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Abstract. Machine learning models trained on the solution spaces of
optimisation problems can potentially shed light on variable importance.
In prior work the recently established combinatorial benchmark, Poly-
nomial Unconstrained Binary Optimisation with variable importance
(PUBOi) was used in this way. Small search spaces were considered so
that it was possible to fully enumerate as well as sample. The study con-
firmed that explainable artificial intelligence (XAI) feature attribution
methods can detect these ground-truth importances in this combinatorial
optimisation problem. In the present work, we consider larger problem
dimensions with the aim of establishing whether the results and XAI
methods scale. We compare the distributions of important and unim-
portant variables across PUBOi instances for prevalent XAI methods to
uncover how well important variables are captured. We found that in
high-dimensional instances the important variables were captured but to
a lesser extent than in low-dimensional instances. The analysis will help
to inform future work in adapting search operators during optimisation.

Keywords: explainable artificial intelligence, variable importance, pseudo-
boolean optimisation

1 Introduction

With the growing use of black-box optimisation, pinpointing which decision vari-
ables are important is of interest. A promising path to understanding this lies
in explainable artificial intelligence (XAI) [3,16], which is a rapidly advancing
paradigm that aims to open the ‘black box’ of machine learning models. Within
XAI, feature attribution techniques quantify the contribution of individual fea-
tures to machine learning models, thereby elucidating the drivers of the model
[6]. In this work, we extend previous literature [7] exploring the potential for
feature attribution methods to estimate variable importance in combinatorial
optimisation problems. The search space is sampled and machine learning mod-
els — with solutions as input and their fitness as the response variable — are
trained. Then, XAI feature attribution techniques are used. The recently pro-
posed PUBOi benchmark [20], which has tunable ground-truth variable impor-
tances, is considered. The problem dimension in the previous work [7] was set
deliberately small at 14. The present work tests whether the approach scales
when the problem dimension is much larger and also whether lowering the bud-
get for sampling the space is effective. The goal of this work is to test whether
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the same explainers provide an accurate view of importance when given a low
budget in high dimensions.

The principal contribution of this work is this: investigation of whether XAI
methods can accurately identify important variables in high-dimensional optimi-
sation through models trained on search spaces. The remainder of this paper is
structured as follows: Section 2 reviews related work for XAI in optimisation,
work on mined search space models for explainability and evolutionary feature
selection. Section 3 introduces the PUBOi benchmark, as well as the feature
attribution methods. Section 4 outlines the Methodology and Section 5 presents
and analyses the findings. Limitations and Conclusions can be found in Sections
6 and 7 respectively.

2 Background

There has been a recent uptick in interest in applying explainable AI (XAI)
techniques within the context of evolutionary computation [25,22,23]. SHAP,
which is a major feature attribution method described in Section 3.2, has already
been adopted in evolutionary computation research to, for example: (i) rank
problem landscape descriptors in algorithm performance models [22,23,8,18], (ii)
quantify the contribution of hyperparameters in post-optimisation analyses [19],
and (iii) to understand different high-quality breast cancer prediction feature
sets by mining local optima via evolutionary feature selection [2].

Recent interest has increased surrounding the idea of mining search space
models to improve explainability in evolutionary optimisation. For example, [24]
integrate models – specifically linear regression and random forest – into a genetic
algorithm framework to provide post-optimisation explanations. Although their
approach was evaluated on problems with known variable importance, these were
relatively simple examples like the checkerboard problem. Sensitivity analysis
was conducted to produce a ranking of variable importance. They found that
the estimated importances seemed to match their understanding of the problem
importances.

Building on this idea, a later work [17] examined how mined search space
models could uncover salient features of solutions. The authors showed that
these models can identify which variables most strongly affect solution fitness
across different landscape types. Their experiments involved binary optimisation
problems – checkerboard, MAXSAT, and trap. Although variable importance
was visually estimated using sensitivity analysis in this work, there was not a
quantitative analysis of the extent to which known importances and interactions
were captured.

3 Methodology

3.1 PUBOi Benchmark

Following the work in [7], we use the recently introduced combinatorial opti-
misation benchmark, PUBOi (Polynomial Unconstrained Binary Optimisation
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with tunable variable importance) [20]. PUBOi allows researchers to generate
problem instances in which the importance of each decision variable is precisely
adjustable. Methodologically, PUBOi builds on the Polynomial Unconstrained
Binary Optimisation (PUBO) framework. Quadratic Unconstrained Binary Op-
timisation (QUBO) is a special case of PUBO that restricts interactions to pairs
of variables; PUBO — and therefore PUBOi — admits higher-order interactions
among binary variables. The general PUBO objective function can be expressed
as:

f(x) =
∑
i

aixi +
∑
i<j

bijxixj +
∑

i<j<k

cijkxixjxk + . . . (1)

where x ∈ {0, 1}n represents a binary solution vector, and ai, bij , cijk, . . . are
the interaction coefficients. Instance construction in PUBOi relies on the Chook
generator [13], which first produces instances of the Tile Planting (TP) problem
and then reformulates them as PUBOi tasks. TP asks for a placement of tiles
on a grid that minimises overlaps and gaps. PUBOi extends TP by superim-
posing order-2 Walsh functions, thereby providing tunable variable importances
and giving each instance a known ground-truth importance profile [20]. Walsh
functions form an orthogonal basis for pseudo-boolean functions [20]. A Walsh

function of order k is φk(x) = (−1)
∑n−1

i=0 kixi , where x = (x0, x1, . . . , xn−1) is a
binary vector and k = (k0, k1, . . . , kn−1) specifies the interaction pattern. The
overall objective function in PUBOi is an aggregate of m sub-functions, each
drawn from a portfolio of Walsh-based components whose selection probabilities
encode their apriori importance f(x) =

∑m
i=1 fi(x).

3.2 XAI Techniques

SHAP: SHapley Additive exPlanations SHAP is a model-agnostic uni-
fied approach inspired by cooperative game-theory for machine learning model
predictions [10]. Each feature is attributed an importance value for a specific
prediction based on Shapely values that are collected by training models us-
ing distinctive sets of features. The marginal contribution of that feature for
an observation can be calculated by subtracting the prediction of a model that
excludes that feature from a model prediction that includes that feature [21].

LIME: Local Interpretable Model-agnostic Explanations LIME is an-
other widely used XAI method that provides local, instance-specific explanations
by approximating the model locally with an interpretable surrogate [15]. LIME
focuses on perturbing the input instance and fitting a simple model (e.g., linear
regression) to these perturbations to understand the influence of each feature
on the prediction. For a given instance x, LIME generates a neighbourhood of
perturbed samples around x, obtains predictions for these samples using the
black-box model, and then fits an interpretable model to this local data. The co-
efficients of the interpretable model serve as the feature importance scores for the
original instance. Although LIME is local, we make this global by aggregating
these local explanations across a set of instances.
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Permutation Feature Importance Permutation feature importance (PFI)
[12] evaluates the contribution of a feature by measuring the increase in pre-
diction error that occurs when its values are randomly permuted, thus breaking
the feature-response relationship. A variable is deemed important if this per-
mutation increases the error ; if the error is unaffected or low, the variable is
considered unimportant [12]. Originally introduced for random forests in [4], PFI
was later generalised to a model-agnostic form in [5], which is the variant used
in the present study.

3.3 Iterated Local Search (ILS)

In this work, we use Iterated local search (ILS) [9] to sample the solution
space of low-dimensional and high-dimensional PUBOi instances. In previous
work[7], this was used to sample PUBOi instances only in low-dimensional
spaces and proved successful. Therefore, we wish to scale the same approach
to larger-dimensional spaces. ILS is a single-point metaheuristic consisting of
local searches chained together by large random perturbations. The algorithm
we use starts from a randomly generated solution and a first-improvement hill-
climber repeatedly flips bits in a binary-encoded solution using a fixed mutation
strength m. This defined as a constant fraction of the decision variables, and a
choice is made after every mutation operation regarding acceptance. The same
faction is maintained when the problem dimension changes, so the relative size
of each move remains constant across experimental setups. Upon reaching a lo-
cal optimum, the algorithm then applies a single perturbation that flips solution
bits exactly three times the mutation strength – i.e., a neighbourhood radius
of p = 3m. This is designed to move the search trajectory beyond the current
basin of attraction while still preserving useful structural information. The per-
turbed solution is then subject to the same hill-climber, with the resulting local
optimum replacing the incumbent only if it is at least as good. The cycle of
hill-climb, kick, hill-climb repeats until the evaluation budget is exhausted.

4 Experimental setup

4.1 Instance Generation

Instances are created using the PUBOi problem generator1. A set of parameters
used in these experiments can be seen in Table 1 — these are the ones which
vary between our problem sizes; there are other PUBOi parameters for which
we use those suggested in the generator [20]. The problem dimension n refers to
the size of the binary solution; sub-functions m relate to the objective function
– the variables of importance are present in the sub-functions as a way of con-
structing variable importance. The degree of importance refers to the magnitude
of difference in importance between important and unimportant variables: each
class of importance (important and unimportant) appears with a probability

1 https://gitlab.com/verel/pubo-importance-benchmark

https://gitlab.com/verel/pubo-importance-benchmark
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proportionally to its degree of importance di ∈ R+[20]. The degree d0 represents
important variables, and d1 for unimportant variables. Previous work [7] set the
degree of important variables d0 = 2, the number of sub-functions m = 5, and
problem dimension n = 14. This setup allowed for full enumeration of the space.

Table 1: PUBOi parameters. Settings are shown as SMALL and LARGE for the
small (n=14) and large (n=1000) instances, respectively.

Param Description
Setting

SMALL LARGE

n Problem dimension 14 1000

m Number of sub-functions 5 [0.01, 0.2]× n(n−1)
2

di Degree of importance per class d0 = 2, d1 = 1 d0∈ [1, 10], d1 = 1

In this work, we first investigate d0 = 2 and m = 5 in SMALL n = 14.
Then, for the much larger problem dimension LARGE n = 1000, we set m =

[0.01, 0.2] × n(n−1)
2 and d0 ∈ [1, 10] — these are the parameters originally used

for the benchmark, where problem sizes of 1000 were also considered [20]. In
initial analysis we observed these parameters did not seem to ensure a clear
distinction between important and unimportant variables for SMALL, which is
why that problem dimension has different parameters. For SMALL and LARGE,
we generate a total of 60 instances: 30 of size 14, and 30 of size 1000.

4.2 Training Data Generation

We sample solutions and their fitnesses as training data for the models by con-
ducting iterated local searches (introduced in Section 3.3) and logging every
solution seen. The algorithm is executed 10 times for a budget of 200 fitness
evaluations on 30 instances each for SMALL and LARGE. During these runs, for
each instance, we record all solutions encountered in a sample. The algorithm is
coded from scatch in Python.

In the previous work [7] the ILS mutation and perturbation strengths (i.e. the
number of bits flipped) were 1 and 3, respectively. We use that here for SMALL.
For LARGE, we apply a scaled equivalent of them: mutation strength M(n) = n

14
and then perturbation strength P = 3M . LARGE has n=1000, which results in
M=71 and P=213.

The fitness of the solutions is evaluated according to the PUBOi fitness func-
tion defined in Section 3.1. In SMALL and LARGE, we wish to investigate whether
variables are captured across instances. Previous work for SMALL [20] aggregated
median importances across folds, runs, and instances for each variable — how-
ever, this has the potential to obscure higher or lower importances. We instead
investigate the entire distribution of important and unimportant variables across
each instance.
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4.3 Model Training

For both SMALL and LARGE, we train a random forest regressor2 on binary
solutions as input and their fitness values as response. During model training, 3-
fold cross-validation is employed. In prior work [7], it was clear random forest and
multi-layer perceptron had similar performance (0.99 R2), so we choose a single
model for the purposes of this study. We use random forest mostly according to
the default configuration but choose to reduce n estimators to 50.

4.4 Explainers

For SHAP [10] we use the Python package [11] and its PermutationExplainer,
which reduces computational overhead by sampling only a subset of possible
feature combinations rather than evaluating them exhaustively. This approach
produces feature attributions by observing how the model’s predictions change
when the feature sets are perturbed. For PFI, we use the model-agnostic Python
package [1] where we set n repeats = 10. The default for this parameter is 5
repeats, and for more accurate importances, this parameter can be increased
but this is at the cost of computation.

LIME [15] is implemented through the Python package for TabularExplainer
[14], which focuses on explaining a single prediction, but can also be used as
a global explainer, which we use in this study: explanations are obtained for
several predictions together (i.e. the validation split of the data).

4.5 Statistical testing

For both SMALL and LARGE we perform tests to compare the distributions
of the important and unimportant variables for each explainer. These tests for
explainer distributions will assess how well the known importances are cap-
tured. A distribution consists of the explainer values across all folds and runs for
each instance. The null hypothesis here is that there is no significant difference
between important and unimportant variables in SMALL and LARGE. As we
conduct multiple tests, we use a Bonferroni correction for the p-values. Rather
than use a dichotomous approach of significant or not significant, we instead use
the following significance levels to denote magnitude differences in p-values: not
significant (ns) means p > 0.05; * is 0.01 < p ≤ 0.05; ** 0.001 < p ≤ 0.0001; ***
0.0001 < p ≤ 0.001; **** p ≤ 0.0001.

5 Results

5.1 Scalability of model performance

Before utilising XAI methods, it is sensible to first assess the scalability and
quality of model performance; otherwise, we may be explaining noise. The dis-
tribution of R2 scores can be seen in Figure 1, where SMALL and LARGE can be

2 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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seen in 1a and 1b respectively. For both SMALL and LARGE, the distribution
refers to all gathered R2 scores taken across 300 models [30 instances with 10
ILS runs subject to 200 evaluations for sampling each]. From the plot, we can
see that the R2 scores for the training and test (i.e. validation in this case) set
are plotted. The y-axis represents the R2 value for the model, and the x-axis
separates the train and test sets. It is clear that high-quality models for both
SMALL and LARGEare obtained, with ≈ 0.99 median R2 for the test set, with
larger interquartile ranges for LARGE presumably due to the dimensionality.

(a) Model performance for
RF in SMALL.

(b) Model performance for
RF in LARGE.

Fig. 1: Model performance, where ILS is capped at a 200 evaluation budget across
10 runs for an instance. This is over 300 sets of model training data.

5.2 Scalability of importance estimation quality

Fitness distributions We begin by considering the fitness ranges sampled
from the PUBOi instances. This information will be helpful in understanding
the obtained SHAP and LIME values in the next section — their ranges will be
on the same scale as the model response variable, which in our case is fitness.
From Figure 2, we see the range in fitness values for solutions across 30 instances
with 300 sets of model training data for SMALL and LARGE in Figure 2a and
2b respectively. Individual istances are located along the x-axis, while the y-
axis represents the fitness values for an instance with 10 sets of model training
data (sampled using ILS). In SMALL, we can see that the fitness values range
between ≈ −15 and ≈ 15, and for LARGE this is between ≈ −6000 and ≈ 2000.
These should be the bounds for our SHAP and LIME values. In the case of PFI,
however, the explainer values are in the same range as the model quality metric
— in our case, R2.

Important versus unimportant variable estimations We now assess how well im-
portant and unimportant variables are estimated by the explainers in 30 in-
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(a) Fitness distributions across 30 for
SMALL.

(b) Fitness distributions across 30 in-
stances for LARGE.

Fig. 2: Here we see the fitness distributions across 30 instances with 10 runs of
ILS, covering 300 sets of model training data each for SMALL and LARGE.

stances each for SMALL and LARGE. Statistical tests are performed to compare
the explainer distributions for important and unimportant variables, and we
plotted separately for each explainer. The difference is according to the *’s,
which denote a difference in magnitude based on ranges we set. Larger magni-
tude differences indicate that there is a statistical difference between important
and unimportant variables; this is desirable as it indicates that known impor-
tant variables are captured. The plots can be seen in Figure 3 for SHAP (3a and
3b), LIME (3c and 3d), and PFI (3e and 3f). SMALL is located on the left, and
LARGE on the right. The x-axis represents each individual instance [10 sets of
explainer values], and the y-axis shows the estimated importance.

It is immediately clear that in SMALL known important and unimportant
variables are captured well by the explainer values; this ratifies the findings in
the previous work [7]. For SHAP and PFI, all distributions show significant dif-
ferences across the 30 instances, showing that there is a clear distinction between
important and unimportant variables, which can be seen in Figure 3a and 3e re-
spectively. Conversely, for LIME, 5 out of 30 instances show that there is no
statistical difference between important and unimportant variables, which may
cause issues when scaling this to LARGE. Overall, it is clear that important
variables are captured for all three explainers in this dimension.

In LARGE, we can see that according to the statistical tests, the distributions
of important and unimportant variables are all statistically different in Figure
3b for SHAP and 3f for PFI. This indicates that important variables have higher
estimated importances than unimportant variables. That being said, for LIME
16 of the 30 instances do not show significant differences in the distributions.
This indicates that the method does not scale well — although in some cases, im-
portant variables were captured. In the case of PFI, all instances show significant
differences in the distribution of important and unimportant variables.
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(a) SHAP Explainer data for SMALL– dis-
tributions of important and unimportant
variables

(b) SHAP Explainer data for LARGE– dis-
tributions of important and unimportant
variables

(c) LIME Explainer data for SMALL– dis-
tributions of important and unimportant
variables

(d) LIME Explainer data for LARGE– dis-
tributions of important and unimportant
variables

(e) PFI Explainer data for SMALL– dis-
tributions of important and unimportant
variables

(f) PFI Explainer data for LARGE– dis-
tributions of important and unimportant
variables

Fig. 3: For the three XAI attribution methods, we see the distributions of im-
portant and unimportant variables. This is across 300 models: 30 instances and
10 ILS runs to sample for each instance

6 Limitations

Although PUBOi problems are constructed to facilitate study of variable im-
portance, they also contain variable interactions. The polynomial terms which
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are passed to the Chook functions include two variables. It therefore follows
that, if two variables co-occur in a term, then they interact (they affect fitness
together). Feature attribution methods were used in this study, but these may
not properly consider feature interactivity [12]. This likely affected the results
in LARGE due to the presence of more features.

Empirically, we found a good budget in SMALL and this was also used in
LARGE, however this is a limitation as it is not relative to the size of the search
space. Future work will consider dimension-dependent budgeting.

7 Conclusion

In this work, we explored the potential of using explainable AI (XAI) meth-
ods to estimate variable importance in high-dimensional optimisation problems
using a recently proposed benchmark, PUBOi. This is used as a test-bed for
experiments as it facilitates tunable variable importance, providing a ground-
truth environment. We trained random forests on the sampled search spaces of
PUBOi instances for low and high-dimensional data. XAI feature attribution
methods were applied to the models. We performed statistical tests to compare
the distribution of important and unimportant variables and found that in high-
dimensional instances, the important variables were captured but to a lesser
extent than in low-dimensional instances. This shows potential that the method
has potential in high dimensions. Data and code for this work can be found in a
public Zenodo repository3.
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