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ABSTRACT
This study reviews recent developments in optimization techniques for hybrid solar photovoltaic and wind energy systems,

particularly those using artificial intelligence (AI) and hybrid algorithms. Due to the global need for sustainable energy, the

study compares both traditional and modern optimization techniques. It shows that hybrid algorithms, like, Gray Wolf–Cuckoo
Search Optimization (GWCSO), can speed up convergence and reduce costs by up to 25% compared with other conventional

methods, such as linear programming. The study groups optimization techniques into traditional, software‐based, AI‐driven,
and hybrid approaches; assessing how well they improve system efficiency, reliability, and cost. It also outlines sizing methods

and their economic, technical, and environmental effects, with results showing that AI‐driven methods can lower the levelized

cost of energy by 10%–15% in complex microgrids (MGs). The study further provides a structured way to size MGs, addressing a

gap in optimization methods for independent hybrid systems in remote locations. Greater flexibility of hybrid algorithms in

handling complex optimization problems was emphasized. Ultimately, this study offers new insights into combining AI with

traditional methods, suggesting future research directions for both smart grid and MG design.

1 | Introduction

Due to the continuously growing energy demand across various
sectors, including commercial, industrial, agricultural, and
residential, fossil fuel resources are becoming increasingly
scarce. As a result, there exists a notable upward trend in the
adoption of renewable energy (RE) sources for electricity pro-
duction in recent times [1]. Although wind and solar energy
systems provide both autonomous and grid‐connected options,
the inherent stochastic nature of these resources can impact
their efficiency. One way to address the challenge of
unpredictable availability is by integrating them into hybrid

systems that are grid‐connected [2]. Standalone solar and wind
systems provide a dependable option in remote locations far
from the power grid, such as rural areas or regions with chal-
lenging terrain. These systems typically include integrated
storage to compensate for periods when weather conditions
restrict energy production [3, 4]. Additionally, economic con-
siderations can hinder access to the grid, underscoring the
significance of these standalone solutions. The hybrid renew-
able energy system (HRES) combines RE and traditional energy
sources; additionally, it has the capability to integrate multiple
RE sources that are operational either independently or linked
with the grid. A hybrid system based on RE offers a more
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advantageous alternative compared with a system reliant on a
single energy source, considering factors like expense, reliabil-
ity, and effectiveness. Hybrid systems utilizing RE have the
flexibility to utilize single or multiple energy sources, and they
have the ability to function in isolation or be grid‐connected [2].
The global shift toward dependable and practical HRES is pri-
marily motivated by the promising technical and economic
advantages of combining different energy sources and the rapid
decline of traditional energy sources [5]. Various arrangements
of hybrid systems can be implemented based on specific pre-
requisites and resource accessibility in different locations; this
study exclusively focuses on photovoltaic (PV)–wind turbine
(WT) hybrids. The emphasis is due to the intrinsic compatibility
of solar and wind assets, which positions them as the most
promising duo for sustainable power generation.

Solar irradiation reaches its peak during the summer months,
and wind resources often intensify during the winter in certain
regions. This temporal complementarity presents significant
potential for hybrid systems. However, the inherent
unpredictability of both energy sources, caused by seasonal
and weather fluctuations, adds complexity to system design
and optimization [1, 6]. To maximize the reliability of a hybrid
PV–wind system, the strategic integration of additional alter-
native energy sources, like, diesel generators (DGs) and fuel
cells (FCs), can be implemented [7]. By incorporating these
augmented systems, it becomes possible to meet vital power
needs in remote, non‐electrified regions where access to the
grid is unavailable [8]. However, beyond reliability, compre-
hensively evaluating microgrids (MGs) necessitates consider-
ing their economic and environmental impacts. Although
some systems boast perfect reliability, they may not be eco-
nomically feasible or environmentally sound due to potential
pollutant emissions or excessive resource consumption [9–11].
There is no single‐objective function universally applicable to
the MG sizing problem. Instead, the optimization objectives
for best MG sizing are developed considering various factors,
like the location and type of the MG, the preferred mode of
operation, the required reliability level, and specific needs
related to economics, operation, and the selection of compo-
nents (e.g., energy and storage sources). An additional critical
factor that distinguishes current techniques for optimal
MG sizing is the choice of the optimization techniques
used to solve the sizing problem. Existing studies have dis-
cussed various algorithms, including classical, evolutionary,
machine learning, and multiobjective algorithms. Although
optimal MG sizing is crucial for ensuring efficient operation
from both technical and economic perspectives, no standard-
ized framework for addressing the issue has been reported. To
propose a framework for addressing the MG sizing issue, this
study presents an extensive review of current approaches used
for MG sizing.

This review introduces a novel method for optimizing standa-
lone solar PV–wind HRESs in remote locations by systemati-
cally combining traditional and advanced techniques,
particularly artificial intelligence (AI)–driven and hybrid algo-
rithms. Unlike previous studies that primarily focused on grid‐
connected systems or single optimization goals [1, 5], this study
offers a comprehensive framework for MG sizing using multi-
objective optimization.

A typical hybrid solar–wind system includes PV arrays, WT
systems, energy storage systems, control units, power convert-
ers, and other essential auxiliary components [11–13]. When
energy production exceeds demand, the excess is strategically
used to charge storage. Conversely, during periods of insuffi-
cient renewable generation, the storage system discharges to
supplement the available energy and reliably meet load
demands [14, 15]. The findings of this review are crucial for
designing affordable, dependable, and environmentally friendly
HRES for rural and remote communities, improving energy
access in off‐grid locations, and guiding smart grid develop-
ment. Ultimately, this study benefits RE researchers, engineers,
policymakers, and rural development professionals by provid-
ing practical insights for deploying HRES in underserved areas,
thereby promoting global energy equity and sustainability.

While previous studies have extensively explored HRESs, partic-
ularly those connected to the grid and utilizing solar PV, WTs, and
auxiliary power like DGs [1, 5, 7], the optimization of independent
HRES for remote areas has received less attention. Specifically, the
integration of advanced AI and hybrid optimization techniques
tailored for these unique challenges remains underexplored [2, 8].
Although software tools like Hybrid Optimization Model for
Electric Renewable (HOMER) and improved hybrid optimization
by genetic algorithm (iHOGA) are frequently employed for sizing
grid‐tied systems [16, 17], their application to standalone systems
is limited by their lack of customization and inability to dynami-
cally adapt to varying environmental factors [18]. Moreover, ex-
isting reviews typically focus on optimizing a single objective, such
as cost reduction [1, 3], neglecting the crucial multifaceted opti-
mization (economic, technical, environmental, and social) neces-
sary for remote deployments [9, 12].

To address these gaps, this review systematically investigates both
traditional and advanced optimization methods for independent
PV–wind hybrid systems, emphasizing AI‐powered and hybrid
algorithms. Unlike prior research that mainly focuses on urban or
grid‐integrated systems [5, 13], the present study specifically tar-
gets remote locations without grid connections. This study pres-
ents a comprehensive framework for sizing MGs that integrates
AI‐based techniques (like Gray Wolf–Cuckoo Search Optimiza-
tion [GWCSO]) with traditional methods, resulting in up to 25%
quicker convergence and better cost efficiency compared with
conventional approaches [19]. By underscoring the versatility of
hybrid algorithms in handling multiple optimization goals, this
review provides a guide for developing reliable, cost‐effective, and
environmentally sustainable HRES for neglected regions, thereby
differentiating itself from existing literature. Figure 1 shows the
classification of optimization techniques used in HRES.

In terms of energy systems, the optimization and design pro-
cesses face inherent constraints stemming from factors, such as
the availability of resources, technological limitations, consid-
erations of efficiency, and the intricacies of complex mathe-
matical models [2]. However, the landscape has been
significantly transformed by recent breakthroughs in compu-
tational techniques. The utilization of advanced optimization
algorithms and sophisticated simulation tools has substantially
enhanced our capacity to grapple with these challenges. Con-
sequently, it is possible to navigate the intricacies of energy
system optimization more effectively, leading to the creation of

2 of 23 Energy Science & Engineering, 2025

 20500505, 0, D
ow

nloaded from
 https://scijournals.onlinelibrary.w

iley.com
/doi/10.1002/ese3.70190 by Firdaus M

uham
m

ad-Sukki - E
dinburgh N

apier U
niversity , W

iley O
nline L

ibrary on [03/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



systems that are not only more optimized but also more resilient
[20, 21]. Various simulation tools, like HOMER, Hybrid Opti-
mization using Genetic Algorithm (HOGA), and Hybrid Power
System Simulation Model (HYBRID2), and so forth, have become
indispensable tools for designing, optimizing, and assessing the
effectiveness of PV–WT hybrid systems, as extensively explored
in [16, 17]. While these software programs offer valuable fea-
tures, limitations arise. Compatibility issues with specific oper-
ating systems may constrain usability. Accessibility challenges
and reduced adaptability compared with customization optimi-
zation techniques are noteworthy drawbacks.

To attain cost‐effectiveness and power sufficiency, deploying
meticulous sizing and optimization techniques is crucial.
Factors such as system reliability, cost, PV system size, panel
tilt angle, WT hub height and size, and the battery capacity
and demand thorough examination. This comprehensive
approach mitigates the risks of under sizing, resulting in an
inadequate power supply or over sizing, leading to excessive

cost [18]. From a comprehensive analysis conducted by mul-
tiple authors [18, 22–31], Table 1 highlights the key findings
regarding sizing and optimization techniques, while Figure 2
gives a pictorial representation of an islanded MG.

Below is an outline of the work's structure: Section 2 gives an
outline of sizing methodologies for PV–WT hybrid systems. In
Section 3, an extensive survey of the literature is presented, fo-
cusing on the several optimization techniques utilized in the work
of PV–wind hybrid systems; Section 4 delves into the current
trends in optimization; and Section 5 serves as the concluding part
of the paper.

2 | Comprehensive Overview of Solar PV–WT
Hybrid MG Systems

This section provides a concise outline of the Solar PV–WT‐
based MG. Figure 2 provides a conceptual illustration of the

FIGURE 1 | Classification of optimization techniques used in hybrid renewable energy system [2].

TABLE 1 | Techniques for determining hybrid energy system's cost.

Reference System cost analysis Method description

[32] NPC It is determined by deducting the current value of all expenses accrued across the
system's lifespan from the total revenue presently generated during the same period.

This computation entails aggregating the discounted cash flows for every year
throughout the project's timeline.

[1] Total annualized
cost (TAC)

It is a comprehensive annual cost that covers all financial responsibilities associated
with the system throughout its complete lifespan, encompassing both initial

investments and ongoing expenditures.

[1, 33] Life cycle cost This entails a comprehensive assessment of all expenses associated with an asset,
encompassing both recurring and one‐time costs, over its complete lifespan or a

designated period.

[34, 35] LCOE The TAC of the MG significantly influences the COE. The LCOE is calculated as the
ratio of the total system cost to the total energy generated over a specific period.

Abbreviations: COE, cost of energy; LCOE, levelized cost of energy; MG, microgrid; NPC, net present cost.
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intended MG. The primary components of the system are the
PV and WT systems. The power from both the PV and WT
systems is heavily influenced by weather conditions, specifically
solar irradiance, temperature, and wind speed. The intermit-
tency of solar irradiance and wind speed leads to fluctuations in
the generated power [16]. Typically, solar PV power peaks
around midday, while WT power generation is higher during
cooler periods and can even produce excess energy depending
on the load demand.

To mitigate the intermittent nature of these systems and maxi-
mize power utilization, Energy Storage Technologies (EST) have
become a critical component of HRES MGs [17]. With significant
improvements in battery technology and substantial cost reduc-
tions, battery storage systems have emerged as a better EST in
HRES MGs. However, to ensure reliability, flexible power sources
like DG and generators powered by hydrogen FCs are often
integrated as power sources [18, 22–24]. Power electronic
interfaces—including DC–DC, DC–AC, and AC–DC converters—
facilitate the smooth integration of diverse energy sources and
loads within an MG. These converters enable different types of
energy systems, whether renewable, storage, or traditional, to
work harmoniously by converting power into compatible forms
for efficient distribution and use. This adaptability allows for
effective energy management and stability within MGs, making it
easier to meet demand flexibly and ensure reliable operation
across various power sources and consumption needs.

The adoption of HRES MGs is on the increase globally, addressing
diverse load demands with improved efficiency and resilience.

2.1 | Criteria for the Enhancement of PV–Wind
Systems

The optimization of a PV–wind model necessitates the follow-
ing input parameters.

2.1.1 | Location and Meteorological Data

The identification of a suitable location and its meteorological
assessment are critical for effective MG design [36]. These

factors provide valuable insights into the optimal generation
mix and storage technology needed for the MG, ultimately
minimizing transmission losses [2]. Meteorological parameters
such as solar irradiation, wind speed, ambient temperature, and
relative humidity play a crucial role in determining the MG's
performance [3, 5, 7].

2.1.2 | System Configuration

Preliminary studies using meteorological information such as
sunlight intensity, wind velocity, and temperature can deter-
mine the appropriate sizing of equipment. However, it is crucial
to take into account the relative resource potential of both PV
and wind energy at the specific location. In areas where the
potential for solar energy exceeds that of wind energy, the
hybrid system configuration should prioritize PV, allocating a
smaller share to WTs [37].

2.1.3 | Load Profile

A proper analysis of load demand is crucial in the design pro-
cess of an MG, as its primary objective is to meet local energy
needs [2]. To accurately assess the load patterns of the MG, the
system's yearly load profile, with hourly and daily time steps,
must be considered [5]. This detailed approach provides a better
understanding of the MGs energy demand over time, ensuring
efficient and reliable operation.

2.1.4 | System Framework

In energy systems analysis, system frameworks serve as crucial
mathematical representations, accurately simulating diverse
energy‐related challenges [4]. Researchers utilize these models
across various computational platforms to dissect and solve
intricate energy issues [20]. Specifically concerning the opti-
mization of PV and wind systems, the precision of underlying
component models holds paramount importance. This demands
the inclusion of all pertinent variables affecting energy
conversion—meteorological conditions, resource availability,
component specifics, and operational limitations [38]. While a
simple model structure is preferred, maintaining accuracy to
the actual system may entail added complexity [39]. Neglecting
key factors or oversimplifying can lead to inaccurate predictions
and suboptimal results.

2.1.5 | Optimization Results

To obtain accurate optimization results that avoid over-
generation or undergeneration of power, it is crucial to dili-
gently follow the four aforementioned steps. Although power
generation from PV–wind systems naturally varies based on
location‐specific factors, it is important to investigate the pos-
sibility of generalizing optimization outcomes to neighboring
areas for scalability and cost‐effectiveness purposes. Figure 3
provides a synopsis of the critical design aspects for PV–WT‐
based MGs. These considerations serve as the foundation for
formulating the MG optimization problem.

FIGURE 2 | Grid‐connected microgrid [23]. AC, alternating cur-

rent; DC, direct current.
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2.2 | Criteria for Optimizing MG Systems

Objective formulation, or the cost function, is a critical aspect
of MG sizing problem formulation, as it aims to integrate eco-
nomic, technical, environmental, and reliability considerations
of the MG [40]. Common objectives in designing a hybrid PV–
WT MG include reducing costs and environmental emissions
while enhancing system reliability. The following sections
briefly discuss the key objectives from the economic, environ-
mental, and reliability perspectives.

2.2.1 | System Cost Analysis

Cost analysis plays a crucial role in optimizing PV–wind power
systems by focusing on reducing average expenses associated with
system implementation, which includes acquisition, installation,
operation, maintenance, and replacement costs, as well as fuel
costs for backup generators. Commonly used techniques such as
life cycle cost (LCC), net present cost (NPC), and cost of energy
(COE) provide critical information about the financial viability
and long‐term implications of these systems [41]. Additionally,
revenue generation may be considered as an objective to be
maximized during MG sizing. For further details, refer to Table 1.

2.2.2 | Environmental Objectives

A critical motivating factor driving the adoption of HRES is
minimizing greenhouse gas (GHG) emissions from electricity
generation [42] DGs, which emit GHGs, often serve as backup
power sources to enhance the MG's reliability. The primary

environmental objective when optimizing an HRES is to mini-
mize GHG emissions from the MG. The greenhouse gas emis-
sion cost (GEC), which accounts for the total emissions
expenses over the project's lifetime, is a commonly used en-
vironmental metric in the sizing of PV–WT‐based MGs. The
GEC is expressed as follows:

 
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n
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(1)

In (1), Pi signifies the power generated by the DG, while PFj
indicates the outlying impact cost for emission type j from the
DG unit. The variable m refers to the emission type, such as
CO₂, sulfur dioxide (SO₂), or nitrogen oxides (NOx). Eij is the
emission factor for the ith DG and emission type j, and n rep-
resents the total number of DGs in the MG [43].

Another key environmental metric used in MG optimization is
the Levelized Emission (LE) [43]. The LE is outlined as the ratio
of the overall GHG emissions from the MG over a year to the
entire power produced by the MG during that the same period,
and is represented by Equation (2′).

↓

↓


ELE =
GHG

.
year

g year
(2)

In Equation (2′), ↓GHG year represents the total greenhouse gas
emissions in a year, and ↓Eg year denotes the summation of the
energy produced by the MG in that the same year. LE denotes
the GHG emissions per unit of power produced by the system.
The goal is to minimize LE as much as possible. Preferably, for a

FIGURE 3 | Common consideration for PV–WT‐based MG [40]. DG, diesel generator; MG, microgrid; PV, photovoltaic; WT, wind turbine.
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PV–WT‐based MG, if no fossil fuel‐based backup generator is
included, the LE should ideally be zero.

2.2.3 | System Reliability Analysis

Reliability in hybrid power‐generating systems, such as PV–wind
MGs, is a crucial factor due to the inherent unpredictability of
solar and wind resources, which can lead to inconsistent power
generation, particularly during intervals of low sunlight or wind
[37]. A system is deemed reliable if it can consistently meet the
energy demand within a specified timeframe. During MG sizing,
reliability indices like Loss of Load Supply Probability (LPSP),
Loss of Load Probability, Loss of Power Supply Probability
(DPSP), and Expected Energy Not Supplied (EENS) are incor-
porated in the objective formulation [38]. Various techniques for
assessing system reliability have been discussed in the literature
and are outlined in Table 2.

Table 3 shows some of the latest techniques and software that
have been implemented previously.

2.3 | Hybrid System Modeling

Modeling is the first stage of the design process, offering a
comprehensive understanding of various parameters and con-
straints before the practical implementation occurs [53]. The
efficiency of a wind and solar hybrid system is contingent upon
its components. This segment outlines the modeling equations
for the wind, PV, and battery systems.

2.3.1 | PV System Modeling

Various models have been utilized in previous studies to
determine the energy output of PV systems [23]. A simplified

model was utilized in this study, considering solar irradiance
and temperature, expressed by (1) [2, 25, 45].

T β G T
G t

PV = PV × [1 − + (0.0256 + )] ×
( )

1000
.rated STC aT

(1′)

PV represents the module's power output, PVrated represents the
power rating (W) under standard test conditions, G denotes the
solar irradiance (W/m2), TaT denotes the ambient temperature
(°C), and β is the temperature coefficient defined by
(−3.7 × 10 [1/°C]−3 ) [4, 54].

2.3.2 | Wind System Modeling

To compute the power output from the WT, the wind speed
value at the desired height is transformed to the WT hub height
associated with the power law equation in (2) [55].







V V

h

h
= .

α

2 1
2

1

(2′)

Here, V2 and V1 denote the wind speed at the WT hub height h2
(m) and at the desired height h1, respectively, with α repre-
senting the power law exponential.

Equation (3) was utilized to calculate the output power of the
WT [56].
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−
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−
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3

(3)

In this context, V (m/s) signifies the wind speed, Pr (kW)
represents the rated power, and Vin (m/s), Vo and Vr denote the

TABLE 2 | Technique for determining a hybrid energy system's reliability.

Reference Criteria Definition

[34] DPSP It is a reliability metric that measures the probability of the energy supply failing to
meet the demand, resulting from system malfunctions or insufficient generation from

RE systems.

[44] LHSP It is an indicator of the percentage of unmet heat demand in relation to the total heat
demand within the hybrid energy system.

[2] LPSP It is a frequently utilized method, which assesses probability of insufficient energy
supply meeting the load during the design of a hybrid system. It is computed as the
ratio of the deficits power supply to the load requested within specified timeframe.

[45] Renewable factor (RF) This is a metric indicating the ratio of energy provided by RE sources to the total load.
RF ranges from 0 to 1.

[46] EENS It represents the total amount of electricity the microgrid is expected to be unable to
supply within a given timeframe. This metric is used to assess the security of the

electricity supply.

[1, 47] Unmet load The proportion of the load that remains unmet in comparison to the total load over a
specified duration, usually 1 year.

Abbreviations: DPSP, loss of power supply probability; EENS, expected energy not supplied; LHSP, loss of heat supply probability; LPSP, loss of load supply probability.
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minimum, maximum, and nominal speeds of the WT,
respectively.

2.3.3 | Battery System Modeling

The battery is employed for storing excess generated power,
maintaining system voltage, and supplying power to the load
when the hybrid system produces deficient energy. Battery size
is influenced by factors like temperature, battery lifespan, and
maximum depth of discharge (DOD). The capacity of the bat-
tery is expressed in (4) [1, 18].

C
D L

V
=

×

× DOD × ɳ
,B

a d

B M B

(4)

where

• DODM, battery maximum depth of discharge,

• VB, battery's tension,

• Ld, electricity usage per day,

• Da, battery autonomy,

• ɳB, efficiency of the battery.

The charging and discharging status of the battery is repre-
sented using (5) and (6) [57].









t τ t

P t P t
P t

SOC( ) = SOC(1 − )( − 1) + ɳ

× ( ) + ( ) −
( )

ɳ
,

B

pv w
load

inv

(5)









t τ t

P t
P t P t

SOC( ) = SOC(1 − )( − 1) + ɳ

×
( )

ɳ
− ( ) + ( ) ,

B

load

inv

pv w

(6)

where

• τ: hourly discharge rate of the battery,

• ɳ :inv the inverter's efficiency,

• P :load the load demands,

• SOC: the battery's state of charge (SOC).

The battery's performance is influenced by three factors: the
presence of sustainable energy sources, the limits of discharging
and charging, and the DOD. It is important to state that the
battery's SOC must adhere to the specified constraints outlined
in (7), while the battery's status in terms of maximum and
minimum SOC is expressed by (8) and (9).

≤ ≤t t tSOC ( ) SOC( ) SOC ( ),m M (7)

V CSOC = × ,M B B (8)

V CSOC = (1 − DOD ) × ( × ).m M B B (9)

The battery power is given in (10):T
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The most effective hybrid solar–wind system can reach the ideal
equilibrium between its overall efficiency and system cost. The
cost‐efficiency strategy motivates reducing the overall expenses of
RES by focusing on key components, like, solar panels, batteries,
and WTs [58]. The approach includes minimizing capital invest-
ments, maintenance costs, and replacement costs throughout the
system's lifespan, which is expressed in (11) [58].

C C C C C= min{ + + + }.T pv w B other (11)

The initial step in the optimal sizing methodology for a PV–
WT MG involves gathering the energy demand and the mete-
orological information. This is followed by system modeling
that takes into account cost considerations and reliability.
Finally, an optimization technique is utilized for meeting sys-
tem configuration criteria.

3 | Optimization Approaches for PV–WT Systems

Optimizing PV–wind hybrid systems is essential for achieving
maximum efficiency, reliability, and cost savings while mini-
mizing environmental harm [58]. Previous research has inves-
tigated various optimization methods, ranging from traditional
techniques like linear programming (LP) to modern AI‐driven
methods, such as Particle Swarm Optimization (PSO) [1, 2, 58].
However, a significant gap exists in addressing the specific
challenges of standalone HRES in remote regions, where fluc-
tuating resources and the absence of a grid necessitate cus-
tomized solutions.

Optimization [59] is the process of identifying the most efficient
method to either maximize or minimize a problem's objective
formulation. For any given problem, optimization involves de-
termining the best approach to achieve this maximization or
minimization of the objective function. This function represents
the desired outcomes to be maximized or the undesired out-
comes to be minimized. Various optimization techniques have
been developed to tackle engineering problems within defined
constraints and conditions, enabling the identification of the
optimal strategy or conditions [60]. A mathematical relation-
ship exists between constraints, objectives, and decision vari-
ables, which aids in selecting the appropriate algorithm and
assessing the complexity of finding the best possible solution in
an optimization problem.

An optimization problem can be classified into distinct types
considering factors, like, the quantity of objectives, variable
types, constraints, optimization nature, equations, and problem
structure [61]. It is essential to emphasize that as the number of
optimization variables increases, the required simulations grow
exponentially, leading to a substantial rise in computational
time and effort for the optimization process. Hence, designers
must identify an effective optimization approach capable of
efficiently and accurately determining the optimal system
configuration. Research literature has documented various
optimization approaches for solar–wind systems, encompassing

modern and traditional approaches [58, 62, 63]. Nevertheless,
the present study classified optimization techniques into four
broad categories: traditional/classical, AI, software tool, and
hybrid techniques. Figure 4 gives a pictorial representation of
the classification of optimization techniques adopted in this
study. Utilizing these techniques allows the attainment of
optimal configurations that meet load requirements.

3.1 | Classical Optimization Technique

Traditional optimization techniques, including graphical,
probabilistic, analytical, and numerical methods, have histori-
cally been used for HRES sizing [64–74]. For example, graphical
techniques [64, 65] optimize PV and battery configurations
using long‐term weather data set but are limited to analyzing
only two variables, thus overlooking crucial parameters like WT
hub height or PV tilt angle. Probabilistic methods [66, 68]
account for uncertainties in solar and wind resources but often
fail to represent dynamic system behavior, potentially leading to
inefficient sizing in fluctuating conditions. Analytical tech-
niques [71–73, 75] offer fast calculations but struggle with
intricate, nonlinear systems. Lastly, numerical methods like
mixed‐integer linear programming (MILP) [76–79] are effective
for well‐defined scenarios but become computationally de-
manding for problems with multiple objectives.

3.1.1 | Graphical Technique

A graphical technique, proposed by [65], enables the identifi-
cation of the most suitable setup for an independent solar–wind
hybrid system by considering data sets of wind speed and solar
irradiation spanning over three decades, collected at hourly

FIGURE 4 | Typical procedure for optimizing the sizing of hybrid

systems [64].
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intervals. The electricity usage requirements, derived from the
typical consumption pattern of a standard household in Mas-
sachusetts, serve as the system's load requirements. The tech-
nique, designed to achieve a specified LPSP and given load,
computes the optimal arrangement in relation to the number of
PV modules and batteries, aiming to minimize system costs.
Reference [65] assumes a linear correlation among the overall
system cost, the number of PV modules, and batteries. The
intersection point on the curve representing this correlation
denotes the minimum cost, facilitating the computation of the
optimal setup for the PV array and battery bank.

Furthermore, a graphical technique was presented by [64] for the
best arrangement of a solar–wind power generation set. This
method considers the average monthly values of wind and solar
energy. Although both graphical methodologies concentrate ex-
clusively on two variables, either PV and battery or WT and PV,
in the optimization process, they neglect critical aspects such as
the installation height of WT and the slope angle of PV modules.

3.1.2 | Probabilistic Technique

The sizing approaches that incorporate probability considera-
tions for solar–wind systems account for the influence of fluc-
tuations in both solar irradiance and wind speed and are
considered during the system design phase. Probability‐centric
approach was introduced by [66] employing the LPSP technique
for standalone PV system design. This methodology allows for
the calculation of the least required sizes necessary for both the
storage capacity and PV system, guaranteeing a dependable
power supply to the demanded load. The quantification of power
supply reliability involves evaluating the total annual hours
during which the power demand of the consumer surpasses the
available PV supply. The research covers a duration of a year to
gather the SOC data of the battery. Afterward, the overall dis-
tribution function of the battery's SOC is determined, and the
LPSP is calculated as [1− (The cumulative time the battery SOC
exceeds the minimum)]. Studies akin to those in [67–69],

incorporating wind generators, have investigated an ideal battery
bank storage size in autonomous systems utilizing both PV and
wind power. Hourly data spanning a long duration regarding
wind velocity and solar irradiation is utilized to create the
probability density function (PDF) for hybrid generation. Sub-
sequently, the PDF for storage is determined based on the load
distribution in question. Ultimately, the battery bank size is
computed to guarantee the desired system reliability state using
the LPSP technique. Table 4 shows a selection of the articles that
implemented probabilistic techniques.

3.1.3 | Analytical Technique

An analytical technique was utilized in [72] to integrate factors
such as the likelihood of loss, clarity index, and power con-
sumption, and the cost per unit of each component within the
system. Furthermore, its accuracy and feasibility were demon-
strated in a separate study [75]. Additionally, it necessitated
substantial meteorological data and provided a quick processing
time, combined with simplified calculations [73]. However, the
process of estimating the position coefficient of the mathemat-
ical equation using this particular technique presented a sig-
nificant challenge [74]. Table 5 shows some of the articles that
implemented analytical techniques.

3.1.4 | Numerical Approach

System design using numerical techniques relies on mathe-
matical analysis and computations, considering uncertainties
related to power sources. The power balance of the system has
the potential to be simulated on a daily or hourly basis [70].
Acquiring extended meteorological data time series is essential
for calculating the output energy from the PV panel, and the
wind power setup is good for evaluating the battery capacity.
Common numerical methods for optimizing the size of HRESs
include techniques that repeat calculations, random and fixed
methods, and MILP [76]. These techniques are employed to

TABLE 4 | List of some of the works that implemented probabilistic approach of size optimization.

Reference System elements Objective Description

[80] Islanded PV/
battery grid

LCC and LPSP The available solar irradiance to the PV was modeled, and the
calculation of the generated power was carried out, followed by an

assessment of the battery charge.

[81] Islanded PV LCOE and LPSP Taking into account the probabilistic fluctuations in demand and the
locations meteorological conditions, size optimization was

accomplished by reducing the objective functions.

[82] PV/WT/DG/
battery

EENS and NPV A mixture of probabilistic methods, including Monte Carlo
simulation and ANN, is employed. The main constraints for

developing the optimization model are the uncertainties in solar
irradiance, wind speed, fuel prices, and battery life, with the objective

functions taken into account.

[83] PV–WT LPSP The size optimization of the MG in a Hong Kong location is detailed
using hourly meteorological data, with the objective function serving

as the reliability parameter.

Abbreviations: ANN, artificial neural network; DG, diesel generator; EENS, expected energy not supplied; LCC, life cycle cost; LCOE, levelized cost of energy; LPSP, loss of
load supply probability; MG, microgrid; NPV, net present value; PV, photovoltaic; WT, wind turbine.
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enhance the sizing of various components, including solar PV,
WT, FC, electrolyzes, and storage devices, to accomplish zero
energy shortfalls, minimize system expenses, and ensure a con-
sistent electricity supply. For instance, in [71], researchers utilized
an iterative method to minimize the gap between the produced
and required power within a defined timeframe. The study fo-
cused on optimizing the capacity of the PV panels, its optimal tilt
angle in a PV–battery system implemented in Oman.

Many research studies have used LP methods to improve the
sizes of self‐operating HRESs with solar panels and WTs [77].
Additionally, reference [78] utilized a deterministic optimiza-
tion method called MILP to determine the optimal configura-
tion of PV–WT–BS–DG while minimizing the levelized cost of
energy (LCOE) over a 20‐year period. The optimal system, ac-
cording to the results, consists of 90% RE sources.

Furthermore, the researchers in [79] introduced a technique that
utilizes MILP and a precise method to identify the best size and
placement of the PV and WT system components, considering
the energy requirements at points of consumption. The optimi-
zation's objective function aims at minimizing the initial cost of
the system, which also serves as a factor for evaluating the sys-
tem. The research concluded that optimizing both the location
and size contributes to reducing the initial investment costs.

3.1.5 | Overview and Assessment

Traditional optimization techniques utilize mathematical
models for seeking the best overall solution in a predictable
manner, but they encounter challenges when dealing with
complex environments involving a high quantity of variables. In
contrast, numerical techniques that provide approximate solu-
tions are commonly utilized. For example, when optimizing the
size of HRESs, numerical techniques like iterative optimization,
stochastic and deterministic approaches, and MILP are fre-
quently employed. Additionally, graphical and probabilistic
approaches have been utilized. Research has been dedicated to

optimizing the size of islanded PV/WT/FC HRES to meet power
needs, with objectives including reducing overall capital ex-
penditure, lowering the LCOE during a 20‐year lifespan, and
minimizing the initial system expenses. These optimization
methods allow for the adjustment of the prime configuration of
the hybrid system based on load demand and location.

3.2 | Simulation Tool Technique

Software tools like HOMER, iHOGA, and RETScreen are pop-
ular for HRES optimization due to their user‐friendly interfaces
[16, 17, 88–95]. For instance, HOMER has been used to size PV–
wind systems in the UAE and Ethiopia [89, 90], but its lack of
calculation transparency restricts customization [74]. Similarly,
while iHOGA is good for multiobjective optimization, it does
not handle probabilistic study [95]. RETScreen, applied in
studies like [93, 94], facilitates quick feasibility studies but is
less effective for dynamic, standalone systems. Figure 5 high-
lights some of these popular software options [96].

HOMER software, created by the National Renewable Energy
Laboratory, is commonly utilized for the analysis and design
of MG and off‐grid power systems [97–99]. It assists users in
optimizing energy system configurations by taking into account
various factors like RESs, storage technologies, and conven-
tional generators. By inputting data on energy resources, load
profiles, and economic parameters, users can determine the
most economical and reliable solution for their specific
requirements. HOMER holds significant value for engineers,
researchers, and decision‐makers involved in the design and
improvement of decentralized power systems [100].

Researchers have utilized the HOMER software for various
studies, including determining the optimal dimensions for a
PV–wind MG in the western region of the UAE and Saudi
Arabia [89, 91]. Additionally, the software was utilized in
assessing the feasibility of a self‐sufficient PV–wind–hydro
setup deployed in Ethiopia, demonstrating its ability to supply

TABLE 5 | List of some of the works that implemented the analytical technique of size optimization.

Reference System components Objective Description

[84] Autonomous PV system Size optimization is performed in light of two climate cycles.
The sizing curve is derived by superimposing the sizing lines

corresponding to each climate cycle. An exponential
function is applied to fit the sizing curve and determine the

system size.

[85] PV–battery LCC, COE, and LPSP The prime configuration of PV size and battery capacity was
ascertained based on the defined objective functions.

[86] PV/biomass/biogas/
micro hydro

COE, EENS, and EIR The selection of various components in the MG system is
based on the demand and the availability of each energy
source. Optimization was performed by minimizing the

objective functions.

[87] PV/battery LCOE A technoeconomic model for the size optimization of the
system for a location in Italy is presented. The system cost
optimization was performed by minimizing the objective

function.

Abbreviations: COE, cost of energy; EENS, expected energy not supplied; EIR, effective interest rate, LCC, life cycle cost; LCOE, levelized cost of energy; LPSP, loss of load
supply probability; MG, microgrid; PV, photovoltaic.
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energy to remote locations [88, 90]. However, a drawback was
identified in the software's lack of transparency in the calcula-
tion process, limiting users from adjusting the details of the
system parts [74].

In a different study, researchers used the HOMER to look into
whether a standalone hybrid solar, DG, and battery system
would be viable for Pratas Island in Taiwan. Additionally, the
authors used the HOMER software to look at the RE sources in a
certain location, assessing the costs, technical aspects, and en-
vironmental impacts of various power options. Another research
study focused on technical and economic considerations of a PV/
DG/battery setup for households in Nigeria, utilizing HOMER
optimization software to enhance the system's efficiency [101].

The HOMER software has been widely recognized for its
capabilities in optimizing and analyzing various RE systems,
rendering it an invaluable resource for scholars and profes-
sionals in the field of sustainable energy.

The iHOGA and MHOGA are distinct variations of the HOGA
software, created by scholars affiliated with the Zaragoza Uni-
versity in Spain [102]. These versions, constructed using C++,
are customized specifically for simulating and optimizing power
generation setups that focus on utilizing RESs. The iHOGA
software is suitable for power systems with capacities ranging
from a few watts to 5MW, while the MHOGA software was
specifically developed for power systems in the MW range
without any limitations [92].

In a study referenced [95], the HOGA software was utilized to
optimize a self‐sustaining PV/WT/battery system. The HOGA
technique enabled simultaneous sensitivity analysis. However,
it is crucial to emphasize that this specific application did
not take into account the net measurements and probability
analysis [37].

Another study referenced as [103] utilized iHOGA software to
perform the optimization of single or multiple objectives of
HRES for a standard residential complex in France. The mul-
tiple objective optimizations are intended to decrease emissions
and unfulfilled energy requirements while maintaining a
slightly higher NPC in contrast to the single goal of reducing
only the NPC.

Furthermore, in a different context, iHOGA software was
applied to optimize an HRES for the inhabitants of Mucura
island, showing the potential to reduce operational expenses by
minimizing reliance on fuel, optimizing the use of local RESs,
and guaranteeing year‐round power accessibility. The findings
highlight the possibility of ecofriendly and financially feasible
energy alternatives [104].

The HYBRID2 software package is designed to facilitate de-
tailed analysis of the long‐lasting effectiveness and financial
viability of different energy setups. It offers a user‐friendly
interface and utilizes a computer model based on probabilistic/
time series analysis. It integrates time series data for
wind velocity, temperature, solar intensity, and loads with the

FIGURE 5 | Optimization technique classification [88–94]. ABC, artificial bee colony; ANN, artificial neural network; CS, chaotic search; DCHSSA,

dynamic crowding hybrid salp swarm algorithm; GA, genetic algorithm; GSA, gravitational search algorithm; HOMER, hybrid optimization model for

electric renewable; MILP, mixed‐integer linear programming; NILP, nested integer linear programming; PSO, particle swarm optimization.
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user‐defined energy system [105]. It has the capability to
accurately forecast the performance of a power system inte-
grating different sources of energy. It considers variations in
load demand and wind data within each time step, allowing for
more precise performance predictions.

The RETScreen energy management software platform provides
a comprehensive solution for low‐carbon planning, execution,
monitoring, and reporting. People widely use it to quickly assess
and calculate PV electricity generation and other RE systems
[106]. The software has been employed in various studies and
feasibility assessments, showcasing its versatility and effective-
ness in evaluating RE projects.

In a study referenced as [93], the significant variations in utilization
and outcomes of three well‐known free tools, including RE-
TScreen, PV Geographical Information System, and PVWatts, were
examined. People commonly use these tools for rapid approxima-
tions and computations related to PV electricity generation.

In a study referenced as [94], the RETScreen software was
deployed to assess the potential of a PV/bioenergy/WT/hydro-
gen storage setup for Al‐aroub Technical College in Palestine.
The results from the simulation clearly indicated that the
HRES, which comprises PV, bioenergy, and a small‐scale FC
generator, is more economically viable for the school. Addi-
tionally, the RETScreen software was utilized to evaluate four
distinct scenarios concerning the implementation of PV systems
in neighborhoods, in light of new regulations [107]. The tool
was also used to determine the optimal scale for RES in two
varied problem situations, encompassing both instances with
and without subsidies for RES [108].

The results from these studies highlight the diverse applications
of the RETScreen software in assessing the financial and eco-
logical consequences of RESs, making it a precious tool for
sustainable energy strategy and execution.

In summary, this section covers five categories of software tools
for HRES: pre‐viability, dimensioning, modeling, and flexible
design investigation tools. It also provides an overview of soft-
ware tools suitable for research studies on HRES, particularly
those involving RE components. Additionally, the article incor-
porates case studies that employ diverse software applications
like HOMER, RETScreen, HYBRID2, integrated simulation en-
vironment language (INSEL), and iHOGA to improve the tech-
nical and financial performance of HRESs.

3.3 | AI Technique

AI‐based techniques, such as Genetic Algorithms (GA), PSO, and
Cuckoo Search (CS), have become increasingly popular for tack-
ling complex, nonlinear optimization problems [25, 109–111]. For
example, GA has been used to optimize PV–wind systems con-
sidering both LPSP and cost [112], while PSO was applied in
Saudi Arabia for sizing remote HRES [111]. Recent research
(2023–2024) further highlights AI's capabilities, with the Fire
Hawk Optimizer showing superior performance to PSO in Turkey
[90] and the Chameleon Swarm Algorithm optimizing standalone
systems in China [113]. Nevertheless, these studies often

concentrate on optimizing a single objective or on grid‐connected
systems, with limited focus on multiobjective frameworks
for standalone HRES [114–116]. Methods of AI, like, ANN, GA,
and Fuzzy Logic, are extensively employed to improve the effi-
ciency of hybrid systems with the goal of maximizing their
financial benefits [117].

Researchers utilized Typical Meteorological Year data to pro-
pose a sizing technique that is optimized using GA [112]. The
aim of this optimization framework was to compute the best
system that can attain the intended LPSP while reducing the
TAC of the system. The scholars introduced two optimization
variables that are typically not considered: the elevation of the
WT and the tilt angle of the PV panel array.

Another study presented an optimization scheme that utilizes
the CS technique for energy management and optimal config-
uration of an MG [110]. The study introduced a proposed sys-
tem that combines PV and wind power sources with battery
storage and a DG. The Multiobjective Particle Swarm Optimi-
zation method was utilized in identifying the optimal arrange-
ment of MG for an electrification project in Iran [25].
Additionally, a study conducted in Saudi Arabia employed PSO
to ascertain the best system arrangement, which included PV/
wind/DG integration and a backup battery system, for a remote
area. The results obtained from this approach were compared
with those from an iterative technique used to evaluate the
effectiveness of the suggested method [111]. Ant Colony Opti-
mization (ACO) stands out as a strong competitor for mini-
mizing TAC in various setups that include PV technology, WT
generators, DG, and battery banks [118]. The mine blast algo-
rithm (MBA) demonstrates its adaptability by efficiently tack-
ling the minimization of TAC in systems combining PV/WT/
DG/FC and hydrogen tank technologies [8]. The Preference‐
Inspired Coevolutionary Algorithm is good at reducing both the
Annual Cost of Supply and LPSP, while also minimizing fuel
emissions in configurations involving PV/DG/WT/battery sys-
tems [119]. The Improved Escaping‐Bird Search Algorithm
(IEBSA) was utilized to determine the best configuration for PV,
WT, and battery systems [120]. This optimization process fo-
cuses on reducing energy losses, increasing the voltage profile,
taking into account the associated system costs, and improving
the Energy‐Not‐Supplied (ENS) index [119]. The Harris Hawk
Optimization technique was employed to discover the most
optimal design for the HES, with a primary focus on reducing
the Annual Supply Cost (ASC) and improving the reliability of
the power network [52]. The Improved Fruit Fly Algorithm
proves to be effective in dealing with cost and emissions con-
cerns within PV/WT/DG/battery systems [121]. A neural net-
work (NN) shows it can effectively lower the chances of losing
power supply in PV/WT/battery/utility grid systems [122]. The
NN algorithm, inspired by ANNs, has demonstrated exceptional
global search capabilities [123]. Incorporating the MBA [124]
introduces a fresh perspective in minimizing the ASC for PV/
WT/FC systems compared with other metaheuristic techniques.
Research incorporating the Crow Search Algorithm [125, 126]
highlights its emphasis on minimizing NPC while considering
constraints, such as Energy Loss Fraction and COE. The Im-
proved Firefly Algorithm [125] tackles the challenges of mini-
mizing ASC and reducing CO2 emissions within a configuration
consisting of PV/WT/DG/battery. Using the Flower Pollination
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Algorithm in PV/WT/FC systems [127] focuses on reducing
NPC, Loss of Load Expectation, and Loss of Energy Expectation,
providing a thorough evaluation of how well the system works.
Using the Grasshopper Optimization Algorithm (GOA) in PV/
WT/battery/DG systems [34] focuses on improving the COE
and the likelihood of Diesel Power Supply (DPSP), highlighting
the need to consider both costs and how reliable the system is.

Furthermore, an analysis was carried out to assess the efficiency
of the Improved Artificial Bee Colony (IABC) in comparison to
other techniques, such as ABC and ABC–ABC. The comparison
findings demonstrated that the suggested technique is the most
efficient approach for identifying optimal bidding parameters
that satisfy the demand at a reduced fuel cost. The effectiveness
of the GOA in dealing with an optimization challenge was
illustrated. The authors applied GOA to an autonomous MG
setup to identify the best system configuration capable of reli-
ably meeting energy demands. The optimization focused on two
criteria: the COE and the probability of power supply defi-
ciency. Simulation results affirm that, when compared with
alternative algorithms, such as CSOA and PSO, GOA demon-
strates the ability to optimally size the system [34]. A different
study proposed a PSO method to optimize the operation of
HRE‐based MGs while considering reserve margins for critical
loads. This marks the first study of its kind to investigate reserve
margins for critical loads and suggest that surplus RE should
exclusively charge batteries [128]. Another study carried out an
optimum configuration of a hybrid system integrating PV, WT,
and FC to meet the energy requirement for a case study in
Egypt using a modified version of the Ruddy Turnstone algo-
rithm. The results from this study were compared with those
using the Hybrid Firefly/harmony search (HS) technique [113].

An analysis of the technoeconomic feasibility of sizing grid
configurations for HRE systems was conducted in Turkey. The
study, conducted using Python and three metaheuristic algo-
rithms (Fire Hawk Optimizer, PSO, and Gray Wolf Optimizer),
concludes smaller systems are deemed more appropriate for
systems with stringent limitations. Additionally, it suggests that
the Fire Hawk Optimizer is usable for solving optimal power
distribution and optimal system dimensioning problems.
Overall, the study emphasizes the significance of system size in
relation to constraints and highlights the potential applicability
of the Fire Hawk Optimizer in addressing optimal power flow
and system sizing challenges. However, the results of the sug-
gested technique slightly outperformed those of the Hybrid
Firefly/HS technique in terms of cost [129].

Lastly, a framework for designing the optimal size and evalu-
ating the cost benefits of a standalone HRE MG system utilizing
the chameleon swarm algorithm was proposed by researchers.
They intended to provide power to a rural area in northeastern
China [115]. Another study examined the optimal dimensioning
of a rural MG system utilizing a two‐stage stochastic program-
ming approach that incorporates a scenario‐based method,
taking into account more than one energy system and various
EV technologies involved in operations involving grid and
vehicle interactions [130]. Additionally, the implementation of
a modified cuckoo search optimization technique was carried
out to ascertain the ideal dimensions of components for an HES
that integrates PV/WT/DG/battery systems for an isolated

region. The primary objective was to reduce the COE and the
probability of load loss [131].

In summary, a diverse range of optimization methods has been
utilized to enhance HRES, integrating both PV and WT tech-
nology. These optimization techniques encompass classical
methods, software tools, AI, and hybrid optimization approaches.
While traditional methods are linked with disadvantages like
inflexibility and lengthy calculation times, AI techniques like
PSO, GA, and HS have been employed to enhance the efficiency
of solar and wind energy. These optimization methods have
played a great role in reducing costs, CO2 emissions, and opti-
mizing the dimensions as well as operational approaches of PV/
WT/battery storage systems. Additionally, a variety of optimiza-
tion techniques have been introduced in determining the optimal
scale of HRES with a focus on reducing the total system costs and
also meeting reliability conditions.

3.4 | Hybrid Technique

Hybrid techniques integrate multiple optimization methods to
capitalize on their advantages and compensate for their limitations
[132]. For instance, the GWCSO achieved lower NPC and LCOE
compared with using Gray Wolf Optimization (GWO) alone [111],
while a hybrid Simulated Annealing–Tabu Search (SA–TS)
approach outperformed individual methods in minimizing cost
[133]. Recent progress includes the Particle Swarm Optimization–
Gravitational Search Algorithm (PSO–GSA) for MG energy trad-
ing [120] and the Dynamic Crowding Hybrid Salp Swarm Algo-
rithm (DCHSSA) for PV–wind sizing [134]. However, despite
these advancements, hybrid techniques are seldom applied to
standalone HRES in remote areas, where multiobjective optimi-
zation is particularly important [8, 112, 117]. In their study [19],
researchers applied a hybrid GWCSO technique to attain the best
configuration for a grid‐connected MG. The GWCSO approach
outperformed the GWO algorithm, showcasing reduced total
component units, annual cost, NPC, and LCOE. Additionally, the
GWCSO algorithm displayed minimal deviation, underscoring its
heightened accuracy and robustness compared with the GWO
algorithm.

Another study [134] performed a technoeconomic evaluation of
PV energy connected to the grid. The system aimed at fulfilling
the electricity demands of a designated area by the Centre for
Solar Energy Research and Studies in Tripoli, Libya. The
research employed a hybrid methodology that integrated the
Binary Bat Algorithm (BAT) and ABC algorithms. Harmony‐
search‐based simulated Annealing is a strong choice for low-
ering the LCC in systems that use solar panels, WTs, hydrogen,
and batteries.

Furthermore, researchers combined SA and TS to optimize the
sizing of an independent energy system [133]. Their goal was to
minimize energy costs by considering various design variables,
like, WT, PV setups, DG, FC, batteries, converters, and dispatch
strategies. The authors found that the hybrid SA–TS approach
outperformed using SA or TS individually, resulting in im-
proved solutions in terms of quality and convergence. In their
investigation [135], researchers presented an optimal design
methodology aimed at determining the ideal quantity of PVP,
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WT, and batteries in a hybrid system. The aim was to reduce the
aggregate yearly expenses of the system while adhering to
specific limitations. To achieve this objective, the researchers
integrated three algorithms: chaotic search, SA, and HS. This
combination led to the creation of a new hybrid algorithm
termed the discrete chaotic harmony search‐based simulated
annealing algorithm (DCHSSA).

Other researchers proposed a hybrid fuzzy adaptive GA to
optimize the configuration of a HES integrating PV, WT, and a
battery backup system [136]. Historical hourly data were used
to stochastically model the PV generation, WT and energy
demand. The hybrid approach provided an optimal quantity of
PVP, WT, and storage units, ensuring minimal system costs and
satisfying the load demand. A nested integer linear program-
ming technique was proposed by [137] to compute for the ideal
configuration of a nanogrid system for a residential estate in
Kano State, Nigeria. This technique effectively addressed the
complex computational challenges encountered by the MILP
technique. Genetic Algorithm Particle Swarm Optimization has
gained acceptance for its ability to minimize the NPC in PV/
WT/battery systems [135]. Hybrid approaches, such as com-
bining GA with PSO [122], and utilizing the CS algorithm
alongside GA and PSO [138], showcase the potential synergies
in optimizing the NPC and LPSP. Hybrid GWCSO is utilized to
ascertain the optimal sizes of PV/WT/biomass gasifiers/batte-
ries/DG with a focus on minimizing the TAC [52].

Lastly, a proposed technique, the PSO–GSA technique, is a new
hybrid optimization technique that combines the capabilities of
PSO and GSA to tackle the intricacies and uncertainties asso-
ciated with MG energy trading. Figure 6 depicts the current
sizing methods utilized for independent HRES [120].

In summary, researchers have utilized hybrid techniques to
optimize energy systems, combining techniques such as
GWCSO, BAT, ABC, SA, TS, and hybrid fuzzy adaptive GA.
These approaches aimed overcoming the limitations of indi-
vidual algorithms and achieving improved results in configur-
ing PV, WT, and battery systems, as well as addressing the
complexities of MG energy trading.

3.5 | Knowledge Gap and Novel Contribution

The existing literature highlights a significant gap in optimizing
standalone PV–wind HRES for remote areas. The majority of

studies concentrate on grid‐connected systems or optimizing a
single objective, often overlooking the multifaceted requirements of
standalone systems, such as balancing cost, reliability, and emis-
sions [1, 5, 11]. Furthermore, despite the rising popularity of AI and
hybrid techniques, their application to remote HRES remains lim-
ited. Few studies address the customization challenges of software
tools or the dynamic characteristics inherent in standalone systems
[18, 114]. While recent reviews (e.g., [36, 39, 41, 96, 139], cover
HRES optimization broadly, they lack a specific focus on standalone
systems in remote regions (Table 6).

The novelty of this review lies in its specific focus on standalone
HRES, where it integrates AI‐driven hybrid techniques with
traditional techniques to tackle the unique challenges of remote
areas. By offering a roadmap for future research, including the
exploration of emerging algorithms like the Fire Hawk Optimizer
[129], this study aims at advancing sustainable energy solutions
for remote regions. Table 7 shows the existing gaps in previous
studies, with recommendations for further improvement.

4 | Discussion on Optimization Techniques

This review presents concise methodologies for sizing hybrid
PV–wind systems. These approaches consider diverse needs,
encompassing criteria, conditions, and the execution procedure.
Furthermore, they incorporate mathematical representations of
PV systems, WT, and battery storage. The design of HRES in
this study employs a multitude of well‐established optimization
approaches. It is well known that the growing complexity of
optimization problems within the sustainable power system
arises from the increased integration of diverse RESs.

Optimization techniques are classified into four categories: tra-
ditional, simulation software tool‐based, AI, and hybrid tech-
niques. While traditional methods follow a rigorous process, they
have certain drawbacks such as inflexible iterations, slow con-
vergence speed, computational time requirements and limited
ability to handle dynamic changes. On the other hand, the
modern approach which is subclassified into three: demonstrated
a higher speed and flexibility compared with the traditional
techniques, offering an efficient convergence speed, and effective
global search solutions. To provide a clear and comprehensive
understanding, a detailed breakdown of all optimization meth-
ods, including their respective strengths and weaknesses, is
presented in Table 4. The results indicate a growing acceptance
and utilization of modern techniques in recent literature.

FIGURE 6 | Existing size optimization techniques for the hybrid renewable energy system [76].
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The review further highlights that approximately a decade ago,
conventional methods, including graphical, iterative, probabilis-
tic, and analytic approaches, held considerable popularity. Yet,
due to their constraints, they have significantly declined in usage
among researchers. Presently, the predominant focus revolves
around leveraging AI‐based nature‐inspired metaheuristic and
heuristic techniques, like, SA, GCA, TS, BBO, GA, HS, ACO,
ICA, and so forth, to optimize hybrid PV–wind systems. Among

these AI‐driven techniques, GA stands out as the most frequently
utilized approach. However, when dealing with complex issues, a
basic AI algorithm might prove inadequate in arriving at the
target solution and may encounter challenges in achieving a
satisfactory result. This situation underscores the importance of
effectively hybridizing more than one technique. The application
of hybrid techniques has been shown to enhance reliability
and improve accuracy. By incorporating hybrid techniques,

TABLE 6 | Merits and demerits of some optimization techniques.

Type Technique Advantages Drawbacks

Traditional Iterative Is simple to implement Ignored some important parameters, for
example, PV tilt angle. Typically leads to
higher computational demands and less

than optimal outcomes.

Probabilistic Simple to use and eliminate the
requirement for time series data

Incapable of showcasing the dynamic
capabilities of the hybrid system.

Graphical The optimization process can only
incorporate two parameters.

Analytical/
numerical

Rapidly Low flexibility.

Software tool HYBRID2 The models are characterized by It necessitates a higher level of
understanding of the system configuration

HOGA Can be single or multiobjective
their comprehensive optimization

variables

Artificial
intelligence

PSO, GA, CS, ABC,
MSCS, and SAO

Efficiency, adaptability,
customization, Fast response, can

solve complex problem

Complexity, data dependency, and cost

Hybrid MOPSO–ABC
FAPSO

Solve a multiobjective and
complex tasks

Abbreviations: ABC, artificial bee colony; CS, chaotic search; FAPSO, firefly algorithm and particle swarm algorithms; GA, genetic algorithm; HOGA, hybrid optimization
using genetic algorithm; MOPSO, multiobjective particle swarm optimization; MSCS, multi‐strategy cuckoo search; PSO, particle swarm optimization; PV, photovoltaic;
SAO, smell agent optimization.

TABLE 7 | Comparison of existing studies with our review.

Study System type
Optimization

focus Key method Limitations Recommendation

[1] Grid‐
connected HRES

Cost
minimization

Classical,
software tools

Limited to single‐
objective, urban

focus

Multiobjective
framework, standalone

focus

[5] Grid‐
connected HRES

Technoeconomic
analysis

HOMER and GA Ignores remote
applications

Tailored to remote
areas, hybrid AI

integration

[19] Grid‐connected MG Cost and
reliability

GWCSO Limited to grid‐
connected systems

Applies GWCSO to
standalone systems

[129] Grid‐connected MG Power flow and
sizing

Fire Hawk
Optimizer

Single‐objective
focus

Multiobjective, remote
HRES emphasis

Present
study

Standalone PV–WT Cost, reliability,
and emissions

Hybrid AI,
traditional

N/A Comprehensive
framework, remote

focus, and
multiobjective

Abbreviations: AI, artificial intelligence; GA, genetic algorithm; GWCSO, gray wolf–cuckoo search optimization; HOMER, hybrid optimization model for electric
renewable; HRES, hybrid renewable energy system; MG, microgrid; PV, photovoltaic; WT, wind turbine.
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researchers have observed accelerated convergence rates and
achieved a more accurate result.

Despite the inherent complexity of single algorithms, there is a
noticeable rise in the application of hybrid algorithms in the
study of PV–wind hybrid systems. Understanding these hybrid
algorithms is important for future research, as it seeks to
address the challenges and complexities involved in combining
and designing hybrid systems.

Furthermore, various supplementary algorithms, including the
Bat algorithm [140], CS [141], Chaotic Ant swarm optimization
[142], Firefly algorithm [143], Cultural Algorithm [142],
Memetic Algorithm [144], smell agent algorithm [145–147], and
multistrategy serial CS algorithm [148], alongside other nature‐
inspired methodologies, have demonstrated the ability to solve
diverse optimization problems. These techniques have the
prospect of contributing to the progression of future research in
optimizing HESs reliant on RESs.

While traditional optimization techniques such as LP are reli-
able for smaller systems, AI‐based approaches like GA out-
perform them in larger, more complex systems due to their
ability to handle nonlinearities and multiobjective functions.
For example, hybrid approaches like Gray Wolf Cuckoo Search
show a 25% improvement in convergence speed when opti-
mizing multisource energy systems. However, there are still
challenges with the computational complexity, highlighting the
need for more efficient hybrid algorithms.

5 | Conclusion

In this study, a comprehensive review of optimization tech-
niques for hybrid energy systems was presented, specifically
focusing on solar PV and WT combinations. It shows that the
growing complexity of HRES requires sophisticated optimi-
zation methods to address the challenges of intermittent
resource availability, cost management, and system reliability.
While traditional optimization methods like graphical, prob-
abilistic, and analytical techniques played a crucial role in
early developments, they have largely been replaced by more
advanced approaches.

The emergence of AI‐driven optimization algorithms, such as
PSO and GA, has significantly enhanced the ability to efficiently
explore large solution spaces and manage complex, multi-
objective optimization problems. Additionally, hybrid algo-
rithms, which combine strengths from multiple techniques,
have demonstrated superior performance in terms of conver-
gence speed, solution accuracy, and handling the complexities
of PV–WT system design. This study shows that hybrid tech-
niques, such as the GWCSO and PSO–GSA, offer enhanced
capabilities for managing the intricate balance between cost,
reliability, and environmental considerations. It also high-
lighted that while software tools like HOMER and RETScreen
are indispensable for practical applications, they have certain
limitations, such as lack of flexibility in system customization.
To address this, researchers have increasingly turned to hybrid
and AI techniques, which allow for more tailored optimization
and decision‐making in real‐time applications.

In conclusion, the future of HRES optimization lies in further
development and application of hybrid algorithms that integrate
AI with traditional methods, along with advancements in com-
putational power and data availability. These techniques not only
promise more efficient, reliable, and cost‐effective solutions but
also open the door for innovations in smart grid and MG con-
figurations. However, technical complexity and the need for
specialized knowledge continue to be barriers to widespread
adoption, indicating a need for further research focused on
simplifying these advanced techniques for broader use.

5.1 | Limitations and Future Directions

Although this review thoroughly examines optimization meth-
ods for independent solar PV–wind HRES, mainly for remote
areas, it has some limitations. First, it only focuses on standa-
lone systems and the results might not directly apply to HRES
connected to the grid or MG in cities. While this study fills an
important gap in the current research, it is obvious that the
proposed framework might not be suitable for all types of
systems. Second, since the review utilizes information and
results from other studies, there is a likely chance of bias. This
is because the reviewed studies may have used different
methods, looked at systems of different sizes, and been con-
ducted in different environments. Third, even though the
review highlights AI and hybrid algorithms, it does not include
new experiments or detailed simulations for specific situations.
This could have provided more evidence on how well the pro-
posed framework operates.

Addressing these limitations will enable future research to
build upon this review, leading to more robust, adaptable,
and evidence‐based optimization frameworks for HRES. The
present study intends to accelerate the implementation of
sustainable energy solutions, especially in remote commu-
nities, and provide global energy equity and environmental
sustainability.
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