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FAST FILTERING OF KNOWN PNG
FILES USING EARLY FILE FEATURES

Sean McKeown, Gordon Russell, Petra Leimich
School of Computing

Edinburgh Napier University, Scotland
{S.McKeown, G.Russell, P.Leimich}@napier.ac.uk

ABSTRACT

A common task in digital forensics investigations is to identify known contraband images.
This is typically achieved by calculating a cryptographic digest, using hashing algorithms
such as SHA256, for each image on a given media, comparing individual digests with a
database of known contraband. However, the large capacities of modern storage media, and
increased time pressure on forensics examiners, necessitates that more efficient processing
mechanisms be developed. This work describes a technique for creating signatures for images
of the PNG format which only requires a tiny fraction of the file to effectively distinguish
between a large number of images. Highly distinct, and compact, such analysis lays the
foundation for future work in fast forensics filtering using subsets of evidential data.

Keywords: digital forensics, file filtering, image comparison, image processing, known file
analysis

1. INTRODUCTION

Digital forensics investigators have been un-
der pressure to cope with increasingly large
volumes of data for the past decade (Beebe
& Clark, 2005). Despite the attention this
problem has received during this period,
there are still several research gaps in data
mining, triage, and data reduction tech-
niques (Quick & Choo, 2014). Many po-
lice organisations find themselves with sev-
eral months of backlogs which have impeded
the course of justice to the extent that the
problem is now public knowledge (Goldberg,
2015).

One aspect of an investigation is the pro-
cessing of large numbers of images on a given
device. An existing approach for large im-
age sets is to compute cryptographic hashes

for images, or data blocks constituting an
image file, which are then compared to a
database of known file hashes (Garfinkel,
Nelson, White, & Roussev, 2010). How-
ever, such an approach typically relies on all
blocks in the file being read and processed,
and detection may be foiled by small manip-
ulations to the file. Simply changing embed-
ded metadata, such as the title or date infor-
mation, or padding existing values with ze-
roes, is enough to completely change the out-
put of a cryptographic hash function. Addi-
tionally, such modifications need not impact
the actual content of the file, resulting in no
modification of the actual contraband con-
tent.

This work introduces a technique for fil-
tering known images of the Portable Net-
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work Graphics (PNG) based on signatures
created from approximately 1% of the file.
Features are extracted from early portions
of the file, while only focusing on elements
which are used to render the image. This ap-
proach allows for a highly distinct signature
to be created which reduces the quantity of
data to be processed by 99%. The PNG for-
mat is used on over 70% of websites, almost
as frequently as the JPEG format (w3techs,
2017), making it a good target for forensics
processing efforts.

The main contribution of this paper is
three-fold. The first is a breakdown of the
features of the PNG format which appear
early in the file. The second is an evaluation
of the discriminative power of PNG header
and small data block features, with a view to
creating fingerprints for unique objects. Fi-
nally, this research demonstrates the poten-
tial for highly accurate, and efficient, file sig-
nature creation which may be used as part of
a pre-filtering scheme to reduce investigation
processing times, with a note on fundamen-
tal limitations due to the underlying storage
technology. Experiments are carried out us-
ing a dataset of approximately 100k images,
which were converted to PNG from the Gov-
docs JPEG corpus (Garfinkel, Farrell, Rous-
sev, & Dinolt, 2009), and a smaller, het-
erogeneous dataset of approximately 6500
PNGs collected from the Web.

The remainder of this paper is structured
as follows: Section 2 outlines the relevant
features of the PNG format, before dis-
cussing relevant literature in digital forensics
and image spam detection in Section 3. De-
tails pertaining to the test dataset and fea-
ture extraction methodology are provided in
Section 4, with the evaluation of features in
Section 5 and discussion in Section 6 Finally,
Section 7 concludes and provides suggestions
for future work.

Figure 1. The layout of a PNG file.
Critical chunks in red (within dotted
lines), ancillary chunks in blue, with
textual and timestamp chunks omitted
for clarity.

2. THE PNG FORMAT

The PNG format is the most popular lossless
compression format for images, allowing for
smaller file sizes than the equivalent Bitmap
Image (BMP).

The general layout of a PNG file is shown
in Figure 1. PNG files begin with an 8 byte
signature, containing the ASCII bytes for
‘PNG’, as well as various line ending and
transmission integrity bytes. All file content
thereafter, both metadata and compressed
pixel data, is stored in ‘chunks’.

Chunks are self-contained, storing their
own length, data, and a checksum to detect
corrupted data. Four letter ASCII labels are
provided to easily distinguish between chunk
types, which are referred to throughout this
paper.

Labels beginning with upper case charac-
ters, depicted in red in Figure 1, refer to
‘critical’ chunks, which form the minimal set
which an encoder and decoder should sup-
port. ‘Ancillary’ chunks, depicted as blue,
need not be supported, and may be safely
ignored, or omitted, without preventing the
image from being rendered. However, such
omissions mean that the image may not
appear as originally intended, potentially
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displaying without transparency and back-
grounds, or rendering with a skewed colour
spectrum.

There are 18 chunk types defined in the
international standard (Adler et al., 2003),
with 4 critical chunks and 14 ancillary
chunks. The critical chunks are: IHDR, con-
taining header metadata, which is required
immediately after the signature; IEND, re-
quired as the final chunk to complete the file;
IDAT, one or more of which store compressed
pixel data; and PLTE, which stores the colour
palette and is only required for the indexed
colour mode.

Ancillary chunks in the specification cor-
respond to colour space information (cHRM,
gAMA, iCCP, sBIT, sRGB), pixel dimensions
and aspect ratio (pHYs), suggested palette
(sPLT), miscellaneous information for the
suggested background (bKGD), colour his-
togram (hIST), transparency information
(tRNS), textual information (iTXt, tEXt,
zTXt), and timestamp information (tIME).
Additionally, custom chunk types can be in-
cluded by the encoder for use with specific
applications, as with Adobe Photoshop’s
proprietary chunks. With the noted excep-
tion of the beginning and end chunks, there
are only loose constraints placed on the or-
der or location of chunks in the file. Most
chunks are required to be present before the
first IDAT chunk (see Figure 1), with the ex-
ception of textual information, which may
be present at any point in the file prior to
IEND.

There are five colour modes supported
by PNG, which include greyscale and true-
colour, both with additional modes which
include an alpha channel, and the indexed
colour mode. Colour modes are set in the
IHDR, with optional reference colour points
(cHRM) and profiles (ICCP) in other chunks.
Transparency is supported either by means
of the alpha channels or by preselected
colours which indicate transparency.

Compression of pixel data is achieved by
per scan line prediction and the DEFLATE
compression standard, which is stored in the
zlib format (Deutsch & Gailly, 1996). This
data is contained in one or more IDAT chunks
in the PNG.

3. BACKGROUND
This work is relevant to several areas of ex-
isting work. First, forensic file hashing is dis-
cussed in the context of detecting the pres-
ence of known pieces of contraband. Sub-
sequent discussion pertains to existing ap-
proaches in digital image forensics, with a
focus on image metadata, before considering
similar approaches in the field of email image
spam detection.

Cryptographic hashes are used both to
verify the integrity of evidence and to iden-
tify known files. Kornblum (2006) noted
that such hashes, which are typically based
on the entire content of a file or storage me-
dia, can easily be attacked by modifying a
single bit in the original data, which pro-
duces an entirely different hash digest. In
order to mitigate this, piecewise hashes may
be used, which increase the hash resolution
by individually hashing subsets of the data.
Kornblum (2006) extends this idea by ap-
plying a rolling hash system which enables a
conservative estimate of the number of iden-
tical bytes in a file, providing a similarity
score from 0–100. Techniques are required
for fast comparisons of the large number of
hashes stored in known file databases, with
bloom filters commonly being utilised as
an efficient lookup datastructure (Roussev,
Chen, Bourg, & Richard, 2006; Roussev,
2010; Roussev, Quates, & Martell, 2013;
Penrose, Buchanan, & Macfarlane, 2015).

Piecewise hashing can give false positives
due to the existence of common data blocks
in various file types. Roussev (2010) de-
scribes a method for selecting statistically
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improbable features when producing data
fingerprints, while Garfinkel et al. (2010) fo-
cus on reducing the number of non-distinct
blocks from the hash database. This au-
thors show that, in some cases, utilising all
of the information in the file may be counter-
productive when attempting to create robust
fingerprints.

File manipulation attacks may be exe-
cuted at multiple levels. Rather than sim-
ply attempting to deceive binary level fin-
gerprinting techniques, attacks may focus
on the semantic level, with existing work
showing that content preserving manipula-
tions can be effective against content based
matching schemes (Gloe, Kirchner, Winkler,
& Bohme, 2007).

A substantial body of literature has de-
veloped around addressing forensically rele-
vant questions using pixel data and meta-
data, and is primarily concerned with three
problems: source identification, tamper de-
tection, and identifying synthetically gener-
ated images (Sencar & Memon, 2008). Meta-
data is often easier to manipulate, with most
solutions focusing on detecting noise pat-
terns and imperfections introduced by cam-
era lenses, colour filter arrays, and sensors
(Chen, Fridrich, Goljan, & Luks, 2008; Sen-
car & Memon, 2008; Piva, 2013). How-
ever, such methods are computationally ex-
pensive, and are still vulnerable to sophisti-
cated attacks, as demonstrated by Gloe et
al. (2007).

As the JPEG file format is the most com-
monly used image format for general use, al-
ternative, less costly, approaches have been
proposed which make use of JPEG specific
features. Kornblum (2008) uses JPEG quan-
tization table signatures to detect images
which have been edited with software. This
is possible as cameras and image editing soft-
ware often use distinct tables, such that the
presence of an Adobe Photoshop quantiza-
tion table in a photograph indicates that it

has been edited. Extending this idea, Gloe
(2012) utilises both quantization tables and
EXIF metadata structures created by soft-
ware editing tools. In this case, an anal-
ysis of metadata structures shows that dif-
ferent tools generate different EXIF finger-
prints for the same image, which can be ex-
ploited as an additional feature when detect-
ing compromised images. Further to this,
Gloe, Kirchner, and Riess (2013) showed
that JPEG metadata may survive conver-
sion to the PNG format. This metadata
was then used to identify if the original
JPEG was manipulated with 100% accuracy,
largely through textual metadata containing
JPEG sampling factors. For the purpose of
identifying source cameras, Kee, Johnson,
and Farid (2011) construct fingerprints us-
ing more JPEG header information, gener-
ating features from Huffman encoding ta-
bles, image thumbnails, and image dimen-
sions, in addition to quantization tables and
EXIF metadata. The authors show that the
discriminating power of any given feature is
not particularly high, however the combina-
tion thereof produces signatures which are
unique to a camera 62% of the time, and
unique to a manufacturer 99% of the time.

Image header features have also been used
to detect spam emails where the spam con-
tent has been moved to an image attach-
ment, bypassing textual filters. Krasser,
Tang, Gould, Alperovitch, and Judge (2007)
make use of a subset of image metadata, de-
riving features from image dimensions, as-
pect ratio, file type, file size, image area
and compression factor. These features are
used to train both Support Vector Machine
and decision tree classifiers, intended to be
used as an initial filtering stage in the detec-
tion process. Dredze, Gevaryahu, and Elias-
Bachrach (2007) make use of similar fea-
tures, but include additional metadata fea-
tures, such as bit depth and EXIF data, as
well as more expensive edge and colour in-
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formation when training classifiers. How-
ever, metadata features were found to be
the most useful, particularly when optimis-
ing for speed with dynamic feature selection.
Uemura and Tabata (2008) design a two
stage process, incorporating similar meta-
data features into a traditional Bayesian fil-
ter model, with text analysis as the first
stage, and image metadata the second. Liu,
Tsao, and Lee (2010) utilise image header
information as part of a triple layer sys-
tem, where the first analyses email head-
ers data, the second examines image header
data, with the third stage performing costly
pixel domain analyses.

4. METHODOLOGY
This section describes the early file features
of the PNG format which are used to cre-
ate signatures for the purposes of identifying
known images. This is in contrast to prior
work which uses file header and metadata
information for the purposes of classifying
images in terms of source, spam content, or
manipulation status.

4.1 Dataset

A dataset of 108,885 PNG images was gen-
erated by converting the original Govdocs
JPEG corpus (Garfinkel et al., 2009) to PNG
using the Python Pillow 3.1.1 (Clark, 2016)
library. Duplicate images, determined us-
ing the SHA256 algorithm (Gallagher & Di-
rector, 2008), three images which failed to
convert, and a single corrupt PNG, were
discarded. The PNG dataset (148 GiB) is
larger than its original JPEG counterpart
(35 GiB), with file sizes ranging from 170
bytes to 38.2MiB, with a median of 344KiB
and a mean of 1.4MiB. References to the
Govdocs dataset throughout this work refer
to the transformed PNG version.

As the Govdocs conversion was achieved
by processing all images with the same soft-

ware, and may therefore contain homoge-
neous properties, a supplementary dataset
of 6469 (2.36 GiB) images was acquired by
issuing varied queries to the Bing search en-
gine, with results being collected from 2750
unique top level domains. These files were
generally smaller, with a similar range from
189 bytes to 15.2MiB, median of 132KiB and
a mean of 381KiB.

4.2 Feature Extraction

Feature extraction focuses on early parts of
the file, such as the file header and the first
IDAT data chunk, for two reasons. The first is
that forensic file recovery by means of data
carving, which typically leverages file type
signatures, often results in partial files, such
as the file header and contiguous, unfrag-
mented, data blocks. Secondly, a reduction
in the portion of the file required for identi-
fication also means reduced disk access over-
head, which is generally the limiting factor in
digital forensics (Richard & Roussev, 2006),
allowing for fast image processing.

4.2.1 Header Features

The initial intention was to leverage specific
features with potentially high discriminat-
ing power, such as colour histograms (hIST),
colour palettes (PLTE) and low resolution
image scans from interlaced PNGs (early
IDAT). However, none of these features were
used frequently in the heterogeneous Bing
dataset (7.2% paletted images and 2.9% in-
terlaced, and no instances of the histogram
chunk), such that a more general approach
was taken.

The PyPNG (Jones, n.d.) python mod-
ule was used to extract features from PNG
chunks prior to the first IDAT chunk. This
was achieved by using the Preamble method
of the PNG Reader class, which processes
image metadata from a common subset of
PNG chunk types. The chunk types consid-
ered, and their associated features, are pro-
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vided in Table 1. When the term ‘header’
is used in the remainder of this document,
it is in reference to these chunks. Derivative
features, such as number of planes or the al-
pha flag, are omitted, as their information is
contained in the colour type.

Ideally, features should only be extracted
from the subset of chunks which contribute
to the rendering of the image, ancillary
or otherwise. Such features are safe from
arbitrary tampering without affecting the
way the image displays. Notable omis-
sions for the header features include those
containing textual information, timestamps,
ICCP colour profiles, standard RGB colour
space flags, and proprietary Adobe Photo-
shop chunks, none of which are obtained us-
ing the above python method.

As the IHDR chunk is required to be in ev-
ery image, it was evaluated in isolation from
other metadata chunks, serving as a minimal
header baseline.

To facilitate inter-image comparisons, all
features were concatenated into a single
string which takes into account feature or-
der, allowing for simple string equality to de-
termine whether two images have the same
feature vector.

4.2.2 Chunk Order

Gloe (2012) noted that image encoders for
the JPEG format are not necessarily consis-
tent with the order in which they include
metadata structures, such that the order
of elements can be used as a discriminat-
ing feature. As noted previously with re-
gards to chunk placement constraints (see
Section 2), this is also true in the PNG spec-
ification (Adler et al., 2003). The IHDR and
IEND chunks must be first and last respec-
tively, however, other chunks have loose, or
no, ordering constraints. For example, the
gAMA and sBIT chunks must appear before
both the PLTE and IDAT chunks, but could
appear in either order.

To determine the potential effectiveness of
chunk orders as a feature, all chunk types
were aggregated in to an ordered list to two
depths in the file: i) All chunks in the file,
and ii) Chunks up to the first IDAT chunk.
By varying how far into the file is processed,
it is possible to determine how much of the
file must be analysed for this feature to be
useful, if at all. All chunk types, includ-
ing proprietary and textual metadata chunks
were included, with subsets not being con-
sidered due to the initial experimental per-
formance.

Again, to facilitate simple equivalence
comparison, and integration with other fea-
tures, ordered lists are transformed into
strings.

4.2.3 Cryptographic Hashes

PNG header chunk(s) are immediately fol-
lowed by an IDAT chunk, which contains
compressed image data. Even if a limited
portion of the file were to be recovered, it
is likely that some of this data would be in-
cluded in the first disk block, except in cases
where there are many metadata chunks. As
such, a small portion of scan data is included
as a feature by calculating SHA256 hashes of
the first n bytes of the first IDAT chunk, for
varying sizes of n.

Additionally, traditional block based
hashing, which is indifferent to the structure
of the file, is also performed to serve as a
baseline with which to evaluate the relative
performance of all features discussed. In this
case, n bytes from the beginning of the file
are used to generate hashes using the same
method.

When the value of n is less than, or equal
to, the length of the hash digest it would
produce (32 bytes), the raw data is included
in the signature instead of the hash digest.
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Feature Chunk Description

File Signature N/A ‘Magic number’ from the file.
Height IHDR Image height in pixels.
Width IHDR Image width in pixels.
Bit Depth IHDR No. of bits per sample or palette index.
Colour Type IHDR Colour mode flag (See Section 2).
Filter Method IHDR Filter method byte, standard only uses 0 for adaptive.
Interlacing IHDR Image interlacing byte, 0 if no interlacing, 1 for Adam7 interlacing.
Compression Method IHDR Compression method byte, PNG standard only uses 0 for Deflate.
Palette PLTE 1–256 RGB palette values if present, otherwise None.
Background Colour bkGD Default background colour, otherwise None.
Transparency tRNS Simple transparency alpha value, single colour value, or None.
Gamma gAMA Four byte floating gamma value.
Unit is Metre pHYs 1 byte flag indicating if the unit of measurement is metre.
X-Axis Pixels per Unit pHYs X-axis aspect ratio or metric size information.
Y-Axis Pixels per Unit pHYs Y-axis aspect ratio or metric size information.
Significant bits sBIT Stored the original number of significant bits for lossless recovery.

Table 1. Header features and their associated PNG chunks.

4.2.4 IDAT Length

The size of IDAT chunks normally corre-
sponds to the size of the memory buffer used
by the encoder (Adler et al., 2003), though
they need not be a constant length. As
the beginning of each chunk stores its own
length, only the first few bytes are required
to obtain its size. This means that the length
of the first IDAT chunk, immediately follow-
ing the metadata, may be used as a proxy
for the buffer size of the encoder, and as a
discriminating feature.

The length of the first IDAT chunk was ob-
tained by inspecting the atchunk property of
the PyPNGReader class immediately after
calling the Preamble method. This returns a
tuple, the first of which is the length of the
chunk.

4.2.5 Combining Features and
Equivalence Classes

As all features above can be easily repre-
sented as a string, simply concatenating indi-
vidual features together, in an ordered fash-

ion, allows for a single signature which can
be compared quickly. This also allows the
signatures for known files to be looked up in
the same way that traditional cryptographic
file hashes are utilised.

Equivalence classes are generated by
recording a list of all images which have iden-
tical feature strings. The number of files in
a given list corresponds to the size of the
equivalence class. This provides a granu-
lar measure of how unique a given signa-
ture is and allows for the identification of
groups which possess the same signature. A
class size of 1 indicates that the signature is
unique for all files, a class size of 2 means
that 2 files possess the same signature, and
so on.

4.3 Offset Acquisition

In order for the above information to be in-
cluded in discriminating features, it has to be
read from the storage media. As such, the
closer to the beginning of the file the above
features are located, the smaller the propor-
tion of the file which has to be analysed. The
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IDAT is the anchor point for all of the above
features, as all header features must appear
before it, and scan data appears immediately
after it. As such, the byte offset of the first
IDAT chunk is used to evaluate how much of
the PNG file needs to be processed for these
signatures to be generated.

5. FINDINGS
An evaluation of each feature is provided in
isolation, before exploring the potential of
combining features to form a single signa-
ture, with a comparison to the baseline hash-
ing methods. The best case scenario for each
feature is that it generates a unique signa-
ture for each file, i.e., an equivalence class of
1 for all images.

5.1 Chunk Orders

There are a wide range of possible chunk
types, with the potential for individual ap-
plications to include proprietary chunks.
The order in which these chunks appear may
be used as a feature to discriminate between
images. Table 2 shows the results of creating
equivalence classes of all chunk types for the
entire file.

Even utilising all chunks in the file,
this feature performs poorly across both
datasets, with only 17.9% unique signa-
tures for Bing images, and 0.1% for Gov-
docs images. Chunk ordering in the Gov-
docs dataset barely has any discriminating
power due to the homogeneity of how the
files are constructed. In some cases JPEG
metadata, such as ICCP profiles were re-
tained during PNG conversion, but such in-
cidences do not provide much information in
the absence of additional ancillary chunks.
The Bing dataset has more variety due to ad-
ditional metadata blocks and encoding dif-
ferences, though there are still only a small
number of critical chunks included in the

specification, limiting the usefulness of this
feature.

The performance of chunk orders falls fur-
ther if only chunks up to the first IDAT are
considered, with the number of unique signa-
tures dropping to 2.4% on the Bing dataset.
These results suggest that the majority of
the discriminating information is provided
by the number of IDAT chunks included in
the file, as well as any metadata chunks
which are interleaved with scan data, or
found after it.

5.2 IDAT Length

The length of the first IDAT chunk can be
used to gain information about the num-
ber of potential data chunks in the PNG, as
well as information about the encoder, with-
out needing to analyse the entire file. The
performance of this feature varies wildly be-
tween datasets (Table 2), with 60.4% unique
signatures for the Bing dataset, but only
12.4% for the Govdocs dataset. As the Gov-
docs dataset was produced using a single en-
coder, the behaviour of this feature on this
dataset essentially reflects the behaviour of
the Pillow library. In this case, the encoder
limits the length of IDAT chunks to 64KiB,
with larger files being divided in to multiple
chunks of this size or less. Unique signa-
tures are produced by files which are smaller
than this upper limit, with the distribution
depicted on the right of Figure 2.

In the Bing corpus, IDAT lengths range
from 104 bytes to 8.77MiB, the distribution
of which is provided in the left side of Fig-
ure 2. These results indicate that many en-
coders opt not to limit chunk sizes, which is
possible as the maximum chunk size in the
specification is 231 − 1 bytes (Adler et al.,
2003). Large spikes in the Bing distribution
are likely caused by the use of the same en-
coding library, or those using similar, con-
tent independent buffer presets.

The IDAT chunk length is not a suit-
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Equivalence Class Size
No. Images (% of Images)

1 (Unique) 2-5 6-10 11-100 >100

Bing

All Chunks Order 1159 (17.9%) 1017 (15.7%) 329 (5.1%) 959 (14.8%) 3007 (46.5%)
IDAT Length 3907 (60.4%) 130 (2.0%) 14 (0.2%) 245 (3.8%) 2175 (33.6%)

Govdocs

All Chunks Order 121 (0.1%) 364 (0.3%) 402 (0.4%) 4341 (4.0%) 103657 (95.2%)
IDAT Length 13501 (12.4%) 6266 (5.8%) 6 (<0.1%) 0 89118 (81.9%)

Table 2. Equivalence classes for chunk type orders and IDAT lengths for both datasets.

Equivalence Class Size
No. Images (% of Images)

1 (Unique) 2 3 4 5 >5
Bing

IHDR Only 4638 (71.7%) 482 (7.4%) 153 (2.4%) 116 (1.8%) 50 (0.8%) 1032 (15.9%)
Header Features 5106 (78.9%) 444 (6.9%) 135 (2.1%) 92 (1.4%) 65 (1.0%) 629 (9.7%)

Govdocs

IHDR Only 27059 (24.9%) 7626 (7.0%) 4143 (3.8%) 2868 (2.6%) 2230 (2.0%) 64959 (59.7%)
Header Features 27059 (24.9%) 7626 (7.0%) 4143 (3.8%) 2868 (2.6%) 2230 (2.0%) 64959 (59.7%)

Table 3. Equivalence classes for the IHDR and complete PyPNG preamble features.

IDAT
Block Size

(B)

Equivalence Class Size
No. Images (% of Images)

1 (Unique) 2 3 4 5 >5

Govdocs
8 72981 (73.4%) 13932 (14.0%) 5895 (5.9%) 3304 (3.3%) 2305 (2.3%) 10468 (9.6%)
16 107257 (98.6%) 1152 (1.0%) 252 (0.2%) 84 (<0.1%) 45 (<0.1%) 95 (<0.1%)
32 108670 (99.8%) 86 (<0.1%) 42 (<0.1%) 20 (<0.1%) 5 (<0.1%) 62 (<0.1%)
64 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
128 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
256 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
512 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
1024 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
2048 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)
4096 108671 (99.8%) 86 (<0.1%) 42 (<0.1%) 24 (<0.1%) 0 62 (<0.1%)

Table 4. Equivalence classes for varying block sizes of IDAT chunk data SHA256 hashes for
the Govdocs dataset.
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able standalone feature, as it is sensitive to
the encoder used; however, it performs well
enough to be used in combination with other
features. Additionally, this feature could be
useful in future work as part of a process to
identify particular encoders or applications
which created a given PNG.

5.3 Header Feature
Distinctness

While many of the features described in Ta-
ble 1 have a relatively narrow range of val-
ues, with several being comprised of a single
byte, their combination provides potential to
discriminate between images.

The equivalence classes generated by using
features extracted by the PyPNG preamble
method are given in Table 3. Using all fea-
tures in Table 1, 78.9% of the Bing dataset
possessed a unique signature. Less than 10%
of images were in a class of five or greater,
with the largest class constituting 76 images.
Using the same encoder in the transformed
Govdocs dataset, header features are still
unique 25% of the time, which is perhaps
higher than expected. Performance does not
suffer much on the Bing dataset when only
the IHDR chunk, which must be present in
every PNG, is considered, with no measur-
able difference being made on the Govdocs
dataset.

While these features are not enough to
uniquely identify images in the dataset, they
are reliably found immediately after the
PNG file signature, and contribute a good
deal of discriminating information. As such,
they prove good candidates for combination
with additional features. Additionally, it
should be noted that not all ancillary chunks
which are provided in the specification are
processed by PyPNG, and, as such, perfor-
mance may be improved slightly by includ-
ing these additional chunk types.

5.4 Small Block IDAT
Hashing

Small portions of the scan data may be used
to discriminate between images. Equiva-
lence classes for blocks of varying sizes for
the Govdocs dataset are provided in Table 4,
where the block size is the number of bytes,
n, which are hashed from the beginning of
the first IDAT chunk. In some cases, the
block size is larger than the size of the con-
tent of the first IDAT chunk, in which case
the actual length of the chunk is used for
the hash. However, this did not occur fre-
quently, with only 200 instances when n =
4KiB. Both datasets performed similarly, as
such, Bing data is omitted here.

In this experiment, small values of n were
sufficient to produce highly distinct signa-
tures. As few as eight bytes of data pro-
duce a unique SHA256 hash digest for 73.4%
of images in the dataset, with no significant
benefit beyond 32 bytes, where 99.8% of sig-
natures were unique.

An examination of equivalence classes for
the larger block sizes shows that duplicate
hashes are caused by images which have
large contiguous arrays of bytes with the
value zero. As PNG is a lossless format,
it can represent large areas of contiguous,
identical, values without artefacts, both for
solid colour and transparent backgrounds.
In these cases, when the same background
value is used, hash collisions will be caused
as the value of n may be too small to reach
the differentiating data in the foreground.
That is, while this technique is generally ef-
fective, it may produce false positives with
logo style images.

5.5 Small Block File Hashing

Rather than hashing the whole file, or data
contained solely in the IDAT chunks, the first
n bytes of the file were hashed to serve as a
baseline. Table 5 shows the results of these
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Figure 2. The distribution of IDAT lengths for both datasets, plotted on logarith-
mic axes.

Figure 3. The number of unique IDAT
and File hashes for each block size for
the Govdocs dataset.

small block hashes. Again, performance was
consistent across datasets.

Block hashes prove to be very distinct,
though this strategy was not as successful
as IDAT hashing for very small block sizes.
Hashing the first 8 and 16 bytes in the file
created the same signatures for all images
in the dataset. When the block size reaches
32 bytes, file hashes perform identically to
features extracted from the IHDR chunk (Ta-
ble 3), as they likely contain the same con-
tent.

Hashing the first 2048 bytes of the files

produced duplicate hashes more often than
16 bytes of IDAT data. A full disk sector
(4KiB) still performs worse than 32 bytes
of the first IDAT on Govdocs, but produces
unique values for the Bing corpus. The rela-
tive performance of IDAT and File hashes is
depicted graphically in Figure 3.

5.6 Multiple Feature
Aggregation

With the exception of 4KiB file hashing on
the Bing dataset, no single feature tested dis-
tinguished all distinct images. To further
improve file discrimination, multiple feature
strings were concatenated together to form
a single signature. A graphical overview of
the relative effectiveness of single and com-
bined features for both datasets is provided
in Figure 4.

As noted in Section 5.1, chunk type or-
dering was not a strong feature by itself,
and provided minimal utility when combined
with additional features. However, chunk or-
ders can be acquired at a very low expense,
while extracting other, more discriminative,
features.

The best performance is achieved when
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Start of
File Block
Size (B)

Equivalence Class Size
No. Images (% of Images)

1 (Unique) 2 3 4 5 >5

Govdocs
8 0 0 0 0 0 108885 (100%)
16 0 0 0 0 0 108885 (100%)
32 27059 (24.9%) 7626 (7.0%) 4143 (3.8%) 2868 (2.6%) 2230 (2.0%) 64959 (59.7%)
64 104814 (96.3%) 898 (0.8%) 408 (0.4%) 356 (0.3%) 215 (0.2%) 2194 (2.0%)
128 105034 (96.5%) 846 (0.8%) 381 (0.3%) 320 (0.3%) 175 (0.2%) 2129 (2.0%)
256 105034 (96.5%) 846 (0.8%) 381 (0.3%) 320 (0.3%) 175 (0.2%) 2129 (2.0%)
512 105447 (96.8%) 778 (0.7%) 345 (0.3%) 276 (0.3%) 160 (0.1%) 1879 (1.7%)
1024 105474 (96.9%) 762 (0.7%) 339 (0.3%) 276 (0.3%) 155 (0.1%) 1879 (1.7%)
2048 105474 (96.9%) 762 (0.7%) 339 (0.3%) 276 (0.3%) 155 (0.1%) 1879 (1.7%)
4096 108670 (99.8%) 84 (<0.1%) 42 (<0.1%) 20 (<0.1%) 0 69 (<0.1%)

Table 5. Equivalence classes for SHA256 hashes of the first n bytes of the file, ignoring file
structure. Govdocs dataset.

combining small IDAT data block hashing
with IHDR features and the length of the first
IDAT chunk, with only a small number of
bytes required from the scan data. This com-
bination was able to distinguish between im-
ages in the dataset just as well as 4KiB file
hashes, while providing resistance to arbi-
trary modifications of non-critical metadata,
such as textual information.

The signatures produced are small, be-
tween 35 and 42 bytes using 16B of IDAT

data, and between 51 and 58 bytes using 32B
of IDAT or the SHA256 digest.

5.7 Typical Offsets

The location of the first IDAT chunk in a
PNG varies with the quantity of metadata
included in the file. If there are few chunks
included between the IHDR and first IDAT

block, it can appear very early in the file,
with the smallest offset in both datasets be-
ing 37 bytes. When many chunks are in-
cluded, pixel data can start deep in the file,
with 2.5MiB of data being present before the
IDAT in the worst case in the Bing corpus,
and 103KiB in Govdocs. However, as noted,

the transformed Govdocs corpus does not
contain much ancillary metadata, with the
vast majority of IDAT blocks starting at 37
bytes.

The distribution of IDAT offsets in the
Bing corpus is very long tailed, with a me-
dian of just 113 bytes, and mean of 4158
bytes. As the mean file size is 381KiB, the
features discussed can be acquired by only
reading approximately 1% of the file for
images in the Bing dataset, with far less be-
ing required for Govdocs (0.01%). 96.9%
of Bing images had an IDAT marker appear
within the first 4096 bytes (99.9% for Gov-
docs), with 60% of files (92% for Govdocs)
requiring a mere 160 bytes to reach the IDAT.
With most images only requiring a single
disk sector to be processed, and a very small
overall proportion of the file, early file fea-
tures represent a substantial reduction in
disk overhead, while also producing a highly
discriminative signature.

6. DISCUSSION
Based on the findings in this work, it is pos-
sible to conclude that highly distinct PNG
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Figure 4. The number of unique signatures for each feature and dataset. The
dotted line indicates where all unique images have unique signatures.

signatures may be derived from the manda-
tory IHDR chunk when combined with infor-
mation found at the start of the first IDAT

chunk. This contains encoding information
about the image, as well as dimensions, and
a proxy for the memory buffer size, with a
tiny portion of scan data to rule out very
similarly encoded images of the same dimen-
sions. Using this method, a tiny fraction
of the file may be used create a signature
for a PNG file, while also ignoring easily
stripped, non-essential, metadata modifica-
tions. Pseudocode for signature creation us-
ing these features is provided in Algorithm 1.

While this technique has been shown to
be effective even on homogeneous datasets
(99.8% unique signatures), it is not accu-
rate enough to avoid false positives at scale.
However, the utility of this approach lies in
being able to filter out large portions of data,
with potential hits being verified with more
accurate, and costly, methods, such as tra-
ditional cryptographic hashing or similarity
hashing. In doing so, the amount of data to

be processed can be reduced by two orders
of magnitude, from 100GiB to 1GiB, or less.

To quantify the potential speed improve-
ments, several benchmarks were run on a
workstation (i5-6490k, 16GiB DDR3 RAM,
Western Digital Red 3TB HDD, Crucial
MX300 525GB SSD) and laptop (i7-5500U,
8GiB DDR3 RAM, Samsung 840 EVO
500GB SSD), with different multi-threading
options and file read orders. Benchmarks
were carried out on Windows 10 64bit, with
memory caches being cleared between runs.
Normal file order provided by the Python
os.listdir function, its reverse, and random
orders were used. Files were copied in the
same order to all drives with no fragmenta-
tion.

Benchmarks show that signatures derived
from early file features were between 2–3x
faster using the workstation’s HDD, 8–12x
faster on the workstation’s SSD, and 12–
18x faster on the laptop’s SSD. Additionally,
CPU load compared to full file hashing was
reduced to less than 1/4 on the HDD and
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Order WS HDD Time (s) LT SSD Time (s)

Threads 1 2 4 8 1 2 4 8

Header+
IDAT Len.+

32B

normal 689.6 870.9 721.0 564.9 88.2 58.6 50.9 38.6
reverse 1129.5 1393.2 1087.5 745.9 87.1 63.7 46.0 36.0
random 1463.7 2286.9 1783.9 1387.6 88.9 61.9 49.7 35.8

Full
File
Hash

normal 1808.1 1667.5 1649.3 1686.3 1052.6 706.2 679.9 697.2
reverse 2689.7 2301.6 2105.9 1859.3 1101.5 746.2 649.0 617.3
random 3192.9 2689.1 2542.8 2419.9 1111.9 734.5 632.5 591.8

Table 6. Processing times for both the proposed Signature creation and Full File Hashing
for different file orders and multi-threading options. Values are averaged over multiple runs.
WS and LT refer to workstation and laptop, respectively. Workstation SSD omitted for
brevity.

less than 1/2 on SSDs. A summary of bench-
mark times is provided in Table 6.

These results suggest fundamental limita-
tions in performance gains to be had with
sub-file analyses on magnetic storage me-
dia. This can be explained by the mechan-
ical nature of hard disk drives, which re-
quire platters to be spun in to position to
meet read head actuators, which costs time
to position. The heads must move physi-
cally to the next block to read, regardless
of whether or not the intermediate blocks
are of interest. NAND flash, on the other
hand, possesses none of these mechanical
limitations, instead, largely being limited by
flash controller performance, communication
buses and NAND layouts. Indeed, the rel-
ative performance improves when a higher
throughput SSD is used. This suggests that
the theoretical speed increase of two orders
of magnitude (reading 1% of the file) may
be realised in the future with NVMe and
M.2 devices which have drastically higher
random read performance and greater oper-
ations per second.

Algorithm 1: PNG Signature

Input: PNG File
Output: PNG Signature
signature = String(readIHDR());
while chunk.type != IDAT do

chunk.type = nextChunk();
end
signature += String(chunk.length);
signature +=
String(chunk.data[0:32]);

return signature

7. CONCLUSIONS

AND FUTURE WORK

This work has shown that there are several
highly discriminatory features which can be
derived from PNG header chunks and a tiny
portion of the first scan data chunk, in a
manner which focuses on critical file infor-
mation, rather than arbitrary metadata.

This approach is targeted at reducing the
huge volumes of data present in a foren-
sics investigation, providing the potential to
greatly decrease the time spent reading from
the forensic image on traditional storage me-
dia. This approach may not account for con-
tent manipulations when they are not re-
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flected in the header; however, it serves as
a method to reduce the burden of large vol-
umes of data faced by the investigator.

Future work will investigate the relation-
ship between image modification and header
data in the PNG format, and explore vari-
ances within each chunk, which may prove
useful for identifying particular software
used to encode a PNG. Additional work will
examine similar approaches for other foren-
sically relevant file types. Given current
hardware limitations, this kind of approach,
based on partial file analysis, may be the
key to streamlining, and scaling, the foren-
sics process.
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