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Abstract

Vegetation growing on railway trackbeds and embankments present po-
tential problems. The presence of vegetation threatens the safety of per-
sonnel inspecting the railway infrastructure. In addition vegetation growth
clogs the ballast and results in inadequate track drainage which in turn
could lead to the collapse of the railway embankment.

Assessing vegetation within the realm of railway maintenance is mainly
carried out manually by making visual inspections along the track. This
is done either on-site or by watching videos recorded by maintenance
vehicles mainly operated by the national railway administrative body.

A need for the automated detection and characterisation of vegetation on
railways (a subset of vegetation control/management) has been identified
in collaboration with local railway maintenance subcontractors and Trafik-
verket, the Swedish Transport Administration (STA). The latter is respons-
ible for long-term planning of the transport system for all types of traffic, as
well as for the building, operation and maintenance of public roads and rail-
ways. The purpose of this research project was to investigate how veget-
ation can be measured and quantified by human raters and how machine
vision can automate the same process.

Data were acquired at railway trackbeds and embankments during field
measurement experiments. All field data (such as images) in this thesis
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work was acquired on operational, lightly trafficked railway tracks, mostly
trafficked by goods trains. Data were also generated by letting (human)
raters conduct visual estimates of plant cover and/or count the number
of plants, either on-site or in-house by making visual estimates of the im-
ages acquired from the field experiments. Later, the degree of reliability of
(human) raters’ visual estimates were investigated and compared against
machine vision algorithms.

The overall results of the investigations involving human raters showed
inconsistency in their estimates, and are therefore unreliable. As a res-
ult of the exploration of machine vision, computational methods and al-
gorithms enabling automatic detection and characterisation of vegetation
along railways were developed. The results achieved in the current work
have shown that the use of image data for detecting vegetation is indeed
possible and that such results could form the base for decisions regard-
ing vegetation control. The performance of the machine vision algorithm
which quantifies the vegetation cover was able to process 98% of the im-
age data. Investigations of classifying plants from images were conducted
in in order to recognise the specie. The classification rate accuracy was
95%.

Objective measurements such as the ones proposed in thesis offers easy
access to the measurements to all the involved parties and makes the sub-
contracting process easier i.e., both the subcontractors and the national
railway administration are given the same reference framework concern-
ing vegetation before signing a contract, which can then be crosschecked
post maintenance.

A very important issue which comes with an increasing ability to recog-
nise species is the maintenance of biological diversity. Biological diversity
along the trackbeds and embankments can be mapped, and maintained,
through better and robust monitoring procedures. Continuously monitor-
ing the state of vegetation along railways is highly recommended in order
to identify a need for maintenance actions, and in addition to keep track
of biodiversity. The computational methods or algorithms developed form
the foundation of an automatic inspection system capable of objectively
supporting manual inspections, or replacing manual inspections.
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Terminology, Definitions, and
Symbols

Aphyllous Having no leaves

Assessor A person who provides a rating or assessment of some
phenonomen. Also denoted as rater or observer.

Ballast A bed of crushed stones used to drain water from the
embankent, and to distribute the load from sleepers

Biomass In this context the plant biomass, phytomass, is considered:
Total weight of plant biomass

Biometry The science of measuring and statistically analysing bio-
logical data

Blanket A layer, or several layers, laid over the subgrade to give
the trackbed its desired performance characteristics. The
layers can include layers of granular material and geo-
synthetics. (Rail Safety and Standards Board Ltd, UK)

BoF Bag-of-Features

BoW Bag-of-Words

BVH Banverket Handbok - Swedish Rail Administration Manual.
Banverket was superseded by Trafikverket in 2010 (i.e.
the Swedish Transport Administration)

CBM Condition Based Maintenance, or Condition Based Mon-
itoring
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Convex hull The convex hull of a set X of points in the Euclidean plane
is the smallest convex set that contains X. The convex
hull may be visualized as the shape enclosed by a rubber
band stretched around X.

Corrective Maintenance (CM) Unscheduled maintenance or repair actions,
performed as a result of failures or deficiencies, to re-
store items to a specific condition. Maintenance done to
bring an asset back to its standard functional perform-
ance: Any maintenance activity which is required to cor-
rect a failure that has occurred or is in the process of
occurring. This activity may consist of repair, restora-
tion, or replacement of components and can typically be
planned, estimated and scheduled proactively.
(Peters, R. W., Maintenance Benchmarking and Best Prac-
tices. Blacklick, OH, USA: McGraw-Hill Professional Pub-
lishing, 2006. p 520)

Deciduous Annual or seasonal loss of all leaves from a tree or shrub;
it is the opposite of evergreen. (World Encyclopedia.
Philip’s, 2008. Oxford Reference Online. Oxford Univer-
sity Press. Hogskolan Dalarna. 6 September 2011)

df degrees of freedom. A term used in statistics to de-
scribe the number of independent comparisons that can
be made between the variables in a study. (oxfordrefer-
ence.com, 2012-11-22)

Embankment Artificial mound of imported material generally made of
selected earth, gravel, or stone. (California High-Speed
Rail Authority). A bank of earth or stone built to carry
a road or railway over an area of low ground. (Oxford
Dictionary of English, 2011)

Epiphytes Grows on another plants. Air plants, e.g Orchids

Forbs Herbaceous flowering plant other than a grass (Source:
Oxford Dictionary of English. Edited by Angus Steven-
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son. Oxford University Press, 2010. Oxford Reference
Online. 5 Sept. 2011 )

Graminoids Grasses and grasslike plants

ICC See Intraclass-correlation coefficient

Inter-observer agreement Also called inter-rater reliability, or inter-rater agree-
ment is the degree of agreement among several observ-
ers which are assessing some phenonomen. It gives a
score of how much the observers agree in the ratings
given by the observers. Inter-observer, or inter-rater im-
plies “between raters”

inter-rater reliability See inter-observer reliability

Intraclass Correlation Coefficient (ICC) The ICC is a measure of the reli-
ability of measurements or ratings.

Knowledge Short desc: Knowledge refers to the stored information
or models used by a person or a machine to interpret,
predict, and appropriately respond to the out side world.
(Fischler, 1987)

laypersons A person without professional or specialized knowledge
in a particular subject (Oxford Dictionaries, 2012-10-10)

LED Light Emitting Diodes

Md The statistical median

measurement The process of assigning symbols to observations in some
consistent manner (S. Siegel,1988)

monitoring Observe and check the progress or quality of (some-
thing) over a period of time; keep under systematic re-
view: equipment was installed to monitor air quality.
- maintain regular surveillance over: he was a man of
routine and it was easy for an enemy to monitor his move-
ments. Source: Oxford Dictionary of English. Edited by
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Angus Stevenson. Oxford University Press, 2010. Ox-
ford Reference Online. Hogskolan Dalarna. 5 Feb. 2011.

NVC The National Vegetation Classification is a detailed phytoso-
ciological classification, which assesses the full suite of
vascular plant, bryophyte and macro-lichen species within
a certain vegetation type. It is based on about 35,000
samples of vegetation. Source: http://jncc.defra.gov.uk/page-
4262 (Retrieved 27 July 2011)

Observer A person who provides a rating or assessment of some
phenonomen. Also denoted as rater or assessor.

Pathogens Disease-causing agents, e.g. special kind of micro-organisms,
viruses, rats etc etc

Pattern recognition Pattern recognition is the act of of acquiring raw data
and taking actions based on a particular the class (or
category) of that pattern. Three interrelated fields often
used in pattern recognition regression, interpolation and
density estimation. (Duda et al., 2000)

PFI See Point frame interception

Plant Frequency The proportion of sample areas in which the target specie
is present. For each sample area it is a boolean decision,
either the target specie is present, or absent. The fre-
quency is the sum of all sample areas having the target
specie percent divided by all the examined sample areas.

Point Frame Interception (PFI) Method used for estimating abundance.

Point Quadrat Interception (PQI) Method used for estimating abundance.
Each time an individual specie is observed under an in-
tersection in the quadrat grid (i.e. a cross-hair) it is coun-
ted as a hit, otherwise miss.

PQI See Point quadrat interception
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Predictor variable A predictor variable is a variable used in regression to
predict another variable. It is sometimes referred to as an
independent variable if it is manipulated rather than just
measured. (http://onlinestatbook.com, 2014-11-30)

Preventive maintenance (PM) Maintenance carried out at predetermined
intervals, or to other prescribed criteria, and intended to
reduce the likelihood of a functional failure. Actions per-
formed in an attempt to keep an item in a specific op-
erating condition by means of systematic inspection, de-
tection, and prevention of incipient failure; an equipment
maintenance strategy based on replacing, overhauling,
or remanufacturing an item at a fixed interval, regardless
of its condition at the time. Scheduled restoration tasks
and scheduled discard tasks are both examples of pre-
ventive maintenance tasks. See also scheduled mainten-
ance. [Source: Peters, Ralph W. (Author). Maintenance
Benchmarking and Best Practices. Blacklick, OH, USA:
McGraw-Hill Professional Publishing, 2006. p 534.]

Quadrat A basic sampling unit of vegetation surveys. The sampling
frame can be of any shape which not necessarily is a
geometric regular quadrilateral. It can be rectangular, or
circular as well.

Rater A person who provides a rating or assessment of some
phenonomen. Also denoted as assessor or observer.

Reliability Is, generally, the proportion of real information about a
construct of interest captured by measurements of it. E.g.,
if someone reported the reliability of their measure was
0.8, you could conclude that 0.8 of the variability in the
scores captured by that measure represented the con-
struct, and 0.2 represented random variation. The more
uniform your measurement, the higher reliability will be.
( http://neoacademic.com , Retrieved 2 Feb 2014)

Residual The difference between a data observation and its cor-
responding fitted value obtained by regression analysis.
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ROI Region of Interest. Selected samples of an image, such
as areas containing vegetation, that are identified for a
particular purpose

RQ Research question

RSSB Rail Safety and Standards Board (UK)

Single Point Interception (SPI) Method used for estimating abundance. Each
sample point is defined by a sampling pole positioned
vertically to the ground

SNFI Swedish National Forest Inventory

STA The Swedish Transport Administration, Trafikverket, is re-
sponsible for long-term planning of the transport system
for all types of traffic, as well as for building, operating
and maintaining public roads and railways.

Subgrade The upper part of the earthworks or natural ground on
which the blanket layer rests. The subgrade includes any
capping layer (prepared subgrade) designed to alter the
stiffness of the subgrade. (Rail Safety and Standards
Board Ltd, UK)

SYNOP Report of surface observation from a land station accord-
ing to World Meteorological Organization standards.

Trackbed A general term referring to the ballast, blanket and sub-
grade. (Rail Safety and Standards Board Ltd, UK)

Trafikverket Swedish for the Swedish Transport Administration, see
STA.

Transect A sample area usually in the form of a long continuous
line in some direction. Along this line one counts and
records occurrences of e.g. plants.
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VE Visual Estimation

vermin Animal species which are regarded as pests or by man
considered as troublesome and/or annoying. Especially
associated to species able of carrying disease

VINNOVA VINNOVA is a Swedish government agency working un-
der the Ministry of Enterprise, Energy and Communic-
ations and acts as the national contact agency for the
EU Framework Programme for Research and Develop-
ment. VINNOVA is also the Swedish government’s ex-
pert agency within the field of innovation policy.

VQ Vector quantisation
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Chapter 1

Introduction

Railway maintenance typically involves the following activities: inspections,
extend lifetime of worn tracks by rail grinding, catenary maintenance in-
cluding wire replacements, stabilising the tracks by packing (tamping) the
track ballast, track including turnout replacements, ultra-sonic testing, re-
pairing/replacing fasteners, joints, rails and sleepers, periodic measure-
ments, signal repairs, vegetation management, measures against slippery
rails, snow removal etc etc.

This thesis is dealing with subsets of the vegetation management part fo-
cusing on the inspection and measuring of vegetation serving as a main-
tenance planning instrument.

Subcontracting railway maintenance activities is not a trivial matter. The
Swedish Transport Administration (STA) invites companies to make com-
petitive bids for specific maintenance periods, involving various activities.
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a) b)

Figure 1.1: Growing vegetation on the trackbed a) Vetlanda, Sweden, and
b) Falun, Sweden

With regard to vegetation management , maintenance subcontractors
find it extremely difficult to provide an estimate (often speculative) of the
extent of rooted tree seedlings, herbs, and moss (see examples in fig-
ures 1.1a and 1.1b). The extent of vegetation is related to the workload
that has to be put in by a railway maintenance subcontractor (henceforth
known as a supplier of maintenance).Reliable information about the ac-
tual state of vegetation is often not available; thus, maintenance actions
are carried out by subcontractors on a periodic basis irrespective of the
condition. This wastes resources and results in the unnecessary use of
herbicides. It is important to reduce the amount of herbicides used to fight
vegetation along railways for environmental reasons.

Through our contact network, which consists of five railway maintenance
subcontractors and the STA, we identified a common interest area of auto-
mated detection and characterisation of vegetation as a part of vegetation
control (also called vegetation management). This offers scientific and
commercial opportunities, because, currently, no system exists that deals
with the problem in its entirety.

The track areas in consideration in this thesis (seen from the centre of
the tracks) are the upper parts of the trackbed and the slopes of the em-
bankment, not including the drainage ditches, see figure 1.2. Legend for
figure 1.2; A represents the trackbed, B represents the embankment, C
represents the slope of a cutting, D represents the drainage ditches, E
represents the rails. The upper part above the dashed line in figure 1.2
represents a railway embankment, which carries rail traffic above the nat-
ural topography, i.e. over an area of low ground. The lower part under the
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dashed line in figure 1.2 represents a railway cutting, whether through soil
or rock, carrying rail traffic below the natural topography, i.e. below an area
of higher ground.

B

A

C
D

A

D

E

F

E

F

Figure 1.2: Overview of the track area

1.1 Problem Description

The vegetation problem is complex and includes several secondary prob-
lems. The basic problem is that there exists little, or no knowledge about
the current vegetation state on properties that are part of the railway infra-
structure. None of the involved actors, namely the subcontractors, track-
owners and the Swedish Transport Administration, really know the current
state out there. Often the state of the vegetation only becomes apparent
when maintenance actions need to be carried out on-site; for example, in-
spections, mechanical harvesting, and the spraying of herbicides. By the
time these actions are carried out, the procurement contracts have already
been signed.

Vegetation growth along railways is often extensive (see examples on fig-
ures 1.3a and 1.3b); thus, maintaining an area free from such vegetation
as weeds, shrubbery, and trees, is a constant struggle against nature (i.e
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the natural growth process). The STA’s struggle with vegetation on and
along railways is mainly related to safety (Banverket, 2000) (Trafikverket,
2012a) (Banverket, 2001) (Banverket, 2005b), both for passengers and
their staff.

a) b)

Figure 1.3: Vegetation growing on the trackbeds: a) Borlange, Sweden,
and b) Mora, Sweden

If vegetation is permitted to grow uncontrolled, maintenance activities and
operations will become a difficult, if not an impossible task. The major
impact of uncontrolled vegetation is economic Scrivner (2004), because
unmanaged vegetation accelerates the deterioration of every component
in the railway infrastructure. Unmanaged vegetation and the use of herbi-
cides along railways poses potential problems as follows:

1. The presence of vegetation threatens the safety of personnel in-
specting the railway infrastructure, who may fall to the ground by
slipping, or by tripping.

2. Vegetation that covers the railway tracks and trackbed makes it dif-
ficult for railway inspectors to detect potential errors along embank-
ments, cuttings, etc.

3. A reduction in the elasticity of ballast could result from frost breaks
caused by the presence of roots; this could contribute to poten-
tial land slides. The properties and composition of different types
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of soil, groundwater conditions and topography (height differences)
all determine the stability of a slope. The natural erosion process
causes steep areas and slopes to change in order to find an equi-
librium. Factors that alter the balance can trigger landslides. Such
factors may include changes in soil water conditions, human impact
on nature, erosion and uplift. Over time, therefore, stability condi-
tions can change. Landslides occur through breakage along a slid-
ing surface of the earth. The soil layers above the sliding surface are
affected by driving forces, and by counteraction. Before a landslide,
these forces are in equilibrium. However, a disturbance of the equi-
librium can act as a trigger. The equilibrium can be disturbed by: 1)
increased load, 2) reduced counterweight 3) deteriorated strength of
the soil Caragounis (2014).

4. Growth of vegetation in the track indicates clogging of the ballast
and a lack of adequate track drainage Chandra and others (2008,
p.355). Hence, vegetation can lead to poor drainage of the embank-
ment. Water is prevented from being diverted from the railway em-
bankment; instead, it remains in the embankment body. It has been
found that, during extremely wet winters, high hydrostatic water pore
pressures can arise in grass-covered areas. This applies primarily to
older railway embankments that contain clay (Briggs, 2010). (Scott
et al., 2007) investigated seasonal variations of hydrostatic water
pore pressures within embankment slopes. They found that they are
controlled by climatic conditions, which are amplified by the effects
of vegetation growth.
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Figure 1.4: Collapse of railway embankment

5. Vegetation roots have a beneficial effect on strengthening the soil.
However, in terms of slope stability, vegetation also have some neg-
ative effects.

(a) (Scott et al., 2007) investigated seasonal deformation asso-
ciated with the seasonal variation in pore pressures between
the summer and winter months. During the summer, vegetation
growth causes a pore pressure reduction, resulting in a down-
ward movement of the slope surface. During the winter, the ve-
getation is inactive, which results in the rehydration of the soil,
thereby causing swelling. In addition, the tendency for localised
strains in clay fill results in the net downwards and outwards
movement on preferred shear surfaces. This can lead to the
development of a ”progressive failure mechanism” and eventual
deep-seated failure.

(b) During the course of a six-year period, (Smethurst et al., 2012)
investigated seasonal cycles of soil water content, which led to
shrinking and swelling in clay soils. This swelling and shrinking
phenomenon often occurs in older railway embankments, and
can contribute to strain-softening and the progressive failure of
an embankment.

(c) (Briggs, 2010) analysed a grass-covered cut slope made up
of London clay (a stiff bluish type of clay), monitoring pore wa-
ter pressures and water content over the course of one year.

37



He concluded that vegetation had caused a large cyclic change
in effective stresses within the major drying zone (the top 1m
depth of the profile) through a winter-summer-winter cycle. Re-
cent evidence from both centrifuge model tests and numerical
analyses of clay slopes suggests that cyclic stresses thought
to be representative of those induced by vegetation can cause
strain softening to occur, starting from the toe of the slope. Over
a period of several years, these cyclic stresses can induce pro-
gressive failure.

6. Safety may be compromised because of visibility problems on bends
and on level-crossings. For example, vegetation may obscure a
vehicle’s view of approaching trains from the vehicle’s position at a
level-crossing, as stated in one accident investigation report(Railway
Accident Investigation Unit, 2010)

7. Vegetation becomes combustible during periods of hot and dry weather.
In general there are two ignition sources: humans and lightning.
Fires can damage the railway infrastructure.(Eddowes et al., 2003,
p. 32)

8. Vegetation, including fallen leaves, on the rails makes it slippery and
thus increases the braking distance of trains (Eddowes et al., 2003,
p. 24). For this reason, so-called leaf buster trains (see figure 1.5)
are used to blast the tracks with high-power jets of water. In addition
a sandy paste (Sandite) can be applied to increase friction on the
tracks.

Figure 1.5: Leaf buster train (Network Rail UK)
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9. Concealed or occluded railway signals

10. Fallen trees and branches, often as a result of storms, or inadequate
vegetation management, and blocked or damaged railway infrastruc-
ture can lead to short circuits in the overhead contact system. For
example, (Russell et al., 2007) investigated momentary interruptions
and sustained outages caused by vegetation intrusion.

11. Damage to the rolling stock; trains can be scratched or damaged by
vegetation

12. Pathogens and vermin tend to propagate in areas of weeds, leading
to complaints from nearby residents and farmers Hayakawa (2007).

13. Excessive use of herbicides in controlling vegetation poses serious
threats to the environment. A reduction in the amount of herbicides
used is desirable if we are to reduce their negative impact on the
environment. Even though some types of herbicides are claimed
to be less harmful than others, the existence of numerous environ-
mental organisations and greater environmental awareness among
the public make it hard to argument in favour for herbicides. For ex-
ample, in a survey conducted by the International Union of Railways
(UIC), Jan Skoog, Environmental Coordinator, Strategic Department
at the Swedish National Rail Administration stated that, ”Concerns
for groundwater protection and public opinion has led to the decision
not to use chemicals where other possible alternatives are available”
(Below et al., 2003, p. 104). Together with the desire to cut the costs
of vegetation control, this has motivated several railway companies
to start various activities to reduce the amount of herbicides used
(Below et al., 2003, p. 5, 96 ).

With regard to the problems of using herbicides in vegetation management
(see no. 13 in the list above), it is not only unwanted vegetation (weeds)
and pathogens that thrive on railways; other animals and vegetation also
enrich the fauna and biodiversity that are often present (Below, M., 27-28
April 2011, Personal interview). The danger of vegetation growth (e.g. on
an embankment) does not necessarily lie in the few visible tufts of grass,
or a couple of herbs. The real danger lies within the fact that vegetation
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grows slowly. This is most likely one of the primary reasons why veget-
ation management decisions get postponed again and again, year after
year. This is probably because these problems never seem to be acute,
one can always wait another year. By having this kind of attitude, it is pos-
sible for 5, 10, 20, or even 30 years to have ”suddenly” passed, at which
point the problems have become acute. It might be to late for chemical,
or mechanical vegetation methods of control. Indeed, the only solution left
is to replace an embankment’s ballast, which is very expensive. (Also see
section 3.2)

1.1.1 Procurement of Railway Maintenance

The procurement process of goods, services and contracts made by the
STA (Trafikverket) is regulated by Swedish law. These are based on the
Europeean Union (EU) Procurement Directives. In essence it means that
all suppliers have to be treated in a similar and non-discriminatory way.
STA must carry out all procurements in an open way, i.e., one that is public,
so that every supplier can access the procurement process and anyone
can view it.

The general procurement process can be seen in figure 1.6 and in the se-
quential list below (Trafikverket (Swedish Transport Administration), 2015)
where each box in the figure is described.
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Advertises maintenance 
procurement 

Submits tender offer
? Current state ?

Evaluates the tenders 
according to criteria in the 

enquiry documentation 

Winning subcontractor 
conducts  maintenance 
activities to fulfill the job 

specification
? Criteria ?

? Regulations/Manuals ?
Verifies that the job  has 

been done according to the 
job requirement  

specification

Signs the requirement 
specification contract

Potential supplier / 
subcontractor

National Railway Administration
  / Track owner

Need for maintenance
? Current state ? 

Production of enquiry 
documentation

? Criteria ?
? Regulations/Manuals ?

Awards the winning 
supplier

Public advertisement 

Figure 1.6: Maintenance procurement process

1. First, a need for maintenance arises within STA. This need will then
be defined in enquiry documentation.

• Question: Does the national railway administration (in the case
of Sweden, the STA) have an exact knowledge of the current
state, extent and (spatial) location of vegetation? If not, how did
the need for maintenance arise?

2. Next, the development of procurement takes place. The enquiry doc-
umentation describes what is to be procured, what requirements are
placed on the supplier and the subject of the procurement, e.g. ve-
getation management. It also incorporates how the tenders will be
evaluated.
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• Question: What documents (e.g. STA standards, regulations,
manuals etc.) are used to develop and back up the list of cri-
teria, to which the (winning) supplier must conform? Are the
documents up to date? If the criteria makes references to and
are based upon, for example, a regulation (e.g. (Trafikverket,
2012a)), or a manual (e.g. (Banverket, 2000)) to which the win-
ning supplier must conform, then how objective and precise are
the instructions in that regulation or manual?

3. A request for suppliers to tender is advertised.

4. The interested suppliers check out the advertisement and make an
estimate of the price for carrying out the required job. The supplier
sends in their tender.

• Question: Do the suppliers have knowledge of the current state,
extent and (spatial) location of vegetation? If not, how can they
make an estimate of the workload that has to provided by their
company?

5. The STA evaluates the tenders in accordance with the evaluation
criteria set out in the enquiry documentation.

6. The STA notifies all those who made tender offers. They then set out
which supplier(s) has (have) been awarded the contract.

7. The contract is signed by the STA and the winning supplier(s).

8. The winning supplier(s) carry out their work according to the contract.
This action is iterated within the action listed in no. 9 during the
contract period.

• Question: If the contract contains job requirements that refer
to STA regulations or manuals (see the development of these in
list no. 2), then is it possible to objectively follow the instructions
in that regulation or manual?

9. The actual work (see list no. 8) and what is stated in the contract is
continuously followed up by the STA during the term of the contract.
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10. When the contract has expired, this process starts over again from
list no. 1.

In a report from (Eddowes et al., 2003, p. 24) to the UK Rail Safety
and Standards Board (RSSB), climate change was investigated. Climate
change, which implies increased temperatures, heavy rainfalls, increased
wind speeds and so on, together with increased vegetation growth in the
railway infrastructure, may lead to increased production of (plant) biomass
because of the longer growing season (Eddowes et al., 2003, p. 24).

A rise in temperatures, increases in the frequency and length of dry weather,
and an increase in lightning strikes, also increases the risk of fire develop-
ing in vegetation (Eddowes et al., 2003, p. 32). On the positive sides for
vegetation, the stabilising properties of plants growing on embankments is
highlighted.

The first step in vegetation management is to detect and characterise
the vegetation. This is the base for maintenance decision making. This
step is currently solved by manual inspections along the railway made on
foot, or by civilians who contact the STA and make them aware of certain
conditions. In some cases, such as periodic maintenance and herbicide
spraying, no inspection are carried out (Lundh, J-E., 28 April 2011, Per-
sonal interview).

1.2 Manual Inspection Routines

Currently, daily maintenance activities aimed at dealing with vegetation
along railway tracks are carried out manually. This section describes how
a general (safety) inspection is carried out, and outlines the regulations
to which a inspector must conform. Typically, human inspectors are em-
ployed by subcontractors, who are responsible for the maintenance of cer-
tain railway areas. These inspectors walk along the railway tracks and
judge for themselves the extent of the vegetation and its condition.

In cases of poor condition, the inspector recommends further mainten-
ance actions. Note that such decisions are made intuitively by the in-
spector and are largely dependent on the Swedish Transport Administra-
tion regulations. Requirements regarding vegetation are regulated in BVH
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807-series(Trafikverket, 2012a) (Banverket, 2005b) (Banverket, 2005a)
(Banverket, 2005d) (Banverket, 2005e) (Banverket, 2005c) , and 827-
series(Banverket, 2000)(Banverket, 2001) among others, such as (Trafik-
verket, 2012c).

1.2.1 Administrative Regulations

The Swedish Transport Administration (STA), is an authority that sits un-
der the Swedish government, and has the overall responsibility - sector
responsibility - for the Swedish railway (and road) infrastructure, i.e., the
rail transport system. In this context, the STA performs both administrative
and productive operations. Requirements regarding vegetation are regu-
lated in Swedish Rail Administration documents 807- and 827-series, in-
cluding important regulations and handbooks. These handbooks are to be
used by any maintenance subcontractor hired by the STA.

The following part of this section describes the framework of some of the
regulations to which any subcontractor (wanting to perform maintenance
on the railway infrastructure) has to commit themselves. As this work
is about monitoring vegetation, the chosen administrative regulations ad-
dress this area.

Types of Inspections

In Sweden and to a large extent elsewhere around the world two types of
inspections are deployed:

1. Safety Inspections

2. Maintenance Inspections.

Inspecting vegetation is a subset of both types.

The purpose of safety inspections is to verify that there are no anomalies,
as well as to identify and estimate the deterioration of inspected objects.
As a result, STA, or its subcontractors, are able to prevent or eliminate
defects that can lead to accidents or incidents relating to trains, electrical

44



safety incidents, staff working injuries, accidents involving third parties,
operation disturbances, and environmental incidents.

The purpose of maintenance inspections is to serve as a foundation for
planning actions in the medium to long term, equalling six months to three
years Banverket (2005b, p.5). This is to meet the requirements of function,
optimal tech-nical and economic lifespan.

1.2.2 Estimate of Inspection Costs

A general safety inspection (see section 1.2.1) carried out on Sweden’s
14 000 km tracks by walking along the trackbeds at an average speed of
3.5 kilometres per day, would have resulted in 14000/3.5 ≈ 4000 days,
equalling approximately 4000 ∗ 8 = 32000 man hours (which in effect is
about 11 years of full-time work for one man). In 2011, the cost of a railway
inspector (including necessary safety precautions) was around 100 GBP
per hour and about 800 GBP per day. The resulting cost for inspecting all
14000 km railway tracks results in: 32000h ∗ 100GBP/h = 3 200 000GBP
≈ 4 900 000USD ≈ 3 600 000EUR ≈ 36 000 000SEK . Note that this gen-
eral safety inspection covers far more then just inspecting the vegetation,
see section 1.2.1. Based on the numbers above, the average cost per
kilometre would then equal 800/3.5 ≈ 230 GBP/km. (The average speed
and costs are based on Sjöblom, T., 1 March 2011. Personal interview)

A field trial led by Jan-Erik Lundh at the STA in 2011 aimed to investigate
the methods of manually inspecting/monitoring vegetation in the drainage
ditches beside the trackbed. It took about 40 minutes for an inspector to
inspect/monitor one kilometre. Hence, in this case, the average speed
resulted in progress of 1.5 km/h, or 12 km/day. At this speed, and at an
hourly cost of 100 GBP, the average cost per kilometre would then be800/12 ≈ 70 GBP/km. (Based on Lundh, J-E., 28 April 2011. Personal
interview)

1.2.3 Disadvantages with Manual Inspections

Relying on human inspectors to walk along railway tracks is time consum-
ing and expensive. In addition, manual inspections require skilled and
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trained staff. Maintaining a consistent quality standard is also difficult, be-
cause different inspectors may interpret the regulations in different ways,
or they may have different opinions on how inspections should be carried
out. Consequently, inspection results are highly subjective, depending on
the experience and knowledge of the person carrying out the inspection.
This subjectivity can result in uneven quality.

The notes made by human inspectors should be dependent on the STA re-
quirements stated in the regulations and handbooks. However, variations
in inspection notes do not just result from the different opinions of inspect-
ors. Subjectivity is also the result of inconsistent administrative regula-
tions, which have very few measurable criteria.

Two examples of administrative regulation texts that show degrees of sub-
jectivity:

”Verify that no interfering vegetation is present in the track area”
Banverket (2005b)

How should the words ”interfering”, and ”present”, respectively, be inter-
preted by an inspector?

”At level crossings: Verify an adequate field of view, and that
road signs are not obscured”(Trafikverket, 2012a)

Likewise, how should the wording ”adequate”, and, ”field of view”, and
”obscured”, respectively, be interpreted by an inspector?

Apart from the problem of intuitive manual inspections, reliable informa-
tion about the current state of vegetation along railway tracks is not readily
available; thus, maintenance actions are carried out manually on a peri-
odic basis irrespective of the condition, which is very slow and time con-
suming. The fact that some high-traffic lines have to be inspected more
frequently, as well as other issues such as maintaining an even quality
standard, makes high costs a serious problem.

In efforts to chemically control vegetation, woody plants, herbs and grasses
along railways, Glyphosate (commercial name: Roundup Bio) is often
used(Torstensson, 2001). Glyphosate does not affect conifer trees that
much. Whilst it will kill new shoots, the plant itself will continue to grow.
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Equisetum arvense (horsetail) is also not affected by Glyphosate. The
substantial use of herbicides to fight vegetation along railways poses seri-
ous environmental problems.

Detailed railway maintenance information, e.g. previous inspection proto-
cols, often resides with the subcontractor who carried out the inspection,
and thus the information becomes inaccessible over time.

The STA currently performs periodic measurements by video recording
the track and surroundings using a measurement wagon (called a STRIX).
These video clips may be viewed by subcontractors; however, the person-
nel watching the video clips still have to make the decisions regarding the
maintenance measures to be taken. Information contained in the video
clips is not represented or stored in any other form (except for the GPS-
based positioning information on the STRIX wagon carrying the video
camera). Thus this kind of video information is static.

To deal with the consequences of climate change, AEA Technology PLC
in the UK has put forward a proposal to the RSSB which makes the fol-
lowing research recommendations concerning vegetation: 1) Develop im-
proved general awareness of anticipated impacts and timescale, 2) De-
velop a programme to monitor changes, 3) Implement revised vegetation
management practices to meet new growth characteristics (Eddowes et
al., 2003, p. 54). The second research proposal legitimises work carried
out in this thesis.

In particular, the described disadvantages of manual inspections has led to
the suggestion of an automated approach in order to support or replace
manual inspections (see Section 1.3).

1.3 Proposed Automated Solution

Initial enquiries, including a literature review and interviews, show that
there are no automated systems for monitoring vegetation along railways
in Sweden. There is a strong need for such systems developed for this
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purpose1 2. Automating the process of detecting and characterising veget-
ation along railways could be accomplished by replicating human vision,
using machine vision techniques. More than 95% of the information that
humans perceive is optical in character (Flusser et al., 2009), so human
expert knowledge could be extracted and used in the contribution of de-
veloping the foundation of such a system. A machine vision solution could
also be used for identifying common species of woody plants (which are
more problematic than herbs) as well as endangered species that grow on
the railway embankment.

Proposed data sources include on-board sensors (e.g. cameras, and
GPS). Use could also be made of remotely sensed data. The information
output of the automated inspection process will serve as a knowledge base
for maintenance decisions, i.e., planning when and where to carry out ve-
getation control/management. The sensors should optimally be available
in the commercial market at a reasonable price so that most subcontract-
ors can afford to use them.

The system should be robust, and fault tolerant. For example, it should
be possible to perform monitoring even though a camera is slightly mis-
placed, or set up incorrectly. Thus, the system should be able to sense
the environment by itself using sensors, i.e., the system should be able
to locate objects like railway embankments, rails, sleepers, rail fastenings,
base-plates, and so on. This would also enable the same system to be
used for monitoring activities other than vegetation monitoring.

1.4 Research Questions

The research questions (RQ) that address the problem of monitoring the
state of the vegetation along railways are listed as follows:

1Enquiries made through interviews with Trafikverket and local railway maintenance
subcontractors, as well as written application response from domain experts at VINNOVA
.

2Acknowledged by local railway maintenance subcontractors working in the railway
maintenance area, Trafikverket (STA) as well as domain experts at VINNOVA, 2009.
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RQ 1: How are railway inspections carried out with regard to the assess-
ment of the extent of vegetation, and what methods are used for
measuring vegetation along railways?

RQ 2: How is the extent of vegetation measured?

RQ 3: How reliable are human visual estimates when assessing the ex-
tent of vegetation?

RQ 4: How can the extent of vegetation be measured by making use of
machine vision, machine learning and statistical inference?

RQ 5: How can woody plants growing on railways be recognised using
machine vision and machine learning? Woody plants are problem-
atic because legal herbicides are not completely effective in killing
them (see section 1.3); thus, it might be feasible to mechanically
harvest them if the maintenance administrators knew their spatial
position along the railway system.

RQ 6: How do measurements using machine vision and machine learn-
ing correlate with human visual estimates?

1.5 Aims and Objectives

Based upon the the proposed solution (see section 1.3) and the research
questions (see section 1.4) the following aims and objectives are defined.

1.5.1 Aims

The aim is to investigate and develop a potential automated system for the
detection and characterisation of vegetation on railways in order to:

1. Reveal the state of vegetation on railways through a geographical
overview of the railway infrastructure for subcontractors, track-owners
and administrators (e.g. national railway administration), thus syn-
chronising the common knowledge-base of a particular section of
embankment for, for example, outsourcing maintenance activities.
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2. To recognise woody plants that are most likely to grow on railways.
By knowing where these are in the railway system, it might be feas-
ible to mechanically harvest them.

3. Support maintenance decisions for subcontractors, track-owners, and
administrators.

4. Enable a shift from periodic maintenance to condition-based main-
tenance, thus reducing costs and saving resources. In addition, this
may prevent the overuse of herbicides.

1.5.2 Objectives

The main objectives pursued in order to answer the research questions
are:

1. To investigate problems that arise when carrying out manual veget-
ation inspections along railways as well as to investigate current-day
vegetation control/management activities.

2. By using sensor inputs, to propose computational methods and al-
gorithms that detect, measure and characterise vegetation and to
map it temporally and spatially.

1.5.3 Effects

The effects of automating inspections with respect to vegetation are as
follows:

1. Improved track safety and reliability, as opposed to current individual
subjectivity.

2. The initialisation of a programme to monitor changes of state along
the tracks, leading to:
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(a) improved procurement of vegetation management (see flow chart
in section 1.1.1). Both the railway administrators and potential
subcontractors know the extent of vegetation beforehand. After
the contracted work has been carried out, it will be easier to
follow up by comparing the previous recorded state.

(b) increased knowledge of where endangered species are to be
found along the tracks.

3. A dynamic condition-based maintenance (CBM) approach is achiev-
able, as opposed to the day-to-day static periodic maintenance that
currently takes place (see section 2 for further information about
maintenance).

4. Avoid unnecessary delays through improved decision making.

5. Implementing a CBM can reduce the amount of herbicides used,
thus making less negative environmental impacts and lowering cut-
ting costs for vegetation management using herbicides.

1.6 Research Methodology and Design

Based upon the presented aims and objectives, this section describes the
research methodology used in this thesis. Also presented is a summary of
how data was collected and how it was analysed.

1.6.1 General Methodological Approach

Overall, this thesis emphasises both the scientific method and the engin-
eering design process (see appendix I). Several interdisciplinary studies
were incorporated. At its base are the academic fields of computer en-
gineering and computer science, or informatics, and focuses on pattern
recognition and machine vision. It also heavily involves ecology, forestry
and botany, where the methodology of describing using measurements is
in focus. Plants are the main subject to be measured; thus, biometry is
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in focus. Biometry is the science of measuring and statistically analys-
ing biological data. The fields of medicine and psychology are emphas-
ised, in conjunction with behavioural science. Foremost, they are referred
to in terms of measuring human reliability (levels of agreement among
raters/ assessors/judges/observers). This could involve, for example, sev-
eral raters visually estimating/assessing plant frequency.

The overall research process was conducted in an iterative way and in-
volved literature reviews. The data were collected through measurements,
questionnaires, and interviews.

The underlying research methodology used emphasises quantitative re-
search methods, foremost by observation in experimental studies and sur-
veys (see figure 1.7). Reference has also been made to experiments and
surveys as they form the basis of this thesis.

Aspects of qualitative methodology were used whenever subjective inter-
pretations were needed for a deeper understanding, e.g. interviews with
experts from a particular domain.

Experiences 
and motivation

State-of-the-art/
Literature review

Conceptual 
framework

Research 
questions

Survey

Design and 
creation

Experiment

Case study

Qualitative

Quantitative

Interviews

Observation

Questionnaires

Documents

Strategies Data generation 
methods

Data analysis

Usually 

1:1
Often

1:N

Figure 1.7: General Research Process (Modified and redrawn from Oates
(2006))

The investigations in this thesis included both controlled experiments (for

52



example, in a photo laboratory) and field experiments in an uncontrolled
outdoor environment along railway trackbeds. In general, the following
components formed part of any experiment (Cox and Reid, 2000, pp.
19)(Hurlbert, 1984):

1. Experimental hypothesis

One or several well-formed questions or research hypotheses, e.g.
speculations about some underlying process, or phenomenon that
confirm or explain earlier findings.

2. Experimental design and execution

Description of the nature of the experimental units, the number and
kind of treatments to be applied, and what will be measured in re-
sponse to the experimental units. The experimental design specifies
how treatments are assigned to the experimental units, the number
of experimental units (replicates) receiving each treatment, the spa-
tial arrangement of experimental units, and the temporal sequence
in which treatments are applied, and measurements made on the
different experimental units.

A goal during the execution of the experiment is to: 1) avoid the
introduction of systematic errors (bias), and 2) to minimize random
errors. It is very important to get it right in this phase, because any
errors made at this point often mean that the experiment needs to
be repeated. This can be very costly (in terms of time and money).
Sometimes, an experiment cannot be repeated simply because the
objects to be studied are no longer there.

3. Statistical analysis

The data are analysed by making use of objective statistical meth-
ods. This does not necessarily imply that the result is objective, but
that the statistical methods are. Hence, if someone else using the
same data was to repeat the statistical methods, the result would be
the same.

4. Interpretation of the analysis results and conclusion

The experimental design in this work are either randomised or systematic.
This refers to the sampling design. A randomised design means that the
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observed units have been chosen by a simple random process out of the
population. In the case of systematic design, the starting point (e.g. on the
railway track) has been randomised and the subsequent points has been
predetermined by intervals in time or space (e.g. sampling occurs every
5th second, or every 10th meter). This method is also called an every k th

systematic sample (Cochran, 2007, p.205 ). The statistical risk of errors
in the systematic design occurs if the environment is periodic. The chosen
and adapted design for each experiment is explicitly described at the point
where the experiment is presented.

Artefacts such as models, algorithms and prototype implementations were
created during this work using crucial elements of the experimental strategy.
Foremost, alongside the design and creation strategy, a problem-solving
approach was taken. The design and creation strategy has it roots in
design science (see Oates (2006, pp. 108-124), March and Smith (1995)).
The scientific study of artificial entities was introduced by Herbert Simon
in his book ”The sciences of the artificial” (Simon, 1996), first edition pub-
lished in 1969. Here, Simon put forward arguments in favour of a science
of design of artificial entities in parallel and/or supported by natural sci-
ence. The aim of natural science is to understand and explain natural phe-
nomena, whereas the aim of design science is to develop ways to achieve
human objectives (March and Smith, 1995). In this thesis, the overall
objective is to investigate and propose methods for quantifying vegetation
along railways using camera-based sensors.

Whenever interviews were used as a method for data collection, the main
purpose was to develop a deeper understanding of the domain in question.
Therefore, interviews in this work have been conducted as unstructured
interviews (Weiss, 1994, pp. 207)(Fontana and Frey, 1994, pp. 365–
368), or as short case study interviews (Yin, 2014, pp. 109).

Unstructured interviews are characterised by the interviewer having a loose
plan in mind concerning the goal of the interview and this goal is used as
a guide through the discussion. Neither the interviewer nor the respond-
ent are restricted by, for example, predefined questions. Questions in the
unstructured type of interview are open-ended, i.e., the questions relate
to what, why, how, describe, explain, and compare; they do not lead to a
simple yes/no response.

The interviews were used as an important preliminary step before the de-
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velopment of more sophisticated investigations or surveys, and to support
or enhance findings in the existing literature.

1.6.2 Research Design

This section describes how the chosen methods were applied to answer
the research questions. In order to be able to answer the research ques-
tions in section 1.4, the work was divided into several iterative phases (see
list below). The addressed research questions which were to be answered
by some actions (in the list below), are denoted as <RQn >, where n is the
number of the research question.

Phase 1 - Background Research and Literature Review This phase in-
volved several review parts:

1. A review of previous work and technical documents con-
cerning railway vegetation control. These documents in-
vestigate how vegetation on and along railway embank-
ments are currently detected and treated, as well as how
manual inspection routines are carried out. This review
addresses RQ1 .

2. A review of machine learning and machine vision meth-
ods are candidates for this work. This action addresses
RQ4.

3. A review of methods for monitoring and measuring ter-
restrial vegetation. This review addresses RQ2

Phase 2 - Data Collection

1. Primary data were collected outdoors (denoted as field
experiments) by acquiring digital images using camera
sensors on different railway sites during the non-snowy
seasons. In addition, primary image data were collected
in a laboratory environment indoors. The purpose of the
latter was to test the concept of recognising/classifying
plants in a controlled noise-free environment, before do-
ing the same in a noisy outdoor environment, i.e., on
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the railway embankments/trackbeds. The collected data
constituted the base for the upcoming analysis of invest-
igations, wwhich attempted to answer RQ3, RQ4, RQ5,
and RQ6.

2. Primary data were also acquired by putting survey ques-
tions to domain experts and laypersons about acquired
images (above), or by observation on-site during the field
experiments. The data were used to answer the question
of reliability regarding human estimates of plant cover.
This data also, as above, addressed RQ3 and RQ6

Phase 3 - Analysis of Investigations

1. Manual inspections: Investigations of laypersons or do-
main experts who assess the extent of vegetation were
statistically analysed. Data acquired in phase 2, above,
were used. This targets RQ3, by making comparisons
between manual inspections made by different people.

2. Machine vision inspections: Here, the acquired data (from
phase 2) were analysed and algorithms were developed.
The algorithms were then implemented in the context of
image processing, which underlies machine vision, and
machine learning. This iterative development of proto-
type software also included testing. This step addresses
RQ4 and RQ5.

3. Comparisons between human visual estimates and the
machine vision/machine learning approach were analysed.
This addresses RQ3 and again RQ6 but this time by
comparing measurements made by human vs. machine
.

Phase 4 - Discussion and Conclusion Finally the results from the previ-
ous phases were discussed and suggestions for future work were made.
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1.7 Scope and Limitations

1.7.1 Scope

The general purpose of this thesis is to investigate and propose methods
for quantifying vegetation along railways using camera-based sensors.

This thesis covers the following topics: a problem description of letting ve-
getation grow along railway lines, a description of general maintenance
methods (especially in the railway domain), an overview of those fields of
botany and ecology that target the basics of plants and a description of
how vegetation is quantified, investigations and descriptions of adequate
machine-learning methods in conjunction with machine vision, investiga-
tions of human raters (e.g. maintenance inspectors), and agreements and
the reliability (or trustworthiness) in their assessments.

As already stated in the opening paragraphs of chapter 1, the track areas
in consideration in this thesis (seen from the centre of the tracks) are the
upper parts of the trackbed and the slopes of the embankment, not includ-
ing the drainage ditches, see figure 1.2.

Image data were collected at various field experimental sites in the county
of Dalarna (Dalarnas län) during the summer months between 2010 and
2012, and in the county of Småland (Smålands län) during the summer of
2013 (see section 5 for detailed locations in Sweden). The locations were
selected bearing in mind aspects relevant to safety and site availability.
The specific experimental sites at the locations were always selected at
random.

Survey data were collected from both domain experts and laypersons,
where domain experts were considered as persons working in the rail-
way domain and/or having any knowledge of how to assess the extent of
vegetation, and for the layperson the opposite applies.

Typically, the respondents (i.e., the raters), were asked to assess the ex-
tent of vegetation either in the field (i.e., on the railway embankment), or by
looking at images of a railway embankment. The survey used a bounded
continuous type of response scale, where the respondents were presented
with a continuous scale. For example, when assessing vegetation cover
(i.e., estimating the percentage of plants covering a predefined area), re-
spondents were asked to provide an answer between 0 and 100%. With
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regard to vegetation density (i.e., counting plants/clusters in a predefined
area), respondents were asked to provide an answer as a natural number,
or zero. N0 = {0, 1, 2, 3, ...}. The purpose of conducting the surveys is to
assess the ability of human raters to assess the extent of vegetation and
analyse whether if such assessments are reliable.

1.7.2 Limitations

The results from the outdoor field investigations should be handled with
care, particularly when it comes to generalising them to other field layer
classes (see section 5.2) and to other climate zones, where more invest-
igations are needed.

The investigations in which laypersons and domain experts were asked to
assess the extent of vegetation were not intended to to be (statistically)
exhaustive; rather, they were to serve as a proof-of-concept indicator in
conjunction with the cited literature. Few domain experts were available.
If more experts had been available, fewer investigations could have been
carried out instead.

1.8 Outline of the Thesis

In order to help the reader, a short outline of the thesis is presented in this
section. The thesis consists of the following main parts:

1. Background, applied strategy and knowledge base: Consists of a
description of the problem posed by vegetation growing along railway
tracks and how it is dealt with by railway administrators or (often) sub-
contracted maintenance suppliers. Most essential is one of the first
steps in maintenance: How is the state of vegetation along railways
inventoried or monitored? Next, the strategy for solving the prob-
lem is presented. The research questions are based on the problem
and form the foundation of what is investigated (for more informa-
tion see part I). Furthermore, a review of maintenance fundamentals
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is given, together with a discussion of how terrestrial vegetation is
being measured by experts (see part II for further details).

2. Data collection methods: Part III contains the basics of why, when
and how the data was collected. Instead of describing the data col-
lection several times, data sets collected from the same temporal
and/or spatial context were used later, at several places in the thesis.
Thus, data collection methods are shown in one place.

3. Humans quantifying vegetation: Part IV describes the investiga-
tion of how effective humans are at estimating the extent of vegeta-
tion. Methods described in chapter 4 are used.

4. Quantifying vegetation using machine vision and machine learn-
ing: In part V alternative ways of measuring vegetation are presen-
ted. Foremost is the detection and quantification of vegetation by
making use of machine vision. The detection and classification of
common woody plant species using machine vision and machine
learning are also presented.

5. Conclusions and discussion: The conclusions and discussion are
followed up by suggestions for future work in part VI.
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Part II

Technology and Literature
Review
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The ideas leading to this thesis have their origin in computer science/ en-
gineering. However, they are also very much grounded within several other
disciplines, such as biology in general, and botany or plant/vegetation sci-
ence, ecology, and statistics in particular. Thus, this part of the thesis
covers some of these areas. It should also be noted that, in several cases,
literature is cited elsewhere. The motivation for this explicit choice is to
use citations in a relevant context of reasoning. Thus, it would not have
worked as well if they were only found within a technology and literature
review such as this. This approach also enhances readability, because the
reader does not have to go back and forth between the chapters.

In some contexts, the sources cited in this work may appear as old at first
sight, especially concerning the domains of ecology, biology, botany or
plant science and statistics, where citations from the 1930s to the 1960s
are not unusual. However, these sources still hold true today and are very
much in use in current day research.

A table of the Internet-based sources used during the technology and lit-
erature review is shown in Appendix K.
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Chapter 2

Maintenance Strategies

The bottom line goal of this study is to support and improve the mainten-
ance activities related to vegetation management (see also section 1.3).
This chapter describes maintenance, together with any terms and defini-
tions used.

Two general types of strategies concerning maintenance can be distin-
guished Yam et al. (2001) :

• Corrective maintenance (CM), Run-To-Failure (RTF), break-down main-
tenance, or unplanned maintenance all take place only when failure
occurs, i.e., one waits until the equipment or material in question fails
or breaks down; only then is it repaired. This may be a good strategy
if the equipment or material is cheap, and the cost of repairing or
replacing it is lower than keeping up a maintenance programme.

• Periodic maintenance, preventive maintenance, time-based main-
tenance, scheduled maintenance, or planned maintenance all take
place at periodic intervals, regardless of the state or condition of the
object in mind.

The European Standard EN 13306 BSI (2010) provides an overall view of
maintenance (see figure 2.1). Preventive maintenance is broken down into
condition-based maintenance (CBM) and predetermined maintenance. A
preventive maintenance is carried out at predetermined intervals or ac-
cording to prescribed criteria. The purpose is to reduce the probability of
failure or the degradation of a functioning item.

62



A predetermined maintenance is a type of preventive maintenance and is
carried out in accordance with established intervals of time or number of
”units” of use, but without previous condition investigation (Compare with
CBM). A scheduled maintenance is a type of predetermined maintenance
and is carried out according with a time schedule or established number
of ”units” of use.

A CBM is, like the predetermined maintenance, a type of preventive main-
tenance and includes a combination of condition monitoring, inspection,
or testing followed by analysis and subsequent maintenance actions. A
predictive maintenance is a CBM carried out following a forecast derived
from repeated analysis or known characteristics and evaluation of the sig-
nificant parameters of the degradation of the item.

A corrective maintenance is carried out after fault recognition and intended
to re-establish functionality.

A deferred maintenance is a delayed type of corrective maintenance and
is thus not carried out immediately. The opposite is the immediate main-
tenance that is carried out without delay after a fault has been detected.

Figure 2.1: Maintenance - Overall view (Redrawn from BSI (2010))

With the rapid development of modern technology, products have become
more and more complex whilst, at the same time, better quality and higher
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reliability are required. This brings the cost of preventive predetermined
maintenance higher and higher, Jardine et al. (2006).

An often more efficient maintenance approach is condition-based mainten-
ance (CBM). CBM is a maintenance program that recommends mainten-
ance actions based on the information collected through condition monit-
oring. In general, maintenance actions are carried out each time the value
of a given system parameter exceeds a predetermined value. CBM at-
tempts to avoid unnecessary maintenance tasks by taking maintenance
actions only when there is evidence of abnormal behaviours of a physical
asset Jardine et al. (2006). Hence, if CBM can be effectively implemented,
it will reduce the number of scheduled preventive maintenance operations
and thereby reduce overall maintenance costs.

CBM approaches can be divided into two main categories: diagnostic and
prognostic Wang et al. (2002). The diagnostic approach involves such
steps as detection, isolation and the identification of faults when they oc-
cur. The prognostic approach attempts to predict faults or failures be-
fore they occur. Within both categories, three further types of approaches
can be distinguished: statistical approaches, artificial intelligence (AI) ap-
proaches and model-based approaches Jardine et al. (2006).

A CBM program basically consists of three sequential stepsLee et al.,
2004, see figure 2.2. The first step is to acquire data from the monitored
environment. The second step is to process and analyse the gathered
information. The third step is to make decisions based on the analysis.

Figure 2.2: Steps in condition-based maintenance

The advantages of CBM have been reported by Khazraei and Deuse (2011);
maximising equipment availability and machinery life expectancy, and found
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that it reduces overtime costs and decreases rework. CBM provides an
analysis of failure causes and a more economical use of maintenance
resources. However, the same authors reported that these techniques
require specialised equipment and staff training, which could become ex-
pensive. With regard to vegetation management, the STA mainly con-
forms to scheduled predetermined maintenance, and more specifically
time-based preventive maintenance, where for example the chemical treat-
ment of railway embankments occurs on average every third year (Lundh,
J-E., 28 April 2011, Personal interview).

For a more comprehensive review of maintenance terms, strategies, stand-
ards, and maintenance in general reference should be made to Khazraei
and Deuse (2011).

2.1 Vegetation Monitoring

In the context of monitoring, the term survey often appears. A survey
can be defined as a set of quantitative or qualitative observations using
standardised procedures and within a restricted period of time, without
any preconception of what the findings might be Goldsmith (2012); Hill
(2005, pp. 552). A series of replicated surveys, denoted as surveillance,
is here defined as monitoring. Monitoring can be defined as recurrent
(regular or irregular) surveillance to determine the degree of compliance
with a predetermined standard or degree of deviation from an expected
norm. Monitoring is performed when one wants to test the effects of macro
policy on a large spatial scale. Therefore, the design of data collection and
the analysis of the same must be given careful consideration. Hill (2005,
pp. 3-5). In the context of nature conservation, (Alexander, 2008) stated
that, ”Monitoring should be an essential and integral component of man-
agement planning: there can be no planning without monitoring and no
monitoring without planning”. This is very much a universal statement that
complies to any maintenance and management process in any context,
and applies particularly well for the purpose of this work.
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2.2 Sensor Technology

In general, a sensor is a device that detects or monitors its surrounding
environment and then records, indicates or responds to it in some way.
One of the purposes of this thesis is to be able to characterise, detect and
identify vegetation growing on railway trackbeds, and hence only sensors
applicable for this purpose are mentioned. One of the most common ap-
proaches in using sensors to characterise vegetation is to make use of the
electromagnetic spectrum. More specifically by capturing multispectral (or
hyperspectral1) images at specific bands of frequencies across the elec-
tromagnetic spectrum. In conjunction with multispectral images, the the
amount of light of a specified wavelength in the electromagnetic spectrum
could also be measured by optical spectrometers. Multispectral and hy-
perspectral imagery has its applications in the fields of ecology, forestry,
agriculture, minerals, oil and gas industry, oceanography and atmospheric
studies

Depending on the purpose of the investigation it is often common to make
use the ultraviolet light (approx. 10 to 380 nm), visible light (from violet
around 380 nm up to red at around 700 nm), or infrared light (approx. 700
nm to 1 mm).

As stated in the proposed solution (see section 1.3), the chosen sensor(s)
should optimally be available in the commercial market at a reasonable
price so that most subcontractors can afford to use them. Hence the se-
lection of sensors are therefore restricted by their price as well as avail-
ability. The choice of image sensors is also justified by letting those who
collect and analyse data to actually look at it themselves and make their
own judgements Dougherty (2013). In addition, regulations and manu-
als of national railway administrations are based on the outcome of visual
inspections which can be mapped into the image and video clip domain.
Another benefit of using image sensors (e.g. digital single-lens reflex cam-
eras, DSLRs) is that they produce files according to common standards,
such as RAW, jpeg etc.

1Hyperspectral imagery has much narrower bands (10-20 nm) than multispectral im-
agery
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2.2.1 Sensor Technology for Detecting Vegetation

A nitrogen sensor (aka N-sensor ), like the commercial Yara sensor and
others, has been the subject of some studies, including one by Fogelberg
(2011). An N-sensor is typically used on crop fields by farmers who want to
optimise the distribution of fertilisers on their fields. The sensor determines
a plant’s nitrogen demand by measuring the plant’s light reflectance. By
analysing this input, a certain amount of fertiliser will be distributed on the
monitored crop field. Although it seems like many things are included in
this one commercial system, it does have drawbacks. These include the
fact that it is a black box, which means that no changes can be made to the
system. In addition, no checks can be made on the way it computes the
need for nitrogen, and other sensors cannot be coupled with the system
without the approval of the company.

An example of a final output after evaluating a railway section with a Yara
N-sensor can be seen in figure 2.3, where a darker green colour indicates
a higher prevalence of vegetation. The resulting output, on a high aggreg-
ated level, serves a purpose for, for example, farmers who want an over-
view of their fields. However, it might not be a final off-the-shelf product for
monitoring vegetation on railways simply because of the high aggregated
result levels which cannot become any more precise. Furthermore, it is
highly expensive, so it would take several years for such a system to give
a return on investment for a railway maintenance supplier who specialises
in vegetation management. An N-sensor measures electromagnetic light,
so the same task can be accomplished by and controlled by other optical
sensors, e.g. VIS and near infra-red (NIR) cameras, or, as described next,
by a spectroradiometer.
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Figure 2.3: Output from a Yara N-sensor (Cederlund et al., 2014, pp. 48)

A portable field spectroradiometer such as the FieldSpec 3 Hi-Res (spec-
tral range 350-2500 nm) or the FieldSpec 3 JR (spectral range 350-2500
nm) can be used for measuring plant reflectance. By using these meas-
urements, the nitrogen and water levels in a plant can be monitored. Dif-
ferent targets reflect and absorb solar radiation differently, and because of
this, they can be distinguished by their different spectral reflectance sig-
naturesJensen (2007). One drawback of spectroradiometer instruments is
that they often are very expensive.

Infra-red spotlights could be used in conjunction with near infra-red
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(NIR) cameras. This would enable vision in (for humans) complete dark-
ness, where the active infra-red light at one continuous frequency would
be reflected by the environment. It is likely that the monitoring would be
more accurate because of the stable and controllable input. When us-
ing the near-infra-red light emitted from the sun during daytime, the NIR
frequencies vary depending on the time of day, time of year, and spatial
location, including altitude.

The Danish National Railway (Banedanmark) took action against vegeta-
tion and implemented a system called WeedEye, which is a digital camera
system for detecting weeds that was developed by Heisel and Christensen
(1998). Problems with maintaining the system have meant that project has
now been cancelled and is no longer used. Nonetheless, the paper is still
quite interesting. The system has a sensor system for weed detection (leaf
area of wheat and charlock) using digital cameras. Attached to each cam-
era is a halogen bulb for enabling a continuous light spectrum. The camera
system estimates the percentage of visible leaf area, which is based on in-
formation from the RGB colour space.

There is a lot of scientific literature about agricultural weed control, i.e.,
how to fight weeds. In the agricultural environment the following types of
general approaches are usually used Perez et al. (1997):

1. Detecting certain geometric differences between the crop and weeds,
such as leaf shape and plant structure.

2. Detecting differences in spectral reflectance, as in Philipp and Rath
(2002).

3. Detecting differences in the location of the crops compared with the
location of weeds.

Optical sensors have increasingly found more applications in agricultural
production systems Wang et al. (2007). Advantages of this type of sensor
over imaging systems include low cost, less-complex system configura-
tion, and greater processing speed. Most optical sensors detect weeds
based on plant spectral characteristics; The relation between wavelength
and some other variable, e.g. between wavelength and emitted radiant
power of a luminescent screen per unit wavelength interval, Alchanatis

69



et al. (2005), Vrindts and De Baerdemaeker (1996) and Wartenberg and
Schmidt (1999).

Another example of a commercial product is the Australian WeedSeeker
(McIntosh Distribution, 2015). The WeedSeeker system works by using
LEDs to project a combination of invisible infra-red and visible red light
onto the target area approximately 60 cm below the sensor. A sensor
captures reflected light, and analyses it, and then finds the light reflected
by green plants. When a green plant’s reflectance is identified, the sensor
waits until the plant is under the spray nozzle and then triggers a fast-fire
solenoid valve, which sprays the plant with herbicides. WeedSeeker is
also used in the railway industry, as well as in agriculture.

2.3 Conclusions & Discussion

To stay competitive, both in terms of the budget and the environment,
CBM is an important area to address. Using maintenance terminology for
an automated system for the detection and characterisation of vegetation
on railways would conform to the CBM paradigm, which includes condi-
tion monitoring. That is, system output will inform management personnel
about the current state of vegetation based on the sensor information from
the railway embankment and its surroundings, and/or make explicit sug-
gestions about maintenance actions. Vegetation management, which is
based on an analysis of the data collected during condition monitoring can
directly and indirectly extend the life expectancy of railway objects; one of
the most important of these is the railway embankment.

The approach taken in this work will, as suggested by Jardine et al. (2006),
make use of the paradigms, techniques and methods from the field of arti-
ficial intelligence (AI) to identify faults when they occur and predict failures
before they occur.

With regard to applicable sensors, many papers about agricultural weed
control are of interest of this project, they can in some cases be mapped
upon the railway embankment area. However, the environment of farming
fields with their nutrient-rich soil in irrigated fields is quite different from the
often harsh environment found on railway trackbeds and embankments.
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Chapter 3

Plant Science

3.1 Motivation

Since the objects which are to be discovered, measured and character-
ised are plants, this thesis intersects with the area of biology and, more
specifically, ecology and botany. For this reason an overview of selected
fields of botany and ecology is justified and thus presented in this section.

3.2 Plant Requirements

Question: Why do some plants seem to flourish on railway embankments,
which are meant to be an unfriendly and hostile environment?

The ballast used on embankments will, over time, be ground down by high
pressure into fine stone powder. In addition, it will inevitably become pol-
luted with organic litter from dead plants, or oily and nitrogenous wastes
from trains, leading to reduced support of the sleepers, reduced life of the
wooden sleepers, and a softening and eventual failure of the sub-soil be-
low Sargent (1984); (Trafikverket, 2012b, appendix 8); Persson, B., 8 June
2011, Personal interview. It has been suggested that this stone powder
could be used, as is the case for granite powders, as a fertilizer for acid
soils. Thus, this could give a positive effect Silva et al. (2005).
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Since the sun warms up the ballast stones during the daytime, the stones
will preserve the generated heat a long time after the sun has disappeared.
The organic litter and stone powder, together with water, and the light and
heat accumulated from the sun, will, like in any garden compost, be trans-
formed into nutritious soil over time. All these factors will make some plants
flourish in this environment.

The countermeasures used to stop this happening are to either clean or
replace the ballast, or by managing the vegetation. The first option is an
expensive process, which demands highly specialised machines, and as
result of this, the replacement of ballast typically occurs at intervals of
every 15th up to every 30th year on main tracks Profillidis (2006, p.338).
Hence, for secondary tracks, the intervals might be even longer.

The second option is a short-term solution and is about the control of ve-
getation by means of mechanical, and/or chemical methods (using herbi-
cides). Even so, at some point in time it will not help to use chemical or
mechanical methods any more, because the ballast, or its surroundings,
is too polluted with aggregated organic litter, and so forth (see above).
Whilst these methods will stop plants from growing, they only bring about
a temporary effect; a couple of weeks later, vegetation will flourish once
again. The absence of vegetation control means that all the necessary
basic plant environmental requirements have been fulfilled over time. This
is the time to renew or replace the ballast.

3.3 Analysing and Classifying Plants

In order to represent plants and be able to efficiently communicate about
them in an structured manner, it is indeed relevant to give a brief review of
some scientific classifications in biology.

One way of classifying plants is to make use of various systematic ap-
proaches to botanical classification. These are usually based on the Swedish
taxonomy introduced by Carolus Linnaeus (1707 - 1778), often called the
Linnaean System Campbell and Wynne (2011).

All known living organisms are arranged in an hierarchical structure. One
of the latest commonly accepted botanic taxonomic hierarchies has six top
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ranks called kingdoms Cavalier-Smith (2004). One of these six kingdoms
relates to plants, and, at the bottom of such an hierarchy, can be found the
most specialised rank, known as species (see table D.1 in D).

Another approach is to analyse the physiognomy and the structure of
plants Kuchler (1966). Physiognomy refers to the physical (life) forms of
plants (see the left-hand side of table 3.1).

With regard to structure, Kuchler focuses on the two characteristics of
height and coverage and, while it is often hard to measure them exactly,
he suggests a form of vegetation mapping, as seen in table 3.1 (right-hand
side).

Life Form Categories

Basic Life Forms Special Life Forms

Woody Plants Climbers

Broadleaf evergreen B Stem succulents

Broadleaf deciduous D Tuft plants

Needleleaf evergreen E Bamboos

Needleleaf deciduous (e.g Larix) N Epiphytes

Aphyllous O

Semideciduous (B + D) S

Mixed (D + E) M

Herbaceous plants

Graminoids G

Forbs H

Lichens and mosses L

Structural Categories

Height Coverage

Class Height Class Coverage

8 > 35m c continuous (>75%)

7 20-35m i interrupted (50-75%)

6 10-20m p parklike, in patches (25-50%)

5 5-10m r rare (6-25%)

4 2-5m b barely present, sporadic (1-5%)

3 0.5-2m a almost absent, extremely scarce (<1%)

2 0.1-0.5m

1 < 0.1m

Table 3.1: A method of analysing plants by their physiognomy and struc-
ture devised by Kuchler (1966)

3.4 Biophysical Data, and Root and Shoot Ra-
tios

The term biophysical data refers to measurements of physical character-
istics collected in the field. Examples of such data are type, size, biomass
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weight, spacing between plants, form, texture and/or mineralogy of soil
Campbell and Wynne (2011, p.384). When it comes to weight, biomass
root to shoot ratios are often used. A root to shoot ratio describes the ratio
between the shoot (i.e., the above-ground part of the plant) and the root,
and is one of several studied areas in allometry.

In order to model plant growth Pearsall (1927) applied the formula in equa-
tion 3.1

y = b ∗ xα (3.1)

where y is the dry weight of the root, x is the dry weight of the shoot, and
b and α are constants.

Allometry is the study of biological scaling. The term in it self was (prob-
ably) first mentioned by Huxley and Teissier (1936), who recognised that
many scaling relationships, when plotted on a log-log scale, were linear.
Consequently these relationships could be described (by rewriting equa-
tion 3.1) using the simple linear equation 3.2, as follows:

log (w) = log (b) + α ∗ log (z) (3.2)

where z is body size, w is organ size, log b is the intercept of the line
on the w-axis and α is the slope of the line, also known as the allometric
coefficient, Shingleton (2010).

The equation can also be applied to investigating the relative distribution
of growth of shoot to root Ledig et al. (1970) as follows:

log (shoot dryweight) = log (b) + α ∗ log (root dryweight) (3.3)

The relationship between shoot biomass and root biomass (often denom-
inated MA and MB, respectively) is often used to estimate a growth re-
sponse compared with surrounding environmental conditions, or to eval-
uate the responses of individual plants to experimental manipulation, e.g.
Monk (1966), Hunt and Lloyd (1987) and Niklas (2005).

It has been shown that, in general, one could roughly approximate the root
to shoot ratio of Norway spruce and Scots pine as one to two year old
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seedlings as: R = 0.2 ∗ S where R is the dry weight of the root, and S is
the dry weight of the shoot. It is also commonly observed that one year old
nursery generated Scots pine and Norway spruce seedlings have a root-
shoot ratio of 0.25, i.e. of the seedlings total dry weight biomass, the dry
weight of the root is approximately 20% and the shoot 80%, respectively
(Lindström, A., 7 Sept. 2011, Personal interview).

For more information, a thorough review about modelling the root to shoot
ratios has been made by Wilson and Bastow (1988).

3.5 Common Woody Plants along Railways

Motivation: One of the goals was to recognise those woody plants that
are most likely to grow on railway embankments. The woody plants and
especially conifers are hard to kill by the use of legal herbicides. By know-
ing the where these kind of plants are in the railway system, it might be
feasible to mechanically harvest them.

Thus, a short summary about the most common species in this section is
justified here, in the sense that a physician can benefit from knowing his
patients. The analogy applies in this work, but this time, it concerns plants.

Woody plants, also known as ligneous, or wood-like plants, refer to trees
and bushes that have a wood-like stem and branches.

Forest statistics by Swedish National Forest Inventory 2007-2011 and 2006-
2010 SFNI (2011) reported that the three most common kinds of trees
in Sweden are Picea abies (Norway Spruce) followed by Pinus sylvestris
(Scots Pine), followed by Betula (birch).

Picea abies (Norway Spruce) is Sweden’s most common species and
is found throughout the country. The spruce thrives in fertile and slightly
moist soil and prefers shade. In southern Sweden, a southern variant with
wide crown and horizontally outward branches dominates, whilst in the
north, a variant with narrow crown and downward branches prevails. The
spruce has a shallow root system and is therefore sensitive to the wind.

The Norway spruce is a secondary tree species meaning that it prefers to
establish itself where other primary tree species are already established.
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Figure 3.1: Picea abies seed-
ling established on sleepers

Primarily, this is because the spruce
prefers shady environments. After seeds
have settled, it is common that a one-year
old naturally generated Norway spruce
seedling usually grows slower than a Scots
pine seedling during the first two years,
which means that it will be a little shorter
than the Scots pine in height (Lindström,
A., 7 Sept. 2011, Personal interview).

Pinus sylvestris (Scots Pine) grows
throughout Sweden, like the spruce, but
is most common in northern Sweden as
well as on Gotland. The Scots pine prefers
light, and grows preferably in dry soils and on peatlands. The pine has a
pole-like root which makes it more wind resistant than the Norway spruce.

Figure 3.2: Pinus sylvestris
seedling established on a
sleeper

The Scots pine is an invasive primary tree
species, meaning that it prefers to propag-
ate by invading open and light areas (Lind-
ström, A., 7 Sept. 2011, Personal inter-
view).

A one-year old naturally generated Scots
pine seedlings could grow to between 2
and 7 cm in height. During the second
year it is normal for the seedling to pro-
duce an apical shoot of approximately 10
cm. Similarly, a one-year old Scots pine
seedling generated in a nursery can grow
to a height of between 10 and 15 cm (Lind-
ström, A., 7 Sept. 2011, Personal inter-
view)

A fully grown tree is usually 20 to 30
metres in height and can be as old as 900
years. Pine needles are arranged in pairs
and are blueish-green to greyish-green in colour. The needles are 3 to 6
cm long (Nationalencyklopedin, 2011).
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Figure 3.3: Betula seedling
establishment on ballast

The genus Betula (birch) is widespread
throughout the Northern Hemisphere,
across a number of different climate types,
including subarctic, mountainous and tem-
perate zones. There are two Betula spe-
cies in Sweden, namely Betula pubescens
(downy birch) and Betula pubescens ssp.
czerepanovii (mountain birch, or Arctic
downy birch), which is a variant of the
downy birch and Betula pendula (silver
birch). The birch is the most common leaf
tree is found growing throughout the whole of Sweden. Downy birch is
most prevalent in northern Sweden, where up to 75% can be found.

After the spruce and pine, the birch is the most common tree species. Both
the birch and the Scots pine are invasive primary tree species, meaning
that they prefer to invade open and light areas.

3.5.1 Woody Plant Candidates for Data Collection

In addition to the species mentioned above, this work also includes the
species listed in table 3.2. Their inclusion is dependent on standing volume
statistics reported by SFNI (2011) and suggestions made by domain ex-
perts (Lindström, A., 7 Sept. 2011, Personal interview) and (Stattin, E:,
28 June 2011. Personal interview). On the advice of these, some species
have been excluded, even though their ranking in the standing volume
statistics is quite high; for example, Fagus sylvatica L. (beech). Similarly
species that are likely to spread out on embankments have been included,
even though they rank lower, or are not present in the standing volume
statistics, e.g. Acer platanoides (Norway maple), and Prunus padus (bird
cherry).
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Familia Genus Species English Name
Pinaceae Picea Picea abies Norway Spruce
Pinaceae Pinus Pinus sylvestris Scots Pine
Betulaceae Betula Betula pubescens Downy birch
Betulaceae Betula Betula pendula Silver birch
Betulaceae Alnus Mill. Alnus incana Grey Alder
Betulaceae Alnus Mill. Alnus glutinosa Alder
Salicaceae Populus Populus tremula Aspen
Rosaceae Sorbus Sorbus aucuparia Rowan
Fagaceae Quercus Quercus robur Pedunculate Oak
Salicaceae Salix Salix caprea Goat Willow
Rosaceae Prunus Prunus padus Bird Cherry
Aceraceae Acer Acer platanoides Norway Maple

Table 3.2: Plants likely to be found on railway embankments
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Chapter 4

Measuring Terrestrial Vegetation

In this chapter, the process of measuring, or quantifying vegetation is de-
scribed. One way of quantifying a population of interest is obviously to
count, or measure the full population. Often, it is not feasible to do so
because of three types of constraints (Barnett, 2003): 1) time, 2) money,
and 3) accessibility. Another commonly used approach is to study a smal-
ler group, i.e., a sample of the total population.

4.1 Sampling Units

In general, a sampling unit is an element or set of elements that is con-
sidered for selection out of the total population. In the context of this work,
the most often used primary sampling units are individual plants, plant
clusters, lines (transects), points, plots often denoted quadrats. Combina-
tions can be used, such as point quadrats (i.e., points within a plot), sub
plots (i.e., small plots, which can be composed of a grid within a bigger
plot, such as the frequency method), and plots sampled along a line. The
type of sampling unit will be dependent on the type of vegetation attribute
being measured Elzinga et al. (1998, p.101).
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4.2 Spatial Plant Distribution

With regard to plants, there are three types of small-scale basic spatial
patterns, or geographic local distributions Krebs (1999); Mauseth (1998):

1. Random distributions (see figure 4.1 a) having unpredictable spa-
cings

2. Aggregated/clumped distributions (see figure 4.1b)

3. Uniform distributions (see figure 4.1 c)

a) b) c)

Figure 4.1: a) Random, and b) aggregated, and c) uniform plant patterns

These three types of spatial distributions (also called dispersions) are the
spatial relationships of individual organisms to one another. It is import-
ant to know the type of spatial pattern in order to describe and predict
plant populations. If the spatial distribution is accounted for, the sampling
strategies can increase sampling efficiency Cardina et al. (1997) and Car-
dina et al. (1995).

Krebs (1999, pp. 115 - 123) describes how to investigate whether random-
ness apply for a spatial pattern, the Poisson distribution is the most com-
mon descriptor of data. Randomness in two dimensions is here defined
as randomised x- and y-coordinates in a geographical space. The Poisson
distribution is described as in equation 4.1.

Px = e−λ
(
λx

x!
)

(4.1)

where P is the probability of observing (by counting) x number of individu-
als in the sample area, and λ is the true mean of the distribution. To fit
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this distribution to observed data the investigator only has to estimate the
mean by setting x = λ, where x is the sample mean. Next step is to test if
the Poisson distribution provides an acceptable fit to the sampled data set.
For this distribution there are in general two tests for the goodness of fit:
the index of dispersion test and the chi-squared goodness of fit test (see
equation 4.2). The latter one is less sensitive than the index of dispersion
test.

χ2 =∑( (O − E)2
E

)
(4.2)

where O is the observed frequency (i.e. the number of individuals in each
sample area), and E is the expected (theoretical) frequency. The null hy-
pothesis H0 can be formulated as: the data are consistent with the Poisson
distribution (i.e. there is no difference between the observed and the ex-
pected distribution). The alternative hypothesis states the opposite, i.e.
the data is not consistent with the expected values for the specified distri-
bution. If the observed χ2 value is larger than the tabulated value (for the
chosen significance level α, often 0.05), then H0 is rejected. It follows that
if H0 is not rejected then spatial randomness is assumed.

In order to investigate if the spatial pattern is aggregated (aka clumped,
clustered) then Krebs (1999, p. 124) suggests the negative binomial dis-
tribution is the most common one. Note that this distribution cannot act
as a descriptor for all aggregated patterns, as there are an infinite num-
ber of them. The negative binomial distribution could be described as; the
probability of the event X , where X is: Observing x number of individuals
in one sample area (see equations 4.3, 4.4, 4.5, and 4.6 as examples for
finding 0 to 3 individuals).

P(X = 0) = (1 + x
k

)−k
(4.3)

P(X = 1) = (k1
)(

x
x + k

)1(1 + x
k

)−k
(4.4)

P(X = 2) = (k1
)(

k + 12
)(

x
x + k

)2(1 + x
k

)−k
(4.5)
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P(X = 3) = (k1
)(

k + 12
)(

k + 23
)(

x
x + k

)3(1 + x
k

)−k
(4.6)

where P(X = x) is the probability of finding x number of individuals in a
sample area (aka quadrat); µ is the mean; k is the negative binomial ex-
ponent. When trying to fit the negative distribution with some real world
data there are two parameters to be estimated; the mean µ and the neg-
ative binomial exponent k . The mean is set to the observed sample mean
as: x = µ. The negative binomial exponent k is harder to estimate. It
is suggested by Anscombe (1950) in Krebs (1999, p. 125 - 129) to first
approximate k (denoted as k̂) as in equation 4.7:

k̂ = x2
s2 − x (4.7)

where s2 is the sample variation and x is the sample mean. This approx-
imation of k works well if the number of sample areas (i.e. quadrats) are
large i.e. are more than or equal to 20 and the counts cannot be arranged
in a smooth distribution. If the number of sample areas, i.e. quadrats, is
less than 20 (probably not very likely when sampling on railway track sec-
tions), then see the flow-chart accompanied with suggested methods in
appendix J.
Next, three tests are appropriate for testing if the negative distribution can
describe the observed data set. Those are: Chi-squared Goodness-of-fit
(see equation 4.2), U-statistic Goodness-of-fit , and T-statistic Goodness-
of-fit. Especially when the sample size is less than 50, the last two tests
are better to detect departures from the theoretical negative binomial dis-
tribution than the chi-squared test Krebs (1999, p. 135).
It has been shown that local plant populations in general are not randomly
distributed; rather, they are aggregated (clumped) Mauseth (1998) i.e., the
distances between plants are either small or large, but seldom are they
average or uniform Cardina et al. (1995) and Cardina et al. (1997).

Index of dispersion for sample area counts

An index of dispersion is a normalised measure of the dispersion of a prob-
ability distribution. It is used to quantify whether observed data (e.g.the
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counting of plants) have spatial aggregated pattern, a random pattern, or
a uniform pattern compared to a standard statistical model, for example
the Poisson distribution. The special thing about such an index is that it
should not ideally be affected by sample size, population density, or by
variation in the size and shape of the sampling quadrat Krebs (1999, p.
212).

When choosing which method to use to determine the degree of disper-
sion, the standardised Morisita Index Morisita (1959) and Morisita-Horn
index (Horn, 1966) are seen to be among some of the better methods
Wolda (1981). This is because these methods are nearly independent of
sample size Wolda (1981) and Krebs (1999).

Krebs (1999, p. 222) points out that the spatial pattern obtained, and the
resulting index of dispersion is dependent on the size and shape of the
quadrat. In figure 4.2 there are 16 + 9 + 4 + 1 = 30 sub-plots in total.
Dependent on the chosen size of the quadrat (and of course the sampling
scheme) different results may come up. The only solution to this problem
is to sample the population with different quadrat sizes and record how the
index of dispersion changes with the size.

Figure 4.2: Example of distribution dependent on scale of sample square

4.3 Vegetation Attributes

Plant species can be described by a number of quantitative features or
characteristics called vegetation attributes. These describe how much,
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how many, or what kind of plant species are present. In general, the most
commonly used attributes when monitoring are: cover, density, frequency
and biomass, which is a measure of production Elzinga et al. (1998, p.101)
and Bonham (1989).

Several approaches are used to estimate, or measure cover, depending
on the sampling unit, but in general they can be classified as: lines, points
and quadrats (see section 4.1).

4.3.1 Plant Cover

In ecology, plant cover is one of the most commonly used variables for
monitoring ground state Bonham and Clark (2005) and (Jukola-Sulonen
and Salemaa, 1985).

Usually, cover is defined as the vertical projection of vegetation from the
ground, as viewed from above, i.e., a bird’s-eye view of the vegetation. The
attribute cover is usually expressed as a percentage (see equation 4.8).

Cover = Ground surfacearea coveredby vegetation
Total ground surfacearea ∗ 100 (4.8)

The vegetation in equation 4.8 could also be replaced by other coverages
of interest, such as rocks, litter, or bareground etc.

Elzinga et al. (1998, p.178), described two types of cover (see figure
4.3): 1) Basal cover defines the area in which the plant intersects the
ground, and 2) Aerial cover is the vegetation that covers the surface above
the ground. With regard to aerial cover, two types can be distinguished,
namely aerial foliar cover (AFC) and aerial canopy cover (ACC) Coul-
loudon et al. (1999, p.25) (see figure 4.4).
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Figure 4.3: Aerial cover vs. Basal cover Elzinga et al. (1998, p.178)

a) b)

Figure 4.4: a) Aerial foliar cover vs. b) Aerial canopy cover Coulloudon et
al. (1999, p.25)

Foliar cover and canopy cover have been defined as:

Aerial foliar cover (AFC) is the area of ground covered by the vertical pro-
jection of the aerial portions of the plants. Small openings in the canopy
and intra-specific overlap are excluded (see figure 4.4a).

Aerial canopy cover (ACC) is the area of ground covered by the vertical
projection of the outermost perimeter of the natural spread of foliage of
plants, also known as the convex hull. Small openings within the canopy
are included (see figure 4.4b). If more than one species is to be included
in the total cover, the canopy cover may exceed 100% because of overlap-
ping Coulloudon et al. (1999, p.25).

The attribute cover is not biased by the size and distribution of individuals
and can therefore be used to compare the abundances of species of widely
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different growth forms (Whittaker, 1975); (Floyd and Anderson, 1987).
Cover is the attribute which is most directly related to biomass out of the
three attributes: density, frequency, and cover Elzinga et al. (1998).

It is important to observe that cover changes during a growing season and,
therefore, sampling must be done at the same time each year. In addition,
the current year’s weather history also has a great impact on cover Elzinga
et al. (1998, p.179).

Depending on the author, different types of cover go under different names,
and are also interpreted differently. This partly depends on how cover is
defined ; that is to say, how and what is measured when estimating cover.
Fehmi (2010) compared published common plant cover definitions as well
as uses of cover in research published between 1950 and 2007. In order
not to limit the survey, three overall definitions were made in an attempt to
incorporate all the authors’ cover definitions. The three suggested overall
cover definitions identified while conducting this comparative survey were:
1) Aerial cover, 2) Species cover, and 3) Leaf cover (see figure 4.5). As
seen in the figure, the total cover percentage result is dependent on how
the rater chooses to define cover.

Figure 4.5: Three definitions of cover
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The most common approaches used to measuring cover are:

• visual estimates VE in plots, or

• line interception, or

• point interception, or

• sub-plot frequency

For a detailed analysis in which these methods are compared, see for
example Hurford (2006), Mueller-Dombois and Ellenberg (1974), Braken-
hielm and Qinghong (1995), Bonham (1989) and Jonasson (1988), where
the authors considered the point interception approach to be the least
biased and most objective of the three basic cover measures. In order to
calculate the accuracy of compared cover-measuring methods, manual im-
age processing was used to measure the "true" value i.e., percentage cov-
erage in images. Brakenhielm and Qinghong (1995) measured the cover
percentage of two completely visible species from images (Vaccinium myr-
tillus (Bilberry), and Vaccinium vitis-idaea L. (Cowberry, or Lingonberry)).
Firstly, images were scanned into a computer. A drawing was then made
manually to outline the visible parts belonging to the same species. In con-
junction with this manual operation, automatic outlining based was applied
by thresholding the brightness of the leaves to separate leaves from gaps.

Plots

When measuring cover using plots the most common method is to make
a visual estimate and map it to a cover class, i.e., by mapping the plot
estimation to, say, 35% to an interval (e.g. Daubenmire class 3). However,
as cover is visually estimated, variations between estimated samples can
occur, especially if more than one person surveys the vegetation. For
this reason, cover percentages are normally converted into cover classes,
which are placed on a scale of a certain number of intervals between 0 to
100%. The various cover class systems help to compress errors. Visual
cover estimates that use classes such as these (i.e., coarse grade scales)
are usually reliable enough for categorizing different types of vegetation
communities (Mueller-Dombois and Ellenberg, 1974).
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With regard to estimating cover in plots, there are several cover class sys-
tems from which to choose. According to Elzinga et al. (1998), among
them, the most often used include the Braun-Blanquet Braun-Blanquet
(1932), and the Daubenmire Daubenmire (1959) systems. In the UK, a de-
tailed phytosociological classification called the National Vegetation Clas-
sification (NVC) was carried out using the Domin-Krajina system rather
than the two mentioned above. This was confirmed by Hill (2005, p.203)
who also stated that the Domin scale is the most used, and credited its
use in the NVC as one example. The classes of the three systems can be
viewed in table 4.1.

Braun-Blanquet Domin-Krajina Daubenmire

Class Cover (%) Mean Class Cover (%) Mean Class Cover (%) Mean

5 75-100 87.5 10 100 100.0 6 95-100 97.5

4 50-75 62.5 9 75-99 87.0 5 75-95 85.0

3 25-50 37.5 8 50-75 62.5 4 50-75 62.5

2 5-25 15.0 7 33-50 41.5 3 25-50 37.5

1 1-5 2.5 6 25-33 29.0 2 5-25 15.0

† <1 0.1 5 10-25 17.5 1 0-5 2.5

r <<1 * 4 5-10 7.5

3 1-5 2.5

2 <1 0.5

1 <<1 *

† <<<1 *

Table 4.1: Plant cover class systems (Mueller-Dombois and Ellenberg,
1974)

Point Interception Methods

The basic outline of point interception methods is that the vegetation gets
vertically intercepted point-wise with, for example, steel, wooden pins, or
a laser, or by looking through a cross-hair. Each time the vegetation under
observation is physically hit by a pin, a counter is increased by one. The
cross-hairs in a grid (e.g. a frame grid made of cord or steel wires) can
also be regarded as a set of pins, where each cross-hair serves as a pin.
The cover percentage for a species in each layer of the canopy is simply
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the number of hits out of 100, or any other integer. Several techniques can
be applied as follows:

Single Point Interception (SPI): Each sample point is defined by a sampling
pole positioned vertically to the ground. Often used along transects where
many SPIs are systemically deployed (i.e., sampled). It has been shown
that SPI can give more precise cover estimates than points grouped into
point frames or grid frames, given that the same number of points are
sampled Goodall (1952) and Greig-Smith (1983). Using individual points
requires approximately 1/3 of the number of points used when in groups,
such as in PQI and PFI Bonham (1989, p. 110).

Point Quadrat Interception (PQI): Each time an individual species is ob-
served under an intersection in the quadrat grid (i.e., a cross-hair), it is
counted as a hit. Figure 5.4 shows a point quadrat grid (single layer). This
grid frame has 81 cross-hairs, and consequently 100 sub-plot squares. In
this context, the cross-hairs are used to intercept the vegetation. A hit
equals 1/81 (~1.2%) total cover, and, if desired, the total cover for each
species can also be calculated. This method is often used to estimate
cover of short vegetation (<20 cm) Bonham (1989, p. 110). The method
is precise and is one of the most objective measuring methods; however,
it is also time consuming and, in addition, needs to be conducted by ex-
perts Hill (2005, p.217). The same grid frame can be used for the sub-plot
frequency method. In this case, the sub-plots are of interest, not the inter-
sections (see section 4.3.2)

Point Frame Interception (PFI): Each time an individual species is ob-
served, i.e., hit by one of the 10 pins (as in figure 4.6), it is counted as
a hit. The number of pins in the frame can vary, and this influences the
efficiency of sampling.
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Figure 4.6: 10-pin point frame (Bonham, 1989)

No matter which of the techniques is used, the distance between the pins
(and the distance between each point of sampling), for example along a
transect, depends on: 1) plant size, 2) plant distribution, and 3) the dis-
tance between plants.

4.3.2 Plant Frequency

The frequency attribute is a measure of presence/absence (also hit/miss)
in a predefined area. Either the plant in question is present in the pre-
defined area, or it is absent. It is a boolean variable. In general, the
total number of area hits divided by the total number of examined areas
is denoted the frequency rate Mannetje and Jones (2000, p.86) and Hill
(p.11 2005). Frequency is measured using quadrats and is affected by
the quadrat size; the latter may mean that it is less meaningful than other
measurements. If a quadrat is too small, then rare plants may not be re-
corded. On the other hand, if a quadrat is too large, then individual species
are likely to occur in all quadrats and frequency values will equal 100%.
This will not allow increases or decreases in frequency to be monitored.

A benefit of using frequency as a method of measurement is that it is
less tedious and less time consuming than measuring density, cover and
production attributes such as biomass.
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Frequency in Quadrats

Quadrats of different shapes and sizes are used to measure frequency.
Frequency is the percentage of total quadrats that contain at least one
example of a given species (see equation 4.9.

Frequency = (No. of quadrats inwhich species occur)∑ (Quadrats sampled) (4.9)

Relative frequency of one species as a percentage of total plant frequency,
see equation 4.10.

Rel. Frequency = (Species frequency)∑ (frequency values for all species) ∗ 100 (4.10)

Sub-plot Frequency

An extension if the frequency measure is the sub-plot frequency, where the
measurement of interest is the number of sub-plots that contain the target
species Hill (p.11 2005). In figure 4.7 22 target plants are represented
as dots. If the thick frame had been the sampling unit, it would have been
counted as 1. If the grid had been used instead (i.e., 10-by-10 sub-plots),
then the count would have been 13, because the target plants are present
in 13 of the 100 sub-plots (and absent from 87). If the sampling frames
(i.e., the thick frame and the grid of 100 sub-plots) had been used (e.g.
randomly placing the sampling unit over a larger field), then the sub-plot
version would have yielded a more finely granulated frequency result. The
same grid sample frame can be used for estimating cover by using the
point interception method (see section 4.3.1).
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Figure 4.7: Estimating frequency

4.3.3 Plant Density

The density attribute (more precisely known as absolute density) is a meas-
ure of abundance. The density is defined as the number of individuals per
unit area or volumeKrebs (1999), Elzinga et al. (1998) and Hill (2005).

This thesis only deals with area units, as defined in equation 4.11. Thus, it
is all about counting individuals in a predefined area, for example a Picea
abies (Norwegian spruce) density of ten Picea abies per square meter.

Density = No. of individuals
Area sampled (4.11)

as defined in Eq.4.12

RelativeDensity = speciesdensity
total density for all species ∗ 100 (4.12)

A drawback with using density estimates is that they require an individual
plant to be defined. This may be difficult sometimes, especially if flower-
ing herbs are not in blossom. For example, even professional botanists

92



find it difficult to determine which species plants from the common familia
Asteraceae (Swe: Fibblor) belong to (Stattin, E., 28 June 2011. Personal
Interview).

4.3.4 Plant Biomass: A Measure of Production

Estimating plant biomass (phytomass) is a central part of many ecological
investigations Jonasson (1988); Brakenhielm and Qinghong (1995). It is
used for characterising ecosystems, or, for example, measuring productiv-
ity (production), and vigour. Biomass falls under the vegetation attribute
production. Destructive methods of harvesting are often used to extract
biomass, meaning that the root is excavated. Sometimes, the part of the
plant found above ground (often called the shoot) is also excavated, de-
pending of the focus of the study. The next step is often to weigh the
excavated plant biomass. Both fresh weight and dry weight can be used.
If the fresh weight is of interest then the weighing process must be done
immediately after the excavation, otherwise the plant dies or is deformed
because of lack of water, light, nutrients, etc. (see section 3.2). The fresh
weight can vary substantially even for the same plant because of, for ex-
ample, temporary changes in weather. A healthy plant that soaks up as
much water as it demands will weigh more than the same plant during/after
dry periods. A way to avoid this issue is to measure the dry weight. After
this, all minerals, (i.e., the soil) has to be taken away. If the root is about to
be separated from the shoot, then it is important to decide where to make
the cut. Depending on the plant species, this can have an effect on the ra-
tio between the root and the shoot, because of the small weights involved
(often down to milligrams).

4.4 Conclusions & Discussion

The most common approaches for manually measuring cover are to use
visual estimates (VEs) in plots, line interception, point interception, and
sub-plot frequency. For the transfer to machine vision, this way of measur-
ing plant cover and frequency seems to be most useful. In addition, since
a raster image is a grid in itself, where each square at the lowest level
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is a pixel, the sub-plot frequencies were found to be both interesting and
useful. This is because a raster image in itself is a very fine granulated
grid, depending on the resolution. For example an image size of 800 x 600
pixels compromises 480 000 potential sub-plots.

A problem with the density attribute is that it requires individual plants to be
recognised. Still, by redefining the protocol for what to count when meas-
uring density, this attribute could be useful. For example, if a definition
of plant clusters can be obtained, then a modified density attribute could
involve both clusters and individuals. With regard to production attributes,
measuring plant heights was found to be highly applicable. This could be
carried out using optical laser measurements from above.

To be able to describe and predict plant populations on railway trackbeds
/embankments the type of spatial pattern must be determined. In general
there exists three types of spatial patterns: the random, the uniform, or
the aggregated (aka clustered, or clumped) pattern. To determine this the
Poisson and the negative binomial distribution could be used as tools to
decide whether the spatial pattern is random or aggregated respectively.

To determine the degree of dispersion using an index of dispersion, the
Standardised Morisita Index and the Morisita-Horn index are recommen-
ded, since these methods are nearly independent of sample size.

Much of the existing literature on agricultural weed control may relate to
this project. In some cases, such research can be mapped onto the railway
embankment environment. It should be noted that farm fields with their
nutrient-rich and irrigated soil are quite different to the harsh environment
found on railway embankments.
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Part III

Data Collection
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Chapter 5

Field Measurements and
Experiments

All field data in this thesis were acquired on operational, lightly trafficked
railway tracks, usually frequented by goods trains. Choice of lightly traf-
ficked railway sections was motivated by the fact that such tracks pos-
sessed realistic amounts of vegetation. In addition, low traffic levels en-
abled us to work efficiently, which would not have been the case on main
lines, where a train might pass every ten minutes. The nature of collect-
ing data in such an environment meant that various safety and security
inspectors were hired and present at all times.

Image Data

Any image unloaded from a camera in use is represented as a Red-
Green-Blue (RGB) image in RAW format. Two general types of images
used in this thesis are:

1. VIS images, i.e., RGB images that represent the human visual spec-
trum (approx. 400 to 700 nm). The colours of an object in an image
appear to a human observer the same way as if this observer were
to directly view the object.

2. Grey scale images. Each image pixel is stored as a byte, a gray-
scale value that can be represented in 28 = 256 shades of grey in
between the extremes 0 (for black) up to 255 (for white).

96



Each image was tagged with a geographical position that shows the photo
point, i.e., the camera’s spatial location in longitude, and latitude.

5.1 Overview

This chapter describes the field experiments carried out in order to acquire
data from railway trackbeds/embankments. As described in section 1.2,
different inspectors may, for various reasons, interpret the regulations in
different ways or have different opinions of what or how to inspect. Thus,
it is difficult or even impossible to objectively, uniformly and consistently
describe the state of the vegetation growing along railway lines. Thus,
it was thought desirable to automate the manual inspection procedure.
To adopt an automated procedure, quantitative measurements and well
described systematics had to be used.

5.1.1 Camera Sensors

As mentioned in section 1.3, the sensors needed to be available on the
commercial market at a reasonable price so that most subcontractors would
be able to afford them. During the field experiments, a DSLR Nikon D90
camera and a DSLR Nikon D200 camera were used to sense the visual
spectrum (approximately 400 to 700 nm). Extra illumination, or flash were
not used. The output images were available in RAW format as well as JPG
files in the RGB colour space. Image sizes were as follows: Nikon D200
2096*1944 pixels resolution, and Nikon D90 4288*2448 pixels resolution,
respectively.

Identical lenses were used for both cameras: Tamron Ultra wide-angle
lens SP AF10-24mm F/3.5-4.5 Di II LD Aspherical [IF], enabling an angle
of view up to 108°44’ at 10 mm focal length.

The acquisition of data was carried out in two ways: first, by recording the
results of manual sampling from sample areas, as described in (Elzinga et
al., 1998), (Coulloudon et al., 1999) and (Barker, 2001), and second, by
acquiring images of the same sample areas.
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All images were acquired outdoors, and were not illuminated by artificial
lighting. The documentation of lighting conditions was conducted by re-
porting subsets of weather observations. These followed chosen subsets
of the World Meteorological Organization’s of the SYNOP protocol, which
is basically a code system for reporting surface observations from land.
(Unisys Weather, 2012).

5.1.2 Information Storage

After exporting the image files from each camera they were stored in a file
system on a backed-up network drive. Coupled with every image was so-
called Exif information, which is essentially meta-data about each image
and how the camera was set up for any given shot. Examples of stored
meta-data information are date and time when the image was acquired,
shutter speed, focal length, and exposure details. Exif information is stored
along with all data about the sensors. A database model was designed to
be able to manage all the relevant files (see appendix F). A database was
implemented based on the database model.

5.2 Motivation for the Field Experiments

A target population was defined using a universal list that classified plants
by their physiognomy and structure (see table 3.1 in section 3.3) of this
thesis. The target population included all woody plants, forbs, graminoids,
and lichens and mosses (see table 3.1) found growing on railway embank-
ments in Sweden. The target population covers a huge area of Sweden,
through which approximately 14000 kilometres of railway runs. In order to
narrow the scope some constraints had to be applied. The requirements
for plant growth (see section Section 3.2), were selected as attributes to be
able to control the scope of the population. Certain plants grow in certain
environments, depending on the magnitude of each of the plant growth
requirements. This is partially monitored by the Swedish National Forest
Inventory (SNFI) (Swedish University of Agricultural Sciences, 2011) and
presented in their statistics archive to show productivity data1(SFNI, 2011)

1Swedish: Bonitet. Which is to evaluate the earning capacity of any natural resource
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per region (among many other types of statistics). Another institution, The
Swedish Forest Soil Inventory, also carries out long-term monitoring of
the permanent sample plots of the SNFI. The two programmes are joined
in cooperation within the Swedish National Inventory of Forests (Swedish
Forest Soil Inventory, 2014).

Field Layer Types

Tall herb type
Low herb type
Soil without field layer
Broad-leaved grass type
Thin-leaved grass type
Sedge-horsetail type
Bilberry type
Cowberry type
Crowberry-heather type
Poor dwarf-shrub type

Table 5.1: Field Layer Types (Hagglund and Lundmark, 2004)

SNFI’s productivity data is based upon the development of a method, or
system for site quality classification based on site properties and are used
to indicate site productivity (Hagglund and Lundmark, 1987, 2003 and
2004) . The method takes information on climate, soil mineral type, soil
type and soil moisture and type of vegetation as primary inputs for its pro-
ductivity indication output. The type of vegetation is important because it
reflects soil fertility. Before establishing an output a field layer type clas-
sification (see table 5.1) has to be made. For this purpose the method
involves a flowchart that assists the rater to determine the field layer type
class for the area currently being monitored. One type of output could be
presented as a map of the dominant field layer class for a particular area
in Sweden, as shown in figure 5.1 (Dept. of Soil and Environment at SLU,
2012). (Reprinted with the permission of professor Lars Lundin at SLU,
2014-12-03).
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Figure 5.1: Dominant field layer class for a certain area (Reprinted with
permission)

It is proposed that these field layer type classifications be used as one input
when monitoring vegetation. The motivation for this is that, firstly, it would
enable generalisations to be made between the same classes of field layer
types. Secondly, the data will frequently be updated; and thirdly, data can
be publicly accessible. The common sampling unit in the first three studies
was a sub-plot frequency point quadrat grid consisting of 100 squares.

The underlying hypotheses for conducting the 1st to the 3rd field experiment
can be summarised as follows:

1. Investigate if there is a correlation between the dry weight of the root
and the dry weight of the shoot (i.e., the aboveground part of the
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plant) in the very special environment that exists on railway embank-
ments. The fulfilment of the environmental requirements (see section
3.2) is important for the root to shoot ratio. The environment on a
newly laid railway embankment is initially very harsh for plants; how-
ever, this will gradually degenerate. As the ballast is ground down
to fine stone powder and becomes polluted with organic litter from
plants, the environment will, over time, become easier to invade, Sar-
gent (1984). Nonetheless, the average railway embankment offers a
relatively poor environment for most plants. In order to investigate
if special root to shoot ratios do exist on railway embankments, a
sampling process needs to be carried out by harvesting plants and
excavating roots by hand. It has been shown in several publications
that there are correlations between roots and shoots (see section
3.4).

2. If a correlation does exist, then root weights can be estimated by
sampling shoots as part of this study. With regard to harvesting, it
is the excavating of roots that is especially time consuming. Another
major consumer of time is the activity of rinsing and cleaning the ex-
cavated roots in the lab. The motivation for these steps is that a cam-
era sensor can only monitor the shoot. However, the shoot is only a
part of the total biomass, so in order to estimate the biomass grow-
ing on defined areas of a railway line, the relationship (ratio) between
root and shoot is vital. The process also investigates how vegetation
is monitored and measured by humans. In order to transfer such a
process, either fully or partially, into a system, the investigation and
practical field experiment need to serve as an initial knowledge base.

3. The next step is to investigate if there is a relationship between aer-
ial plant cover and the shoot part of the plant. This is supported by,
for example, Rottgermann et al. (2000) and Krebs et al. (2003). The
latter investigated four types of graminoids in a soil type with low nu-
trients and low moisture, and at a site that represented a transition
stage from an open pioneer plant community to a sandy dry grass-
land. Jonasson (1988) showed that the number of point intercepts
correlates with biomass. It is likely that new- to average-age railway
embankment environments have similar conditions, i.e., low nutrient
and low moisture. If the first hypothesis holds true, then there is a re-
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lationship between the plant cover and the full biomass of the plant.
In order to fulfil this, as well as document the work mentioned above,
images need to be acquired.

The attribute cover (see section 4.3) was selected because of the similarity
of on-site cover data judged by humans and cover data represented in an
image and judged, or interpreted by machines. The on-site cover and
cover seen on an image should be mapped. In field experiments 1 to 3,
the camera was set up using a tripod (see figure 5.2), at a height of 1.6 m
vertically above the ground to capture a nadir view of the trackbed.

Figure 5.2: Camera’s vertical setup

5.3 1st Field Experimental Site: Falun - Grycksbo,
Sweden

The first field experiment (FE1) was conducted over the course of two
days on the 27 to 28 June 2011 at two different sections along the railway
line between Falun and Grycksbo, WGS 84 decimal (lat, lon) coordinates
60.6657, 15.5437 and 60.6671, 15.5418, respectively (see overview of the
railway section in figure 5.3). The general character of the experimental
location is described in appendix E. It describes the field layer type and
tree type at this site.
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Weather conditions during both days: total cloud cover2: 1, sunny, almost
clear. 25 to 27◦C. Dry conditions.

Figure 5.3: Overview Grycksbo: Railway section under investigation

5.3.1 Motivation for Conducting the 1st Field Experiment

When transferring vegetation (plant) monitoring activities from humans to
machines, it is rational to start by investigating how monitoring is tradi-
tionally carried out. This has been done by biologists for the past several
hundreds of years and several methods are available. Questions that arise
are: what attributes are typically used when monitoring plants? Which re-
cognised methods are available? Such questions are dealt with in the
chapters Chapter 3 and Chapter 4.

With regard to plants, the railway embankment environment generally com-
prises various herbs, including different types of grass, and woody (ligneous)
vegetation. In order to identify and/or classify these plants, a representa-
tion system was set up.

Overall, two different main vegetation classes (strata) were chosen. These
classes were chosen based on the previous experiences of administrators
from STA. Huisman (2001) reported that Deutsche Bahn in Germany also
suggested different classifications for railway embankments and their sur-
roundings in Germany (see table 5.2).

2The appearance of the sky when 1/8ths of the sky is covered with clouds. SYNOP
(Surface synoptic observations) numerical codes called FM-12 by World Meteorological
Organization (WMO) is used here
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Grade of Coverage Side Areas Track Area

Zero Few or low-growing species None or occasional plants

Low Incipient vegetative cover, < 30% < 2% coverage

Medium < 50% coverage < 10% coverage

High > 50% coverage < 20% coverage

Table 5.2: Suggested vegetation inventory classes by Below, Deutsche
BahnHuisman (2001)

During a workshop held in 20113,it was found that the classes (mentioned
in table 5.2) are still in use by Deutsche Bahn. The current class of a
particular inspected area is estimated subjectively by the inspector of that
area of railway.

This approach, which quantifies coverage into different classes is appeal-
ing. However, it suffers from the same problem of subjectiveness, as de-
scribed in section 1.2, and will most likely result in different judgements
depending on which person is currently carrying the inspection. In addi-
tion, there is no distinction between different species of vegetation. While
different species have different abilities or properties (e.g. types of repro-
duction, growth speed, whether they are annuals or perennials, and type
and size of root system), it would be beneficial to some extent to be able
to segment the plants into classes according to species, genus or higher
classification (see table D.1).

5.3.2 Method

Two different segments of railway were chosen subjectively while walking
along the track. A segment is defined as an arbitrary section of railway
in which sample plot positions are then randomised. The segments were
classified as Herbs-Sparse and Herbs-Dense, respectively. Within each
segment five sample plots were randomised along the rails making a total

3

Workshop Sustainable Management in Rail Environment held by the Swedish University
of Agricultural Sciences, and supported by the Swedish Transport Administration,
on the 27-29 April 2011 in Alnarp, Sweden.
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of ten sample plots. Within a sample plot is a sampling grid frame that
measures 1m2 (a 1-by-1 m area), as seen on the right-hand side of figure
5.4. The sampling area is defined as the light-green area, also seen in
figure 5.4 (left-hand side). The position of each sampling frame in each
sampling area was selected at random4, once.

The sample grid frame was centred in between the rails and the upper
part of the lower sleepers, as seen in figure 5.4a. The sampling frame was
divided into 100 squares, each defining 1% of the total sampling area (see
figure 5.4b).

a) b)

Figure 5.4: a) Sample plot area, and b) point quadrat grid frame containing
100 sub-plots

A representative railway segment (stratum) was selected to represent sparse
herbs and dense herbs, respectively. Five sample areas (each 1 x 1 m)
were randomly selected within each area using a simple random selec-
tion method. In total the two strata together contained 10 sampling areas.
Each sampling area was marked with a unique and identifiable identifica-
tion number on the centre sleeper using permanent ink.

First, a subjective judgement was performed by visually estimating plant
cover in the corresponding square. Note that no advance instructions of
how to judge were given. Instead, each and every person had to, on first
sight, judge the total coverage as a percentage of the area occupied by

4Eight frame positions were in the universe: Upper left, upper middle , upper right,
centre right, and so on clockwise.
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the 1 x 1 m frame. One should also note that the sampling frame was not
placed over the vegetation at this time.

Two methods of judging cover were applied: Aerial foliage cover and sub-
plot frequency Elzinga et al. (1998), Elzinga et al. (2001) and Coulloudon
et al. (1999) (see chapter Chapter 4). During this study the following pro-
tocols were applied:

Aerial Foliage Cover (AFC): Only the vegetative parts of the plants were
measured, i.e., no spacings (see left-hand side of figure 4.4).
If a part of a plant appeared in a square in the grid, then its
total cover area was estimated and kept in mind. Each estim-
ate could not exceed 1%, because a grid square equals 1%.
For example in the sub-area depicted in figure 5.5 this method
would estimate the cover in each grid square as seen in table
5.3a. The individual grid square estimates are then summed
up. Out of a total of 9 grid squares (i.e., 9%), the cover would
be 2% (out of a possible 9%).

a)
0 0.70 0.50
0 0.35 0.20

0.25 0 0
b)

0 1 1
0 1 1
1 0 0

Table 5.3: Estimating cover (%) using a) AFC, and b) sub-plot frequency

Sub-plot Frequency: The method used here is a consistent way of estim-
ating cover. It was carried out using the strategy adopted from
the sub-plot frequency method. If part of a plant was in a grid
square, then it counted as 1%; if not, then it counted as 0%.
Only vegetative parts of the plants were measured, i.e., no
spacings (see figure 4.4b). In the same example as above
(figure 5.5), a person who makes use of this method would
certainly estimate the cover in each grid square as seen in
table 5.3b. Out of a total of 9 grid squares, the cover would
be 5% (out of a possible 9%). The method will most likely
overestimate the true cover, especially if the grid is coarse.
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Figure 5.5: Subset of a sub-plot grid, or point quadrat grid

The heights of all plants belonging to each square were measured using
a folding rule. Although every plant were measured, these measurements
were not mapped for each plant individually, i.e., it is not possible to find
out which recorded height belonged to which plant from the acquired im-
ages. Mapping every recorded height to individual plants (e.g. by drawing
sketches and plotting every plant during the field experiment) were ruled
out because of time constraints, that included the limited availability of a
security and safety officer.

After measuring the heights, a grid frame was placed over each of the ten
sampling areas, as seen in figure 5.4, and the cover was estimated using
the two different protocols, as discussed above.

Thereafter, when the cover was estimated by the raters, two images were
acquired vertically above each plot. The centre of each image was ap-
proximately the centre of the sleeper in the middle of sampling area (figure
5.4).

All plants belonging to each of the first five (sample plot numbers 1 to 5)
1x1 m areas were then harvested and the roots excavated. Plants were
put into plastic bags according to their species. All plants from one sample
plot were then put into a bigger plastic sack marked with the sample plot
number. The same procedure was applied for sample plots 6 to 10; how-
ever in these five plots no roots were excavated primarily because of time
constraints.

Drying of plants and weighing procedure

All ten plastic bags were then transported to the lab and put into a 20◦C
storage room during the night. Next day, each plant was identified. The
soil was then washed away from the roots, and the roots were separated
from the shoots (the cuts were made at the soil line). If there were several
plants of the same species they were put into the same paper bag. Thus, in
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addition to the species name and a serial number, the number of individual
plants was noted on the paper bag. Note that from this step, each plant
collected from sample plots 1 to 5 was separated into root and shoot, and
placed in separate paper bags. Typically, each paper bag was marked
as: <species name>, <root, or shoot>, <location>, <sample plot number>,
<number of individuals>, <unique serial number>. The date, paper bag
type, and so on were then coupled with the serial number.

All paper bags and their contents were left to dry in ovens set to 105◦C
overnight. Next day, the plants were left to cool off in a Exsickator (i.e., a
moisturefree environment), so that neither the plants, nor the paper bags
would take up water from a humid environment. After cooling off for ap-
proximately 15 minutes, the open paper bags and their contents were
weighed on a Mettler PM460 scale with a precision down to milligrams.
The gross weights were recorded.

The paper bags were of three kinds, and, as each individual bag may have
slightly different weights, a sample of 10 to 20 bags of each kind was dried
in an oven and weighed. The arithmetic mean weight for each kind of
paper bag was then subtracted from the gross weight to get the net weight
of the contents. All the dried plants were then stored in case of later usage.

5.3.3 Results and Conclusions of the 1st Field Experi-
ment

A detailed analysis from the drying of plants is reported in 9.

Total data acquired in this field experiment from the ten sample plots: Ver-
tically, from above the ten sample plots, 20 VIS images were acquired.
After that, a total of 353 plants were harvested from the ten sample plots:
175 plants were excavated with both roots and shoots from sample plots 1
to 5; and 188 plants were harvested from sample plots 6 to 10, but this time
only the shoots were excavated. See detailed weight data in Appendix A.

The collected data from the (human) visual estimates are presented in
tables 5.4 and 5.5.
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Visual Cover Examination SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10

Rater #1 35 40 30 15 15 20 15 20 35 25

Rater #2 25 30 20 5 10 10 5 10 30 20

Rater #3 10 25 20 5 10 15 10 10 35 10

Table 5.4: Non-guided visual cover estimation

Visual Cover Examination SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10

Aerial Foliage Cover 15 16 15 8 10 20 17 10 36 14
Sub-plot frequency 19 23 25 14 17 33 24 21 77 53

Table 5.5: VE cover estimates using a sub-plot grid quadrat

The images used in the analysis in section 6.6 were laypersons’ estimates
of the plant cover in each image. Another analysis of visual estimates
was made by domain experts is presented in section 6.7. The heights
of all plants belonging to each sampling square were measured. These
measurements were not mapped for each plant individually.

The visual estimation of plant cover produced results that gave strong in-
dications of a large variation. Thus, it most likely can be considered an im-
precise method. Although the number of persons judging were small and
the field experiment was limited, it does verify the disadvantages stated in
section 1.2.3; namely, that the results of a visual inspection are highly sub-
jective, depending on the experience and knowledge level of the person
who is carrying out the inspection.

In some cases, it is very hard to identify individual plants, especially when
they grow tight together in tufts, clusters, or clumps. It is important to stress
that it is not the purpose of this thesis to identify individual plants rather
than tufts, clusters, or clumps. As a result, the number measurements of
heights might not reflect the actual number of individuals. A more practical
way, when individuals cannot be identified, could be to count plant clusters
instead of individual plants.

During the first visual estimation it became apparent that two different
methods were used to estimate cover. These methods were aerial foliage
cover, and sub-plot frequency (see sections 4.3.1 and 5.3.2). This will, of
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course, have an impact on the results, because the same area would be
quantified differently. Consequently, two protocols were created, so that
it would be clear how to estimate cover, depending on which of the two
methods were used.

The benefit of the protocol used for estimating according to the aerial fo-
liage cover method is that it will be quite near the ”true” cover value. The
drawback is firstly that the person has to keep float numbers (i.e. fractions
of plant cover) in the back of his/her head in the continuous summation
from plot to plot. This makes the method uncertain over time. Secondly, it
takes a trained person to make as correct cover estimations as possible.

The benefit of the protocol used for the sub-plot frequency method is that
it is easy to use. If part of a plant is found within a grid square, the total is
increased by 1%; if not, then 0% is added. The summary will be more like
an integer enumeration. The drawback of using this method is that it will
almost always deliver an over estimation when compared with the ”true”
cover value. This over estimation will decrease with more and smaller grid
squares.

When comparing these two protocols, the latter (the protocol used for the
sub-plot frequency method) is preferable because it offers consistency.
The aerial foliage protocol is estimated (not measured) from fractions of a
sub-plot. On the other hand, the sub-plot protocol, even though it produces
over estimations compared with the ”true” value, is still strictly speaking a
form of measuring, thanks to the rigid protocol of counting (see 4.3.2).

5.4 2ndField Experimental Site: Falun - Grycksbo,
Sweden

This field experiment study was conducted over the course of two days on
the 6 to 7 July 2011 in one area (near Bergsgården’s old railway station)
along the railway line between Falun and Grycksbo , from the starting point
at WGS 84 decimal (lat, lon): 60.66841, 15.53918 and 65 m in SE direction
along the railway tracks (see figures 5.6a and 5.6b). The general field layer
type of the experimental location are described in appendix E.
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Weather conditions during both days: total cloud cover: 3, sunny, almost
clear. 26 to 29◦C. Dry conditions.

a) b)

Figure 5.6: Overview of the railway section

The purpose of this particular study was to obtain data from the Bilberry
and Grass field layer class, see section 5.2. Some woody plants (decidu-
ous trees) were also present, whilst grass was almost absent.

This railway section (mainly containing herbs) was selected subjectively
by a domain expert. In advance, it was decided that every second sleeper
should constitute the centre of a sampling area (see the light-grey area in
figure 5.7). A starting point on the tracks was selected randomly, and, from
that starting point, 50 sampling areas were investigated along this railway
section.

Each sample area was defined as the ballast area on each side of a central
sleeper, inclusive of the sleeper, as shown by the light-grey area in figure
5.7. Each sample frame was defined as a 1 by 1 m quadratic area. The
position of the sampling frame in the sampling area was selected randomly,
once. Eight frame positions were in the universe: Upper left, upper middle
, upper right, centre right, and so on clockwise.

The randomisation of the quadrat position ended up in the position lower
right, which is at the upper boundary of the right rail and the lower sleeper’,
as shown by the dark-grey area in figure 5.7. This sampling frame position
was then applied for all 50 sampling areas.
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Figure 5.7: Sample plot area at 2nd field experimental site.

The remaining study was conducted in the same manner as the first field
experiment (see section 5.3, except that no plants were harvested, nor
were any shoots excavated. Additionally the distance between sleepers
as well as sleeper widths were measured using a laser distance meter.
These measurements were also transferred to support the fourth field ex-
periment, see section 5.7.

5.4.1 Results and Conclusions of the 2nd Field Experi-
ment

In this study of 50 sample plots, 100 VIS images were acquired, capturing
a nadir view over each sample plot. Visual estimates from the two domain
experts and the measuring of plant heights were recorded. No plants were
harvested in this study.

The purpose of this field experiment was to acquire data from the field layer
class Bilberry and Grass (see section 5.2). For this purpose, a railway
section containing herbs was selected. From a randomised starting point
on the rails, 50 sampling areas were investigated along this railway section.
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5.5 3rd Field Experimental Site: Älvdalsbanan,
Oxberg

The purpose of this study was to obtain a large amount of data from one
particular vegetation class: conifer woody plants. The dominant field layer
class in Oxberg can be characterised as Lichens (see section 5.2). More
information about field layer type and tree types at this experimental site
can be found in in appendix E.

Figure 5.8: Overview of the sampled railway section (Oxberg, Sweden)

The field experiment was conducted over the course of four days on the 11
to 12 August 2011 (monitoring and imagery) and from the 18 to 19 August
2011 (excavating root and shoots) of sampled railway a section of railway
between Mora and Märbäck, from a starting point in Oxberg at WGS 84
decimal (lat, lon): 61.13397, 14.17138 and continuing about 60 m in N
direction along the rail (see railway section overview in figure 5.8).

Weather conditions during 11th to 12th August: total cloud cover: 5. 22
degrees Celsius. Dry conditions. Weather conditions during 18th to 19th
August: total cloud cover: 7. The temperature was 15ºC. Occasionally
showers: 80 (light rain showers).

The study was conducted in the same way as the former field experiments.
Images documenting sample plots numbers 200 to 204 were acquired (see
figure 5.9). Both roots and shoots were harvested from all the plants. The
only difference from previous field experiments was that when the plants
were put into bags, they were sorted not just in terms of species, but also
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in terms of size. Consequently, every bag contained plants of the same
species and about the same size.

Figure 5.9: Sample plot no. 200 a) before, and b) after excavation

The environment was in the Lichens field layer class; thus, it was differ-
ent from the field experiments in Grycksbo, Sweden (see sections 5.3 and
5.4), in the sense that it was a relatively harsh environment. Mostly gramin-
oids and conifer woody plants were growing on the railway embankment
(see figure 5.10).

Figure 5.10: Conifer woody plants, in plot 202 (Oxberg, Sweden)
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Figure 5.11: Documentation of excavated plants in lab (Picea abies)

5.5.1 Results and Conclusions of the 3rd Field Experi-
ment

In this study of five sample plots (ID nos. 200 to 204), 20 VIS images were
captured from a nadir view.
In total,197 plants (mostly conifer woody plants and graminoids) were har-
vested from the five sample plots (ID nos. 200 to 204).
The harvesting activity included excavation of both roots and shoots. For
the analysis of the collected data see section6.10.
The purpose of this study was to obtain data from the woody plants veget-
ation class. It should be noted that none of the plants were higher than the
distance from the ground to a train’s axles, i.e., the plants are constantly
being cut down. It should be noted that it took one day for one man to
excavate the five sample plots and put the plants into bags. Some of the
bigger plant individuals, such as Picea abies, took 45 minutes (each) to
excavate because of their widespread root system.

5.6 4th Field Experimental Site: Vetlanda

Images acquired were collected during daytime on two separate occa-
sions (in June and August 2013) along a 700 m long section of railway
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located outside Vetlanda, Sweden, WGS 84 decimal (lat, lon) coordinates
57.42992, 15.17194 and 57.428633, 15.183137, respectively (see railway
section overview in figure 5.12). Information about the field layer type and
tree type at this experimental site are described in appendix E.

Figure 5.12: First part of the Vetlanda railway section

A DSLR Nikon D90 camera mounted on a stand, which in turn was moun-
ted on a trolley, was used to acquire the relevant images in visible spec-
trum (400 to 700 nm). No artificial lighting was used. All the images were
of high resolution (4288*2448 pixels) and were saved as RAW files in the
RGB colour space. This is because, images stored in RAW format can
be post processed, if necessary. The camera was mounted at a height
of 2.25 m above the ground, pointing slightly downwards and forwards in
the driving direction, 65 degrees below the horizontal line (see figure5.13).
Weather conditions at both data collection sessions were sunny, with few
cumulus and about 25ºC in the shade. The ground was dry.
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Figure 5.13: Trolley with mounted camera

A Tamron Ultra Wide Angle Lens SP AF10 - 24mm F/3.5-4.5 Di II LD As-
pherical [IF] was used and the focal length was set to 10 mm, resulting
in a wide angle of 100°in width. Every 10th sleeper was marked with a
number, 0 to 89, with yellow spray paint. Each sample area (or sample
plot) contained five rectangular ballast-filled areas in between six sleep-
ers (see figures 5.14a and 5.14b). At each sample area (i.e., at every fifth
sleeper) the camera was wirelessly fired using an Aion Wireless Timer Re-
mote Controller. The entire 700 m railway section was documented in this
way.

a) b)

Figure 5.14: Vetlanda sample plots a) ID 4, and b) ID 22

As already stated, data acquisition was carried out twice (along the same
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section) to be able to capture growth of vegetation during the summer
months in Sweden. In all, 354 images were acquired from both sessions.
Out of 179, only 176 images from June’s acquisition and 178 images from
August were deemed usable for further analysis. The remaining images in
both the cases were unusable and were therefore excluded.

5.7 5th Field Experiment

Motivation: The general sampling area, as mentioned before, was set as
the two rectangular ballast areas on either side of a central sleeper, inclus-
ive of the sleeper, shown as the light-grey area in figure 5.7. It is likely
though that not every sleeper will be found when analysing the image by
hand. This might be because ballast and/or vegetation cover the sleeper
to such an extent that the sleeper’s edge cannot be found. In such cases,
the position of the sleeper can be estimated by using the standard dis-
tance (i.e., the spacing) in between sleepers. For that reason (when data
is incomplete due to loss of information, or omitted because of various
sampling procedures) data has been collected to be able to generalise the
distance between sleepers as well as sleepers widths.

The regulations of the Swedish Transport Administration Banverket (1995)
state that the spacing in between sleepers should normally not exceed
650 mm on straight tracks, as well as in curves of radius, R , such that R ≥500m. The spacing should not exceed 600 mm in curves of radius, R <500m5. This applies to newly laid sleepers so when it comes to sleepers
mounted possibly 50 years ago there were no standardised maximum, or
minimum spacings to be found in the literature.

Figure 5.15: Sleeper spacing

5Curves having a radius, R < 150m are normally not used Banverket (1996).
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Due to the lack of standardisation As a result of this lack of standard dis-
tances, a collection of 410 sleeper spacing measurements was sampled
as follows. Firstly, the sampling areas of the wooden sleepers were chosen
according to availability and security. Secondly, when visiting each area a
systematic sample was acquired i.e. at a chosen point on the railway an
integer was randomised to describe how many sleepers lay ahead of the
chosen starting point of the sampling. The sampling interval was random-
ised as once in every fifth sleeper. Consequently, from the randomised
starting point, every fifth spacing was measured using a laser distometer
Leica Disto D8. The spacing was measured from edge to edge (see figure
5.15). Also during the second field experiment 150 wooden sleeper widths
were collected.

5.7.1 Results and Conclusions of the 4th Field Experi-
ment

Sleeper spacing distances: All sampled data from this investigation are
presented in the histogram (see figure 5.16). The mean is represented as
a solid line and the median as a dashed line. The sample mean x of the
n sleeper spacings was calculated to be 0.486 m, with sample standard
deviation s = 0.117 m. At 95% confidence level for the sample mean
results in a confidence interval of 0.486± 0.011, or [0.497; 0.474]

Sleeper widths: Concerning the sleeper widths, at 95% confidence level
for the sample mean x=0.231 metres results in a confidence interval of
0.231±0.579, or [ 0.225; 0.237]

a)

Sleepers spacings

Number of samples: 410
Median: 0.500 m
Mean: 0.486 m
Std.Deviation: 0.117 m

b)

Sleeper widths

Number of samples: 153
Median: 0.23 m
Mean: 0.231 m
Std.Deviation: 0.037 m

Table 5.6: a) Spacings between sleepers. b) Sleepers widths

Systematic sampling was conducted along railway tracks in the neighbour-
hoods of Borlange, Grycksbo and Oxberg, where 410 sleeper spacings
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Figure 5.16: Data - Sleeper spacings

were measured. 153 sleeper widths were measured in total (see table
5.6). These measurements are to be used when a sleeper cannot be
found in an image when trying to find the sampling area boundaries, as
seen in the light-grey area in figure 5.7. Results of this study indicate that
a sampling area can be computed using the estimates for the mean of the
sleeper widths and sleeper spacings.
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5.8 Indoor Laboratory Experiments

5.8.1 Motivation for Laboratory Experiments

It was assumed that woody plants are regarded as being more undesirable
when growing on the embankment than herbaceous plants and graminoids
(i.e., grass) (see section 3.5). This is because, after establishment woody
plants produce a large biomass and are more difficult to control. This as-
sumption was confirmed by Lindstrom (7 Sept. 2011, Personal interview)
and Lundh (28 April 2011, Personal interview), who also stated that ”only
graminoids constitute a threat to the woody plants, but that is only during
the tree seedling establishment phase, i.e. during the first year”. After
this phase, the graminoids can no longer out-compete woody plants in the
competition for the uptake of water and essential nutrients.

As a consequence, it is desirable to detect, identify and characterise Nor-
way spruce, Scots pine and birch trees (including Downy birch and Silver
birch) (see section 3.5). The hypothesis in this case is that they can be
detected and characterised using machine vision. Here, the system is
presented in advance with images of each woody plant and has an oppor-
tunity to identify and learn their signatures, i.e., making use of supervised
machine learning. For this reason, additional data has to be acquired. The
purpose of data acquisition is to gather a set of images that represent each
woody plant type, which will then form the base for a supervised learning
process (see the analysis and results from the acquired data in chapter
10).

The rationale for starting with laboratory experiments is as follows: if a
species cannot be classified by leaf recognition in a controlled laboratory
environment, then it is unlikely that it can be classified outdoors in an un-
controlled environment.

Data Collection of Leaves

One approach to reducing the complex problem of identifying woody plants
on railway embankments is to identify the plant species by their leaves.
Possible features which could be used to identify the species, genus, or
family are shape, texture, and colouration.
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The data collection was based on collecting leaves from the most fre-
quently found deciduous woody plants and to obtain conifer seedlings from
the most frequently found conifer plants. Official forest statistics in the table
Standing volume for different tree species by diameter class - All land-use
classes 2006 -2010 from the Swedish National Forest Inventory reported
the most frequently found species in Sweden. Those having a diameter
(at chest level) of 0 to 9 cm are listed in table 5.7.

Familia Genus Species English Swedish Species
Composition
(%)

Pinaceae Pinus sylvestris Scots Pine Tall 21.8
Pinaceae Picea abies Norway Spruce Gran 35.0
Pinaceae Pinus contorta Lodgepole Pine Contortatall 2.0
Betulaceae Betula pubescens Downy Birch Glasbjörk

33.4
Betulaceae Betula pendula Silver Birch Vårtbjörk
Betulaceae Alnus incana Grey Alder Gråal

2.8
Betulaceae Alnus glutinosa Alder Klibbal
Salicaceae Populus tremula Aspen Asp 1.0
Rosaceae Sorbus aucuparia Rowan Rönn 1.3
Fagaceae Quercus robur Pedunculate Oak Ek 0.6
Fagaceae Fagus sylvatica Beech Bok 0.2
Salicaceae Salix caprea Goat Willow Sälg 1.0
Rosaceae Prunus padus Bird Cherry Hägg < 1.0
Aceraceae Acer platanoides Norway Maple Lönn < 1.0

Table 5.7: Tree frequency in Sweden

The data in table 5.7 together with the suggested woody plants in section
3.5 helped in the choice of which data to collect. Time constraints meant
that some of the species were excluded from the data collection, e.g. the
Fagaceae Fagus sylvatica (beech).

Experimental Setup

All images were acquired indoors in a photo laboratory. Images were
acquired using a Nikon DSLR D90 camera (3872x2592; 380-780 nm).
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The DSLR was mounted on a tripod stand (to maintain uniform distance)
placed 160 cm vertically above the object table to capture a nadir view
(see figure 5.17).

Figure 5.17: The indoor lab setup

The leaves and conifer plants were illuminated as shown in table 5.8.

Leaves session Conifer plants session

Colour Temp. (Kelvin) Illuminance (Lux) Colour Temp. (Kelvin) Illuminance (Lux)

Top 2200 455 2200 512

Left 2100 700 2100 777

Right 2300 600 2200 600

Under 1900 185 1900 58

Table 5.8: Measured average incoming light at the object

a) b) c) d) e)

Figure 5.18: Examples of conifer plants and leafs on the object table
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In order to be able to correct the white balance, or grey balance, a grey
card (QPcard 101 of size 142 x 40 mm6) was placed in each acquired
image. The QPcard contained three fade-resistant fields in white (CIE Lab
95*0*0), mid gray (CIE Lab 48*0*0) and dark gray (CIE LAB 35*0*0). In
addition, each card contained a millimetre scale of about 30 mm (as a
reference). The grey colour field on the grey card reflected 18% of the
light making it useful for exposure purposes.

5.9 Conclusion and Discussion

In all the outdoor studies (except for the sleepers study) a sampling frame
constituting a square of 1 x 1 m was used. The frame was divided into 100
sub-plots (each sub-plot area was 10 x 10 cm), and thus each such square
represented 1% of the frame area. This sampling frame was chosen in
preference to the popular Daubenmire frame, which constitutes a rectangle
of 50 x 20 cm, equalling 100 cm2 Daubenmire (1959). This decision was
based on the belief that it would be easier and less time consuming to
count occurrences.

The question arises: ”Which is the best form of sampling frame?” This may
depend on how the sampled vegetation is distributed spatially. Most often,
plants are aggregated in clumped distributions (see section 4.2). For this
kind of distribution, it has been shown that a rectangular sampling frame
reduces the number of zero counts as well as counts that are very high
Elzinga et al. (1998). The same source also recommended that the longer
side of the rectangle frame have a measure bigger than the mean distance
between clumps.

It has been observed during these studies that the vegetation on the track
bed/ embankment is likely to be patchy in character, i.e., with clumped
(aggregated) populations.

In cases of clumped distribution it has been proposed that transects, not
quadrats, should be treated as the sampling unit, because ”... the tran-
sects will intersect several clumps of the population, this ensures much of
the variation will be incorporated within each sampling unit. If individual

6http://www.qpcard.com/ (Retrieved: 2012-08-21)
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quadrats are treated as the sampling units, most of the variation will be
between sampling units.”Elzinga et al. (1998, p.111)

The indoor experiments resulted in approx. 700 images were acquired
compromising Pinus sylvestris, Picea abies, Betula pubescens, Betula
pendula, Alnus incana, Alnus glutinosa, Populus tremula, Sorbus aucu-
paria, Quercus robur, Salix caprea, Prunus padus, and Acer platanoides.
The analysis of this data is presented in chapter 10.
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Part IV

Manual Assessments of
Terrestrial Vegetation
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This part includes investigations of how to manually assess the extent of
terrestrial vegetation. In the context of this work, manual assessments of
terrestrial vegetation refers to the methods used by humans to measure, or
estimate the extent, or amount of plants at a specified spatial location. This
could, for example, be one or several areas, or be along one or several line
transects (i.e., pre-determined vectors).

Vegetation assessments within railway maintenance are largely carried out
manually by visually inspecting the track on-site, or by looking at video clips
collected by maintenance trains, or trailers as they run along the track.
Hence, it was deemed important to evaluate human assessment abilities
in evaluating cover by visual estimates, and even further to see if different
raters agree upon the estimates reported by each other. Several existing
publications on the manual assessment of the extent of vegetation have
come mainly from the ecology and botany domains. These papers have
dealt with cover, frequencies, densities, and the biomass of certain spe-
cies. No published investigations have been found in the literature review
about assessing vegetation on railway embankments.

In the railway domain, no vegetation is deemed to be desirable when found
on embankments. Therefore, total: cover, frequency, density and biomass
are of particular interest.
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Chapter 6

Visual Estimates, Reliability &
Raters Agreement

6.1 Recording Human Estimates

The data collection here refers to the assessments made by two or more
raters. The assessments in the context of this thesis most often refers to
the estimates of vegetation extent, e.g. counting the number of plant indi-
viduals, or estimating the plant cover. The assessors in each investigation
made their ratings/assessments on-site, or from images, see description
of field measurements in chapter 5. A short summary and description of
the investigations made:

1. Thirteen laypersons conducted visual estimates from 10 nadir im-
ages on Grycksbo sample plot nos. 1 to 5 and 6 to 10. The results
are presented in section 6.6. For further details refer to (Nyberg et
al., 2013b).

2. Three domain experts conducted visual estimates from 10 on-site
observations in Grycksbo on sample plot nos.1 to 5 and 6 to 10..
The results are presented in section 6.7. For further details refer to
(Nyberg et al., 2013b).

3. Three laypersons made visual estimations of cover from 35 images.
The methods used for these estimates were ACC, and AFC. The
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results are presented in section 6.8.

4. Five national maintenance engineers from STA North, STA South,
STA East, STA West, and Borlange Municipality conducted visual
estimates from 51 nadir images. The methods used for these es-
timates were ACC and AFC. The results were presented in section
6.9.

5. Two domain experts conducted visual estimates from five images
from Oxberg, sample plot nos. 200 to 204. The methods used for
these estimates were ACC, AFC and SF. The results are presented
in section 6.10.

6. Three domain experts made visual estimates from 12 onsite obser-
vations in Vetlanda on two different occasions. The method used for
these estimates was ACC. The results on density are presented in
section 6.11. For further details refer to Nyberg et al. (2014).

6.2 Levels of Measurement

After acquiring data a choice had to be made, whether to use parametric
methods or non-parametric methods for the upcoming statistical analysis.

Initially the level of measurement has to be decided, i.e. nominal scale,
ordinal scale, interval scale, or ratio scale (see table 6.1). These levels are
sometimes also referred to as scales of measurement, and were originally
developed and published by (Stevens, 1946).

The lowest measurement is the nominal scale, and the highest level is
the ratio scale. In many cases, the variable affiliation is obvious, but as
the level of measurement can be reduced, lower levels might be appropri-
ate. For example, measurements collected on an interval scale may be
reduced to an ordinal scale, but not the other way around. This could be
that case if the researcher wants to divide the measurements into classes
of numerical intervals.
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A variable in a nominal scale (also called categorical) can only be assigned
to a defined category if it belongs there. If it does not belong there, it is
called a dichotomous variable. There is nothing in between these two, and
these kind of variables cannot be ordered. In the ordinal scale (or ranking
scale), the variables can be ordered in relation to each others, but there
is no equal distance in between the ranks; so, for example, if we have
the ranks: A = 4, B = 2, C = 1 , so A > B > C . It is only possible to
conclude that A is larger than B and C, and that B is larger than C. It is not
possible to conclude that A is four times as large as C. The letters might
represent different levels of attitudes, such as measurements on the Likert
scale. The numerical rank representation just provides a way of sorting
the ranks. Central tendency measurements, such as different kinds of
means (averages), or the standard deviation, can be computed (based on
the rank values); however, they have no practical meaning. Instead, the
median and mode are used as a measure of central tendency in the ordinal
scale. In the nominal scale, only the mode gives a meaningful measure of
central tendency.

A variable on the interval scale has all the properties that an ordinal vari-
able has. In addition, the intervals between the values are equally spaced.
For example, the time difference in between 4 and 6pm is the same as the
difference between 10 to 12am. By way of another example, we have A
= 4; B = 2; C = 1 , so A > B > C as before, but this time (because of the
equal space) one can conclude that the difference between A and B is 2,
which is the same difference as in between B and C, and the difference
between A and C is 4. In the case of the ordinal scale there would not be
meaningful to calculate differences.

A variable on the ratio scale (i.e., the highest level) has all the properties
of the three lower levels. In addition, it always has a clearly defined zero
point where none of the property being measured exists. For example, we
have A = 4; B = 2; C = 1 , so A > B > C as before, but this time (because of
the equal space) one can conclude that A is two times larger than B, A is
four times larger than C, and that B is twice as large as C. The parametric
methods require data to be:

1. normally distributed, at least approximately, in order to be valid. For
example, the parametric t and F tests also have these underlying
assumptions (Siegel, 1957).
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2. the observations must be independent

3. the population data are assumed to be homoscedastic, i.e., having
the same variance; and

4. when conducting an analysis of variance (ANOVA), the means of
these populations must be linear combinations of effects, because
columns and/or rows-the effects must be additive, and

5. because of the comparisons of means, the measures have to be
additive i.e.- numerical.

If normality can be assumed, then parametric methods can be used; oth-
erwise, the data analysis should be made using non-parametric meth-
ods. Parametric methods are considered to be more powerful than non-
parametric methods. However, if one assumes that the data set in question
is normally distributed, but in fact it is not, then parametric methods can be
misleading. The power of a test is defined as the probability that the test
will reject the null hypothesis when in fact it is false and should be rejected.
A statistical test is more powerful if it has small probability of rejecting the
null hypothesis (H0) when H0 is true, but a large probability of rejecting H0
when H0 is false (Siegel, 1957). In general, every parametric method has
its equivalent non-parametric method.

The non-parametric methods deals with qualitative data on a nominal (or
categorical) scale and data on a ordinal (or ranking) scale respectively.
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Scale Defining relations Example of
statistics

Appropriate
tests

Nominal (1) Equivalence Mode
Frequency

Non-parametric
tests

Ordinal (1) Equivalence
(2) Order

Median
Percentile
Spearmans rs
Kendalls τ

Interval (1) Equivalence
(2) Order
(3) Ratio of intervals

Mean
Standard deviation
Pearsons r

Non-parametric,
or
Parametric tests

Ratio (1) Equivalence
(2) Order
(3) Ratio of intervals
(4) Ratio of values

Geometric mean
Coefficient of
variation

Table 6.1: Levels of measurement, (Siegel, 1957)

In the six investigations (in section: 6.6, 6.7, 6.8, 6.9, 6.10, and 6.11), box
plots, or box-and-whisker plots, were used to describe data by displaying
the spread of all the data points in each data sample (Tukey, 1977), (Mc-
Gill et al., 1978). By convention they outline five values: the extreme val-
ues (The biggest and the smallest values in the data set, except outliers)
visualised as so called whiskers, the upper and lower hinges (displays the
quartiles, i.e. the 25th and 75th percentiles), and the median (i.e. the 50th

percentile). In addition, outliers (if any) are often shown above and below
the whiskers, see figure 6.1.
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Upper extreme

Upper hinge (quartile)

Median

Lower hinge (quartile)

Lower extreme

Outlier

Figure 6.1: Boxplot

6.2.1 Data Transformation

When data are to be analysed the choice is to use either parametric meth-
ods (if the data set is assumed to come from a normal population), or
non-parametric methods (if one cannot assume that the data is normally
distributed, or if the number of samples is few) (See section 6.2). In some
cases, data can be transformed from being non-normal to normal. This is
a very common pre-analysis procedure, the purpose of which is to make it
possible to analyse data. In such a case, the data is transformed by per-
forming a mathematical operation on each data point (observation). These
transformed observations are then used in statistical tests. In general a
distribution can deviate from normal in two ways. Firstly, skewness, also
referred to as the third standardised moment. Secondly, kurtosis also re-
ferred to as the fourth standardised moment (see figure 6.2). These are
measurements of shape and are often used to test for normality. The skew
is a measurement of a distribution’s lack of symmetry and the kurtosis is a
measurement of the peakedness (or pointiness) of a data distribution.

In general, if the values of either skewness or kurtosis are not close to zero,
then the data set is not normally distributed. For an exhaustive discussion
on the use of kurtosis, see (DeCarlo, 1997). Usually, a data transformation
corrects skewness and/or kurtosis in the distribution of the original data.
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a) b)

Figure 6.2: a) Skewness, and b) kurtosis

There are several common data transformations, including the square-root
transformation: Here, the square root is taken of each data point/ observa-
tion. If the original data consists of negative numbers, a constant is added
to each data point, e.g.

√
xi + C where xiis the ith data point and C is the

added constant. If the range of data points are all measured in the range 0
to 1, then the arcsine transformation may be used, which consists of taking
the arcsine of the square root of a number. The result is given in radians
in the range from −(π/2) to (π/2). Another common data transformation is
the log transform. In essence, the logarithm is taken from each data point.
Usually, the base of the logarithm is immaterial, but most often e (a.k.a
Eulers constant, or the natural number) or 10 are used as the base. If the
distribution is positively skewed (see the upper left sketch in figure 6.2),
then in order to perform an analysis using parametric methods the original
data values (i.e. each observation) x can be log10-transformed into the
transformed data values x ′ as x ′ = log10(x); where x is the original data
value and is the mean value of all the raters/assessors’ individual estim-
ates of the same image.
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The log10-transformation makes a positively skewed data distribution less
skewed. This operation was done to make patterns in the data more in-
terpretable, as well as to accommodate the assumptions of parametric
statistical tests. For more in-depth information about data transformations
and their motivation, see for example, work by (Sokal and Rohlf, 2011),
and (McDonald, 2014). Then after that, the log10-transformed data set,
x ′i, can be normalised by subtracting the mean log10-value, log10(x)i of all
the human raters individual estimate of the same image i, as in equation
6.1:

Normalised(xij ) = x ′ij − x ′i (6.1)

where x i = 1
n

n∑
j=1 xjand each rater/assessor is denoted as j. This type

of normalisation, which is a rescale-operation, is commonly named per-
example mean subtraction, mean-centring, or normalisation by subtracting
the mean. In essence it centres the distribution to have a zero mean value.
This makes the distribution of the raters’ estimate of each image more
comparable with other images in the experiment.

To analyse the variance in between distributions (e.g. raters assessment
of plant cover) and to fit linear models ANOVAs were conducted. After an
ANOVA test has been conducted, it was followed by a residual analysis. A
residual εi, is an estimate of the experimental error and is the difference
between the observed value of the dependent variable yi and the predicted
value ŷi in the model, as in equation 6.2.

εi = yi − ŷi (6.2)

Where i is the enumeration of all the observations, there is one residual
εi per observation i. The sum of all residuals and their mean is equal to
zero. Residuals can be thought of as elements of variation that are not
explained by the fitted model. The basic assumptions behind ANOVA and
regression analysis are that the residuals are expected to be approxim-
ately normal and independently distributed, with a mean of 0 and some
constant variance (Natrella et al., 2012). The residual analysis is usually
carried out after the ANOVA to examine the fitted model.
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6.3 Raters’ Agreement/Reliability

Over the years several methods have been used to investigate whether
the participating raters (also called assessors) are in agreement with each
other, and to see how reliable their estimates are, Krippendorff summar-
ised the essence of the many reliability measures as:

All reliability measures are intended to express the degree to
which several assessors, several measuring instruments, or
several interrogations of the same units of analysis yield the
same descriptive accounts, category assignments, quantitative
measures or data for short (Krippendorff, 1992).

In this thesis, analysis-of-variance (ANOVA) tests were used to investigate
whether if there were differences between the mean estimates reported by
the raters. It tested the null hypothesis H0 that the means of estimates are
equal between the raters, see equation 6.3:

H0 : µ1 = µ2 = µ3 = ... = µn (6.3)

The alternative hypothesis Ha is that at least two means are different from
each other. The ANOVA is called an omnibus test and does not give
information about which specific rater(s) were significantly different from
each other. If this information is needed, then so called post-hoc tests
are needed to determine which raters differed from each other. Examples
of post-hoc tests include Tukey’s honestly significant difference (Tukey’s
HSD) and the Bonferroni test. Further information about ANOVA and post-
hoc tests can be found in (Sokal and Rohlf, 2011), (Field et al., 2012) and
(Gardener, 2012).

It is also common to calculate the product-moment correlation in between
two variables, e.g. Pearson’s ρ (or r) for parametric data (see equation
6.4), and similarly Spearman’s ρ and Kendalls τ for non-parametric data.

ρX,Y = E [(X − µX ) (Y − µY )]
σXσY

(6.4)
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where X and Y denotes the two datasets under investigation. E is the ex-
pected value, µ denotes the mean of X and Y , and σ denotes the standard
deviation of X and Y respectively.

The correlation coefficient measures linear agreement, i.e. whether if the
measurements go up and down together (Dallal, 2012). The correlation
coefficient is in the interval scale from -1 to +1, where +1 means perfect
positive correlation (as one variable increases, the other variable will in-
crease as well), and a zero value means no correlation at all (completely
random association. For example, as one variable increases, the other
variable sometimes increases, sometimes it decreases, or neither), and
-1 means a perfect negative correlation (as one variable increases, the
other variable decreases. So, it is an inverse relationship between the
two variables). When it comes to investigating whether the raters are in
agreement, it might not be enough to compute this coefficient. For ex-
ample, if raters A and B assess four phenomena as A = (10, 20, 40, 50),
respectively. B = (1, 2, 4, 5), then the correlation result ends up in a perfect
positive correlation (r = 1). However, they are certainly not in agreement in
their assessments.

A common test used to examine the reliability between two raters when
using nominal (categorical) data is the Cohen κ-test (a.k.a. kappa test)
(Cohen, 1960). This is commonly used in the fields of medicine and psy-
chology, where, for example, two physicians (or psychologists) may assess
a patient’s symptoms. The outcome is a value called the κ-coefficient,
which is in the interval between -1 and +1. A κ-value equal to +1 means
perfect agreement between the two raters, and a κ-value of -1 implies per-
fect disagreement. If the κ-value equals zero, then there is no relationship
between the ratings of the two raters. Hence, any agreement, or disagree-
ment, occurs because of randomness. A κ-value, κ = 0.7 is generally
considered to be a satisfiable level of agreement. There is also a weighted
κ-test which is used for ordinal data. For further details, see work reported
by (Cohen, 1968).

(Manel et al., 2001) compared the medical diagnostics and ecological
modelling processes, and evaluated Cohen’s κ-test as a way of assessing
the absence, or presence of plant species. (Manel et al., 2001) pointed out
the κ-coefficient as being meaningful when it comes to comparing models
for predicting the distribution of organisms from environmental data.
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Other reliability coefficients are, for example, the Scott’s π (pi)(Scott, 1955)
for nominal data and two raters, the Fleiss’ κ (kappa) (Fleiss, 1971) also
for nominal data but with a fixed number of several raters. Another, reliab-
ility coefficient is Krippendorff’s α (alpha) which is of special interest since
it applies to all levels of measurement (Krippendorff, 2004) and Hayes
and Krippendorff (2007)) (see section 6.2). In this thesis raters typically
estimated the extent of cover on an interval scale typically in between 0 to
100% (see section 4.3.1), or made frequency estimates using the binary
absence/presence on a nominal scale. The Krippendorff’s α is calculated
using the general equation 6.5;

αKripp = 1− DoDe (6.5)

where Dois the observed disagreements and De is the expected random
disagreements.

In order to assess reliability in terms of the consistency of measurements
made by several raters measuring the same quantity, the ICC was calcu-
lated (Shrout and Fleiss, 1979). The ICC assesses the reliability of ratings
by comparing the variability of different ratings of the same subject with the
total variation across all ratings and all subjects.

There are several ICC classes; those that measure the reliability of a single
rater are denoted as ICC(1,1), ICC(2,1), and ICC(3,1). In addition, there
are classes that measure the reliability of the mean rating; these are de-
noted as ICC(1, k), ICC(2, k) and ICC(3, k). In this thesis the reliability of
a single rater was used, i.e. the first three mentioned classes, above. In a
study by (Shrout and Fleiss, 1979) these classes were described as:

ICC1: Each target is rated by a different set of k judges, randomly
selected from a larger population of judges.

ICC2: A random sample of k judges is selected from a larger popu-
lation, and each judge rates each target, that is, each judge
rates n targets altogether.

ICC3: Each target is rated by each of the same k judges, who are
the only judges of interest.
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The raters participating in the investigations in this thesis were assumed
to be representative of a larger number of similar raters in the population.
Hence, the ICC(2,1) class was chosen (see definition in equation 6.6).

ICC (2, 1) = var(β)
var(α) + var(β) + var(ε) (6.6)

where var denotes the variance, var(α) denotes the variability due to dif-
ferences in the rating scale used by the raters. For example, when con-
sidering a sample plot containing a ”true” value of 5% plant cover, rater A
estimates this plot to contain 10% cover, but rater B estimates the same
plot to contain 15%. Here, var(β) denotes the variability caused by differ-
ences in the observed phenomenon/subjects (e.g. the sample plots con-
taining plants), and var(ε) denotes the variability caused by differences in
the evaluations of the observed phenomenon/subjects by the judges. For
example, rater A finds that a sample plot contains 45 plants, but rater D
finds the same sample plot contains 5 plants, because of different personal
opinions on what and how to count. The ICC(2,1) class is generalisable,
whereas ICC values from ICC(3,1) class are not. The ICC coefficient can
theoretically vary between 0 and 1.0, where an ICC value of 0 indicates no
agreement (i.e,. no reliability), while an ICC value of 1.0 indicates perfect
agreement/reliability (i.e,. the raters were unanimous in their decisions).

A Student’s (dependent) t-test can be used where there are two raters’
estimates. This test is used to compare two datasets when data in each
sample set are related in a special way. For example, when a rater as-
sesses the same phenomenon before and after (e.g. the plant density). In
order to use this paired (or dependent) t-test (and not the independent t-
test), the dataset must be organised in pairs, where there is a relationship
between each pair of data points. The number of data points in each data
set must be the same. When it comes to comparing two raters, or meth-
ods, it is worth noting that (Altman and Bland, 1983) and (Bland and Alt-
man, 1986) criticised the use of (product-moment) correlation coefficients,
difference between means (by using, for example, the paired t-test), and
regression analysis methods for being inappropriate for analysing meas-
urement methods. Qualitative ratings of ICC agreement based on the ICC
values were suggested by (Cicchetti, 1994) as follows:

Poor ICC-value < 0.40
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Fair ICC-value 0.40 to 0.59

Good ICC-value 0.60 to 0.74

Excellent ICC-value 0.75 to 1.0

For more detailed information on measuring raters’ agreements and reliab-
ility using the aforementioned methods, see (Shoukri, 2003) and (Martin
and Bateson, 2007). Details of how to use the ICC can be found in (Rankin
and Stokes, 1998), (Hallgren, 2012) and (Weir, 2005). In this thesis ICC
was calculated using the package psych in R (R Core Team, 2014).

6.4 Counting Plant Clusters/Patches

In order to be able to estimate the the number of individuals or plant
patches, clusters, or tufts by counting it is important to know how they
are defined. In these investigations, a plant cluster was defined as being
an individual or tightly clumped group of individuals and was counted as
one instance or occurrence. More precisely:

Let there be n two-dimensional regions to represent clusters c of vegeta-

tion. The clusters can be enumerated as
n∑
i=1 ci, where each cluster has a

geometric centre, gc (also called centroid). Each cluster c is represented
by an ellipse whose major axis, a, and minor axis, b, coincide with the
Cartesian axes (see figure 6.3a). Assuming that the geometric centre gc
has its coordinates at (x0, y0) , then the Cartesian equation is:

(x − x0)2
a2 + (y− y0)2

b2 = 1 (6.7)

The ellipse is used as a tool for roughly estimating a continuous line of ve-
getation patches, which forms the boundary of a closed geometrical figure,
i.e., its perimeter (see figure 6.3b). By applying this operation, the centre
of each patch can be computed using equation 6.7. Clusters can be joined
to another identified cluster. Alternatively, clusters can be considered on
their own, and defined as individual clusters in their own right. If an identi-
fied ellipse A has its centre of gravity intersecting another identified ellipse
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B, then A and B are to be considered as one cluster represented by the
area A ∪ B (see figure 6.4).

a) b)

Figure 6.3: a) Ellipse, and b) Usage on plants/patches

Figure 6.4: Interpretation of the definition of patches

The definitions in this section were used as a protocol for the raters as-
sessing the number of individuals/clusters in the investigations in sections
6.8 , 6.9 and 6.11.
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6.5 Six Studies in Reliability of Visual Estim-
ates

Six studies were conducted to evaluate the reliability of (human) assess-
ments made by two or more raters. The assessments refers to the es-
timates of vegetation extent, e.g. estimating the plant cover, or counting
the number of plant individuals. The assessors in each investigation made
their ratings/assessments from images or on-site.

In the following investigations presented in section: 6.6, 6.7, 6.8, 6.9, and
6.11, except for the 5th investigation (in section 6.10), parametric methods
were used for the analysis of the current data setanalysis of variance (AN-
OVA) tests at 95% confidence level were carried out on the raters’ visual
estimates of total plant cover. The ANOVA tests were conducted on log10-
transformed data. The purpose was to investigate differences between the
raters’ assessments.

6.6 1st Study of Visual Estimates of Images

Thirteen staff members at the Dalarna University, Sweden were picked at
random and were asked to assess the total cover of vegetation in images.
The underlying hypothesis was to test if many human raters are reliable
in their estimates of cover. The raters neither possessed any experience
in estimating plant cover nor did they have any experience of the railway
domain.

6.6.1 Method

Images were acquired from a nadir view over the railway tracks of the
Falun - Grycksbo railway (see details in section 5.3). Nine of those images
were selected. Images showing totally overgrown track areas, as well as
images that were relatively free of vegetation, were disregarded during this
process.

The raters were asked to individually conduct a visual estimate of the total
plant cover in each of the nine images and report the same in terms of
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percentage cover relative to the image under observation. Only an area
measuring 1 x 1 m (i.e., the sample plot), outlined on each image, was to
be considered. The raters used an interval scale for estimating aerial cover
and were free to choose any number between 0 and 100%. Only green
parts of the plants (i.e., those containing chlorophyll) were to be included in
the total cover. Each observation was made individually, with no interaction
from other persons and no time constraints. Each rater wrote down their
total cover estimate on a protocol template.

6.6.2 Results and Conclusions of the 1st Study

In total n = 117 visual estimates (observations) were made over all nine
plots. Plot-wise observations reported by the 13 raters are presented in
table C.1. These can be characterised with the following central tenden-
cies concerning plant cover: x = 31.55% and Md = 30% (see figure C.1a).

An ANOVA-test reported a significant difference in mean estimates. F =5.28 at df = 12and 104, p = 0.0000006896. (H0 was rejected at 0.05
significance level), i.e. the raters were not in agreement. (see figure 6.5).

The maximum difference when all the raters made a VE of the same plot
was 65%, i.e., the highest estimate made by any rater minus the lowest
estimate of any other rater of the same plot (see figure 6.6a). The dif-
ferences between the maximum estimate and the minimum estimate per
plot (from 1 to 9) were: 15, 25, 20, 17, 65, 45, 30, 55, 55%, respectively.
These plot-wise differences in agreement can be summarised in the over-
all arithmetic mean, x = 36.33, and the overall median, Md = 30. These
central tendencies indicate high fluctuations, and emphasise the need for
a strict protocol as well as the need for proper training before making visual
estimates of plant cover.
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Figure 6.5: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.6: VE per sample plot: a) original data, and b) log10-transformed
data

A measurement of reliability (or degree of agreement) was computed using
the intraclass correlation coefficient, ICC(2,1) which concerned the level
of agreement between the 13 raters when estimating total cover in nine
images (see table 6.2). ICC (2, 1) = 0.61, which may be referred to as a

144



moderate agreement. This result, in conjunction with the ANOVA result,
makes the reliability of visual estimates appear as weak.

Estimate of Reliability ICC(2,1) no. of sample

plots n

p-value

Total Cover 0.61 9 < 0.01

Table 6.2: The levels of agreement among the raters

6.7 2ndStudy of Visual Estimates On-site

Three domain experts participated in an on-site investigation of the railway
track in between Falun and Grycksbo (see section 5.3). The hypothesis
was to test the reliability of humans in their estimates of cover.

6.7.1 Method

This investigation involved three raters with prior experience in estimating
plant cover. In this context, it is worth mentioning that personnel working
within the railway maintenance domain are not provided with any formal
training in the assessment of the extent of vegetation. This is mostly be-
cause that vegetation management is scheduled as periodic maintenance
(see chapter2). It is initiated by national railway authorities and is usually
sub-contracted to other companies.

A person in charge of vegetation inspections was asked to select two rep-
resentative railway segments (strata) that characterise different levels of
(mostly) herbaceous vegetation. Only track segments hosting vegetation
were considered. The two strata were each about 100 m long and were
classified as: low level coverage, and high level of coverage, respectively.
In each stratum, five sample plot positions were randomised by simple ran-
dom (see figure 6.7). Each sample plot had an area of 1 x 1 m. All sample
plots were digitally photographed from a nadir view.
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Stratum Area

Randomized Sample Plots

Figure 6.7: Randomised plots in a stratum

The raters were asked to separately report a visual estimate of the total
plant cover in each of the 10 sample plots. The raters were instructed to
estimate the total vegetation cover (from 0 to 100% to the nearest 5%)
in each sample plot area. No further instructions of how to make their
judgements were given. Details about the data collected could be found in
section 5.3.

6.7.2 Results and Conclusions of the 2nd Study

In all n = 30 visual estimates (observations) for assessing total plant
cover were made. Plot-wise observations reported by the three raters are
presented in table C.2. Central tendencies for all observations: x = 18.83%
and Md = 17.5% (see figure C.3a).

An ANOVA-test reported a significant difference in mean estimates was
reported. F = 19.72 at df = 2and 27, p = 0.000005265. (H0 was rejected
at 0.05 significance level), i.e. they were not in agreement (see figure 6.8).

The maximum difference when all the raters made a VE of the same plot
was 25%, i.e., the highest estimate made by any rater minus the lowest
estimate of any other rater of the same plot (see figure 6.9a). Differences
between the maximum estimate and the minimum estimate per plot (from 1
to 10) were: 25, 15, 10, 10, 5, 10, 10, 10, 5, 15%, respectively. These plot-
wise differences in agreement can be summarised in the overall arithmetic
mean, x = 11.5, and the overall median, Md = 10.

146



a)
obsA obsB obsC

5
10

15
20

25
30

35
40

Visual Estim. by Observers: Total Cover
Original data

Observer ID

C
ov

er
 (

%
)

b)
obsA obsB obsC

0.
8

1.
0

1.
2

1.
4

1.
6

Visual Estim. by Observers: Total Cover
Transformed data: log10

Observer ID

lo
g1

0 
( 

C
ov

er
 (

%
) 

)

Figure 6.8: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.9: VE per sample plot: a) original data, and b) log10-transformed
data

To assess the reliability (or degree of agreement) between the three raters
when estimating the total cover in 10 sample plots, the intraclass correla-
tion coefficient, ICC(2,1), see table 6.3. As in the investigation in section
6.6, the results of this investigation show similarities. The level of agree-
ment, ICC (2, 1) = 0.56, in this investigation when using domain experts
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may be referred to as moderate. Again, the latter result in conjunction with
the ANOVA result makes the reliability of visual estimates appear as weak.

The results support the hypothesis that humans are unreliable in their es-
timates of cover extent.

Estimate of Reliability ICC(2,1) no. of sample

plots n

p-value

Total Cover 0.56 10 3.5 ∗ 10−5

Table 6.3: The three raters’ levels of agreement

6.8 3rdStudy of Visual Estimates of Images

Three raters (laypersons) were asked to assess the cover extent and the
sub-plot frequency on images. This investigation was a follow up of the in-
vestigation made in section 6.6. Based on the results of the investigations
made in sections 6.6 and 6.7, more guidance was given to the raters so
that they knew what and how to make visual estimates.

The first hypothesis was that laypersons are not in agreement with each
other when it comes to estimating the extent of cover and sub-plot fre-
quency. The second hypothesis was that laypersons would benefit from
having been presented with a rigorous protocol before making the assess-
ments, both in terms of the estimating of cover, and the counting of plant
clusters. This protocol is described in the next section.

6.8.1 Method

Three raters were picked at random from among the academic staff at
Dalarna University, Sweden. The raters did not possess any experience
in estimating plant cover; nor did they have any experience of the railway
domain. For each presented image, each rater was asked to:

1. estimate the cover of woody plants (in %)

2. estimate the cover of herbs (in %)
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3. estimate the cover of grass (in %)

This was done three times using the following rater methods:

1. Aerial canopy cover (ACC)

2. Aerial foliage cover (AFC)

3. Sub-plot frequency

After each rater had finished making VEs of the attributes, as shown in
the list above, they were also asked to count the number of vegetation
clusters in each image. This procedure of counting was carried out twice:
once after they made their VE using AFC and once after using ACC.

Plant cluster definition: In this investigation, a plant cluster was defined
as being an individual plant or a tightly clumped group of individual plants.
The protocol of how to count clusters presented in section 6.4. This was
presented to the assessors.

Estimate of/Method Aerial Canopy Cover Aerial Foliage Cover Sub-plot frequency

Woody plants 35 35 35

Herbs 35 35 35

Grass 35 35 35

Counting Plant Patches 35 35 -

Table 6.4: Overview - number of observations per person

Note that the raters were not informed that the same images were shown
each time and in the same sequence. All raters were instructed on how
assess cover using the three methods. They were also given advance as-
sistance in how to estimate cover (see figure 6.10). They were not allowed
to use this assistance during the assessments. The purpose of showing
them the visual cover aid chart was to visually synchronise (or symbolic-
ally calibrate) their feeling of how much area coverage is required to meet
a certain percentage.
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Figure 6.10: Visual aid chart for estimating cover

Since it is relatively easy to assess whether a plot contains nothing or is
completely full, images showing either 0% and 100% of the attribute in
question were removed before the analysis.

6.8.2 Visual Estimates of Plant Cover and Sub-plot Fre-
quency

Nine investigations were carried out. As stated, three raters participated.
Each rater visually assessed the cover extent or sub-plot frequency (SF)
in a maximum of 35 images using three different methods, ACC, AFC, and
SF, respectively. The target plants were woody plants, herbs, and grass.
The images used for SF contained a 10 x 10 sub-plot sampling frame (see
figure 6.11 as an example). The other images for the assessments of ACC
and AFC did not contain a grid.

Figure 6.11: Sample area with a 10 x 10 sub-plot frame
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VE of woody plants using ACC method

The number of observed images in the analysis was 21 out of 35. The rest
of the images were not selected because they did not contain any woody
plants. The distribution of the data is presented in figure C.5

Results: An ANOVA test reported a significant difference in mean estim-
ates. F = 4.943 at df = 2 and 60, p = 0.0103 (H0 was rejected at 0.05
significance level), i.e. the raters were not in agreement (see the box-plot
in figure 6.12b).

Plot-wise variation and differences are presented in figure 6.13. The max-
imum difference when the raters made an VE of the same plot was 49%,
i.e., the highest estimate minus the lowest estimate in the same plot. The
median difference (over all plots) between the highest and lowest plot
cover estimate: Md = 15% and the mean: x = 18.9%.
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Figure 6.12: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.13: VE per sample plot: a) original data, and b) log10-transformed
data

Visual Estimates of Woody Plants Using the AFC Method

The number of observed images in the analysis was 22 out of a total of 35.
The remaining images were excluded due to the lack woody plants.

Results: An ANOVA test reported a significant difference in mean estim-
ates. F = 10.5 at df = 2 and 63, p = 0.0001158. (H0 was rejected at 0.05
significance level), i.e. the raters were not in agreement (see boxplot in
figure 6.14b).

Plot-wise variation and differences are presented in figure 6.15. The max-
imum difference when the raters made a VE of the same plot was 35%, i.e.,
the highest estimate minus the lowest estimate in the same plot. The min-
imum difference was 0%, i.e., total agreement. The median difference (over
all plots) between the highest and lowest plot cover estimates: Md = 6%
and the mean: x = 9.0%.
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Figure 6.14: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.15: VE per sample plot: a) original data, and b) log10-transformed
data

VE of woody plants using SF method

The number of observed images in the analysis was 23 out of 35. The rest
of the images were not selected because they did not contain any woody
plants.
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Results: An ANOVA test reported a significant difference in mean estim-
ates. F = 9.897 atdf = 2 and 66, p = 0.0001741. (H0 was rejected at 0.05
significance level) (see the box-plot in figure 6.16b).

Plot-wise variation and differences are presented in figure 6.17. The max-
imum difference when the raters made a VE of the same plot was 75%, i.e.,
the highest estimate minus the lowest estimate in the same plot. The me-
dian difference (over all plots) between the highest and lowest plot cover
estimate: Md = 14% and the mean: x = 20.0%.
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Figure 6.16: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.17: VE per sample plot: a) original data, and b) log10- trans-
formed data

Visual Estimates of Herbs using the ACC Method

The number of observed images in the analysis was 23 out of 35. In cases
where all raters unanimously estimated 0% cover of the target plant, these
images were removed.

Results: An ANOVA test reported a non-significant difference in mean
estimates. F = 1.391 at df = 2 and 66, p = 0.256. (H0 was not rejected
at 0.05 significance level) (see the box-plot in figure 6.18b).

Plot-wise variation and differences are presented in figure 6.19. The max-
imum difference when the raters made a VE of the same plot was 79%,
i.e., the highest estimate minus the lowest estimate in the same plot. The
minimum difference was 0%, i.e. total agreement. The median difference
(over all plots) between the highest and lowest plot cover estimate: Md =
19% and the mean: x = 22.43%.
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Figure 6.18: VE by each rater: a) original data, and b) log10- transformed
data
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Figure 6.19: VE per sample plot: a) original data b) log10-transformed
data

Visual Estimates of Herbs Using the AFC Method

The number of observed images in the analysis was 21 out of 35. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Results: An ANOVA test reported a significant difference in mean estim-
ates. F = 3.955 at df = 2 and 60, p = 0.02435. (H0 was rejected at 0.05
significance level) (see the boxplot in figure 6.20b).

Plot-wise variation and differences are presented in figure 6.21. The max-
imum difference when the raters made a VE of the same plot was 65%, i.e.,
the highest estimate minus the lowest estimate in the same plot. The me-
dian difference (over all plots) between the highest and lowest plot cover
estimate: Md = 15% and the mean: x = 16.4%.
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Figure 6.20: VE by each rater: a) original data, and b) log10- transformed
data
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Figure 6.21: VE per sample plot: a) original data, and b) log10- trans-
formed data

VE of Herbs using SF method

The number of observed images in the analysis was 21 out of 35. The rest
of the images were not selected because they did not contain any herbs.

Results: An ANOVA test reported a non-significant difference in mean
estimates. F = 2.129 at df = 2 and 60, p = 0.1278. (H0 was not rejec-
ted at 0.05 significance level) (see the box-plot in figure 6.22b). Plot-wise
variation and differences are presented in figure 6.23. The maximum dif-
ference when the raters made a VE of the same plot was 85%, i.e., the
highest estimate minus the lowest estimate in the same plot. The me-
dian difference (over all plots) between the highest and lowest plot cover
estimate: Md = 17% and the mean: x = 25.1%.
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Figure 6.22: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.23: VE per sample plot: a) original data, and b) log10-transformed
data

Visual Estimates of Grass Using the ACC Method

The number of observed images in the analysis was 19 out of 35. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Results: An ANOVA test reported a significant difference in mean estim-
ates. F = 55.62 at df = 2 and 54, p = 7.676 ∗ 10−14. (H0 was rejected at
0.05 significance level), see the box-plot in figure 6.24b. Plot-wise variation
and differences are presented in figure 6.25. The maximum difference
when the raters made a VE of the same plot was 74%, i.e., the highest
estimate minus the lowest estimate in the same plot. The median differ-
ence (over all plots) between the highest and lowest plot cover estimate:
Md = 9% and the mean: x = 13.9%.
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Figure 6.24: VE by each rater: a) original data, and b) log10- transformed
data
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Figure 6.25: VE per sample plot: a) original data, and b) log10- trans-
formed data

Visual Estimates of Grass using the AFC Method

The number of observed images in the analysis was 19 out of 35. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.

Results: An ANOVA test reported a significant difference in mean estim-
ates. F = 48.94 at df = 2 and 54, p = 7.472 ∗ 10−13. (H0 was rejected at
0.05 significance level) (see the box-plot in figure 6.26b).

Plot-wise variation and differences are presented in figure 6.27. The max-
imum difference when the raters made a VE of the same plot was 74%, i.e.,
the highest estimate minus the lowest estimate in the same plot. The me-
dian difference (over all plots) between the highest and lowest plot cover
estimate: Md = 4% and the mean: x = 11.6.
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Figure 6.26: VE by each rater: a) original data b) log10-transformed data
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Figure 6.27: VE per sample plot: a) original data, and b) log10-transformed
data

Visual Estimates of Grass using the SF method

The number of observed images in the analysis was 20 out of 35. The rest
of the images were not selected because they did not contain any grass.
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Results: An ANOVA test reported a significant difference in estimates
was reported. F = 21.21 at df = 2 and 57, p = 0.0000001304. (H0 was
rejected at 0.05 significance level), see the box-plot in figure 6.28b.

Plot-wise variation and differences are presented in figure 6.29. The max-
imum difference when the raters made an VE of the same plot was 66%,
i.e., the highest estimate minus the lowest estimate in the same plot. The
median difference (over all plots) between the highest and lowest plot
cover estimate: Md = 6.5% and the mean: x = 20.15%.
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Figure 6.28: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.29: VE by each rater: a) original data, and b) log10- transformed
data

6.8.3 Counting Plant Clusters

After estimating cover using the AFC and AFC methods, the participants
were asked to count the number of plant clusters in the images. All three
raters were presented with the definition of a plant cluster as defined in
6.4.

Inter-rater Agreements in Counting Plant Clusters

Inter-rater agreement is the degree of agreement among the three raters
when estimating the number of plant clusters from the same set of images.

Results: An ANOVA test was performed on the raters’ counting of plant
clusters after the ACC session. A significant difference in count estimates
between the raters was reported . F = 58.08 atdf = 2 and 93, p <2.2 ∗ 10−16. (H0 was rejected at 0.05 significance level) (See box-plot in
figure 6.30b).
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Figure 6.30: Each rater’s counting of plant clusters after the ACC session:
a) original data, and b) log10-transformed data

Plot-wise variation and differences are presented in figure 6.31. The max-
imum difference between the raters in counting the same plot was 34
plant clusters, i.e., the highest count minus the lowest count in the same
plot (see figure 6.31). The median difference (over all plots) between
the highest and lowest plot was: Md = 7 plant clusters and the mean:
x = 8.12 plant clusters.
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Figure 6.31: Plant cluster counts per sample plot: a) original data, and b)
log10-transformed data
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Another ANOVA test, also at 95% confidence level, was performed, but
this time on the raters’ counting of plant clusters after the AFC session.
A significant difference in count estimates between the raters was also
reported. F = 66.43 at df = 2 and 93, p < 2.2 ∗ 10−16. (H0 was rejected at
0.05 significance level) (see box-plot in figure 6.32b).
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Figure 6.32: Each rater’s counting of plant clusters after the AFC session:
a) original data, and b) log10-transformed data

Plot-wise variation and differences are presented in figure 6.33. The max-
imum difference between the raters in counting the same plot was 23
plant clusters, i.e., the highest count minus the lowest count in the same
plot (see figure 6.33). The median difference (over all plots) between the
highest and lowest plot was: Md = 5 plant clusters and the mean: x = 7.12
plant clusters.
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Figure 6.33: Plant cluster counts per sample plot: a) original data, and b)
log10-transformed data

To assess the extent of agreement between the three raters, intraclass
correlation coefficients ICC(2,1) were calculated for the two sessions of
counting of plant clusters (see table 6.5).

Count during session Reliability ICC(2,1) no. of images n p-value

ACC 0.45 32 4.5 ∗ 10−10
AFC 0.41 32 1.3 ∗ 10−9

Table 6.5: ICC(2,1) for agreement between the three raters’ counting

Also the Krippendorff’s α was also calculated: ACC counting session αKripp =0.463, and for the AFC counting session αKripp = 0.478
Intra-rater Agreements in Counting Plant Clusters

The intraclass analysis was conducted by computing several pairwise stu-
dent’s t-tests. Two sets of paired samples were collected from each rater.
The estimates were made by the same rater on the same images, first
during the ACC session and again during the AFC session.
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The test results on the pairs’ transformed log10-data is presented in table
6.6.

For each table row, 34 degrees of freedom applies, df = n − 1 where the
number of images n = 35. The mean difference in estimates between
raters A and C was non-significant, p > 0.05, but rater B’s mean difference
in estimates was significantly different, p < 0.05

rater ID Counting after the

ACC session

Counting after the

AFC session

Mean of the

differences, D

t(34) p-value

A x = 0.581,

SE = 0.059 x = 0.543,

SE = 0.058 0.038 1.184 0.2447
B x = 0.897,

SE = 0.070 x = 0.788,

SE = 0.062 0.109 4.065 0.0003
C x = 0.899,

SE = 0.064 x = 0.912,

SE = 0.063 −0.013 −0.688 0.4962
Table 6.6: The raters’ two (paired) sessions of counting plant clusters, df =
34

6.8.4 Conclusion

Visual estimates of plant cover: Between the three raters, seven out of
the nine ANOVA tests resulted in significant differences in the mean es-
timates of cover (p < 0.05) (see sections 6.8.2 to 6.8.2 for details. Only
two classes (herbs, ACC, and herbs SF) were found to be non-significant,
meaning that no difference could be observed between the raters in those
two cases. However, some of the raters occasionally found it hard to differ-
entiate between a pine and a tuft of grass, when seen in nadir perspective.
This could explain some of the fluctuations in cover estimates.

The raters’ levels of agreement were assessed by computing the intracor-
relation coefficient ICC(2,1). The degrees of freedom used for the calcula-
tions in table 6.7 are df1 = (n− 1) and df2 = (o− 1)(n− 1), where o is the
number of raters, and n is the number of estimated images.
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Target plants VE method Reliability ICC(2,1) p-value Details in section

Woody Plants

ACC 0.68 1.5 ∗ 10−8 6.8.2

AFC 0.62 3.9 ∗ 10−8 6.8.2

SF 0.76 1.1 ∗ 10−12 6.8.2

Herbs

ACC 0.58 2.4 ∗ 10−6 6.8.2

AFC 0.73 7.4 ∗ 10−10 6.8.2

SF 0.78 4.1 ∗ 10−11 6.8.2

Grass

ACC 0.15 0.011 6.8.2

AFC 0.19 0.003 6.8.2

SF 0.43 2.4 ∗ 10−5 6.8.2

Table 6.7: The three raters’ level of agreement as of the ICC(2,1)

The ICC(2,1) results shown in 6.7 give values between ICC (2, 1) = 0.15
(for the estimate of grass cover, ACC) up to ICC (2, 1) = 0.78 (for the es-
timate of herb cover using SF). Using the suggested qualitative ratings put
forward by (Cicchetti, 1994), the obtained results were characterised as
being poor agreement up to good agreement between the raters.

Counting plant clusters

Inter-rater reliability : The raters were asked to count the number of clusters
in all images during the ACC and AFC sessions. ANOVA tests showed
that there were significant differences between the raters counting of plant
clusters. In addition, ICC values were calculated (see table 6.5), and the
values were found to be similar to when the raters were estimating the
cover extent (see table 6.7): ICC (2, 1) = 0.45 and ICC (2, 1) = 0.41 re-
spectively. In both cases, the result points to the lower boundary of a
moderate agreement between the raters in counting plant clusters. Similar
results were obtained by computing Krippendorff’s α, which also charac-
terises the results as moderate agreement (ACCαKripp = 0.463 and AFC
αKripp = 0.478).

Intra-rater reliability : Mean differences between, first, the ACC, and, second,
the AFC VE sessions for each rater (A to C) were compared using paired
student’s t-tests. Raters A and C showed individual stability in counting
when the same test was repeated twice, resulting in non-significant differ-
ences for the mean (p>0.05). The mean of differences together with each
session standard errors were low (see table 6.6). Rater B had more diffi-
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culties in counting the same images twice, which resulted in a significant
mean difference (p<0.05).

6.9 4thStudy of Visual Estimates of Images

Five maintenance engineer administrators representing all four national
territories of Swedish national railway administration, namely STA North,
STA South, STA East, STA West, and Borlange municipality were asked to
make visual estimates from 51 images that showed the railway embank-
ment from a nadir (bird’s-eye) perspective. Common to these maintenance
engineer administrators was that each one was ultimately responsible for
determining whether vegetation management should be carried out, or
not, within their territory, or municipality.

6.9.1 Method

This investigation was carried out as an online Internet survey. The re-
spondents (i.e., the raters) from the STA encompassed the full population
of maintenance engineer administrators in Sweden. First, the respondents
were contacted by telephone, individually. Then, each respondent was in-
structed through slide-show presentations and web conferencing software
as to what to do and how to make the VE. Each respondent was able to
browse the images from a website. The respondents had no contact with
each other.

All the participating raters were instructed on where to make their assess-
ment, i.e., defining the sampling area (see the yellow sampling area in fig-
ure 6.34a), and how to make their assessments using the AFC and ACC
methods (see figure 6.34b). A review of these two methods of observation
can be found in section 4.3.1. Before each rater made a series of VEs
using AFC, or ACC, the order of the images was randomly re-arranged.
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a) b)

Figure 6.34: a) Sampling area, and b) AFC vs ACC method

By using these methods, the raters were asked to make VE of the cover
on a scale of 0 to 100%, concerning:

1. Woody plants

2. Herbs

3. Grass

4. The remainder, i.e. everything else e.g. gravel, soil, wood, rocks etc,
also including litter, such as dead plants.

After finishing making VEs of the attributes shown in the list above, the
raters were also asked to count the number of vegetation clusters in each
image. This procedure of counting was carried out twice, once after they
made their VE using AFC, and once after using ACC.

Plant cluster definition:In this investigation, a plant cluster was defined
as being an individual plant or a tightly clumped group of individual plants.
These were counted, as shown in section 6.4.

Estimate of/Method Aerial Canopy Cover Aerial Foliage Cover

Woody plants 51 51

Herbs 51 51

Grass 51 51

Counting Plant Patches 51 51

Table 6.8: Overview - number of observations per person
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Since it is relatively easy to assess whether a plot contains nothing, or is
completely full of the plant type in question, images with 0% and 100% of
the attribute in question were removed before the analysis. The purpose of
this investigation was to see whether or not the raters would give the same
estimate (i.e., a difference in estimates). It was not in the interests of this
work to try to find out which raters differed in their estimates. Therefore no
post-hoc tests were performed.

6.9.2 Visual Estimates of Plant Cover

Six investigations were carried out. Each rater visually assessed the cover
extent in 51 images using two different methods, ACC and AFC, respect-
ively. The target plants were woody plants, herbs, and grass.

The original data set was log10-transformed, x ′i, and then normalised by
subtracting the mean log10-value, log10(x)i of all the human raters indi-
vidual estimate of the same image i, as in equation 6.1. This operation
centres the distribution to have a zero mean value, and makes the distri-
bution of the raters’ estimate of each image more comparable with other
images.

Visual Estimates of Woody Plants Using the ACC Method

The number of observed images in the analysis was 42 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.

Results: An ANOVA test reported a non-significant difference in estimates
was reported. F = 1.499 at df = 4 and 205, p = 0.2037. (H0 could not be
rejected at 0.05 significance level) (see6.35).

Plot-wise variation and differences are presented in figure 6.36. The max-
imum difference when the raters made a VE of the same plot was 79%,
i.e., the highest estimate minus the lowest estimate in the same plot. The
minimum difference was 0%, i.e., total agreement. The median differ-
ence (over all plots) between the highest and lowest plot cover estimate:
Md= 14% and the mean: x = 19.6%.
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Figure 6.35: VE by each rater: a) original data, and b) log10- transformed
data
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Figure 6.36: VE per sample plot: a) original data b) log10-transformed
data

Visual Estimates of Woody Plants Using the AFC Method

The number of observed images in the analysis was 38 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Results: An ANOVA test reported a significant difference in estimates was
reported. F = 5.219 at df = 4 and 185, p = 0.0005262. (H0 was rejected
at 0.05 significance level) (see box-plots in figure 6.37b).
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Figure 6.37: VE by each rater: a) original data b) log10-transformed data

Plot-wise variation and differences are presented in figure 6.38. The max-
imum difference when the raters made an VE of the same plot was 35%,
i.e. the highest estimate minus the lowest estimate in the same plot. The
minimum difference was 0%, i.e. total agreement. The median difference
(over all plots) between highest and lowest plot cover estimate: Md = 6%
and the mean: x = 9.0%.
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Figure 6.38: VE per sample plot: a) original data b) log10-transformed
data

Visual Estimates of Herbs Using the ACC Method

The number of observed images in the analysis was 42 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.

Results: An ANOVA test reported a non-significant difference in estimates
was reported. F = 1.227 at df = 4 and 245, p = 0.2998. (H0 could not be
rejected at 0.05 significance level), see 6.39).

Plot-wise variation and differences are presented in figure 6.40. The max-
imum difference when the raters made a VE of the same plot was 70%,
i.e., the highest estimate minus the lowest estimate in the same plot. The
minimum difference was 0%, i.e., total agreement. The median difference
(over all plots) between the highest and lowest plot cover estimate:Md =26.5% and the mean: x = 30.0%.
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Figure 6.39: VE by each rater: a) original data b) log10-transformed data
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Figure 6.40: VE per sample plot: a) original data, and b) log10-transformed
data

Visual Estimates of Herbs Using the AFC Method

The number of observed images in the analysis was 47 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Results: An ANOVA test reported a significant difference in estimates was
reported. F = 4.674 at df = 4 and 230, p = 0.001206. (H0 was rejected at
0.05 significance level) (see section 6.41).

Plot-wise variation and differences are presented in figure 6.42. The max-
imum difference when the raters made a VE of the same plot was 44%,
i.e., the highest estimate minus the lowest estimate in the same plot. The
minimum difference was 0%, i.e., total agreement. The median differ-
ence (over all plots) between the highest and lowest plot cover estimate:
Md = 9% and the mean: x = 13.9%.
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Figure 6.41: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.42: VE per sample plot: a) original data b) log10-transformed
data

Visual Estimates of Grass Using the ACC Method

The number of observed images in the analysis was 37 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.

Results: An ANOVA test reported a significant difference in estimates was
reported. F = 2.666 at df = 4 and 180, p = 0.03395. (H0 was rejected at
0.05 significance level) (see 6.43).

Plot-wise variation and differences are presented in figure 6.44. The max-
imum difference when the raters made a VE of the same plot was 59%,
i.e., the highest estimate minus the lowest estimate in the same plot. The
minimum difference was 0%, i.e., total agreement. The median differ-
ence (over all plots) between the highest and lowest plot cover estimate:
Md = 9% and the mean: x = 19.3%.
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Figure 6.43: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.44: VE per sample plot: a) original data, and b) log10-transformed
data

Visual Estimates of Grass using the AFC Method

The number of observed images in the analysis was 33 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Results: An ANOVA test reported a significant difference in estimates was
reported. F = 5.427 at df = 4 and 160, p = 0.0004012. (H0 was rejected
at 0.05 significance level) (see figure 6.45).

Plot-wise variation and differences are presented in figure 6.46. The max-
imum difference when the raters made a VE of the same plot was 84%,
i.e., the highest estimate minus the lowest estimate in the same plot. The
minimum difference was 0%, i.e., total agreement. The median differ-
ence (over all plots) between the highest and lowest plot cover estimate:
Md = 9% and the mean: x = 22.2%.
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Figure 6.45: VE by each rater: a) original data, and b) log10-transformed
data
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Figure 6.46: VE per sample plot: a) original data, and b) log10-transformed
data

6.9.3 Counting Plant Clusters

In this investigation, the raters had to estimate the number of plant clusters
(as defined in section 6.4, by counting them in each image, n = 51. For
each rater, the counting occurred twice using the same images at both
occasions. The first time counting session is denoted as ”after the ACC
session”, or just ACC, and the second time counting session is denoted as
”after the AFC session”, or just AFC.

While the original data was not normally distributed, the original data points

xi were transformed into x̂ = log10(xi), n=51∑
i=0 xi to be able to use para-

metric methods for the data analysis (both for the inter-rater agreements
and intra-rater agreements). Concerning on the raters’ counting of plant
clusters, all ANOVA-tests were conducted at 95% confidence level.

Inter-rater Agreements in Counting Plant Clusters

Inter-rater agreement , (or inter-rater reliability) is the degree of agreement
between the five raters who estimated the number of plant clusters from
the same set of images. The term ”inter-rater” implies ”between raters”.
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Results of the raters’ 1st counting of plant clusters: After the ACC-
session, an ANOVA-test was conducted on the counting results. It re-
ported a significant difference in count estimates between the raters was
reported. F = 5.579 at df = 4and 250, p = 0.0002566. (H0 was rejected
at 0.05 significance level) (see figure 6.47).
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Figure 6.47: Each raters counting of plant clusters after the ACC session:
a) original data, and b) log10-transformed data

Plot-wise variation and differences are presented in figure 6.48. The max-
imum difference between the raters in counting the same plot was 76
plant clusters, i.e., the highest count minus the lowest count in the same
plot (see figure 6.48). The median difference (over all plots) between
the highest and lowest plot was: Md = 16 plant clusters and the mean:
x = 20.65 plant clusters.
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Figure 6.48: Plant cluster counts per sample plot: a) original data, and b)
log10-transformed data

Results of the raters’ 2nd counting of plant clusters: After the ACC-
session, an ANOVA-test was conducted on the counting results. It re-
ported a significant difference in count estimates in between the raters.
F = 8.093 at df = 4and 250, p = 0.000003761. (H0 was rejected at 0.05
significance level), see 6.49.
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Figure 6.49: Each raters counting of plant clusters after the AFC session:
a) original data, and b) log10-transformed data
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Plot-wise variation and differences are presented in figure 6.50. The max-
imum difference between the raters in counting the same plot was 70
plant clusters, i.e., the highest count minus the lowest count in the same
plot (see figure 6.50). The median difference (over all plots) between
the highest and lowest plot was: Md = 13 plant clusters and the mean:
x = 17.8 plant clusters.
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Figure 6.50: Plant cluster counts per sample plot: a) original data, and b)
log10-transformed data

To assess the extent of agreement between the five raters’ intraclass cor-
relation coefficients, ICC(2,1), were calculated for the two sessions of plant
cluster counting (see table 6.9.

Count during session Reliability as
ICC(2,1)

no. of
images n

p-value

ACC 0.25 50 3 ∗ 10−7

AFC 0.40 50 2.7 ∗ 10−10

Table 6.9: The five raters’ levels of counting agreement as of the ICC(2,1)
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Intra-rater Agreements in Counting Plant Clusters

After each session of visually estimating the cover of woody plants, herbs,
and grass, the raters were asked to count the number of clusters in all 51
images. As already mentioned, this procedure was carried out twice using
either the ACC method, or the AFC method, so the counting occurred
twice for each image per rater. Based on this counting data, an intraclass
analysis was conducted to investigate whether or not each rater was in
agreement with himself/herself. In other words, did the rater make the
same estimate both times?

The intraclass analysis was conducted as several pairwise student’s ttests
(also called dependent t-tests) (Field et al., 2012, pp. 386), or matched
pairs. As stated, two sets of paired samples were collected from each
rater. The estimates were made by the same rater on the same images,
firstly during the ACC session and then again during the AFC session.
The null hypothesis H0 was that the rater in question has a mean dif-
ference, D, between the paired plant cluster, counting observations that
equal zero. The alternative hypothesis Ha was that the mean difference
is not equal to zero. For the pairwise student’s t-test, the t-values on the
log10-transformed data were computed using the equation at 6.8 .

tpaired = D − µD
sD/
√
N

(6.8)

where D is the mean difference between the two samples, µD is the ex-
pected difference between the two poulation means, and

(
sD/
√
N
)

is the
estimated standard error of the differences, where sD is the standard devi-
ation of the differences in the sample and the size of the population, N.

H0 : x = 0 , and Ha : x 6= 0
Result: The test results on the paired transformed log10-data show that,
on average, the differences between all raters’ estimates were non-significant,
p > 0.05 (see table 6.10), i.e. the null hypothesis H0 could not be rejected.
It therefore follows that the alternative hypothesis Ha could not be accep-
ted. In other words the difference in estimates from the two plant counting
sessions could not be proven (by testing) to be not significantly different.
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For each table row, 50 degrees of freedom applies, df = n − 1 where
the number of images n = 51. The result in differences is graphically
presented in appendix H.

rater ID Counting after the

ACC session

Counting after the

AFC session

Mean of the

differences, D

t(50) p-value

A x = 0.899,

SE = 0.056 x = 0.871,

SE = 0.055 0.028 1.728 0.090
B x = 0.803,

SE = 0.043 x = 0.840,

SE = 0.044 −0.037 −1.7319 0.089
C x = 1.066,

SE = 0.055 x = 1.077,

SE = 0.055 −0.011 −0.6764 0.501
D x = 0.885,

SE = 0.050 x = 0.882,

SE = 0.052 0.003 0.064 0.949
E x = 0.923,

SE = 0.058 x = 1.002,

SE = 0.053 −0.079 −0.978 0.333
Table 6.10: The raters’ two (paired) sessions of counting plant clusters,
df=50

6.9.4 Conclusion

Visual estimates of plant cover: The ANOVA test results showed incon-
sistency when it came to estimating plant cover. Four out of six tests were
found to be significant concerning differences in the mean estimates of
cover. A summary of the results from sections 6.9.2 through to 6.9.2 is
presented in table 6.11, were significant results are marked as bold.
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Target plants VE

method

Mean diff, x

(%)

Median,

Md, diff (%)

Max

difference

F (df1, df2) p-value

Woody Plants
ACC 19.6 14 79 F (4, 205) = 1.499 0.2037
AFC 9.0 6 35 F (4, 185) = 5.219 0.0005

Herbs
ACC 30.0 26.5 70 F (4, 245) = 1.227 0.2998
AFC 13.9 9 44 F (4, 230) = 4.674 0.0012

Grass
ACC 19.3 9 59 F (4, 180) = 2.666 0.0340

AFC 22 9 84 F (4, 160) = 5.427 0.0004

Table 6.11: Summary of difference in between raters from section 6.9.2 to
6.9.2

It should be noted that some of the raters sometimes found it hard to dif-
ferentiate between a pine and a tuft of grass, when viewed from the nadir
perspective. This could explain some of the fluctuations in cover estimates.

The raters’ level of agreement was assessed by computing the intracor-
relation coefficient ICC(2,1). The degrees of freedom used for the calcula-
tions in table 6.12 are df1 = (n − 1) and df2 = (o − 1)(n − 1), where o is
the number of raters, andn is the number of estimated images.

Target plants VE method Reliability
ICC(2,1)

no. of
images n

p-value

Woody Plants
ACC 0.27 42 1 ∗ 10−6

AFC 0.38 38 5 ∗ 10−10

Herbs
ACC 0.36 50 1 ∗ 10−11

AFC 0.41 47 4 ∗ 10−14

Grass
ACC 0.16 37 0.003
AFC 0.13 33 0.010

Table 6.12: The five raters’ level of agreement as of the ICC(2,1)

The ICC(2,1) results in table 6.12 shows values in between ICC (2, 1) =0.13 (when estimating the cover of grass using AFC) up to ICC (2, 1) = 0.41
(when estimating the cover of herbs using AFC) in the interval of 0 to
1. If values around the arithmetic mean (in between 0.4 to 0.6) would
be characterised as being moderate agreement, then the obtained results
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could be described as poor agreement up to just about fairly moderate
agreement in between the raters.

Counting plant clusters: The results for the investigation of raters’ count-
ing of plant clusters showed instability in counting between the raters.
However, when the same test were repeated twice, the single rater showed
stability in counting.

Inter-rater reliability : An analysis of variance tests showed that there were
significant differences between the raters’ counting of plant clusters. This
applied both to the counting after the ACC session, as well as that carried
out after the AFC session. In addition, ICC values were calculated (see
table 6.9),and the values were found to be similar to when the raters had
to estimate the extent of cover (see table 6.12): ICC (2, 1) = 0.25 and
ICC (2, 1) = 0.40 respectively. Again a poor agreement up to the lower
boundary of a moderate agreement between the raters in counting plant
clusters.

Intra-rater reliability: Differences between first, ACC, and second, AFC,
VE sessions for raters A to E were compared using paired (dependent)
students t-tests. The mean of differences, together with each session’s
standard errors were low (see table 6.10). This shows consistency in
counting between the two paired sessions by the same rater. The res-
ults give an indication that the method in section 6.4 describing how to
quantify the number of clusters was understandable and stable. Hence,
the differences in counting did not result in a significant difference.

If one rater estimated either the cover or count plant clusters, the inter-
rater reliability results show poor to moderate agreement between raters.
Hence, caution should be exercised when interpreting individual raters’
results.
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6.10 5thStudy of Visual Assessments: Älvdals-
banan, Oxberg

6.10.1 Method

The data was collected along the Alvdalsbanan in Oxberg, Sweden, as
presented in section 5.5. For the analysis, two domain experts visually
estimated the total plant cover (woody plants, herbs and grass) using the
aerial foliage cover (AFC) and sub-plot frequency (SF) methods (see defin-
itions in section 4.3). Because of the large presence of woody plants it was
interesting to try these two methods on woody plants only. All visual es-
timates were made by considering a sample area of 1 x 1 metres, with or
without the aid of a sub-plot grid. The results of the visual observations
are presented in table 6.13. As there were five sample plots, each rater
made five visual estimates (VE), as follows:

1. The first VE of the total cover was carried out using the AFC method,
with no other assistance than a boundary of a square meter (marked
with pins).

2. The second VE of the total cover was carried out using AFC method,
with the assistance of a boundary of a square meter, a sub-plot quad-
rat sub-plot frame quadrat including a 10 x 10 sub-plot (each sub-plot
= 10*10 cm).

3. The third VE of the woody plants cover was carried out using the
AFC method, with the assistance of a boundary of a square meter,
including a 10 x10 sub-plot (each sub-plot = 10*10 cm).

4. The fourth VE of total cover was carried out using the SF methd with
the assistance of a boundary of a square meter, including a 10 x 10
sub-plot (each sub-plot = 10*10 cm).

5. The fifth VE of woody plants cover was carried out using the SF
method, with the assistance of a boundary of a square meter, includ-
ing a 10 x 10 sub-plot (each sub-plot = 10*10 cm).
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VE of total cover (no grid) plot 200 plot 201 plot 202 plot 203 plot 204

Rater A 50 55 40 25 15

Rater B 45 20 15 15 10

VE of total cover, AFC (Grid aid) plot 200 plot 201 plot 202 plot 203 plot 204

Rater A 62 37 16 15 13

Rater B 52 28 20 18 15

VE of woody plants, AFC (Grid aid) plot 200 plot 201 plot 202 plot 203 plot 204

Rater A 30 21 15 14 9

Rater B 25 22 13 13 7

VE of total cover, SF plot 200 plot 201 plot 202 plot 203 plot 204

Rater A 86 59 46 61 47

Rater B 94 81 68 73 72

VE of woody plants, SF plot 200 plot 201 plot 202 plot 203 plot 204

Rater A 64 49 43 51 39

Rater B 34 52 49 50 41

Table 6.13: Oxberg: on-site visual cover examination

6.10.2 Results and Conclusions of the 5th Study

The difference in assessing cover between the raters was computed (see
results in table 6.14). The reliability of the raters visual estimates were
assessed by computing the ICC(2,1) and the Krippendorff’s α coefficients
(see results in table 6.15)
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Assessment
method, what to
assess, aid

Diff.
plot
200

Diff.
plot
201

Diff.
plot
202

Diff.
plot
203

Diff.
plot
204

Mean
diff.

VE AFC, total cover,
no aid

5 35 25 10 5 16

VE AFC, total cover,
grid aid

10 9 4 3 2 5.6

VE, AFC, woody
plants cover, grid aid

5 1 2 1 2 2.2

VE SF, total cover,
grid aid

8 22 22 12 25 17.8

VE SF, woody plants
cover, grid aid

30 3 6 1 2 8.4

Table 6.14: Difference in cover estimates per plot

Assessment method,
what to assess, aid

Reliability
ICC(2,1)

ICC(2,1)
p-value

Krippendorrf’s α

VE AFC, total cover, no
aid

0.42 0.094 0.291

VE AFC, total cover,
grid aid

0.94 0.0037 0.93

VE, AFC, woody plants
cover, grid aid

0.94 0.0012 0.935

VE SF, total cover, grid
aid

0.46 0.016 0.283

VE SF, woody plants
cover, grid aid

-0.58 0.83 -0.354

Table 6.15: Agreement between the two domain raters’ VE

Two domain experts participated in this investigation. Five trials were con-
ducted with five sample plots in each trial. Due to the fact that there were
only five sample plots to assess per trial, it is impossible to draw any gen-
eral conclusions. Some indications were given though. The reliability res-
ults indicate (not surprisingly) that it was easier if a grid assists the rater
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when conducting VE using AFC of total cover. The reliability coefficients
of the VE by using AFC assessing both the total cover and woody plants
cover (assisted by a grid), were excellent.

The reliability coefficients of the VE by using SF assessing the woody
plants cover (assisted by a grid), was in between moderate to poor (see
table 6.15). The VE differences for that trial are high x = 17.8% (see table
6.14).

The reliability coefficient values of the VE by using SF assessing the woody
plants cover (assisted by a grid), were all negative. This indicates that the
raters estimates were worse than random. Often this indicates some kind
of structural misunderstanding between the raters. By looking at the VE
differences (see table 6.14) for that trial, it is quite convincing that sample
plot no. 200 was the root of this misunderstanding, perhaps because of
confusion of how to assess the extent of the bigger woody plants.

6.11 6th Study of Visual Estimates On-site in
Vetlanda

Three domain experts provided visual estimates (VE) on-site in 12 out of
the 179 sample areas (see section 5.6).

6.11.1 Method

Twelve sample areas were selected by a systematic sampling method in
which the starting position (of the first sample area) was chosen at random,
and every eighth sampling area was assessed accordingly. Each sample
area was represented by a rectangular area comprising five ballast areas
in between six sleepers.

In the current study, VE was conducted by estimating the ACC, i.e., by
estimating the ground covered by the vertical projection of the outermost
perimeter of the plant, also known as the convex hull (as described in
section 4.3.1). A plant was defined as an individual. Alternatively, when it
was practically impossible to identify individual plants, if there were tightly
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clumped groups of individual plants (i.e., plant clusters), they were counted
as being one plant.

All raters agreed that an A4 sheet (21 x 30 cm) represented approxim-
ately 1% of a sample area. As the raters used an A4 sheet to record their
observations they also had the opportunity to use the same sheet when
conducting their estimates. No time limits were applied and the raters re-
ported their estimates independently, i.e., without any interaction between
each other.

6.11.2 Results and Conclusions of the 6th Study

An analysis of variance (ANOVA) was initially used to investigate differ-
ences between the raters’ assessments. In addition to the ANOVA test,
the intra-class correlation coefficient ICC(2,1) was calculated in order to
assess reliability in terms of the consistency of measurements made by
the raters (see section6.3). Each subject (represented in this investigation
by the described sample areas on the railway embankment) was meas-
ured by each rater. The raters were assumed to be representative of a
larger number of similar raters in the population, i.e., domain experts. A
summary of the average of the three rater observations in the 12 random-
ised sample plots is given in table 6.16. Note that this particular railway
section underwent vegetation management in between the two sessions.

Cover in June (%) Cover in August (%)
Mean 12.89 2.6

Std. deviation 1.55 1.8
Max 29 7
Min 4 0

Table 6.16: Raters average cover estimates

In order to compare the cover estimates made by raters A, B and C, two
one-way ANOVAs were conducted, one for June and one for August. Both
test results were significant (p< 0.05), meaning that, on neither occasion
were the raters in agreement. It was not in the interests of this investigation
to identify which rater differed from the others. Thus, no post-hoc tests
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were performed. To test the reliability of the raters’ assessments, i.e., to
see whether they were in agreement, the ICC(2,1) was calculated:

June: ICC (2, 1) = 0.53 was significant on level α = 0.05, df = 11, p =3.9 ∗ 10−7.
August: ICC (2, 1) = 0, 51 was significant on level α = 0.05, df = 11, p =3.15 ∗ 10−6
The results of the ANOVA tests carried out for June and August 2013, re-
spectively, showed a statistically significant difference between the three
domain expert rater estimates (p<0.05). ICC2 coefficient values could be
considered as showing moderate reliability for a single rater, i.e., how ac-
curate a single rater would be if they made the estimates on their own.
Again, the latter result, in conjunction with the ANOVA result, makes the
reliability of visual estimates appear as weak. The results of this investig-
ation support the hypothesis that humans are unreliable in their estimates
of cover extent.

6.12 Conclusion and Discussions

The results from the investigations made (in section 6.6, 6.7, 6.8, 6.9, 6.10
and 6.11), show inconsistency among raters’ estimates. When using hu-
mans for assessing the extent of vegetation cover, the results highlighted
the importance of having a predetermined strict protocol of how to estimate
cover. This would reduce systematic errors made by the misinterpretation
of how to assess vegetation cover.

Regarding the raters’ ability to estimate the amount of vegetation along a
real railway embankment (on-site), or from images, the combined results
of these investigations exhibited a pattern, indicating insufficient reliability
and relatively large central tendencies in visual estimate (VE) differences.

Based on the results of these investigations, an automated monitoring
approach is suggested, thus transferring the manual inspections into ob-
jective monitored inspections using machine vision.
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Part V

Machine Vision and Machine
Learning
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Based on the conclusions in the previous part IV it was suggested that
an automated monitoring approach was preferable in favour of manual as-
sessment of the extent of vegetation. In this parts of the machine learning
process are presented which addresses the research questions concern-
ing how to reach viable solutions by making use of machine learning and
machine vision.

In this thesis, there is a need of capturing enhancing the knowledge pos-
sessed by key experts. These key experts include inspection personnel,
vegetation engineers, railway maintenance personnel, ecologists, forest-
ers and botanists. The following definition of knowledge is used: ”Know-
ledge refers to the stored information or models used by a person or a ma-
chine to interpret, predict, and appropriately respond to the outside world”
Fischler and Firschein (1987).
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Chapter 7

Classification in Machine
Learning for Machine Vision

The motivation of this chapter is to give a quick summary of learning by
classification for use in machine vision.

The goal of machine and computer vision is to extract useful information
from images or video frames. Often this extraction process ends up with
image classification where an image is classified according to its visual
content. If an image can be thought of as being a dataset of extracted
properties from the same then the process of classifying images will be a
subset of pattern recognition.

Often the field of machine vision are broken down according to degree of
abstraction from an image/or video frame as: low-level processing, mid-
level processing and high level processing. These are often a chain of
events in developing algorithms and there are no crisp boundaries between
these abstraction layers, but they will serve as a starting point.

At the low-level a mapping takes place from pixels to pixels. Often used
operations include edge detection, corner detection, scale-invariant fea-
ture transforms etc. The mid-level are mostly concerned with extracting
descriptions from the image from the image descriptions extracted at the
low level. When processing on the mid-level the mapping takes place from
pixels to regions this often include segmentation operations. At the highest
level the goal is to make use of the results from the mid-level to recognise
and/or localise objects or regions by classification. The mapping occur
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from pixels and regions to abstract categories such as ”leaf”, ”cup”, ”glass”,
”gravel road”, ”asphalt road”, ”railway” etc.

7.1 Recognising Objects and the Classification
Model

For many people it is obvious that (we) humans are capable of recognising
objects under varying conditions. These objects may vary in form, colour,
texture, etc. We can recognise objects from many perspectives, in many
different places, and in different sizes. All these abilities that we take for
granted are complex to formally represent in the attempt of transferring
these abilities to a computer. For example, in the fields of image pro-
cessing, computer vision and machine vision these different view points
(when looking at an object) are represented as four transformations: scal-
ing (i.e. different size of the object), translation (i.e the same object ap-
pears in different places in the scene), rotation and shearing (i.e. chan-
ging the shape of the object, a.k.a. skewing). Although, these transforms
are quite easy to apply on objects having crisp lines defining their shape
and/or content, it becomes very complex when trying to extract these ob-
jects from an image acquired from a real world scene. Such images often
contain undesired noise. The noise could refer to: noise produced by the
camera sensor because of poor camera configuration, or by poor prepro-
cessing of the image (e.g. information loss because of changing resolu-
tion, size, or choice of image format), or on a higher abstraction level the
noise could refer to that the scene contains many objects which are not
of interest (a.k.a. background). It might not have been known what are
the objects of interest at the time of acquiring the image. Especially, it
becomes very hard and sometimes impossible to extract natural objects,
such as leaves, out of natural scenes. This is because most of the natural
objects are very heterogeneous concerning shape, colour, and texture.
Humans can recognise objects that are partially obstructed from view, but
when it comes to doing the same using machine vision it becomes a hard
problem in trying to infer what is hidden based upon what is visible.

Efforts of emulating our human capabilities within the fields of artificial in-
telligence and computational intelligence are encapsulated in the domains
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of pattern recognition and machine learning, in where both (and especially
machine vision) are about making inferences based on (sensor-) perceived
data. For this purpose methods are used from statistics, probability, com-
putational geometry, signal processing, and algorithm design. The terms
machine learning and pattern recognition are in many contexts treated as
being the same. It has been noted that pattern recognition though there
does not need to be learning, i.e. a program can developed to recognize
a pattern but does not have the ability to learn from it. Learning is an ad-
ditional component where the system is capable to adapt to new data for
improved performance in the future. There are three kinds of learning pro-
cesses: Supervised learning, unsupervised learning, and reinforcement
learning.

Supervised learning is about learning the relationship between two data-
sets with help of a supervisor. The observed data X and an external vari-
able Y (the output) that are to be predicted. The observed data X are
often called the training dataset, and the output Y is usually called targets
or labels. Typically the classifier is trained with the training dataset and a
set of desired target outputs. Then the classifier is tested with previously
unseen input data (called validation- or test dataset). The performance is
then based upon the classification error rate. Supervised classifiers in-
clude multilayer perceptrons (MLP) using a backpropagation algorithm,
discriminant analysis, support vector machines (SVM), random forests,
learning vector quantization (LVQ), radial basis functions (RBF) etc. In ad-
dition, there is also the very common and simple k-nearest neighbor (kNN)
method which is a kind of semi-supervised algorithm. (For further inform-
ation about supervised learning refer to Haykin (2009), Bishop (2006) and
Duda et al. (2000)).

In unsupervised learning it is about finding similarities in the training data.
The assumption is often that the clusters discovered will match reasonably
well with an intuitive classification. Here there are no target outputs asso-
ciated with each input; rather the unsupervised learner brings to bear prior
biases as to what aspects of the structure of the input should be captured
in the output. Common unsupervised classifiers are the k-Means clus-
tering, fuzzy k-Means clustering. Self-organizing maps (SOM), Gaussian
mixture models etc (For further information refer to Ghahramani (2004),
Duda et al. (2000) and Bishop (2006)).

Any classification problem (dealing with digital images/video clip fames)
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to be solved by use of pattern recognition includes the following general
phases:

1. Acquisition of images or video film of the objects of interest.

2. Preprocessing

3. Feature extraction

4. Classification

The preprocessing phase typically involves segmentation operations in
where (optimally) the objects or regions of interest are isolated from rest
of the things not of interest in an image. If the segmentation is being
done manually (by use of interactive environment like GIMP, or Adobe Pho-
toshop), then objects of interest can confidently be segmented (since we
can see what is being segmented). If this process are to be done auto-
matically it is crucial to be confident in that the algorithm which performs
the segmentation should stop when the objects of interest are found. This
to be able to continue to the next phase of feature extraction. Autonomous
segmentation of non-trivial images is one of the most difficult tasks in ma-
chine vision. The preprocessing of images/frames from video clips could
also include: enhancement, restoration, morphological- and colour pro-
cessing etc. (For further information refer to Gonzalez and Woods (2007)).

The process of feature extraction should formally represent (i.e. quantify)
the properties of the segmented objects/regions from above and extract
the values out of these features. In the case of machine learning classific-
ation or regression the input variables which feeds the learning machine
are crucial. From the preprocessing phase there are input variables X
which often are multidimensional in space. Each dimension i of X is de-
noted by Xi and is often called a feature, predictor, feature vector, variable
or independent variable. The set of all features Xn which be used as an in-
put to a classifier are denoted as the feature space. The feature variables
X are needed in both supervised and unsupervised learning. In case of
supervised learning there are also output variables Y as well. They sym-
bolically shows or points out to the classifier (e.g a certain type of a neural
network) what often called the targets, response or dependent variables.

The purpose feature extraction is to represent information about an object
which is capable of differentiating one object from another. Sometimes
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it is useful or even necessary to minimize such information by reducing
those features which do not act as an discriminant in between objects.
This is called dimensionality reduction. One such approach is the principal
component analysis.

The extracted features are then to be processed by a classifier. (For further
information refer to Nixon and Aguado (2008)).

In the classification phase the inputs i.e. the extracted features are divided
into two or more classes by a learning process. The model produced by
the learning process then assigns unseen inputs to one or more of these
classes. In essence the recognition of objects are made in the classi-
fication process where a label is assigned to each object based on the
provided representation from above, i.e. the feature extraction.

After several experiments, the Bag-of-Features approach was the selected
approach for classifying images in this thesis (see chapter 10). Therefore
a short review of Bag-of-features is motivated.

7.1.1 Classification using Bag-of-Features

The Bag-of-Features approach was the selected approach for classifying
images in this thesis. Therefore a short review of Bag-of-features is motiv-
ated.

The approaches Bag-of-Words , Bag-of-Visual Words, Bag-of-Keypoints
and Bag-of-Features (BoF) are sometimes used interchangeably. The
concepts are all about recognizing objects, where as the Bag-of-Words
were originally meant for representing text (see Joachims (1998)). Visual
objects can be described (conceptualised) as a ”bag of words”, ”bag fea-
tures” or ”bag of keypoints ”. The ”content” of the bag of words are inde-
pendent features all describing what can be interpreted as an object, e.g.
a train. In early 2000 the BoW approach was extended to include visual
features instead of just words (Lazebnik et al. (2006), Csurka et al. (2004),
Sivic and Zisserman (2003) and Nowak et al. (2006)).

BoF approaches are characterised by the use of an orderless collection of
local image features.
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Image classification using the Bag-of-Features Approach in Machine
Vision In computer/machine vision, the bag-of-words model (BoW model)
can be applied to image classification, by treating image features as visual
words. In document classification, a bag of words is a sparse vector of oc-
currence counts of words; that is, a sparse histogram over the vocabulary.
In computer vision, a bag of visual words is a vector of occurrence counts
of a vocabulary of local image features.

The difficulties are that objects in our three dimensional world look different
from different angles and different lighting conditions when mapping them
into a two dimensions such as images or frames in a video sequence.
The same type of object often appears different, e.g. see the locomotives
in figure 7.1. This is known as intraclass variation. Sometimes it makes
sense to specify the class more, for example the locomotives could be
categorised by model number and/or by colour. Interclass variations are
variations between different types of objects, e.g. locomotives and cars.

Figure 7.1: A fictive class of locomotives

Natural objects (opposed to man made objects) often have a asymmetric
shape and colour and experience a high degree of intraclass as well as
interclass variations. In order to let a machine learn the features of for
example a locomotive a large set of training images containing locomotives
should be presented. In addition in the BoF approach a set of so called
negative images should also be presented. In the case of locomotives, this
negative category should not contain any locomotives. As always when it
comes to images/video frames the problem of separating the foreground,
i.e. the object(s) of interest, from the background is often present. The BoF
approach deals with image classification as follows. The BoF is generally
made up of a pipeline that includes the following steps:

1. Feature extraction, including feature detection (feature sampling)
and description

• First, features are to be detected. These features are often
corners. This feature detection is performed as a sampling pro-
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cess from the training or test image. Local sub images around
the detected features are then extracted. Each part becomes
a feature of the original image and are then represented us-
ing for example: Scale Invariant Feature Transform (SIFT) Lowe
(2004), Dense SIFT (DSIFT), or Multi-scale Dense SIFT (MD-
SIFT) Bosch et al. (2007), as used in this thesis (see 10). The
result is denoted as feature vectors or feature descriptors.

2. Codebook formation and image representation

• The features are clustered into k number of clusters using k-
means clustering. Optimally, similar features are clustered to-
gether with other similar features. The similarity is dependent
on the quality of the representation, as in step 1 above. The
clustered features in this step build up the visual vocabulary,
which is the content of the codebook.

• The image representation part involves the mapping (i.e., as-
signment) of each feature to the most representative visual word
(in the visual vocabulary) This process is known as vector quant-
isation (VQ). Alternatives to VQ include sparse coding (SC) (J. Yang
et al., 2009) and Locality-constrained Linear Coding (LLC) pro-
posed by (Wang et al., 2010).

3. Learning and recognition

• The use of discriminative methods, or classifiers such as. sup-
port vector machines (SVM) with linear or non-linear kernels, or
k-NN classifiers to learn category models, or classifiers from a
training set.

7.2 Conclusion

This chapter has summarised a thorough review of machine learning and
the BoF development and history. For further information on BoF develop-
ment refer to O’Hara and Draper (2011) and Tsai (2012) and for machine
learning refer to Bishop (2006) , Duda et al. (2000) and Prince (2012).
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Chapter 8

Quantification of Vegetation
using Machine Vision

This chapter describes various approaches used to quantify the vegeta-
tion that grows along railway embankments. The described investigations
often refer back to the investigations made for human visual estimates
presented in section 6. The methods used for collecting the data used in
the investigations in this section can be found in chapter 5.

In this investigation, the plant attribute cover (see section 4.3.1) has been
used because of its common usage, and because of the relative ease of
transferring its concepts into images. Of equal importance, cover has a lin-
ear relationship, which reflects the actual amount of aboveground biomass
for low, open herbaceous plants growing in low nutrient and low moisture
soil (Rottgermann et al., 2000). It is assumed that those conditions are
often similar to the environment found on a railway embankment.

8.1 Quantification of Vegetation using Machine
Vision

This investigation is associated with the investigation of human visual es-
timates presented in section 6.11. Data collection from Vetlanda, Sweden
is described in section 5.6.
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It should be noted that the algorithm described in this section is not de-
pendent on the data set from Vetlanda (Sweden). Indeed, any image data
set can be used, so long as it follows the guidelines given in this section.

8.1.1 Algorithm Description

The only manual steps needed here are to unload images from the image
sensor (i.e., the camera), and select which of them to analyse. The images
should have been taken (optimally) from a nadir perspective(see figure
8.1). Thereafter the selected sequence of images will automatically be
analysed as described in the steps below.

Figure 8.1: View over the trackbed

Initially, the algorithm will determine an area of interest in the red, green
and blue-coloured (RGB) image in which the measurements will take place.
It is important that both of the rails can be identified in the image. If so,
then a fixed dimension is known, namely the nominal standard track gauge
(e.g. 1435 mm between the inside of the rails). By knowing this, one can
calculate an estimate of the ratio of pixels per meter in reality.

The algorithm will detect if the camera has been configured incorrectly.
This happens when it cannot detect both of the rails in the image being
processed.

In this thesis, the relevant track images were initially resized to 339 × 500
pixels using bilinear interpolation so as to reduce the computational burden
for any further analysis.

The original image (as shown in figure 8.1), was then segmented us-
ing mean-shift clustering (Comaniciu and Meer, 2002); (Fukunaga and
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Hostetler, 1975). This method segments the image into a number of col-
oured clusters, as in figure 8.2a.

a) b)

Figure 8.2: a) After Mean-Shift Clustering, and b) HOG mask on top of the
decorrelated stretch result

When a mean-shift algorithm is used to segment images essentially three
parameters have to be set: 1) the spatial resolution, hs, which affects
smoothing and is chosen according to the size of the image and objects;
2) the range resolution, hr, which affects the number of segments/clusters.
If the image contrast is low, then the hr value should be kept low as well;
and 3) the size of smallest segment, M. This value should be chosen based
on the size of noisy patches. Experimentally, these three parameter values
were set to: hs = 32 and hr = 4 and M = 30.

At this stage, both of the rails are clearly visible, but they are not yet rep-
resented as objects in any way (e.g. numerically represented as colour,
coordinates, angles, etc.). A decorrelation stretch was further applied to
enhance the difference in colours in the RGB image.

In parallel with the mean-shift clustering, another segmentation procedure,
known as the Histogram of Oriented Gradients (HOG) (Dalal and Triggs,
2005), was also carried out to guarantee the detection of rails.

HOG is typically used to detect objects from images using segmentation.
The motivation for this operation is to create an image mask that hides
everything but the rails. It should be noted that HOG segmentation was
carried out on the original RGB image. The HOG segmentation output
was further processed by a number of morphological operations (see, for
example, a description of such operations Gonzalez and Woods (2007)).
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These yielded a resulted in a binary image (black and white). The binary
image, called the HOG mask, was then placed as a layer on top of the res-
ulting image from the mean-shift segmentation in order to be able to auto-
matically segment out the rails in the image (see figure 8.2b). Identification
of the rails in the image is deemed to be important, because it allows the
nominal track gauge to be calculated (typically 1435 mm between the in-
side of the rails). By knowing this, one can calculate the ratio of pixels in
the image and map it to reality.

It is important that both of the rails can be identified in the image. The
green and blue colour channels contain most colours that represent steel.
Thus, the red channel was disregarded, and only the green and blue chan-
nels were kept. For further image enhancement, additional greyscale mor-
phological operations were implemented. Finally, in this step, the grey-
scale image was converted into a binary image by Otsu thresholding (Otsu,
1979). This dynamically calculates a threshold value for which grey level
pixels should be white and which black (see figure 8.3a.

a) b)

Figure 8.3: a) After Otsu thresholding, and b) Extrapolated skeletonised
line segments representing the rails

Next, all the white objects were skeletonised using morphological skelet-
onisation. By using this operation, all areas will be represented as linear
structures. Again, in order to hide everything but the rails the HOG mask
was placed as a layer on top of the skeletonised image. Only the longest
line segments in the HOG mask were kept. These lines were considered
as rail candidates and were extrapolated, as seen in figure 8.3b.

As the rails were identified, a mask was created, representing a region
of interest (ROI). This mask was based on the line segments (i.e., the
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rails) after skeletonisation. The ROI is the area in which vegetation will be
sampled and later measured. An example of the ROI mask placed on the
original image can be seen in figure 8.4.

The size and relative position of the ROI is based upon the fixed positions
of the two rails. These two attributes can be altered by, for example, a
national railway administration, depending on which area (of the embank-
ment) they want to measure. As an example, the national railway admin-
istration in question could regulate that the common sampling area should
be the area inside the rails plus the area two meters either side of the
rails. Subcontractors will then conform to this regulation, so that everyone
measures the same objective area. The algorithm detects the rails; thus,
any arbitrary area in an image can be set as a sampling area.

The perspective projection in images means that all items appear smaller
when they appear at the top of the image rather than at the bottom of
the image. Thus, a perspective correction was implemented, as shown in
figure 8.5a.

Figure 8.4: ROI mask layer placed on top of original image

As a result of this step, the rails will appear parallel. Any object in the upper
parts will be distorted when they are stretched out, and will therefore also
become blurry. However, all objects will approximately be in the same
scale.
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The amount of vegetation was computed from these perspective corrected
images. Vegetation was segmented mainly via colour segmentation in
the HSV colour space (Hue, Saturation, and Value), see figure 8.5a. The
extracted vegetation was represented in white in a binary image and the
plant cover (%) was obtained by using equation 8.1:

Cover = (no. of white pixels)(no. of white pixels) + (no. of black pixels) ∗ 100 (8.1)

a) b)

Figure 8.5: a) Perspective corrected image, and b) Extracted vegetation

8.1.2 Machine Vision Algorithm Results

The machine vision algorithm was capable of processing 98% of the total
set of images (171 out of 176 images from the session in June, and 176
out of 178 images from the session in August). The failure to process the
remaining 2% of cases was attributed to the algorithm’s inability to find the
rails within the image.

The machine vision algorithms computed terrestrial plant cover over the
entire railway section using the documented images as input, as reported
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in table 8.1. The values in August are significantly lower because of a
very dry summer. In addition vegetation control actions were conducted in
parallel with this study.

Cover June (%) Cover August (%)
Mean 3.19 0.51
Std. deviation 1.55 0.55
Max 13.3 3.76
Min 0.63 0

Table 8.1: Computed cover (%) by the algorithm along the entire railway
section

8.1.3 Comparison: MV Algorithm vs. Manual Visual Es-
timates

In this section, the result of the machine vision algorithm is compared with
the results of the investigation of visual estimates given in section 6.11.

The average of the three domain expert observations in the 12 randomised
sample plots is summarised in table 6.16. This will be compared with the
MV estimates in table 8.1. The differences in means of all plots between
the human VE’s and the cover computed by the MV algorithm are sum-
marised as: diff = xhumanVE − xMV equalling 12.89 − 3.19 = 9.7% mean
difference per plot for the session in June, and 2.6 − 0.51 = 2.09% mean
difference per plot for the session in August.

The estimated cover reported by the three raters in the 12 randomised
sample plots can be seen in figure 8.6a and 8.6b, as well as the corres-
ponding estimates of the MV algorithm. The black dots represent the com-
puted cover by the MV-algorithm for the same sample plots (denoted as
cvSys in the figure plot legends).
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Figure 8.6: Cover estimates in a) June, and b) August

The degree of correlation between the mean for all raters plotwise com-
pared with the machine vision computations for the same plots was calcu-
lated (see figure 8.7a for June, and 8.7b for August).

The Pearson product-moment correlation coefficients were computed to
show the degree of association between the two variables: the mean for
raters plotwise and the MV computation, respectively.

The coefficients showed that there was a non-significant random correl-
ation between the mean for the raters plotwise and the MV computation
for the same plots, r = −0.05, df = 10, p = 0.883 for June (where
df is the number of data points minus 2). For August, the computed
correlation showed on a non-significant very weak negative correlation,
r = −0.24, df = 10, p = 0.45. The non-significance indicate that the
null hypothesis (H0) cannot be rejected, where H0: The true correlation is
r0 = 0, i.e. random. The alternative hypothesisHa: The actual correlation
of the population is ra, which is not equal to r0.
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Figure 8.7: Correlation manual VE vs. MV in: a) June, and b) August

8.1.4 Conclusion

This investigation has presented a machine vision approach to automat-
ing the process of detecting vegetation on railway tracks. For this purpose,
179 track images were acquired. The results achieved in the current work
have shown that the use of image data for detecting vegetation is indeed
possible and that such results could form the base for decisions regarding
vegetation control. It is also worth mentioning that the results were evalu-
ated by comparing them with human visual estimates for the sake of valid-
ation. An objective measurement such as the one proposed in thesis not
only offers easy access to the measurements to all the involved parties,
but also makes the subcontracting process easier i.e., both the subcon-
tractors and the national railway administration are given the same ref-
erence framework concerning vegetation before signing a contract, which
can then be crosschecked post maintenance. Biological diversity along the
embankments can be mapped, and maintained through better, and robust
monitoring procedures.

The results show that the human visual estimates were not in agreement
with each other; indeed, they often exaggerated the extent of vegetation
cover when compared with the machine vision’s output. These results are
strengthened by the relatively weak ICC2 coefficient results at ICC(2, 1) =
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0.53 and ICC(2, 1) = 0.51.

Upon comparing the raters’ plotwise mean estimates with the machine
vision output, the results show that the human visual estimates do not
correlate with the results reported by the machine vision output. That is to
say, there was a low degree of association between the human estimates
and the MV estimates. As such, the results indicate that it is difficult to fit
human estimates by regression with the machine vision result. The results
in this investigation were non-significant. However, other studies (Klimes,
2003); (Benavides and Jesús, 2009); (Nyberg et al., 2013b); and (Nyberg
et al., 2013a) have also identified problems with human visual estimates,
all indicating that one should take care when interpreting visual estimates
assessed by humans. Any one person (e.g. a railway inspector) can be
consistent in his/her judgements, but when comparisons are made with
other people, it may lead to misleading results.
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Chapter 9

Estimating the Quantity of
Biomass along Railway Sections

Motivation: Measuring biomass is central in many investigations (see sec-
tion 4.3.4). Sampling biomass is very expensive and therefore in the long
run often inefficient. The biomass compromises the root and the shoot of
a plant. In terms of biomass, it has been shown that there are correlations
between roots and shoots (see section 3.4).

The purpose of this investigation was to investigate if there is a correla-
tion between the dry weight of the root and the dry weight of the shoot
in the special environment that exists on railway trackbeds/embankments.
If a correlation does exist, then root weights can be estimated by just by
sampling shoots. Now, sampling shoots is also time consuming and inef-
fective, so the next step is to investigate if there is a correlation between
the shoot and the aerial plant cover. This has been shown earlier (see
5.2), but can it be confirmed on the trackbeds?

9.1 Correlation between Root and Shoot Weights
and Plant Cover

Method: The data used in this investigation comes from two separate data
collection occasions and different field layer classes.
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The first data set (hereafter referred to as the Grycksbo data set) com-
prised ten sample plots (plots 1 to 10) on the Falun-Grycksbo railway
(Sweden) and is described in detail in section 5.3. This data foremost
comes from the Bilberry and Grass field layer classes and are described
in table A.1 (see details about dominant field layers in section 5.2). Both
roots and shoots were harvested.

The second data set (hereafter referred to as the Oxberg data set) were
collected on the railway that passes through Oxberg (the so-called Älvdals-
banan, in between Mora and Märbäck, Sweden) which is about 100 km
further North-West from the first data collection point (sample plots 1 to
10 on the Falun-Grycksbo railway). Details about the data collection can
be found in section 5.5. In Oxberg, Lichens can be characterised as the
dominant field layer type. Conifer trees are the dominant woody plants in
the surrounding forests, as well as on the railway embankment (see figure
9.1).

Figure 9.1: Overview, plot 200-204 (Oxberg, Sweden)

For the analysis, the data sets were log10 transformed by taking the log10
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of each observation, i.e., the root and shoot data, respectively. After the
log10 transformation, the data were normally distributed. The goal is to fit,
by regression, the allometric formula (as presented in equation 9.1).

log10(rootDryWeight) = b+ α ∗ log10(shootDryWeight) (9.1)

, where the coefficient α is the slope of the line and b is the intercept of
the line on the y-axis.

The transformed data from Grycksbo for sample plots 1 to 5 (weights of
both roots and shoots) are presented in figure 9.2.
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Figure 9.2: Histogram and density plots of a) root dry weights and b) shoot
dry weights from sample plots 1 to 5 (Grycksbo, Sweden)

The transformed data from Oxberg are presented in figure 9.3 for sample
plot with 200 to 204 (both root and shoot weights).
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Figure 9.3: Histogram and density plots of a) root dry weights, and b) shoot
dry weights from sample plots 200 to 204 (Oxberg, Sweden)

9.2 Results

In order to estimate, for example, the root dry weights by knowing the
shoot dry weights (and, by so doing, avoiding the need to tedious work of
excavating the roots), a regression was performed on the Grycksbo data
set for the Bilberry and Grass field layer class.
As seen in figure 9.4, the shoot dry weight was a significant predictor of
the root dry weight. The regression analysis for the log10 transformed the
Grycksbo data set, resulting in the following estimates of b and α (see
equation 9.2).

log10(rootDryWeight) = 0.72360 + 0.31399 ∗ log10(shootDryWeight)
(9.2)

R2 = 0.7769, F (1, 24df ) = 83.57, p = 2.753−9
The Pearson product-moment correlation between root dry weights and
shoot dry weights is given by the square root of the R2 value (i.e the coef-
ficient of determination): r = √R2 = 0.88 indicating a high degree positive
of correlation.
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Figure 9.4: Root dry weight vs. shoot dry weight data (Grycksbo, Sweden)

For the Oxberg data set , belonging to the field layer class Lichens, a
regression analysis was conducted to predict the root dry weight from the
shoot dry weight.

This time, the shoot dry weight was a significant predictor variable of the
root dry weight (see figure 9.5 ). The regression analysis for the log10
transformed the Oxberg data set, resulting in the following estimates of b
and α, see equation 9.3.

log10(rootDryWeight) = −0.40790 + 0.90218 ∗ log10(shootDryWeight)
(9.3)

R2 = 0.7365, F (1, 104df ) = 290.7, p = 2.2−16and r = √R2 = 0.86 indicat-
ing a high positive degree of correlation.
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Figure 9.5: Root dry weight vs. shoot dry weight data (Oxberg, Sweden)

Correlation between total shoot dry weight and machine vision es-
timate of cover in images For the Oxberg data set , belonging to the
field layer class Lichens, a regression analysis was conducted to predict
the total shoot dry weight per sample plot from machine vision estimate of
cover. In all 197 plants were harvested from the five plots.

The machine vision estimates were obtained by using the algorithm de-
scribed in chapter 8. The computed results is presented in table 9.1.
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sample plot ID Cover estimate by MV(%)
200 29.3
201 22.1
202 19.4
203 23.7
204 11.5

Table 9.1: Computed cover (%) in sample plot 200 to 204 (Oxberg,
Sweden)

The total shoot dry weight per sample plot was a significant predictor vari-
able of the MV computed cover from images of the same plots (see figure
9.5 ). The regression analysis for the log10 transformed Oxberg data set
and for the log10 transformed cover estimates, resulted in the following
estimates of b and α, see equation 9.4.

log10(coverEstimByMV ) = 0.71349+1.41144∗log10(totalShootDryWeight)
(9.4)

R2 = 0.8711, F (1, 3df ) = 20.28, p = 0.02045 and r = √R2 = 0.93 indicat-
ing a high positive degree of correlation.
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Figure 9.6: Total shoot dry weight (from 197 plants) vs. MV computed
cover for the plots 200 to 204 (Oxberg, Sweden)

9.3 Conclusion

For the purpose of estimating the vegetation extent, which serves as a
base for maintenance decisions, the results are interesting.

The collected raw data in this investigation were the dry weight of plant
clusters and individual plants that can be found in areas where the Bil-
berry and Lichens field layer classes are dominant. Here, these classes
corresponded to the Grycksbo and Oxberg data sets, respectively. The
collected data were on a high aggregated level. It is important not to step
down from this level if we are to draw conclusions about, for example, indi-
vidual plants, or a specific species. These conclusions may be correct, but
are only weakly supported by the aggregated data. This erroneous phe-
nomenon is known as the ecological fallacy. Essentially, this means that
one (erroneously) assumes that observed relationships for groups can be
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reduced and also assumed to be valid for individuals Freedman (2001).

Based on the collected biomass data, the results show that it is possible to
use regression to make inferences about the root dry weights by knowing
the shoot dry weights. It should be noted that a more extensive study is
required to draw more general conclusions, based on the same premises,
i.e., to draw conclusions based on collected plant clusters and individual
plants, and any type of vegetation.

The results also indicate that it is possible to use regression to make infer-
ences about the total shoot dry weight in a sample plot by computing the
total cover using the algorithm in chapter 8. More extensive studies are
required to draw more general conclusions.

Although it took almost two weeks to collect and prepare the vegetation
data for analysis, the amount of data were of a relatively small scale. More
data needs to be collected. It would be of interest to extend the investig-
ation further by adding more field layer classes. Furthermore, it would be
interesting to investigate correlations between the estimated cover extent
from snapshot image data (or frames from video-clips) and plant biomass.

222



Chapter 10

Recognition and
Characterisation of Woody
Plants using Machine Vision

The primary goal of this work is to gain knowledge about the presence of
large quantities of woody plants; thereby enabling the maintenance man-
agement in deciding whether to send out personnel to mechanically control
the plants in question. Legal herbicides (e.g. Glyphosate in Sweden) will
not kill woody plants; they are particularly ineffective when used on conifer
plants (see section 1.3). In any case, the plants that die in the process
contribute through the addition of a certain amount of biomass to embank-
ments, which eventually turns into nutritious soil. A secondary goal is to
inform the maintenance management that woody plants of certain extent
and type are growing at a particular spatial location.

The objective of this investigation was to recognise and classify a data
set of conifer and deciduous plants. For this purpose several classification
methods were involved in the experimental phase and the Bag-of-Features
method was found to present the most stable classification performance
(see 7).
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10.1 Method

In this investigation, the data collected during the indoor laboratory exper-
iments were used (see section 5.8). In the training set there were both
positive training images containing an object class (i.e. leaves or conifer
seedling), and negative images which did not contain any objects of in-
terest (see table 10.1). Training and testing procedures depend on the
object class that has the least number of images. Therefore the ratio
of training and test images was computed dynamically by first checking
how many images there were in each object class and then choosing the
class having the fewest. After this 65% percent (rounded downward to its
nearest integer) were randomly chosen to belong to the training image set
and the rest to the test image set. In this particular investigation (based on
the number of images presented in table 10.1) this rendered 59 images as
the lowest number (since Picea abies has the fewest number of images).
Out of 59 images, 38 were assigned as training images and 21 were as-
signed as test images. These number of training and testing images were
then randomly chosen (without replacement) for every object class.

Latin name English name Number of images
Picea abies Norway Spruce 59
Pinus sylvestris Scots Pine 61
Betula pubescens Downy Birch 70
Betula pendula Silver Birch 60
Alnus incana Grey Alder 60
Alnus glutinosa Alder 60
Populus tremula Aspen 67
Quercus robur Pedunculate Oak 70
Salix caprea Goat Willow 65
Prunus padus Bird Cherry 80
Acer platanoides Norway Maple 60
Negative images - 168
Total 880

Table 10.1: The categories to be classified
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10.2 Results

In this particular case, the BoF approach incorporates the following clas-
sifiers: nearest neighbour classification (1-NN) using L2 distance (NN L2),
support vector machine with a linear kernel (SVM Linear), support vec-
tor machine with a linear kernel using a coding scheme called Locality-
constrained Linear Coding (LLC) (Wang et al., 2010) instead of the com-
mon vector quantisation (VQ) (SVM Linear LLC max-pooling), and support
vector machine (SVM Chi2).

For the k-means algorithm, the number of clusters was experimentally set
to k = 500, where k is the number of code words. The feature extraction
of the training and test image set were performed by SIFT, DSIFT, and
MDSIFT, respectively, as shown in table 10.2. Examples of detected image
features are visualised in figure 10.1 a to d, where 10.1a is a Norway
Spruce, 10.1b is a Silver Birch leaf, 10.1c is a negative image and 10.1d
is an Alder leaf.

a) b) c) d)

Figure 10.1: Detected image features on: a) Norway Spruce, b) Silver
Birch leaf, c) negative image, and d) Alder leaf.
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Accuracy (%) Feature

extraction

method

Avg. Execution Time (sec)

NN L2 74.5 SIFT 18

SVM Linear 85 SIFT 21

SVM Linear LLC max-pooling 85.5 SIFT 70

SVM Chi2 kernel 88 SIFT 24

NN L2 88.5 DSIFT 80

SVM Linear 88.4 DSIFT 91

SVM Linear LLC max-pooling 94.5 DSIFT 285

SVM Chi2 kernel 95 DSIFT 87

NN L2 91.5 MSDSIFT 208

SVM Linear 84.3 MSDSIFT 224

SVM Linear LLC max-pooling 93.7 MSDSIFT 950

SVM Chi2 kernel 95.5 MSDSIFT 203

Table 10.2: BoF classification results

The confusion matrix for the alternative with the best accuracy (the SVM
Chi2kernel with DSIFT feature extraction) is presented in table 10.3. The
matrix values represent the classification accuracy percentage for each
class, A to L. The columns from left to right, denoted A to L, as well as
the rows A to L are A: Alnus incana, B: Acer platanoides, C: Alnus glu-
tinosa, D: Betula pendula, E: Betula pubescens, F: Negative image, G:
Picea abies, H: Pinus sylvestris, I: Populus tremula, J: Prunus Padus, K:
Quercus robur, and L: Salix caprea. In table 10.3, the columns denote the
predicted species by the classifier. The rows denote the true species, i.e.
the true class, as seen and assigned by a human.
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A B C D E F G H I J K L

A 100 0 0 0 0 0 0 0 0 0 0 0
B 0 100 0 0 0 0 0 0 0 0 0 0
C 0 0 100 0 0 0 0 0 0 0 0 0
D 0 0 0 81 19 0 0 0 0 0 0 0
E 0 0 0 5 95 0 0 0 0 0 0 0
F 0 0 0 0 0 100 0 0 0 0 0 0
G 0 0 0 0 0 0 91 9 0 0 0 0
H 0 0 0 0 0 0 9 91 0 0 0 0
I 0 0 0 5 9 0 0 0 86 0 0 0
J 0 0 0 0 0 0 0 0 0 95 0 5
K 0 0 0 0 0 0 0 0 0 0 100 0
L 0 0 0 0 0 0 0 0 0 5 0 95

Table 10.3: Confusion matrix (%) for the SVM Chi2kernel with DSIFT fea-
ture extraction.

10.3 Conclusion

Bearing in mind that natural objects are often more heterogeneous within
their own class rather than outside it the results present a stable classi-
fication performance. All classifiers (except for the NN L2 with the SIFT)
recorded a performance of over 84%. The SIFT feature extraction was
faster than the other two approaches in particular the MDSIFT. Based on
the results the MSDSIFT feature extraction together with the SVM Chi2

kernel classifier exhibited the best performance. One drawback was the
long execution time, averaging x =203 seconds out of ten runs. If time
constraints apply, then it might be better to use the DSIFT feature extrac-
tion together with the SVM Chi2kernel classifier, which only used 39% of
the time, x =80 seconds.
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Part VI

Conclusions and Discussion
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Chapter 11

Conclusions and Discussion

This thesis has investigated the problem posed by vegetation growing
along railway tracks and how it is dealt with by railway administrators. The
strategy for solving the problem was presented (see section 1.3). A short
review of maintenance fundamentals and how terrestrial vegetation is be-
ing measured by experts (like biologists) were investigated (see chapter 3
and 4).

It was described how the data collection was carried out (see part III). After
that, investigations of how reliable humans are at estimating the extent
of vegetation were described (see part IV). Next, it was described how
machine vision and machine learning, as well as statistical inference could
be applied for quantifying vegetation based on image data (see part V).
And now finally it is time to summarise it all in this chapter.

In the beginning of this thesis, a number of research questions (RQ) were
stated (see section 1.4). The answer to those questions were to targeted
solutions or a deeper understanding of the problems of having vegetation
growing on the trackbeds or embankments. Based on the already presen-
ted results, including the cited literature of previous work, the conclusions
are now presented together with a recap of the RQs.

RQ 1 How are railway inspections carried out with regard to the as-
sessment of the extent of vegetation, and what methods are used for
measuring vegetation along railways? In Sweden there are two types
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of inspections, namely: safety inspections and maintenance inspections
(see section 1.2). Inspecting vegetation is a part of both types.

The inspections (which should form the base for maintenance decisions)
are carried out manually, or none at all. Typically, inspectors are employed
by subcontractors. These inspectors walk along the tracks and judge for
themselves the extent of the vegetation and its condition. At their hand
there are a few manuals provided by the STA.

Typically there are no objective methods for the inspection of vegetation.
Hence, there is no measuring of the quantity of vegetation. The vegetation
inspections carried out are subjective; the inspectors are left to exercise
their own good judgement. The inspectors have little support from the
administrative manuals.

For trackbeds/embankments the strategy of periodic maintenance is ap-
plied. This takes place at periodic intervals, most often by use of specially
equipped (herbicide) spray trains.

Condition based maintenance (CBM) (including condition monitoring) is
an important area to address (see chapter 2); bearing in mind the eco-
nomic viability and the environment. Decisions for vegetation manage-
ment should be based on the analysis of the data collected during condi-
tion monitoring. This could extend the life expectancy of railway objects,
such as trackbeds/embankments.

RQ 2 How is the extent of vegetation measured? Plant species can
be described by a number of quantitative features called vegetation attrib-
utes. Such attributes describes how much, how many, or what kind of plant
species are present.

In general, the most commonly used attributes when monitoring are: cover,
density, frequency and biomass (see chapter 4). All attributes are more or
less applicable for measuring vegetation in the railway domain. The meas-
ure biomass is very costly to acquire directly in terms of effort, time and
consequently money. The formal definition of density attribute requires
individuals to be recognised and then counted. The recognition of first
species and then individual could present problems even for the expert,
especially when the vegetation in question is dense. Foremost cover and
frequency are applicable attributes. The most common approaches for
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manually measuring cover are to use visual estimates (VEs) in plots, line
interception, and point interception. Measuring the cover attribute can be
transformed into into a problem in machine vision.
The sub-plot frequency method was found to be appealing. This is be-
cause it is easily mapped to cover; and cover in its turn is correlated to the
amount of biomass. When using the sub-plot frequency method it is pos-
sible to determine presence or absence in each sub-plot and then count
the number of sub-plots having the target vegetation present, even for a
layperson or a computer interpreting images from a nadir view.
Plants in any geographical area are spread out in one of these three spa-
tial patterns: random, aggregated (clumped), or uniform. There is a need
to know the current spatial pattern in order to be able to make proper
inferences and estimate the the quantity or amount of vegetation. For ex-
ample systematic sampling along the tracks these patterns may change
as the sampling process progresses forward along the tracks (see fig-
ure 11.1), and therefore it is important to evaluate the spatial pattern at
each sampling point (sample plot); this to be able to make an estimate of
the quantity of vegetation in the section which is between the applicable
sample plot and the next sample plot (i.e. the green areas between the
sample plots in figure 11.1) in this iterative process.

Randomised 
starting point

Sample plot #1

Sample plot #2

Sample plot #0

Quantity to be estimated

Figure 11.1: Systematic sampling along the tracks

For the transfer to machine vision, this way of measuring plant cover and
frequency seems to be most useful. In addition a raster image is a grid
in itself, where each square at the lowest level is a pixel, the sub-plot fre-
quencies were found to be both interesting and useful. This is because a
raster image in itself is a very fine granulated grid, depending on the resol-
ution. For example an image size of 800 x 600 pixels comprises 480 000
potential sub-plots.
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A problem with the density attribute is that it requires individual plants to be
recognised. By redefining the protocol for what to count when measuring
density, this attribute could be useful. For example, if a definition of plant
clusters can be obtained, then a modified density attribute could involve
both clusters and individuals.

With regard to production attributes, measuring plant heights was found to
be highly applicable. This could be carried out using optical laser meas-
urements from above.

To be able to describe and predict plant populations on railway trackbeds
and embankments the type of spatial pattern must be determined. To de-
termine this the Poisson and the negative binomial distribution could be
used as tools to decide whether the spatial pattern is random or aggreg-
ated, respectively.

In addition another way to describe the vegetation is to determine the de-
gree of dispersion using an index of dispersion, the Standardised Morisita
Index and the Morisita-Horn index are recommended, since these meth-
ods are nearly independent of sample size.

RQ 3 How reliable are human visual estimates when assessing the
extent of vegetation? After conducting several investigations with both
laypersons and domain experts the results show that these are inconsist-
ent in their visual estimates of vegetation (see part IV). The raters were
both assessing sample plots on-site on the railway trackbeds/embankments
and/or images of the same.

If humans are chosen to assess the extent of vegetation, this investiga-
tion highlighted the importance of having a predetermined strict protocol
of how to estimate. This would reduce systematic errors made by the mis-
interpretation of how to assess vegetation cover.

In comparing human visual estimates with the machine vision estimates
(see 8), the results show that the human visual estimates were not in
agreement with each other. The reliability between human raters were
found to be from poor to moderate. It was also found that humans of-
ten exaggerated the extent of vegetation cover when compared with the
machine vision’s output.
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RQ 4 How can the extent of vegetation be measured by making use
of machine vision, machine learning, and statistical inference? In
the search for the transfer from manual inspection to machine inspection
several experiments were conducted involving machine vision, machine
learning and statistical inference. When sampling vegetation along the
tracks it was found deemed important to be able to choose the sampling
area from the acquired images (or from frames from video clips). Since
this allows the sample area to be modified afterwards it enables a more
dynamic analysis, i.e. the analysis of images can be redone if desired. To
be able to relate to something constant in each image, it was found import-
ant to find the tracks in each image. This is because the tracks are the only
things in the image which can be assumed to be fairly constant, i.e. the
standard track gauge is known to be 1435 mm (plus/minus the tolerance)
and the rails are straight lines. After finding the rails, the sampling area
could be determined (e.g. along the x-axis, track gauge plus 1 metre, and
along y-axis the height of the image/video clip frame). When the sampling
area was established the vegetation cover could be computed. See details
in chapter 8. The results were evaluated by comparing them with human
visual estimates for the sake of validation.

An objective measurement such as the one proposed in this thesis not only
offers easy access to the measurements to all the involved parties, but also
makes the subcontracting process easier i.e., both the subcontractors and
the national railway administration are given the same reference frame-
work concerning vegetation before signing a contract, which can then be
cross-checked post maintenance. Biological diversity along the embank-
ments can be mapped, and maintained through better, and robust monit-
oring procedures. The results achieved in this thesis have shown that the
use of image data for detecting vegetation is indeed possible and that such
results could form the base for decisions regarding vegetation control.

For the purpose of estimating the vegetation extent, which serves as a
base for maintenance decisions, the results are interesting.

The collected raw data in this investigation were the dry weight of plant
clusters and individual plants that can be found in areas where the Bilberry
and Lichens field layer classes are dominant. Such classes correspond to
the Grycksbo and Oxberg data sets, respectively. The collected data were
on a high aggregated level. It is important not to step down from this level
if we are to draw conclusions about, for example individual plants, or a
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specific species. These conclusions may be correct, but are only weakly
supported by the aggregated data. This erroneous phenomenon is known
as the ecological fallacy.

Based on the collected biomass data, the results show that it is possible to
use regression to make inferences about the root dry weights by knowing
the shoot dry weights. It should be noted that a more extensive study is
required to draw more general conclusions, based on the same premises,
i.e., to draw conclusions based on collected plant clusters and individual
plants, and any type of vegetation.

RQ 5 How can woody plants growing on railways be recognised us-
ing machine vision and machine learning? One of the goals was
to recognise those woody plants that are most likely to grow on railway
embankments. Bearing in mind that natural objects are often more hetero-
geneous within their own class rather than outside it the results present a
stable classification performance (see chapter 10). All investigated clas-
sifiers recorded a performance of over 84%. The SIFT feature extraction
was faster than the other two approaches in particular the MDSIFT. Based
on the results the MSDSIFT feature extraction together with the SVM Chi2

kernel classifier exhibited the best performance. One drawback was the
long execution time. If time constraints apply, then it might be better to use
the DSIFT feature extraction together with the SVM Chi2kernel classifier,
which only used 39% of the time used by the MSDSIFT feature extraction
together with the SVM Chi2.

RQ 6 How do measurements using machine vision and machine learn-
ing correlate with human visual estimates? The raters’ plotwise mean
estimates with the machine vision output, the results show that the hu-
man visual estimates do not correlate with the results reported by the ma-
chine vision output. That is to say, there was a low degree of association
between the human estimates and the MV estimates. As such, the results
indicate that it is difficult to fit human estimates by regression with the ma-
chine vision result. The results in this investigation were non-significant.
Based on the results of these investigations, an automated monitoring ap-
proach is suggested, thus transferring the manual inspections into object-
ive monitored inspections by the use of machine vision.
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Based on the results of investigations above, an automated monitoring
approach is suggested, thus transferring the manual inspections into ob-
jective monitored inspections by the use of machine vision.
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Chapter 12

Future Work

Due to constraints in resources, e.g. time, security, track section availab-
ility, and financial constraints, a complete automated prototype for mon-
itoring vegetation on railway trackbeds and embankments was not fully
achieved.

Here are some suggestions of where and what to continue working on, by
both the scientific community as well as practitioners:

An interesting extension would be to collect data during the hours of dark-
ness. A possible solution would be to highlight the railway embankment
with active infrared light, which is not visible to humans. This would over-
come such problems as uneven lighting .

Finally it is worth mentioning that although the methodology presented sat-
isfactory results, it should be remembered that the relevant track images
acquired in thesis were taken manually. Future work that could solve this
kind of problem includes automating the whole setup by placing the cam-
era on a vehicle that is capable of running on the tracks. Such a setup
should be aimed at acquiring images or movie-clips automatically, whilst
the vehicle is running along the tracks. For such a setup to become reality,
however, several key issues need to be addressed, including vehicle and
camera positions for image acquisition, vehicle dynamics, vehicle speed
and camera response. In the case of movie-clips, a frame sampling pro-
cedure could be used.

• The performance of the algorithms developed during the analysis

236



stage should be evaluated. Such a quantitative analysis should in-
corporate indices, such as means of response times, waiting times,
memory loads, queues length, delays, and throughput. This could be
solved by simulation, which is not restricted to the few months (May
to September) of the year when the vegetation really grows.

• In practice it would be feasible to use a professional camera mounted
on the front of a locomotive. The camera should be equipped with a
spotmeter where the user can select an off-centre spot, as opposed
to the common fixed-centre spot. This calibration procedure should
be carried out before each measuring session. The off-centre spot
targets and measures a grey card (e.g. QP Card no. 102), which is
also mounted on front of a locomotive. The spotmeter will measure
and give the exact exposure from time to time based on the stand-
ardized colours on the grey card

• It is proposed that each image of the railway embankment be seg-
mented into six areas, as shown in figure 12.1.

Figure 12.1: Proposed segments of the railway embankment

Seen from above (vertically above the track), these areas really only
define spatial boundaries as six intervals along an x-axis, while the
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y-axis boundaries coincide with the image boundaries. These areas
are proposed, firstly, because in terms of rail inspections, some areas
(e.g. a2 and a5 in figure 12.1) are considered to be more important
than others. This is primarily because, in these two areas, each rail
has its connection, or fastening with the sleeper. This proposal was
supported by a domain expert (Lundh, J-E., 28 April 2011, Personal
interview) at the Swedish Transport Administration. Secondly, it will
be possible to detect vegetation that is invading the embankment
from the sides, moving in along the x-axis. Thirdly, it would be easier
to communicate the proposed segmented areas through images in-
stead of using points and exact coordinates. Each image is already
marked with a geographical position that shows the photo point, i.e.
the camera’s spatial location in longitude, and latitude.

• There is a subset of plants that can quickly form large root systems
deep in the railway embankment and are therefore of serious nature.
These kinds of species should be identified by the STA. After this has
been done, these species could be identified by automated systems
(Persson, B., 8 June 2011, Personal interview; Stattin, E., 28 June
2011, Personal interview).

• Classification of the quality of the railway embankment is needed,
using a fusion of vegetation feature data and trackbed data, such
as macadam, gravel, soil, asphalt, and concrete. The trackbed fea-
ture data may include colour shifts, texture, measurements of water
content, and measurements of nutrition.

• The influence of background in images is a severe problem, espe-
cially when it comes to natural scenes. These often introduce a large
number of heterogeneous asymmetric object shapes, textures, and
colours. The process of segmenting the background from the fore-
ground (which is the area of interest) can seldom be solved by ap-
plying a general algorithm. Algorithms are dependent on the shape,
texture, and colours of objects to be identified, or excluded; thus,
they keep the remainder, which are the objects of interest. To im-
prove the output of the algorithms, a priori knowledge of the ground
condition could be used before scanning a railway section, or area,
thus serving as a calibration. The calibration, which implies a choice
of algorithm, could reduce the influence of different backgrounds and
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improve the measurements. For example, if the personnel who are
about to scan a railway section know beforehand, or can estimate
that most parts of this section will consist of new, grey, sharp ballast
it could serve as an a-priori input to the monitoring system.

• Although there is a correlation between biomass and the cover at-
tribute, it would add more strength to the analysis if a third dimension
namely the height of the vegetation. This could be accomplished by
optical laser distance measurement sensors. These sensors typic-
ally measures the distance to objects by pulsing out laser beams on
an area. The result is a three dimensional point cloud compromising
a surface. The height of the vegetation, together with the cover area
(the mentioned 3D surface), would give information about the indi-
vidual plant volume, or plant cluster volume. Based on an estimate
of the density (i.e. weight unit per volume unit) of a plant, the bio-
mass could then be estimated. Investigations in area have already
been initiated.

• Investigate in the winter months as whether it is feasible to find woody
plants, especially when a thin layer of snow has fallen, covering the
ballast and most of the low layers of graminoids and herbs. This
would facilitate the image segmentation process. The optimal layer
thickness has yet of course to be discovered, but would probably
have to be in the interval of 1 to 10 cm thick.

• Investigate the spatial distribution of plants growing on railway em-
bankments by testing the hypothesis that they follow a clumped
(clustered) distribution Mauseth (1998, p.733).

• An extended field experiment like the one carried out on the Älvdals-
banan in Oxberg should be conducted as soon as possible. The
purpose is to gather a large amount of data on woody plants that
grow on railways in this as well as other climate zones.

• Acquire more rater data relating to the estimation of cover from
trackbeds onsite and images (see chapter 5) and try to engage more
qualified raters, i.e. domain experts.

• Further investigate whether it is feasible to monitor the ballast and/or
its surroundings in order to characterise the soil. Personal conver-
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sations with domain experts during a workshop [Workshop at SLU,
Alnarp 27-28 April 2011] indicate that this is viable . One application
could be to classify the field layer types shown in table 5.1.

• Investigate remote sensing as a means of monitoring the Rights-of-
Way corridor, which runs 20 metres either side of the track. A pilot
study has already been launched in the form of a master of science
thesis study, with the author of this thesis as the supervisor.

• Investigate the quality of the STA STRIX wagon video-clips captured
by cameras that view the front of the wagon.

• To test the results of vegetation cover and the root to shoot analyses,
a quantitative sampling study should be conducted; for example, it
could take the form of a series of systematic samplings along rail-
ways.

• In addition to monitoring vegetation by use of machine vision, also
investigate the feasibility of locating objects like rail fastenings, and
base-plates. The purpose of this is to enable other ways of identifying
the location of the edge of sleepers, particularly if some sleepers
cannot be found. This also enables the monitoring system to be
used in activities other than vegetation monitoring.
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Appendix A

Data from Falun - Grycksbo
Railway, Sweden

A.1 Plant Root and Shoot Dry Weights

The root and shoot dry weights in grams are presented in table A.1. Chapter
5 describes how the data were acquired. Section 9 describes the analysis
of the data.

254



plotID No. of
individ./
clusters

Specie Root dry weight Shoot dry weight

1 1 Solidago virgaurea 11.9767 2.2717
1 1 Ranunculus acris 7.0337 38.8937
1 21 Taraxacum Sp. 22.3237 16.2127
1 1 Hieracium sp. 5.4757 5.8307
2 1 Betula pubescens 2.16015 1.61915
2 1 Veronica serpyllifolia 1.51015 0.23215
2 1 Tanacetum vulgare 0.29215 0.05915
2 1 Heracleum sphondylium L. 6.59415 5.75815
2 9 Solidago virgaurea 31.1547 19.3117
2 23 Taraxacum Sp. 19.1057 11.8017
2 4 Deschampsia Flexuosa 53.5737 10.1167
3 20 Solidago virgaurea 69.6537 37.6047
3 1 Betula pubescens 3.16315 3.06815
3 15 Taraxacum Sp. 3.13115 4.53115
3 2 Heracleum sphondylium L. 11.01015 6.20215
3 1 Alnus incana 4.07715 8.77315
3 1 Pinus sylvestris 0.45115 0.13715
3 7 Hieracium sp. 1.36015 1.21015
3 3 Deschampsia Flexuosa 1.75615 0.85915
4 23 Hieracium sp. 12.8421 17.0391
4 6 Taraxacum Sp. 7.61815 7.84415
4 1 Festuca L. 1.11415 0.53815
5 12 Hieracium sp. 8.9001 16.6701
5 17 Taraxacum Sp. 9.7181 8.6321
5 1 Heracleum sphondylium L. 5.81915 2.36315
5 1 Deschampsia Flexuosa 0.56415 0.45615

Table A.1: Root and shoot dry weights (in grams) collected at plot 1 to 5
(Grycksbo, Sweden)
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Appendix B

Data from Älvdalsbanan,
Oxberg, Sweden

B.1 Plant Root and Shoot Dry Weights

The root dry weights and shoot dry weights from around 300 plants taken
from the sample plots 200 to 204 on the railway between Mora and Mär-
bäck are presented in tables B.1, B.2, B.3 and B.4. The measured unit
is grams. Chapter 5 describes how the data were acquired and section 9
describes the analysis of the data. The number of plant individuals and/or
plant clusters is approximate. This was because of the difficulty of defining
individual plants. This was especially the case with graminoids (grass),
where the ”number of” column was often left blank.

Figure B.1 shows the sample grid frame placed on each of the five sample
plots, 200 to 204.
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a) b)

c) d)

e)

Figure B.1: The five sample plot areas
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plotID Specie No. of
individ./
clusters

Root dry weight Shoot dry weight

200 Betula pendula 2 0.2214 0.3144
200 Festuca L. 55.04666667 55.84666667
200 Festuca L. 85.17666667 87.19666667
200 Picea abies 4 1.753666667 3.014666667
200 Picea abies 1 1.568666667 8.473666667
200 Picea abies 3 2.118666667 5.552666667
200 Picea abies 5 0.4774 1.2054
200 Picea abies 2 0.6694 1.6514
200 Picea abies 1 41.6555 127.6555
200 Picea abies 1 39.6555 100.1555
200 Picea abies 1 15.4555 57.4555
200 Pinus sylvestris 2 1.214666667 5.529666667
200 Pinus sylvestris 2 1.122666667 5.698666667
200 Pinus sylvestris 1 1.811666667 8.907666667
200 Pinus sylvestris 2 15.919 18.415
200 Pinus sylvestris 2 16.372 23.318
200 Pinus sylvestris 1 0.1854 0.6844
200 Pinus sylvestris 1 0.0424 0.3834
200 Rubus idaeus 1 1.2914 0.9274
201 Betula pubescens 2 1.126666667 1.581666667
201 Betula pubescens 4 0.1584 0.1694
201 Betula pubescens 2 0.2354 0.1854
201 Betula pubescens 1 0.2514 0.1574
201 Festuca L. 29.34666667 48.92666667
201 Picea abies 5 3.266666667 8.456666667
201 Picea abies 2 2.301666667 4.775666667

Table B.1: Root and shoot dry weights (in grams) collected from plots 200
to 201 (Oxberg, Sweden)
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plotID Specie No. of
individ./
clusters

Root dry weight Shoot dry weight

201 Picea abies 11 3.631666667 9.739666667
201 Picea abies 6 1.753666667 2.786666667
201 Picea abies 2 0.7594 1.4854
201 Pinus sylvestris 4 3.698666667 23.45066667
201 Pinus sylvestris 6 2.906666667 18.41966667
201 Pinus sylvestris 13 2.071666667 8.742666667
201 Pinus sylvestris 4 0.3004 0.7664
201 Pinus sylvestris 2 0.6954 4.0794
201 Pinus sylvestris 5 2.011666667 11.03066667
202 Festuca L. 1 0.4584 1.2644
202 Festuca L. 1 1.3494 3.7214
202 Festuca L. 1 1.2004 2.7544
202 Festuca L. 1 0.7444 1.3024
202 Picea abies 1 7.362666667 21.87966667
202 Picea abies 9 1.455666667 2.225666667
202 Picea abies 1 1.648666667 3.617666667
202 Picea abies 5 1.409666667 2.798666667
202 Pinus sylvestris 10 2.129666667 10.58166667
202 Pinus sylvestris 1 1.784666667 10.12066667
202 Pinus sylvestris 6 1.968666667 12.19866667
202 Pinus sylvestris 9 1.486666667 2.830666667
202 Pinus sylvestris 2 0.1044 0.1704
203 Betula pendula 1 0.1964 0.533666667
203 Betula pubescens 1 0.1914 0.2504
203 Betula pubescens 1 0.0294 0.0884
203 Betula pubescens 3 0.1384 0.2824

Table B.2: Root and shoot dry weights (in grams) collected from plots 201
to 203 (Oxberg, Sweden)
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plotID Specie No. of
individ./
clusters

Root dry weight Shoot dry weight

203 Betula pubescens 4 0.0794 0.1394
203 Festuca L. 2.3254 0.1754
203 Festuca L. 2.8264 3.0704
203 Festuca L. 1.4814 1.8784
203 Festuca L. 1.3264 1.4364
203 Festuca L. 0.5344 1.4554
203 Festuca L. 0.7604 1.8374
203 Festuca L. 0.4444 0.3454
203 Festuca L. 0.4734 0.8114
203 Festuca L. 0.2324 0.4924
203 Picea abies 1 5.118666667 8.007666667
203 Picea abies 3 0.5264 1.576666667
203 Picea abies 5 0.6764 1.532666667
203 Picea abies 4 0.1604 0.492666667
203 Picea abies 1 0.1754 1.576666667
203 Pinus sylvestris 8 1.740666667 7.114666667
203 Pinus sylvestris 10 1.046666667 3.021666667
203 Pinus sylvestris 10 2.354666667 11.27966667
203 Pinus sylvestris 1 0.244666667 1.645666667
203 Pinus sylvestris 6 0.747666667 2.804666667
203 Pinus sylvestris 7 1.016666667 3.992666667
203 Pinus sylvestris 1 0.705666667 5.199666667
203 Pinus sylvestris 2 1.272666667 5.360666667
203 Pinus sylvestris 1 0.4234 1.812666667
204 Festuca L. 1 0.3654 0.6974
204 Festuca L. 1 1.6964 0.9754

Table B.3: Root and shoot dry weights (in grams) collected from plots 203
to 204 (Oxberg, Sweden)
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plotID Specie No. of
individ./
clusters

Root dry weight Shoot dry weight

204 Festuca L. 1 4.3014 2.6314
204 Festuca L. 1 0.6774 1.0994
204 Festuca L. 1 1.0774 1.8604
204 Festuca L. 1 1.3364 1.5564
204 Festuca L. 1 0.2594 0.7364
204 Festuca L. 1 2.3004 3.0544
204 Festuca L. 1 0.6314 0.9554
204 Picea abies 1 0.0714 0.3324
204 Picea abies 1 0.1944 0.3454
204 Picea abies 1 0.1284 0.3864
204 Picea abies 1 0.1794 0.2334
204 Picea abies 1 0.2744 0.6304
204 Picea abies 1 0.0444 0.4084
204 Pinus sylvestris 1 0.5244 4.042666667
204 Pinus sylvestris 2 0.2974 1.645666667
204 Pinus sylvestris 1 0.1134 1.481666667
204 Pinus sylvestris 1 0.2814 2.071666667
204 Pinus sylvestris 1 0.1934 1.616666667
204 Pinus sylvestris 1 0.1604 1.050666667
204 Pinus sylvestris 3 0.5074 2.657666667
204 Pinus sylvestris 2 0.1074 1.427666667
204 Pinus sylvestris 4 0.1664 1.040666667
204 Pinus sylvestris 1 0.2854 1.279666667
204 Pinus sylvestris 1 0.0954 1.343666667
204 Pinus sylvestris 1 0.0254 0.909666667
204 Pinus sylvestris 2 0.1064 0.725666667
204 Pinus sylvestris 5 0.2974 1.497666667
204 Pinus sylvestris 3 0.3234 1.648666667

Table B.4: Root and shoot dry weights (in grams) collected from plot 204,
continued. (Oxberg, Sweden)
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Appendix C

Data from Studies of Reliability
of Visual Estimates

The described data in this section relates to the six studies made in chapter
6.

C.1 Data from the study made in section 6.6

Table C.1 presents the central tendencies median (Md) and arithmetic
mean (x) per rater, denoted A to M (i.e. column-wise), and per sample
plot, denoted I1 to I9 (i.e. row-wise), respectively.

262



Obs A B C D E F G H I J K L M Md x

I1 20 25 10 18 25 10 15 25 15 17 15 15 20 17 17.7

I2 35 30 25 33 40 30 45 40 35 35 30 40 50 35 36.0

I3 30 25 20 25 40 25 30 30 25 24 20 25 40 25 27.6

I4 15 10 10 4 10 4 19 3 7 11 10 2 7 10 8.6

I5 40 10 15 30 50 75 50 35 40 45 30 35 40 40 38.1

I6 35 5 15 28 35 40 50 30 37 50 25 30 39 35 32.2

I7 25 5 10 20 30 20 25 25 30 15 20 25 35 25 21.9

I8 40 35 35 70 70 85 80 30 60 70 40 40 80 60 56.5

I9 30 20 15 58 50 70 70 20 65 50 45 30 65 50 45.2

Md 30 20 15 28 40 30 45 30 35 35 25 30 40 - -

x 30.0 18.3 17.2 31.8 38.9 39.9 42.7 26.4 34.9 35.2 26.1 26.9 41.8 - -

Table C.1: The 13 raters’ (A-M) cover estimates (%) from 9 images, I1- I9

The histogram in figure C.1a shows the original visual plant cover estim-
ates given by the raters. A density plot based on the same data as the
histogram is superimposed on top of the histogram. Likewise, figure C.1b
presents the log10transformed data as a histogram; a density plot is su-
perimposed upon it. The mean is represented with a dashed line, and the
median is represented by a dotted line.
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Figure C.1: a) Histogram and density plots of: a) original data, and b)
log10-transformed data
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A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess whether the residuals were approximately
normally distributed (see figure C.2. The residuals appeared to be approx-
imately normally distributed, thereby justifying the rationale of the choice
of ANOVA test.
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Figure C.2: Density plot of the residuals from the log10-transformed data

C.2 Data from the study made in section 6.7

Table C.2 presents all raw data and the central tendencies median (Md)
and arithmetic mean (x) per rater, denoted A to C (i.e. column-wise), and
per sample plot, denoted I1 to I10 (i.e. row-wise), respectively.
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Plot / Observer A B C Md x

I1 35 25 10 25 23.3
I2 40 30 25 30 31.7
I3 30 20 20 20 23.3
I4 15 5 5 5 8.3
I5 15 10 10 10 11.7
I6 20 10 15 15 15.0
I7 15 5 10 10 10.0
I8 20 10 10 10 13.3
I9 35 30 35 35 33.3
I10 25 20 10 20 18.3
Md 22.5 22.5 10.0
x 25.0 16.5 15.0

Table C.2: The three raters (A to C) cover estimates (%) from 10 plots, I1
to I10

The histogram in figure C.3a presents all the original visual plant cover
estimates made by the raters. A density plot, based on the same data as
the histogram, is superimposed on top of the histogram. Likewise, figure
C.3b presents the log10-transformed data as a histogram, with a density
plot superimposed upon it. The mean is represented with a dashed line,
and the median is represented by a dotted line.
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Figure C.3: Histogram and density plots of: a) original data, and b) log10-
transformed data

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.4). The residuals appeared to be approxim-
ately normally distributed, thereby justifying the rationale of the choice of
ANOVA test.
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Figure C.4: Density plot of the residuals from the log10-transformed data
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C.3 Data from the study made in section 6.8

Visual Estimates of woody plants using ACC method (in section 6.8.2)

The number of observed images in the analysis was 21 out of 35. The rest
of the images were not selected because they did not contain any woody
plants.
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Figure C.5: a) Histogram and density plots of: a) original data, and b)
log10-transformed data

The raters’ ACC estimate of the woody plant data is presented as a super-
imposed density plot on a histogram in figures C.5a and C.5b, respectively.

A visual analysis of the histogram (see figure C.5a) with the mean plotted
as a dashed line and the median plotted as a dotted line indicated an
irregular, positively skewed distribution. Therefore, in order to perform a
parametric analysis, the data was log10- transformed.

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.6). The residuals appeared to be approxim-
ately normally distributed, thereby justifying the rationale of the choice of
ANOVA test.
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Figure C.6: Density plot of the residuals from the log10-transformed data

Visual Estimates of woody plants using AFC method (in section 6.8.2)

The number of observed images in the analysis was 22 out of a total of 35.
The remaining images were excluded due to the lack woody plants.
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Figure C.7: a) Histogram and density plots of a) original data, and b) log10-
transformed

The raters’ AFC estimate of the woody plant data is presented as a su-
perimposed density plot on a histogram (as shown in in figures C.7a and
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C.7b, respectively). A visual analysis of the histogram (figure C.7a) with
the mean plotted as a dashed line and the median plotted as a dotted line
indicated an irregular, positively skewed distribution. Therefore, in order to
perform a parametric analysis the data was log10- transformed.

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.8).
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Figure C.8: Density plot of the residuals from the log10-transformed data

Visual Estimates of woody plants using SF method (in section 6.8.2)

The number of observed images in the analysis was 23 out of 35. The rest
of the images were not selected because they did not contain any woody
plants.
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Figure C.9: a) Histogram and density plots of a) original data, and b) log10-
transformed data

The raters’ SF estimate of the woody plant data is presented as a super-
imposed density plot on a histogram in figures C.9a and C.9b, respectively.
A visual analysis of the histogram (figure6.16a) with the mean plotted as a
dashed line and the median plotted as a dotted line indicated an irregular,
positively skewed distribution.

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.10). The residuals appeared to be approx-
imately normally distributed, thereby justifying the rationale of the choice
of ANOVA test.
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Figure C.10: Density plot of the residuals from the log10-transformed data

Visual Estimates of Herbs using the ACC Method (in section 6.8.2)

The number of observed images in the analysis was 23 out of 35. In cases
where all raters unanimously estimated 0% cover of the target plant, these
images were removed.
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Figure C.11: Histogram and density plots of: a) original data, and b) log10-
transformed
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A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.12).
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Figure C.12: Density plot of the residuals from the log10-transformed data

Visual Estimates of Herbs Using the AFC Method (in section 6.8.2)

The number of observed images in the analysis was 21 out of 35. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Figure C.13: Histogram and density plots of: a) original data, and b) log10-
transformed

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.14).
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Figure C.14: Density plot of the residuals from the log10-transformed data

273



Visual Estimates of Herbs using SF method (in section 6.8.2)

The number of observed images in the analysis was 21 out of 35. The rest
of the images were not selected because they did not contain any herbs.
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Figure C.15: Histogram and density plots of: a) original data, and b) log10-
transformed data

The raters’ SF estimate of the herbs data is presented as a superimposed
density plot on ahistogram in figures C.15a and C.15b, respectively. A
visual analysis of the histogram (figure 6.22a) with the mean plotted as a
dashed line and the median plotted as a dotted line indicated an irregular,
positively skewed distribution.

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.16). The residuals appeared to be approx-
imately normally distributed, thereby justifying the rationale of the choice
of ANOVA test.
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Figure C.16: Density plot of the residuals from the log10-transformed data

Visual Estimates of Grass Using the ACC Method (in section 6.8.2)

The number of observed images in the analysis was 19 out of 35. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Figure C.17: Histogram and density plots of: a) original data, and b) log10-
transformed
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A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.18).
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Figure C.18: Density plot of the residuals from the log10-transformed data

Visual Estimates of Grass using the AFC Method (in section 6.8.2)

The number of observed images in the analysis was 19 out of 35. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Figure C.19: Histogram and density plots of a) original data, and b) log10-
transformed

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.20).
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Figure C.20: Density plot of the residuals from the log10-transformed data
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Visual Estimates of Grass using the SF method (in section 6.8.2)

The number of observed images in the analysis was 20 out of 35. The rest
of the images were not selected because they did not contain any grass.
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Figure C.21: Histogram and density plots of a) original data, and b) log10-
transformed data

The raters’ SF estimate of the grass data is presented as a superimposed
density plot on a histogram in figures C.21a and C.21b, respectively. A
visual analysis of the histogram (figure 6.28a) with the mean plotted as a
dashed line and the median plotted as a dotted line indicated an irregular,
positively skewed distribution.

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.22. The residuals appeared to be approx-
imately normally distributed, thereby justifying the rationale of the choice
of ANOVA test.
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Figure C.22: Density plot of the residuals from the log10-transformed data

C.4 Data from the study made in section 6.9

Visual Estimates of Woody Plants Using the ACC Method

The number of observed images in the analysis was 42 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Figure C.23: Histogram and density plots of: a) original data, and b) log10-
transformed

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figureC.24. The residuals appeared to be approxim-
ately normally distributed, thereby justifying the rationale of the choice of
ANOVA test.
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Figure C.24: Density plot of the residuals from the log10-transformed data
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Visual Estimates of Woody Plants Using the AFC Method

The number of observed images in the analysis was 38 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Figure C.25: Histogram and density plots of: a) original data, and b) log10-
transformed

The raters’ AFC estimate of the woody plant data is presented as a su-
perimposed density plot on a histogram in figures C.25a and C.25b, re-
spectively. A visual analysis of the histogram (fig. C.25a) with the mean
plotted as a dashed line and the median plotted as a dotted line indicated
an irregular, positively skewed distribution. Therefore, in order to perform
a parametric analysis the data was log10-transformed.

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.26).
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Figure C.26: Density plot of the residuals from the log10-transformed data

Visual Estimates of Herbs Using the ACC Method

The number of observed images in the analysis was 42 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Figure C.27: Histogram and density plots of: a) original data, and b) log10-
transformed

The raters’ ACC estimate of the herb data is presented as a superimposed
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density plot on a histogram in figures C.27a and C.27b, respectively. A
visual analysis of the histogram (figure C.27a) with the mean plotted as a
dashed line and the median plotted as a dotted line indicated an irregular,
positively skewed distribution. Therefore, in order to perform a parametric
analysis the data was log10-transformed.

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.28).
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Figure C.28: Density plot of the residuals from the log10-transformed data

Visual Estimates of Herbs Using the AFC Method

The number of observed images in the analysis was 47 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Figure C.29: Histogram and density plots of: a) original data, and b) log10-
transformed

The raters’ AFC estimate of the herb data is presented as a superimposed
density plot on a histogram in figures C.29a and C.29b, respectively. A
visual analysis of the histogram (figure C.29a) with the mean plotted as a
dashed line and the median plotted as a dotted line indicated an irregular,
positively skewed distribution. Therefore, in order to perform a parametric
analysis the data was log10-transformed.

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed, see figure C.30.
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Figure C.30: Density plot of the residuals from the log10-transformed data

Visual Estimates of Grass Using the ACC Method

The number of observed images in the analysis was 37 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Figure C.31: a) Histogram and density plots of a) original data, and b)
log10-transformed

As before, the raters’ ACC estimate of the grass data is presented as a
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superimposed density plot on a histogram in figures C.31a and C.31b,
respectively. A visual analysis of the histogram (figure C.31a) with the
mean plotted as a dashed line and the median plotted as a dotted line
indicated an irregular, positively skewed distribution. Therefore, in order to
perform a parametric analysis the data was log10-transformed.

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.32).
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Figure C.32: Density plot of the residuals from the log10-transformed data

Visual Estimates of Grass using the AFC Method

The number of observed images in the analysis was 33 out of 51. In cases
where all raters unanimously estimated an image to contain 0% cover of
the target plant, these images were removed.
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Figure C.33: Histogram and density plots of: a) original data, and b) log10-
transformed

A density plot of the residuals from the log10-transformed data was pro-
duced to qualitatively assess that the residuals were approximately nor-
mally distributed (see figure C.34).
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Figure C.34: Density plot of the residuals from the log10-transformed data
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Appendix D

Botanic Taxonomic Hierarchy

The following table D.1 describes the levels in the taxonomic hierarchy,
from the uppermost Kingdom, which is the most general, down to the low-
est level Species, which is the most fundamental and precise Mauseth
(1998, p.499).

Biological Taxonomic Ranks

Kingdom (regnum)
Division (divisio)
Class (classis)
Order (ordo)

Family (familia)
Genus (genus)

Species (species)

Table D.1: Botanic taxonomic hierarchy from Mauseth (1998)
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Appendix E

Experimental Sites: Field Layer
Classes and Tree Types

E.1 General description of experimental loca-
tions

This part includes tables that describe the general character of each ex-
perimental location, where a location can contain several sites. The tables
describe the frequency as a percentage interval for each field layer type or
tree type.
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Field layer type Falun - Grycksbo - Borlänge Oxberg Vetlanda

Low herb 2.1 - 11.0 2.1 - 11.0 20.1 - 29.0

Tall herb 10.1 - 18.0 10.1 - 18.0 10.1 - 18.0

Soil without field layer 0.6 - 5.0 < 0.5 0.6 - 5.0

Grass 24.1 - 34.0 < 8.0 34.1 - 47.0

Sedge-horsetail 1.1 - 4.0 1.1 - 4.0 4.1 - 7.0

Bilberry (Vaccinium myrtillus) 24.1 - 36.0 12.1 - 24.0 12.1 - 24.0

Other shrubs 5.1 - 16.0 5.1 - 16.0 5.1 - 16.0

Lichens 2.1 - 12.0 > 32.1 < 2.0

Table E.1: Frequencies of field layer (%)

Tree type Falun - Grycksbo - Borlänge Oxberg Vetlanda

Bare forest land 6.1 - 9.0 3.1 - 6.0 6.1 - 9.0

Pine forest 32.1 - 47.0 > 62.1 17.1 - 32.0

Spruce forest 24.1 - 38.0 10.1 - 24.0 38.1 - 52.0

Mixed pine and spruce forest 16.1 - 21.0 11.1 - 16.0 16.1 - 21.0

Deciduous forest 6.1 - 10.0 2.1 - 6.0 2.1 - 6.0

Mixed deciduous coniferous forests < 5.0 < 5.0 5.1 - 11.0

Table E.2: Frequencies of tree types (%)
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Appendix F

Database Modelling

F.1 Database Model: Acquired Data Storage

A relational database model was developed. When implemented, the pur-
pose of the model was to enable the storage of substantial amounts of
the acquired data in a structured way. To enable further development and
model extensions, the model was normalised down to the third normal
form (3NF).

The current database model consists of 10 tables with dependencies and
relations, as seen in figure F.1. The tables and their relationships are
briefly described here: The table showing sensor types describes all types
of sensors, including cameras, laser distance meters, and thermal IR devices.
The sensor_types has a 1:M1 relationship with the table of sensors, in
which things like sensor manufacturer, and model are shown. Each sensor
can have (or produce) several images of different types, or several meas-
urements represented in the tables: image_visible, image_ir, and dis-
tance_meter, respectively. Each (camera) sensor can also have much Exif
meta data coupled to it. Exif meta data are extensive data about each
image, which is the result of having many camera sensors. The data is
acquired at data collection points; thus, the table datacollection_ points
represents these points. Each data collection point can have many im-
ages, or measurements coupled to it. Yet again, these are represented
in the tables image_visible, image_ir, and distance_meter. Each data col-
lection point can also have many comments, which are represented in the
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table comments. When acquiring data at the collection points, the weather
conditions are often of interest. The table present_weather_type contains
World Meteorological Organization (WMO) standard weather types, to be
used as a record in the table weather_observation, as well as additional
observed weather attributes.

Figure F.1: Database model
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Appendix G

Assistance when Estimating
Plant Cover

Another type of template that complements figure 6.10 and enables the
raters to make better and more synchronous estimates of cover is shown
in figure G.1. The templete outlines three different percentages of cover:
5, 10 and 25%, respectively. The three sketches on the first row are all
5%, the three sketches on the second row are all 10%, and so on.

Figure G.1: Aiding template for the estimate of plant cover
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Appendix H

Differences in Counting Plants
Clusters

The graphical plots in this appendix (see figure H.1) all describe the differ-
ence between two sessions in which the number of plants clusters were
estimated. Five raters (denoted A to E) participated. Each rater counted
plant clusters from 51 images twice in separate sessions. The results and
conclusion are described in section 6.9.
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Figure H.1: Differences in counting plant clusters between rater A to E
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Appendix I

The Engineering Design Process
& The Scientific Method

In this appendix, the traditional scientific method and the engineering design
process are briefly described (see table I.1). Steps 1 to 6 do not neces-
sarily flow in a sequential order, but are often iterative. The results are
presented as step 7.

Step The Engineering Design Process The Scientific Method

1 Define a problem or need State a question or problem

2 Gather background information Gather background information

3 Establish design statement or criteria Formulate hypothesis; identify variables

4 Prepare preliminary designs Design experiment, establish procedure(s)

5 Build and test a prototype(s) Test hypothesis by doing an experiment

6 Verify, test & redesign as necessary Analyse results & draw conclusions

7 Present results Present results

Table I.1: The engineering design process and the scientific method
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Appendix J

Flow-chart for estimating the
negative binomial exponent k

The information provided in this appendix are based on the four suggested
methods, in Krebs (1999), for estimating the negative binomial exponent
k . An estimate of the negative binomial exponent k is needed when one
wants to describe (plant) populations that show aggregated (or clumped)
patterns (see section 4.2 for more details about aggregated patterns and
the negative binomial distribution).

J.1 Methods

The methods ‡1 to ‡4, below, refers to the flow-chart in figure J.1.

‡1 Calculate approximate k (Large samples: Quadrats≥ 20)

Use equation 4.7 in section 4.2.

‡2 More than 1/3 of the quadrats are empty (Small samples: Quad-
rats< 20)

Calculate an estimate of k by solving equation J.1 iteratively (i.e. by trial
and error):

297



loge
(
N
n0
) = k̂ ∗ loge

(1 + x
k̂

)
(J.1)

where N= total number of quadrats counted; n0 = number of quadrats con-
taining zero individuals; x= observed mean; andk̂= estimate of the negat-
ive binomial exponent

Begin with the approximate value of k calculated above and raise or lower
it to make the two sides of this equation balance.

Is the number of 
quadrats <20?

Are > ⅓ of the 
quadrats empty? 

Use method in (‡2)

Is the frequency 
distribution 
smooth?

Use the estimate in 
(‡3)

Use the 
approximate 
estimator in (‡1)

Use the maximum-
likelihood estimator 
in (‡4)

SMALL SAMPLE METHODS

LARGE SAMPLE METHODS

Yes

YesYes

No

No

No

Source: Krebs, Ecological Methodology, 1999

Figure J.1: Estimating the negative binomial exponent k , with reference to
method ‡1 to ‡4 in section J.1.
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‡3 Less than 1/3 of the quadrats are empty (Small samples: Quad-
rats< 20)

k̂ = x̄2 − (s2/n)
s2 − x̄ (J.2)

‡4 Smooth frequency distribution with no extremely large counts
(Large samples: Quadrat ≥ 20)

Calculate a maximum likelihood estimate for k by solving equation J.3, by
trial and error:

(N) loge(1 + x̄
k̂

) = ∞∑
i=0
(

Ax
k̂ + x

)
(J.3)

where N = total number of quadrats counted; x̄ = observed mean; k̂ =
estimated negative-binomial exponent

Ax = ∞∑
j=x+1

(
fj
) = fx+1 + fx+2 + fx+3 + ..., and i = a counter (0, 1, 2, 3......)
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Appendix K

Internet-based Sources

The following Internet sources, most often the start of research databases,
were used during the reviews. Journal and conference papers of interest
were downloaded, or ordered as paper copies on behalf of the libraries at
Edinburgh Napier University, Scotland, or Dalarna University, Sweden. In
addition, books and technical reports were used for the review.

Name of resource Address
IEEE Xplore http://ieeexplore.ieee.org
ACM http://www.acm.org
Springer Link http://link.springer.com
Wiley Online Library http://onlinelibrary.wiley.com
JSTOR http://www.jstor.org
Science Direct (Elsevier Journals) http://www.sciencedirect.com
Emerald Journals http://www.emeraldinsight.com
Web of Science http://apps.webofknowledge.com
SAGE Journals http://online.sagepub.com
Oxford Reference Online http://www.oxfordreference.com

Table K.1: Internet-based sources in the literature review
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