
A Lifelong Learning Hyper-heuristic Method for Bin
Packing

Kevin Sim Emma Hart Ben Paechter

Abstract

We describe a novel Hyper-heuristic system which continuously learns over time to solve a combinato-
rial optimisation problem. The system continuously generates new heuristics and samples problems from
its environment; representative problems and heuristics are incorporated into a self-sustaining network of
interacting entities inspired by methods in Artificial Immune Systems.The network is plastic in both its
structure and content leading to the following properties: it exploits existing knowledge captured in the
network to rapidly produce solutions; it can adapt to new problems with widely differing characteristics;
it is capable of generalising over the problem space. The system is tested on a large corpus of 3968 new
instances of 1D-bin packing problems as well as on 1370 existing problems from the literature; it shows
excellent performance in terms of the quality of solutions obtained across the datasets and in adapting to
dynamically changing sets of problem instances compared to previous approaches. As the network self-
adapts to sustain a minimal repertoire of both problems and heuristics that form a representative map of
the problem space, the system is further shown to be computationally efficient and therefore scalable.

1 Introduction

The previous two decades have seen significant advances in meta-heuristic optimisation techniques that
are able to quickly find optimal or near-optimal solutions to problem instances in many combinatorial op-
timisation domains. Techniques employed vary widely: typical meta-heuristic algorithms (e.g. evolution-
ary algorithms, particle swarm optimisation) operate by searching a space of potential problem solutions.
Hyper-heuristic algorithms on the other hand operate by searching a space of heuristics which are used to
either perturb existing solutions or construct completely new solutions. Despite many successful applica-
tions of both these approaches, they typically operate in the same manner: an algorithm is tuned to work
well on a (possibly large) set of representative problems and each time a new problem instance needs to
be solved, the algorithm conducts a search of either the solution space or the heuristic space to locate good
solutions. Whilst this often leads to acceptable solutions, such approaches have a number of weaknesses
in that if the nature of the problems to be solved changes over time, then the algorithm needs to be peri-
odically re-tuned. Furthermore, such approaches are likely to be inefficient, failing to exploit previously
learned knowledge in the search for a solution.

In contrast, in the field of machine-learning, several contemporary learning systems employ methods
that use prior knowledge when learning behaviours in new, but similar tasks, leading to a recent proposal
from Silver et al. (2013) that it is now appropriate for the AI community to move beyond learning algorithms
to more seriously consider the nature of systems that are capable of learning over a life- time. They suggest that
algorithms should be capable of learning a variety of tasks over an extended period of time such that the
knowledge of the tasks is retained and can be used to improve learning in the future. They name such
systems lifelong machine learning, or LML systems, in accord with earlier proposals by Thrun and Pratt
(1997). Silver et al. (2013) identify three essential components of an LML system: it should be able to retain
and/or consolidate knowledge, i.e. incorporate a long-term memory; it should selectively transfer prior
knowledge when learning new tasks; it should adopt a systems approach that ensures the effective and
efficient interaction of the elements of the system. In terms of the memory of the LML, they further specify

1

that the system should be computationally efficient when storing learned knowledge in long-term memory
and that ideally, retention should occur online.

Silver et al. (2013) propose a framework for a generic LML that encompasses supervised, unsupervised,
and reinforcement learning techniques, with a view to developing test applications in the robotics and
agents domains. In contrast, we turn to biology for inspiration in building an LML for optimisation pur-
poses, and in particular to the natural immune system, noting that it has properties that fulfil the three
requirements for an LML system listed above. It exhibits memory that enables it to respond rapidly when
faced with pathogens it has previously been exposed to; it can selectively adapt prior knowledge via clonal
selection mechanisms that can rapidly adapt existing antibodies to new variants of previous pathogens and
finally, it embodies a systemic approach by maintaining a repertoire of antibodies that collectively cover the
space of potential pathogens.

Using this analogy, we describe an LML system for optimisation that combines inspiration from im-
munology with a Hyper-heuristic approach to optimisation, using 1D bin-packing as an example domain.
The system continuously generates new knowledge in the form of novel deterministic heuristics that pro-
duce solutions to problems; these are integrated into a network of interacting heuristics and problems: the
problems incorporated in the network provide a minimal representative map of the problem space; the
heuristics generalise over the problem space, each occupying its own niche. Memory is encapsulated in
the network and is exploited to rapidly find solutions to new problems. The network is plastic both in its
contents and its topology, enabling it to continuously adapt as the problems in its environment change. We
show that system not only produces effective solutions, but also responds efficiently to changing problems
in terms of the response time required to obtain an effective solution.

2 Previous Related Work

We describe an LML for bin-packing which combines inspiration from both Hyper-heuristics and Artificial
Immune Systems with the concept of LML set out by Silver et al. (2013). We briefly review relevant pre-
vious work in each of these domains that informs our approach, focusing on the aspects of each field that
particularly relate to learning.

2.1 LML systems

Systems that learn over extended periods of time are common in the machine learning literature. Silver
et al. (2013) describe several examples that cover supervised, unsupervised and reinforcement learning
methods. Ruvolo and Eaton (2013) propose an Efficient Lifelong Learning Algorithm dubbed ELLA that
focuses on multi-task learning in machine-learning applications relating to prediction and recogniton tasks;
ELLA is able to transfer previously learned knowledge to a new task and integrate new knowledge through
the use of shared basis vectors in a manner that is proved to be computationally efficient. Other examples
are found in the multi-agent system (Kira and Schultz, 2006) and robotics literature (Carlson et al., 2010).
The potential benefits to be gleaned by incorporating concepts taken from the meta-learning community
into Hyper-heuristic approaches are explored in Pappa et al. (2013). Despite this, there appears to be little
literature in the optimisation field. An exception is work originated by Louis and McDonnell (2004) on
Case-Injected Genetic Algorithms — CIGAR algorithms. Conjecturing that a system that combined a robust
search algorithm with an associative memory could learn by experience to solve problems, they combine a
genetic algorithm with a case-based memory of past problem solutions. Solutions in the memory are used
to seed the population of the genetic algorithm; cases are chosen on the basis that similar problems will
have similar solutions, and therefore the the memory will contain building blocks that will speed up the
evolution of good solutions. Using a set of design and optimisation problems, Louis and McDonnell (2004)
demonstrate that their system learns to take less time to provide quality solutions to a new problem as it
gains experience from solving other similar problems. The system differs from other case base reasoning
systems in that it does not use prior knowledge based on a comparison to previously encountered problems
but simply injects solutions that are deemed similar to those already in the GA population.

2

The CIGAR methodology can be considered as an LML technique as it builds up a case-history over
time. It differs from the system proposed in this article in its use of genetic algorithms as the optimisation
technique rather than a Hyper-heuristic approach, and in its assumption that similar problems will have
similar solutions; this limits the generality of the system to those where the similarity metric between solu-
tions can be easily defined. In addition, the memory in a CIGAR algorithm does not adapt over time, for
example enabling ‘forgetting’, but simply increases in size as time passes.

2.2 Hyper-heuristics

A Hyper-heuristic is an automated method for selecting or generating heuristics to solve hard computa-
tional search problems, motivated by a desire to raise the level of generality at which search methodologies
can operate (Burke et al., 2003). Rather than typical meta-heuristic methodologies which tend to be cus-
tomised to a particular problem or a narrow class of problems, the goal of Hyper-heuristics is to develop
algorithms that work well across many instances from a problem class and do not require parameters to be
tuned before use. Although this may lead to some trade-off in quality compared to specifically designed
meta-heuristic approaches, Hyper-heuristics should be fast and exhibit good performance across a wide
range of problems (Ross, 2005).

A recent categorisation of Hyper-heuristics by Burke et al. (2010a) separated Hyper-heuristics into two
categories — heuristic selection, i.e. choosing between existing heuristics, and heuristic generation, i.e. cre-
ating new heuristics from components of existing ones. The same authors further classify Hyper-heuristics
according to type of learning used to inform the search process. Thus, according to their definition, in an
online Hyper-heuristic, learning takes place while the algorithm is solving an instance of a problem. In
contrast, offline Hyper-heuristics learn from a representative set of training instances resulting in a model
that generalises to unseen problem instances. However both categorisation suffer from the same weak-
ness; learning ends at some point. In online systems, every time a new instance is solved, the learning
process starts from scratch. Although off-line systems do generalise from a set of problems, they need to be
periodically re-trained if the nature of the problems changes.

With respect to heuristic generation, genetic programming has commonly been used in an offline learn-
ing procedure to generate a set of novel heuristics that work well on a training set and are expected to
generalise to unseen instances, e.g. (Burke et al., 2010b, 2009, 2012). However, research on disposable heuris-
tics has also been conducted (Bader-El-Den and Poli, 2008) that evolves novel heuristics for solving a single
instance of a problem; this type of approach is in direct conflict to the appeal from Silver et al. (2013) to
develop LML systems. Previous studies in the domain of bin packing (Burke et al., 2007b; Terashima-Marı́n
et al., 2010) have strengthened the notion that whilst it is possible to create heuristics that generalise well
across a range of problem instances there is a trade off between the generality of a heuristic and the solu-
tion quality it provides. The approach taken here is to generate sets of complementary heuristics that can
be seen to generalise well across the complete set of problem instances whilst being individually tailored to
niche areas of the problem space.

Finally, it is worth mentioning an approach from Sim and Hart (2013) in which heuristic generation is
combined with a greedy selection algorithm in a learning system inspired by island models in evolution, to
learn a set of heuristics that collaborate to solve representative sets of problem instances. This work differs
from much previous Hyper-heuristic work in trying to learn an appropriate set of heuristics rather than
learn to select from a large but fixed set of heuristics, but suffers from the same criticisms that have been
levelled at other offline Hyper-heuristic methods in that the learning phase must be repeated if the nature
of the problem instances changes.

2.3 Immune Networks

As described in Section 1, the immune system exhibits many of the properties and functions desired in
LML systems. Many mechanisms have been proposed as to how such functions are achieved, with no
clear consensus emerging amongst the immunological community. Of most relevance to this work is the

3

idiotypic network model proposed by Jerne (1974) as a possible mechanism for explaining long-term mem-
ory. Challenging existing thinking at the time, Jerne proposed that antibodies produced by the immune
system interact with each other, even in the absence of pathogens, to form a self-sustaining network of col-
laborating cells, that collectively embodies a memory of previous responses. Bersini (1999) proposed that
the engineering community might benefit from developing algorithms inspired by double plasticity of the
network view of the immune system: parametric plasticity provides an adaptive mechanism that adjusts
parameters while executing a task to improve performance while structural plasticity enables new elements
to be incorporated into network and elements to be removed, thereby enabling the network to adapt to a
time-varying environment — properties which result in an LML system.

Idiotypic network theory has been translated into a number of computational algorithms in machine-
learning, optimisation and engineering domains (see (Timmis, 2007) for an overview). However, very few
of these applications really address problems in the kind of complex, dynamic environments envisaged by
Bersini (1999). Nasraoui et al. (2003) describe a system based on idiotypic network for tracking evolving
clusters in noisy data-streams, finding it to be both capable of learning and scalable. However, the majority
of work in relevant dynamic environments lies in the robotics domain.

Idiotypic networks were first used in mobile robotics in (Watanabe et al., 1998), where parametric plas-
ticity was exploited to enable a robot to adapt its behaviours in order to fulfil a task, depending on environ-
mental conditions. An antibody in the network described a tuple < condition, action >: conditions match
environmental data, and the action specifies an atomic behaviour of the robot that should be executed if the
antibody has high enough concentration. Connections between antibodies either further stimulate or sup-
press antibodies, altering their concentration and therefore their probability of selection. Early work relied
on hand-coded antibodies within the network, and focused on learning connections. This was significantly
improved by Whitbrook et al. (2007, 2008, 2010) who used an evolutionary algorithm in separate learning
phase to produce antibodies which are used to seed the network. Despite the this, the network does not
have structural plasticity — the initial learning phase happens only once and hence the networks cannot
adapt to significant environmental changes.

Although immune-inspired algorithms are common in the field of optimisation, the majority are ap-
plied to static optimisation problems, e.g. (Kromer et al., 2012). However, some research exists relating to
dynamic optimisation in which the fitness function of a problem changes over time. Nanas and de Roeck
(2007) give a comprehensive overview of immune-inspired research in this area, with Trojanowski and
Wierzchon (2009) providing an detailed analytical comparison on a series of benchmarks. For example, in
(Gaspar and Collard, 2000; F.O. de Frana, 2005), idiotypic network inspiration results in a dynamic alloca-
tion of population size; these algorithms can thus be said to exhibit structural plasticity, in that the network
itself selects which recruited nodes will survive in the population, essentially removing similar nodes to
preserve diversity. Idiotypic effects also implicitly provide memory in these algorithms, by sustaining
nodes within the network.

2.4 Immune Networks and Hyper-heuristics

An initial attempt at combining Hyper-heuristics with immune-inspiration from immune network theory
to evolve a collaborative set of heuristcs for solving optimisation problems was described by Sim et al.
(2013). To the best of our knowledge, this was the first example of an immune-inspired Hyper-heuristic
optimisation system and was tested using 1370 1D bin-packing problems. This system used methods from
single-node genetic programming (SNGP) (Jackson, 2012a,b) to generate a stream of novel heuristics. If one
heuristic Ha could solve a problem from a set of problems of interest using fewer bins than another heuristic
Hb then Ha received a positive stimulation, proportional to the difference in bins used. Heuristics with zero
stimulation were removed from the system, resulting in a network of heuristics in which a direct measure of
interaction could be calculated between every pair of heuristics. Although the system provided promising
results, it had a number of drawbacks. Firstly, the algorithm required each heuristic in the system to be
evaluated against all of the problems in the set of interest, which can be computationally costly for large
problem sets. Secondly, the algorithm required the use of a greedy procedure to remove heuristics that

4

Table 1: Benchmark bin-packing problems
Data Set capacity (c) n ω #Problems

ds1 100,120,150 50,100,200,500 [1,100],[20,100],[30,100] 36× 20 = 720
ds3 100000 200 [20000,30000] 10

FalU 150 120,250,500,1000 [20,100] 4× 20 = 80
FalT 1 60,120,249,501 [0.25,0.5] 4× 20 = 80

Data Set c n $ (avg weight) δ(%) # Problems
ds2 1000 50,100,200,500 c

3 , c
5 , c

7 , c
9 20,50,90 48× 10 = 480

were subsumed by other heuristics in the system in order to limit the network size. However, this system
inspired the work presented in this article, which both addresses limitations of previous work and extends
it to create a continuous-learning optimisation system that is capable of learning over long periods of time
in dynamic environments. Note that the term dynamic does not refer here to changing problem instances
but to dynamically changing environments that are composed of varying sets of problem instances.

3 Problem Definition: 1D bin packing - benchmarks and heuristics

The objective of the one dimensional bin packing problem (BPP) is to find a packing which minimises
the number of containers, b, of fixed capacity c required to accommodate a set of n items with weights
ωj : j ∈ {1 . . . n} falling in the range 1 ≤ ωj ≤ c, ωj ∈ Z whilst enforcing the constraint that the sum
of weights in any bin does not exceed the bin capacity c. The lower and upper bounds on b, (bl and bu)
respectively, are given by Equation 1. Any heuristic that does not return empty bins will produce, for a
given problem instance, p, a solution using bp bins where bl ≤ bp ≤ bu.

bl =


n∑

j=1

ωj ÷ c

 , bu = n (1)

Studies relating to bin-packing generally use instances from one or all of the data-sets given in Table 1.
In each of these sets, a number of problem instances are generated from a set of parameters, also shown in
the table.

Data sets ds1, ds2 & ds3 were introduced by Scholl et al. (1997). All have optimal solutions that dif-
fer from the lower bound given by Equation 1. However all are known and have been solved since their
introduction (Schwerin and Wäscher, 1997). ds1, ds3 were created by generating n items with weights ran-
domly sampled from a uniform distribution between the bounds given by ω. ds2 was created by randomly
generating weights from a uniform distribution in the range given by $ ± δ.

All of the instances from FalU and FalT , introduced by Falkenauer (1996), have optimal solutions at
the lower bound except for one for which it has been proven not to exist (Gent, 1998). FalU was created by
generating n items with weights randomly sampled from a uniform distribution between the bounds given
by ω. The instances in FalT were generated such that the optimal solution has exactly 3 items in each bin
with no free space.

In the remainder of the article, the complete set of problems described in this section obtained from
the benchmark literature is referred to as problem set A. The suffix Ads1 for example denotes problems
from ds1 (Table 1) in the benchmark set A. A number of deterministic heuristics are commonly used to
solve these problems, and are particularly prevalent in the Hyper-heuristic literature. The heuristics are
described in Table 2. Note that none of the heuristics listed in the table were able to find optimal solutions
to any problems from the datasets ds3 or FalT . A number of other heuristics were examined including Best
Fit Garey and Johnson (1979) and the Sum of Squares Csirik et al. (1999) algorithm but were excluded from
this study as they provided no further improvement when evaluated on the problem sets used.

5

Table 2: Common deterministic heuristics from the literature for solving 1D bin-packing problems
Heuristic Acronym Summary
First Fit Descend-
ing

FFD Packs each item into the first bin that will accommodate it. If no
bin is available a new bin is opened.

Djang and Finch
Djang and Finch
(1998)

DJD Packs items into a bin until it is at least one third full. The set
of up to three items which best fills the remaining space is then
found with preference given to sets with the lowest cardinality.
The bin is then closed and the procedure repeats using a new bin.

DJD more Tuples
Ross et al. (2002)

DJT works as for DJD but considers sets of up to five items after the
bin is filled more than one third full.

Adaptive DJD Sim
et al. (2012)

ADJD packs items into a bin until the free space is less than or equal
to three times the average size of the remaining items. It then
operates as for DJD.

3.1 Additional Novel Problems

In order to evaluate the system on a larger set of problems a generator was implemented that facilitates gen-
eration of problem instance with similar characteristics to those described previously. The generator (Sim,
2013) attempts to generate 3 new problem instances from parameters obtained from each of the problems
in set A but tries to enforce an additional constraint that the total free space summed across all bins is zero,
thus increasing the complexity of the problem1. (1370 × 3 = 4110) new problems were initially generated,
however, not of all the generated instances respected the free space constraint. 142 instances in which the
total free space was greater than 1 bin were removed. Of the remainining 3968 new instances, 3178 had
optimal solutions where all bins were filled to capacity. The remaining 790 had optimal solutions at the
lower bound given by Equation 1 where the free space summed across all bins was less than the capacity
of one bin. The problem instances can be downloaded from the internet (Sim, 2013) along with a known
optimal solution for each.

In the remainder of the article, this new problem set is denoted Problem Set B. A problem described as
being from Bds1 denotes a novel instance generated from parameters derived by sampling the correspond-
ing problem instances from Problem Set Ads1 Scholl et al. (1997).

4 An LML Hyper-heuristic

The LML Hyper-heuristic system proposed comprises of three main parts: a stream of problem instances,
a heuristic generator and an AIS, as illustrated by Figure 1. The system is dubbed NELLI - NEtwork for
Life Long learnIng.

NELLI is designed to run continuously; problem instances can be added or removed from the system at
any point. A heuristic generator akin to gene libraries in the natural immune system provides a continual
source of potential heuristics. The AIS itself consists of a network of interacting problems and heuristics
(akin to immune cells in the natural immune system) that interact with each other based on an affinity
metric.

The immune network sustains a minimal repertoire of heuristics and a minimal repertoire of problems
that provide a representative map of the problem space to which the system has been exposed over its
lifetime. From a problem perspective, the network does not contain representatives of all problems from
the problem stream shown in Figure 1, but a representative set that is sufficient to map the problem space.
From a heuristic perspective, only heuristics that provide a unique contribution in that they produce a
better result on at least one problem than any other heuristic are retained.

This is represented conceptually in Figure 2. In this diagram, the Figure (a) shows a set of problems E
that the system is currently exposed to. Figure (b) shows a set of heuristics H that collectively cover the

1The problems instances generated prove harder for the benchmark deterministic heuristics to solve optimally as can be seen by
comparing Tables 7 and 9

6

Figure 1: A conceptual view of the system: problems are continuously added/removed from the system.
The generator continuously injects new heuristics. The dynamics and meta-dynamics of the system result
in a self-sustaining network of heuristics and problems. Solid lines show direct interactions, dashed lines
represent indirect interactions (see Section 4.2)

problems in E . The problems P1 and P2 are solved equally by two or more heuristics. H2 is subsumed
in that it cannot solve any problem better than another heuristic. In Figure (c), H2 is removed as it does
not have a niche in solving problems; problems P1 and P2 are removed as they do not have a niche in
describing the problem space2. A competitive exclusion effect is observed between heuristics (and also
between problems) that results in efficient coverage of the problem space. A key aspect of the compression
is that it significantly decreases the computation time of the method (discussed in more detail in Section
5.2.2). The mechanism by which this is achieved is described later in Section 4.1. Finally, meta-dynamic
processes continuously generate novel heuristics and adapt the network structure. Thus, the system has
the following features:

• It rapidly produces solutions to new problems instances that are similar in structure to previous prob-
lem instances that the system has been exposed to

• It responds by generating new heuristics to provide solutions to new problems that differ from those
previously seen

In the next sections, we describe the key components of the LML system.

4.1 The Artificial Immune System

The AIS component is responsible for constructing a network of interacting heuristics and problems, and
for governing the dynamic processes that enable heuristics to be incorporated or rejected from the current
network. Pseudo-code describing the network dynamics is given in Algorithm 1. The following variables
are used in the algorithm definition and in the remainder of the article.

• U - the set of all possible problems from the class of 1D-BPP of interest.

• U ′ - a subset of U that contains a specific set of problems, e.g problem set A or B

2although these problems have been removed from the network, they can still be solved by the system as heuristics H1 and H3
remain in the network

7

[a]

H1

H2

H3

H4

[b]

P1

P2

H1

H3

H4

[c]

Figure 2: Diagram [a] shows the problems that the system is currently exposed to E . The middle diagram
[b] shows a set of generated heuristics that cover the problems in E . The problems P1 and P2 shown are
equally solved by one or more heuristics and therefore not required to map the problem space. The shaded
heuristic is redundant as it does not have a niche. The right-hand diagram [c] shows the resulting network
N that sustains the minimal set of problems and heuristics required to describe the space.

• E - the current environment, i.e. the set of problems we are currently interested in solving, i.e. E ⊂
U ′ ⊂ U

• E∗ - the set of all problems to which the system has been exposed during its lifetime

• N - the immune network, comprised of a set of problems and a set of heuristics

• P - the set of problems currently sustained in the immune network N , i.e. P ⊂ E∗

• H - the set of heuristics currently sustained in the immune network N

The algorithm captures the three essential concepts of an immune network as proposed by Varela et al.
(1988) — structure, dynamics, and meta-dynamics. The term structure refers to the interactions between
components of the network, in this case, problems and heuristics, and is described in Section 4.2 and by
steps 4 and 5 of algorithm 1. Dynamics refers to the variations in time of the concentration and affinities
between components of the network, and crucially, describes how the network adapts to itself and the
environment (steps 6-8 in algorithm 1). Finally, the network metadynamics refers to a unique property of
the immune system, that is the ability to continuously produce and recruit novel components, in this case,
heuristics and problems, as described in Section 4.4 and step 8. These elements are discussed in detail in
the next sections.

Algorithm 1 NELLI Pseudo Code

Require: H = ∅ :The set of heuristics
Require: P = ∅ :The set of current problems
Require: E = Et=0 :The set of problems to be solved at time t

1: repeat
2: optionally replace E : E∗ ← E∗ ∪ E
3: Add nh randomly generated heuristics toH with concentration cinit

4: Add np randomly selected problem instances from E to P with concentration cinit

5: calculate hstim∀h ∈ H using Equation 2
6: calculate pstim∀p ∈ P using Equation 3
7: increment all concentrations (both H and P) that have concentration < cmax and stimulation > 0 by

∆c

8: decrement all concentrations (bothH and P) with stimulation ≤ 0 by ∆c

9: Remove heuristics and problems with concentration ≤ 0
10: until stopping criteria met

8

4.2 Network Structure

The network N sustains a set of interacting heuristics and problems. Problems are directly stimulated by
heuristics, and vice versa. Heuristics are indirectly stimulated by other heuristics.

A heuristic h can be stimulated by one or more problems. The total stimulation of a heuristic is the
sum of its affinity with each problem in the set P currently in the network N . A heuristic h has a non-zero
affinity with a problem p ∈ P if and only if it provides a solution that uses fewer bins than any other heuristic
currently in H. If this is the case, then the value of the affinity p ↔ h is equal to the improvement in the
number of bins used by h compared to the next-best heuristic. If a heuristic provides the best solution for
a problem p but one or more other heuristics give an equal result, then the affinity between problem p and
the heuristic h is zero. If a heuristic h uses more bins than another heuristic on the problem, then the affinity
between problem p and the heuristic h is also zero.

This is expressed mathematically by Equation 2, in which H′ is the set of heuristics currently in the
system, excluding the heuristic h currently under consideration, i.e. H′ = H− h.

hstim =
∑
p∈P

δbins

{
δbins = min (binsH′

p
)− binshp : if min (binsH′

p
)− binshp > 0

δbins = 0 : otherwise
(2)

Note that heuristics are directly stimulated by problems. A heuristic only survives if it is able to solve at
least one problem better than any other heuristic in the system. This provides competition between heuris-
tics which forces a heuristic to find an individual niche to ensure survival. Thus, although no quantitative
value is calculated for heuristic↔heuristic interactions, we consider this an indirect interaction arising from
the method of calculating the problem↔heuristic interactions.

As the affinity between a problem and a heuristic is symmetrical, then the stimulation of a problem
is simply the affinity between the problem and the heuristic that best solves it. A problem for which the
best solution is provided by more than one heuristic receives zero stimulation. Thus, unlike heuristics, a
problem can only be stimulated by one heuristic. This is expressed mathematically in Equation 3. Note that
in the sum expressed in this equation, at most one term will be non-zero.

pstim =
∑
h∈H

δbins

{
δbins = min (binsH′

p))− binshp : if min (binsH′
p
)− binshp > 0

δbins = 0 : otherwise
(3)

4.3 Network Dynamics

Each iteration, the environment E optionally changes (step 2). This can range from adding new problem
instances to the current environment to completely replacing the current environment with a new set of
problem instances. In step 3, one new heuristic is generated and is made available to the network. The
affinity metric described encourages diversity in the network, in sustaining heuristics that cover different
parts of the problem space. In a practical application however, it is reasonable to assume that in addition
to maintaining diversity, important goals of the system should be to find (1) the set of heuristics that most
efficiently cover the problem space and (2) the set that collectively minimise the total number of bins used
to solve all problems the network is exposed to3. While the latter is addressed by sustaining any heuristic
with non-zero affinity, the former goal requires some attention.

Previous AIS models relating to idiotypic networks generally make use of an equation first defined
by Farmer et al. (1986) to govern the dynamics of addition and removal of nodes from a network. In
machine-learning applications such as data-clustering this was quickly found to lead to population explo-
sion (Timmis et al., 2000), later addressed by using resource limiting mechanisms (Timmis and Neal, 2001).
In previous robotic applications, the situation is avoided completely by using a network of fixed size and
focusing only on evolving connections. In more theoretical models (Hart, 2006) the criteria are not relevant,
as the goal is simply to show that a network can be sustained. In this heuristic case, simply sustaining all

3in fact, exactly the same goals were identified in generic form by Bersini (1999)

9

heuristics that contribute to covering the heuristic space is likely to lead to population explosion in the same
manner observed in data-mining applications, as no pressure exists on the system to encourage efficiency.

4.4 Network Meta-Dynamics

The proposed LML system requires a continuous source of novel heuristics to be generated. Burke et al.
(2009) describe the use of Genetic Programming to generate new heuristics within a Hyper-heuristic frame-
work; this has been applied specifically to bin-packing (Burke et al., 2006, 2007a). Although achieving some
success, the approaches suffer from the usual afflictions of GP, in that efforts must be made to control unnec-
essary bloat. Sim and Hart (2013) proposed the use of Single Node Genetic Programming (SNGP) (Jackson,
2012a,b) as an alternative method of generating new bin-packing heuristics.

SNGP differs from the conventional GP model introduced by Koza (1992) in a number of key respects:

• Each individual node may be the starting point for evaluation, not only the top most node.

• Nodes may have any number of parent nodes (including none and duplicates) allowing for network
structures other than trees to be formed.

• No crossover is used, only mutation which is employed as a hill climber with the mutation undone if
no improvement is achieved.

The key benefit of this method is that the heuristics are of fixed maximum size (in terms of the number of
nodes). Sim and Hart (2013) showed that SNGP could successfully evolve new bin-packing heuristics that
outperformed existing ones from the literature. In this study, we only use the initialisation procedure of the
SNGP method to produce new heuristics, and do not apply evolutionary operators to improve the generated
heuristics. The justification for this is as follows: the role of the heuristic generator is to provide a continuous
source of novel material for potential integration into the network of heuristics. The network dynamics
will eradicate poor heuristics, and furthermore, given the relatively small number of terminal and function
nodes outlined in Table 3, heuristics of reasonable quality are likely to be generated at random. Finally, it is
more efficient to improve heuristics via an evolutionary operator only once they become established in the
network, thereby proving their potential.

Figure 3 shows an example of a hand crafted heuristic represented in the SNGP format4 — this is in fact
the deterministic heuristic DJD. A complete automatically initialised SNGP structure is depicted in Figure
4. A fixed set of terminal and function nodes are available to the generator and are defined in Table 3
which combines nodes according to the process outlined in Algorithm 2. The nodes selected for use in this
study were derived by examining the heuristics outlined in Table 2. The simplest of these heuristics, FFD,
packs each item in turn, taken in descending order of item size, into the first bin with free space that will
accommodate it. FFD can be represented by a single node B1. The other heuristics used for comparison can
all be represented as tree structures similar to that depicted for DJD in Figure 3. Further justification for the
choice of nodes and details of SNGP can be found in (Sim and Hart, 2013).

4In this case this is also a standard GP tree

10

Figure 3: DJD Heuristic Expressed as a Tree

B1 B2

B2AB3A B5AC

FS

0

W1

X XX<

>>>

<

IGTZ >

>

>

Figure 4: A randomly initialised SNGP structure

11

Table 3: Nodes Used

Function Nodes
/ Protected divide returns -1 if denominator is 0 otherwise the result of

dividing the first operand by the second
> Returns 1 if the first operand is greater than the second or -1 otherwise

IGTZ Evaluates the first operand. If it evaluates as greater than zero the result of
evaluating the second operand is returned otherwise the result of evaluating
the third operand is returned

< Returns 1 if the first operand is less than the second or -1 otherwise
X Returns the product of two operands

Terminal Nodes
B1 Packs the single largest item into the current bin returning 1 if successful or

-1 otherwise
B2 Packs the largest combination of exactly 2 items into the current bin

returning 1 if successful or -1 otherwise
B2A Packs the largest combination of up to 2 items into the current bin giving

preference to sets of lower cardinality. Returns 1 if successful or -1 otherwise
B3A As for B2A but considers sets of up to 3 items
B5A As for B2A but considers sets of up to 5 items

C Returns the bin capacity
FS Returns the free space in the current bin

INT returns a random integer value ∈ (−1, ..., +5)

W1 Packs the smallest item into the current bin returning 1 if successful else -1

Algorithm 2 Heuristic Generation

1: Each of the terminal nodes T ∈ {t1, . . . tr} are added exactly once. The terminal nodes are given an
integer identification number ranging from 1 . . . r.

2: A number, n, of function nodes are selected at random from the set of all function nodes F ∈ {f1, . . . , fs}
and given an identification number ranging from r + 1, . . . to r + n. This allows for the possibility of
duplicate function nodes within the population or for SNGP structures with function nodes omitted.

3: The function nodes have all their child nodes assigned at random from nodes with a lower id thus
preventing any infinite looping.

4: A single node is chosen at random to be the root node.

4.5 Comparison to previous work

A brief comparison of NELLI to the system described in (Sim et al., 2013) was conducted to highlight specific
differences and improvements.

The two algorithms both utilise SNGP to provide a stream of novel heuristics as input to the system.
However, this is the only similarity. The main difference between the two algorithms lies in the structure
and composition of the self-sustaining network. In the previous work, the network consisted only of in-
teracting heuristics, in which a direct measure of affinity a was calculated between each pair of heuristics.
This measure was asymmetric, i.e. aab 6= aba. In contrast, the network sustained by NELLI consists of
interacting problems and heuristics. An explicit measure of interaction is calculated between problems and
heuristics which is symmetric. However, heuristics only interact indirectly through an implicit effect that
excludes heuristics that do not occupy a specific niche within the problem space. The method by which
the concentration of both heuristics and problems is calculated also directly results in unecessary heuristics
and problems being removed, minimising the size of the network and removing the need for the greedy

12

Parameter Description Value
np number of problems added each iteration from E 30
nh number of new heuristics added each iteration 1

cinit initial concentration of added heuristics/problems 200
∆c variation in concentration based on stimulation level 50

cmax maximum concentration level 1000

Table 4: Default parameter settings for experiments

calculation performed in (Sim et al., 2013) that was required to remove redundant heuristics.
As a result of these improvements, NELLI brings significant advantages. In addition to maintaining a set

of heuristics that collaborate to cover the problem space, it also maintains a mininal set of problems P that
are representative of the problem space E , thereby providing a “map” of the space. The minimal network
sustained brings considerable efficiencies in computational cost; the heuristics in the NELLI network only
need to be evaluated against the minimal set of problems P sustained rather than the complete set of
problems of interest E — in (Sim et al., 2013), heuristics needed to be evaluated against everything in E at
each iteration. This results in a system that is both efficient and scalable.

5 Experiments and Results

Experiments were conducted to test the following features of the system.

• The utility of the Hyper-heuristic system compared to single deterministic heuristics, similar Hyper-
heuristic approaches that use collectives of heuristics, and the best known solutions for each of the
problems.

• The elasticity and responsiveness of the network in terms of its ability to quickly adapt when pre-
sented with new unseen problem instances.

• The ability to continually learn whilst retaining memory of previously encountered problem instances.

• The efficiency and scalability of the system in maintaining knowledge using a minimal repertoire of
network components.

Experiments were conducted using the model described by Algorithm 1 using data drawn from the two
sets of data described in Section 3, problem sets A and B. Unless specifically stated the default parameters
used for all experiments were as shown in Table 4. These parameters were set following an initial period of
empirical investigation.

5.1 Utility of system in comparison to previous approaches

Before analysing the behaviour of NELLI as an LML system, the system is benchmarked on static problem
sets to obtain an indication of the quality of results it provides. Comparisons to the benchmark human de-
signed deterministic heuristics are provided. In terms of comparison to other Hyper-heuristic appropaches,
we provide comparisons to the precursor of NELLI described in (Sim et al., 2013) and also to another system
described in (Sim and Hart, 2013) in which an island-model of cooperative co-evolution was used to find a
collaborative set of heuristics. As no other authors have used the same extensive set of problems as in this
paper direct comparisons to other Hyper-heuristic approaches from the literature are difficult. The most
comprehensive study available is carried out by Ross et al. (2003) who evaluate their Hyper-heuristic on a
subset of 890 problem instances consisting of all of the problems from ds1, ds3, FalU and FalT 5. This study

5The authors do not include the 480 problem instances from ds2 which prove hard for the variations of DJD used

13

Table 5: Results obtained on a static dataset of 685 problems taken from A. Results from a) single heuristics
and b) collaborative methods are compared to the best known solutions from the literature.

Single Deterministic Heuristics

Heuristic Problems Extra

Solved Bins

FFD 393 1088

DJD 356 1216

DJT 430 451

ADJD 336 679

(a)

Collaborative Heuristic Models

Problems Solved Extra Bins

min max mean sd min max mean sd

AIS I (Sim et al., 2013) 554 559 556 1.4 159 165 162 1.4

Island (Sim and Hart, 2013) 552 559 557 1.4 159 164 162 1.4

NELLI 559 559 559 0 159 159 559 0

(b)

used a genetic algorithm to evolve a mapping between a (partial) problem-state and the best deterministic
heuristic to use, i.e. it focused on heuristic selection and is an offline heuristic (requires a training phase).
We also provide comparison to a recent study by (Burke et al., 2012) that evaluated a Hyper-heuristic on 90
instances taken from ds3 and FaIU . Finally, all results are compared to the best known solutions from the
literature on each problem in order to obtain an absolute measure of quality.

5.1.1 Problem set A

Previous methods for obtaining a collaborative set of heuristics for solving bin-packing problems (Sim and
Hart, 2013; Sim et al., 2013) involved a training phase, in which an algorithm was trained on a set of problems
and performance evaluated on a separate test set. Although NELLI does not have a training phase, for
consistency and in order to directly compare results, we adopt the same procedure:

• Problem set A (1370 problems) is split into two equal sized sets (adding every second problem to the
test set6)

• NELLI is run for 500 iterations using the training set as the environment E

• The resulting network obtained at the end of the previous step is then presented with all the prob-
lems in the test set (685) and the number of problems solved and bins utilised recorded. No further
heuristics are added to the system.

Table 6b directly compares the result obtained by NELLI to previous published work. A further exper-
iment was run using NELLI where E was set to the full set of 1370 problems in A rather than a reduced
set of 685 problems. To obtain a comparison to previous work, the algorithm described in (Sim and Hart,
2013) that utilises an island model to find a set of collaborating heuristics was run using the complete set
of 1370 problems. These results are given in Table 6 and confirm that the two systems produce solutions
of identical quality on a static data-set. However, as we illustrate in the remainder of the article, NELLI
has a number of advantages over previously proposed approaches. Specifically, the system is shown to
be scalable; it significantly reduces computation time compared to previous approaches; it is shown to
adapt efficiently to unseen problems and rapidly changing environments whilst maintaining a memory of
previously encountered problems.

Further analysis is given in Table 7 which shows the number of problem instances solved using the
specified number of bins more than the known optimum for the set of 1370 problems. NELLI clearly out-
performs the individual human designed deterministic heuristics — many of these perform particularly
poorly on certain problem instances. On the other hand, the evolved set of cooperative heuristics retained
by NELLI solves 97% of problem instances using no more than 1 extra bin.

6This ensures an even split of problem instances for each parameter setting between the training and test sets.

14

Table 6: The table shows results obtained on the complete set of 1370 problems in B. Results using a)
single heuristics and b) collaborative methods are compared to the best known solutions in the literature.
The results presented also demonstrate the efficiency of NELLI in sustaining the network using a minimal
repertoire of heuristics and problem instances.

Single Deterministic Heuristics

Heuristic Problems Extra

Solved Bins

FFD 788 2142

DJD 716 2409

DJT 863 881

ADJD 686 1352

(a)

Collaborative Heuristic Models

Problems Solved Extra Bins

min max mean sd min max mean sd

Island (Sim and Hart, 2013) 1120 1126 1125 1.1 308 316 308 1.4

NELLI 1125 1126 1126 0.3 308 309 308 0.3

Heuristics Retained NELLI Problems Retained NELLI

min max mean SD min max mean SD

6 8 7.1 0.7 26 57 36.9 6.4

(b)

Table 7: Extra bins (δ) required by NELLI and 4 deterministic heuristics compared to the best known solu-
tions from the literature on the complete set of 1370 benchmark problem instances

Number of Problems Solved Requiring δ Extra Bins

Heuristic δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7 δ = 8 δ = 9 δ ≥ 10

FFD 788 267 78 83 39 16 18 9 18 4 50

DJD 716 281 119 58 48 36 10 16 23 3 60

DJT 863 331 90 26 30 15 11 2 1 1 0

ADJD 686 368 153 76 38 22 12 9 1 5 0

NELLI 1126 202 26 12 2 2 0 0 0 0 0

Comparsion to other Hyper-heuristic approaches Ross et al. (2003) used an evolutionary algorithm to
learn a mapping between the state of a partially solved problem and the heuristic that should be applied
at any given time, selecting from the deterministic heuristics described in Table 2. This offline approach
requires a training phase using a subset of the data. They applied their method to 890 problems from A:
using a training set consisting of a subset of 667 problems, they are able to solve 78.8% of the 223 problems
in the unseen test set optimally and 95.4% to within 1 bin of optimal . In comparison, NELLI solves 83.4%
of the unseen test set optimally and 96.9% to within 1 bin of optimal.

Burke et al. (2012) use genetic proramming to produce a Hyper-heuristic that generates a new heuristic
for solving each of 90 of the problem instances from set A. They report excellent results — a success rate
of 93% in finding the best known solutions. However, their approach generates 90 individual heuristics;
each heuristic is generated following 50,000 iterations of the Hyper-heuristic. i.e. 4.5 million iterations in
total. Applied to the same 90 problems, NELLI solves 53% optimally, 92% within 1 bin of optimal and 100%
within 2 bins: although these results cannot compete directly with (Burke et al., 2012), they are obtained
using only 2 heuristics and at most 1080 heuristic-problem calculations. The results are in line with the
defined goal of Hyper-heuristics outlined in Section 2.2, i.e. that Hyper-heuristics should be fast and exhibit
good performance across a wide range of problems. As shown in the next section, NELLI has additional
advantages, in being adaptive and retaining memory.

5.1.2 Problem Set B

The experimental procedure defined above was repeated using the new and larger problem set B in order
to ascertain the systems performance on this new set of problems and to provide a baseline for further
experimentation.

The system was executed 30 times with each run conducted over 100,000 iterations using the full set
of problems as the environment E and the default parameters as specified in Table 4. A summary of the

15

Table 8: Number of bins required on the full set of 3968 problem instances

Heuristic Total Bins Extra Bins Than Optimal Problems Solved

Optimally

Optimal 320445 0 3968

FFD 327563 7118 491

DJD 330447 10002 920

DJT 325743 5298 1158

ADJD 323566 3121 1279

NELLI 322820 2375 1983

Table 9: Extra bins (δ) required by NELLI and 4 deterministic heuristics on the new set of 3968 problem
instances when compared to the known optimal values

Number of Problems Solved Requiring δ extra bins

Heuristic δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7 δ = 8 δ = 9 δ ≥ 10

FFD 491 2364 442 208 196 51 22 34 68 19 73

DJD 920 1552 468 248 191 100 92 66 57 34 240

DJT 1158 1936 414 141 85 76 52 35 9 2 60

ADJD 1279 2398 209 38 33 8 2 1 0 0 0

NELLI 1983 1708 201 44 27 5 0 0 0 0 0

results is given in Table 8 which also contrasts the results against those achieved using 4 human designed
deterministic heuristics. These results are analysed further in Table 9 which gives the number of problems
solved using the specified number of bins greater than the known optimal by each of four deterministic
heuristics and NELLI.

Table 9 also demonstrates the relative complexity of the problem instances in B when contrasted to
the standard benchmarks in A, with respect to the standard set of deterministic heuristics. For example,
on problem set A, FFD was shown to solve 56% of the 1370 problem instances using the known optimal
number of bins. In contrast, on problem set B, it only manages to solve 12% optimally. NELLI solves 82%
of the problems in A optimally, compared to only 50% of the problem instances in B.

Note that the final evaluation of each of the 30 runs gave exactly the same result in terms of the number
of bins required to pack each of the problems in B (although the heuristics and problems sustained in each
run differed). One of the runs was selected at random and the results obtained by the final set of heuristics
for each instance in B were retained for use in the remaining experiments as a benchmark for the problem
set.

5.2 Parameter Tuning

A brief investigation of the impact of three of the main system parameters is conducted to determine their
influence and justify the default settings.

5.2.1 Concentration cinit

The effect of varying the initial concentration of problems and heuristics is illustrated in Figure 5 which
shows the results obtained when NELLI was run 30 times for each of cinit ∈ {50, 100, 200, 500, 1000}. The
system was halted after 100,000 iterations. Each box plot summarises the 30 runs conducted. The vertical
axis shows the number of bins more than the best result that NELLI achieved on problem set B as described

16

previously and presented in Tables 8 and 9. For cinit < cmax/2, increasing the initial concentration improves
performance — the increased initial concentration increases the time period that both heuristics and prob-
lem instances can be sustained without stimulation, thus increasing the probability of eventually finding
a heuristic-problem pairing that is mutually stimulatory. However, as cinit → cmax, the effect is reversed;
newly introduced heuristics dominate due to their larger concentration, potentially suppressing previously
established heuristics.

0

10

20

30

40

50

0.05 0.10 0.20 0.50 0.60 0.70 0.80 0.90 1.00

E
x
t
r
a
 B

in
s
 T

h
a
n
 B

e
s
t

Initial Concentration

100000 Iterations Initial Concentration Varied

Figure 5: The effect of varying the initial concentration cinit. The concentration cinit on the x-axis is plotted
as fraction of cmax

.

5.2.2 Number of problems added per iteration np

The parameter np describing the number of problems presented to the system each iteration is key in that it
has significant impact on the number of calculations that need to be made at each iteration of the algorithm.
Each iteration, the number of new calculations C that needs to be performed is given by:

C = (np × |H|) + (nh × |P|) (4)

The first term is required to determine the result of applying all heuristics in the system to the new
problems just introduced. The second term determines the results of any new heuristics introduced this
iteration on all problems currently in the system.

To understand the influence of np, the model was executed 30 times for each of 6 different values of np ∈
{30, 50, 100, 200, 500, 1000}. Each iteration, the cumulative number of calculations undertaken is recorded.
The model was allowed to run until the results obtained on E converged to the best result known for the
system on problem set B. Figure 6a summarises the results obtained over 30 runs for each parameter
setting. The figure shows that increasing np. i.e. the number of problem instances presented each iteration
has an adverse affect, increasing the overall number of calculations required to achieve the same result. The
default value of 30 appears a reasonable choice. Figure 6b shows a single run of the algorithm truncated to
20000 calculations.

5.2.3 Number of heuristics added per iteration nh

Figure 7 shows the affect that varying nh has on the system. For each plot the system was executed for
50000 iterations with E = B using default parameter settings with the exception of nh which was fixed for
the duration of each plot as shown.

When adding a single heuristic each iteration, a smooth increase in performance is observed over time,
and the system converges to the best known result, despite a slow start. Adding a larger number of heuris-
tics per iteration improves the initial performance due to an increased probability of finding good solutions.

17

(a)

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000

N
u

m
b

e
r

o
f

B
in

s
 M

o
re

 T
h

a
n

 B
e

s
t

Cumulative Number of Problems Solved

Problems Solved Vs Bins More Than Best

Problems Added per Iteration

20

50

200

5

(b)

Figure 6: Number of Problem Instances Added per Iteration Vs Heuristic-Problems Solved to Reach the
Best Know Result

However over a longer time scale, performance is hindered, causing undesirable fluctuation in the collec-
tive capability of the network. In the worst case, when nh = 20, the system fails to converge to the best
result.

As nh increases, the ability of individual heuristics to find niche areas of the problem space becomes
more difficult due to increased competition; newly introduced heuristics are unlikely to gain any stimu-
lation due to the decreased probability of the heuristic solving a problem better than any other heuristic
resulting in very short life-times for each heuristic and thus more unstable behaviour in the system. From a
computational perspective, increasing both np and nh also significantly increases the number of calculations
required each iteration. This further justifies the choice of nh = 1 as the default value.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

A
v
er

ag
e

n
u
m

b
er

 o
f

b
in

s
m

or
e

th
an

 b
es

t

Iterations (thousands)

1

10

20

Figure 7: Effect of varying nh. Results shown averaged on E every 1000 iterations

5.3 Efficiency and Scalability

To determine the scalability of NELLI (in terms of number of problems in P with respect to |E| and |H| an
experiment was conducted in which |E| was varied, i.e. |E| ∈ {100, 200, 500, 1000, 2000, 3968}. In each case,
the problems in E were randomly selected from problem set B, i.e. U ′ = B. All other parameters were set
to the default values, and the system was run for 50000 iterations over 30 runs. Table 10 shows the mean
number of problems and heuristics retained following 50000 iterations of the system. The table also shows
the ratio |P|/|E|, i.e. the fraction of the problems in the environment retained in the network, and the ratio
|H|/|P| as the size of E increases, to indicate how the system scales.

As expected, as |E| increases , the number of retained problems and heuristics increases. Note however
that the fraction of problems retained in relation to the environment decreases. The problems in the environ-
ment E represent a sample of problems from the larger U ′ = B. As |E| increases, more of U ′ is sampled, and

18

|E| = 100 |E| = 200 |E| = 500 |E| = 1000 |E| = 2000 |E| = 3968
Mean heuristics retained H 5.40 6.87 9.90 12.40 16.83 21.57
Mean problems retained P 18.73 23.3 33.45 41.5 47.4 59.52

Ratio P/E 18.73 11.65 6.69 4.15 2.37 1.50
Ratio P/H 0.29 0.29 0.30 0.30 0.35 0.36

Table 10: The table shows the number of heuristics and problems retained in the network as the size of the
environment E increases. All figures obtained over 30 runs and 50000 iterations

0

20

40

60

0

20
0

40
0

60
0

80
0

10
00

0

5

10

15

20

25

Iterations

Number of Heuristics
Vs Percentage of Problems

N
u
m

b
er of H

eu
ristics

P
er

ce
n
ta

ge
 o

f
P

ro
b
le

m
s

/
 N
u
m

b
er

 o
f
E

x
tr

a
B

in
s

(a)

0

20

40

60

0

10
00

0

20
00

0

30
00

0

0

5

10

15

20

25

Iterations
P

er
ce

n
ta

ge
 o

f
P

ro
b
le

m
s

/
 N
u
m

b
er

 o
f
E

x
tr

a
B

in
s Number of Heuristics

Vs Percentage of Problems

N
u
m

b
er of H

eu
ristics

(b)

Figure 8: Typical runs for |E| = {200(a), 3968(b)}

thus the system is better able to learn a general representation of U ′, hence decreasing the ratio of problems
|P|/|E| required to represent it. This is also reflected in the sub-linear increase in the number of heuristics
required as |E| increases, again confirming the ability of the system to find heuristics that generalise over
the environment. The ratio |H|/|P| remains almost constant, indicating the scalability of the system. Figure
8 shows a typical run from an experiment for both |E| = 200 and |E| = 39687.

With respect to efficiency, we return to the earlier comment made that NELLI is computationally more
efficient that its precursors. In the system described in Sim et al. (2013), the complete set of problems in the
environment must be evaluated each iteration (i.e. in Equation 4, the final term P would be replaced with
E). In contrast, using NELLI only the sustained subset of problems P are evaluated. As is clearly shown in
Table 10, P << E for a range of values of E — in an environment containing 3968 problems, only 1.5% of
these are sustained, hence dramatically reducing computational complexity. Note that to obtain a solution
to a new problem instance, it is necessary to apply a greedy procedure in which the performance of each of
the H deterministic heuristics in the system must be evaluted on the instance. Given that for E ≈ 4000, the
system retains onlyH ≈ 21 heuristics, this does not appear to a limiting factor.

5.4 Continuous Learning Capabilities

In order to demonstrate that NELLI functions effectively as a continuous learning system, it must be tested
in a dynamically changing problem environment, in order to demonstrate that is is responsive to new
problem and exhibits the plasticity required for network to adapt.

7As both heuristics and problems are continually added with sufficient concentration to allow them to survive for at least 3 itera-
tions, then at any iteration, there will be potentially be at most 3 heuristics and 90 problem instances that give no added benefit to the
system. The table shows only H and P after the run finishes where any unstimulated problems and heuristics are removed thus the
discrepancy between the mean for E=200 being 11.65% in the table and 60% in the figure

19

5.4.1 Memory and Plasticity: Response to new problems from a similar dataset

Consider the case in which U ′ = B, i.e. the set of 3968 novel problem instances. At t = 0, E consists of a
set of |E| problems drawn randomly from U ′. Every 1000 iterations, E is replaced with a new random set of
problems from B. Experiments are performed in which |E| ∈ {100, 500, 1000}; at each iteration, the size of
H and P are recorded. Additionally, in order to demonstrate that the system has memory, the performance
of the system against every potential problem in U ′ is tracked at each iteration. Particularly during early
iterations, many of the problems in U ′ will not have been presented to the network therefore by measuring
the hypothetical response against U ′, it is possible to gauge whether the system is generalising from seen
instances and retaining that information. As t→∞, E∗ → U ′.

The results are illustrated in Figure 9. Results are plotted both at every iteration (left-hand column) and
averaged over each of the 1000 iterations the problems are present in E for. A number of trends are clear:

• The network is clearly plastic both in terms of the number of problems and the number of heuristics
that are sustained in the network

• NELLI can generalise over U ′; even in the early iterations we see good performance across the entirety
of U ′ when only a small fraction E∗ of it has been presented to the system.

• NELLI continuously learns; the performance measured against all problems in U ′ improves over time;
the rate of learning can be increased by increasing the size of E , the set of problems currently visible
to the network

• NELLI sustains a useful network over time; performance never deteriorates in our experiments pro-
viding the parameters are set correctly; the system therefore exhibits memory.

• Increasing |E|, the number of problems in the environment, causes more difficulty at the start but
has the effect of increasing the rate of learning overall. This is illustrated further in Figure 10 which
summarise the results over 30 runs.

5.4.2 Memory and Plasticity: Response to new problems from different datasets

In order to demonstrate the systems learning and memory capabilities when faced with an environment
in which problem characteristics vary over time, experiments are conducted using problems from Bds1

and Bds2 . These data sets — generated from parameters defined by Scholl et al. (1997) are well known to
have radically different properties. It is therefore unlikely that a heuristic that performs well on ds1 will
generalise to ds2.

In the following experiments, the environment E is toggled alternately between Bds1 and Bds2 every 500
iterations. Two experiments were performed:

• The system was restarted every 500 iterations to obtain a benchmark response for the current set of
problems presented (equivalent to a system with no memory)

• The problems in E were replaced every 500 iterations, but the heuristics present were retained (in
order to test whether the system retains a useful memory)

In each of the two scenarios, i.e. with and without memory, we calculate the number of extra bins
required to solve problems with respect to the best known solution using the heuristics present in the
network every iteration. Results are given in Figure 11 which show the results over a single typical run.
In these diagrams, the blocks alternate every 500 iterations to highlight the data-set being considered. All
figures are obtained from the same typical run. Figures 11c and 11d show the same information as Figures
11a and 11b but on a smaller scale. Figures 11e and 11f average the results over each 500 iteration cycle. The
right-hand column is of most interest, as this shows the metric evaluated over E , i.e. the set of problems
in the system environment that we are currently interested in solving. The left-hand column of results

20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Iterations (1000's)

B
in

s
G

re
at

er
 T

h
an

 B
es

t

set to random 100 from PS2 every 1000 iterations

(a)

Iterations (1000's)

set to random 100 from PS2 every 1000 iterations

0

1

2

3

4

5

6

7

A
v
er

ag
e

B
in

s
G

re
at

er
 T

h
an

 B
es

t
P

S
2

10

20

30

40

50

60

70

80

90

100

(b)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Iterations (1000's)

B
in

s
G

re
at

er
 T

h
an

 B
es

t

set to random 500 from PS2 every 1000 iterations

(c)

0

1

2

3

4

5

6

7

Iterations (1000's)

A
v
er

ag
e

B
in

s
G

re
at

er
 T

h
an

 B
es

t
P

S
2

set to random 500 from PS2 every 1000 iterations

10

20

30

40

50

60

70

80

90

100

(d)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Iterations (1000's)

B
in

s
G

re
at

er
 T

h
an

 B
es

t

set to random 1000 from PS2 every 1000 iterations

(e)

Iterations (1000's)

set to random 1000 from PS2 every 1000 iterations

0

1

2

3

4

5

6

7

A
v
er

ag
e

B
in

s
G

re
at

er
 T

h
an

 B
es

t
P

S
2

10

20

30

40

50

60

70

80

90

100

(f)

Figure 9: E changed every 1000 iterations to a random 100, 500 or 1000 problems from B

21

Figure 10: Number of Iterations to reach the best result for different sizes of E

represents the same metric but evaluated over P , i.e. the set of problems that are sustained by the network
as being representative of the problem space, and is shown to illustrate how the network is capable of
generalising over E from the problems in P .

We observe the following with regard to E :

• NELLI — with its implicit memory — always outperforms the system with no memory. Due to the
retained network, the system does not have to adapt from scratch to a new environment

• Adaptation still occurs in the system with memory, demonstrating the plasticity of the network

• The memory of a data-set is sustained across cycles in which no items from that data-set are presented.
This is apparent in the increasing performance on both data-sets over time.

• Bds1 is clearly much easier than Bds2 : within three presentations of samples from this data-set NELLI
has reached optimal performance (i.e 0 bins greater than best) and sustains this performance8.

Comparing the figures in the right-hand column to those on the left that represent the same metric
evaluated over P , we see that performance on P mirrors that of E , i.e. an improvement on P correlates to
an improvement in E , confirming the generalisation capabilities of the network.

6 Conclusions & Future Work

We have described a continuous learning system inspired by previous work in the Artificial Immune Sys-
tem field that is capable of learning to solve a combinatorial optimisation problem, improves its perfor-
mance over time and adapts to changing environments. The system fuses methods from SNGP which is
used to generate novel heuristics with ideas from immune-network theory, resulting in a self-sustaining
interacting network of problems and heuristics that is capable of adapting over time as new knowledge is
presented or if the environment changes. When compared to existing approaches (Sim and Hart, 2013; Sim
et al., 2013; Ross et al., 2003; Burke et al., 2006) that attempt to find sets of collaborative heuristics, the sys-
tem performs equally in terms of performance on static data-sets. However it is shown to have significant
advantages in its ability to deal with dynamic data; its ability to provide a representative map of the prob-
lem space and its computational efficiency. Comparisons to the known optimal results on the suite of 5338
instances tested also show the promise of the system. The test-suite included 3968 problems which were
generated in order to provide a harder test than posed by existing benchmark problems; these problems are

8Note that experiments showed that the order in which the two datasets are presented does not have any impact on the results.

22

(a) (b)

(c) (d)

(e) (f)

Figure 11: Alternating E between Bds1 and Bds2. Utility measured against both P and E

23

shown to be considerably more difficult than the standard benchmarks and are available as a resource for
use by other researchers.

NELLI meets the requirements defined by Silver et al. (2013) for a life-long machine learning system: it
incorporates a long-term memory; it can selectively transfer prior knowledge when learning new tasks; it
adopts a systems approach that ensures the effective and efficient interaction of the elements of the system.
Further, as specified by Silver et al. (2013), it is computationally efficient when storing learned knowledge
in long-term memory and retains its knowledge online. The system is shown experimentally to be scalable
in terms of the number of heuristics and problems it sustains as the size of the environment increases.

Although the system is tested using 1D bin-packing as an example domain, we believe it will generalise
easily to other combinatorial optimisation problems. The underlying principal behind NELLI is that heuris-
tics that are successful are sustained by the network. We generate constructive heuristics using SNGP to
combine nodes that are explicitly designed to place one or more items into a solution. There is no require-
ment to limit NELLI to these types of heuristics or to generate those heuristics using SNGP. Heuristics could
be hand crafted or automatically generated using other methods. Future research could consider additional
heuristic generation techniques such as in (Burke et al., 2012). Similarly the heuristics used do not have to
be limited to deterministic constructive heuristics but could include improvement heuristics and stochas-
tic methods. The main requirements of the system are that a number of heuristics can be used to solve
problems from across the domain, and that potential heuristics can easily be represented (and therefore
generated) using, for example the SNGP format. Recent examples of using Genetic Programming to evolve
novel heuristics in the timetabling (Bader et al., 2009) and 2D stock-cutting (Burke et al., 2010b) domains
suggest that this is likely to be the case and provide promising avenues for future development.

Acknowledgements

The authors are grateful to Prof. Peter Ross for comments and suggestions on draft versions of this paper
which greatly improved it.

References

Bader, M., Poli, R., and Fatima, S. (2009). Evolving timetabling heuristics using a grammar-based genetic
programming hyper-heuristic framework. Memetic Computing, 1(3).

Bader-El-Den, M. and Poli, R. (2008). Generating sat local-search heuristics using a gp hyper-heuristic
framework. In Monmarch, N., Talbi, E.-G., Collet, P., Schoenauer, M., and Lutton, E., editors, Artificial
Evolution, volume 4926 of Lecture Notes in Computer Science, pages 37–49. Springer Berlin Heidelberg.

Bersini, H. (1999). The endogenous double plasticity of the immune network and the inspiration to be
drawn for engineering artifacts. In Dasgupta, D., editor, Artificial Immune Systems and Their Applications,
pages 22–44. Springer Berlin Heidelberg.

Burke, E., Hyde, M., and Kendall, G. (2006). Evolving bin packing heuristics with genetic programming.
In Parallel Problem Solving from Nature - PPSN IX, volume 4193 of Lecture Notes in Computer Science, pages
860–869. Springer Berlin / Heidelberg.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S. (2003). Hyper-heuristics: An
emerging direction in modern search technology. In Handbook of Metaheuristics, International Series in
Operations Research & Management Science, chapter 16, pages 457–474. Kluwer.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J. R. (2010a). A classification of
hyper-heuristic approaches. In Gendreau, M. and Potvin, J.-Y., editors, Handbook of Metaheuristics, volume
146 of International Series in Operations Research & Management Science, pages 449–468. Springer US.

24

Burke, E. K., Hyde, M., Kendall, G., and Woodward, J. (2007a). Scalability of evolved on line bin packing
heuristics. In IEEE Congress on Evolutionary Computation (CEC07), pages 2530–2537.

Burke, E. K., Hyde, M., Kendall, G., and Woodward, J. (2010b). A genetic programming hyper-heuristic ap-
proach for evolving 2-d strip packing heuristics. IEEE Transactions on Evolutionary Computation, 14(6):942
–958.

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J. R. (2009). Exploring hyper-
heuristic methodologies with genetic programming. In Kacprzyk, J. and Jain, L. C., editors, Computational
Intelligence, volume 1 of Intelligent Systems Reference Library, pages 177–201. Springer Berlin Heidelberg.

Burke, E. K., Hyde, M. R., Kendall, G., and Woodward, J. (2007b). Automatic heuristic generation with
genetic programming: evolving a jack-of-all-trades or a master of one. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, GECCO ’07, pages 1559–1565, New York, NY, USA.
ACM.

Burke, E. K., Hyde, M. R., Kendall, G., and Woodward, J. (2012). Automating the packing heuristic design
process with genetic programming. Evolutionary Computation, 20(1):63–89.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., and Mitchell, T. M. (2010). Toward an
architecture for never-ending language learning. In AAAI Conference on Artificial Intelligence.

Csirik, J., Johnson, D. S., Kenyon, C., Shor, P. W., and Weber, R. R. (1999). A self organizing bin packing
heuristic. In Selected papers from the International Workshop on Algorithm Engineering and Experimentation,
ALENEX ’99, pages 246–265, London, UK, UK. Springer-Verlag.

Djang, P. A. and Finch, P. R. (1998). Solving one dimensional bin packing problems. Journal of Heuristics.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics, 2:5–30.

Farmer, J. D., Packard, N. H., and Perelson, A. S. (1986). The immune system, adaptation, and machine
learning. Physica D: Nonlinear Phenomena, 2(1-3):187–204.

F.O. de Frana, F.J. Von Zuben, L. d. C. (2005). An artificial immune network for multimodal function opti-
mization on dynamic environments. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2005, pages 289–296. ACM.

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability : a guide to the theory of NP-completeness.
A Series of books in the mathematical sciences. W.H. Freeman, San Francisco.

Gaspar, A. and Collard, P. (2000). Two models of immunization for time dependent optimization. In
Systems, Man, and Cybernetics, 2000 IEEE International Conference on, volume 1, pages 113–118 vol.1.

Gent, I. P. (1998). Heuristic solution of open bin packing problems. Journal of Heuristics, 3(4):299–304.

Hart, E. (2006). Analysis of a growth model for idiotypic networks. In Bersini, H. and Carneiro, J., editors,
Artificial Immune Systems, volume 4163 of Lecture Notes in Computer Science, pages 66–80. Springer Berlin
/ Heidelberg.

Jackson, D. (2012a). A new, node-focused model for genetic programming. In Moraglio, A., Silva, S.,
Krawiec, K., Machado, P., and Cotta, C., editors, Genetic Programming, volume 7244 of Lecture Notes in
Computer Science, pages 49–60. Springer Berlin Heidelberg.

Jackson, D. (2012b). Single node genetic programming on problems with side effects. In Coello, C., Cutello,
V., Deb, K., Forrest, S., Nicosia, G., and Pavone, M., editors, Parallel Problem Solving from Nature - PPSN
XII, volume 7491 of Lecture Notes in Computer Science, pages 327–336. Springer Berlin Heidelberg.

25

Jerne, N. K. (1974). Towards a network theory of the immune system. Ann Immunol (Paris), 125C(1-2):373–
89.

Kira, Z. and Schultz, A. (2006). Continuous and embedded learning for multi-agent systems. In Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 3184–3190.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT
Press, Cambridge, MA, USA.

Kromer, P., Platos, J., and Snasel, V. (2012). Practical results of artificial immune systems for combinatorial
optimization problems. In Nature and Biologically Inspired Computing (NaBIC), 2012 Fourth World Congress
on, pages 194–199.

Louis, S. and McDonnell, J. (2004). Learning with case-injected genetic algorithms. Evolutionary Computa-
tion, IEEE Transactions on, 8(4):316–328.

Nanas, N. and de Roeck, A. (2007). Multimodal dynamic optimization: from evolutionary algorithms to
artificial immune systems. In Proceedings of the 6th international conference on Artificial immune systems,
ICARIS’07, pages 13–24, Berlin, Heidelberg. Springer-Verlag.

Nasraoui, O., Uribe, C., Coronel, C., and Gonzalez, F. (2003). Tecno-streams: tracking evolving clusters in
noisy data streams with a scalable immune system learning model. In Data Mining, 2003. ICDM 2003.
Third IEEE International Conference on, pages 235–242.

Pappa, G., Ochoa, G., Hyde, M., Freitas, A., Woodward, J., and Swan, J. (2013). Contrasting meta-learning
and hyper-heuristic research: the role of evolutionary algorithms. Genetic Programming and Evolvable
Machines, pages 1–33.

Ross, P. (2005). Hyper-heuristics. In Burke, Edmund K. Kendall, G., editor, Search Methodologies: Introductory
Tutorials in Optimization and Decision Support Techniques, pages 529–556. Springer-Verlag.

Ross, P., Marn-Blzquez, J., Schulenburg, S., and Hart, E. (2003). Learning a procedure that can solve hard
bin-packing problems: A new ga-based approach to hyper-heuristics. In Cant-Paz, E., Foster, J., Deb,
K., Davis, L., Roy, R., OReilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M.,
Wegener, J., Dasgupta, D., Potter, M., Schultz, A., Dowsland, K., Jonoska, N., and Miller, J., editors,
Genetic and Evolutionary Computation GECCO 2003, volume 2724 of Lecture Notes in Computer Science,
pages 1295–1306. Springer Berlin Heidelberg.

Ross, P., Schulenburg, S., Marı́n-Blázquez, J. G., and Hart, E. (2002). Hyper-heuristics: Learning to combine
simple heuristics in bin-packing problems. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’02, pages 942–948, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Ruvolo, P. and Eaton, E. (2013). Ella: An efficient lifelong learning algorithm. Journal of Machine Learning
Research, 28(1):507–515.

Scholl, A., Klein, R., and Jürgens, C. (1997). Bison: a fast hybrid procedure for exactly solving the one-
dimensional bin packing problem. Computers & Operations Research, 24(7):627–645.

Schwerin, P. and Wäscher, G. (1997). The bin-packing problem: A problem generator and some numerical
experiments with ffd packing and mtp. International Transactions in Operational Research, 4(5-6):377–389.

Silver, D., Yang, Q., and Li, L. (2013). Lifelong machine learning systems: Beyond learning algorithms. In
AAAI Spring Symposium Series.

Sim, K. (2013). Bin-packing generator. http://www.soc.napier.ac.uk/∼cs378/bpp/.

26

http://www.soc.napier.ac.uk/~cs378/bpp/

Sim, K. and Hart, E. (2013). Generating single and multiple cooperative heuristics for the one dimensional
bin packing problem using a single node genetic programming island model. In Proceedings of GECCO
2013, New York, NY, USA. ACM.

Sim, K., Hart, E., and Paechter, B. (2012). A hyper-heuristic classifier for one dimensional bin packing
problems: Improving classification accuracy by attribute evolution. In Coello, C., Cutello, V., Deb, K.,
Forrest, S., Nicosia, G., and Pavone, M., editors, Parallel Problem Solving from Nature - PPSN XII, volume
7492 of Lecture Notes in Computer Science, pages 348–357. Springer Berlin Heidelberg.

Sim, K., Hart, E., and Paechter, B. (2013). Learning to solve bin packing problems with an immune inspired
hyper-heuristic. In Proceedings of ECAL 2013, 12th European Conference on ALife. MIT Press.

Terashima-Marı́n, H., Ross, P., Farı́as-Zárate, C., López-Camacho, E., and Valenzuela-Rendón, M. (2010).
Generalized hyper-heuristics for solving 2d regular and irregular packing problems. Annals of Operations
Research, 179:369–392.

Thrun, S. and Pratt, L. (1997). Learning to Learn. Kluwer Academic Publishers, Boston, MA.

Timmis, J. (2007). Artificial immune systems—today and tomorrow. Natural Computing, 6(1):1–18.

Timmis, J. and Neal, M. (2001). A resource limited artificial immune system for data analysis. Knowledge-
Based Systems, 14(34):121 – 130.

Timmis, J., Neal, M., and Hunt, J. (2000). An artificial immune system for data analysis. Biosystems,
55(13):143 – 150.

Trojanowski, K. and Wierzchon, S. T. (2009). Immune-based algorithms for dynamic optimization. Informa-
tion Sciences, 179(10):1495 – 1515.

Varela, F., Coutinho, A., Dupire, B., and Vaz, N. N. (1988). Cognitive networks: immune, neural and
otherwise. Theoretical immunology, 2:359–375.

Watanabe, Y., Ishiguro, A., and Uchikawa, Y. (1998). Decentralized behavior arbitration mechanism for
autonomous mobile robot using immune network. In DasGupta, D., editor, Artficial Immune Systems and
Their Applications, pages 187 – 209. Springer-Verlag New York, Inc.

Whitbrook, A., Aickelin, U., and Garibaldi, J. (2007). Idiotypic immune networks in mobile-robot control.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(6):1581 –1598.

Whitbrook, A., Aickelin, U., and Garibaldi, J. (2008). An idiotypic immune network as a short-term learning
architecture for mobile robots. In Bentley, P., Lee, D., and Jung, S., editors, Artificial Immune Systems,
volume 5132 of Lecture Notes in Computer Science, pages 266–278. Springer Berlin / Heidelberg.

Whitbrook, A. M., Aickelin, U., and Garibaldi, J. M. (2010). Two-timescale learning using idiotypic be-
haviour mediation for a navigating mobile robot. Journal of Applied Soft Computing, 10(3):876–887.

27

	Introduction
	Previous Related Work
	LML systems
	Hyper-heuristics
	Immune Networks
	Immune Networks and Hyper-heuristics

	Problem Definition: 1D bin packing - benchmarks and heuristics
	Additional Novel Problems

	An LML Hyper-heuristic
	The Artificial Immune System
	Network Structure
	Network Dynamics
	Network Meta-Dynamics
	Comparison to previous work

	Experiments and Results
	Utility of system in comparison to previous approaches
	Problem set A
	Problem Set B

	Parameter Tuning
	Concentration cinit
	Number of problems added per iteration np
	Number of heuristics added per iteration nh

	Efficiency and Scalability
	Continuous Learning Capabilities
	Memory and Plasticity: Response to new problems from a similar dataset
	Memory and Plasticity: Response to new problems from different datasets

	Conclusions & Future Work

