
Collaborative Diffusion on the GPU for
Path-finding in Games

Craig McMillan, Emma Hart, Kevin Chalmers

Institute for Informatics and Digital Innovation, Edinburgh Napier University
Merchiston Campus, Edinburgh, EH10 5DT

{c.mcmillan,e.hart,k.chalmers}@napier.ac.uk

Abstract. Exploiting the powerful processing power available on the
GPU in many machines, we investigate the performance of parallelised
versions of pathfinding algorithms in typical game environments. We de-
scribe a parallel implementation of a collaborative diffusion algorithm
that is shown to find short paths in real-time across a range of graph
sizes and provide a comparison to the well known Dijkstra and A* al-
gorithms. Although some trade-off of cost vs path-length is observed
under specific environmental conditions, results show that it is a viable
contender for pathfinding in typical real-time game scenarios, freeing up
CPU computation for other aspects of game AI.

Keywords: GPU; Collaborative Diffusion; Path-finding; Paral-
lel; Games

1 Introduction

AI algorithms are one of the last areas within a typical game engine to exploit
the computational power found in modern GPUs. With pathfinding algorithms
being used within many games for navigation of computer controlled characters,
developers could potentially exploit GPU hardware for this processing, hence
freeing up the CPU for other more complex operations.

However developers need to carefully consider the types of algorithms that
can be run on the GPU. Traditional pathfinding algorithms are often considered
difficult to parallelize due to their highly divergent nature [1, 2] which can have
a significant impact on performance [3]. As a result it is necessary to consider
algorithms with minimal divergence in which little or no effort is required to sep-
arate the problem into a number of parallel tasks. Such algorithms are described
as embarrassingly parallel in order and are likely to result in the most effective
use of the hardware.

We present a novel GPU implementation of the collaborative diffusion algo-
rithm [4] which is embarrassingly parallel in its implementation and to the best
of our knowledge has not been previously undertaken. We provide a comparison
against two widely used pathfinding algorithms; A* [5] the most commonly used
within games and parallel and sequential versions of Dijkstra [6] which is guar-
anteed to find the shortest path. The version of Dijkstra used exploits dynamic



II

parallelism, an efficient use of hardware that makes it possible to launch kernels
from threads running on the device. We evaluate the performance of each of the
algorithms in a general path search across a range of different map sizes before
looking at scenarios and environments which would typically be found within
a game. Results show that a GPU implementation of diffusion is able to find
paths within 60 frames per second, often considered real-time within the games
industry and scalable to large maps. We also show that the path length and cost
of diffusion is comparable to A* and Dijkstra within game environments.

The remainder of this work is organised as follows. The next section reviews
related work in the area of GPU pathfinding. Section 3 provides an overview of
the A*, Dijkstra and collaborative diffusion algorithms while Section 4 outlines
the CUDA API. Section 5 gives a detailed description of parallelising the algo-
rithms. Section 6 discusses the results from the experiments carried out. Finally
Section 7 presents the concluding remarks and future work to be carried out.

2 Related work

Caggianese and Erra [7] describe a parallel version of A* which uses grid space
decomposition to parallelise the algorithm such that it is suitable for the GPU
using CUDA. They compared their approach to a GPU implementation of Real-
Time Adaptive A* (P-RTAA*). Algorithms were tested on grids upto a size of
1024x1024 for multiple agents up to 262144. The approach proved faster than
P-RTAA* for each group of agents tested achieving speed ups up to 45X. The
algorithm found paths of similar length to A*, but showed a trade off in speed
vs optimal path when using different sizes of planning blocks. However as speed
is likely to be the hightest priority in real-time applications, longer sub-optimal
paths may be an acceptable trade-off.

Ortega-Arranz et al [1] present a parallel implementation of Dijkstra’s al-
gorithm. Their implementation parallelizes the internal operations of the algo-
rithm, exploiting the two internal loops within the algorithm. An outer loop is
responsible for selecting a new current node while the inner loop checks each of
the current nodes neighbours and calculates the new distance values. The outer
loop is parallelized by simultaneously selecting multiple nodes that can be set-
tled in parallel without affecting the algorithm correctness, and the inner loop
by looking at each neighbour of a node in parallel. Ortega-Arranz et al compare
their parallel implementation to an equivalent sequential implementation across
a range of different graph sizes, achieving a 13X to 220x speed up with their
GPU implementation compared to the CPU sequential implementation across
the graph sizes tested.

3 Pathfinding Algorithms

We describe two potential but contrasting approaches for pathfinding in a game
environment that lend themselves to parallelization on the GPU. For complete-
ness, A* is also described given its frequent use in games.



III

3.1 Traditional Pathfinding Algorithms

Dijkstra’s algorithm [6] solves the single-source shortest path problem for a non-
negative weighted graph. Nodes in the graph can represent either a 2-dimensional
grid or points in 3D space. For a given source node the algorithm finds the lowest
cost path between that node and every other node in the graph. As Dijkstra will
evaluate every node in the graph it can be computationally expensive. As a result
it is rarely used within games.

A* [5] is an extension to Dijkstra’s algorithm. Unlike Dijkstra, A* uses heuris-
tics to determine which nodes in the graph to settle. A node is considered settled
once the shortest path between that node and the source node has been found.
This allows A* to search only a fraction of the nodes in a graph in order to find
a low cost path between two nodes. This has led to A* becoming commonly used
within many games due to its low computational overhead and ability to find
low cost paths in real-time.

3.2 Collaborative Diffusion

Repenning [4] introduces Collaborative Diffusion, inspired by physical processes
that spread matter over an N-dimensional physical or conceptual space over
time. Repenning introduced the idea of using diffusion based techniques and
the idea of antiobjects to find paths as a means to address some of the limita-
tions of traditional path search algorithms [4]. Collaborative diffusion is based
on the notion of programming concept of antiobjects — an object that appears
to do the opposite of what might be expected [4]. For example, in the game
Pac-Man it might be natural to assign path-finding computation to each of the
ghost agents. However, by assigning this computation to the objects that define
the background instead, opportunities for redistributing the computation in a
manner that can be parallelized may improve performance. This results in a
great deal of the computational intelligence being shifted into the environment;
although the ghost agents appear to be intelligent, in reality the intelligence
lies in the background which becomes a computational reflection of the game
topology, including the player location and their state. This allows agents to
collaborate and compete, resulting in sophisticated emergent behaviours. In ad-
dition to naturally emergent behaviours occurring, an added benefit is that the
number of agents pathfinding within an environment also has no effect on the
time taken by the algorithm to find a path as path searching is handled inde-
pendently of the agents. As a result the use of antiobjects enables games with
large numbers of agents to be built.

Collaborative Diffusion is typically used within a tile-based environment,
each goal node is given an initially high diffusion value which is used as the
starting node: over time this value is spread throughout the world according to
equation 1 until each passable tile obtains its own value. D refers to the diffusion
value, n the number of neighbouring nodes, a the diffusion value of a neighbour,
and κ is the cost of the node. Neighbours are defined by a metric appropriate
to the graph; in a typical 2-dimensional grid-world, the Moore neighbourhood



IV

comprising of the eight cells surrounding any given cells is typically used. Once
values have diffused across the complete graph, a path can be backtracked to the
goal from any node by simply moving to the neighbouring node with the largest
value.

D = (
1

n

n∑
i=0

ai) · κ (1)

To the best of our knowledge no research has been undertaken into a parallel
GPGPU implementation of diffusion to perform searching. However, Sanders et
al [8] provide an example of a GPU implementation of simulating heat transfer
via a similar diffusive process, and discuss performance considerations relating
to how a grid is stored.

4 CUDA Overview

The Compute Unified Device Architecture (CUDA) platform [9] is a general
purpose computing API that has been designed for performing tasks that would
traditionally be executed on the CPU, on the GPU. CUDA was first released
in 2007 by NVidia and is a proprietary platform for Nvidia hardware. CUDA
applications consist of host code which is executed on the CPU and device code,
also known as kernel code, which is executed on the GPU. The host system
communicates with the device by copying over a set of data and then giving the
device a task to perform on the data. This is typically done by splitting the work
into multiple threads and each thread then performing the same operation on
different parts of the dataset. While offering obvious opportunities for speed-up
in comparison to the CPU, care must be taken in porting code. For example,
branch divergence can lead to threads no longer being executed in parallel, with
their computation becoming serialized. This can result in lower performance as
the execution units on the GPU are not being fully utilized.

New with NVidia’s Kepler GK110 architecture [10] is a dynamic parallelism
feature that allows the GPU to launch threads directly and generate new work
for itself without ever having to involve the CPU. This results in the ability to
run more of an application on the GPU as kernels running on the device are
able to adjust the number of threads being launched depending upon the needs
of the application, improving both scalability and performance through support
for more varied parallel workloads and freeing up the CPU for other operations.

5 Parallelising the Path-Finding Algorithms

5.1 Dijkstra

The Dijkstra algorithm partitions all nodes into two distinct sets, unsettled and
settled. Initially all nodes are in the unsettled sets, e.g. they must be still eval-
uated. A node is moved to the settled set if a shortest path from the source to



V

this node has been found. As outlined by Ortega-Arranz et al [1], Dijkstra can
be thought of as operating around two loops: the outer loop selects the lowest
cost node from the unsettled set while the unsettled set is not empty whilst the
inner loop evaluates each of the current lowest cost nodes neighbours. Each node
in the unsettled set must be checked one at a time with the fastest sequential
implementations being based around an efficient implementation of a minimum
priority queue to allow fast retrieval of the lowest cost node. Algorithm 1 shows
the pseudo code for the outer and inner loops of the sequential Dijkstra imple-
mentation.

Algorithm 1 Sequential Dijkstra Outer and Inner Loops

1: while unsettledSet != empty do
2: currentNode = node in unsettledSet with minimum distance[d]
3: remove currentNode from unsettledSet
4: for each neighbour n of currentNode do
5: //Calculate the cost of passing through the neighbour
6: cost = distance[currentNode] + length(currentNode, n)
7: if cost < distance[n] then
8: //Update the cost and parent of the neighbour
9: distance[n] = cost
10: previous[n] = currentNode
11: add n to unsettledSet
12: end if
13: end for
14: end while

The outer while loop can be parallelised by selecting multiple nodes from the
unsettled set and settling them at the same time without effecting the algorithm’s
correctness. This set of nodes are known as the frontier set which is generated
by selecting any node in the unsettled set which has a tentative distance of the
current minimum + 1.

Our parallel implementation makes use of CUDA dynamic parallelism allow-
ing the entire Dijkstra process to be run directly on the GPU. Algorithm 2
outlines the parallel Dijkstra implementation.

5.2 Diffusion

The parallel diffusion algorithm is given in Algorithm 3. The sequential version
differs in the manner in which the grids are stored in memory so that they can be
accessed appropriately, with an additional process in the parallel version to pass
the grids between host and device and vice versa. The speedup of the parallel
version comes from the ability to process each node in the grid at the same time
— this is easy to achieve as diffusion is embarrassingly parallel, meaning the
problem can be split into a number of parallel tasks as each node has exactly
the same calculation applied to it.

At the start of each iteration of the while loop, the value of the goal node
is set so that it remains constant and spreads evenly throughout the grid. The
goal value is then diffused over the grid according to Equation 1. The diffusion



VI

Algorithm 2 Parallel Dijkstra Outer and Inner Loops

1: while unsettledSetEmpty == FALSE do
2: //Get the minimum cost in the unsettled set
3: for all nodes in unsettled Set do . Executed in parallel
4: getMinimumCost()
5: end for
6: //Create the frontier set
7: for all nodes in unsettled Set do . Executed in parallel
8: if nodeCost[threadID] <= globalMin + 1 then
9: addToFrontier[threadID]
10: end if
11: end for
12: //Evaluate frontier set
13: for all nodes in frontier Set do . Executed in parallel
14: evaluateNode()
15: end for
16: //Check if the unsettled set is empty
17: if unsettledSet == EMPTY then unsettledSetEmpty = TRUE
18: end if
19: end while

Algorithm 3 Parallel Diffusion

1: while gridDiffused != TRUE do
2: setGoals(inputGrid, goalGrid) . Executed in parallel for all nodes in map
3: diffuseGrid(outputGrid, inputGrid) . Executed in parallel for all nodes in map
4: if CheckGridDiffused(outputGrid) then
5: gridDiffused == TRUE
6: end if
7: swapGrids(inputGrid, outputGrid)
8: end while

value is multiplied by the node cost κ in each calculation. Costs are set between
0 and 1 (where zero represents an impassable tile and 1 a fully passable tile).
The diffusion value thus decays quickly in areas with a value closer to zero. Once
the goal value has spread to every tile in the graph, it is possible to backtrack a
path from any point in the graph.

6 Results

Sequential and parallel versions of Dijkstra and diffusion were implemented,
alongside a sequential version of the A* algorithm. Sequential versions were
written in C++, and parallel versions using the CUDA API.

Each algorithm was tested on 2D-grids ranging in size from 32× 32 to 256×
256. Two scenarios were tested; in the first each node had equal weight, while
in the second each node was assigned a random weight between one and ten.
For the diffusion algorithms this weight was normalized and inverted so that the
weight is a value between zero and one. The source node was always in the top-
left corner, and the goal in the bottom-right, giving paths with the maximum
possible Euclidean distance. Sequential versions of the algorithms were run on a
Intel(R) Core(TM) i7-2600K 3.4GHz CPU while the parallel versions were run
on an NVidia Tesla K40 GPU. All experiments were repeated 10 times and the



VII

time in milliseconds to obtain a path to the goal recorded. In each experiment
the cost of a path was also noted.

6.1 Time to find Goal Node

Figure 1 compares the results of all five algorithms, showing the average time
taken to find a path across a range of graph sizes in which (a) all nodes had
equal weight (b) nodes were assigned a random weight between one and ten.

(a) Equal weighted graphs

(b) Random weighted graphs

Fig. 1: Time (ms) to find goal node for sequential and parallel algorithms across
equal (a) and random (b) weighted graphs

In 1(a) we clearly see that A* outperforms both the sequential and parallel
versions of Dijkstra and Diffusion. Collaborative Diffusion is faster than both
the parallel and sequential versions of Dijkstra. In contrast, sequential diffusion
fares worst of all the algorithms except in the single case of the smallest graph.



VIII

The parallel version of Dijkstra scales better than its corresponding sequential
version. This is due to the fact that when weights are equal sequentially Dijk-
stra requires n2 iterations of the outer loop to find a path compared to only n
iterations in the parallel version for an n × n grid like those used in the tests.
The situation is reversed however when using graphs with randomly weighted
nodes.

In the weighted graphs 1(b), A* is the slowest algorithm in all but the smallest
graph; upto 5× slower than parallel Dijkstra and upto 24× slower than the
parallel diffusion implementation. Parallel diffusion is fastest in all cases except
for the smallest graph. Parallel Dijkstra is slower than its sequential counterpart
until a graph size of 160 × 160 is reached.

The poor performance of both A* and parallel Dijkstra in weighted graphs
can be easily explained. A* is particularly successful in graphs with nodes of
equal cost due to the use of a heuristic that enables it to search only a small
fraction of the graph. However when node costs are random, the algorithm needs
to search many more nodes. A* evaluated more than 90% of the nodes in each
of the weighted graphs compared to between 0.5% and 4% of nodes when the
weights are equal. The performance of Dijkstra suffers when there is a large
variation in weight between nodes due to the way in which the outer loop and
frontier set works as when there is a large variation in weight between nodes,
fewer can be settled simultaneously as they do not meet the criteria to be added
to the frontier set, resulting in extra iterations of the outer loop required to
process all the nodes in the graph. The performance of parallel diffusion remains
relatively unchanged between the equal and randomly weighted graphs unlike
that of A* and Dijkstra suggesting that while A* is faster in maps where all
weights are equal, diffusion may be the better choice of algorithm in cases where
weights are all random or where maps within a game are likely to change between
areas of equal and random weight. Thus the performance of diffusion is not
effected by the weights within a graph.

6.2 Path Length vs path cost

In many computer games, it is necessary to distinguish between paths of short
length and paths of low cost. For example, the shortest path to a goal might
involve crossing terrain such as water or a swamp that expends more energy
than moving across grass. Therefore, it is of interest to compare the length of
paths found by each of the algorithms to the cost. 20 random 128 × 128 grids
were generated. In each instance, costs were randomly assigned to each node in
the range one to ten. Figure 2 shows the path length (number of nodes in path)
plotted against the path cost (summed cost of nodes in path) for each of the
algorithms. As expected both A* and Dijkstra find low cost paths through each
of the graphs. However, when compared to diffusion, the paths are of a greater
length, with diffusion finding paths that are between 30 and 51 nodes shorter.
This comes with the trade-off however of paths being between 90 and 195 units
greater than those found by A* or Dijkstra. In games where the cost of the path
is critical to the game play diffusion may not be the most suitable algorithm.



IX

130

140

150

160

170

180

190

400 450 500 550 600
Path Cost

P
at

h 
Le

ng
th

Algorithm Astar Diffusion Dijkstra

Fig. 2: Path Length vs Path Cost

6.3 Obstacles

In addition to varying terrain types, the environment in a computer game is also
likely to contain obstacles which are impassable such as walls or large buildings.
Computer controlled characters must be able to find paths around these obsta-
cles. To evaluate the performance of A*, parallel Dijkstra and parallel Diffusion
in more realistic scenarios, we generate 4 maps with varying types of terrain and
obstacles. For each of the maps we record the average time in milliseconds across
10 runs to find a path, along with the path length and the path cost. In each
case the start node is the top left corner and the goal node is the bottom right
corner. Figure 4 compares the paths found by both A* and Diffusion. Dijkstra
has been omitted from this comparison as the paths found were near identical
to A* and it took over 5× longer to find the paths than either of the other
algorithms. Figure 3 records the time, length and cost of each experiment. In
each case, t-tests show that the time difference is statistically significant at a
95% confidence level.

Algorithm Time (ms) Path Length Path Cost

Diffusion 0.61 32 50

A* 0.52 39 42

Dijkstra 2.87 39 42

(a) Map 1

Algorithm Time (ms) Path Length Path Cost

Diffusion 0.59 49 113

A* 1.53 49 113

Dijkstra 6.08 49 113

(b) Map 2
Algorithm Time (ms) Path Length Path Cost

Diffusion 0.75 39 39

A* 0.30 41 41

Dijkstra 2.34 39 39

(c) Map 3

Algorithm Time (ms) Path Length Path Cost

Diffusion 1.27 75 147

A* 1.04 114 114

Dijkstra 8.07 114 114

(d) Map 4

Fig. 3: Time (ms), path length and path cost for the different algorithms across
the different maps.



X

– Map 1 : the path choice involves crossing a stream or using a lower cost
bridge. A* opts for the lower cost moves, resulting in crossing the bridges
(cost 42, path length 39), whereas diffusion 4(b) moves in a straight line
(cost 50, path length 32), and is 1.17 times slower than A*.

– Map 2: approximately 50% of the map is covered with high cost terrain.
Both A* 4(c) and diffusion 4(d) found a path to the goal by moving through
the area of lower cost terrain taking 49 nodes to reach the goal with a cost
of 113. Although the paths are of equal length and cost, diffusion takes a
straighter path with fewer turns, which is found 2.6 times faster than A*.

– Map 3 : this contains a large number of impassable obstacles spread out
across the map resulting in a large number of possible routes to the final
goal. Diffusion 4(f) finds a shorter and cheaper path than A* 4(e) (cost,
length = 39 vs 41 for A*). In this case A* was able to find a path 2.5 times
faster than diffusion, albeit only with a difference of 0.45ms.

– Map 4: this contains a large number of nodes with high cost terrain sepa-
rated by areas of impassable obstacles. This map provided the largest vari-
ation between the path length and path cost for each of the algorithms. A*
4(e) found a longer path taking 114 nodes to reach the goal compared to
diffusions 4(h) 75 nodes. However the path found by A* is less costly than
diffusion (114 vs 147). A* avoids all areas of terrain whereas diffusion takes
short-cuts through the high cost areas. A* is 1.2 times faster in this case.

The results obtained in Sections 6.1 and 6.2 show that in grids with nodes
of equal weight, A* outperforms the parallel algorithm, with the converse being
true on grids with randomly assigned weights. However, on maps 1-4 which
attempt to reflect typical game scenarios, although diffusion performs fastest
in only 1 out of 4 scenarios, all paths are found comfortably within ’real-time’.
Figure 2 which analysed randomly weighted graphs suggests that diffusion finds
paths of short-length at the expense of high-cost. Although this is the case in
maps (1) and (4), in map (3) diffusion was able to find a path both shorter and
less costly than A* and a path of equal length and cost in map 2. It appears
that in an environment in which nodes are weighted in a structured rather than
random manner, diffusion is a viable choice of method. Ultimately, the choice of
algorithm will depend in the specific game in question, but the performance of
diffusion in this respect may outweigh cost issues in many cases.

7 Conclusions

This paper has analysed the ability of three different path-finding algorithms to
find paths through environments that are representative of those encountered in
typical computer games, i.e. contain varied terrain or obstacles. In particular, we
investigate whether path-finding algorithms such as Djikstra that traditionally
might be thought of as too computationally expensive to be utilised within a
game can be made tractable through exploiting the GPU. Additionally, we eval-
uated a path-finding algorithm called Collaborative Diffusion that has received
little attention within the AI/Games literature.



XI

(a) A* Map 1 (b) Diffusion Map 1

(c) A* Map 2 (d) Diffusion Map 2

(e) A* Map 3 (f) Diffusion Map 3

(g) A* Map 4 (h) Diffusion Map 4

Fig. 4: Paths for A* and Diffusion through different map types

A GPU implementation of diffusion performs particularly well in environ-
ments in which nodes do not have equal costs in terms of the time taken to
find a path. This is particularly relevant for the majority of computer games
in which environments consist of mixed terrain with variable energy costs for
passing through. Timing results show that diffusion can be run on the GPU
in real-time for graph sizes up to approximately 256x256 nodes: these sizes are
well within the bounds of typical computer games — games such as Civilisa-
tion, StarCraft and SimCity all run in environments that are smaller than this.
Diffusion typically finds shorter paths than either A* or Dijkstra, both of which
favour paths with low cost — we note that from a game-playing perspective,
the shortest path can often appear more realistic to an observer in taking a
direct route. In environments containing obstacles, diffusion finds results com-
parable to A* in terms of cost and in a time-scale appropriate for real-time path
finding. In addition, diffusion lends itself to use with multiple agents, opening
up the possibility of emergent behaviours occurring, thus further enhancing the
game-playing experience from a player perspective.

Currently, the evironments in which the algorithms have been evaluated are
rather contrived. Future work will evaluate the performance of the parallelized
algorithms within real game environments, using open-source APIs. Similarly it
would be interesting to look at each of the algorithms in multi-agent scenarios,



XII

particularly diffusion as we have shown that the number of agents should have
no effect on the time taken to find a path due to the nature of the algorithm yet
the work carried out in [4] shows it can lead to a number of interesting emergent
behaviours.

Acknowledgement

We gratefully acknowledge the support of NVIDIA Corporation with the dona-
tion of the Tesla K40 GPU used for this research.

References

1. Ortega-Arranz H, Torres Y, Llanos DR, Gonzalez-Escribano A. A new gpu-based
approach to the shortest path problem. High Performance Computing and Simu-
lation (HPCS), 2013 International Conference on, IEEE, 2013; 505–511.

2. Johnson T, Rankin J. Parallel agent systems on a gpu for use with simulations and
games. Latest Advances in Information Science and Applications 2012; .

3. Han TD, Abdelrahman TS. Reducing branch divergence in gpu programs. Pro-
ceedings of the Fourth Workshop on General Purpose Processing on Graphics Pro-
cessing Units, GPGPU-4, ACM: New York, NY, USA, 2011; 3:1–3:8.

4. Repenning A. Collaborative diffusion: Programming antiobjects. Technical Report,
University of Colorado 2006.

5. Hart P, Nilsson N, Raphael B. A formal basis for the heuristic determination of
minimum cost paths. Systems Science and Cybernetics, IEEE Transaction On July
1968; 4(2):100–107.

6. Dijkstra E. A note on two problems in connexion with graphs. Numerische Math-
ematik 1959; :269–271.

7. Caggianese G, Erra U. Exploiting gpus for multi-agent path planning on grid maps.
High Performance Computing and Simulation (HPCS), 2012 International Con-
ference on, IEEE, 2012; 482–488.

8. Sanders J, Kandrot E. Cuda by Example. Addison Wesley, 2010.
9. NVidia. Cuda toolkit 2013. URL https://developer.nvidia.com/cuda-toolkit, ac-

cessed: 17th October 2013.
10. NVidia. Nvidia’s next generation cuda compute architecture kepler gk110. Tech-

nical Report, Nvidia 2013. URL http://www.nvidia.co.uk/object/nvidia-kepler-
uk.html.


