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Abstract—The availability of location information has 

become a key factor in today’s communications systems 

allowing location based services. In outdoor scenarios, the 

mobile terminal position is obtained with high accuracy 

thanks to the Global Positioning System (GPS) or to the 

standalone cellular systems. However, the main problem of 

GPS and cellular systems resides in the indoor environment 

and in scenarios with deep shadowing effects where the 

satellite or cellular signals are broken. In this paper, we 

survey different technologies and methodologies for indoor 

and outdoor localization with an emphasis on indoor 

methodologies and concepts. Additionally, we discuss in this 

review different localization-based applications, where the 

location information is critical to estimate. Finally, a 

comprehensive discussion of the challenges in terms of 

accuracy, cost, complexity, security, scalability, etc. is given. 

The aim of this survey is to provide a comprehensive 

overview of existing efforts as well as auspicious and 

anticipated dimensions for future work in indoor 

localization techniques and applications.       

Index Terms—localization, cooperative localization, hybrid 
data fusion, SLAM, cooperative navigation, fundamental 
limits, signals of opportunity,  ultra-wideband (UWB), game 
theory, coalition games, wireless sensor network (WSN) and 
location-based services (LBS). 

I. INTRODUCTION 

Modern communications systems aim at providing high data 
rates with ubiquitous service coverage. Nowadays, the 
availability of the Mobile Terminal or Unlocated Device (UD) 
location information at the base stations, i.e. its knowledge by 
the operators, has become a key factor in enabling 
communications systems to provide new location based 
services [1].  
Practical localization techniques are based on Time of Arrival 
(ToA), Time Difference of Arrival (TDoA), Received Signal 
Strength (RSS) and Angle of Arrival (AoA). In outdoor 
scenarios, the UD position can be obtained with high accuracy 
from Global Navigation Satellite Systems (GNSS), such as the 
Global Positioning System (GPS), or from the standalone 
cellular systems. However, these positioning systems are 
severely degraded or may fail altogether in indoor 

environments where the satellite or cellular signals are 
interrupted, and in scenarios with deep shadowing effects [2].  
Various approaches and methodologies have been proposed to 
deal with these problems. Hybrid positioning is a well-known 
approach for positioning that exhibits sufficient accuracy and 
coverage [3]. In this respect, combined localization approaches 
are extensively proposed in the literature to solve the hearability 
problem in indoor scenarios.  
Another potential candidate for critical scenarios consists of the 
class of heterogeneous approaches that combine different radio 
access technologies (such as cellular systems like 3G and 4G, 
WLAN, and WiMAX), as shown in Figure 1. Indeed, 
techniques based on combinations of cellular and WLAN 
networks have recently received increasing interests from both 
the localization and communication communities [4][5]. This is 
not only due to the request made by Federal Communication 
Commission (FCC) regarding the accurate localization of the 
UDs, but also because of the many applications that are location 
sensitive such as billing, fleet management, and mobile yellow 
pages [6].  
Although any positioning techniques could be exploited in 
indoor scenarios and homogeneous networks, there are 
practical limits on the combination of these techniques as well 
as on the minimal number of anchor nodes (AN) that can be 
used in such scenarios [7]. For instance, in many cases, only 
one or two ANs are able to communicate with the UD. Hence, 
new techniques based on hybrid data fusion and/or 
heterogeneous access are proposed and analyzed in this case. 

 
Figure 1. Heterogeneous Scenario (AP: stands for access point, BS stands for 

Base Station) 

In this paper, we provide a review on recent techniques and 
concepts used to improve localization with their fundamental 
limits, challenges and applications with a particular focus on 



 
 

2 
 
 

indoor environments. Although reviews on localization 
techniques are available in the literature [8]-[15], these are 
either narrow in focus or have been overtaken by significant 
technological advances. Thus, the survey in [12] is somewhat 
outdated, whereas the authors of [8] focus only on ultrasonic 
positioning systems. The work in [10] describes relatively 
recent localization techniques but does not explore the future 
trends, challenges, and applications. The works of [13] and [14] 
review various technologies, such as WLAN, used for indoor 
positioning in addition to different positioning technique with 
the metrics used to assess the performance, such as the 
estimation accuracy of positioning. However, they do not 
discuss positioning neither from the perspective of energy 
efficiency nor from the perspective of a requirement in recent 
applications, such as ambient assisted and health living 
applications. Additionally, they do not explore advanced 
methodologies used to enhance localization, such as 
cooperative localization and data fusion techniques. The survey 
in [15] provides remarkable classification of different 
fingerprint-based outdoor localization approaches, discussing 
how each method works. So, we aim to present a survey that is 
restricted neither for fingerprinting-based techniques nor for 
outdoor localization. As well, the rapid evolution of 
methodologies and technologies in this domain and the need for 
a comprehensive and up-to-date survey of the approaches, 
applications and future trends, provide the motivation for this 
review paper. 
To summarize, a number of aspects differentiate this paper from 
existing works; first, we review advanced localization 
techniques and positioning systems for indoor and outdoor 
environments.  Second, we discuss recent methodologies such 
as data fusion and cooperative techniques used to enhance the 
accuracy of localization. Third, we present an overview of 
machine learning techniques that have recently been adopted 
for localization purposes. Fourth, we describe various 
localization-based applications from different fields. Finally, 
we present a comprehensive list of localization challenges 
foreseen in the future mainly in next generation 5G networks. 
The rest of the paper is organized as follows. In section II ,we 
discuss the fundamental limits of localization in indoor 
environments and describe the basic localization techniques in 
section III. Also, we discuss the state-of-the-art system-based 
localization techniques with the challenges in terms of energy 
consumption and positioning accuracy in section IV. Then, we 
review cooperative localization and hybrid data fusion 
techniques in section V. In section VI we turn our attention to 
the use of game theory generally and coalition games for 
localization. In section VII we explore various localization-
based applications. We present in section VIII a comparative 
study on the accuracy, range and techniques used for different 
localization systems. Finally, perspectives and challenges of 
recent advancements in indoor localization are discussed in 
section IX. 

II. FUNDAMENTAL LIMITS OF LOCALIZATION IN INDOOR 

ENVIRONMENTS 

Position information is usually provided by global navigation 
satellite systems, such as GPS or the European satellite 

navigation system Galileo. However, the accuracy of 
positioning is affected by the environment, especially in indoor 
scenarios or dense urban areas where localization using GNSS 
can be inaccurate or even impossible due to the interruption of 
the connection with the required satellites. Hence, alternative 
localization algorithms have to be used to estimate UD position 
with high accuracy. 
This has been primarily achieved using radio signals offered by 
terrestrial radio access networks. Typically, these positioning 
strategies comprise a two-stage positioning system consisting 
of a ranging phase where nodes use distance dependent signal 
relation, such as RSS, ToA, AoA, etc. to estimate their own 
position. Then, in the second phase, the nodes utilize the 
position of the known anchors and the information obtained in 
the ranging phase to compute their own coordinates. The 
Cramer Rao Lower bound (CRLB) then defines the 
fundamental limit on the positioning accuracy of the nodes by 
modelling the impact of the noisy ToA, AoA, or RSS 
measurements on the ranging quality. Other bounds on 
accuracy, such as the Bayesian Cramer Rao bounds, the Weiss–
Weinstein bound and the extended Zik–Zakai bound can be 
tighter and more informative than the CRLB when the 
localization system is map-aware. These bounds indicate that 
an accuracy of 2m could be reached if a map-based priori 
knowledge and map-aware localization is used [16][17]. For 
instance, in [17], RSS based algorithms were evaluated using 
trace-driven analysis and shown to benefit from the addition of 
more resources up to a point beyond which their performance 
degraded. This effect was then mitigated by “cleaning” the data 
to remove “low quality landmark” where the quality is defined 
in terms of the fit of the distance to RSS model. Hence, the 
performance is enhanced by “cleaning” the data. The accuracies 
in order of 0.2 m are possible when utilizing commodity 
hardware. Additionally, the maximum error achieved in the 
worst case scenario can be decreased to reach 1.6 m. 
However, basic localization techniques have their limitations. 
ToA/TDoA is limited by the requirement of at least 3 base 
stations (or ANs) to generate 2-D fix. AoA requires at least two 
base stations. The performance of AoA techniques is highly 
dependent on the range giving significant position estimation 
errors from relatively small error in the AoA measurements. 
They are restricted by the carrier frequency, and the size of the 
array. Thus, they are used only for localization in applications 
with requirement of low accuracy or in combination with other 
measurements. Also, AoA systems are sensitive to angular 
multipath, a major effect in indoor environment. Consequently, 
ToA techniques are preferred in urban areas due to multipath 
effect whereas AoA are preferred in open areas.  
Looking at the different access technologies for localization 
purposes, we can also note various limitations. For instance, 
empirical analysis of the appropriateness of WLAN localization 
showed that significant errors always occur, even though 
reasonable accuracy may be achieved [18]. Errors are mainly 
due to the presence of different locations with similar radio 
signatures, such as fingerprints or received signal strength, 
caused by the dynamic propagation of radio signals [15]. Thus, 
this is considered as a fundamental limit of pure WLAN-based 
techniques where large errors in range of 6 to 8m occur.  
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To give more insights about these aspects and limits, we will 
describe with the necessary details the stand-alone localization 
techniques used for indoor scenarios. 

III. BASIC POSITIONING TECHNIQUES IN INDOOR 

ENVIONMENTS 

Localization methods are based on the estimation of distance to 
anchor nodes with known positions and on internode 
measurements. Node cooperation enhances position estimation 
and is mostly beneficial when traditional localization 
techniques fail to produce accurate estimation, as is the case in 
indoor scenarios.  
Linear least squares (LLS) lateration is a simple method for 
position estimation. Ideally, the unknown node would be 
located at the intersection of at least three circles with centers 
at the anchor nodes and radii equal to the distance to each of 
these anchor nodes. However, as it is highly unlikely that a 
single point of intersection is obtained, least squares (LS) 
optimization is used to minimize the sum of squared residuals. 
Consequently, the problem becomes a nonlinear optimization 
that needs proper initial estimates [19]. Since nonlinear 
optimization is computationally expensive, alternative 
methods, such as linearized expressions, are used to estimate 
the position using LLS. Although this is not an optimal solution 
for position estimation, it nevertheless achieves roughly good 
accuracy with low complexity [19].  
In the following, we briefly describe basic standalone 
positioning techniques used in the context of homogeneous 
networks with the possibility of hybridization. 

A. Time of Arrival (ToA) 

The ToA approach includes the calculation of the time needed 
by the signal to travel from the UD to the ANs. The UD is 
localized to a circle centered on the AN with a radius d estimated 
through the ToA. Hence, to detect the exact location of the UD, 
at least three ANs are required. In this case, the estimated 
position of the UD is simply within the region of intersection (if 
it exists) of the three circles, as shown in Figure 3. The actual 
estimated position could then be easily obtained through any 
filtering technique such as LS or Weighted Least Square (WLS) 
[20][21].   

B. Time Difference of Arrival (TDoA) 

TDoA examines the time difference at which the signal arrives 
at many measuring units. The transmitter must lie on a 
hyperboloid for each TDoA measurement with a constant range 
difference between the two measuring units. Such 
measurements are taken between multiple pairs of reference 
points with known locations. Also, relative time measurements 
are used at each receiving node in place of absolute time 
measurements. No synchronized time source is needed by TDoA 
to perform localization; however, synchronization is only 
needed at the receivers. The location to be estimated is the 
intersection of many hyperbolic curves, as shown in Figure 4. 
This technique is referred to as multilateration. 

 
 

Figure 2. Classification of localization methods 

 

 

Figure 3. ToA Ranging 

C. RSS based Fingerprinting  

The RSS approach includes two main methods: the path loss 
lognormal shadowing model to deduce a trilateration, and the 
RSS fingerprinting [7]. The first approach is used to estimate the 
distance between the serving BS and the UD based on a path loss 
lognormal shadowing model, as shown in Figure 5. Then, 
trilateration is used to estimate the location of the UD using at 
least 3 serving BSs. On the other hand, the RSS-based 
fingerprinting firstly collects RSS fingerprints of a scene, as 
shown in Figure 6, and then estimates the location of the UD by 
matching on-line measurements with the closest possible 
location that corresponds to measurements in a database [4]. 
Therefore for each possible location, ambiguity points could 
exist leading to high estimation errors in standalone positioning 
scenarios. 

D. Angle of Arrival (AoA) 

This technique includes the calculation of the angle at which the 
signal arrives from the UD to the ANs. Then, the region where 
the UD could exist can be drawn, as shown in Figure 7. 
Basically, this region is a line having a certain angle with the 
ANs. Although at least two ANs are needed to estimate the 
location of the UD, the position estimation error could be large 
if a small error occurs in the AoA estimation. Therefore, the 
AoA based technique is of limited interest for positioning 
purposes, unless it is used with large antenna arrays. 
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Figure 4. TDoA 

 

 

Figure 5. RSS for distance estimation 

 

 
Figure 6 RSS based Fingerprinting Approach 

E. Hybrid techniques 

Recently, hybrid and cooperative mobile positioning has 
emerged as a new stream of wireless location; the core idea of 
cooperative positioning relies on the utilization of trustworthy 
short-range measurements to enhance the accuracy of the 
location estimation of a wireless system.  
Different combinations of the basic standalone positioning 
techniques (RSS, ToA, TDoA, AoA, etc) have been 
implemented to enhance the accuracy of location estimation. 
For instance, a combination of ToA, AoA and RSS based 
fingerprint approach, as shown in Figure 8, provides initial 
estimation of UDs [22]. The hybrid ToA/TDoA and RSS 
proposed in [23] achieves further enhancement in terms of 
location estimation accuracy when compared to the use ToA or 
TDoA alone.  

F. Common Pitfalls in stand-alone positioning techniques 

Generally, stand-alone positioning techniques suffer from 
drawbacks affecting the localization accuracy. For instance, the 
ToA technique requires accurate timing reference at the UD and 
synchronization between this reference and the clock at the 
anchor. Obviously, it is highly challenging to achieve this task; 

if it is achieved, it will cause an increase in the cost and 
dimensions of the mobile device. Besides, a remarkable change 
in the software of the mobile device is needed by the TDoA 
approach along with further hardware installations. TDoA 
requires having the processing done at the UD and sending the 
estimated location to the system on the reverse link. Hence, the 
bulk and the costs of the handset will be increased in order to 
satisfy the estimation and synchronization needs. As well, the 
RSS technique has drawbacks in terms of difficulty to have a 
LOS between transmitter and receiver in indoor scenarios. 
Hence, localization accuracy is affected by the multipath effect 
induced in indoor environments.  Above and beyond, pathloss 
models are used also to perform localization. However, 
shadowing and multipath fading effects deteriorate the accuracy 
of such models. The accuracy in this case can be improved by 
using pre-measured RSS contours centered at the receiver, or 
using many measurements taken at several BSs. Also, the 
enhancement of the localization accuracy can be achieved by 
using RSS measurement based on a fuzzy logic algorithm. As 
well, the AoA technique suffers from drawbacks such as 
complexity in terms of hardware requirements and reduction in 
the localization accuracy as the UD moves away from the 
measuring units.  

 

Figure 7. AoA Measurements 

 

 

Figure 8. Combination of ToA, AoA and RSS fingerprints 

IV. SYSTEM BASED LOCALIZATION IN INDOOR 

ENVIRONMENTS 

Despite the fact that hybridization of basic positioning 
techniques provides improvement in the localization accuracy, 
there is always a need nowadays for better methodologies that 
achieve enhancements in energy consumption and further 
improvements in accuracy. In the literature, different 
localizations techniques have been proposed that can be 
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classified into the categories shown in Figure 2. In all these 
categories, research has been focused on advanced techniques 
based on new metrics and signals such as energy driven, signals 
of opportunity (SoOP), Ultra-Wide Band (UWB) in addition to 
the conventional systems such as WLAN, WSN, etc. So, we 
will discuss more intelligent positioning techniques; 
specifically, the UWB based localization, WLAN-based 
localization, and Sensors-based localization. Finally, we will 
discuss in this section the use of SoOPs as emerging technology 
to improve localization followed by the challenges of the 
system-based localization techniques in terms of energy and 
accuracy.  

A. Ultra-Wideband (UWB) based Localization 

UWB technology is based on transmitting ultrashort pulses less 
than 1 ns, with a low duty cycle from 1 to 1000. The transmitted 
signal in UWB is sent over multiple frequencies band. UWB 
then allows accurate localization and tracking of mobile nodes 
in indoor environments. 
UWB technology is commonly used by researchers and 
industry in various fields such as indoor positioning in order to 
present enhancements in terms of achieving high range 
measurement resolution and accuracy, low probability of 
interception, multipath immunity, and the ability to combine 
positioning and data communication in one system. 
Additionally, UWB technology is highly scalable and can be 
used at low cost with a low energy consumption [24].  
The position is estimated in UWB-based applications from the 
radio signals traveling between target node and reference nodes 
whose positions are well known. This procedure is done using 
ToA, AoA, RSS, TDoA, and hybrid technique as stated in 
Section III. Localization systems based on UWB technology 
achieve an accuracy of centimeters. With three-dimensional 
positioning based on ToA or TDoA, an accuracy of 15 cm in 
indoor scenario has been achieved [25]. Indeed, multipath 
signal components are decomposed by UWB receivers because 
they possess high bandwidth. In scenarios satisfying Line Of 
Sight (LOS) conditions, the first path that refers to the LOS 
component is the robust path used for localization purposes. 
Nevertheless, more complex techniques are needed if this is not 
the case in order to perform accurate estimation of the initial 
delay.  
Furthermore, the time-based positioning techniques offer 
higher localization accuracy compared to RSS technique in 
UWB-based positioning applications since the high bandwidth 
of UWB is not efficiently used by RSS technique in terms of 
enhancing positioning accuracy compared to the time-based 
techniques. On the other hand, ToA and TDoA make use of the 
fact that UWB signal has high time resolution to increase the 
positioning accuracy relative to other techniques [26]. 

B. WLAN-based localization 

WLAN is the most known solution for indoor positioning 
[11][12]. Positioning systems based on WLAN provide better 
performance compared to some technologies, such as GPS, 
global system for mobile communications (GSM) and 
Bluetooth. This aspect is due to the fact that WLAN positioning 

systems do not require any additional software or hardware 
manipulation, but are able to perform localization based on the 
existing infrastructure. RSS is the most known WLAN 
localization technique due its easy extraction in 802.11 
networks and its ability to run on of-the-shelf WLAN hardware. 
On the other hand, ToA, TDoA, and AoA are less common to 
WLAN-based positioning systems since angular and time delay 
measurements are complex.  
Usually, WLAN scanning aims to find available networks for 
connection. Typically, the scanning can be performed at low 
rate since the set of available networks changes slowly. When 
a device aims to estimate its own position while acquiring 
WLAN signals, recurrent RSS measurements are needed from 
the APs in order to minimize positioning error. A regular update 
is needed when a positioning device is moving along a 
trajectory; hence, scanning for available APs on all relevant 
channels is performed by each device at rate equivalent to the 
update rate. As averaging a set of RSS measurements reduces 
the effect of noise, a device that is concerned about positioning 
accuracy performs the scanning at a rate higher than the update 
rate. Alternatively, a slower scanning rate than the update rate 
leads to reduced power consumption at the expense of 
positioning accuracy. Hence, balancing the trade-off between 
power consumption and positioning performance is the main 
driver for a device in selecting its parameters for scanning in 
WLAN. 
Two main approaches are used for indoor WLAN: mono-
objective approach and multi-objective approach [27]. Both 
approaches are based on Variable Neighborhood Search, 
aiming to reduce the positioning error during WLAN planning 
process. The combination between WLAN positioning system 
and sensors embedded on smart devices obtains precise indoor 
localization for mobile smart devices [28]. The reader may refer 
to [8]-[12] for more information. 

C. Sensors Based localization 

Inertial sensors such as gyroscopes are widely used in 
localization. Nevertheless, inertial sensors, usually based on 
low-cost MicroElectroMechanical System (MEMS), suffer 
from errors which in turn affect the localization accuracy 
[29][30]. In order to alleviate this problem, the work in [31] 
employs “denoising”, which reduces noise from raw sensor 
signals. This approach enhances the accuracy and performance 
of the system by avoiding breakdowns induced by excessive 
noise.  
The localization in sensor-based technologies can be also 
divided into two categories: (1) Signature-based and (2) 
Beacon-based techniques. Signature-based techniques [32] 
assume non-uniform distribution of the nodes to be used as a 
signature for estimating location by noticing node 
neighborhoods. In Beacon-based techniques [33], Beacon 
nodes should identify their absolute positions using GPS or 
manual configuration. The location of the remaining nodes is 
estimated using distance/angle measurements to beacon nodes 
followed by multilateration or triangulation.  
Sensors based localization is an important feature of mobile 
systems, such as Autonomous navigation, entertainment robots, 
service robots, and military robots [29][34][35]. In these 
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environments, the localization of mobile nodes can be achieved 
using dead reckoning-based odometry through, for instance, 
wheel speed sensors [29],[34][35]. Emergency Sensor 
Networks (ESN) in contexts such as forest fires, natural 
calamities (hurricanes, storm), and terrorist attacks [36] are also 
of great interest. The placement of the sensor nodes in 
emergency applications is extremely localized for each point at 
which the size of the node group is based on the intensity of the 
monitored event at that point.  

D. Signals of opportunities (SoOPs) 

Currently, mobile terminals implement a variety of 
communications standards like GSM, UMTS, LTE or even 
short range communications like Bluetooth or WLAN. 
Therefore, such terminals are capable of listening to a broad 
spectrum of radio signals. The transmitters of such radio signals 
compare to landmarks in classical navigation. Their position 
might be known. But if the position of the origin of such SoOP 
is unknown, their observation can still potentially improve the 
positioning performance of classical mobile radio positioning 
using downlink reference signals for instance. Basically, these 
signals are not specific for navigation. SoOPs are RF signals 
utilized for communication purposes. SoOP has many 
advantages in terms of signal space diversity and higher 
received signal power.  
Related work considers digital terrestrial video broadcasting 
signals for positioning purposes [37] based on signal 
propagation delay estimation. Here the transmitters are fixed 
and it is reasonable to assume their positions to be known. 
Skyhook has developed a positioning system based on WLAN 
signals [38]. This approach requires a database which must be 
learned and kept up to date using appropriate self-learning 
algorithms. So inherently this approach does not assume 
knowledge about the WLAN transmitter positions from the 
beginning. TV and WLAN signals are combined to improve 
positioning [39].  
Moreover, different mitigation methods such as assisted GPS 
and differential GPS were proposed to provide enhancements 
to achieve robust navigation under critical scenarios. Recent 
proposed navigation systems use SoOP to enhance the 
accuracy. For instance, cooperative network is developed to 
provide accurate localization by using large number of nodes 
combined with SoOP [40]. The fundamental ability of 
cooperative network is that each node can produce navigation 
signals that can be used by other uses in the network in addition 
to receiving SoOP from selected towers. In such case, both local 
and global positioning is possible. Actually, the known 
positions of the SoOP provide global positioning. On the other 
hand, local positioning permits signals produced through the 
cooperative network. Thus, a SoOP technique can be used for 
the purpose of localization, such as using timing measurements 
to perform opportunistic positioning [41].  Many SoOPs are 
used for mobile localization without GPS [42][43].  

E. Challenges and Pitfalls 

The target of this section is to detail the main challenges and 
pitfalls of each system. 

1) Challenges in UWB-based localization system 

The performance of positioning systems based on UWB 
technology may face many challenges induced by aspects such 
as extremely cluttered operational environments causing 
multipath, NLOS and shadowing artifacts. For instance, in 
ToA-UWB based schemes and NLOS conditions, the 
performance degradation is mainly due to the mismatch 
between the first arriving path and the direct path and the 
addition of detouring delay. Another big challenge of UWB 
based localization resides in implementing wideband radio 
devices for a UWB signal with absolute bandwidth larger than 
500 MHz. Here, some efforts have been done in the research 
community to develop such platforms reaching 10 to 15 cm in 
positioning accuracy. The reader might refer to [44] for more 
details.  
In UWB-based positioning system, interference with the ultra-
wide spectrum may occur because of the misconfiguration. 
Interference may occur also due to the spread of the UWB 
signal over the bandwidths containing the frequency of the 
existing narrowband system. Another challenge resides in the 
need of, at least three receivers with unblocked direct path to 
the transmitter for normal ToA positioning algorithm. UWB-
based positioning system requires also signal acquisition, 
tracking, and synchronization to be performed with very high 
precision in time relative to pulse rate. Currently, researchers 
are working on such problems. We can notice for instance the 
work in [45][46] where a novel technique for ToA with two 
receivers is proposed. Even though this work is very interesting 
to solve such issues, the door is still open for more solutions as 
limitations and challenges are still there.  

2) Challenges in WLAN-based localization system 
WLAN-based localization system is time consuming for site 

surveying and is labor intensive. Another challenge is the fact 
that the multipath of such systems is influenced by the existence 
of physical objects. Also, WLAN-based localization system may 
interfere with other applications in the 2.4 GHz ISM. Moreover, 
the variation of signal strength with respect to time is considered 
a weakness of such system causing deterioration in the 
localization accuracy. The variation of signal strength caused by 
the movement of people, doors, and furniture in offices requires 
updating simultaneously the signal strength map. Hence, this is 
considered as a main drawback of WLAN fingerprinting 
systems.  

3) Challenges in Sensors-based localization system 

In terms of methodologies, anchor-based localization 
techniques are usually preferred in this environment due to their 
accuracy. Nevertheless, such techniques have disadvantages, 
such as the need for proper anchors to be installed in WSN. As 
the anchors have high cost and energy consumption, the number 
of required anchors must be minimized. Another weakness of 
anchor-based localization techniques is that a uniform 
distribution of anchors is needed knowing that this criterion 
cannot be satisfied in many environments such as battlefields 
and natural disasters environment, where sensor nodes are 
deployed randomly. While localization of unknown nodes in 
WSN is done using randomly selected anchors, the anchors 
differ in their impacts on the accuracy of localization due to 
their characteristics and the uncertainties of wireless 
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communication. To solve this problem, the work in [48] 
proposed a new anchor-based positioning technique by the 
creation of a database for optimized anchors. Then, anchors 
from the created database are used to measure the distance to 
the unknown node and the new located unknown nodes become 
new anchors in order to decrease the dependency of localization 
technique on anchors and to ensure that the anchors are 
uniformly distributed over the network. 

4) Common Pitfalls in SoOPs 
When using SoOP for the purpose of localization, one has to 
consider significant aspects such as the lack of independent 
SoOP, 2-D vs. 3-D solutions, SoOP clock errors, signal integrity, 
and multipath and NLOS signals. The uncertainty in the clock 
of the signal transmitter due to an offset relative to the clock of 
the receiver in addition to the unknown transmission time is a 
challenge against localization.  As well, hybrid/fused SoOPs are 
used in order to alleviate the technical challenges obtained from 
positioning with SoOP [42]. 

5) Energy efficiency: A common challenge 

In many indoor scenarios, the positioning techniques have to be 
energy efficient as they are based on devices with limited 
battery life such as sensors, smartphones, etc. Nevertheless, 
these positioning techniques have various criteria of energy 
efficiency, service availability, and accuracy. For instance, the 
energy used during the idle state by an access point (AP) in 
WLAN networks is wasted if no user is being served. As stated 
in ]49[ , more than $6 billion is spent for almost 74TWh of 
electricity consumed for internet related equipment every year 
in USA. Hence, there is a vast need for energy efficient 
positioning techniques.  
Although the WLAN based positioning system service 
approaches are energy efficient techniques, they are not 
generally obtainable for users. Hence, the work in [50] 
proposed to use the current WLAN infrastructure  and Access 
Points (Aps) without pre-deployment calibration and a genetic 
algorithm for energy-efficient localization purposes, like 
WLAN access points (APs). Consequently, this approach is 
restricted to indoor scenarios. 
Another interesting approach resides in power cycling 
algorithms in smartphones [51]. The duty cycling approach 
polls the built-in sensors of a smartphone at specific time 
intervals to identify any mobility and whether to turn the GPS 
on or off. A Bluetooth-based Position Synchronization (BPS) is 
another idea of energy efficient positioning technique [51]. The 
location information is shared among devices using BPS over a 
Bluetooth connection.  
Furthermore, positioning systems based on the combination of 
different methodologies and techniques are also energy 
efficient. Here we distinguish the works of [52] which provides 
location estimates through the utilization of heterogeneous 
positioning services and the combination of techniques 
including a received signal strength indicator and a 2D 
trilateration, and of [53] based on context information and a 
fusion engine using particle filters. Moreover, we provide the 
work of [54] which introduced a preliminary analysis of 
probabilistic localization techniques for power-efficient map-
aided localization, developing the green global-greedy position 

estimation (3GPE), and presenting entropy deduction as a new 
metric for performance assessment. However, this approach 
still has many challenges. The first is the determination of the 
inherent relations between the expected errors, the location 
precision and the probability of each possible matched 
fingerprint. The second is the evaluation of the accuracy 
contribution of each AP using the entropy deduction metric of 
probabilistic fingerprint [55][56]. 
When accuracy and energy efficiency are required, more 
technologies advancement should be achieved. This can be 
obtained by making use of hybrid data fusion concept and 
cooperative approach between different localization systems as 
discussed in section V. 

V. COOPERATIVE LOCALIZATION AND HYBRID DATA 

FUSION 

A. Hybrid Data Fusion (HDF) 

So far, heterogeneous wireless resources are included in most 
of wireless environments, such as LTE femto base stations, 
WLAN APs and WSNs. Also, such environments are 
characterized by the crowded cooperation over medium or short 
ranges between multi-standard UDs. Additionally, 
radiolocation ability is efficient in such scenarios for the sake 
of enhancing connectivity performance and enabling context-
based services or indoor navigation [57]. 
However, due to the signal attenuation and the multi-path 
propagation problems caused by reflections of radio signals, the 
accuracy of wireless-based indoor positioning is severely 
degrading in uncontrolled environments. Many researchers 
combine other sources of sensors (e.g. inertial measurement 
unit (IMU), cameras, and range finders) to compensate for these 
problems. Fusing the information from different positioning 
systems with different physical principles can improve the 
accuracy and robustness of the overall system. 
It is worth noting that various wireless devices, such as 
Bluetooth, WLAN and radio frequency identification (RFID), 
provide a localization accuracy ranging from several meters to 
centimeters inside buildings. So, we will review in this section 
first the conventional techniques based on HDF. Then, we will 
discuss the fusion with maps and fingerprinting, fusion with 
inertial information, fusion with camera information, and fusion 
with other information such as the spatial structure information 
of an environment. 

1) Conventional HDF Techniques  

Recently, research work has been focusing on two main 
approaches in HDF, the centralized and non-centralized 
approaches. Iterative positioning (e.g. [58],[59],[60]) and 
cooperative links selection (e.g. [61],[62]) are used with the 
non-centralized approach. Moreover, such heterogeneous and 
cooperative environments include complex phenomena such as 
the conjunction of harmful sparse connectivity, space-time 
correlations among various radio access technologies and poor 
Geometric Dilution Of Precision (GDOP) conditions. The 
authors of [63], however, carried out extensive research that 
dealt uniquely with cooperation in homogeneous scenarios.  As 
well, a measurement campaign in jointly heterogeneous and 
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cooperative wireless indoor scenarios uses ZigBee devices with 
RSS measurement abilities [64].  
HDF methods estimate reliable position information to the 
benefit of communications. The work in [65] has introduced the 
main radio technologies and scenarios for wireless positioning 
assessed by the “Wireless Hybrid Enhanced Mobile Radio 
Estimators (WHERE)” European project. Two novel particle 
filter based HDF techniques are used to either track the position 
directly from the received signal or the path dependent 
parameters. Moreover, new cooperative schemes, based on 
obtaining proper mathematical representations corresponding 
to LOS and non-LOS propagation, are used to enhance the 
performance of mobile communication systems in terms of 
position accuracy and reliability.  
Another interesting set of work resides in the combination 
between angle-based localization, map filtering, and pedestrian 
dead reckoning [66] where absolute location estimates are 
provided by the angle-based localization system. On the other 
hand, accurate length and shape of the traversed route are 
obtained from pedestrian dead reckoning (PDR) without 
absolute location and heading information. The estimates 
obtained from PDR movement and angle-based location 
techniques are merged together with a building vector map in a 
particle filter that is used as the fusion filter in this study. Hence, 
merging information from different positioning techniques can 
lead to higher positioning accuracy for several of indoor 
scenarios. 
Hybridization is also used for the purpose of pedestrian tracking 
[67]. Usually, this hybrid technique merges inertial 
measurements and RSS information via a Kalman filter. Classic 
hybrid methods for pedestrian tracking (e.g. [68] and [69]) were 
based on the utilization of a map-based or fingerprinting RSS 
localization method. However, this requires a time-consuming 
calibration step in order to create the radio map of the 
environment to be utilized for position estimation of mobile 
node through the matching between map measurements and 
mobile’s measurements. On the other hand, another hybrid 
localization method [67] uses a channel modeling technique 
where a propagation channel model serves to give a direct 
relation between the distance between two nodes and the RSS; 
then, a positioning technique or triangulation is utilized to 
estimate node position from a set of distances to some known 
anchor nodes. Yet, fingerprinting methods provide higher 
accuracy; however, this approach has minimal calibration cost. 
Additionally, the fusion between inertial measurements and 
channel-based localization provides enhancements over 
fingerprinting methods in terms of positioning accuracy [67].  
Generally, techniques based on LS are mainly used in 
cooperative positioning schemes as in [70]-[73]. On the other 
hand, statistical approaches such as factor graphs [45] and 
belief propagation [74] make use of a set of observations and a 

priori probability distributions of node positions to estimate the 
maximum a posteriori location.  
It is worth mentioning that distributed localization is also used 
in HDF through the so-called iterative multilateration (see [75] 
for instance). Once the position is estimated for an unknown 
node, this node is used as an anchor node whose estimated 
position is broadcasted to all neighboring nodes. The procedure 

is shown in Figure 9, where the target can do self-localization 
by making use of not only neighboring anchor nodes, but also 
virtual anchor nodes that have been localized in earlier 
iterations. Virtual anchors are localized with different levels of 
uncertainties. Also, this process is iterated until all nodes with 
at least three reference nodes achieve estimation for their 
position. In this case, information is needed only within local 
neighborhood, thus reducing communication cost at the cost of 
error propagation. Consequently, it is essential to have careful 
selection of reference nodes in order to reduce the accumulation 
of error through considering the uncertainties in estimating 
reference nodes. 

 
Figure 9. Iterative Multilateration 

2) HDF Techniques including maps and fingerprinting 

A number of propagation model-based or fingerprinting-based 
techniques have been proposed for indoor wireless positioning. 
RF location fingerprinting [76] uses a set of sensor 
measurements (i.e. RSS) from WLAN access points, GSM, 
RFID readers, or other RF-based sensors to represent the 
locations. On the other hand, propagation model-based 
approaches [77][78] require an explicit sensor model to predict 
the propagation of the RF signals. However, their accuracy is 
affected by a large number of environmental factors, since it is 
almost impossible to find a universal model to characterize the 
radio signal propagations in indoor environments due to severe 
multipath and numerous site-specific parameters. This 
approach does not rely on any explicitly predicted model to 
characterize the sensor’s behavior. Instead, an a priori set of 
fingerprints that expresses the sensor’s output at sampled 
locations in the global frame has to be recorded in advance 
during an offline training phase. In the online localization 
phase, the location of a node is determined by matching the 
current observations with the recorded reference fingerprints. 
Fingerprinting-based approaches are therefore assumed to be 
more accurate and robust as compared to the model-based 
approaches with regard to location-specific distortions.  
The traditional fingerprinting-based approaches require a time-
consuming and laborious site survey phase in order to construct, 
combine with and update the fingerprinting map. Therefore, 
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some researchers proposed different techniques to reduce the 
site survey in the traditional fingerprinting-based approaches. 
Here, we mention the works of [79] exploiting human motions, 
[80] using smartphone-based crowdsourcing, and [81] adopting 
ray tracing tool. 

3) Fuse with inertial information 

The movement of a mobile object can be estimated from the 
IMU and thus can be integrated into indoor positioning systems 
to improve their performance.  The position estimates can be 
improved and smoothed by fusing the WLAN and IMU data 
[82]. Moreover, the orientation information can be retrieved 
using the movements of the pedestrian, which leads to a more 
precise WLAN positioning system. The IMU information 
assists the selection of nearest neighbors for real-time WLAN 
fingerprinting positioning in order to reduce the positioning 
error [83]. It is combined also with a region-based 
fingerprinting using a Kalman Filter to improve the positioning 
accuracy [84]. The accuracy is further improved through a 
multisensory system, which combines data from different 
sensors (RSS, visual features, and built-in accelerometer) in 
smartphones [85]. 

4) Fuse with Camera information 

A hybrid indoor location estimation system is achieved also by 
merging the information from WLAN with the build-in camera 
on a smart-phone for position estimation [86]. This approach 
utilizes visual markers pre-installed on the floor for the position 
correction. Visual information is combined also with the radio 
data to track a person wearing a tag using a mobile robot in 
indoor environments [87]. The authors of [88] presented a 
method to integrate range-based sensors and ID sensors (i.e. 
infrared or ultrasound badge sensors) using a particle filter to 
track people in a networked sensor environment.  As a result, 
their approach is able to track people and determine their 
identities owing to the advantages of both sensors. 

5) Fuse with other information 

The spatial structure information of an environment may be 
used to improve the localization accuracy. Given a map of an 
environment, an object can only appear in the free space of the 
environment. Hence, different kinds of information fusion lead 
to an improvement in the positioning accuracy, usually at the 
cost of additional complexity. For instance, data fusion occurs 
also with different types of RF sensors to improve the 
localization accuracy since different positioning systems may 
complement each other [89].  

B. Cooperative Localization in SLAM 

The Simultaneous Localization And Mapping (SLAM) 
technique performs localization relative to a map of an 
unknown environment that is simultaneously acquired by a 
moving node. While SLAM techniques are used in outdoor 
environments, their utilization in indoor scenarios is however 
dominant. SLAM is a localization technique used to build up a 
map within a known or unknown environment while at the same 
time tracking the current location. SLAM algorithms are 
tailored to the available resources, aiming to work with 
operational compliance and not targeting perfect results. 
Published approaches are employed in self-driving cars, 

unmanned aerial vehicles, autonomous underwater vehicles, 
robots and even inside the human body. SLAM is mainly used 
in cases where nodes are not equipped with a GPS sensor. As 
alternative, incremental egomotion sensors, such as inertial 
navigation and odometry, are used for localizing the mobile 
node. Nevertheless, error is accumulated over time by such 
sensors making accurate map generation a challenging task.  
In practice, we have two main methods listed under cooperative 
SLAM localization. The first one is the centralized approach 
through which a central system distributes the data to all nodes 
(such as robots) in the group. The weakness of this system is 
that any fault in the central unit leads to a failure of the whole 
localization system, and nodes are limited in mobility in order 
to keep contact with the central system. On the other hand, the 
second method is the decentralized approach through which the 
exchange of the data between nodes is done without the need of 
a central unit [90][91]. 
In SLAM, the data, of both the sensor networks and the 
autonomous nodes or vehicles, is usually merged for enhancing 
localization techniques [92]. Basically, the one-way 
cooperative localization scheme is based on the fact that one 
system is supplementing the other to do localization. The two-
way cooperative localization technique is based on the idea of 
sensors performing their own localization by themselves first 
and then performing localization of the vehicles (or robots), 
while the localization of the vehicles will be done by 
themselves. 
SLAM presents critical challenges in robot research community 
due to the non-linear nature of the problems therein. As 
discussed by [93], Extended Kalman filter (EKF) is widely 
utilized for the localization of robot and the incremental 
development of the environment map in SLAM. Besides, the 
localization in non-linear SLAM systems is tackled also in EKF 
literature. Particle filter is also used to denote both possible map 
configurations and robot poses. Using a new map representation 
denoted by distributed particle mapping allows an efficient 
preservation and update of hundreds of robot positions and 
candidate maps. 
Simultaneous Localization and Mapping and Moving Object 
Tracking (SLAMMOT) represent a normal continuation for the 
SLAM problem with moving objects. The SLAMMOT 
technique is used to solve the observability problem as well as 
enhance the accuracy of localization, mapping, and tracking 
[94]. Other extensions of SLAM techniques also exist. We 
notice the Cooperative Simultaneous Localization, Mapping 
and Target Tracking [95], the distributed strong tracking 
unscented particle filter which uses distributed particle filter 
[96]. All these techniques are applicable in indoor environment. 

C. Common Pitfalls to avoid 

In this section, we handle the pitfalls to avoid while using data 
fusion techniques in cooperative localization. 
Data fusion is highly critical in WSN since it increases the 
network lifetime and achieves the objectives of the application, 
such as target tracking, event detection and decision making. 
Consequently, applying inappropriate data fusion leads to 
misleading evaluations and waste of resources. Hence, we must 
take care of probable limitations of data fusion so that we can 
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prevent blundering cases from occurring. Also, WSN 
recommends applying data fusion in a distributed fashion in 
order to increase network lifetime. Nonetheless, we must also 
take care of the challenges obtained when performing data 
fusion in a distributed manner. Therefore, a centralized fusion 
system may provide better performance than the distributed 
system.  
Moreover, the feasibility of data fusion techniques requires the 
evaluation of process computational cost and the delay 
presented in the communication. The centralized version is 
preferred when computational resources are available and the 
cost of transmission is somehow low.  
Statistical data fusion techniques such as probabilistic data 
association and Kalman techniques have an optimal 
performance under particular conditions. However, the target 
can’t be assumed to be moving independently and the 
measurements can’t be assumed to have normal distribution 
around the estimated position. Second, it is difficult to attain a 

priori probabilities for detection errors and misleading 
measurements, knowing that statistical methods represent 
events as probabilities. On the other hand, the complexity of 
statistical techniques optimizing numerous frames increases 
exponentially with the number of targets. Hence, such 
techniques are considered to be computationally intensive. So, 
it is preferred to assume no interaction between particles and to 
perform individual tracking.  
Challenges are also induced by the data fusion process with 
distributed data fusion techniques. These challenges include 
out-of-sequence measurements, temporal and spatial 
alignments of the information and data correlation. As shown 
by many researchers [58]-[96], the cooperative and hybrid data 
fusion approaches enhance significantly the accuracy of 
localization and navigation of mobile users, despite of the 
drawbacks listed above. However, the accuracy limit is still not 
clear and requires further investigation. In philosophy, learning 
from your past evolves your future. As Leo Buscaglia said, 
“Change is the end result of all true learning”.  

VI. LEARNING ALGORITHMS FOR LOCALIZATION 

A. Learning and environmental mapping 

In localization, both supervised and unsupervised learning 
approaches have been proposed. For instance, in Self-
Organizing Map (SOM), the adopted approach is unsupervised 
learning [97]. Nevertheless, supervised learning techniques are 
presented since the relationship from distances information 
(inputs) to desirable behavior of the node (outputs) to be 
localized are achievable.  
In SLAM, learning techniques are widely combined with 
environmental mapping. For instance, the standard SLAM is 
extended into signal-strength-based SLAM with learning 
approaches through the Gaussian Process Latent Variable 
Model (GP-LVM) [97]. Combining GP-LVM and a dynamic 
motion model, a topological graph of the environment is built 
up from the raw signal strength data. This map is then used for 
efficient localization by applying Bayesian filtering [98][99].  
In indoor environment, learning and radio maps are used to 
obtain high accuracy. Radio map can be automatically 

constructed via crowdsourcing and RSS measurements [100]-
[102]. However, as RSS measurements are vulnerable to 
environment dynamics they are more extravagant in indoor 
environments with severe multipath. Consequently, the location 
will be estimated with low accuracy. Doing the site survey 
repetitively and applying appropriate learning approaches solve 
this problem despite of its complexity in terms of time 
consumption. Fresh RSS measurements can be taken to adapt 
the radio map by deploying fixed reference ANs [103]-[106]. 
Hence, location service is enhanced with high quality when the 
radio map is always updated through learning. Among others, 
game theory has gained a lot of research interest in this domain. 

B. Game Theory to improve Localization 

Game theory originates from the field of applied 
mathematics to analyze complex interactions between entities. 
Basically, game theory is a set of analytical tools that perform 
distributed decision process. Generally, a game is composed of 
decision makers, i.e. players with different strategies. Each 
player has a utility (payoff) that represents the level of 
satisfaction. The aim of each player is to maximize his own 
expected payoff [107]. Game theory includes coalition 
formation. The classification of coalition game is done by 
mapping a network component as a game component, nodes as 
players, available adaptations as action set, and performance 
metrics as utility function [108]. 

1) Game Theory in localization 

Game theory is very efficient for localization purposes since it 
permits the formation of optimal coalitions of nodes for 
localizing a target node. Greedy strategies are usually proposed 
and used to minimize the error of their localization process and 
reduce the power consumption. Thus, it is important to study 
the tradeoffs in selecting an effective strategy for indoor 
localization. 

2) Coalition Games for positioning purposes 

Game theory has been used in localization, primarily for 
demonstrating the tradeoff between cost and performance and 
for selection of reference nodes [109], specifically for 
allocating measurements between reference nodes aiming to 
localize the target. In a distributed localization approach, the 
concept of game theory and utility functions is used to 
determine the combination of reference (anchor) nodes that lead 
to the best localization performance [75]. To implement the 
cooperative localization approach, a coalition game denoted by 
the pair (�, �)	is adopted, where N represents a finite set of 
players and v denotes its utility function. The players are the 
element of N and any non-empty subset � ⊆ �  represents a 
coalition, as shown in Figure 10. Particularly, N represents the 
grand coalition. Basically, the coalition value, represented by	�, 
denotes the value of a coalition in a game. The payoff 	
 of each 
player � ∈ 
represents the amount of utility received by each 
player from the division�(�). Hence, the payoff allocation is 

denoted by		 ∈ ℝ|�|, where |
| is the cardinality of	
.  
The localization procedure here is demonstrated as a game 
fitting in the class of weighted-graph games. For such 
illustration, the players are defined as the vertices, and the value 
of a coalition can be defined as the summation of the weights 
of edges connecting pair of vertices in coalition. The main 
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concept is to allocate more measurements to nodes with higher 
contribution in the localization process.  

 
Figure 10. Coalition Games 

Generally, coalitional games are categorized into two kinds 
depending on the distribution of the gain among players in a 
coalition. The first type is the transferable utility (TU) game 
where we may have proportionality in the total gain attained 
between players in a coalition bound by feasibility constraints. 
A non-transferable utility (NTU) game is the second type. In 
such game, additional constraints, preventing arbitrary 
allocation, are imposed on the assigned strategies. Also, the 
payoff of each player is based on joint actions inside coalition. 
The localization problem can be also seen as a coalitional 
formation game within nearby anchors [110], where coalition 
formation is done through merge and split procedure, to reduce 
the cost of communications. The localization problem here is a 
game of NTU nature since the same position estimate is 
obtained by all nodes within the locating coalition and the 
power consumed is determined based on the relative locations 
of the nodes. To do so, a utility function is defined to model the 
cost and quality indicator of the localization [75]. In practice 
the definition of the cost and utility functions depend on the 
coalition cardinality, the limit of error targeted and the range of 
distances to be estimated through coalition games. For instance, 
a good choice is to define a utility function which increases with 
the distance between the anchor nodes and/or the error between 
the estimation and real measurement decreases. In such a choice 
is made, the cost of coalition will be less. In a real scenario with 
multiple anchor nodes, the following utility function of a node 	 could be made: 

��(�) � � �1 � 1����
� � ��
�� �
∈!
" � (1 � �)� ��
#� �
∈!

  

where 0 % � % 1	 regulates the tradeoff between cost and 
performance, N is the number of measurements taken at a given 

location x, �
�	 represents the estimated distance of the � -th 

node,	��
 	represents the distance between the �-th node and the 
joint estimated target position, &	is the coalition head index and  	is the coverage range. 
One can also define other utility functions determined by 
locations of all nodes in the coalition with cardinality N at a 
given measurement instance by:  

�(�) � � �1 � 1����
� � ��
�� �
∈!
" � (1 � �)� ��
#� �
∈!

 

The interest in each coalition function defined above is 
different. For instance, the first coalition could be used at each 
node at different time stamps to reduce the total energy 

consumption throughout all readings. The second function 
could be used with spatial correlation of nodes readings. A good 
example therein is given in [110] where the authors proposed 
non-super-additive coalition. It is the case when the grand 
coalition, a coalition that comprises all nodes, is not optimal. 
Another approach in coalition games would be in considering 
the coverage area of the target node as a set of correlation 
regions [111]. The correlation region in this case represents the 
region where readings reported by nodes are alike. According 
to the localization performance, it is viable to assume that 
redundant information is provided by spatially correlated nodes 
in terms of GDOP or CRLB. Hence, we can represent the 
coverage area of the target node by set of active nodes acting as 
anchors. This approach reduces the complexity of the search 
method because only a subset of anchor nodes is involved in the 
process of forming coalition. 
As a common rule of thumb, the localization in indoor 
environments from the perspective of a game theory deals with 
mobile devices as players competing on limited resources to 
perform position estimation [109]-[111]. This problem is 
formulated as a standard non-cooperative game, where the 
players are the mobile devices, the strategies are the scanning 
parameters and the payoff for each player involves the accuracy 
level of positioning and the power consumption.  

C. Open challenges in localization based learning  

In general, many challenges are recognized when using learning 
techniques for localization in heterogeneous wireless 
environment. In multi-agent localization, various activities are 
proposed to handle centralized localization approaches through 
the utilization of physical tagging. This helps in identifying the 
single agent position to global positioning systems based on 
cameras or GPS. However, in practical environments and mainly 
in indoor scenarios, it is preferred to avoid these centralized 
multi-agent approaches since they reduce the system autonomy 
and range of applicability. Based on that, probabilistic and 
distributed framework solves the problem of mutual localization 
with unidentified relative position measures [112][113]. This 
comes at the detriment of centralized failure risk. 
In game theory based localization, a main challenge is to 
recognize the players and identify the localization problem as a 
cooperative or non-cooperative game. The selection of the 
players and strategies defined by each player with their 
objectives are vital in identifying the game. Players are assumed 
to be rational individuals in game theory since the actions taken 
by each player is based on his best interest. In such scenario, 
game theory models and explores the competitive or cooperative 
interaction among nodes (anchors or not) and/or network 
operators that represent rational decision makers. 
Another challenge in cooperative games resides in the need of 
collaboration among users for the sake of maximizing their 
payoffs, in our case the location information; however, players 
may refuse cooperation and be selfish in order to preserve 
limited resources such as energy or optimize their own profit. 
Hence, incentive mechanisms are preferred to be embraced. 
Furthermore, the decision process done by the players is 
considered as a critical feature to consider in game theory in 
general and in localization particularly.   
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Finally, in indoor wireless environment, defining the utility 
function as a function of the location is a complicated task due 
to the vast number of several applications with dissimilar needs.  

VII. APPLICATIONS 

In this section, we detail the main applications of localization 
in indoor environments. Indoor positioning and navigation for 
mobile devices is a market with expected size of 4 billion $ in 
2018 [114]. A reliable, user-friendly, and accurate solution for 
indoor positioning and navigation might open the doors to the 
definition of new applications and the creation of new business 
opportunities in countless scenarios [115], and is indeed 
considered as a cornerstone in the realization of the Internet of 
Things vision [116][117]. It is worth mentioning that some of 
these applications could be also applied in outdoor scenarios.  

A. Robotics 

Robotics is one of the main applications of indoor localization. 
Many researches and developments have been conducted for 
implementing mobile multi-robot systems applications.  The 
movement of robots in real large indoor scenarios where 
cooperation is required between them is a critical topic. For 
instance, cooperation between robot teams enhances the 
mission outcomes in applications such as surveillance, 
unknown zones exploration, guiding, or connectivity 
maintenance. Ubiquitous Networking Robotics in Urban 
Settings (URUS) project [118] is an excellent example using 
localization for evacuation in case of emergency where the 
robots lead the people to safe area via safe pathways in case of 
fire.  
Moreover, obstacle avoidance and dynamic and kinematic 
constraints are considered in robotics in order to achieve 
complete navigation system [119][120]. Similarly, the work in 
[121] used the idea of forces among robots to avoid obstacles. 
Another application is seen in [122] where a multi-robot 
navigation system takes into account all robot (dynamic) 
constraints and calculates one function for all the formation to 
perform robot navigation with assured collision avoidance.  
SLAM is also very interesting in robotics. Therein, the tasks 
performed by a robot are done autonomously without the 
awareness of its surrounding and own position. SLAM is useful 
in construction autonomous robots. However, it requires high 
processing resources to carry out SLAM in real time [123]. 
Then, C-SLAM [124] solves the problem by constructing the 
environment map based on the collaboration between multiple 
robots. A global map is obtained in C-SLAM by merging 
individual maps obtained by multiple robots.  
Additionally, accurate navigation of mobile robot in indoor 
environments is achieved through an UWB navigation system 
[125]. The navigation system consists of two sub-systems: the 
robot control system and the localization system. Autonomous 
robot navigation is achieved in this system through a TDoA-
based localization technique, digital implementation of 
transmitter and receiver and combination of both sub-systems 
[125]-[127].  

B. Ambient Assisted Living and Health Applications 

Indoor localization is one of the useful constituent in AAL 
tools. AAL environments are generated from “ambient 
intelligence” which is an advanced tool performing creative 
machine-human interactions. For instance, AAL tools aim to 
enhance health status of older adults by making them able to 
control their healthiness conditions [128][129]. Elderly people 
make use of such applications for the purpose of monitoring, 
tracking and other location-based applications. Besides, we 
realize the significance of such applications in indoor scenarios 
where GPS signals are useless. Some of indoor localization 
systems based on AAL applications are “Smart floor 
technology” to notice the existence of people [130] and 
“Passive Infrared (PIR) sensors” to notice motion of people. 
Currently, indoor positioning is central in the deployment of 
seamless emergency response services such as E911 in the US, 
hindered by the lack of common benchmarks and platforms 
[131][132]. This has recently pushed different research entities 
worldwide to propose advanced and beyond state-of-the-art 
solutions in this domain with applications varying from ambient 
assisted living, elderly support, emergency cases, etc. Here, we 
should mention the work of the project SALICE [133][134] 
which proposed solution based on the heterogeneous 
combination between satellite-based localization and 
communications systems to provide emergency services. The 
project is mainly based on combining delay diversity 
techniques and maximum ratio combining between satellite and 
terrestrial sites. The deployment of gap fillers (used as relays) 
on the border of the emergency area is another proposition of 
the project to increase the signal diversity by alternating 
between LOS and NLOS conditions.  
In parallel, standardization bodies also recognized the 
fundamental role of location information, and are actively 
working on standards related to the retrieval of location 
information, the Location Working Group within the Open 
Mobile Alliance [135] and the technical specification TS23.271 
by the 3GPP [136] being notable examples, as well as the 
upcoming 18305 standard by International Organization for 
Standardization and International Electrotechnical 
Commission, whose joint JTC1/SC31 subcommittee includes a 
working group on positioning. Last but not least, hardware 
companies are also pursuing the design of systems and chips for 
accurate indoor positioning, e.g. based on IEEE 802.11ac or 
IEEE 802.15.4.  
Investigations in indoor scenarios on UWB for human body 
localization are performed via numerical and analytical 
methods by placing wearable compact sensors on the upper part 
of the body. This work succeeded in performing 3D localization 
using such sensors. Also, UWB technology is appropriate for 
wearable wireless sensor networks, and a 3D localization 
accuracy of 2 cm to 3 cm is achieved; hence, a system with this 
accuracy can be applicable for monitoring patient, tracking and 
applications for capturing motion. 
Other applications are also based on UWB technology [47][137] 
where orthopedic computer-aided surgery as well as its 
integration with smart surgical tools such as wireless probe for 
real-time bone morphing is implemented [47]. UWB positioning 
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system is proven to achieve a real time 3D dynamic accuracy of 
5.24 mm to 6.37 mm. Hence, this dynamic accuracy implies the 
potential for millimeter accuracy. This accuracy satisfies the 
requirement of 1 mm to 2 mm 3D accuracy for orthopedic 
surgical navigation systems. 

C. Location-based Services 

Location-based Services (LBS) are defined generally as service 
that outspreads GIS capabilities or spatial information to end 
users through wireless networks and/or the internet. Yet, LBS 
applications can offer the context and the connectivity needed to 
dynamically associate the position of a user to context-sensitive 
info about current environments; whereas conventional GIS 
applications are concentrated on geographical information for 
land planning and management. Hence, high level of 
personalization is achieved with LBS applications that simplify 
a capability of making each user the center of his universe.  
LBS send data dependent on context and accessed by a mobile 
device by knowing the geographical location. LBS service is 
required for indoor and outdoor environments. For instance, 
indoor LBS include applications to obtain safety information or 
up-to-date data on cinemas, events or concerts in the vicinity. 
Further applications of this type include a navigation application 
used to direct a user to the target store in a public building. 
Moreover, LBS are used for advertisements, billing, and for 
personal navigation to guide guests of tradeshows to the targeted 
exposition booth.  Also, LBS applications can be used at bus or 
train stations to navigate to the bus stop. Likewise, LBS are used 
for notification based on proximity, automated logon/logoff 
tasks in institutions and the profile matching. 

D. 5G Networks 

Location information can be used to address many challenges in 
5G networks [138]. The accuracy of location estimation was 
improved from hundreds to tens of meters using cell-ID 
localization in 2G, localization based on timing via 
synchronization signals in 3G and reference signals dedicated 
for localization in 4G. As well, localization technologies can be 
used by numerous devices in 5G to attain an accuracy of location 
estimation in the range of centimeter. Basically, in 5G networks, 
it is expected to use precise location estimation through all layers 
of the communication protocol stack [139]. This fact is due to 
several aspects [138]. One of these aspects is the inverse-
proportionality between SNR and distance due to pathloss; 
hence, the distance becomes an indicator of the interference 
level and the received power. So, the best multi-hop path 
between the source and the destination in a dense network 
becomes the shortest path in terms of distance when neglecting 
the shadowing factor. Next, remarkable differences in the 
localized power are recognized due to shadowing effect. 
Additionally, nearby terminals can be used to induce local 
channel information due to the fact that shadowing often reveals 
decorrelation distances larger than localization uncertainty. So, 
the use of precise location information by 5G networks over all 
layers of communication protocol stack is due to the prediction 
of most of the 5G user terminals in their mobility patterns 
knowing that these terminals will be either associated with fixed 
or controllable units or people. Last but not least, localization is 
not only required for location-based services, but also for several 

jobs in cyber-physical systems, like smart transportation systems 
and robotics in 5G networks [140][141]. Furthermore, methods 
for resource allocation based on location awareness [142] can 
diminish delays and overheads since they can predict the quality 
of channel further than customary time scales. This is indeed one 
of the technical targets of the 5G technologies. 

VIII. COMPARATIVE STUDY 

In this section, we will present a comparative study between 
different localization techniques in terms of range accuracy for 
different applications. Basically, we present in Table 1 a 
comparison between different positioning systems showing the 
range, accuracy, and the technique(s) used. All of the positioning 
systems and the location information are reported from literature 
and produced in real time (according to the references 
mentioned). 
Moreover, we can observe in Figure 11 the accuracy achieved 
by different wireless based positioning systems used for indoor, 
outdoor and locally urban, and rural and remote areas. It is very 
clear from this figure that the accuracy requirements depend on 
the scale of the transmission; hence, it will affect the type of 
application supported by the corresponding localization 
technique. So, it is important to notice vitality of localization in 
current and future wireless systems in any and all applications 
and scenarios. 

Table 1 Comparisons of positioning techniques 

Wireless Positioning 

Systems 

Localization 

Technique 

Range Accuracy 

Dolphin [143][144]  ToA, trilateration Room 2 cm 

RFID/INS [145]-[150]  RSS/INS Indoor 2 m 

UWB [151]-[154]  TDoA/ToA, 
trilateration 

15 m 10 cm 

RFID/FPM [155] RSS/INS Indoor 1.7 m 

Land Marc [156][157] RSS, triangulation 50 m 1-2 m 

GPS [158][159] ToA, trilateration Global 1-5 m 

Radar [160][161] RSS, triangulation Room 
scale 

2-3 m 

Cricket [162] ToA, trilateration 10 m 2 cm 

Active Bats [163] ToA, trilateration 50 m 9 cm 

Active Badge [164][165] ToA, trilateration 5 m 7 cm 

COMPASS [166][167] RSS, triangulation 15 m 1.65 m 

WhereNet [168][169] RSS, triangulation 20 m 2-3 m 

LiFS [79] Fingerprinting 
Database 

 9 m 

Bluetooth [170][171] RSSI 
Fingerprinting/ 
RSSI theoretical 
propagation model 

Indoor 2-5 m 

IX. PERSPECTIVES AND CHALLENGES 

In this section, we summarize the perspectives and challenges 
in indoor localization. We should mention that many challenges 
and pitfalls have been addressed in the previous sections. The 
target of this section is just to summarize on the main ones and 
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provide some details on those which have not been addressed 
so far. 

 

Figure 11- List of various wireless-based positioning systems 

A. Constructing radio fingerprinting map with less human 

participation 

Although the fingerprinting-based approach provides 
satisfactory accuracy, one often has to reconstruct or update the 
fingerprinting map to capture the features of a new environment 
(for example, when new sensors are installed), which is 
extremely time-consuming. Moreover, the complexity of the 
fingerprinting-based approaches is proportional to the number 
of entitles one wants to locate. For example, in order to locate a 
laptop and a smart phone, we need to build up a fingerprint map 
for each of them due to the heterogeneity of these devices. So 
the main challenge to address here is to have a unified 
framework for radio fingerprinting maps independently of 
entitles. 

B. Combining various non-radio techniques  

The use of non-radio technologies (IMU, visual sensors) can 
compensate for the errors from the existing wireless positioning 
technology. The improved accuracy is achieved by the 
additional installations of the costly equipment; therefore 
investigating a cost-effective wireless positioning system is still 
a promising direction.  

C. Integrating various wireless positioning solutions.  

A variety of wireless sensors can be used for positioning 
services. Different sensors are working with different physical 
principles. Combining the measurements from different 
positioning systems can improve performance of the overall 
solution.  

D. Security and Privacy 

The security and privacy factors are considered important to 
discuss with Indoor Positioning Systems (IPSs) within Personal 
Network [12], where users position people and objects in their 
home. The user cares if he is being tracked and his activities are 

being known by someone. Typical IPSs have threats in WLAN-
IPS environment. For instance, positioning system based on 
RSS measurements threaten security since the mobile device 
collects the measurements of all AP devices and personal data 
such as AP ID is sent to the IPS server [172]. Additionally, the 
privacy in IPSs can be enhanced via a controlled access to the 
information distribution and location information. As well, 
security and privacy can be improved in IPSs from the software 
and system architecture perspectives. For instance, position 
system architecture dealing with self-localization can guarantee 
high degree of privacy and security for users when the 
estimation of the position is done at the target device [12]. 
Hence, the location information can’t be accessed by anyone in 
Personal Networks (PNs) if the target device doesn’t provide it 
to an entity.  

E. Scalability 

A scalable positioning system means that it functions properly 
when its scope gets larger. Usually, the performance of 
localization reduces with the increase in the distance between 
the transmitter and receiver. Further, a positioning system may 
require scaling on 2 axes, density and geography. Geographic 
scaling represents the coverage of an area or volume, whereas 
density scaling represents the number of units positioned per 
unit geographic space or area per time period. Wireless signal 
channels may turn out to be congested as more area is covered 
or the units in such area are crowded; hence, further 
computation or communication infrastructure may be required 
to do localization. In addition, the dimension of a system is 
another metric for scalability. A positioning system may locate 
objects in 2-D space, 3-D space or in both. So far, most of the 
proposed techniques are dealing with 2D while the recent 
recommendations from different standardization committees 
require 3D information with high accuracy (FCC 
recommendation for instance). This is then another important 
aspect to be tackled in the future. 

F. Complexity 

Positioning systems have complexity in terms of software, 
hardware, and operation factors. Specifically, software 
complexity represents the complexity of computations in a 
positioning algorithm. If a centralized server side handles the 
computations, location estimation is performed quickly because 
of the existence of adequate power supply and great processing 
capability. However, if the computations are performed at the 
mobile user, complexity becomes evident since mobile users 
have weak processing power and short battery life; thus, 
positioning techniques with low complexity are preferred in this 
case. Additionally, representing complexity of various 
positioning techniques through a formula analytically is really 
a difficult task; hence, the time spent for computations should 
be considered.  Also, location rate is used as an indicator for 
complexity. Oppositely, we have location lag that represents the 
delay between movement of a mobile user to a new position and 
the reporting of this new position by the system.  
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G. Accuracy vs. Cost-effective.  

Different levels of accuracy are achieved with different 
positioning systems. For instance, an accuracy of 2 m to 3 m is 
achieved with RADAR [160]. On the other hand, 2 cm accuracy 
is achieved with a cricket system that is based on ultrasonic 
signals [162]. Furthermore, WLAN-based positioning system 
utilizes the existing WLAN infrastructures for localization; 
therefore, the positioning accuracy highly depends on the 
environments and placements of the wireless sensor nodes.  
Other positioning systems usually require previous installation 
of the beacons in the environment. Therefore, in practice, it is 
very challenging to meet accuracy requirement and at the same 
time keep within minimum number of beacons and mobile 
device costs. The trade-off between accuracy and cost consists 
of a capital challenge in indoor scenario since from one side; 
the accuracy suffers from the existence of obstacles and multi-
path transmission while the cost is quite affordable due to the 
availability of signals (such as WLAN) at reduced cost.  

H. Applications and Accuracy 

The accuracy of the localization techniques highly depends on 
the applications. While some techniques are working perfectly 
in indoor scenarios, for instance, they might not be applicable in 
medical applications such as in Wireless Body Area Networks 
due to the precision requirement (in mm). This is a general 
challenge which should be tackled in any application and 
environment. 
Particularly, in mmWave, a promising candidate for 5G 
networks, the accuracy and means of localization are still open 
research issues to be solved. Nevertheless, the importance of 
high accuracy is primordial in this environment. 
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