, 2 GB RAM, a 250 GB SSD and a USB
attached HDD.

A selection of 4 MB of the real images was added to each
of the disk drives being tested. The sampling, hashing and
Bloom filter lookup was done. A further 16 MB of contra-
band was then added to each disk and the process
repeated.

The Microsoft NTFS File Sector Information Utility
(Microsoft, 2530) was used to look up each hit to ascertain
if it was a true hit or a false positive. This utility allows the
user to enter the drive and sector number and reports from
the MFT the full path of the file, if any, which the sector
belongs to.

Results

The results are shown in Tables 5 and 6.

Analysis

Although some false positives were encountered, the
methodology can still be considered ‘fit for purpose’ since
these results would all have been positive for the existence
of contraband data. The contraband data introduced con-
sisted entirely of JPEG images and all the false positives
resulted from a Windows Media Player recorded TV pro-
gramme (.wtv format).

For running on the Netbook we had to modify the sys-
tem to allow for the shortage of RAM. We created the same
data to fill a 512 MiB filter with 10 hashes instead of a 1 GiB
filter with eight hashes. The extra hashing during lookups
would account for some of the lack of speed on the Netbook
but it is clear that since the SSDs on the PC and Netbook
were similar, the performance of the Intel Atom processor

Table 6

Intel Atom Netbook sampling accuracy and speed.
Disk and size Target Samples Hits False Time

size positives min:sec

250 GB SSD 4 MB 416,700 8 0 09:33
250 GB SSD 20 MB 79,700 12 0 01:54
250GBUSBHDD 4 MB 416,700 5 0 44:34
250 GBUSBHDD 20 MB 79,700 7 0 11:04

is the bottleneck rather than the SSD. This effect is less
marked with the slower I/O of the HDD. Although the
theoretical false positive rate for the Bloom filter in this
configuration is 0.00005 (1 in 20,000) we experienced no
false positives.

One USB HDD that we used did not give any hits. The
drives partition was looked at and found to start at LBA 63
as older disks did. We used a partition manager to quickly
re-align the disk partition to LBA 2048 and we could scan it
as normal. This block alignment is related to the problem
described by Young et al. (Young et al., 2012).

Conclusions

We have shown that a fast initial scan of a device using
legacy equipment is feasible. Although typical cases may
contain many files, we tested with ‘worst case’ target sizes
and found that we could produce a result with 99.9% cer-
tainty within minutes. If larger target sizes are selected
then the sample size required reduces and the scan will be
faster. This could both ease the backlog of devices needing
further investigation and be ethically more acceptable.
While an investigation is backlogged an implied or imag-
ined accusation can result in harm to social and profes-
sional relationships, or a guilty party, possibly a danger to
society, could be left at large.

We have presented a theoretical justification to our
approach and tested it on legacy computing equipment.

Future work

Initial testing with SD cards and images of virtual ma-
chines is positive. An investigation of the applicability of
the methodology for scanning a variety of digital devices
needs to be done. The technique of sampling and checking
of devices against any large reference data set is widely
applicable, for example to intellectual property theft and
possibly to IP streams.

References

ACPO (Association of Chief Police Officers). ACPO managers guide good
practice and advice guide for managers of e-crime investigation.
Bloom BH. Space/time trade-offs in hash coding with allowable errors.

Commun ACM 1970;13(7):422—6.

Casey E, Katz G, Lewthwaite]. Honing digital forensic processes. Digit
Investig Sep. 2013;10(2):138—47.

Farrell P, Garfinkel SL, White D. Practical applications of bloom filters to
the NIST RDS and hard drive triage. In: 2008 Annual computer se-
curity applications conference (ACSAC); Dec. 2008. p. 13—22.

Fujitsu Technology Solutions GmbH. White paper FUJITSU PRIMERGY
server. 2011.

Garfinkel S. Random sampling with sector identification. Naval Post-
graduate School presentation. 2010.

Garfinkel S. Digital media triage with bulk data analysis and bulk_
extractor. Comput Secur 2013;0029.

Garfinkel S. Digital forensics research: the next 10 years. Digit Investig
Aug. 2010;7:564—73.

Garfinkel S, Nelson A, White D, Roussev V. Using purpose-built functions
and block hashes to enable small block and sub-file forensics. Digit
Investig Aug. 2010;7:5S13—23.

Gillam W, Rogers M. File hound: a forensics tool for first responders. In:
DFRWS; 2005. p. 1-7.

Guidance Software. Encase forensic v7 [Online]. Available: https://www.
guidancesoftware.com/products/Pages/encase-forensic/overview.
aspx [accessed: 23.03.14].

http://refhub.elsevier.com/S1742-2876(15)00008-0/sref1
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref1
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref1
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref2
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref2
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref2
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref3
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref3
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref3
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref3
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref4
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref4
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref5
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref5
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref6
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref6
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref7
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref7
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref7
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref8
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref8
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref8
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref8
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref9
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref9
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref9
https://www.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx
https://www.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx
https://www.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx

P. Penrose et al. / Digital Investigation 12 (2015) $22—S29 S29

Horsman G, Laing C, Vickers P. A case-based reasoning method for
locating evidence during digital forensic device triage. Decis Support
Syst May 2014;61:69—78.

IDEMA. The advent of advanced format. International Disk Drive Equip-
ment and Materials Association; 2013 [Online]. Available: http://
www.idema.org/?page_id=2369 [accessed: 27.08.13].

Kornblum J. Identifying almost identical files using context triggered
piecewise hashing. Digit Investig 2006;3(Suppl.):91—7.

Kryder MH. After hard drives—what comes next? IEEE Trans Magn Oct.
2009;45(10):3406—13.

Microsoft. Microsoft default cluster size. Knowl Base 2013 [Online].
Available: http://support.microsoft.com/kb/140365 [accessed:
08.07.14].

Microsoft. Microsoft NTFS file sector information utility [Online]. Avail-
able: http://support.microsoft.com/kb/253066 [accessed: 07.07.14].

Mitzenmacher M, Vadhan S. Why simple hash functions work:
exploiting the entropy in a data stream. In: Proceedings of the 19th
annual ACM-SIAM symposium on discrete algorithms; 2008.
p. 746—55.

Pollitt MM. Triage: a practical solution or admission of failure. Digit
Investig Sep. 2013;10(2):87—8.

Random.org. Pregenerated random numbers [Online]. Available: http://
www.random.org/files/.

Roussev V. Data fingerprinting with similarity digests. In: Chow K-P,
Shenoi S, editors. Advances in digital forensics VI. Springer Berlin
Heidelberg; 2010. p. 207—26.

Roussev V, Quates C, Martell R. Real-time digital forensics and triage. Digit
Investig 2013;10(2):158—67.

Roussev V, Chen Y, Bourg T, Richard GG. md5bloom: forensic filesystem
hashing revisited. Digit Investig Sep. 2006;3:82—90.

Shaw A, Browne A. A practical and robust approach to coping with large
volumes of data submitted for digital forensic examination. Digit
Investig Sep. 2013;10(2):116—28.

Walter C., Kryder's law, Sci Am, August 1, 2005. [Online] Available: http://
www.scientificamerican.com/article/kryders-law/?page=1 [accessed:
14.09.2014]

Weisstein E. Combinations. MathWorld — A Wolfram Web Resource.
[Online]. Available: http://mathworld.wolfram.com/Combination.
html [accessed: 07.07.14].

Young], Foster K, Garfinkel S, Fairbanks K. Distinct sector hashes for
target file detection. Computer 2012;45(12):28—35.

Zhang L. Hypergeometric distribution. Appl Stat 2008;1 [Online]. Available:
http://www.math.utah.edu/~lzhang/teaching/3070summer2008/
DailyUpdates/jun23/sec3_5.pdf [accessed: 10.08.14].

http://refhub.elsevier.com/S1742-2876(15)00008-0/sref11
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref11
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref11
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref11
http://www.idema.org/?page_id=2369
http://www.idema.org/?page_id=2369
http://www.idema.org/?page_id=2369
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref13
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref13
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref13
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref14
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref14
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref14
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref14
http://support.microsoft.com/kb/140365
http://support.microsoft.com/kb/253066
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref17
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref17
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref17
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref17
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref17
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref18
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref18
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref18
http://www.random.org/files/
http://www.random.org/files/
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref20
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref20
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref20
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref20
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref21
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref21
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref21
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref22
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref22
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref22
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref23
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref23
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref23
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref23
http://www.scientificamerican.com/article/kryders-law/?page=1
http://www.scientificamerican.com/article/kryders-law/?page=1
http://mathworld.wolfram.com/Combination.html
http://mathworld.wolfram.com/Combination.html
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref25
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref25
http://refhub.elsevier.com/S1742-2876(15)00008-0/sref25
http://www.math.utah.edu/%7Elzhang/teaching/3070summer2008/DailyUpdates/jun23/sec3_5.pdf
http://www.math.utah.edu/%7Elzhang/teaching/3070summer2008/DailyUpdates/jun23/sec3_5.pdf

	Fast contraband detection in large capacity disk drives
	Introduction
	Previous work
	Triage
	Existing triage solutions
	Hashing and Bloom filters – identifying known content

	Background
	Sampling-choice of block size
	Choice of sample size
	Bloom filters

	Design
	Designing the filter

	Testing and results
	Bloom filter creation
	Testing
	Results
	Analysis

	Conclusions
	Future work

	References

