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ABSTRACT: The emergence of Generative Adversarial Network (GAN) techniques has garnered significant attention
from the research community for the development of Intrusion Detection Systems (IDS). However, conventional
GAN-based IDS models face several challenges, including training instability, high computational costs, and system
failures. To address these limitations, we propose a Hybrid Wasserstein GAN and Autoencoder Model (WGAN-AE) for
intrusion detection. The proposed framework leverages the stability of WGAN and the feature extraction capabilities
of the Autoencoder Model. The model was trained and evaluated using two recent benchmark datasets, 5GNIDD
and IDSI0T2024. When trained on the 5GNIDD dataset, the model achieved an average area under the precision-
recall curve is 99.8% using five-fold cross-validation and demonstrated a high detection accuracy of 97.35% when
tested on independent test data. Additionally, the model is well-suited for deployment on resource-limited Internet-
of-Things (IoT) devices due to its ability to detect attacks within microseconds and its small memory footprint of
60.24 kB. Similarly, when trained on the IDSIoT2024 dataset, the model achieved an average PR-AUC of 94.09% and
an attack detection accuracy of 97.35% on independent test data, with a memory requirement of 61.84 kB. Extensive
simulation results demonstrate that the proposed hybrid model effectively addresses the shortcomings of traditional
GAN-based IDS approaches in terms of detection accuracy, computational efficiency, and applicability to real-world
IoT environments.

KEYWORDS: Autoencoder; cybersecurity; generative adversarial network; Internet of Things; intrusion detection
system

1 Introduction

Intrusion detection systems (IDSs) play a very important role in protecting IoT networks from a
number of cyberattacks that are mainly targeted at device and network vulnerabilities such as the use
of insecure communication protocols or weak authentication mechanisms [1]. Most of these attacks are
launched through malicious software or firmware updates that may result in unauthorized access to the
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network or control of IoT devices [2]. Cyberattacks can violate the confidentiality, integrity, and availability
of the network and may result in data breaches, unauthorized access to sensitive information, and denial of
service [3,4]. The main challenge in this regard is the resource-constrained nature of IoT devices that pose a
challenge to implementing advanced and robust security frameworks. The increasing complexity of security
algorithms results in system outages, reduced performance, or poor service quality in IoT networks [5].

Over the past few years, GANs have received great attention because of their ability to learn data
distribution and generate synthetic data that can mimic possible attack patterns [6]. Traditional signature-
based approaches are also ineffective in identifying new and unexpected cyberattacks, whereas GANs
learn to generate adversarial examples to identify outliers [7]. However, there are several shortcomings of
the traditional GAN variants as well. For example, vanilla GAN [8] has some drawbacks such as model
collapse and training instability that limit its effectiveness in generating diverse and representative samples.
Conditional GANs [9] are more context-sensitive than their counterparts but they need labeled data.
CycleGANS [10] are very efficient in the domain translation task, even in the absence of paired data, but
they are usually slow and not very accurate in identifying small anomalies. The Wasserstein GAN [11] also
improves the stability and diversity but at the expense of increasing the model complexity.

To overcome these issues, this paper proposes a Wasserstein GAN with Autoencoders (WGAN-AE)
that integrates the best aspects of WGANs and autoencoders to develop a more efficient and effective
intrusion detection system for IoT networks. The WGAN-AE can produce stable and diverse samples by
leveraging the Wasserstein distance, which measures the difference between two probability distributions.
Unlike traditional distance metrics, it provides a smoother and more meaningful way to compare real and
generated data, leading to better training stability and improved detection of various attack types [12].
Autoencoders assist in detecting the changes that are likely to be a sign of a cyberattack by learning the
detailed patterns of the normal IoT traffic [13]. This approach is less dependent on large datasets suitable
for dynamic IoT environments. Furthermore, the WGAN-AE offers a complete solution that entails the
reconstruction and anomaly identification of any input by comparing it with the learned normal behavior.
This makes training more stable and enhances the novel attack detection rate that may not be detected by
other models. A comparison of the proposed WGAN-AE with state-of-the-art GAN variants is presented
in Table 1. The major contributions of the article are summarized as follows.

1. A hybrid intrusion detection framework, WGAN-AE, is proposed by utilizing the key strengths of
WGAN and AE. The model enhances the detection of emerging attack vectors by using Wasserstein
distance for more stable training and autoencoder-based feature extraction.

2. The research introduces an unsupervised GAN-based approach that learns the normal operation of the
system and identifies changes as possible cyberattacks. It also achieves this by properly distinguishing
between the normal and attack behaviors through the use of adversarial training of the generator to
generate diverse attack types.

3. A comprehensive evaluation framework is developed to assess the computational efficiency and eftec-
tiveness of the proposed scheme by using two advanced and comprehensive IDS benchmark datasets.

The remainder of the article is organized as follows. In Section 2, we present some latest contributions
related to GAN-based IDS frameworks and describe some preliminaries. In Section 3, we elaborate on
the research methodology and the design of the proposed framework. In Section 4, we present a brief
discussion of the experimental setup and outcomes. Finally, in Section 5, we conclude the research with
future research directions.
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Table 1: A comparison of state-of-the-art GAN variants with the proposed WGAN-AE in the context of IDS

GAN variants
Feature
Vanilla GAN Conditional GAN Cycle GAN Wasserstein GAN WGAN-AE

Training stability Low Moderate Moderate High Very high
Mode collapse High Moderate Moderate Low Very low

Feature learning Limited Good Good Strong Strong
Anomaly detection Poor Moderate Good Good Excellent
Training complexity = Moderate High High Moderate Moderate
Robustness Low Moderate Moderate High Very high

2 Related Work

This section overviews some significant contributions related to GAN-based IDS architectures. Rahman
et al. [6] explored the potential of GAN for intrusion detection in IoT. The proposed scheme significantly
decreased the dependency on real-world data. To analyze the effectiveness of designed model, the authors
conducted extensive experiments on three open-source datasets including UNSW-NBI15, NSL-KDD and
BoT-IoT datasets. Message Queuing Telemetry Transport (MQTT) is a widely adapted network protocol in
IoT infrastructures because of its lightweight and flexible nature. Boppana and Bagade [14] proposed a novel
unsupervised GAN and autoencoder-based model GAN-AE, to detect unknown intrusions in MQTT-based
IoT applications. The experimental results demonstrate the effectiveness of the proposed method against
various modern IDS approaches. In another study, Li et al. [15] proposed a hybrid IDS model to detect Denial
of Service (DoS)/botnet attacks in IoT systems. The authors designed an anomaly-based detection model
called CL-GAN (CNN-LSTM GNN), combining a Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) with GAN to define a baseline of normal activity and identify malicious traffic. The
proposed architecture was evaluated with NSL-KDD, CICIDS2018, and Bot-IoT datasets.

de Araujo-Filho etal. [16] presented a novel fog-based unsupervised IDS using GANs. The proposed IDS
was developed for a fog architecture to meet the low-latency requirements of cyberphysical systems. Exper-
imental outcomes indicated the higher detection rates and superior performance of the proposed approach
over baseline models using three datasets. Zeghida et al. [17] proposed GAN-based methods to achieve a
balanced dataset for greater attack detection accuracy. Additionally, they introduced three dedicated IDSs for
attack detection using the MQT'T protocol based on hybrid deep learning (DL) algorithms: Convolutional
Neural Network with Recurrent Neural Network (CNN-RNN), CNN with Long Short-Term Memory (CNN-
LSTM), and CNN with Gated Recurrent Unit (CNN-GRU). The experimental results demonstrated that the
generated dataset had a superior performance in multiclass configuration. In another study, Das et al. [18]
proposed two models: a Feedforward Neural Network (FNN) network and a CNN. The proposed models
have been trained and tested on standard datasets as well as synthetic datasets. The generation of this
synthetic data employs a Conditional Tabular Generative Adversarial Network (CTGAN). The experimental
outcomes indicated less training time and memory utilization than several baseline models.

Wang et al. [19] proposed a Multi-Critics GAN to address the data imbalance issues in IDS systems.
The authors analyzed the generated data quality by using Principal Component Analysis (PCA) plots
and correlation heatmaps. Subsequently, they incorporated a hybrid CNN-LSTM model to analyze the
clusters to achieve the promising performance of IDS systems. The experimental results confirmed the
higher attack detection rate with better generalization. Dong et al. [20] presented a novel IDS frame-
work MasqueradeGAN-GP (Generative Adversarial Networks with Gradient Penalty), for 6G networks
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by integrating a WGAN with a Gradient Penalty. In the proposed architecture, a generator transforms
the anomalous traffic into a semblance of benign activity and the discriminator discerns the genuine and
adversarial traffic. The efficacy of the designed models was investigated by conducting extensive experiments
using two open-source datasets. Brabin et al. [21] presented a Cycle-Consistent GAN-based attack detection
and secure data transmission framework for smart cities. The designed framework incorporated a Wild horse
optimizer for feature extraction. Subsequently, the selected features are provided to the cycle-consistent GAN
classifier to distinguish normal and malicious traffic. Furthermore, to ensure a secure data transmission, the
authors incorporated Advanced Encryption Standard (AES) with Chameleon Swarm Algorithm.

The aforementioned works present a significant contribution towards GAN-based IDSs. However, the
existing studies have a few shortcomings, including reliance on outdated datasets that fail to capture real-
time IoT security challenges and a primary focus on attack detection accuracy while neglecting critical
constraints such as memory requirements and computational efficiency. While some approaches address
data imbalance using advanced GAN variants like Multi-Critics GAN, CTGAN, and WGAN with Gradient
Penalty, others integrate federated learning for enhanced security in Fog-assisted IoT networks. However,
these studies lack a holistic evaluation framework. To overcome these shortcomings, this article proposes a
WGAN-AE, which is trained and evaluated using two real-time benchmark datasets. The proposed approach
ensures a comprehensive performance analysis, including accuracy, memory consumption, system latency,
and cross-validation, making it a more robust solution for modern IoT-based IDS.

3 Research Methodology and the Proposed Framework

This section briefly describes the dataset description, the design of the proposed architecture, and the
training process. The workflow of the proposed architecture is presented in Fig. 1.

Data Processing and Training Phase of the Proposed WGAN-AE Evaluation Phase
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Figure 1: Block diagram of the proposed architecture
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3.1 Dataset Description

To train and evaluate the proposed architecture’s performance, we utilized three of the latest and most
comprehensive datasets. The following provides a detailed description.

3.1.1 5G-NIDD Dataset

The 5G-NIDD dataset is a fully labeled collection of network traffic data generated from a functional
5@ test network at the University of Oulu, Finland [22]. The dataset includes various attack scenarios, such
as Denial of Service (DoS) attacks, Internet Control Message Protocol (ICMP) Flood, synchronize (SYN)
Flood, User Datagram Protocol (UDP) Flood, Hypertext Transfer Protocol (HTTP) Flood, and Slowrate and
port scans, including Transmission Control Protocol (TCP) Connect Scan, SYN Scan, and UDP Scan. The
detailed distribution of the 5G-NIDD dataset is presented in Fig. 2.
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Figure 2: Distribution of 5G-NIDD dataset

3.1.2 IDSI0T2024 Dataset

The IDSIoT2024 dataset [23] is a comprehensive, real-time collection of network traffic data from an
Internet of Things (IoT) environment comprising seven diverse smart devices: a smartwatch, surveillance
camera, smartphone, laptop, smart vacuum, smart TV, and smart light. In this setup, the laptop serves a
dual role: continuously monitoring and logging network traffic for analysis and actively executing various
network-based attacks to simulate potential security threats. The dataset includes seven main categories: DoS,
Injection, Man-in-the-Middle (MITM), malware, normal, routing, and vulnerability analysis. The detailed
distribution of the IDSIoT2024 dataset is presented in Fig. 3.

sooo [ 120

q
-4

= Dos
= Vulnerability_Analysis
= Malware
Routing
= Normal

=MITM

= [njection

Figure 3: Distribution of IDSIoT2024 dataset
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3.2 The Proposed Architecture

This section provides a detailed description of each module of the proposed architecture.

3.2.1 Data Preprocessing

The preprocessing of the dataset D = {(x;, ;) }f\il is an essential step to prepare both the input featuresX
and target labels y for the hybrid WGAN-AE and autoencoder model. This stage typically involves scaling
the features and encoding the categorical target labels for classification tasks.

Feature Scaling (Standardization): The first step is to normalize the feature data so that each feature
has zero mean and unit variance. This ensures that all features contribute equally during training, preventing
features with larger ranges from dominating the optimization process.

Given a feature matrix X ¢ RV*¢, where N is the number of samples and d is the number of features,

each feature column x; € RV is standardized using z -score normalization. The transformation is performed
as follows (1):

x PRppe— .
x;caled - Hj ) (1)
0j

where:

o Uj= % YN X j is the mean of the j-th feature across all samples.

. 0j= \/ % >N (xi i—u j)z is the standard deviation of the j-th feature.

scaled has (2):

This process ensures that the scaled feature x;

E [xjcaIEd] =0 and Var (xjcaled) =1. 2)

The entire feature matrix X ,eq is then used as the input for the model.

Label Encoding: In classification tasks, the target labels are often categorical, so we need to convert the
labels into a numerical form that can be used by machine learning models. Label encoding is a common
method for transforming categorical labels into integers.

Let y; € {1,2,..., C} be the categorical class label of the i-th sample, where C is the number of classes.
The goal is to map each class label to an integer, so the transformation is defined as (3):

ye_ncoded = LabelEncoder (yi) > .

1

where ynceded ¢ £0.1,...,C ~1} represents the corresponding index of the label in a sorted list of
unique classes.

The resulting encoded labels are stored in a vector y°"<°ded ¢ RN, where each y¢"“°d represents the
integer value corresponding to the original class label.

One-Hot Encoding: While label encoding is a simple way of converting categorical labels into integers,
for many classification tasks, especially in neural networks, it is more effective to represent each class label
as a one-hot encoded vector. In one-hot encoding, each class label is represented as a vector where only the
index corresponding to the label is 1, and all other indices are 0.

For a given encoded label y2c®ded ¢ {0,1,..., C — 1}, we convert it into a one-hot vector yo¢hot € RC,
The one-hot encoding is given by (4):

y(i)nehOt:[O’O,,..,l,...,o] (4)
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encoded
i

where the 1 appears at the index y , and all other positions are 0.

onehot

The entire matrix of one-hot encoded labels is represented as Y°¢ht e RN*C where each row

corresponds to the one-hot encoded vector for the i-th sample.

3.2.2 Hybrid WGAN-AE Model

The WGAN-AE is an upgraded model that combines the best features of autoencoders with GANs
to offer superior attack detection in IoT networks. The model has two main modules: Autoencoder and
Discriminator. In addition to that, the Wasserstein loss helps improve the training stability since the overall
model learned to reconstruct the input data and distinguish between real and that which has been simulated.
Mathematical formulation of the Hybrid WGAN-AE model is presented in this section.

A. Generator Architecture (Autoencoder)
A combination of an encoder and a decoder module constitutes the generator using the autoencoder

structure. The autoencoder learns to accurately compress/input data into a low-dimensional representation,
able to reconstruct the same input data from low-dimensionality space.

«  Encoder: The encoder maps the input data x; from the input space R to a lower-dimensional latent
space. The encoder can be defined by a function fy : RY — R?, where 6 represents the parameters of the
encoder, and z € R? is the latent representation. Mathematically, the encoder can be expressed as:

zi = fo (xi)»

where z; is the compressed representation of x;.
« Decoder: The decoder is responsible for reconstructing the original input x; from the latent vector z;.
The decoder function gy : R? - R is parameterized by ¢, and the reconstruction %; is given by:

fCi :g¢> (Zi)’

where X; is the reconstructed input.
The loss function for the autoencoder is typically the reconstruction loss, which measures how well the
decoder can approximate the original input x; from the latent code z;. The reconstruction loss is given by:

2
25

Liecon (xi; 5&1) = ”xi - Xi

where || - ||3 denotes the squared Euclidean distance.

B. Discriminator Architecture

The discriminator is a neural network that distinguishes between real data (from the dataset) and fake
data (generated by the autoencoder). It is defined as a binary classifier D, : R? — [0,1], where Dy, (x;) =1
indicates that x; is real and D, (x;) = 0 indicates that x; is fake.

For the input data x;, the discriminator outputs a scalar Dy, (x;) representing the probability that x; is
real. The discriminator is trained to maximize this probability when the data is real and minimize it when
the data is fake. Thus, the loss for the discriminator can be described as (5):

Laise (x> %;) = ~Exen,, [log Dy(x)] = Ez.p,, [log (1- Dy (2))], (5)

where Py, indicates the distribution of real data and P, represents the distribution of generated data.

The goal of the discriminator is to correctly classify real data as 1 and fake data as 0, minimizing the
above loss function.
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C. Wasserstein Loss for WGAN-AE
A key component of the Hybrid WGAN-AE is the Wasserstein loss, which is used to stabilize the training
process, and to generate better samples.

The Wasserstein loss [24] for the discriminator is given by (6):
Lwasserstein (xi’ -7%1) = Ex"Preal [DIV(x)] - EJ%NPgen [D‘//()e)] : (6)

This loss function trains the discriminator to give high values to real data and low values to the generated
data, thus trying to increase the distance between the two distributions. The Wasserstein loss has smoother
gradients and solves the vanishing gradient problem that is typical for standard GANs.

The generator is trained to minimize the Wasserstein loss in the opposite direction, i.e., to minimize
—Lyasserstein, Which ensures that the generated data distribution approaches the real data distribution.
D. Combined Model

In the Hybrid WGAN-AE, the combined model is trained alongside both the generator and the
discriminator. The purpose of the combined model is to train the generator to create data that looks realistic
enough to fool the discriminator. Nevertheless, the generator tries to minimize the reconstruction error as
well so that the produced data is both realistic and consistent with the input data.

The total loss for the combined model is a weighted sum of the reconstruction loss and the Wasserstein
loss. The combined loss can be written as follows:

Lcombined = Arecon Lrecon (xi, xi) + AWasserstein LWasserstein (xi) xi) >

where Arecon and Awasserstein are hyperparameters controlling the relative importance of the reconstruction
loss and the Wasserstein loss. The generator is trained to minimize this combined loss. The workflow of
WGAN-AE is summarized in Algorithm 1.

Algorithm 1: Workflow of the proposed hybrid WGAN-AE model
Require: Dataset D = {(x;, ;) }V,
Ensure: Trained Generator (Autoencoder) and Discriminator

1: Data Preprocessing:

2: Standardize features:

1 N
3 b=y D i1 Xij
1 N 2
4: ajz\/NEizl(xij—yj)
5. xspaled _ x tuJ
j oj

6: Encode labels using one-hot encoding.

7: Initialize model parameters: 6 (encoder), ¢ (decoder), v (discriminator)
8: Generator (Autoencoder) Architecture:

9: Encode input: z; = fo(x;)

(Continued)
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Algorithm 1 (continued)

10:
11:
12:

Decode output: X; = g¢(z;)
Compute reconstruction loss:
Liecon = Hxi - 9%1"%

13: Discriminator Architecture:

14:
15:
16:
17:

Compute real data score: Dy (x;)
Compute fake data score: Dy, (X;)
Compute discriminator loss:

Ldisc = _]:Ex"’Preal [log DW('X)] - EJAC"’Pgen [log(l - DW(&-))]

18: Compute Wasserstein loss:

19:

LWasserstein = IEx~Pml [Dw(x)] - EJQNPgen [DV,(QAC)]

20: Compute combined loss:

21:

Lcombined = )treconLrecon + AWassersteinLWasserstein

22: return Trained Generator (Autoencoder) and Discriminator

E. Training Procedure

The training procedure alternates between updating the discriminator and the generator:

Discriminator Update: The discriminator is trained to distinguish between real and fake data by
minimizing Lg;sc . The real data samples x; are drawn from the dataset, and the fake data samples %; are
generated by the autoencoder.

Generator Update: The generator is updated to minimize the combined loss Lcombined, Which includes
both the reconstruction error and the Wasserstein loss. This is done by training the generator to fool the
discriminator and simultaneously reconstruct the input data accurately.

The discriminator’s parameters ¥ are updated using a standard optimization algorithm, while the

generator’s parameters 0 and ¢ are updated jointly. The training process is summarized in the Algorithm 2.

Algorithm 2: Training process of the proposed hybrid WGAN-AE

Require: Dataset D = {(x;, ;) } ¥, learning rates 7,, ,, batch size B, epochs T
Ensure: Trained Generator (Autoencoder) and Discriminator
1: Initialize parameters: 0 (encoder), ¢ (decoder), v (discriminator)
2:fort=1to T do

@

Sample mini-batch {x;} from dataset.
Update Discriminator:
Compute Dy (x;) and Dy (%;)
Compute Wasserstein loss:
Lwasserstein = ExNPml |:D|//(x)] - E;‘mPgen [Du/(-’e)]
Update y:
YV<y- ﬂleLWasserstein
Update Generator (Autoencoder):
Encode input: z; = fp(x;)
Decode output: X; = g¢(z;)

(Continued)
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Algorithm 2 (continued)

13: Compute combined loss:

14: Lcombined = Arecooni - fcz”% + )‘WassersteinLWasserstein
15: Update 0, ¢:

16: (0’ ¢) A (0’ ¢) - 772v9,¢Lcombined

17: end for

18: return Trained Generator (Autoencoder) and Discriminator

4 Experiments and Results

The proposed WGAN-AE architecture is implemented and evaluated in the Google Colab Pro platform.
To ensure the optimal training of WGAN-AE, we selected the range of suitable hyperparameters through
the hit and trial method. The customized and default hyperparameters utilized in training are presented
in Tables 2 and 3, respectively. The following provides a brief discussion of the experimental procedures and
an in-depth analysis of experimental outcomes.

Table 2: Customized hyperparameters for the training of proposed WGAN-AE

Parameter Value
Encoding dimension 14
Discriminator layers 128, 64 neurons (ReLU activation)
Generator activation ReLU (encoding), Sigmoid (decoding)
Loss function (GAN) Wasserstein Loss
Loss function (Final Model) Mean squared error, Categorical Crossentropy (loss weights: 0.5, 0.5)
Optimizer Adam
Batch size 256
Epochs (GAN Training) 10
Epochs (K-Fold Training) 5
K-Fold splits 5
Random seed 42

Table 3: Default hyperparameters for the training of proposed WGAN-AE

Parameter Default value
Learning rate (Adam Optimizer) 0.001
Betal (Adam Optimizer) 0.9
Beta2 (Adam Optimizer) 0.999
Epsilon (Adam Optimizer) le-7

Weight initialization (Dense Layers) Xavier initialization

4.1 Performance Evaluation with 5G-NIDD Dataset

The 5G-NIDD dataset is an important benchmark for evaluating the performance of intrusion detection
systems in next-generation 5G-enabled IoT networks, characterized by speed, low latency, and a variety of
threats. The following presents a brief discussion of the experimental results.
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4.1.1 Cross-Validation Performance

To ensure robustness, the model was subjected to five-fold cross validation to prevent overfitting on a
single dataset. The five-fold cross-validation results are shown in Fig. 4. The experimental outcomes delivered
quite impressive Precision-Recall AUC scores ranging from 99.79% to 99.91%, with an average of 99.87%.
This is because the model is very precise, with low false positive and false negative rates for high accuracy.
The scores for the Balanced Accuracy ranged from 98.79% to 98.97% with an average of 98.91%. These
cross validation results show that the model is highly generalizable with stable performance across different
data splits.

~ =@ - - Precision-Recall AUC ~ @ ~- Balanced Accuracy
0.999 0.990
e
0.999 = = T
& 0999 it _ =
< 0.999 g g % . g
g o Fa 0.989 Z
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= e,
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9 @
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0.997 0.987
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Figure 4: 5-fold cross validation with 5G-NIDD dataset

4.1.2 Test Set Performance

To further assess the model’s effectiveness, it was evaluated on an independent test set, where it achieved
a notable performance score. The accuracy was 97.35%, with precision, recall and Fl-score all being very
close to each other at 97.39%, 97.35%, and 97.35, respectively. These almost equal values across the different
metrics indicate that the model has a good center that helps it avoid false positives and negatives. The high
F1 score further confirms that both precision and recall are good, so the model does not give many false
positives while also detecting malicious traffic effectively.

4.1.3 Multiclass Performance Analysis

The confusion matrix presented in Fig. 5 provides deeper insights into the model’s classification per-
formance. It shows that the model made few misclassifications, particularly for well-defined attack patterns
such as UDP Flood, HTTP Flood, and SYN Scan. However, some minor misclassifications were observed
between attacks with similar characteristics, such as SYN Flood and TCP Connect Scan, where the model
occasionally confused connection-based attacks due to their similar network behavior profiles. Despite these
minor misclassifications, the overall error rate was low, reinforcing the model’s high reliability. Fig. 6 presents
a detailed multiclass performance evaluation.
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Figure 5: Confusion matrix for 5G-NIDD dataset
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Figure 6: Multiclass performance evaluation with 5G-NIDD dataset

4.1.4 Computational Performance Analysis

The computational performance analysis of the proposed WGAN-AE model on the 5G-NIDD dataset
demonstrates efficient processing capabilities. The training phase was completed in 59.20913 s, indicating that
the model can handle complex data with moderate computational requirements. During the inference stage,
the model processed the entire test set in 81.51074 s, reflecting its capacity to analyze and generate predictions
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efficiently. The per-sample latency was measured at 0.06704 ms, ensuring minimal delay during inference.
Moreover, the throughput of the model was recorded at 14, 916.93066 samples per second, highlighting its
capability to process a large volume of data in heterogeneous IoT networks.

4.1.5 Attack Detection Time Analysis

In real-world applications, fast detection of attacks is crucial to mitigate threats in real time. The
proposed model demonstrated impressive low-latency performance across various attack types, processing
most attacks within 0.06 to 0.08 milliseconds. This ensures that it can quickly identify and respond
to malicious activities without causing significant delays. However, the ICMP Flood attack took slightly
longer to detect at 0.29605 ms, likely due to its bursty nature and the larger packet sizes involved, which
required additional computational resources. Despite this, all other attack detection times remained within
sub-millisecond latencies, confirming that the model is well-suited for real-time intrusion detection in
5G-enabled IoT networks. Fig. 7 illustrates each class’s attack detection time.
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Figure 7: Detection time of each individual class in 5G-NIDD dataset

4.1.6 Model Size and Deployment Feasibility

Considering the limited storage and computational resources available on many IoT devices, the model’s
memory footprint is a key factor for deployment feasibility. The proposed model has a compact size of
just 60.24 kB, making it highly efficient for deployment on resource-constrained IoT devices. The smaller
memory footprint, high detection accuracy, and low latency make it an ideal choice for deployment in
real-world IoT networks.

4.2 Performance Evaluation with IDSIoT2024 Dataset

The IDSI0T2024 dataset contains diverse IoT traffic data to evaluate IDSs in dynamic and resource-
constrained IoT networks. The following provides a detailed analysis of experimental results with the IDS
IoT 2024 dataset.

4.2.1 Cross-Validation Performance

The five-fold cross-validation results are presented in Fig. 8. The Precision-Recall AUC scores for the
five folds were very high, with an average of 94.09%, ranging from 91.81% to 95.66%. This shows that the
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model is capable of a good precision-recall tradeoft, i.e., it can avoid many false positives and false negatives.
The Balanced Accuracy values were also very good, with a range of 88.54%-91.59% and an average of 90.53%.
These results show that the model performs reliably in distinguishing attack and benign traffic without bias
and thus is likely to be deployable in a generalizable manner across IoT networks.
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Figure 8: 5-fold cross validation with IDSI0T2024 dataset

4.2.2 Test Set Performance

After training the model using the training dataset and validating its efficiency using the validation set,
it performed exceptionally on an independent test set with high accuracy of 98.38% to distinguish between
normal and malicious traffic. All other metrics like precision, recall and F1 scores were also very close to
each other, with values of 98.34%, 98.38% and 98.27%, respectively. This indicates that the model performs
well without being too sensitive or ignoring real anomalies. Furthermore, the decision-making process of
the model is straightforward, making it easy to interpret and trust the results.

4.2.3 Multiclass Performance Analysis

The confusion matrix in Fig. 9 gives a more accurate view of the model’s classification accuracy. When
the multi-class evaluation was performed, the model’s performance was found to be consistent across all
the other classes except the ‘Injection’ class. This means that although the model is very good at identifying
different attacks, there could be some difficulties in distinguishing between some of the attacks, especially
Injection attacks, which may have attack patterns that are similar to those of other malicious activities. The
low performance in this case can be ascribed to the characteristics of Injection attacks which are often quiet
and their traffic is not easily distinguishable. Nonetheless, the general multiclass performance is good which
indicates that the model is well positioned to deal with different kinds of attacks. The multiclass performance
is detailed in Fig. 10.
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Figure 9: Confusion matrix for IDSI0T2024 dataset
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4.2.4 Computational Performance Analysis

For the IDSI0oT2024 dataset, the proposed WGAN-AE model exhibited a significantly lower training
time of 10.67866 s, suggesting that the model adapts efficiently to this dataset. The inference time for
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the complete test set was remarkably fast at 6.43554 s, emphasizing the model’s ability to handle large-
scale IoT data effectively. The latency per sample was recorded at 0.06684 ms, demonstrating minimal
delay during prediction. Additionally, the throughput achieved was 14,960.67771 samples per second,
reflecting a high data processing rate, which is crucial for real-time IoT applications. These results affirm
that the WGAN-AE model is computationally efficient across diverse datasets, making it well-suited for
high-throughput environments.

4.2.5 Attack Detection Time Analysis

The model demonstrated impressive efficiency with attack detection times, processing most attacks in
sub-millisecond times, ranging from 0.05841 to 0.11560 ms. The shortest detection times were observed for
normal traffic and attacks like DoS and Routing, indicating the model’s ability to detect these traffic types
quickly. The slightly longer detection times for more complex attacks, such as Injection (0.10729 ms) and
MITM (0.11560 ms), still remained well within acceptable thresholds for real-time monitoring. These results
highlight the model’s suitability for use in environments where prompt threat detection is essential. Fig. 11
illustrates each class’s attack detection time.
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Figure 11: Detection time of each individual class in IDSIoT2024 dataset

4.2.6 Model Size and Deployment Feasibility

The model’s compact size of 61.84 kB makes it highly suitable for deployment in resource-constrained
IoT environments. This small memory footprint ensures that the model can be easily integrated into IoT
devices with limited computational resources. The model’s lightweight nature, high detection accuracy, and
low detection latency demonstrate its potential for deployment in real-world IoT networks, where both
efficiency and security are critical. Given the increasing demand for effective and resource-efficient intrusion
detection in IoT systems, this model offers a promising solution for ensuring the security of IoT devices.

4.3 Performance Comparison of Proposed WGAN-AE with State-of-the-Art GAN Variants

To analyze the efficacy of the proposed WGAN-AE, we compared the performance with state-of-the-
art GAN variants, including vanilla GAN, conditional GAN, least square GAN, Information Maximizing
Generative Adversarial Networks (info GAN), and boundary equilibrium GAN. To ensure a fair comparison,
we implemented all these GAN models on similar experimentation platforms with similar datasets. The
following presents a detailed comparative analysis.
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4.3.1 Detection Rate and False Alarm Rate

The WGAN-AE consistently outperforms other GAN variants in detection accuracy while maintaining
lower false alarm rates across different attack classes. Table 4 presents comparative evaluation results for the
5G-NIDD dataset. The proposed scheme achieved a remarkable 100% detection rate for ICMPFlood attacks
with zero false alarms, a stark contrast to Vanilla GAN’s 29.69% detection rate. Similarly, for SYNFlood and
SYNScan attacks, WGAN-AE achieves near-perfect detection, significantly surpassing alternatives such as
Least Squares GAN and Boundary Equilibrium GAN. The improvement is also evident in benign traffic
classification, where WGAN-AE attains a detection rate of 95.84% with a reduced false alarm rate of 1.93%,
demonstrating its robustness in distinguishing normal and attack traffic.

Table 4: Comparative analysis of detection rate (DR) vs. false alarm rate (FAR) for 5GNIDD Dataset (all values are in
percentage, %)

Class Vanilla GAN  Conditional  Least Squares Info GAN Boundary WGAN-AE
GAN GAN Equilibrium (Proposed
GAN Scheme)
DR FAR DR FAR DR FAR DR FAR DR FAR DR FAR
Benign 87094 6.529 82563 8.047 79.527 6197 93227 3.683 87942 4.784 95.847 1.927

HTTPFlood 97532 0.635 98.203 1.074 97016 0.753 98.455 0.338 97566 0517 99471  0.135
ICMPFlood 29.697 0.002 0.000 0.000 0.087 0.000 98.788 0.002 61385 0.005 100.00 0.000
SYNFlood 85.876 0.019 82.636 0.028 83.870 0.025 86.092 0.010 85.639 0.011 99.928  0.003
SYNScan 95375 0.019 92.616 0.050 92.840 0.043 99.606 0.008 97296 0.016 99.776  0.006
SlowrateDoS 90.687 0.331 84.521 0.239 88.885 0.375 94.907 0.181 92338 0.300 98.009 0.065
TCPConnectScan 98.499 0.188 96.225 0.252 96.848 0.245 98.998 0.116 98.768 0.160 99.771  0.002
UDPFlood 89.609 8.205 87211 11147 90.233 13.147 94.137 4.249 92384 7627 96912  2.604
UDPScan 93.015 0.019 87583 0.044 85924 0.019 99.453 0.005 96.259 0.020 99.642  0.002

Table 5 presents the comparative analysis for the IDSIoT2024 dataset. A similar trend is observed in
the IDSI0oT2024 dataset, where WGAN-AE exhibited high detection rates for Routing (99.35%) and DoS
(99.05%) attacks, outperforming all other models. The false alarm rate remains consistently low, reinforcing
its reliability for real-world deployment. However, a noticeable weakness emerges in detecting Injection
attacks, where it underperformed compared to Information Maximising Generative Adversarial Networks
(InfoGAN).

Table 5: Comparative analysis of detection rate (DR) vs. false alarm rate (FAR) for IDSI0T2024 Dataset (all values are
in percentage, %)

Class Vanilla GAN Conditional  Least squares Info GAN Boundary WGAN-AE
GAN GAN equilibrium (Proposed
GAN Scheme)
DR FAR DR FAR DR FAR DR FAR DR FAR DR FAR
DoS 94.093 8.451 97008 4.893 96.200 14.357 97993 1923 95230 6.198 99.053  0.565

Injection 34.063 0.078 43125 0.073 35.859 0.061 52.656 0.118 36.484 0.058 40.156  0.093
MITM 100.000 0.340 100.00 0.340 100.00 0.340 100.000 0.340 100.00 0.340 100.00 0.340
Malware 99.180 0.404 99.410 0.210 99380 0.358 99.190 0.072 99.380 0.298 99.420 0.294
Normal 82.980 0.935 88520 0.866 83510 1159 91980 0.935 84.880 0.794 91.030 0.688
Routing 65.620 2174 78330 0.811 33.280 0.806 92.090 0.422 77100 1781 99350  0.010
Vuln_Analysis 95510 1514 97610 1332 94.825 1713 97590 1085 95920 1401 98365 1.205
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4.3.2 Computational Efficiency and Resource Utilization

One of the promising features of WGAN-AE is its efficient training process, which is significantly faster
than traditional GANs. The computational efficiency and resource utilization comparison are presented
in Tables 6 and 7 for 5G-NIDD and IDSI0oT2024 datasets, respectively. On the 5G-NIDD dataset, the
training time is reduced to 59.2 s, compared to InfoGAN’s 214.9 s and Vanilla GAN’s 208.2 s. This efficiency
stems from incorporating an autoencoder, which compresses input data before training, substantially
reducing computational complexity. A similar advantage is observed in the IDSIoT2024 dataset, where the
training time is just 10.67 s, making WGAN-AE faster training models among its peers. Another notable
advantage of WGAN-AE is its remarkably small model size. The model requires only 0.060 MB for 5G-
NIDD and 0.061 MB for IDSIoT2024, making it an excellent choice for deployment in resource-constrained
IoT environments.

Table 6: Comparative analysis of training cost, inferencing time, latency, throughput, and model size for 5GNIDD
dataset

GAN variants Training  Inferencing Latency  Throughput Model size
cost (sec) time (sec) (ms) (Samples/sec) (MBs)
Vanilla GAN 208.23392 61.12484 0.05027 19891 0.78463
Conditional GAN 112.46435 60.25724 0.04956 20178 0.78463
Least squares GAN 155.00871 60.92937 0.05011 19955 8.65162
Info GAN 214.93845 61.21826 0.05035 19861 0.78463
Boundary equilibrium GAN  208.44314 71.86630 0.05911 16918 0.78463
WGAN-AE 59.20913 81.51074 0.06704 14916 0.06024

Table 7: Comparative analysis of training cost, inferencing time, latency, throughput, and model size for IDSIoT2024
dataset

GAN variants Training  Inferencing Latency  Throughput Model size
cost (sec) time (sec) (ms) (Samples/sec) (MBs)
Vanilla GAN 2715654 5.66325 0.05882 17000 0.79781
Conditional GAN 19.73150 5.18062 0.05381 18584 0.79781
Least squares GAN 32.70655 5.26421 0.05468 18289 8.70435
Info GAN 26.47308 4.95029 0.05142 19449 0.79781
Boundary equilibrium GAN  24.77814 5.02102 0.05215 19175 0.79781
WGAN-AE 10.67866 6.43554 0.06684 14960 0.06184

4.4 Trade-offs and Limitations: A Balanced Perspective on WGAN-AE’s Promising Performance

The WGAN-AE model demonstrates remarkable performance in terms of detection accuracy and false
alarm reduction, significantly outperforming state-of-the-art GAN variants across diverse attack classes.
While a detailed evaluation reveals some trade-offs in inferencing time and throughput, these differences are
relatively minor compared to the notable improvements WGAN-AE brings in detection performance.



Comput Model Eng Sci. 2025 19

4.4.1 Latency and Inferencing Time: Minimal Trade-Offs for Superior Detection

A closer analysis of the inferencing time and latency highlights that although WGAN-AE incurs a
slightly higher latency (0.067 ms for 5G-NIDD and 0.066 ms for IDSIoT2024) compared to InfoGAN and
Vanilla GAN (around 0.051 ms), the difference is negligibly small in practical scenarios. This minimal latency
overhead is a small price for achieving significantly higher detection rates and lower false alarm rates. In
real-world intrusion detection environments, where accurate and reliable attack classification is paramount,
this marginal increase in latency does not compromise the system’s overall responsiveness.

4.4.2 Throughput: Prioritizing Accuracy over Speed in High-Stakes Scenarios

Similarly, while WGAN-AE demonstrates slightly lower throughput (around 14,916 samples/sec for
5G-NIDD and 14, 960 samples/sec for IDSIoT 2024) compared to InfoGAN and Conditional GAN (which
process over 19,000 samples/sec), this trade-off is more than compensated for by the model’s superior
detection performance. Although important in high-speed environments, it becomes secondary in scenarios
where accuracy and reliability are critical. For instance, in mission-critical IoT or 5G networks, ensuring
that malicious traffic is identified with near-zero false alarms is more desirable than marginally higher
processing speed.

4.4.3 Detection Superiority and False Alarm Reduction: WGAN-AE’s Competitive Edge

The strength of WGAN-AE lies in its ability to consistently achieve higher detection rates across a wide
range of attack types, including difficult-to-detect threats such as ICMPFlood, SYNFlood, TCPConnectScan,
and UDPScan, while simultaneously maintaining a significantly lower false alarm rate. For example, on the
5G-NIDD dataset, WGAN-AE achieves a 100% detection rate for ICMPFlood attacks with a 0% false alarm
rate, outperforming all other models. Even for complex attack types in the IDSI0T2024 dataset, WGAN-AE
maintains exceptional performance, highlighting its robustness and reliability in detecting both known and
emerging threats.

4.5 Future Directions: Enhancing WGAN-AE for Greater Efficiency

While WGAN-AE has already set a high standard in intrusion detection, a few strategic enhance-
ments could further refine its performance regarding inferencing time and throughput. The following two
recommendations can help address these minor trade-offs:

4.5.1 Model Pruning and Lightweight Architectures for Faster Inferencing

Model pruning and lightweight architectures can be employed to minimize inferencing time and latency
without sacrificing detection accuracy. Pruning reduces model complexity by removing redundant connec-
tions and neurons, leading to a lighter and faster network while retaining essential feature representations.
Additionally, incorporating quantization techniques can further reduce model size and computation require-
ments, making WGAN-AE more efficient for real-time applications. This approach can maintain the model’s
detection superiority while ensuring faster inferencing in large-scale or latency-sensitive environments.

4.5.2 Parallel Processing and Distributed Inference for Higher Throughput

Implementing parallel processing techniques and distributed inference frameworks can significantly
improve performance in high-speed networks, enhancing throughput and enabling real-time intrusion
detection. WGAN-AE can process a larger volume of samples concurrently by partitioning incoming
network traffic across multiple computational nodes, thereby increasing overall throughput. Additionally,
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leveraging edge-cloud hybrid architectures can oftfload preliminary anomaly detection to edge devices,
reducing the computational burden on central servers while maintaining accuracy and reliability.

5 Conclusion

This paper proposed a hybrid framework for an efficient IDS for IoT networks using GAN and autoen-
coder architectures. The proposed WGAN-AE successfully identified a range of cyberattacks with higher
accuracy. The performance of the designed IDS framework was evaluated using two open source datasets,
5GNIDD and IDSIoT2024. The experimental outcomes confirm the higher attack detection accuracy in both
5-fold cross-validation scenarios and with respect to independent testing data. The microseconds attack
detection time for each class and the low memory footprint makes it suitable for deployment in resource
constrained IoT devices and networks.
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