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ABSTRACT
The flapper skate (Dipturus intermedius) is a Critically Endangered skate distributed throughout the NE Atlantic and requiring 
urgent conservation measures. Existing models of the flapper skate's distribution are not detailed enough to inform manage-
ment. The aim of this study was to develop more highly resolved predictions of the skate's distribution across its range, building 
on existing studies to provide a comprehensive baseline for flapper skate presence. Location The NE Atlantic shelf region. A 
Bayesian spatial binomial GAMM was used to model the distribution of flapper skate across the NE Atlantic shelf. Following an 
exhaustive search of fisheries-independent DATRAS catch records, skate presence was modelled as a function of environmen-
tal covariates and AIS fishing pressure data. Skate presence was highest in coastal areas approximately 40–50 km from shore, 
where fishing pressure and benthic productivity were low. A smoother for the bathymetry variable indicated presence was high-
est at depths of 100–200 m. Regions with the highest predicted probability of occurrence included the north and west coasts of 
Scotland, and the west coast of Ireland near Counties Clare and Galway. In contrast, very low support was given for presence in 
the southern and central North Sea, likely reflecting historical population collapse, as well as in deeper offshore waters beyond 
the shelf. This study presents the first large-scale model of flapper skate presence across the NE Atlantic shelf that integrates both 
environmental and fishing pressure data, providing new baseline insights into habitat use in the North Sea and around Ireland. 
Three core regions of presence were identified, likely reflecting natural refugia from fishing and critical habitats (EFHs). Future 
research should prioritise these strongholds, focusing on identifying critical habitats to support focused management strategies.

1   |   Introduction

The flapper skate (Dipturus intermedius) is a large-bodied, 
Critically Endangered elasmobranch, distributed from Northern 
Norway (63° N) to as far south as the Azores (Ellis et al. 2021; 
Garbett et al. 2023). Although historically of little commercial 
value, the species is a popular amongst recreational anglers 
and divers in the UK, which is a source of income and consid-
erable monitoring data for the species (Kenter et al. 2013; Neat 
et al. 2015; Régnier et al. 2024). Like other large-bodied elasmo-
branchs, it follows a k-selected life history strategy, characterised 

by slow growth, late maturity and low reproductive output 
(Brander 1981; Dulvy et al. 2000; Thorburn et al. 2023; Régnier 
et al. 2024). As a result, the flapper skate is considered highly 
susceptible to any form of exploitation or impacts on recruitment 
(Brander  1981; Dulvy et  al.  2000; Dulvy and Reynolds  2002; 
Régnier et al. 2021). This vulnerability, combined with sustained 
overfishing throughout the 20th century, led to severe popula-
tion declines and local extirpations throughout the NE Atlantic 
(Brander  1981; Dulvy et  al.  2000; Dulvy and Reynolds  2002; 
Ellis et  al.  2021), such that the flapper skate is now a threat-
ened species of global conservation concern (NIEA  2004; 
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HELCOM  2006; OSPAR Commission  2008; NatureScot  2020; 
Ellis et al. 2021).

Due to a high degree of morphological conservatism shared 
by the long-nosed skates (genus Dipturus; Iglésias et al. 2010), 
the flapper skate has been the subject of several taxonomic 
revisions (Garbett et  al.  2023). Previously grouped with the 
common blue skate (now D. batis) under the ‘common skate’ 
(then D. batis) nomenclature, the flapper skate received for-
mal recognition as a species in 2021 (Ellis et al. 2021), follow-
ing molecular and morphological evidence published a decade 
earlier (Griffiths et  al.  2010; Iglésias et  al.  2010). Although 
superficially similar, the two species have distinct life histo-
ries and ecologies, which necessitate tailored management 
strategies (Ellis et al. 2021; Garbett et al. 2023). For example, 
the larger body size and later age at maturity of the flapper 
skate (Iglésias et  al.  2010), means that it is more vulnerable 
to depletion than the blue skate (Dulvy and Reynolds 2002). 
This longstanding taxonomic confusion has diminished the 
relevance of most available data for the flapper skate, and 
ongoing misidentification of these species has affected data 
quality even where the correct nomenclature is used (Iglésias 
et al. 2010; Ellis et al. 2021; Garbett et al. 2021). Therefore, our 
present knowledge base for the species is extremely limited 
and several gaps exist around its ecology, distribution and ge-
netics (Garbett et al. 2021).

Given the vulnerability of the flapper skate to fishing pressure 
(Walker and Hislop  1998; Dulvy and Reynolds  2002; Dulvy 
et al. 2021), an understanding of where they are most vulnerable 
is essential for effective management. Although previous inves-
tigations utilising recreational angling records, genetic samples 
and fisheries-independent data have painted a broad picture 
of the flapper skate's presence and absence across its range 
(Lynghammar et al. 2014; Frost et al. 2020; Garbett et al. 2023), 
further research is required to better understand the flapper 
skate's presence within these areas. Species distribution models 
(SDMs) allow researchers to link occurrence records with en-
vironmental data (Guisan and Zimmermann  2000) to provide 
insight into a species' habitat use (Guisan et  al.  2013; Laman 
et al. 2018) and environmental sensitivities (Logez et al. 2012). 
The model outputs can also indicate where they are most ex-
posed to fisheries pressures (Cosandey-Godin et  al.  2015; 
Mannocci et al. 2020; Jubinville et al. 2022) and are therefore 
useful for informing conservation measures or signposting 
future research efforts to do so (Guisan et  al.  2013; Jubinville 
et al. 2021).

To date, three studies have modelled the distribution of the flap-
per skate (Pinto et al. 2016; Bache-Jeffreys et al. 2021; Régnier 
et al. 2024). Pinto et al. (2016) first modelled skate presence off 
the west coast of Scotland using fisheries-independent survey 
records and validated the findings with animal tracking data. 
This study found depth and distance to coast to be key variables 
predicting species presence, with skate occupying largely in-
shore waters and depths up to 300 m (Pinto et al. 2016). More 
recently, skate presence in this region was modelled a second 
time with fisheries-independent catch data, as part of a wider 
study on recovery rates within the Loch Sunart to the Sound 
of Jura Marine Protected Area (LSSJ-MPA; Régnier et al. 2024). 
They found skate presence was highest at depths of 150–200 m 

and habitats with a higher proportion of sand substrate (Régnier 
et al. 2024).

Bache-Jeffreys et  al.  (2021) was the first to model the flapper 
skate's distribution across the NE Atlantic shelf using georefer-
enced genetic records (n = 27). This study was successful in pre-
dicting skate presence across its range and revealed surface and 
benthic productivity and bottom temperature to be key drivers 
of skate presence (Bache-Jeffreys et al. 2021). Broad regions of 
importance to skate were highlighted, including the west coast 
of Ireland and Scotland, the south coast of Iceland and the North 
Sea (Bache-Jeffreys et  al.  2021). Although the use of molecu-
lar techniques improved the reliability of their data compared 
to Pinto et al. (2016) and Régnier et al. (2024), the low sample 
size in Bache-Jeffrey et al.'s study precluded robust predictions 
of sufficient detail (Bache-Jeffreys et al. 2021). To model skate 
habitat use across such a wide study area, a larger dataset in-
corporating absence information would improve the accuracy 
and resolution of predictions (Brotons et  al.  2004; Hanberry 
et al. 2012; Grimmett et al. 2020).

Fisheries-independent surveys provide a practical solution to 
address the need for large-scale, standardised presence–absence 
data. Due to its large body size, the flapper skate is vulnerable 
to incidental capture throughout its life, resulting in opportu-
nistic catch records across much of its range (Iglésias et al. 2010; 
Pinto et  al.  2016; Frost et  al.  2020; Garbett et  al.  2023). Stock 
assessment surveys tend to be conducted annually using consis-
tent methodologies across broad geographic areas, making them 
particularly valuable for species distribution modelling (Maes 
et al. 2015; Petersen et al. 2021). Subsequently, these data have 
been widely applied in models across marine systems (Munoz 
et al. 2013; Pennino et al. 2013; Cosandey-Godin et al. 2015; Maes 
et al. 2015; Paradinas et al. 2015; Paradinas et al. 2016; Laman 
et  al.  2018; Lezama-Ochoa et  al.  2020; Moriarty et  al.  2020; 
McGeady et  al.  2022; Elliott et  al.  2023; Howard et  al.  2023). 
However, variations in gear use, as well as biases in survey de-
sign and reportage, can result in statistical biases which can 
impact model performance (Martínez-Minaya et al. 2018; Zeller 
and Pauly 2018).

To improve the reliability of SDM outputs, statistical artefacts 
can be accounted for by the inclusion of additional data or mod-
elling terms (Martínez-Minaya et al. 2018; Moriarty et al. 2020). 
The Integrated Nested Laplace Approximation (INLA) is a 
flexible Bayesian modelling environment which easily incor-
porates spatial, temporal and random effects (Rue et al.  2009, 
2017; Beguin et al. 2012; Redding et al. 2017; Martínez-Minaya 
et  al.  2018). This flexibility enables users to address complex 
non-linear interactions, spatial autocorrelation and high di-
mensionality (Rue et al. 2017; Martínez-Minaya et al. 2018). As 
a result, this framework has seen increasing popularity since 
its conception (Rue et al. 2017) and has been applied to inves-
tigate fisheries bycatch (Cosandey-Godin et al. 2015), sensitive 
habitats (Pennino et al. 2013; Paradinas et al. 2015) and species 
occurrences (Munoz et  al.  2013; Knapp et  al.  2016; Paradinas 
et al. 2016; Lezama-Ochoa et al. 2020).

Employing the INLA modelling framework, this study aimed 
to generate the first high-resolution, spatially explicit predic-
tions of flapper skate presence across the NE Atlantic shelf, 
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to support the conservation efforts for the species. To cap-
ture the contemporary distribution of the species, fisheries-
independent data from 2010 to 2023 were extracted for the 
entire study area.

2   |   Methods

2.1   |   Occurrence Data

Flapper skate catch records were obtained from ICES DATRAS 
hereafter as ‘DATRAS’, the Database of Trawl Surveys man-
aged by International Council for the Exploration of the Sea 
(ICES DATRAS  2023). ‘HH’ haul data were extracted for the 
surveys within the NE Atlantic shelf region for the years ‘2010–
2023’ (n = 19), using the ‘icesDATRAS’ package in R (Millar 
et al. 2017; see Figure S1). HL ‘length-based’ catch records were 
also extracted for the flapper skate (species code: 711846) for 
each survey (Table  1). Only those surveys with an adequate 
number of presence records for skate were retained for further 
analysis: the Irish Anglerfish and Megrim Survey (IE-IAMS), 
Irish Groundfish Survey (IE-IGFS), the North Sea International 
Bottom Trawl Survey (NS-IBTS) and the Scottish West Coast 
Groundfish Survey (SCOWCGFS). For these datasets, flapper 
skate catch records were aggregated to produce presence or ab-
sence per haul (Figure  1) and then combined into one occur-
rence data set (n = 14,345).

Although it is possible to filter for adult flapper skate based 
on total length measurements (Iglésias et al. 2010; see Garbett 
et al. 2023), it was not possible to implement this filter in the 
present study while retaining sufficient data for the analy-
sis. Therefore, hereon in, D. intermedius records were con-
sidered valid records while acknowledging the caveats with 
these data.

2.2   |   Environmental Data

Environmental predictor variables were selected based on es-
tablished models of skate distribution and included depth (m), 
distance from coast (m), mean bottom temperature (°C), mean 
bottom current velocity (ms−1), mean maximum benthic pri-
mary productivity (mmol. m-3) and mean monthly fishing pres-
sure (hours per month; Table 2). Substrate type was considered 
as a potential explanatory variable, but due to inconsistent cov-
erage and significant data gaps across the full study area, it was 
excluded from the present analysis. Depth was obtained from 
the General Bathymetric Chart of the Oceans (GEBCO; GEBCO 
Compilation Group  2020). Monthly averages of bottom tem-
perature, northward current velocity and eastward current ve-
locity were obtained from the EU Copernicus Marine Service 
Information as raster files (Tonani and Ascione 2021). Since a 
dataset for bottom current velocity was not available, the ve-
locity at the seafloor was calculated using a bathymetry mask 
(see Bina  2023). Fishing pressure data were obtained from 
Global Fishing Watch (Global Fishing Watch  2025a) and rep-
resented ‘apparent fishing pressure’ modelled using Automatic 
Identification System (AIS) data for commercial fishing vessels. 
Monthly average datasets were extracted by flag State and ves-
sel class for the years 2012–2023. The data were then filtered 

to include only the following gear types: ‘trawlers,’ ‘fixed_gear,’ 
‘fishing,’ ‘set_gillnets,’ ‘dredge_fishing,’ ‘trollers,’ and averaged 
across years and cells to produce a single raster file. A raster for 
benthic primary productivity at maximum depth was down-
loaded from bio-oracle (Tyberghein et al. 2012; Assis et al. 2024) 
for the years 2010–2020 and represented mean values aver-
aged for the decade. A coastline shapefile was obtained from 
the European Environment Agency (European Environment 
Agency 2015).

Bottom temperature and bottom current velocity were extracted 
for each year covered by the occurrence data and combined 
into raster stacks. The mean monthly averages of each variable 
across these time periods were generated by using the ‘calc’ 
function from the raster package (version 3.1–5, Hijmans 2021). 
Northward and eastward bottom current velocity were com-
bined to form a combined current speed using the ‘uv2ds’ func-
tion from the rWind package (version 1.0.4, Fernández-López 
and Schliep  2019). Primary productivity data represented one 
average across the time series, so no additional processing was 
required. The environmental data corresponding to each occur-
rence point were then extracted from the raster layers and joined 
to create a combined dataset of occurrences and habitat vari-
ables. Extractions were carried out using the ‘extract’ function 
as part of the raster package. Distance from coast was calculated 
for each occurrence point using the ‘Join attributes by nearest’ 
tool in QGIS. Data points that contained null values for environ-
mental variables were dropped, resulting in a total sample size 
of 13,192.

2.3   |   Data Exploration

Initial data exploration was carried out according to methods 
outlined by Zuur et al. (2010); predictor variables were checked 
for collinearity, outliers and normality. Correlations between 
variables were observed within a correlation matrix generated 
using the corrplot package (Wei and Simko 2021; version 0.92), 
where pairs with r > 0.6 were found, one of the variables was re-
moved (Zuur et al. 2017). Similarly, variables with a high vari-
ance inflation (Generalised Variance Inflation Factor > 3) were 
identified and removed (Zuur et al. 2010, 2017). Following the 
collinearity checks, bottom temperature was dropped from the 
analysis (see Table  S1 and Figure  S2). Outliers were observed 
using boxplots, and offending data points were investigated 
for error. Records at depths greater than 1000 m (n = 18), with 
greater than 80 min haul duration (n = 1) and with fishing hours 
over 100 (n = 22) were removed. Normality and skewness of 
the data were checked by plotting histograms of each covariate 
using the ‘ggplot’ function from the ggplot2 package (Version 
3.3.5, Wickham 2016). After processing, the dataset contained 
a total of 13,151, with 1174 (8.93%) presence records and 11,977 
(91.07%) absence records.

Environmental variables were compared between presence 
and absence hauls visually with boxplots and empirically with 
Wilcoxon rank sum tests (stats package version 3.6.2, R Core 
Team 2023). Continuous predictor variables were standardised 
before modelling to avoid numerical estimation problems and 
to improve interpretation of the regression parameters (Zuur 
et al. 2017).
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2.4   |   INLA

The INLA framework (Rue et al. 2009) was used to model flapper 
skate presence in the NE Atlantic in R (www.​r-​inla.​org/​). INLA 
is designed to work with latent Gaussian models, a class of mod-
els that includes generalised linear models, spatial and spatio-
temporal models (Rue et al. 2017). This framework employs the 
Stochastic Partial Differential Equations (SPDE) approach to 
capture spatial effects in the model (Lindgren et  al.  2011). To 

simplify calculations, a Gaussian Markov random field (GMRF; 
Rue and Held 2005) is created, where only neighbourhood sites 
have non-zero covariance values (Zuur et  al.  2017). This re-
places the traditional spatio-temporal covariance function and 
improves computation times drastically (Cameletti et  al.  2013; 
Zuur et al. 2017). The SPDE function uses a finite element rep-
resentation to define the Matérn spatial random field, with lin-
ear basis functions defined on a triangulation of the domain 
(Cameletti et al. 2013). This sparse, triangulated ‘mesh’ replaces 

TABLE 1    |    Summary of fisheries-independent survey data available from the DATRAS database, for the years 2010–2023 and the NE Atlantic 
shelf region.

Code Survey name Years Quarters
Total haul 

number

Hauls with D. 
intermedius 

present

Hauls with D. 
intermedius 

absent

BITS Baltic International 
Trawl Survey

2010–2023 1, 4 8461 0 (0.00%) 8461

BTS Beam Trawl Survey 2010–2023 1, 3, 4 9720 1 (0.01%) 9719

BTS-VIII Beam Trawl Survey—
Bay of Biscay (VIII)

2011–2022 4 695 0 (0.00%) 695

FR-CGFS French Channel 
Ground Fish Survey

2010–2022 4 1036 0 (0.00%) 1036

EVHOE French Southern Atlantic 
Bottom Trawl Survey

2010–2022 4 1796 5 (0.27%) 1791

FR-WCGFS French Western 
English Channel 

Ground Fish Survey

2021 3 50 0 (0.00%) 50

DYFS Inshore Beam 
Trawl Survey

2010–2023 3, 4 7841 0 (0.00%) 7841

IE-IAMS Irish Anglerfish and 
Megrim Survey

2016–2022 1, 2 735 206 (28.02%) 529

IE-IGFS Irish Groundfish Survey 2010–2022 1 2071 274 (13.23%) 1797

NL-BSAS Netherlands Industry 
Survey on Turbot and Brill

2019–2023 3, 4 290 0 (0.00%) 290

NS-IBTS North Sea International 
Bottom Trawl Survey

2010–2023 1, 3 10,063 141 (1.40%) 9922

NSSS North Sea Sandeel Survey 2010–2023 4 4317 0 (0.00%) 4317

NIGFS Northern Ireland 
Groundfish Survey

2010–2022 1, 4 1541 0 (0.00%) 1541

NS-IDPS Norwegian Sea 
International Deep 

Pelagic Survey

2012–2016 1, 3 183 0 (0.00%) 183

SCOROC Scottish Rockall Survey 2011–2023 3 566 5 (0.88%) 561

SWC-IBTS Scottish West Coast 
Bottom Trawl Survey

2010 1 61 0 (0.00%) 61

SCOWCGFS Scottish West Coast 
Groundfish Survey

2011–2023 1, 4 1476 555 (37.60%) 921

SNS Sole Net Survey 2010–2023 3, 4 653 0 (0.00%) 653

SE-SOUND Sweden Sound Survey 2011–2022 1, 3, 4 135 0 (0.00%) 135

Note: Percentages in brackets are the proportion of total hauls in the survey where D. intermedius was present. Shaded rows represent the datasets considered for 
species distribution analysis.
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the continuously indexed random field, and links the Gaussian 
field and the GMRF, to which a Markovian structure can be given. 
INLA then calculates the posterior conditional distribution of the 
GMRF for each of the mesh's vertices, and once given the pre-
diction of y at that location is immediate (Cameletti et al. 2013). 
The spatial effect links observations and their spatial locations, 
thus accounting for regions of noise in the data that cannot be 
explained by the available covariates (Munoz et al. 2013).

2.5   |   Model Development

To develop a robust model, a stepwise approach was taken to 
incorporate key dependencies. Temporal dependency was 

accounted for by applying a rw1 random walk trend to the year 
and quarter (time of year) variables (Zuur et al. 2017). To account 
for survey-related changes in catchability, survey was modelled 
as an independent and identically distributed (iid) random ef-
fect, and haul duration was modelled with a second-order ran-
dom walk (rw2) trend. The remaining environmental variables 
were included as fixed effects. This formulation served as the 
model's initial structure (model A).

To assess the need for additional smoothing terms, the non-
linear effects of environmental covariates in model A were 
explored (following Zuur et  al.  2017). A series of GAMs were 
applied on the residuals of this initial model with each of the 
covariates as smoothers, using the ‘gam’ function from the 

FIGURE 1    |    Maps of species occurrence data used to model the distribution of flapper skate in the NE Atlantic. Data were obtained from the ICES 
DATRAS database for four surveys conducted 2010–2023: The Irish Anglerfish and Megrim Survey (IE-IAMS), Irish Groundfish Survey (IE-IGFS), 
North Sea International Bottom Trawl Survey (NS-IBTS), and Scottish West Coast Groundfish Survey (SCOWCGFS). Coloured points represent 
hauls where the species was present; grey semi-transparent points denote absences.
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mgcv package (Version 1.8–36, S. Wood  2021). The Akaike 
Information Criterion (AIC) was used to assess which of the co-
variates improved the model when smoothed (Bozdogan 1987). 
Covariates that lowered the AIC value were included as smooth-
ers and modelled using a rw2 smoother within the INLA pack-
age (model B).

To capture spatial effects, a SPDE mesh was constructed 
using the ‘inla.nonconvex.hull’ function to define a convex 
hull boundary around the data points (Figure  S3). With the 
boundary as an argument, a mesh was generated using the 
‘inla.mesh.2d’ function. The SPDE term was added to the pre-
vious formulation to form a spatial model with environmental 
smoothers (model C).

A final model was constructed to assess the impact of the link 
function. The choice of link function is critical in statistical 
modelling, as it defines how predictors relate to the response 
variable (Damisa et  al.  2017). While the logit link is com-
monly used for binary outcomes, the complementary log–log 
(cloglog) link is often preferable when event probabilities are 
highly skewed (Piegorsch 1992). To evaluate the choice of link 
function, model D incorporated the cloglog link in addition 
to environmental smoothers and the spatial effect, allowing 
for a comparison of model performance against previous 
formulations.

2.6   |   Modelling Presence of D. intermedius

The binomial model was specified as follows: D. interme‑
dius presence or absence at a location i (i = 1,…, n, n = sample 
size) = yi. yi was = 0 if absent and yi = 1 if present. We assumed 
yi ~ Bernoulli(πi), where πti is the probability of presence of D. 
intermedius at location i and year t. Models were then defined as:

where α0 is the intercept, β is the vector of regression pa-
rameters, Xti is the explanatory covariate matrix at location 

i and year t and Wi represents the spatial random effects at i 
(Lezama-Ochoa et al. 2020). The modelling process was con-
ducted in five steps as follows: (1) construct a triangulated 
mesh, (2) build a SPDE, (3) create a stack for the data, (4) spec-
ify the model and (5) run INLA for modelling and estimation 
(Zuur et al. 2017).

2.7   |   Model Selection

The final model formulation was chosen based on the follow-
ing criteria, the corrected Akaike information criterion (AICc; 
Hurvich and Tsai  1989), the Bayesian information criterion 
(BIC; Schwarz 1978), the deviance information criterion (DIC; 
Spiegelhalter et  al.  2002) and the Watanabe–Akaike infor-
mation criterion (WAIC; Watanabe 2010). A cross-validation 
analysis was also used to inform model selection. The recently 
developed leave-group-out cross-validation (LGOCV; Liu and 
Rue 2022; Adin et al. 2024) is a robust measure of predictive 
performance for models where space and time dependencies 
are present. This technique works by partitioning the data into 
meaningful groups (such as spatial or temporal groups), which 
are iteratively ‘left out’ for testing while the remaining data is 
used to train the model (Liu and Rue 2022; Adin et al. 2024). 
The analysis was carried out using the ‘inla.​group.​cv’ function 
in R-INLA and groups were constructed automatically based 
on posterior correlations between the linear predictors (Liu 
2023). For each iteration (n = sample size), the log-transformed 
cross-validation (CV) scores were calculated. The mean log 
CV score and mean square predictive error (MSPE) was cal-
culated for each model (see Adin et al. 2024), with lower val-
ues indicating better predictive performance. These LGOCV 
metrics were used to compare model predictive performance. 
Environmental covariate selection was not undertaken.

2.8   |   Model Prior Specification

In Bayesian statistics, priors represent initial beliefs about a pa-
rameter before observing data (Gelman et  al.  2013). In INLA 

(1)cloglog
(

�ti
)

= �0 + Xi� +Wi

TABLE 2    |    Sources of environmental predictor variables used to model flapper skate presence in the NE Atlantic shelf region.

Variable Source Spatial extent (x1, x2, y1, y2) Resolution
Temporal 

extent

Bathymetry (m) EMODnet NE Atlantic (−20, 15, 40, 65) 0.001° x 0.001 —

Benthic mean primary productivity 
– maximum depth (mmol·m−3)

Bio-ORACLE Global (−180, 180, −90, 90) 0.05° x 0.05° Decadal mean 
2010–2020

Bottom temp (°c) Copernicus 
Marine Service

NE Atlantic (−20, 13, 40, 65) 0.111° × 0.067° Monthly mean 
2010–2022

Distance to coast (m) Calculated 
in QGIS

— — —

Eastward and northward current 
velocity (ms−1)

Copernicus 
Marine Service

NE Atlantic (−20, 13, 40, 65) 0.111° × 0.067° Monthly mean 
2010–2022

Fishing pressure (hours per month) Global Fishing 
Watch

NE Atlantic (−16, 11, −47, 63) 0.01° x 0.01° Monthly mean 
2012–2023

Note: The data were processed in ArcGIS Pro and extracted for each location point in R studio.
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models, they help regularise estimates and prevent overfit-
ting, particularly with limited data or complex models (Zuur 
et  al.  2017). For Dipturus intermedius, prior information was 
either unavailable or inapplicable. Although Pinto et al. (2016) 
found that skate presence declined beyond 200 m depth, this pat-
tern may have been influenced by the unique seabed topology in 
their study area. As a result, depth was not used as prior infor-
mation across the species' range.

Instead, weakly informative priors were used to stabilize fixed 
effect estimations and to avoid imposing strong assumptions on 
the model (Northrup and Gerber 2018). Following Northrup and 
Gerber (2018), an initial prior was specified with variance approxi-
mately equal to 2 (standard deviation ≈ 1.4). Alternative priors with 
gradually smaller standard deviations (SD = 1.2, SD = 1, SD = 0.8 
and SD = 0.5) were also tested to investigate the sensitivity of the 
model to prior choice. The prior sensitivity test was conducted on 
the final model and showed that estimates were generally robust 
to changes in prior choice. Estimates for current speed and fishing 
hours remained stable across priors, while the intercept and longi-
tude showed greater sensitivity (Figure S4).

2.9   |   Model Validation

Validation of the final model was formally evaluated with the 
Area Under the Curve (AUC), Sensitivity (true positive rate, 
TPR) and Specificity (true negative rate, TNR). A classifica-
tion threshold was chosen using the ‘SSS’ method (Jiménez-
Valverde and Lobo 2007; Liu et  al. 2013), which maximised 
the sum of sensitivity and specificity. Following a comparison 
of several thresholds, a value of 0.1 was chosen (see Table S2 
for full set of thresholds tested), which matched the preva-
lence of the dataset.

Receiver Operator Curves (ROC) evaluate a model's classifi-
cation performance by plotting the TPR vs. the false positive 
rate (FPR; Hanley and McNeil 1982) and are a widely adopted 
measure of model predictive performance. However, they can 
be very sensitive to low prevalence datasets with a large bio-
geographical extent, within which true absences are inflated 
(Sofaer et  al.  2019). For this reason, a Precision-Recall (PR) 
curve, representing Precision (Positive Predictive Value, PPV) 
vs. Recall (TPR; Davis and Goadrich  2006), was also con-
structed. Since they do not incorporate true negatives into 
their calculations, PR-curves are a more robust measure of 
performance for imbalanced, or low prevalence data (Davis 
and Goadrich 2006; Sofaer et al. 2019). Higher AUC values for 
ROC and PR-curves indicate better class discrimination (i.e., 
presence vs. absence) and better precision-recall trade-offs, 
respectively. For ROC, values closer to 1 indicate better pre-
dictive performance and values near 0.5 suggest no better than 
random (Fielding and Bell  1997). For low-prevalence data-
sets, PR-AUC values of at least 0.5 are considered good (see 
Sofaer et al. 2019). ROC and PR-curves were generated using 
the ‘roc.curve’ and ‘pr.curve’ functions, respectively, from the 
PRROC package (version 1.3.1, Grau and Keilwagen 2018).

To independently test the predictive power of the model, a simu-
lation study was performed according to Zuur et al. (2017). The 
‘inla.posterior.sample’ function in R-INLA was used to simulate 

parameters from the posterior distributions. This was repeated 
to create 1000 sets of parameters from which fitted values were 
generated. The ‘rpois’ function was then used to simulate skate 
presence–absence from the fitted values, which is also part of 
the r-INLA package. The predictive ability of the model was 
tested by comparing the proportion of zeros produced from the 
simulated datasets with the observed data, using the 0.1 classi-
fier threshold (Zuur and Ieno 2016; Zuur et al. 2017). The agree-
ment between observed and simulated counts was assessed 
using a Z-score, where values within ±1.96 standard deviations 
indicate a close match and good model predictive performance. 
Finally, the dispersion statistic (e.g., the sum of squared Pearson 
residuals) of each model was calculated: a value around 1 in-
dicated that the data were not over- or under-dispersed (Zuur 
et al. 2017). A semi-variogram was also plotted to assess the spa-
tial dependence in the residuals of the model, following Zuur 
et al. (2017).

2.10   |   Predicting the Occurrence of D. intermedius

Predictions of the posterior mean and standard deviation of 
probability of presence of D. intermedius were generated within 
the INLA function by including an empty prediction stack and 
a data frame containing location points and associated environ-
mental data. The location points were generated by using the 
‘Create grid’ tool in QGIS with a resolution of 10 km, using the 
occurrence data as the grid extent. Environmental data were ex-
tracted for these points as previously described, and null values 
were removed where the grid overlapped with land, resulting in 
a total of 11,138 locations. The probability of presence was gen-
erated for each of these points and extracted. The spatial random 
field of each model was plotted by using the ‘inla.mesh.project’ 
function in INLA and converted into a data frame. Prediction 
and random field maps were then created in Arc Pro using 
the ‘Empirical Bayesian Kriging’ tool from the Geostatistical 
Analyst Tools set to create a raster within the extent of the 
study area.

3   |   Results

Pairwise comparisons of environmental variables between pres-
ence and absence locations showed significant differences for all 
variables (Figure S5).

Model D showed the best overall performance, with the lowest 
DIC, WAIC, AICc and log mean cross-validation score (Table 3). 
Despite having a higher BIC value due to its complexity, model 
D was selected to provide balance between fit and predictive 
accuracy. The final model formulation included a smoother for 
distance to coast, a spatial SPDE term, and a cloglog link.

Skate01∼ Intercept+Benthic Primary Productivity

+Bottom Current Speed+Distance to Coast

+Fishing Pressure (hours per month)

+Longitude (xkm)+Latitude (ykm)+ f (Bathymetry,Rw1)

+ f (Haul Duration,Rw2)+ f (Year,Rw1)

+(Quarter, iid)+(Survey, iid)+SPDE
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3.1   |   Model Validation

The final model achieved AUC scores of 0.93 (ROC) and 0.57 
(PR), indicating good discrimination of presences for a low prev-
alence dataset (Figure S6). Sensitivity and specificity were scored 
as 0.89 and 0.82. The independent simulation study showed 
that the model predictions were close to those of the observed 
data, with no significant difference in zero-inflation observed 
(z-score: 0.188; Figure S7). A plateau in the semi-variogram of 
spatial residuals showed that the SPDE effect captured autocor-
relation in the data well (Figure S8). Finally, the dispersion sta-
tistic was 0.43, indicating slight under-dispersion in the model.

3.2   |   Model Results

Distance to coast, fishing pressure, benthic primary produc-
tivity and longitude emerged as important drivers of skate 
presence across the study area (Figure  2). The posterior dis-
tributions showed that skate presence was strongly associated 
with 40–50 km distance from coast, ~ 4.5 h per month fishing 
pressure, areas of low benthic productivity and in westerly parts 
of the study area (Figure 3). The smoothed terms indicated an 
increased trend in skate presence with haul duration and at 100–
200 m depth (Figure 4). The smoothed year variable showed an 
increasing trend in skate presence over time and lower presence 
in the NS-IBTS survey compared with other surveys. Skate pres-
ence showed minimal changes across quarters. A plot of the spa-
tial random field indicated distinct spatial structuring across the 
study area due to latent variation (Figure S9).

Areas predicted to have a high probability of skate presence in-
cluded most prominently the north and west coasts of Scotland 
(including the Orkney islands), and the western coast of Ireland 
near county Clare and county Galway (Figure 5). Some support 
for skate presence was given in the Celtic Sea, and no support 
was given for the southern and central North Sea region, as well 
as in deeper waters off the NE Atlantic shelf.

4   |   Discussion

This study aimed to establish baseline information on the 
flapper skate's distribution across the NE Atlantic to inform 
future research and management of the species. Following 
an exhaustive investigation of DATRAS survey data in the 
region, skate presence was modelled in Irish waters, Scottish 
waters and in the North Sea, building on previous research for 
the species.

Model predictions revealed three core areas of flapper skate 
presence in the NE Atlantic: the north and west coasts of 
Scotland, and the west coast of Ireland. Information from ge-
netic samples, recreational angling records and commercial 
fisheries data also support a strong coastal presence of skate 
in these areas (e.g., Pinto et al. 2016; Frost et al. 2020; Bache-
Jeffreys et  al.  2021; Ellis et  al.  2021; McGeady et  al.  2022; 
Garbett et  al.  2023; Régnier et  al.  2024). In contrast, the cen-
tral and southern North Sea, as well as in deeper waters off the 
NE Atlantic shelf showed minimal skate presence, reflecting a 
high number of absences recorded in those areas. Whilst previ-
ous studies gave stronger support for skate presence in the cen-
tral North Sea (Bache-Jeffreys et al. 2021; Garbett et al. 2023), 
they employed presence-only datasets which can inflate predic-
tions of species presence in areas where the sample number is 
low (Hernandez et al. 2006). These findings clearly show that 
since its disappearance from the region in the 1970's, the flapper 
skate's recovery in the southern North Sea has been minimal 
(Walker and Heessen  1996; Walker and Hislop  1998; Sguotti 
et al. 2016; Bom et al. 2022).

Skate presence was driven by distance from coast, benthic pro-
ductivity and fishing pressure; in other words, the core areas are 
likely acting as natural refugia for the species, where low pro-
ductivity leads to limited fishing activity, offering relative pro-
tection for remnant populations. While previous research also 
found the flapper skate to be a coastal species of broad habitat 
requirements (Pinto et al. 2016; Frost et al. 2020; Bache-Jeffreys 

TABLE 3    |    Model selection metrics for the base model formulation and its extensions for predicting flapper skate presence across the NE Atlantic.

ID Model formulation
Link 

function Dispersion AICc BIC DIC WAIC

Log 
mean 

CV MSPE

A Bernoulli GAM logit 0.561 5487.300 5646.305 4898.595 4897.772 0.186 0.057

B Bernoulli 
GAM + smoothed 

bathymetry

logit 0.567 5519.834 5733.865 4854.025 4853.124 0.184 0.057

C Bernoulli 
GAM + smoothed 
bathymetry + SRF

logit 0.431 5368.182 6122.228 4484.312 4479.245 0.170 0.053

D Bernoulli 
GAM + smoothed 

bathymetry + 
SRF + cloglog

cloglog 0.430 5371.706 6160.574 4474.495 4471.540 0.170 0.054

Note: Model extensions include a random walk smoother for distance to coast, the spatial random field (SRF), and the Complementary log–log (cloglog) link function. 
The final selected model is highlighted in grey. Metrics reported include AICc (corrected Akaike Information Criterion), BIC (Bayesian Information Criterion), DIC 
(Deviance Information Criterion), WAIC (Watanabe–Akaike Information Criterion), log mean CV score (cross-validation score) and MSPE (mean square predictive 
error).
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et al. 2021; Thorburn et al. 2021; Régnier et al. 2024), this study 
is the first to integrate environmental information with fishing 
pressure data across the entire range, providing a more compre-
hensive picture of the species ecology. Consistent with earlier 
work (Garbett et al. 2023), our findings point to a fragmented 
contemporary range shaped by a history of severe depletion and 
population collapse.

In addition to natural refugia, it is likely that skate presence is 
related to the presence of critical habitats. Critical or essential 
fish habitats (EFHs) are areas that are vital for supporting key 
life stages of a species, including spawning, breeding, feeding 
and growth to maturity (EFH; U.S. Congress 1996). The use 
of such habitats is a common motif amongst skate and rays 
(superorder Batoidea; Ellis et al. 2005; Serena and Relini 2006; 
Serra-Pereira et al. 2014; Martins et al. 2018; Elliott et al. 2020; 
McAllister et  al.  2024) and examples include juvenile nurs-
eries or egg-case nurseries (Heupel et  al.  2007; Martins 
et  al.  2018). Although little is known of the critical habitats 
utilised by the flapper skate, one egg-case nursery has been 
identified on a shallow cobble/boulder reef off the west coast 
of Scotland (Dodd et al. 2022). The presence of this site, along 
with substantial egg-case sightings around the Orkney Islands 
and off the west coast of Ireland (Ellis et  al.  2024; Phillips 
et al. 2021), supports the hypothesis that the core areas iden-
tified in this study are underpinned by essential habitats for 
flapper skate.

4.1   |   Temporal Trends in Skate Presence

A positive temporal trend in skate presence was observed in 
the DATRAS survey data, which mirrors observed trends for 
the ‘common skate’ species complex (Dulvy et al. 2006; Bom 
et al. 2022; Régnier et al. 2021; McGeady et al. 2022). Whilst 
suggestive of a potential recovery trajectory, these data were 
not corrected for biases in the reportage of flapper skate across 
the time series (Robinson et al. 2018; Zeller and Pauly 2018). 
The creation of morphological keys in 2010 to help distin-
guish blue and flapper skates (Iglésias et al. 2010), as well as 
the flapper skate's formal recognition in the following years 
(Ellis et  al.  2021), have no doubt influenced detection rates. 
Therefore, it is likely that the observed ‘increase’ in catch 
records for flapper skate reflect a concomitant increase in 
reportage, rather than a recovery to fisheries management 
measures (Zeller and Pauly  2018). This is further evidenced 
by the fact that it can take many decades to see population 
responses to conservation measures in elasmobranchs (Ward-
Paige et al. 2012).

4.2   |   Data Limitations

Although exact incidences of misidentification were hard to 
prove, existing research has shown that the flapper skate's 
distribution overlaps with other Dipturus skate within the NE 

FIGURE 2    |    Forest plot of posterior mean estimates and 95% credible intervals for fixed effects in a binomial spatial GAMM of flapper skate pres-
ence across the NE Atlantic. Important variables are given in red. Model based on fisheries-independent catch records extracted from the DATRAS 
database for the years 2010–2023.
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10 of 16 Ecology and Evolution, 2025

Atlantic, including the common blue skate (Dipturus batis; 
Frost et  al.  2020; McGeady et  al.  2022). In some cases, spe-
cies misidentification can lead to overestimates or underes-
timates of species presence in certain locations (Beerkircher 

et  al.  2009; Iglésias et  al.  2010; Garcia-Vazquez et  al.  2012; 
Wang  2021). These limitations notwithstanding, the survey 
data presented here are an important resource for conserva-
tion managers and are often the only data available for some 

FIGURE 3    |    LEFT: Posterior distributions of important fixed effects in a binomial spatial GAMM of flapper skate presence across the NE Atlantic. 
RIGHT: Violin plot of species presences (1) and absences (0) in relation to each variable. Model based on fisheries-independent catch records extract-
ed from the DATRAS database for the years 2010–2023.
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species, especially over a long time series (Hamilton et al. 2015; 
Maes et al. 2015; Jubinville et al. 2021; Min et al. 2023). By em-
ploying genetic sampling alongside these surveys, the quality 
of the data can be improved (see Kinoshita et al. 2019; Koda 
et al. 2023). Models constructed using these validated species 
records would provide reliable predictions across a wide study 
area and could provide validated information on smaller size 
classes of flapper skate.

Although fishing pressure emerged as a key factor influencing 
skate presence in the NE Atlantic, the effect size was modest, 

likely due to limitations in the AIS dataset (Global Fishing 
Watch  2025b). This dataset predominantly captures activity 
from larger vessels, underrepresenting smaller inshore boats 
less than 12 m that are prevalent in coastal fisheries. Moreover, 
AIS coverage is imperfect, with potential signal gaps caused by 
limited satellite reception, interference in densely trafficked 
areas and inconsistencies in transmission strength. Despite 
these limitations, the fact that skate presence was influenced 
by this partial measure of fishing activity underscores the spe-
cies' sensitivity to exploitation, reinforcing previous findings 
that even moderate levels of fishing pressure can shape the 

FIGURE 4    |    Plot of random effects from the binomial spatial GAMM of flapper presence across the NE Atlantic region, including the estimated 
effects for the random walk smoothers (rw1 and rw2) and the independent identically distributed (iid) group effects with 95% credibility intervals. 
Model based on fisheries-independent catch records extracted from the DATRAS database for the years 2010–2023. IE-IAMS: Irish Anglerfish and 
Megrim Survey, IE-IGFS: Irish Groundfish Survey, NS-IBTS: The North Sea International Bottom Trawl Survey, SCOWCGFS: Scottish west coast 
Groundfish Survey.
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distribution of flapper skate (Brander 1981; Dulvy et al. 2000; 
Dulvy and Reynolds 2002; Régnier et al. 2021).

4.3   |   Conservation of the Flapper Skate

The flapper skate was once described as a fish on the brink of 
extinction (Brander 1981), and four decades later the situation 
has shown little improvement (Garbett et  al.  2021, 2023; Ellis 
et al. 2021; Régnier et al. 2024). The present state of the flap-
per skate is that of a species relegated to a few natural refugia, 
with limited evidence of a wider recovery (Garbett et al. 2023; 
Régnier et al. 2024; this study). The observed restricted distribu-
tion is likely a direct consequence of continued fishing pressure, 
as individuals across all life stages remain exposed throughout 
much of the species' range (e.g., see catch records from Iglésias 
et al. 2010; Frost et al. 2020; Régnier et al. 2024; this study). This 

ongoing pressure is particularly concerning given the species' 
extreme life history vulnerability, which renders it unable to re-
cover from even moderate depletion. As a Critically Endangered 
species now confined to the margins of its historical range, the 
flapper skate is at imminent risk of further decline without the 
implementation of a more robust and spatially comprehensive 
conservation strategy. In light of its recognised conservation 
value across UK and European waters (HELCOM 2006; OSPAR 
Commission  2008; Clarke et  al.  2016; NatureScot  2020; Ellis 
et al. 2021), member states must act without delay to close ex-
isting protection gaps, prioritising the safeguarding of juveniles 
and the preservation of critical habitats to ensure the species' 
long-term survival.

This study presents the first large-scale model of flapper skate 
presence across the NE Atlantic shelf that integrates both envi-
ronmental and fishing pressure data, and provides new baseline 

FIGURE 5    |    (A) Posterior predictive mean, (B) Standard deviation, (C) 2.5% quantile and 5D: 97.5% quantile of the presence of D. intermedius, 
modelled using fisheries-independent survey data from the Irish Anglerfish and Megrim Survey (IE-IAMS), the Irish Groundfish Survey (IE-IGFS), 
the Scottish west coast Groundfish Survey (SCOWCGFS) and the North Sea International Bottom Trawl Survey (NS-IBTS), for the years 2010–2023. 
The red contour line represents the 0.1 binomial classification threshold used to delineate likely presence of the species.
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information on skate habitat use in the North Sea and around 
the island of Ireland. The results identify three core areas of 
presence in the NE Atlantic shelf that appear to function as 
natural refugia, shaped by low fishing pressure and potentially 
underpinned by critical habitats. Future research should priori-
tize these remaining strongholds for the species, focusing on the 
identification and protection of critical habitats to guide effec-
tive spatial management strategies.
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