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Abstract
Neuroevolution combined with Novelty Search to promote behavioural diversity is capable of constructing high-performing 
ensembles for classification. However, using gradient descent to train evolved architectures during the search can be computa-
tionally prohibitive. We have proposed a method to overcome this limitation by using a surrogate model which estimates the 
behavioural distance between two neural network architectures, required to calculate novelty scores. This has demonstrated 
a speedup of 10 times over previous work, significantly improving on previous reported results on three benchmark datasets 
from Computer Vision—CIFAR-10, CIFAR-100, and SVHN. This method makes an explicit search for diversity considerably 
more tractable for the same bounded resources. Here we investigate a range of search methods that span the full spectrum of 
favouring accuracy, diversity, or different combinations of both. Surprisingly, we show that multiple unique combinations 
between a diversity metric and accuracy give rise to similar results. This enables us to posit the existence of a diversity-
accuracy duality in ensembles of classifiers, which suggests that there might not be a need to find a trade-off between the two.
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Introduction

A typical approach to defining a classifier ensemble requires 
two phases: creating a large set of potential classifiers, 
then selecting an appropriate subset to form an ensemble. 
Ensemble performance is fundamentally dependent on both 
the accuracy of individual base learners and the diversity 
between them [1]. However, techniques to promote diver-
sity are typically only implicit, such as training the models 
on different subsets of the data or starting from different 
random initialisations. In previous work [2], we proposed 
a method that explicitly searched for diversity amongst a 
set of base learners by making use of metrics for measuring 

behavioural diversity. However, a fundamental limitation 
of this approach was its computational complexity, with a 
costly step of training all the neural network models in the 
population at each step of the search. Such time and com-
putational demands compromise the goal of our approach, 
which is to develop learning algorithms which scale horizon-
tally, namely with models which can be distributed across 
many low-cost machines.

In order to overcome the costly step of training each 
model, in [3] we have introduced a surrogate model [4] into 
our Novelty Search (NS) method. Novelty Search [5] is a 
type of evolutionary algorithm which rewards behavioural 
novelty, in a search space defined by the user, rather than 
objective fitness. We combine a NS algorithm with a sur-
rogate model, pretrained on a sample drawn from the search 
space of neural network architectures, to get an estimate 
of the error distance between two neural networks given 
architectural descriptors, without training these networks. 
These distance estimates are required in order to calculate 
novelty scores during the NS. Whereas this calculation 
had previously been a very costly step, this technique ren-
ders it essentially instantaneous. This produces a speedup 
of 10 times compared to the previous approach when the 
same parameters are used, without loss of performance. By 
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changing the parameters to expand the search space of neu-
ral network architectures we have considerably improved on 
previous results reported on three benchmark datasets from 
Computer Vision—CIFAR-10, CIFAR-100, and SVHN. We 
choose these datasets because training up a neural network 
architecture on them is straightforward and well understood 
[6]. The surrogate model allows exploration of a broader 
range of architectures and supports longer search durations.

In [7], we take the first steps towards extending this aug-
mented NS procedure with accuracy objectives in order to 
study the trade-off between diversity and accuracy in ensem-
ble learning. This has been the subject of extensive research, 
e.g. [8–10]. In this paper, we consider several strategies for 
combining diversity and accuracy objectives along the two 
phases mentioned above, ranging the full spectrum between 
favouring only explicit diversity and only explicit individual 
model accuracy, with different combinations in between. We 
measure diversity by a number of diversity metrics, always 
employing the surrogate technique first proposed in [3] to 
reduce computational burden, which facilitates an extensive 
search of potential architectures and, therefore, ensembles. 
The surrogate models are used to estimate (1) the distance 
between neural network architectures, which is required to 
drive the NS method, and (2) the accuracy of a network. In 
this way, we are able to conduct a thorough study to investi-
gate whether there is indeed a fundamental tension between 
accuracy and diversity.

Figure 1 illustrates the workflow of this paper w.r.t. its 
contributions. Its major contribution is that it brings together 
previous work with the aim of describing a complete frame-
work for implementing horizontal scaling of learning 
algorithms. It also extends previous work with additional 
methods and results. “Novelty Search Augmented with a 
Surrogate Model” section describes the NS method with a 
surrogate model first presented in [3] and “Generic Search 
Method with Accuracy Objectives” section details the new 
extension of this method to a generic search method that can 
incorporate accuracy objectives, which was briefly outlined 
in [7]. Additional experiments are described in “Test Set 3: 
Introducing Accuracy Objectives” section and new results 
are discussed in “Results for the Novelty Search Extended 
with Accuracy Objectives” and “The Diversity-Accuracy 
Duality” section. Explicitly creating diversity amongst the 
members of an ensemble establishes a sound criterion for 
distributing these models. By improving the method with a 
surrogate model in the way described above, our approach 
makes an explicit search for diversity considerably more 
tractable for the same bounded resources. Our experimental 
results on three problems from Computer Vision (CV)—
CIFAR-10, CIFAR-100 [11], and SVHN [12]—also show 
that incorporating accuracy objectives significantly improves 
ensemble accuracy for the worst-performing diversity met-
rics, but not for the best ones.

Building on from the preliminary observations made 
in [7], this paper presents and discusses additional results 
which shed light on the surprising result that there are mul-
tiple equivalent ways of combining the best diversity metrics 
with accuracy objectives that lead to ensembles of similar 
measured diversity and average individual accuracy. This 
includes even a method which only makes use of explicit 
accuracy objectives, with diversity being generated in an 
implicit manner by the evolutionary procedure. This means 
that, in the cases we study here, there is no dichotomy 
between diversity and accuracy in ensembles of classifiers; 
each contributes to final performance without detriment to 
the other and weighting one more does not impact negatively 
upon the other. For the problem domains we have tackled, 
there appears to be a fundamental equivalence between 
searching for diversity and searching for individual model 
accuracy. This equivalence between utilising diversity or 
accuracy objectives suggests that the two are interchange-
able in some conditions and, therefore, enables us to posit 
the existence of a diversity-accuracy duality in ensembles of 
classifiers. This is a highly significant result as it suggests 
that there might not be a need to find a trade-off between 
accuracy and diversity.

Background

In previous work [2, 3], we proposed methods that explic-
itly search for behavioural diversity amongst a set of base 
learners. They use a Novelty Search (NS) [5] approach 

Fig. 1  Workflow of this paper w.r.t. its contributions
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in conjunction with Neuroevolution. Floreano et al. [13] 
provides an overview of Neuroevolution. In this section, 
we focus on surrogate modelling, ensemble diversity, and 
the trade-off between diversity and individual accuracy in 
ensembles.

In the method we proposed in [2], novelty was deter-
mined by novel metrics that explicitly measured behav-
ioural diversity. The evolved behaviourally diverse 
ensembles outperformed both their individual learners 
and ensembles created with techniques that only implic-
itly promote diversity. This work also enabled us to study 
and compare different definitions of diversity. However, a 
fundamental limitation was its computational complexity. 
In order to calculate the behavioural distance between two 
models, we need to compare the classification errors that 
they make on a validation data set. This requires first train-
ing each member of the current population of neural net-
work models on a training data set with gradient descent 
at each iteration of the NS. If computational resources 
are limited, this very time-consuming step can be prohibi-
tive. This poses significant challenges because it restricts 
the search to only a few iterations at best and renders the 
problem intractable at worst. In [3], upon which this paper 
builds, we overcome this difficulty by augmenting the NS 
with a surrogate model.

Combining an evolutionary algorithm (EA) with a sur-
rogate modelling function has been common in the literature 
for many years, e.g. in single-objective optimisation [14], 
multi-objective optimisation [15], and particularly in expen-
sive optimisation [16]. A first surrogate model for neural 
network optimisation was introduced by Gaier et al. [17] and 
used in conjunction with the NEAT [18] algorithm for evolv-
ing the weights and topology of a neural network. This paper 
used a surrogate distance-based model, employing a geno-
typic compatibility distance metric that is part of NEAT. The 
approach has been quickly adopted in the literature using a 
range of surrogates and a variety of methods to evolve net-
works. There are several examples of approaches that use 
surrogates to estimate the performance of an architecture. 
For example, in 2017 Deng et al. proposed the Peephole 
algorithm [19], which predicted the performance of a con-
volutional neural network based on its architecture infor-
mation: a long-short term memory (LSTM) neural network 
was used to train the model. Stork et al. [20] extended a 
Cartesian Genetic Programming method called CPGANN 
to evolve neural networks using surrogate-based optimisa-
tion to reduce the number of fitness evaluations required. 
They used a Kriging model [21] as the surrogate. In [22], a 
Random Forest algorithm (RF) was used as a surrogate to 
predict the performance of a CNN architecture—the authors 
proposed a method for describing a CNN as a set of features 
which were used as input to the RF. In [4], the authors use a 
surrogate benchmark for neural architecture search (NAS).

In contrast, Hagg et al. [23] introduce a more flexible 
method for building a surrogate model that is independent 
of network topology: rather than describing the neural net-
work architecture, they introduce a phenotypic metric which 
measures the difference in output between two neural net-
works given the same input sequence. The difference is used 
in a Kriging surrogate model. Our proposed approach, first 
described in [3], is conceptually closest to that of Hagg. 
For a given neural network, we calculate a behavioural vec-
tor that describes its behaviour on a dataset (see “Diversity 
Metrics” section). We then propose a RF surrogate model 
that is used to estimate the distance between the behavioural 
vectors produced by any two neural networks, as this value 
is required to drive a NS algorithm.

Dietterich [1] explains how the performance of an ensem-
ble depends crucially on both the individual accuracy of 
base learners and the diversity between them. Krogh and 
Vedelsby [24] formalise this by defining the generalisation 
error of an ensemble as E = Ē − Ā , where Ē is a weighted 
average of the generalisation errors of individual models 
and Ā is the weighted average of their ambiguities, which 
expresses their disagreement. Therefore, the more accurate 
and diverse the learners, the more accurate the predictions 
made by the ensemble. The question is often posed regard-
ing the trade-off between diversity and individual accuracy 
in ensemble learning. This has been the subject of extensive 
research.

Chandra et al. [25] present a review of the use of multi-
objective evolutionary algorithms to find this trade-off. Zhu 
et al. [10] propose an artificial resampling method which 
groups the training set into crossed training sets. They claim 
that this method provides the best trade-off between diversity 
and accuracy and show that it outperforms Boosting [26] and 
Bagging [27] on several classification problems. Gu and Jin 
[8] propose a multi-objective evolutionary algorithm which 
maximises accuracy and diversity together. The Pareto-opti-
mal solutions are analysed as trade-offs between diversity 
and accuracy. Özöğür-Akyüz et al. [9] propose an ensem-
ble pruning method which utilises accuracy and diversity 
information simultaneously and show that it outperforms 
alternative approaches. Bhowan et al. [28] employ a multi-
objective GP approach to evolve classifier ensembles that are 
both accurate and diverse in order to tackle the problem of 
unbalanced data; they refine their approach in [29].

Sheng et al. [30] propose a niching evolutionary algo-
rithm with adaptive negative correlation learning in which 
the adaptation strategy controls the diversity-accuracy trade-
off. Hart and Sim [31] study ensembles of optimisation algo-
rithms, which have otherwise received little attention, and 
investigate the accuracy-diversity trade-off in that context. 
They apply their approach to the domain of bin-packing as 
an example. Tsakonas [32] analyses this trade-off with a 
multi-objective evolutionary system that combines partially 



 SN Computer Science           (2025) 6:631   631  Page 4 of 24

SN Computer Science

trained learners, utilising a ranking formula which incorpo-
rates both diversity and accuracy. In [33, 34], we proposed 
an algorithm for building an ensemble using MAP-Elites 
[35] to maximise both the diversity and the accuracy of 
its members. Many other approaches explore the balance 
between diversity and accuracy in ensembles, e.g. [36–40].

Here we extend upon the work presented in [3] by incor-
porating accuracy objectives into the explicit search for 
diversity, so as to investigate whether this could lead to a 
performance gain. A preliminary version of this study was 
published in [7]. We propose multiple ways of combining 
diversity and accuracy objectives and study the effect of each 
of them upon ensemble accuracy.

Novelty Search Augmented with a Surrogate 
Model

We use NS to evolve an ensemble of behaviourally diverse 
neural network models, as described in “Novelty Search 
Algorithm” section. NS operates over a space of architec-
tures defined by a set of hyperparameters. It starts with a 
random population of neural network architectures and itera-
tively evolves a set of models, with the search being driven 
by novelty scores. Novelty is defined by a set of diversity 
metrics, as explained in “Diversity Metrics” section. Unlike 
the first version of this procedure [2], where the neural net-
works in a generation were trained with gradient descent 
at each iteration of the NS in order to calculate the behav-
ioural distances between each pair of architectures—needed 

to calculate novelty scores—these distances are now esti-
mated by a surrogate model which is pretrained on a sample 
drawn from the space of neural network architectures. The 
most diverse models are added to the final ensemble, which 
is then trained on the input data. We evaluate the method 
against our previous method and compare the performance 
obtained with different diversity metrics. The following sub-
sections go into detail about each of these steps.

Neural Network Architectures

The architectures evolved by our procedure are residual neu-
ral networks [41] based on the wide architectures proposed 
by [6]. They are of the same kind as those we used in previ-
ous work [2]. Figure 2a shows a generic neural network and 
Fig. 2b illustrates a generic residual block. Please refer to 
[2] for a more detailed description of these architectures.

The hyperparameters of each network are evolved by 
NS. Each individual in the population is defined by a var-
iable-length vector, depending on the number of blocks r: 
[J,C,O1,… ,Or,D1,… ,Dr] , where J is a Boolean value 
indicating whether the network should be trained jointly 
or separately if it is in the final ensemble, C is the output 
size of the first convolution, Oi is the output size of block 
i, and Di its dropout probability. Each individual is mapped 
to a Pytorch module [42] for implementation purposes. The 
parameters of each network are randomly initialised and 
then optimised by a standard gradient descent procedure.

In order to preprocess the input to the surrogate model, 
we normalise the representation described above in the 

Fig. 2  Generic topology of individual neural networks
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following way: we first rescale the elements in all positions 
so that they lie between 0 and 1. This is necessary for regu-
larising training. The first element is the Boolean value indi-
cating whether the neural network should be trained jointly 
or separately, so it need not be normalised. Then, given that 
the representations have variable length depending on the 
number of residual blocks in each neural network, we pad 
the vector so that it has fixed length, corresponding to the 
maximum possible number of residual blocks, by adding 
an appropriate number of elements equal to 0 before the 
sequence of block output sizes and before the sequence of 
dropout probabilities. Therefore, if the number of residual 
blocks in the network is r and the maximum number of 
blocks is R; if the maximum and minimum sizes of the first 
convolution in the network are Cmax and Cmin , respectively; if 
the maximum and minimum sizes of each residual block are 
Omax and Omin , respectively; and if the maximum and mini-
mum dropout probability of each block are Dmax and Dmin ; 
then the normalised representation of neural network mi is:

where there are R − r elements equal to 0 before the 
sequence of block output sizes and before the sequence of 
dropout probabilities.

Diversity Metrics

In order to calculate novelty scores, which are used as the 
objective function by the NS, we have considered six dif-
ferent diversity metrics, five of which we have defined our-
selves. This has enabled us to observe how final performance 
is affected by the choice of diversity metric. These metrics 
are calculated between each pair of individual neural net-
work architectures. We have used three of these metrics in 
the first version of our procedure [2], whereas the remaining 
ones were introduced in [3].

Let yi be the vector of predictions for model mi with each 
prediction yn

i
 for data point xn being a class label in {1…C} . 

Let pi be a binary vector where pn
i
= 1 if the prediction yn

i
 

is correct and pn
i
= 0 otherwise. Let N11 , N00 , N01 , and N10 , 

respectively, be the total number of test instances where two 
models are both correct, both incorrect, and when one is 
correct and the other is not. The first diversity metric we 
consider is the proportion of different errors between two 
models when at least one of them is correct. We expect it to 

(1)

norm_repi =

[
Ji,

Ci − Cmin

Cmax − Cmin

,

0,… , 0,
OR−r

i
− Omin

Omax − Omin

,… ,
OR

i
− Omin

Omax − Omin

,

0,… , 0,
DR−r

i
− Dmin

Dmax − Dmin

,… ,
DR

i
− Dmin

Dmax − Dmin

]

provide insight into the divergence between the errors made 
by two models. It is defined as:

The second diversity metric we consider is very similar and 
is the proportion of different errors between two models 
when at least one of them is incorrect. We have defined it as:

The third metric we propose is the harmonic mean between 
these two proportion metrics. This is a sound way of averag-
ing the two proportion metrics into a single metric so that 
they are both taken into account. It is defined as:

We also consider a widely used metric (e.g. [43–45]) defined 
as the disagreement between two models, i.e. the propor-
tion of test instances where one is correct and the other is 
not. We take this metric into account since it expresses how 
commonly two models disagree on any test instance. It is 
defined as:

Consider now the two’s complement of the binary vector of 
correct predictions pi , wi , i.e. the binary vector of wrong 
predictions. The next metric we propose is the cosine dis-
tance between the binary vectors of wrong predictions made 
by two models mi and mj . Like prop1

i,j
 and prop2

i,j
 , we consider 

this metric because it is a measure of the distance between 
the errors made by two models. We have defined it as:

Lastly, we consider a metric of architectural diversity. Take 
the normalised vector which represents each individual 
neural network, as described in “Neural Network Architec-
tures” section. Let its size be L. To obtain an architectural 
representation, we simply remove the first element from the 
normalised representation, i.e. the Boolean value indicating 
whether or not the neural network should be trained sepa-
rately or jointly. Thus, referring to Eq. 1, the architectural 
representation of model mi is:

(2)prop1
i,j
=

N01 + N10

N11 + N01 + N10

(3)prop2
i,j
=

N01 + N10

N00 + N01 + N10

(4)propharm
i,j

=
2 ⋅ prop1

i,j
⋅ prop2

i,j

prop1
i,j
+ prop2

i,j

(5)disi,j =
N01 + N10

N00 + N01 + N10 + N11

(6)cos_disti,j = 1 −
wi ⋅ wj

‖wi‖‖wj‖

(7)arch_repi = norm_rep
{1…L−1}

i
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We then define architectural distance between neural net-
works mi and mj as the cosine distance between their nor-
malised architectural representations:

These metrics determine the behavioural distance between 
two neural network models, which is used to calculate the 
novelty scores that guide the NS procedure, as explained in 
“Novelty Search Algorithm” section. Note that the metrics 
prop2

i,j
 and cos_disti,j focus more closely on the instances 

where the models made a prediction error. In our first work 
[2], these two metrics have led to better performance than 
the others. We have observed the same pattern with our 
improved version of the NS procedure [3].

Surrogate Model to Estimate Distances

The NS requires novelty scores to be determined, which in 
turn require the distances between pairs of neural networks in 
the current population to be calculated. However, calculating 
the exact distance values between two neural network models 
entails first training the models on the input data with gradient 
descent and then evaluating them on a validation dataset, as 

(8)arch_disti,j = 1 −
arch_repi ⋅ arch_repj

‖arch_repi‖‖arch_repj‖

we did in previous work [2]. This can be a very costly step if 
computational resources are limited, which constrains the NS 
to only a few iterations and the population to a small size—as 
the neural networks have to be trained in parallel for efficiency. 
Here we overcome this limitation by pretraining a Random 
Forest [46] surrogate model which estimates the behavioural 
distances between a pair of neural network models.

Note that the estimates of behavioural distances produced 
by the surrogate model do not need to be very accurate. 
This is because, when calculating the novelty score of a 
particular individual neural network, we only need to know 
relative distances in order to determine nearest neighbours. 
This means that the surrogate model need only capture the 
general trends of growth of the distance values, even if the 
actual values are not very precise. This makes the use of a 
surrogate model very appropriate with no need for a very 
complex model. Figure 3 shows the differences between 
the previous method for calculating exact distance values, 
shown in Fig. 3a, and the current method using a surrogate 
model, shown in Fig. 3b. Calculating exact distance values 
is a very costly step, potentially requiring several GPU hours 
depending on the length of training. In contrast, estimating 
these distances by means of the surrogate model is an instan-
taneous process, once the surrogate model has been trained 
on sample data beforehand.

Fig. 3  Difference between calculating and estimating distance values
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Pretraining the Surrogate Model

The surrogate model must be trained beforehand so that it 
can be used effectively during the NS to estimate the dis-
tance values between two neural network models. To do 
this, we draw a sample of neural networks from the search 
space of architectures defined by the set of hyperparameters 
used with the NS method. We first train each of these neu-
ral networks with gradient descent and calculate their error 
vectors on a validation data set. We then build random pairs 
of neural networks and calculate the exact distance values, 
for all six metrics considered, between them as a function 
of either their error vectors or their architectural descriptors, 
as explained in “Diversity Metrics” section. Finally, we con-
struct a data set on which we fit a Random Forest regressor 
[46] which takes as input the normalised representations of 
two neural network architectures, as per “Neural Network 
Architectures” section, and has six outputs: the estimates of 
the distance values for all six metrics considered. We have 
selected a Random Forest model due to its low complexity 
and because we expect it to generalise well on new data, 
given that it is an ensemble model. Algorithm 1 describes 
the process of training this surrogate model in pseudocode.
Algorithm 1  Pretraining the surrogate model on sample 
architectures

Novelty Search Algorithm

Our algorithm for building an ensemble implements NS as 
described by [5], applying it to our problem domain. Algo-
rithm 2 presents the pseudocode for this procedure. The 
original training data is split into two sets, one for training 

and one for validation. The training set is used to train the 
final ensemble; it is also used to train the sample of neural 
network architectures drawn from the search space that 
is in turn used to pretrain the surrogate model. Whereas 
training each of these sample neural networks makes use 
of the entire training set, pretraining the surrogate model 
only requires the validation set, which is used to calculate 
exact distance values between pairs of neural networks.

Selection in NS is driven by the novelty score, which 
computes the sparseness at any point in the behavioural 
space. This sparseness is defined by one of the distance 
metrics of “Diversity Metrics” section. Areas with denser 
clusters of visited points are considered less novel and 
therefore rewarded less. This is defined as the average dis-
tance to the K-nearest neighbours of a point, calculated 
with respect to the other individuals in the current genera-
tion and to a stored archive of previously sampled solu-
tions. Hence, the novelty score is calculated as:

where �k is the kth-nearest neighbour of mi with respect to 
the diversity metric div_metrici,j , selected from the metrics 
defined in “Diversity Metrics” section.

(9)NSi =
1

k

K∑

k=0

div_metric(mi,�k)

Individuals are selected for reproduction on the basis of 
their novelty scores using a tournament selection proce-
dure. In the interests of promoting divergence and avoiding 
convergence, reproduction only uses mutation. Mutation 
either adds or removes a randomly chosen residual block 
from an individual, modifying input/output sizes at the 
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mutation point as necessary; changes the output size and 
dropout probability of a random block; or swaps two con-
secutive blocks chosen at random.

After evaluating the entire population, nA randomly 
chosen individuals are added to the archive, following the 
method suggested in [47]. In addition, the individual from 
the population with the highest elite score, calculated in 
a similar fashion to the novelty score, is added to an elite 
archive. After running the NS for the specified number of 
iterations, a subset of this elite archive is selected as the 
final ensemble. This subset is chosen so as to maximise the 
average distance amongst its members. The final ensemble 
is then trained by gradient descent, the only time when this 
parameter optimisation takes place.

Algorithm 2  Ensemble evolution through NS

Evaluation of Evolved Ensembles

In order to evaluate the performance of the evolved ensem-
ble, we use the stacking technique [48], which trains a linear 
model to weight the predictions of each individual learner. 
This linear model is trained for a configurable number of 
iterations on the validation set mentioned in “Novelty Search 
Algorithm” section. This is to avoid overfitting the test set.

Baseline: Previous Method

The approach we present here is an improvement of the 
method that we first proposed in [2]. We use this as a base-
line against which we compare the new method. In its main 
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aspects, the previous method is similar to the new method, 
with the notable difference that it does not make use of a 
surrogate model to estimate the distance between two neu-
ral network models. As discussed previously, this original 
method calculates exact distances between each pair of neu-
ral networks by first training all the models in the current 
generation with gradient descent and then getting their error 
vectors by evaluating them on a validation set. As an addi-
tional difference, the previous method would calculate at 
each iteration an ensemble selection metric for each member 
of the population and then add to the final ensemble the 
single best-scoring neural network in each generation. The 
new method maintains an elite archive, to which a sample of 
neural networks from each generation with highest novelty 
score with respect to this archive, which we call elite score, 
is added at each iteration; novelty scores with respect to the 
final elite archive are calculated at the end for each of its 
members and this ensemble score is used to select a subset 
of neural networks which will make up the final ensemble.

We compare the new method, first proposed in [3], 
with our previous approach along two main lines. Firstly, 
we seek to understand whether there is a speedup with the 
new method as a result of increased efficiency when look-
ing for solutions of similar complexity to those found with 
the previous method. Secondly, we investigate whether the 
new method can be used to produce better solutions, i.e. 
solutions of higher complexity and leading to better final 
performance. This means that we are interested in inves-
tigating whether there is both a quantitative improvement, 
i.e. being able to do more of what could be done with the 
previous method thanks to a more efficient use of computa-
tional resources, and a qualitative improvement, i.e. being 
able to do more than what could be done with the previous 

method by tackling solutions that were previously unfeasible 
or intractable.

Generic Search Method with Accuracy 
Objectives

In [7], we extend the NS procedure that we originally pro-
posed in [3], which constructs an ensemble of behaviourally 
diverse neural networks by evolving their architectures. We 
augment this method with accuracy objectives and make use 
of the same technique which employs a surrogate model for 
estimating novelty scores, as this reduces the computational 
burden of the explicit search for diversity. In addition, to 
preserve this greater efficiency, we deploy another surrogate 
model for estimating what the accuracy of a neural network 
architecture will be if it is trained with gradient descent on 
the input data. This surrogate accuracy model is pretrained 
on a sample of architectures drawn from the search space. 
We then propose multiple ways to incorporate explicit accu-
racy objectives into the NS.

Conceptual Model

Figure 4 shows a high-level view of a generic population-
based search method for constructing ensembles of clas-
sifiers. This method has two phases: a search phase and 
an ensemble selection phase. During the search phase, a 
large set of candidate classifiers is created. Firstly, the dis-
tance between each pair of neural network models in the 
population, and between each member of the population 
and each member of the search archive, is estimated by 
a surrogate diversity model. The accuracy of each neural 

Fig. 4  A high-level view of the two phases of a generic search method for constructing a classifier ensemble. First, a large elite archive is created 
as a result of a population-based evolutionary search. Then a subset of the elite archive is selected to form an ensemble
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network architecture is also estimated by a surrogate accu-
racy model. These distance and accuracy estimates are 
then used to calculate three scores: (1) a fitness scorei , 
which is used to evolve a new generation at each itera-
tion to replace the current population; (2) an archive score 
arch_scorei , which is used to select a sample of models to 
be added to the search archive at each iteration; and (3) 
an elite score el_scorei , which determines a single neural 
network to be added to an elite archive at each iteration. 
The way these scores are calculated is determined by the 
particular method from “Novelty Search Extended with 
Accuracy Objectives” section with which this generic 
search procedure is instantiated.

In the ensemble selection phase, a subset of the neural 
networks in the elite archive is selected to become the 
final ensemble. These are the top S networks which score 
the highest ensemble score en_scorei . Again, the way 
this score is calculated depends on the particular search 
method. The methods we propose in this paper represent 
different combinations of diversity and accuracy objec-
tives along the two phases of the generic search algo-
rithm. Those different combinations are reflected in the 
four scores mentioned above. As the last step, the final 
ensemble is trained on a training set with stochastic gra-
dient descent (SGD) and a linear stacking model [48] is 
trained on a validation set to weight the predictions of each 
individual learner.

Surrogate Models for Estimating Distance 
and Accuracy

In [3], we employed a surrogate model that produces esti-
mates of the values of the diversity metrics of “Diversity 
Metrics” section between two neural network architectures, 

as described in “Surrogate Model to Estimate Distances” 
section. This reduces the computational burden of the 
search, as, in order to calculate exact values for these diver-
sity metrics, our original NS procedure in [2] required exact 
error vectors to be determined by evaluating the architec-
tures on a validation set. This involved a costly step of train-
ing all the neural networks in the population with gradient 
descent at every iteration. Following this approach, for each 
dataset we pretrain a Random Forest regressor [46] to be the 
surrogate diversity model.

In addition, we also pretrain a surrogate accuracy model for 
each of the three datasets considered. This is so that accuracy 
objectives can be incorporated in the search for an ensemble 
of neural network architectures without having to train these 
architectures at every step of the procedure and calculate 
exact accuracy values on a validation set. Instead, estimates 
are produced for the expected accuracy given the normalised 
representation of each neural network individual, described in 
“Neural Network Architectures” section. The surrogate accu-
racy model is pretrained by first drawing a sample of 3200 
neural networks—so as to be large and diverse enough—from 
the search space of architectures, training them on the input 
data, and calculating their exact accuracy values on a valida-
tion set. We then construct a dataset on which we fit a Random 
Forest regressor. This model takes as input the normalised 
representation of a neural network architecture, as per “Neu-
ral Network Architectures” section, and outputs its estimated 
accuracy. Although a different regression model could have 
been used, the reason for selecting a Random Forest model lies 
in its low complexity and expected good generalisation (due 
to low variance in predictions), as it is an ensemble model. 
Algorithm 3 provides a pseudocode description of the proce-
dures for training both the surrogate diversity and the surrogate 
accuracy models.

Algorithm 3  Pretraining the surrogate accuracy model on sample architectures
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Novelty Search Extended with Accuracy Objectives

In this paper, we propose a number of alternative methods 
which extend the NS method of [3] by combining diversity 
and accuracy objectives in different ways across the two 
phases outlined in Fig. 4. We refer to the generic search 
method described in “Conceptual Model” section, which is 
instantiated according to each of the selected search methods 
proposed herein and described below, namely by calculating 

in different alternative ways the scores described before: the 
fitness scorei , the archive score arch_scorei , and the elite score 
el_scorei , all three during the search phase; and the ensem-
ble score en_scorei , during the ensemble selection phase. 
These scores affect the way individuals are selected for both 
the search and the elite archives, whose purpose is described 
in “Conceptual Model” section, and to the final ensemble. A 
pseudocode description of this generic search method is given 
in Algorithm 4.

Algorithm 4  Generic search method for constructing a classifier ensemble
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Combining Method 1 (CM1): Local Competition

Local Competition (LC) [49] extends NS [5] by adding 
fitness objectives, which in our case are explicit accuracy 
objectives. It weights diversity and accuracy according to 
a parameter � . We expect variations of this parameter to 
produce different results. The distance between two mod-
els, div_metric(mi,mk) , and the accuracy acci of model mi 
are estimated by surrogate models as described before. In 
addition to the novelty score NSi , a local competition score 
LCi is calculated as the proportion of neighbours that a 
model outperforms:

For all K neighbours mk of mi . The diversity metric 
div_metrici,j is selected from the metrics defined in “Diver-
sity Metrics” section. Note that, while the paper which 
originally proposed Novelty Search with Local Competition 
(NSLC) [49] defines LCi as a count, we define it as a propor-
tion calculated w.r.t. the number of neighbours of mi . This is 
to ensure that a single score can be appropriately calculated 
that mixes both LCi and the novelty score NSi , which will be 
of the same order of magnitude due to the fact that distances 
are scaled to lie between 0 and 1 when pretraining the sur-
rogate diversity model. c(mi,mk) is defined thus:

The fitness score of model mi is then calculated by mixing 
NSi and LCi according to the mixing parameter �:

(10)NSi =
1

k

K∑

k=0

div_metric(mi,mk)

(11)LCi =
1

k

K∑

k=0

c(mi,mk)

(12)c(mi,mk) =

{
1 if acci > acck
0 if otherwise

No archive score arch_scorei is calculated for LC since a 
random sample, of size SA , of the individuals in the current 
population is added to the search archive, as in [3]. Consider 
now a novelty score for model mi calculated w.r.t. all the 
individuals in the elite archive, NS∗

i
 . Consider the equiva-

lent local competition score, LC∗
i
 . The elite score el_scorei 

is calculated in a similar fashion to scorei , with the same 
parameter � but using these two scores instead. The indi-
vidual in each generation with the highest el_scorei is added 
to the elite archive. At the end of the procedure, an ensemble 
score en_scorei is calculated in a very similar way for all the 
neural network models in the elite archive—w.r.t. all other 
individuals in this archive. The top S individuals with the 
highest ensemble scores will make up the final ensemble.

Combining Method 2 (CM2): Search for Diversity 
with Accuracy in Archives

This variant uses a novelty score to guide the search proce-
dure, namely the selection of individuals from the population 
for reproduction, while storing the neural network models in 
the archives, including the search archive, according to their 
accuracy. Thus, we expect this method to maintain diverse 
populations whilst selecting the most accurate models in an 
elitist fashion. The scores are defined in the following way:

While the single individual with highest el_scorei is 
added to the elite archive at every step of the search, the 
top SA individuals with highest arch_scorei are added to 
the search archive.

(13)scorei = (1 − �) × NSi + � × LCi.

(14)scorei = NSi

(15)arch_scorei = el_scorei = en_scorei = acci.

Table 1  Novelty search 
parameters for both test sets

Parameter Test set 1: runtime 
comparison (both 
methods)

Test set 2: expanded search space 
(new method only)

Iterations 10 100
Final ensemble size 11 40
Population size 30 100
Diversity metric cos_disti,j All from “Diversity Metrics” section
Number of blocks 2:6 2:6
Number of channels in the first convolution 4:16 4:16
Number of channels in residual blocks 24:32 16:64
Dropout probability in residual blocks 0.1:0.4 0.1:0.9
Number of neighbours K 3 15
Size nA of archive sample 5 10
Size of tournament for selection 10 50
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Combining Method 3 (CM3): Search for Accuracy 
with Diversity in Archives

This variant does the opposite of the previous combin-
ing method, i.e. it uses accuracy to guide the search pro-
cedure, but stores individuals in the elite archive based 
on how novel/diverse they are. The final ensemble is also 
selected based on novelty. We thus expect it to maintain 
accurate populations and the final ensemble to be a set of 
diverse models selected from a high-performing region 
of the search space. Recall that NS∗

i
 is the novelty score 

calculated for model mi in the current generation w.r.t. 
all individuals in the elite archive. Let NS∗∗

i
 be a similar 

novelty score calculated for model mi in the elite archive 
w.r.t. all other models in this archive. The scores are then 
defined as:

This method does not keep a search archive as the 
search is guided by accuracy only and, therefore, there is 
no need to keep an archive of past solutions with respect 
to which a novelty score is calculated.

Explicit Accuracy with Implicit Diversity

The last method we consider uses only an implicit defini-
tion of diversity. The search is guided by accuracy and 
individuals are stored in the elite archive and selected for 
the final ensemble also based exclusively on their esti-
mated accuracy. Diversity is generated implicitly by the 
evolutionary procedure, namely the mutation operator 
applied in the reproduction step. We expect this method 
to produce accurate but not very diverse ensembles. The 
scores are then determined as:

As in the case of the previous method, no search archive 
is kept, since the purpose of such an archive is for novelty 
scores to be calculated w.r.t. past solutions.

Experiments

This section describes three sets of experiments. The first 
two compare the new NS method of [3], which makes use of 
a surrogate model to estimate the distance between models 
as described previously, with the previous method of [2], 

(16)scorei = acci

(17)el_scorei = NS∗
i

(18)en_scorei = NS∗∗
i

(19)scorei = el_scorei = en_scorei = acci

which instead calculates exact distance values by first train-
ing all the models in the population with gradient descent 
and then determining their error vectors on a validation set. 
We compare the methods based on resource usage, namely 
runtime, for similar parameter settings and model complex-
ity, as well as on their ability to scale to larger search spaces 
and search for more complex models. The last test set con-
cerns the generic search method of [7], which extends the 
NS with accuracy objectives. We instantiate this generic 
method with the four methods of “Novelty Search Extended 
with Accuracy Objectives” section and compare their result-
ing performance.

Test Set 1: Resource Usage for Similar Complexity

In this set of tests, we investigate the total time required 
to run each of the two methods when they are looking for 
solutions of the same complexity and running for the same 
number of iterations. We wish to determine the speedup that 
can be gained with the new method, which makes use of a 
surrogate model to overcome the need for training all the 
models in the current generation with gradient descent in 
order to calculate novelty scores. We run both the new and 
the previous methods on CIFAR-10 and fix the parameters, 
as shown in the second column of Table 1. We conjecture 
that in these conditions our new method not only results in a 
speedup due to the use of a Random Forest surrogate model, 
but also outputs ensembles of similar performance. This is 
expressed by Hypotheses 1 and 2.

Hypothesis 1 (Runtime of previous NS method vs new 
method enhanced with a surrogate model) Enhancing the 
NS procedure with a Random Forest surrogate model pre-
trained to estimate the distance between models, and thereby 
their novelty scores, results in a speedup compared with our 
previous method, which calculates exact distance values and 
novelty scores, when constructing ensembles of the same 
complexity.

Hypothesis 2 (Performance achieved with the previous NS 
method vs the new method with a surrogate model) When 
looking for solutions of the same complexity, the new NS 
procedure, using a surrogate model, outputs ensembles 
which do not perform worse than those constructed by our 
previous method, even though the new method only estimates 
distance values and novelty scores.

Test set 2: Expanding the Search Space

Using a surrogate model to speed up the procedure has ena-
bled us to both search for solutions of higher complexity 
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and run the NS for longer. In this set of experiments, we 
apply the new method to three benchmark datasets from the 
Computer Vision (CV) literature—CIFAR-10, CIFAR-100, 
and SVHN—and test it with all diversity metrics previously 
defined in “Diversity Metrics” section. We also compare 
the results achieved with the new method to the best results 
observed with the previous method. The parameters that we 
use with the new method are shown in the third column of 
Table 1; they correspond to the expanded search space made 
possible by the use of a surrogate model. We expect to see 
further evidence of what we observed in previous work [2] 
regarding error diversity metrics, namely that those diversity 
metrics which focus more closely on the instances where 
the models make prediction errors lead to higher-perform-
ing ensembles. This is expressed by Hypothesis 3. We also 
expect the new method to lead to higher-performing ensem-
bles than those constructed with the previous method, since 
the use of a surrogate model makes it feasible to expand the 
search space and run the NS for longer. This is expressed by 
Hypothesis 4.

Hypothesis 3 (Better performance with metrics that focus 
on error instances) In a similar fashion to what we have 
observed with our previous method, running the NS proce-
dure with the distance metrics that focus more closely on the 
instances where the models make prediction errors leads 
to higher-performing ensembles than when more generic 
diversity metrics are employed.

Hypothesis 4 (Performance achieved with the previous NS 
method vs the new method with a surrogate model) The 
new NS method enhanced with a surrogate model makes it 
possible to search a larger space of more complex neural 
network architectures and, therefore, outputs higher-per-
forming ensembles than the best ones constructed by our 
previous method.

Test Set 3: Introducing Accuracy Objectives

Here we describe the experiments carried out on three data-
sets—CIFAR-10, CIFAR-100, and SVHN. We compare the 
results reported for the NS method of [3] with the four modi-
fied methods that we present in “Novelty Search Extended 
with Accuracy Objectives” section. Running each of these 
methods to construct an ensemble whose performance is 
then evaluated requires four steps: (1) running the modi-
fied NS procedure using the surrogate diversity and surro-
gate accuracy models, without training the neural network 
architectures during the search; (2) training the ensemble of 
neural network architectures resulting from the previous step 
on the training set Dtrain , using a standard stochastic gradient 
descent (SGD) procedure; (3) training a stacking model [48] 

on the validation set Dval , so as to learn a weighted aver-
age of the predictions made by each member of the ensem-
ble; and (4) calculating the classification accuracy of the 
ensemble on a test set. The surrogate diversity and surrogate 
accuracy models are pretrained as described before. Table 2 
shows the parameters used throughout the experiments. Each 
experiment, i.e. each sequence of the steps (1)-(4) described 
above, is run 10 times in order to ensure statistical signifi-
cance in our observations. The following four hypotheses 
are tested as part of our empirical analysis.

Hypothesis 5 (Performance Gain by Adding Accuracy 
Objectives) Taking individual model accuracy into account 
as an objective, by means of the methods presented in “Nov-
elty Search Extended with Accuracy Objectives” section, 
leads to better ensemble accuracy than what can be achieved 
with a plain NS method.

This hypothesis expresses the expectation that accuracy 
objectives can improve the results of a plain search for 
explicit diversity alone. We test it by comparing the results 
achieved by the NS method of [3] with the final ensemble 
accuracy resulting from the three methods from “Novelty 
Search Extended with Accuracy Objectives” section which 
combine diversity and accuracy objectives: local competi-
tion, search for diversity with accuracy in the archives, and 
search for accuracy with diversity in the archives.

Hypothesis 6 (Different Performance with Different Com-
binations of Diversity and Accuracy) Selecting different 
combinations of diversity and individual model accuracy, 
along the spectrum that ranges from favouring only diver-
sity to favouring only accuracy, results in different ensemble 
accuracy.

This hypothesis expresses the notion that multiple 
ways of mixing diversity and accuracy objectives lead to 

Table 2  Common parameters fixed throughout the experiments for all 
the NS methods extended with accuracy objectives

Parameter Value

Iterations 100
Final ensemble size S 40
Population size 100
Number of residual blocks 2:6
Number of channels in the first convolution 4:16
Number of channels in residual blocks 16:64
Dropout probability in residual blocks 0.1:0.9
Number of neighbours K 15
Size nA of archive sample 10
Size of tournament for selection 50
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different ensemble accuracy and that, therefore, an opti-
mal middle ground between searching only for one or the 
other can be found. We test it by comparing the ensemble 
performance resulting from varying the mixing weight � 
when deploying the LC approach (see Eq. 13), as well as 
from the other methods of “Novelty Search Extended with 
Accuracy Objectives” section.

Hypothesis 7 (Diversity and Accuracy Must Be Balanced) 
Assigning greater importance to diversity in an ensemble 
leads to worse individual model accuracy. Conversely, 
weighting individual accuracy more leads to less diverse 
ensembles. There is a trade-off to be found between the two.

This hypothesis claims that there is a fundamental tension 
between diversity and individual model accuracy and that 
one can only be improved at the expense of the other. We 
test it by calculating the values of diversity metrics and aver-
age individual model accuracy for the ensembles resulting 
from applying both the previous NS method and the various 
methods of combining diversity and accuracy objectives.

Hypothesis 8 (Worse Performance Without Explicit Diver-
sity) Removing explicit diversity objectives, keeping only 
individual accuracy objectives when searching for an ensem-
ble, leads to a decrease in ensemble diversity and, conse-
quently, worse ensemble accuracy.

This hypothesis expresses the importance of explicit 
diversity objectives for constructing a high-performing 
classifier ensemble. This follows from the results of Car-
doso et al. [2, 3]. We test it by comparing the performance 
resulting from the last method presented in “Novelty Search 
Extended with Accuracy Objectives” section, which consid-
ers only accuracy objectives with diversity being generated 
implicitly, with that resulting from the previous NS approach 
and the methods which combine both diversity and accuracy 
objectives.

Results for the Novelty Search Augmented 
with a Surrogate Distance Model

In this section, we present the results of the first two sets of 
experiments described in “Experiments” section. We then 
discuss these results and whether the hypotheses formulated 
above can be rejected.

Hypothesis 1

Hypothesis (Runtime of previous NS method vs new 
method enhanced with a surrogate model) Enhancing the 

NS procedure with a Random Forest surrogate model pre-
trained to estimate the distance between models, and thereby 
their novelty scores, results in a speedup compared with our 
previous method, which calculates exact distance values and 
novelty scores, when constructing ensembles of the same 
complexity.

Table 3 shows the median value, calculated after 10 inde-
pendent runs, of the time required to run both the previ-
ous NS method [2] and the new method [3], which makes 
use of a surrogate model, with the same parameters. These 
results show that the new method is about 10 times faster 
than the original NS method. A Mann-Whitney significance 
test shows that this difference is significant at the 1% level. 
This supports the claim of Hypothesis 1 that enhancing the 
NS method with a Random Forest surrogate model to esti-
mate the distances between models speeds up the search for 
diverse models and the construction of a diverse ensemble. 
For reference, we also report in Table 3 the median time, 
over 10 runs, required to train a sample of 40 neural net-
work architectures on CIFAR-10, as well as to build a dataset 
and train the Random Forest surrogate model as per Algo-
rithm 1. Note that these two runtimes are a one-off cost and 
that, in order to pretrain the surrogate model for our experi-
ments, we have trained a total of 3200 sample architectures 
by running several processes in parallel on a cluster, each 
training 40 architectures.

Hypothesis 2

Hypothesis (Performance achieved with the previous NS 
method vs the new method with a surrogate model) When 
looking for solutions of the same complexity, the new NS 
procedure, using a surrogate model, outputs ensembles 
which do not perform worse than those constructed by our 
previous method, even though the new method only estimates 
distance values and novelty scores.

Table 3  Median results over 10 runs of the previous NS method and 
the new NS method with a surrogate model on CIFAR-10 (test set 
1). Training a sample of architectures and the random forest surrogate 
model are one-off costs

Runtime of NS 48,760.5 s
Runtime of NS with surrogate model 4871 s
Training a sample of architectures 28,970.5 s
Building a dataset and training the Random Forest sur-

rogate model
18,113.5 s

Accuracy achieved by NS 82.245%
Accuracy achieved by NS with surrogate model 83.885%
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Table 3 also shows the median accuracy, calculated after 
10 independent runs, achieved by ensembles constructed by 
both the previous NS method and the new method, when 
these are executed with the same parameters. The results 
show that the ensembles constructed by the new method 
do not perform worse than those constructed by the origi-
nal method, which calculates exact values for the distance 
metrics and novelty scores. In fact, we observe that the new 
method leads to slightly better performance. A Mann–Whit-
ney significance test shows that this difference is signifi-
cant at the 1% level. This corroborates Hypothesis 2, which 
claims that there is no loss in performance when using the 
new method and its surrogate estimates. Besides the use of 
surrogate models, the major difference between the previous 
and the new method is the way a subset of all the models 
is selected to be in the final ensemble. As explained before, 
the previous method applies an ensemble selection metric at 
each iteration of the NS, whereas the new method keeps an 
elite archive, from which the final ensemble is selected in an 
additional step at the end of the procedure. It seems that the 
ensemble selection procedure of the new method is the cause 
behind the better performance achieved by its ensembles.

Hypothesis 3

Hypothesis (Better performance with metrics that focus 
on error instances) In a similar fashion to what we have 
observed with our previous method, running the NS proce-
dure with the distance metrics that focus more closely on the 
instances where the models make prediction errors leads 
to higher-performing ensembles than when more generic 
diversity metrics are employed.

Table 4 shows the median accuracy, after 10 runs, of ensem-
bles evolved by the new NS procedure extended with a sur-
rogate model, for all six diversity metrics of “Diversity Met-
rics” section and all three datasets considered. We observe 
that on CIFAR-10 and SVHN, the metrics prop2

i,j
 and 

cos_disti,j lead to the highest-performing ensembles. 
Mann–Whitney tests show that the difference to the other 
metrics is statistically significant. On CIFAR-100, this is 
observed additionally with the metrics propharm

i,j
 and disi,j.

The metrics prop2
i,j

 and cos_disti,j are the two that focus 
more closely on the instances where the two models being 
compared make prediction errors. Additionally, the metric 
propharm

i,j
 depends on the value of prop2

i,j
 . These observations 

back the claim of Hypothesis 3 that error diversity metrics 
lead to better-performing ensembles compared to more 
generic diversity metrics. This confirms what we observed 
in previous work [2].

Hypothesis 4

Hypothesis (Performance achieved with the previous NS 
method vs. the new method with a surrogate model) The 
new NS method enhanced with a surrogate model makes it 
possible to search a larger space of more complex neural 
network architectures and, therefore, outputs higher-per-
forming ensembles than the best ones constructed by our 
previous method.

The last column of Table 4 shows the best performance 
achieved by ensembles evolved with our previous NS 
method. These results show very clearly that the new method 
constructs higher-performing ensembles than our previous 
procedure, with the most considerable difference being 
observed on CIFAR-100 and CIFAR-10. Mann–Whitney 
tests reveal that, for each dataset, the difference between 
the best results achieved by the new method and the best 
achieved by the previous method is indeed statistically sig-
nificant. This difference results from the fact that the new 
method, thanks to its use of a surrogate model, is able to 
search a wider space of neural network architectures, even 
though it runs on the same bounded resources. We conclude 
that this supports Hypothesis 4.

Table 4  Median accuracy over 10 runs of ensembles constructed 
by the new method (test set 2).  Best results with the original NS 
are shown for comparison. Results that outperform the original NS at 
the 1% level are highlighted in bold

Dataset Diversity metric Final ensemble 
accuracy (%)

Best accuracy with 
original NS (from 
[2]) (%)

CIFAR-10 prop1
i,j

67.295 83.51
prop2

i,j
90.605

propharm
i,j

83.975
disi,j 86.28
cos_disti,j 90.11
arch_disti,j 80.4

CIFAR-100 prop1
i,j

28.725 45.42

prop2
i,j

63.05

propharm
i,j

63.41
disi,j 63.18
cos_disti,j 63.035
arch_disti,j 49.83

SVHN prop1
i,j

78.825 91.435

prop2
i,j

94.8

propharm
i,j

89.775
disi,j 90.675
cos_disti,j 94.79
arch_disti,j 90.68
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Results for the Novelty Search Extended 
with Accuracy Objectives

Referring now to the last set of experiments (“Test Set 3: 
Introducing Accuracy Objectives” section), Table 5 shows 
the results of running each of the methods proposed in “Nov-
elty Search Extended with Accuracy Objectives” section, as 
well as the NS method of [3] (reported above). This is the 
mean final ensemble accuracy over 10 runs for each method, 
parameter setting, and diversity metric, as applicable. As 
observed above, the metrics that lead to the best results are 
prop2

i,j
 and cos_disti,j . While for LC we run the method with 

all diversity metrics for a direct comparison with the previ-
ous NS approach, for the other two combining methods we 
confine ourselves to these two metrics in the interests of 
clarity. The method that only utilises explicit accuracy 

objectives does not make use of any diversity metric as 
diversity is generated implicitly.

Hypothesis 5

Hypothesis (Performance Gain by Adding Accuracy Objec-
tives) Taking individual model accuracy into account as an 
objective, by means of the methods presented in “Novelty 
Search Extended with Accuracy Objectives” section, leads 
to better ensemble accuracy than what can be achieved with 
a plain NS method.

Table 5 shows accuracy results both for the NS method of 
[3] and the four methods we propose herein. The cells 
highlighted in bold correspond to results which are 

Table 5  Median accuracy over 10 runs for the previous NS method and all the methods extending it with accuracy objectives. Results signifi-
cantly better than NS at the 1% level for the respective diversity metric are highlighted in bold

Method Diversity Metric Accuracy CIFAR-
10 (%)

Accuracy CIFAR-
100 (%)

Accuracy 
SVHN (%)

NS (from [3]) prop1
i,j

67.295 28.725 78.825
prop2

i,j
90.605 63.05 94.8

propharm
i,j

83.975 63.41 89.775
disi,j 86.28 63.18 90.675
cos_disti,j 90.11 63.035 94.79
arch_disti,j 80.4 49.83 90.68

CM1: LC � = 0.1 prop1
i,j

80.485 34.605 89.975
prop2

i,j
90.655 63.46 94.98

propharm
i,j

86.12 63.935 91.635
disi,j 84.615 63.63 91.63
cos_disti,j 90.26 63.415 94.87
arch_disti,j 87.745 53.865 93.27

� = 0.5 prop1
i,j

90.67 63.45 94.565
prop2

i,j
90.715 63.18 94.87

propharm
i,j

86 63.755 92.67
disi,j 86.62 63.99 93.76
cos_disti,j 90.005 63.685 94.925
arch_disti,j 88.635 58.615 94.25

� = 0.9 prop1
i,j

90.295 63.695 94.82
prop2

i,j
90.735 63.47 94.99

propharm
i,j

85.31 63.755 93.78
disi,j 86.145 63.835 92.23
cos_disti,j 89.9 63.265 94.955
arch_disti,j 88.635 59.045 94.455

CM2: search for div., acc. in archives prop2
i,j

90.83 63.125 94.915
cos_disti,j 90.83 62.545 94.91

CM3: search for acc., div. in archives prop2
i,j

90.73 64.16 94.865
cos_disti,j 90.565 63.93 94.89

Explicit accuracy with implicit diversity 90.895 63.755 94.915
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significantly better at the 1% level, determined by Mann-
Whitney statistical significance tests over 10 runs, than the 
NS method for the respective diversity metric (not appli-
cable to the last method). We can see that both LC and the 
other two combining methods of “Novelty Search 
Extended with Accuracy Objectives” section improve on 
the NS for some of the metrics considered, but that the 
only consistent improvement on all three datasets is 
observed for LC with metrics prop1

i,j
 and arch_disti,j , which 

are the ones that tend to perform the worst in the NS. We 
note that, on CIFAR-10, the second combining method 
produces statistically significant improvements over NS, 
but that these improvements are not only too small to be 
considered relevant, but also inconsistent as they are not 
observed on CIFAR-100 or on SVHN. A similar inconsist-
ent improvement is observed on CIFAR-100 for the third 
method, with metric prop2

i,j
 . These results therefore only 

partially support Hypothesis 5, since introducing accuracy 
objectives only improves on the results of the NS for the 
worst-performing diversity metrics. The hypothesis must 
be rejected since no significant improvement is observed 
for the best-performing ones, which suggests that the 
choice of a good diversity metric plays a more important 
role and can make a more considerable difference than 
explicit accuracy objectives.

Hypothesis 6

Hypothesis (Different Performance with Different Com-
binations of Diversity and Accuracy) Selecting different 
combinations of diversity and individual model accuracy, 
along the spectrum that ranges from favouring only diver-
sity to favouring only accuracy, results in different ensemble 
accuracy.

As observed above, introducing accuracy objectives only 
considerably improves on the NS results for the two worst-
performing metrics. To analyse the influence of different 
combinations of diversity and accuracy objectives, we now 
focus more closely on the results achieved by LC, the other 
two combining methods, and the explicit accuracy search 
method. For LC, we see that there is an improvement for the 
two worst-performing metrics, prop1

i,j
 and arch_disti,j , when 

increasing � from 0.1 to 0.5 or 0.9. Mann–Whitney tests 
confirm that this improvement is indeed statistically signifi-
cant: for both metrics on CIFAR-100 and SVHN; and for 
prop1

i,j
 on CIFAR-10. However, no statistically significant 

difference is observed for any of the other metrics.
If we look at the second combining method of “Novelty 

Search Extended with Accuracy Objectives” section, we 
observe a slight improvement, which is nonetheless 

statistically significant, on CIFAR-10 over LC for the metric 
cos_disti,j , but this is not observed on CIFAR-100 or SVHN 
and, therefore, not a consistent result. And finally, if we look 
at the final method we propose, the explicit accuracy search 
with implicit diversity, we again see that, although improv-
ing on the worst metrics, there is no significant improvement 
observed consistently on all three datasets over NS or any of 
the combining methods for the two best diversity metrics, 
prop2

i,j
 and cos_disti,j . Statistical significance is observed in 

particular cases—e.g. on CIFAR-10 and CIFAR-100 for NS 
with the metric cos_disti,j or on CIFAR-10 for LC with that 
same metric—but in any case the improvements in accuracy 
are very small. We therefore reject Hypothesis 6 since the 
results do not consistently back the claim that different com-
binations of diversity and accuracy objectives lead to signifi-
cantly different ensemble accuracy. As observed before, the 
choice of diversity metric seems to play a more crucial role 
than the choice of a particular combination between diver-
sity and accuracy.

Hypothesis 7

Hypothesis (Diversity and Accuracy Must Be Balanced) 
Assigning greater importance to diversity in an ensemble 
leads to worse individual model accuracy. Conversely, 
weighting individual accuracy more leads to less diverse 
ensembles. There is a trade-off to be found between the two.

Table 6 shows the average individual accuracy and the val-
ues of distance metrics for the final ensemble, measured on 
the test data for each of the datasets considered, with differ-
ent methods and parameter settings. In the interests of clar-
ity and due to limitations of space we only include results 
for some of the methods and diversity metrics, since other 
results do not contribute with any additional insight. The 
values of different diversity metrics are scaled for the same 
dataset so that the magnitude of variations across rows may 
be directly compared, hence the negative values. We have 
utilised the same min- max scale rs that are fitted on the train-
ing data when pretraining the surrogate diversity model for 
each dataset.

The first thing we note is the clear correspondence 
between similar average individual accuracy and similar 
values for each diversity metric. The more similar the accu-
racy values, the more similar the diversity values. This is 
observed across different methods on all three datasets. For 
example, if we compare the rows for the NS method with 
metrics prop2

i,j
 and cos_disti,j , we find no statistically signifi-

cant difference in average individual accuracy or the values 
of diversity metrics, measured on the test set. If we take a 
closer look on the results of both the NS and LC, we see that 

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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for the metric prop1
i,j

 , one of the worst-performing ones as 
discussed previously, increasing the weight � of the local 
competition score LCi (Eq. 13) leads to a clear increase in 
the average individual accuracy of the models in the ensem-
ble and a decrease in the observed value for this metric w.r.t. 
the test set. This is observed consistently on all three datasets 
and Mann–Whitney tests confirm that this difference is sta-
tistically significant at the 1% level between rows corre-
sponding to different values of � and w.r.t. to plain NS. How-
ever, the exact opposite is observed for the rows 
corresponding to the metric cos_disti,j , with the measured 
individual accuracy and diversity values remaining approxi-
mately constant for different values of � and even for the 
method that only uses accuracy objectives; statistically sig-
nificant differences are not observed. This counter-example 
allows us to reject Hypothesis 7 since it is not the case in 
general that weighting diversity more will lead to worse indi-
vidual accuracy or vice-versa, which is a surprising result. 
The observations suggest this is highly dependent on the 
choice of a diversity metric, rather than being a general rule. 
Running the methods with a high-performing diversity met-
ric does not seem to require a trade-off with individual 
model accuracy.

Hypothesis 8

Hypothesis (Worse Performance Without Explicit Diver-
sity) Removing explicit diversity objectives, keeping only 
individual accuracy objectives when searching for an ensem-
ble, leads to a decrease in ensemble diversity and, conse-
quently, worse ensemble accuracy.

Looking at Table 5, we can see that the last method, which 
searches only for explicit accuracy, with implicit diversity 
being generated by the evolutionary procedure, does not do 
worse than the best amongst the other methods. In fact, our 
analysis reveals that in some cases it achieves better accuracy 
than some of these other methods in a statistically significant 
way, although this is not observed consistently—i.e. for all 
methods and diversity metrics across all three datasets—
and at any rate the differences are small. This means that 
Hypothesis 8 must be rejected, as removing explicit diversity 
objectives does not lead to worse ensemble accuracy. This is 
a surprising result given the findings of Cardoso et al. [2, 3], 
regarding the explicit search for diversity when compared to 
common methods that only promote it implicitly.

The Diversity‑Accuracy Duality

For an explanation of these surprising results, we now turn 
again to Table 6 and focus on the last row for each dataset, 
corresponding to this explicit accuracy search method. We 
have already noted that a trade-off between accuracy and 
diversity is not required when the best metrics are utilised. 
We can also see that, for the last method, the values for the 
individual accuracy and each of the diversity metrics are 
very similar to those in the rows corresponding to the best 
diversity metrics, prop2

i,j
 and cos_disti,j . The difference 

between the values for this explicit accuracy search and the 
rows corresponding to the worst metric, prop1

i,j
 , is naturally 

statistically significant in most cases, with some exceptions 
observed for LC with � = 0.9 . For the other cases, a statisti-
cally significant difference is at times observed, as this 
method tends to result in slightly higher average individual 
accuracy, probably a result of only favouring accuracy dur-
ing the search. However, these differences are very small and 
the key observation is that the average individual accuracy 
and the diversity values are very similar when comparing 
this method with all the other ones using the two best met-
rics, including the NS, which only favours diversity 
explicitly.

These results suggest that, contingent on the choice of a 
high-performing diversity metric—in this case, prop2

i,j
 or 

cos_disti,j—there is an equivalence between searching for 
diversity and searching for accuracy. Regardless of the 
importance assigned to each of these two properties, the 
resulting ensembles will have similar average individual 
accuracy and diversity, and it is for this reason that their 
accuracy on test data is similar. We therefore hypothesise 
that, for these two diversity metrics, there is an accuracy-
diversity duality, in the sense that these two properties 
appear to be interchangeable by means of an underlying pro-
cess which is not yet understood, but which our methods 
nevertheless seem to approximate. This is highly significant 
because it suggests, in contrast with the literature, that there 
might not be a need to find a trade-off between diversity and 
accuracy in ensemble learning.

Conclusions

This paper has extended previous work [2], which proposed 
an innovative NS method to build behaviourally diverse 
ensembles of classifiers. The previous method had sign-
posted an innovative way to construct high-performing 



SN Computer Science           (2025) 6:631  Page 21 of 24   631 

SN Computer Science

ensembles by explicitly searching for diversity. However, 
its application in practice had been hampered by limitations 
in the amount of available computational resources, since it 
involved a time-consuming step of training all networks in 
each generation of the NS with gradient descent. In [3], we 
propose a new method which overcomes this limitation by 
using a pretrained surrogate model to estimate the distance 
between neural network architectures, necessary to calculate 
novelty scores, without the need to train them. In this way, 
we can obtain an approximate speedup of 10 times w.r.t. the 
previous method when running them both with the same 
parameters, without loss of classification accuracy. We can 
also construct better-performing ensembles thanks to the 
expanded architecture search space facilitated by using a 
surrogate. We have confirmed previous observations that 
error diversity metrics lead to better-performing ensembles 
than more generic metrics.

We also build upon the preliminary results of [7] to 
describe an extension of this NS method. This extension 
incorporates accuracy objectives when searching for behav-
iourally diverse ensembles, so as to investigate the relation-
ship and trade-offs between diversity and classification accu-
racy. Our initial research question was whether these 
accuracy objectives could lead to a performance gain in 
terms of final ensemble accuracy. We investigated a range 
of search methods that span the full spectrum of favouring 
only accuracy, only diversity, or different combinations of 
both. We found that accuracy objectives lead to significant 
improvements in ensemble accuracy, but only for the worst-
performing diversity metrics. For the best metrics, perfor-
mance was not improved upon regardless of the importance/
weight assigned to accuracy objectives. But the most sur-
prising result was the observation that there is an equiva-
lence between searching for diversity—when defined by the 
two best metrics, prop2

i,j
 and cos_disti,j—and searching for 

accuracy, with multiple ways of combining these two objec-
tives leading to ensembles of similar diversity and average 
individual accuracy. When we considered the highest-per-
forming metrics, there was no dichotomy between diversity 
and accuracy; each contributed to ensemble performance 
without detriment to the other and weighting one more did 
not impact negatively upon the other.

The augmented NS method thus represents an improved 
paradigm for implementing horizontal scaling of learning 
algorithms. It makes an explicit search for diversity con-
siderably more tractable than our original approach for the 
same bounded resources. The observed equivalence between 
utilising diversity or accuracy objectives potentially means 
that the two are interchangeable and correlated in some 
conditions. This is a rather counter-intuitive result which 
suggests the existence of a diversity-accuracy duality in 
ensembles of classifiers. While further investigation of this 

equivalence is required so that stronger conclusions may be 
drawn, this result is significant because it challenges wide-
spread assumptions about the need to trade off diversity for 
accuracy. An implication of this is the possibility of design-
ing better algorithms which evolve diverse ensembles with-
out detriment to their accuracy, since it is implicitly ensured.

Appendix: Additional Figures

We provide here additional material regarding the perfor-
mance of the surrogate distance and surrogate accuracy 
models (Figs. 5, 6, 7, 8, 9, 10).

Fig. 5  Performance of surrogate model for predicting the cosine dis-
tance on CIFAR-10 (“Novelty Search Augmented with a Surrogate 
Model” section)

Fig. 6  Performance of surrogate model for predicting classification 
accuracy on CIFAR-10 (“Generic Search Method with Accuracy 
Objectives” section)
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Fig. 7  Performance of surrogate model for predicting the cosine dis-
tance on CIFAR-100 (“Novelty Search Augmented with a Surrogate 
Model” section)

Fig. 8  Performance of surrogate model for predicting classification 
accuracy on CIFAR-100 (“Generic Search Method with Accuracy 
Objectives” section)

Fig. 9  Performance of surrogate model for predicting the cosine 
distance on SVHN (“Novelty Search Augmented with a Surrogate 
Model” section)

Fig. 10  Performance of surrogate model for predicting classification 
accuracy on SVHN (“Generic Search Method with Accuracy Objec-
tives” section)
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