
RESEARCH ARTICLE

Mangrove Crab Ucides cordatus Removal Does

Not Affect Sediment Parameters and Stipule

Production in a One Year Experiment in

Northern Brazil

Nathalie Pülmanns1☯*, Ulf Mehlig2☯, Inga Nordhaus1☯, Ulrich Saint-Paul1☯, Karen Diele3,4☯

1 Department of Ecology, Mangrove ecology group, Leibniz Center for Tropical Marine Ecology, Bremen,
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Abstract

Mangrove crabs influence ecosystem processes through bioturbation and/or litter feeding.

In Brazilian mangroves, the abundant and commercially important crab Ucides cordatus is

the main faunal modifier of microtopography establishing up to 2 m deep burrows. They pro-

cess more than 70% of the leaf litter and propagule production, thus promoting microbial

degradation of detritus and benefiting microbe-feeding fiddler crabs. The accelerated nutri-

ent turn-over and increased sediment oxygenation mediated by U. cordatus may enhance

mangrove tree growth. Such positive feed-back loop was tested in North Brazil through a

one year crab removal experiment simulating increased harvesting rates in a mature Rhizo-

phora mangle forest. Investigated response parameters were sediment salinity, organic

matter content, CO2 efflux rates of the surface sediment, and reduction potential. We also

determined stipule fall of the mangrove tree R. mangle as a proxy for tree growth. Three

treatments were applied to twelve experimental plots (13 m × 13 m each): crab removal, dis-

turbance control and control. Within one year, the number of U. cordatus burrows inside the

four removal plots decreased on average to 52% of the initial number. Despite this distinct

reduction in burrow density of this large bioturbator, none of the measured parameters dif-

fered between treatments. Instead, most parameters were clearly influenced by seasonal

changes in precipitation. Hence, in the studied R. mangle forest, abiotic factors seem to be

more important drivers of ecosystem processes than factors mediated by U. cordatus, at

least within the studied timespan of one year.

Introduction

Burrowing crabs are ecosystem engineers and their importance for sediment processes has

been discussed for many years [1–5], along with effects of their feeding activities on forest
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structure and nutrient cycling [2,6–11]. To determine the ecological roles and ecosystemic

importance of burrowing crabs, addition or exclusion and removal experiments have been

performed. In such experiments the size of the experimental plots varies depending on the size

and density of the crabs and the underlying research questions. For example, for determining

the effects of exclusion of small fiddler crabs (Uca spp.) on the growth of mangrove seedlings,

small scale experiments with plot sizes of 1 m × 1 m proved to be sufficient [12]. Assessing the

effects of larger crabs in mature forests requires larger plot sizes and longer experimental time

frames, and thus considerably more effort. Only one such study, excluding crabs for 12 months

from three 225 m2 plots, has been performed to date in Australia [5].

Exclusion of burrowing fiddler crabs from salt marshes led to an increase in meiofaunal

density, probably due to reduced competition for food (bacteria, microphytobenthos) on the

sediment surface [13,14]. In other studies, however, a reduction of crab burrows decreased the

density of associated meio- and macrobentic infauna [15,16]. Reduced bioturbation can result

in more saline and reduced sediment conditions and also affect the growth of mangrove seed-

lings [12,17]. Removal of bioturbating fiddler crabs also decreased microbial activity, fungal

decomposition and leaching rates of organic matter in the upper sediment layer of salt marshes

[18,19]. Similarly, crab removal in an Australian mangrove forest, and the only experiment to

date with larger plot sizes, resulted in increased concentrations of sulfide and ammonium in

the sediment and decreased leaf production of trees, as indicated by a significantly reduced

stipule fall rate [5].

Most past research efforts to investigate the ecosystemic role of crabs have focussed on

smaller burrowing species and small-scale experiments, and on crabs from the Indo-West-

Pacific (IWP). Results from the IWP region are not necessarily representative for the Atlantic-

east-Pacific (AEP) system, since flora and invertebrate fauna of the latter biogeographical area

is much less diverse [20].

On the Atlantic side of the AEP, mangrove microtopography is dominated by the large bur-

rowing crab Ucides cordatus (Ucididae). The species is an obligate mangrove dweller, living in

up to 2 m deep burrows [9]. In Northern Brazil, U. cordatus occurs at average densities of 1.7

individuals m-2 [21]. Due to its large size (carapace width up to 10 cm [22]), it provides 63% of

the total faunal biomass compared to sympatric fiddler crabs, which contribute 12% with

approximately 19 individuals m-2 [7]. U. cordatus sustains its high biomass by processing more

than two thirds of the annual mangrove litter and propagule production in the high intertidal

N-Brazilian forest, most of which would otherwise be exported by the tides [8,9]. However,

since U. cordatus assimilates only parts of the energy inherent in the food, a large percentage of

the matter remains as leaf fragments, due to sloppy feeding, or as faeces, becoming available

for decomposing bacteria.

Koch and Wolff [7] hypothesized for this system that fiddler crabs feed on bacteria, which

in turn feed on the leaf remains from U. cordatus. They further postulated a positive feedback

effect on the primary production, since nutrients in the leaf litter are first retained by the feed-

ing activity of U. cordatus and then re-mineralized by bacteria, thereby becoming available to

the trees. The authors additionally hypothesized that a significant reduction or loss of one of

the model’s components would have a negative impact on the remaining components, conse-

quently affecting primary production If, for example, crab numbers decreased significantly in

an otherwise healthy mangrove forest, nutrients locked in leaf litter would no longer be

retained in the system under this scenario. Mangrove trees would suffer from decreased bio-

turbation, since e.g. the crabs’ burrows facilitate sediment oxygenation, preventing the forma-

tion of phytotoxins such as H2S [7]. Burrowing crabs may also impact sediment desalination,

the reduction state, the organic matter decomposition and thereby CO2 efflux rates of the sedi-

ment, which in turn may drive changes in stipule production.

Ucides cordatus Removal Experiment
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No manipulative experiment has been conducted yet to assess the above predictions. It is

however important to understand the functional role of U. cordatus in the mangrove ecosys-

tem, given re-occurring crab population declines in North-eastern Brazil caused by a spread-

ing fungal disease (“Lethargic crab disease” [23,24]) and increasing fishing pressure across the

country due to the application of a new illegal capture technique [25]. U. cordatus is economi-

cally important, providing the livelihood for thousands of artisanal fishermen in Brazil. In

Northern Brazil, approximately 7 tons per km2 are captured per year [26]. Due to its slow

growth [27,28] the species is listed in Brazilian legislation under the category “species at risk of

overexploitation or overfished” [29].

We have conducted a one year U. cordatus removal experiment in the mangrove forest of

the Northern Brazilian Caeté estuary to investigate possible ecosystemic effects of significantly

decreased crab numbers, such as would result from a significantly increased fishing pressure.

The following sediment parameters were monitored: salinity, organic matter content, CO2

efflux rate of the surface sediment (as a proxy for microbial carbon degradation) and reduction

potential. To assess impacts on biota, tree leaf production using stipule fall as proxy [27] were

assessed.

We hypothesize that a reduction of the number of U. cordatus leads to 1) increasing sedi-

ment salinity, 2) decreasing organic matter content of the sediment, 3) reduced CO2 efflux

rates of the surface sediment due to a decrease in organic matter and 4) more reduced condi-

tions in the sediment. Further, we predict that the reduction of U. cordatus will 5) decrease

stipule production.

Material and Methods

Study area

The study was performed in a mangrove forest in the Caeté estuary, Pará state, North Brazil.

Field work permission was granted by the Instituto Chico Mendes de Conservação da Biodi-

versidade (ICMBIO) and the Stakeholder Council of the Extrativist Reserve Caeté-Taperaçu,

SISBIO Authorization number: 30007–1. The removal experiment was implemented near the

tidal channel Furo Grande on the Ajuruteua peninsula (46˚38’W 0˚50’S). At the study site, the

dominant mangrove tree species is Rhizophora mangle L. (Rhizophoraceae). Other mangrove

tree species are Avicennia germinans (L.) L. (Acanthaceae) and Laguncularia racemosa (L.)

C. F. Gaertn. (Combretaceae) [30].

The region has semidiurnal tides with amplitudes of 2 to 5 m [31,32]. Mean annual temper-

ature for the study years 2011 and 2012 was 26.1˚C (Tracuateua weather station, 50 km from

the study site). Precipitation was 2621 mm in 2011 and decreased to 1552 mm in 2012 [33].

The wet season occurs typically from January to August and the dry season (monthly

precipitation < 100 mm) from September to December [32].

Experimental design

Twelve experimental plots (13 m × 13 m) were established in the high intertidal zone contain-

ing exclusively R. mangle trees (6–18 trees per plot, up to 15 m height), with a minimum dis-

tance of 15 m in-between them. To reduce variability, plots with similar inundation

frequencies were chosen, as indicated by height range of algal growth on the trees’ stems, and

visually similar sediment characteristics. Each plot was placed around a central mature R. man-
gle tree. The diameter of central trees (measured in the cylindrical portion of the stem 50 cm

above the highest stilt root) ranged between 18 and 26.5 cm (mean ± standard error:

21.7 ± 0.8), central tree heights ranged between 10–14 m. All above ground stilt roots of the

central tree, which roughly mirror the extension of below ground roots [32], were within the
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borders of the plot at the onset of the experiment, and none had grown to the outside by the

end of the experiment. We therefore assume that the central tree’s root system was exclusively

under influence of the sediment conditions induced by the experimental treatments of the

respective plots (see below).

Plots were randomly assigned to three treatments (crab removal, disturbance control and

control; with four replicates each). Possible side effects of the crab removal procedure (see

details below) were assessed by the disturbance control plots, where crab removal was only

simulated, following the approach of Smith et al. [5]. We added an additional replication per

treatment (n = 4), compared to the experimental design of Smith et al. [5]. In each plot, sedi-

ment samples were taken to measure a number of abiotic sediment parameters (sediment

salinity, sediment organic matter content, reduction potential, CO2 efflux rates from the sedi-

ment) and one biotic parameter (leaf production estimated by the stipule fall rate); a detailed

description of the respective procedures is given below. Three replicate sampling points were

randomly chosen inside each plot during each sampling campaign, but in a distance of at least

15 cm away from U. cordatus burrow entrances and from spots where superficial R. mangle
roots touched the sediment surface. This allowed the investigation of potential larger scale eco-

systemic changes beyond the immediate neighbourhood of burrows or roots. The selected

parameters were measured at all three points (reduction potential, CO2 efflux rate) or at a sub-

set of two (salinity, organic matter).

The experiment ran from 19/11/2011 until 04/11/2012. Sediment salinity, organic matter,

CO2 efflux rate and reduction potential were measured during eight sampling campaigns.

From November 2011 until January 2012 the sampling of the above parameters was conducted

monthly, thereafter in intervals of six weeks until April 2012 and after that every two months

until November 2012. Stipule fall was assessed by biweekly collection of material in litter traps

(24 samplings in total).

Tidal inundation

Water pressure data loggers (HOBO U20, onset) were employed from 05/03/2012 to 15/03/

2012 to determine water levels and calculate inundation frequencies. To extrapolate the data to

the entire study period, the pressure data obtained for the 10 days were matched with the tide

table for the nearest site from the Brazilian National Oceanographic Database (Banco Nacional

de Dados Oceanográficos, BNDO, Fundeadouro de Salinópolis, http://www.mar.mil.br, 2012,

80 km northwest from the study site). Salinity and temperature readings of tidal surface water

were taken in the middle of the tidal channel Furo Grande, approximately 300 m away from

the experimental plots. Readings were taken in the morning and late afternoon of each sam-

pling day.

Crab removal

The term “crab removal” rather than of “crab exclusion” is used since no fences or other artifi-

cial borders were applied around the experimental plots. This way likely side effects of fencing

in this dynamic macrotidal environment, such as changes in sediment deposition and leaf

export, were avoided [12,13,19]. U. cordatus specimens were caught from removal plots by

deploying approximately 400 nylon nets (20 cm × 30 cm) per sampling day. The capture tech-

nique was modified after a technique called “redinha” (tangle-netting), used illegally by crab

fishermen in many other parts of Brazil [34,35]. Each net was fixed to the ground with one cut-

ting of R. mangle aerial roots (25 cm, long; obtained outside the experimental plots) inserted

into the sediment in front a crab burrow. Cuttings were rinsed and dried before applying them

to minimize leaching into the sediment. The nets were then slightly pushed into the burrow
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entrances. The following day, crabs entangled in the nets were counted and the carapace width

(cm) of all or every second individual (if there were more than 10) recorded. Due to the activity

of crab eating raccoons (Procyon cancrivorus) and other predators, captured crabs had fre-

quently been consumed before the tangle-nets could be controlled, indicated by crab remains.

These remains were also counted and carapace widths measured, if possible. All survivors

were released sufficiently far away from the experimental plots to prevent re-immigration.

During the application of nets, care was taken to minimize sediment disturbance, e.g. by using

firm stilt roots as walkways. Crab removal started with the first sampling campaign in Novem-

ber 2011 and was conducted biweekly for 3–6 days (3 days sampling during crab catching cam-

paigns and 6 days during campaigns for sampling environmental parameters only) for each

plot during neap tides over one year. Crab removal was conducted during neap tides, because

crabs are more active then, and close their burrows less frequently than during spring tides

[36]. Capture success was calculated for each removal plot by dividing the number of captured

living crabs and carapace remains by the number of installed nets and the number of capture

days (crabs d-1 net-1). Additional manual removal of crabs moving around freely inside the

plots was necessary during mass mate searching events during spring tides [37]. These events

occurred after new moon in January 2012 and after full moon in February and March 2012.

Crab burrow density (burrows m-2) was monitored every 4–5 weeks over the entire study

period by counting closed and open burrows in always the same two 1 m × 13 m subplots per

removal plot. For the disturbance control plots the applied capture technique was simulated by

pushing the mangrove cuttings without nets into the ground, followed by removal of the cut-

ting, and stressing the tree roots by walking over them to a similar extent as in the removal

plots.

Organic matter content and salinity of the sediment

Two sediment cores were taken per plot and sampling campaign with a peat sampler (Eijkelk-

amp) of 50 cm length and 6 cm diameter. Subsamples of the extracted sediment were taken at

core depths of 1, 5, 10, 20, 30, 40, and 50 cm, filled into plastic vials and stored at temperatures

� 0˚C until further processing. Samples were homogenized and divided into two portions.

One portion was used for the gravimetrical determination of the water content of the sediment

through weight loss by drying at 104˚C. The organic matter content of the dry sample was

obtained subsequently through weight loss by combustion at 450˚C. The second portion was

used to analyse sediment salinity. Two grams of the sediment were mixed with 10 ml of dis-

tilled water and shaken for 24 h on a mechanical shaker (MA136, Marconi). Afterwards, the

salinity of the sediment extract was measured with a WTW TetraCon 325 conductivity meter

connected to a WTW multi-parameter instrument (340i). Sediment salinity was calculated

based on the previously measured original water content of the respective subsample [38].

CO2 efflux rate of the surface sediment

Six CO2 efflux rate measurements of the surface sediment were performed in each of the twelve

plots at each sampling date. At each of the three sampling points (see above), two PVC collars

of 20 cm diameter were inserted several centimetres into the sediment void of visible roots, U.

cordatus burrows and mostly also void of burrows of other crab species. These two collars were

handled as replicates for one sampling point. A distance of 40–50 cm was maintained between

the two collars at each sampling point, large enough to ensure that the disturbance created by

the insertion of one collar into the sediment would not affect the sediment of the other collar

and small enough to represent the sampling point. To avoid any influence of CO2 release due

to the insertion of the collars, measurements were started 1 h after the installation. An opaque
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respiration chamber was connected to a CO2/H2O infrared gas analyser (LI-8100A, LI-COR,

Biosciences) and fitted on top of the PVC collar. The CO2 concentration inside the chamber

was recorded for 2 min. The measurement was repeated four times per collar. Between repli-

cates, the chamber was opened for 25 s to release the accumulated CO2. Sediment temperature

was measured outside the collar at 2 cm sediment depth by thermocouple (OMEGA Engineer-

ing). The CO2 efflux rates were calculated [38], assuming a linear increase in CO2 concentra-

tion over time. A correction for changing sediment temperature was applied.

Reduction potential

Three sediment cores were taken in each plot per sampling date at the three sampling points.

Redox potential (± 1.0 mV), pH (± 0.1) and temperature (± 0.1˚C) were measured within the

sediment cores immediately after their extraction at 1, 5, 10, 20, 30, 40, and 50 cm depth with a

Sartorius ORP (redox) combination electrode and a WTW Sentix 41 pH-electrode connected

to a WTW portable meter (Multi 340i), respectively.

As indicator of the reduction force of a reduction system, the rH value was calculated

including the redox potential, temperature and pH value of each measurement [39]. rH values

range between 0 (strongly reducing conditions) and 42 (strongly oxidizing conditions).

Stipule production

Stipule fall of R. mangle trees is related to the unfolding of new pairs of leaves. It can therefore

be used as an indicator for the leaf production of these trees [40–42]. Stipule fall in the genus

Rhizophora is known to be influenced by sediment characteristics [40–42] and was shown to

respond to changing sediment conditions within one year [5].

Litter of the central tree in each plot was sampled with two litter traps (0.25 m2 each) fixed

to the stem at 50 cm horizontal distance in 5–7 m height to ensure autochthonous litter. Traps

were emptied biweekly. Stipules were separated from other litter components and dried at

104˚C to constant weight (g). Stipule dry matter from both collectors was pooled and stipule

fall rates (g m-2 d-1) calculated.

Statistical analyses

The statistical analyses were carried out following the protocols for data exploration and analy-

sis of Zuur et al. [43,44] using the statistical programming environment R [45] with the pack-

ages “nlme” [46], “mgcv” [47], “lattice” [48] and “ggplot2” [49]. Presented values are shown as

mean ± standard error (se). Before further analyses, data were checked for outliers (Cook’s dis-

tance), which were removed, if necessary. All data for the analysis are available in the support-

ing information (S1 File).

Carapace widths of the captured crabs at each plot were analysed for differences over time

with a one-way ANOVA. Linear mixed-effects models (LME) and generalized additive mixed-

effects models (GAMM) [47,50,44,51] were used to model individual response variables (sedi-

ment salinity, organic matter content, CO2 efflux rate and reduction potential/rH) in relation

to different treatments, time and their interaction effect. In some models (including sediment

salinity, organic matter content and rH), sediment depth was considered as an additional

covariate. Plot and sampling points within plots (when appropriate) were used as random

terms to account for the nested structure of the experimental design. When trends over sedi-

ment depth or time were not linear, these covariates were set as categorical covariates. To find

the optimal fixed terms, stepwise backward model selection was used based on the maximum

likelihood ratio test (ML) and/or the Akaike Information Criterion (AIC). When an interac-

tion was part of the final model, all participating main factors were automatically retained. The
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validity of the models was checked by examining diagnostic plots of residual versus fitted val-

ues and residuals versus covariates. Independence was examined by plotting residuals versus

time. Final models were presented with the restricted maximum likelihood estimation method

(REML).

Stipule data were analysed with a GAMM model for differences among treatments over

time. GAMM’s are non-parametric regression models and allow, in the case of the stipule data,

for nonlinear trends over time with a smoothing function for the predictor variable time.

Results

Inundation levels

All twelve experimental plots had similar inundation levels and were flooded during high tide

on 131 days out of the 355 days of the study period. This corresponded to a flooding frequency

of 14–19 days per month. Surface water salinity at the Furo Grande varied from 22.8 to 36.9

during the twelve months. Lowest salinities were recorded during periods of high rainfall

(Fig 1). Surface water temperatures ranged between 27.1˚C and 30.5˚C.

Crab removal

It proved logistically feasible to set up to approximately 400 nylon nets per sampling day and

per removal plot, which initially covered around 50% of all U. cordatus burrows and, at six

months of the experiment, around 90–100% of all U. cordatus burrows. In total, 4866 crabs

were caught during the one year study, including live crabs (2872), and remains of dead crabs

(1994). Additional crab parts scattered by predators within plots of further 1563 captured

crabs were counted, but not included in the capture success calculation for a more conservative

estimate. During mass mate searching events 844 crabs were additionally caught by hand

inside the removal plots. Capture success varied over the year from 0 to 0.2 crabs d-1 net-1 with

a higher success during the mass mate searching events between January and March 2012 (S1

Fig). Crab burrow density in the removal plots slowly decreased until stabilizing more or less

towards the end of the experiment. Burrow density inside the removal plots decreased on aver-

age to 52% of the initial number (Table 1, data from other plots and samplings are listed in in

the supporting material in S1 Table). The carapace width of the captured U. cordatus speci-

mens decreased over time in removal plot 1 (F-value = 50.4, df = 1, p-value< 0.001) and 3 (F-

Fig 1. Precipitation data of the study area. Total monthly precipitation (mm) recorded at the weather station

in Tracuateua, 50 km southwest from the study site (INMET, 2013). Data sets are from November 2011 until

November 2012.

doi:10.1371/journal.pone.0167375.g001
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value = 38.9, df = 1, p-value< 0.001), showing that the larger animals (the more efficient bio-

turbators) were constantly removed. However, it did not differ over the year in removal plot 2

(F-value = 2.6, df = 1, p-value = 0.1) and 4 (F-value = 0.3, df = 1, p-value = 0.6) (Table 2).

Sediment parameters

No consistent difference between treatments in respect to sediment salinity across depth and

time were detected. In months with significant rainfall, salinity was lowest near the sediment

surface and increased gradually with depth (Fig 2, March and April). In the dryer months

salinities tended to be high over the whole sediment depth range. This relationship was

reflected by the final LME model including a three way interaction (L. Ratio = 26.2, df = 12,

p-value = 0.01, S2 File).

Treatments for the organic matter content did not differ among each other over time

(Fig 3) (interaction term treatment × time was not significant, L. Ratio = 2.0, df = 2, p-

value = 0.4, S3 File). However, organic matter content was generally lowest at the greatest

depth. The form of the organic matter-depth curves differed slightly between treatments at

each sampling campaign (interaction term sediment depth × treatment: L. Ratio = 8.7, df = 2,

p-value = 0.01, S2 Table); control values were higher than those of the other two treatments for

most sampling date/depth combinations (Fig 3). Changes also occurred among sampling cam-

paigns as reflected by the significant interaction term sediment depth × time included in the

final model (L. Ratio = 6.2, df = 1, p-value = 0.01, S3 File).

The CO2 efflux rate of the surface sediment showed the same seasonal trend in all treat-

ments, with lowest CO2 efflux rates in the peak wet season (Fig 4). Only the variable time was

significant (L. Ratio = 100.2, df = 7, p-value< 0.001, S4 File).

rH values in all treatments decreased with depth during all sampling campaigns. However,

no distinct difference among treatments evolved over time (Fig 5). The final model retained a

three-way interaction (L. Ratio = 29.04, df = 12, p-value = 0.004, S5 File), indicating that the

specific form of the rH-depth curves was not consistent over all treatment and sampling dates.

Table 1. Crab burrow density. U. cordatus burrow density (burrows m-2) inside the four removal plots for the first and last sampling. Decrease in burrow den-

sity from the first until the last sampling is given in %. Data from the other plots and sampling occasions are listed in the supporting material (S1 Table).

Removal plot 1. sampling 8. sampling Decrease in %

1 4.7 2.1 55.3

2 6.7 3.9 41.8

3 3.1 0.5 83.9

4 4.4a 3.2 27.3

a Crab burrow density of plot 4 was estimated one month after the first sampling; decrease in % may thus be underestimated.

doi:10.1371/journal.pone.0167375.t001

Table 2. Mean carapace width of U. cordatus. Mean carapace width ± standard deviation of captured crabs and carapace remains of the first and last sam-

pling. Sample size is given in the brackets. The change of the carapace width from the first to the last sampling is given in % and its statistical significance is

given in the brackets (p).

Removal plot 1. sampling 8. sampling Change in % (p-value)

1 6.5 ± 0.8 (35) 5.2 ± 1.0 (25) - 20 (p < 0.001)

2 5.1 ± 0.7 (35) 5.4 ± 0.9 (30) + 6 (p = 0.1)

3 6.1 ± 0.9 (18) 5.7 ± 1.0 (25) - 7 (p < 0.001)

4 5.0 ± 0.7 (50) 5.1 ± 1.0 (43) + 2 (p = 0.6)

doi:10.1371/journal.pone.0167375.t002
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Stipule production

Stipule fall rate did not differ significantly between treatments (F-value = 0.3, df = 2, p-

value = 0.7, S6 File). However, it showed a distinct bimodal temporal pattern, therefore the

inclusion of a smoothing function for the variable time improved the model (F-value = 16.9,

df = 7.9, p-value< 0.001, S6 File). Peaks appeared in March-April and in August 2012 (Fig 6).

Discussion

None of the studied response parameters was affected by the decrease in U. cordatus burrow

numbers in the one year removal experiment, hence all initially stated hypotheses have to be

rejected. As in the crab removal study of Smith et al. [5] in Australia, crabs were not completely

removed from the exclusion plots in our experiment (we simulated a distinctly decreased fish-

ing pressure rather than catastrophic mass mortality), but their numbers significantly

decreased by 52% of the initial overall burrow density of 3.7–6.7 burrows-1 m-2. We increased

the number of replication by a factor one compared to the Australian study (a further increase

of plot numbers was logistically unachievable) and due to the inclusion of a disturbance con-

trol treatment in our experimental design, we can exclude that the findings are procedural

artefacts. In fact, here we show for the first time that the mangrove ecosystem of the North

Fig 2. Measured sediment salinity. Mean sediment salinity ± standard error (se) over sediment depth (cm)

in crab removal plots, disturbance control plots and control plots (see legend for symbols). The data of seven

sampling campaigns between November 2011 and November 2012 are plotted. Values for the second

sampling in December are missing because of technical problems.

doi:10.1371/journal.pone.0167375.g002

Ucides cordatus Removal Experiment

PLOS ONE | DOI:10.1371/journal.pone.0167375 December 1, 2016 9 / 19



Brazilian Amazon may be resilient to reduced U. cordatus numbers within a time span of one

year, at least regarding the measured parameters.

Salinity

The rational of our initial hypothesis that large U. cordatus burrows would significantly desali-

nise the sediment was based on findings of studies of other species [12,52,53]. For example,

Smith et al. [12] found an increase in sediment salinity after experimental reduction of the

number of Uca spp. burrows. However, in contrast to their study which was performed in rela-

tively open plots with small mangrove seedlings, our study was performed in a mature, closed-

canopy R. mangle forest (compare Table 3). The lack of salinity reduction through U. cordatus

Fig 3. Measured organic matter content. Mean organic matter content ± standard error (se) (% of dry

mass) over sediment depth (cm) in crab removal plots, disturbance control plots and control plots (see legend

for symbols). The data of eight sampling campaigns between November 2011 and November 2012 are

plotted.

doi:10.1371/journal.pone.0167375.g003
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burrows suggests that the amounts of salt removed by flushing of U. cordatus burrows are

insignificant compared to the amount of salt accumulated by the extensive root systems of the

central mangrove trees during water uptake [53–55]. Furthermore, burrows with one opening,

typical for U. cordatus [56] as well as for Uca spp., may not be as efficient as desalinators as the

burrows with multiple openings of many sesarmid crabs in the IWP which allow a flow

through of tidal water between openings [57–60].

Organic matter content and CO2 efflux rate

Our hypothesis of decreased sediment organic matter storage due to removal of U. cordatus
was based on the fact that these crabs are the dominant litter feeder in Brazilian mangrove for-

ests; as such, the animals retain litter material in the mangrove forest that would otherwise be

flushed away by the tides [8,9]. In addition to their (sloppy) feeding at the sediment surface,

the crabs carry litter into their burrows where it is often only partially consumed [36,61]. A

removal of crabs should therefore lead to an increase in sediment organic matter content.

However, U. cordatus does not only accumulate organic matter, but at the same time also facil-

itates organic matter processing by other organisms, leading to a decrease in organic matter

stock. Enhanced organic matter decomposition can be increased under drier conditions (e.g.

low tide, dry season), when burrow walls are more oxidized due to contact with atmospheric

oxygen. Consequently, carbon oxidation is facilitated by the presence of burrows, resulting in

diminishing sediment organic matter [1,62]. A decreasing number of crabs would therefore

affect both (antagonistic) processes and could potentially result in a zero net change. In addi-

tion, competition for leaf litter among crabs is strong [8]. Lower crab densities (i.e. inside the

removal plots) may therefore allow the remaining crabs to increase their per capita food

uptake, allowing them to process the same amount of leaf litter as in a situation with higher

crab numbers.

Regarding sediment CO2 efflux rates we assumed that crab removal would lead to a

decrease in this parameter. Sediment CO2 efflux rates reflect the activity of microbes, and a

reduced crab feeding activity would lead to a decrease in substrate availability for these organ-

isms. However, since no changes in the organic matter content of the sediment occurred, it is

not surprising that sediment CO2 efflux rates did also not change.

Fig 4. Measured CO2 efflux rate. Mean CO2 efflux rate (μmol m-2 s-1) ± standard error (se) in crab removal

plots, disturbance control plots and control plots (see legend for symbols). The data of eight sampling

campaigns between November 2011 and November 2012 are plotted.

doi:10.1371/journal.pone.0167375.g004

Ucides cordatus Removal Experiment

PLOS ONE | DOI:10.1371/journal.pone.0167375 December 1, 2016 11 / 19



rH

Crab burrows may influence the reduction state of the sediment. Pülmanns et al. [63] showed

such an effect at least for the immediate neighborhood of U. cordatus burrow walls. In a

North-Eastern Brazilian area with burrow densities much higher than at our study site (12 ± 3

burrows m−2 versus 6.7 burrows m−2 [64]), U. cordatus bioturbation led to more oxidizing

conditions. However, our rH results do not support a general, i.e. far-reaching effect of the

burrows on sediment reduction state, probably due to the limited reach of aeration effects at

individual burrows [63] in combination with the relatively low burrow densities (also in our

control plots). Under these conditions, overlap between oxidized zones around burrows is

minimal.

Fig 5. Measured rH values. Mean rH ± standard error (se) over sediment depth (cm) in crab removal plots,

disturbance control plots and control plots (see legend for symbols). The data of eight sampling campaigns

between November 2011 and November 2012 are plotted.

doi:10.1371/journal.pone.0167375.g005
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Several other studies focusing on fiddler crabs, with manifold higher burrow densities (60

to more than 200 burrows m-2), also recorded substantial changes in the reduction potential

for the upper sediment layer in bioturbated areas [15,65–69]. However, most authors do not

report the distance between sampling points and the nearest burrows, making it difficult to

compare their data with ours.

Stipule production

Since none of the measured sediment parameters changed with crab removal, it is not surpris-

ing that stipule fall rate did not change in the removal plots.

Experimental removal of mostly sesarmid mangrove crabs (which are generally much

smaller than U. cordatus) resulted in a distinct decrease in stipule fall rate during a one year

study period in Australia [5]. In contrast to our one year experiment, sediment conditions in

the Australian crab removal study changed inside the exclusion plots (increased concentra-

tion of sulfide and ammonium) as well as stipule fall [5]. It remains unclear why stipule fall

in the Australian mangrove ecosystem was affected by the reduction of burrow density, while

in North Brazilian it was not. This is even more intriguing since the total number of caught

crabs in our study was more than threefold higher than that of the Australian study (Brazil:

in total 4866 U. cordatus caught with nets, Australia: approximately 1500 crabs—mostly

Sesarma messa and Sesarma semperi longicristatum—caught with pitfall traps), and our

design included four replicate plots, compared to only three in the Australian study. One rea-

son for this outcome could be that our plots contained 6–18 relatively large trees each,

whereas the Australian plots contained 52–81 smaller trees. Younger trees with smaller root

system extension may react faster to changes in sediment characteristics than more mature

trees with high root biomass. Furthermore, the location of the study site along the tidal gradi-

ent differed between the two sites. Our study was conducted in the high intertidal, whereas

Smith III et al. [5] worked in the lower intertidal which was probably more frequently inun-

dated. Thus, in the Australian system, regular tidal flushing of crab burrows is an important

factor amplifying the role of burrows in contrast to the situation in our study, where the

effects of (rare) flushing of the burrows may be too insignificant to influence sediment char-

acteristics within one year.

Fig 6. Measured stipule fall rate. Mean stipule fall rate in dry mass ± standard error (se) (g m-2 d-1) for R.

mangle trees in crab removal plots, disturbance control plots and control plots (see legend for symbols). The

data of 24 biweekly sampling campaigns between November 2011 and November 2012 are plotted.

doi:10.1371/journal.pone.0167375.g006
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Seasonal effects

In contrast to the lack of consistent differences in any of the measured parameters between

crab removal and both control treatments, most parameters exhibited distinct seasonal

changes. Precipitation is an important abiotic factor influencing sediment salinity conditions

in mangrove forests [70,71]. Changes in sediment salinity can influence growth and phenology

of R. mangle trees, and tree growth and flower bud production is enhanced during the wet sea-

son [72–74]. This agrees with the observed highest stipule fall rates in our plots from March to

April when sediment salinities were lowest. Precipitation does not only affect salinity, but can,

independently from the tidal cycle, saturate the sediment with water, creating less oxidized

conditions over extended time intervals. This may lead to sulfate reduction in the upper sedi-

ment layer [70]. In our study, slightly lower rH values were recorded at the sediment surface

during the wet season (Fig 2). Consequently, waterlogged and more anoxic sediment condi-

tions in the upper sediment layers may have led to reduced carbon oxidation rates, resulting in

lower CO2 release (Fig 1) as observed elsewhere [1,70,75]. Overall, our results suggest that

Table 3. Comparison of exclusion/removal experiments with burrowing crabs from the literature.

Study This study Smith et al. 1991 [5] Smith et al. 2009 [12] Dye & Lasiak 1986 [13] Thomas & Blum 2010 [19]

Habitat Mangroves Mangroves Restored coastal marsh Salt marsh Salt marsh

Tide semidiurnal na semidiurnal semidiurnal na

Tidal amplitude 3–5 m na 1 m 1.5 m 0.25 m

Daily flooding Only during spring

tide

na Not daily na 29 times in one year

Study site High intertidal Low intertidal na Mid tide level na

Tree density in

plots

6–18 52–81 1 0 na

Tree species in

plots

Rhizophora

mangle

Rhizophora apiculata,

R. stylosa, R. lamarckii

Languncularia racemosa - Spartina alterniflora

Number of plots 12 9 15 5 12

Size of plots 13 m × 13 m 15 m × 15 m 1 m × 1 m Exclosure: 10–20 cm

diameter PVC pipes,

control: 0.25 m2

Exclosure 1.5 m2, others 1

m2

Tree height 10–14 m na ca. 34–65 cm - -

Crab species Ucides cordatus Sesarma spp. Uca spp. Uca vocans, U. polita Uca pugnax

Crab catching Nylon nets Pitfall traps By hand, enclosure Exclosure Exclosure

Removed crabs 4866 over 1500 na na na

Time of catching Biweekly for 3–6

days

constant Before experiment started na Before experiment started

Removal

efficiency

In average 52% 70–80% na na na

Sampling time 1 year 1 year 11 months 14 days 18 months

Treatments Removal,

disturbance

control, control

Removal, disturbance

control, control

Exclusion, control Exclusion, control Exclusion, adding artificial

burrows, crabs naturally

(not) present

Effects due to

crab removal or

exclusion

none Soil sulphide and

ammonium

concentration increased

Height, trunk diameter and

leaf production decreased

Abundance of

meiobenthos increased

2 to 5-fold

Decrease in soil redox

potential

Decrease of forest

growth (by stipule fall)

Increase of interstitial water

salinity

Decrease in sediment

decomposition

Less reproductive

output (by mature

propagule fall)

Decreased the oxidation-

reduction potential of the

lower organic sediments

Accumulation of carbon in

the sediment

doi:10.1371/journal.pone.0167375.t003
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seasonal changes in precipitation are more important drivers for the measured parameters

than the U. cordatus burrows at the given low natural crab density at our macrotidal study site.

Conclusion

At our Amazonian mangrove study site, all measured parameters remained unaffected by the

artificial removal of more than 4866 U. cordatus over one year from four 13 m × 13 m plots.

We substantially reduced the initial burrow density by more than 50% and thus simulated a

clear substantial increase in fishery or pathogen pressure. However, during our one year study

the pronounced seasonal changes in precipitation had a much stronger influence on the mea-

sured parameters than the crabs’ bioturbation and leaf litter feeding. An experimental duration

of several years could yield different results, due to potential accumulation of (subtle) effects of

reduced crab numbers. A different experimental outcome than ours could also be thinkable

for areas with higher initial crab densities and/or less pronounced rainfall during the rainy sea-

son than in Amazonian. Comparative removal studies involving the same crab species in dif-

ferent environmental contexts would further improve our understanding of the relative

importance (and plasticity) of abiotic versus biotic factors as drivers of mangrove ecosystem

functioning.
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34. Gomes de Santa Fé UMG, da Rocha Araujo AR. Seletividade e eficiênca das artes de pesca utilizadas

na captura de Ucides cordatus (Linnaeus, 1973), Sergipe, Brasil. ACTAPESCA—Acta Fish Aquac.

2013; 1:29–44. Available: http://seer.ufs.br/index.php/actapesca/article/view/1669

35. de Magalhães HF, Costa Neto EM, Schiavetti A. Saberes pesqueiros relacionados à coleta de siris e

caranguejos (Decapoda: Brachyura) no municı́pio de Conde, Estado da Bahia. Biota Neotrop. scielo;

2011; 11:45–54.

Ucides cordatus Removal Experiment

PLOS ONE | DOI:10.1371/journal.pone.0167375 December 1, 2016 17 / 19

http://www.ncbi.nlm.nih.gov/pubmed/16021303
http://www.prpe.mpf.mp.br/internet/content/download/2830/22487/file/in052004mma.pdf
http://www.prpe.mpf.mp.br/internet/content/download/2830/22487/file/in052004mma.pdf
http://www.gtoe.de/public_html/publications/pdf/7-1-2/KrauseGetal.2001,Ecotropica7_93-107.pdf
http://www.gtoe.de/public_html/publications/pdf/7-1-2/KrauseGetal.2001,Ecotropica7_93-107.pdf
http://www.inmet.gov.br
http://seer.ufs.br/index.php/actapesca/article/view/1669


36. Nordhaus I, Diele K, Wolff M. Activity patterns, feeding and burrowing behaviour of the crab Ucides cor-

datus (Ucididae) in a high intertidal mangrove forest in North Brazil. J Exp Mar Bio Ecol. Elsevier B.V.;

2009 Jun; 374(2):104–12.

37. Schmidt AJ, Bemvenuti CE, Diele K. Effects of geophysical cycles on the rhythm of mass mate search-

ing of a harvested mangrove crab. Anim Behav. 2012 Aug; 84(2):333–40.

38. Steubing L, Fangmeier A. Pflanzenökologisches Praktikum: Gelände- und Laborpraktikum der terres-

trischen Pflanzenökologie. Stuttgart: Ulmer; 1992. 205 p.
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