
FTC 2016 - Future Technologies Conference 2016

6-7 December 2016 | San Francisco, United States

 1 | P a g e

©2016 IEEE

Protecting Documents with Sticky Policies and

Identity-Based Encryption

Grzegorz Spyra

The Cyber Academy

Edinburgh Napier University

Edinburgh, UK

g.spyra@napier.ac.uk

Prof William J Buchanan

The Cyber Academy

Edinburgh Napier University

Edinburgh, UK

w.buchanan@napier.ac.uk

Abstract—Documents are increasingly being held in public

cloud-based systems, and there thus increasingly exposed to

accesses from malicious entities. This paper focuses on the

integration of sticky policies that are embedded into OOXML

(Open Office XML) protecting each of the elements of a data

package. Along with this it combines with Identity-Based

Encryption (IBE) to securely attach the sticky policy onto data.

Keywords — OOXML, Sticky Policies, IBE, IRM, Cloud

Security

I. INTRODUCTION

There is an increasing move towards Cloud-based systems
to store data [1], but the methods that we have used in the past
are increasing irrelevant. The focus in applying security within
Cloud-based systems has typically focused on enhancement of
access control methods or on encrypting documents. A major
problem, though, is that there is not much in the way of
frameworks, which can embed access rights into ordinary
documents.

Shamir defined a public key encryption scheme [2], where
it is possible to build a secure construction where
communicating parties could use a simple text as a public key
without a need for keys exchange. Based on this assumption
Dan Boneh and Matthew Franklin [3] constructed an efficient
fully functional Identity-Based Encryption (IBE) scheme using
Pairing-Based Cryptography (PBC).

With the IBE scheme, a message sender can take any
arbitrary text known to receiver and use it as a public key.
Whereas plain text does not require any further cryptographic
safeguards a message receiver requires authentication that
proves ownership of the public key, i.e. email address. Using
email address as a public key helps communicating parties to
share information about Trust Authority (TA) what constrains
the key domain for pairing operations. While in proposed
construction sticky policies act as document identity giving it
TA and access control context.

By selecting from a list of registered TAs, Alice selects
preferred Trust Authority (TA), and then receives a template of
possible policy rules – predefined access rights within a given
security context. After defining policy access rules, the policy
set is extended by data owner – Alice rights, and together with

document global unique identifier and a TA reference the
sticky policy is ready to protect the document.

Section II introduces sticky polices concept and section III
describes how to securely keep policy attached to a data.
Section IV shows original approach of granular OOXML
document access control with preselected XACML policy
profiles. Section V briefly describes how using IBE primitive
sticky policy can follow data in public cloud. Section VI
evaluates IBE in compare to RSA for sticky policy as well as
sticky policy itself as an access control method.

II. STICKY POLICIES AUTHORIZATION

Sticky policies carry authorization information required to
protect the data. Policy evaluation upon access request can
check who you are, what you have, what you know, where you
are and when and how you can access the data. E.g. in
countries that adopted OECD data protection directives [4]
owner consent related to data access can be represented as an
access rule and combined into a policy set. As mentioned
before data access can be constrained by time. E.g. sticky
policy added to a financial report would define any subject
rights to process the report within a defined time slot and
before or after a specific date.

Fig. 1. XACML Rule example

XACML access request construct represents access tuples,
with subject, object and predicate. Subject is the data owner or
data processor who wish to access the object. Object is the
resource document that can be represented by cloud data
hosting provider path and unique data identifier. Predicate
defines an action that subject is entitled to base on the policy
rules. Because of its internal XML structure XACML policies

<Policy>

 <Rule Effect="Permit">
 <Target>

 <Subject "GROUP(BusinessEngineering):{956EFF…}"/>

 <Resource "TA_URI/{8AA1F374-FAX1-4E5D-
BDF1…}"/>

 <Action "Read"/>

 </Target>
 </Rule>

</Policy>

FTC 2016 - Future Technologies Conference 2016

6-7 December 2016 | San Francisco, United States

 2 | P a g e

©2016 IEEE

are defined via attributes represented by name/value pairs.
XACML sticky policy subject can be constrained by a
technical Role [5] represented as a group in a target system,
where e.g. Role is equal «BusinessEngineering». Because
sticky policy remains unencrypted its attribute values could be
anonymized as a further safeguard. «BusinessEngineering»
Role could be represented by a global unique identifier (see
Fig. 1) from within given Trust Authority context.

XACML policy model simply combines Rules, Policies and
PolicySets into Policies or PolicySets (see Fig. 2) to protect the
resource and enforce access rights defined by data owner.
Possibility of Policy and PolicySet nesting gives many
possibilities to represent access conditions.

Fig. 2. XACML Policy Construct [6]

Interesting functional part that is defined by XACML are
obligations and advice. Obligation is a must requirement
compared to non-obligatory advice, which can be considered
during access control decision. Obligation is a directive
specifying obligatory operation after access request decision.
E.g. obligation can instruct to raise a security incident after Eve
was denied access to the data. Advice can instruct Bob to use
his academic email identity because he does not have a valid
educational ac.uk domain address. Important feature of both
obligation as well as advice is the fact that these can enforce
data re-encryption under larger key space or even different
cryptographic method.

III. STICKY POLICIES IBE AUTHENTICITY

The policy which is stuck to the data (Fig. 3) cannot be
tampered by an illegitimate person. Acting as a public key the
sticky policy is authenticated by IBE scheme. Only the exact

key can be used to decrypt the cipher-text. IBE is a public key
asymmetric cryptographic primitive therefore for a given
public key encrypting the message exists one private key
decrypting the cipher-text with this message. If an attacker
would try to change the sticky policy attached to the data in this
construct after TA authorizes falsified request the received
private key cannot be used to decrypt the cipher-text.

Fig. 3. IBE secured OOXML document with Sticky-policy attached

In addition, the model can provide data non-repudiation
assurance with an extra cryptographic operation. Authenticated
Identity-Based Encryption (Authenticated IBE) delivers both
message confidentiality and non-repudiation on top of IBE
scheme [7]. To implement this authorship safeguard either
sticky policy or OOXML document meta-data should carry
information about the data owner. Sender i.e. Alice using own
private key can authenticate the encryption.

If data integrity is required there are existing Identity Based
Signature (IBS) schemes [8]. This safeguard is more expensive
than non-repudiation as requires separate encryption and
signing operations, while Authenticated IBE is even faster than
actual IBE encryption. Considering other available
technologies for integrity and non-repudiation Blockchain
might be preferred. It verifies data in a historical context [9]
and Blockchain service integrated with Trust Authority (TA)
may govern any illegitimate re-encryption attempt of the
amended data. Changed document despite of initially defined
sticky policy rights giving only Read rights can be rejected by
TA therefore change will not be added to the block chain.

Sticky-policy integrity can also be checked under
Authenticated Identity-Based Encryption [10] scheme albeit it
requires policy private key to be leased by the Trust Authority
(TA) during initial encryption.

IV. EMBEDDED ACCESS RIGHTS

Office Open XML (OOXML) that was combined with
XACML policy is represented as related parts gathered into
container called package. Package is an ordinary ZIP file
containing content-type item, relationship items and parts [11].
OOXML can represent documents with underlying meta-data
using WordprocessingML subclause. Workbooks use dedicated
SpreadsheetML data format. PresentationML can store rich-
presentation meta-data and finally DrawingML specifying
images location and appearance within a package.

FTC 2016 - Future Technologies Conference 2016

6-7 December 2016 | San Francisco, United States

 3 | P a g e

©2016 IEEE

Fig. 4. OOXML internal Implicit relationship [11]

One of the possible granular access control
implementations can leverage OOXML implicit relationships
(see Fig. 4) that describe references from document parts to
other package resources and combine them with XACML
Hierarchical [12] and Multiple Decision [13] profiles.
Functionality allowing efficient expression of a policy
constraint that will apply to an entire OOXML document
hierarchy, rather than having to specify a separate constraint for
each document element, simplifies policy definition therefore
reduces risk that access controls are evaluated correctly.
Furthermore Multiple Decision profile allows combinations of
multiple access control decisions where single access request
can evaluate access rule for more than one resource. While
resource-id represents part of the hierarchy i.e. package, where
access rules are applied, the internal OOXML package
referenced elements identifiers (See Fig. 4) are anchors for
XACML sticky policy.

Such approach not only controls who can access the data
but also what part of a document can be accessed. Of course
OOXML editor application so called consumer and producer
requires additional safeguards to edit document with granular
access control applied but yet OOXML already defines basic
access control attributes that can be leveraged to interpret
XACML rights.

V. IBE WITH STICKY POLICY AS IDENTITY

To illustrate how the document and sticky policy can be
cryptographically protected, Alice encrypts a document using
IBE BF [3]. This requires the setup of a policy key public
𝑄𝑃𝑂𝐿:

𝑄𝑃𝑂𝐿 = 𝐻1(𝑃𝑂𝐿𝐼𝐷), (1)

where 𝐻1is a hash function defined on group 𝔾1 of prime order
q such as 𝐻1: {0,1}∗ ⟶ 𝔾1

∗ , which maps sticky policy 𝑃𝑂𝐿𝐼𝐷
into a single point on an elliptic curve.

Alice then generates a random number 𝑟 from group ℤ𝑞 =
{0, … , 𝑞 − 1} under modulo 𝑞 and calculates the parameters:

{
𝑈 = 𝑟𝑃

𝑉 = 𝑚 ⨁ 𝐻2 (ê(𝑅𝑝𝑘𝑔, 𝑟𝑄𝑃𝑂𝐿)), (2)

where 𝑉 is derived from a symmetric ⨁ operation function
over message 𝑚 and bilinear map ê. Secret key as per IBE is
computed from bilinear mapping ê where ê: 𝔾1 × 𝔾1 ⟶ 𝔾2.

U and V are then stored inside the OOXML document
wrapper, along with the embedded sticky policy.

If Bob wants to access the document, sends an access
request and the policy to the Trust Authority (TA) using TA
reference from the sticky policy. If he has rights, the TA uses
secret master key 𝑠 and computes private key for given sticky
policy as follows:

𝑆𝑃𝑂𝐿 = 𝑠𝑄𝑃𝑂𝐿 , 𝑠 ∈ ℤ𝑞 (4)

Next TA sends policy response together with sticky policy

private key 𝑆𝑃𝑂𝐿 to Bob (Figure 2). Bob can now use

symmetric operation ⨁ on parameter 𝑉 and hash function

𝐻2: 𝔾2 → {0,1}𝑛 and decrypt the document as follows:

𝑚 = 𝑉⨁𝐻2(ê(𝑈, 𝑆𝑃𝑂𝐿)) (5)

Access right specific decision is made by policy framework

based on policy response details, however all possible

permissions are interpreted as Read or Read/Write rights.

VI. EVALUATION

Prototyped sticky policies of size between 4 [KB] and 5
[KB] was used to protect the document, which was encrypted
using IBE Boneh and Franklin (BF) and AES 256. Furthermore
IBE performance was compared to other more legacy RSA
encryption - the same public key cryptographic model that
Microsoft used for RMSOnline Rights Management System
(RMS) [14]. In presented model sticky policy is used to
generate a secret key under IBE for AES encryption of the data
part. In MS RMS the AES secret key for data part encryption is
generated separately and together with policy to follow the data
it is encrypted using RSA and then attached to the encrypted
data. Therefore, here evaluation looks only into the initial
process of policy setup including AES key protection without
actual data encryption (i.e. AES 256).

FTC 2016 - Future Technologies Conference 2016

6-7 December 2016 | San Francisco, United States

 4 | P a g e

©2016 IEEE

Fig. 5. Times of Sticky policy mapping into AES key space using IBE-BF

compared to 3072 and 4096 RSA operations applied to pseudo random

AES 256 key [10]

Results show (see Fig. 5) that RSA with key size 4096
requires more time than Pairing Based Cryptography, i.e. IBE
to pair XACML policy of size between 4[KB] and 5[KB] into
AES key space. RSA 3072 performs better and requires less
time to complete cryptographic operations, however soon it
might need to be replaced with RSA 4096. Individual tests also
show that RSA performed better during encryption compared
to IBE pairing. RSA decryption however performed much
slower, whereas IBE completes within similar time as in
previous pairing with public test. Note that in this scenario
RSA has to encrypt not only symmetric key but also access
policy, therefore overall performance of RSA 4096 might be
comparable to IBE. Finally, evaluation shows that IBE used in
our construct performed well compare to RSA even though it
did not calculate RMS policy encryption under RSA.

Next evaluation relies on basic sticky policy assumption.
Sticky-policies can utilize existing policy frameworks, however
an advantage of comprising both a policy and an object
(resource) into sticky policies model over keeping the policy
separate from the object like in Discretionary Access Control
(DAC) model it is its reduced number of model entities and
increased DB access performance (see Fig. 6). Having two
policy implementations based on transactional databases it is
easy to derive query time tp assuming it is equal to natural
logarithm of total records number. In policy-based access
control model implementation database maintains not only
document information, which is claimed by the subject but it
also holds access policies. Policy can store document location
information, however in access scenario subject claims
resource (document) based on resource information before this
policy is evaluated. One can calculate query time tp assuming
we have to query policy each out of p policies and each
document out of n documents separately as in

 ∀𝑎 = 𝑝 × 𝑛 (6)

 𝑡𝑝 = ln (𝑎) = 𝑙𝑛(𝑛) + ln (𝑝)

In sticky-policy model the policy is attached to the resource
and both are retrieved in one single request. We can calculate
query time based on a single table query, assuming policy is
encapsulated with a document and both are stored together, as
in

 ∀ 𝑝 = 𝑛 (7)

 𝑡𝑠 = 𝑙𝑛(𝑛)

Fig. 6. DAC Policy (tp) and Sticky-Policy (ts) DB queries response time [10]

Finally the last OOXML and XACML evaluation using
explicit relationship and master document model [11] from
WordprocessingML subclause shown that described here
granular access control method can be used to control access to
sub-documents. Whereas policy access response denied
resource Write access model added Read-Only attribute to
master document what was represented as a padlock on the
document outline (see Fig. 7).

Fig. 7. Sticky policy applied to master document

Granular access model built for this evaluation is just a
proof of concept as various sources discourage using master
document model due to several integrity problems with
complex documentation.

VII. CONCLUSIONS

There is a lack of methods, which can be used to control the
access to data elements within documents, thus sticky policies
can be used to protect restricted elements within documents.

REFERENCES

[1] J. Luna, N. Suri, M. Iorga, and A. Karmel, “Leveraging the Potential

of Cloud Security Service-Level Agreements through Standards,”
IEEE Cloud Comput., vol. 2, no. 3, pp. 32–40, 2015.

[2] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,”

in Advances in Cryptology, vol. 196, G. R. Blakley and D. Chaum,

FTC 2016 - Future Technologies Conference 2016

6-7 December 2016 | San Francisco, United States

 5 | P a g e

©2016 IEEE

Eds. Springer Berlin Heidelberg, 1985, pp. 47–53.
[3] D. Boneh and M. Franklin, “Identity-Based Encryption from the

Weil Pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.

[4] OECD, “Recommendation of the Council concerning Guidelines
governing the Protection of Privacy and Transborder Flows of

Personal Data (2013).” pp. 11–37, 2013.

[5] A. Anderson, “XACML Profile for Role Based Access Control
(RBAC), Version 2.0,” 2004.

[6] D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu, “Extensible

Access Control Markup Language (XACML) and Next Generation
Access Control (NGAC),” in ABAC ’16 Proceedings of the 2016

ACM International Workshop on Attribute Based Access Control

Pages 13-24, 2016, pp. 13–24.
[7] B. Lynn, “Authenticated Identity-Based Encryption,” 2002.

[8] J. C. Cha and J. H. Cheon, “An Identity-Based Signature from Gap

Diffie-Hellman Groups,” Int. Assoc. Cryptologic Res., pp. 18–30,
2002.

[9] K. Okupski, “Bitcoin Developer Reference,” Eindhoven, The

Netherlands, 2015.
[10] G. Spyra, W. J. Buchanan, and E. Ekonomou, “Sticky policy

enabled authenticated OOXML,” in SAI Computing Conference

2016, 2016.
[11] Apple, Barclays Capital, BP, The British Library, Essilor, Intel,

Microsoft, NextPage, Novell, Statoil, Toshiba, and the United States

Library of Congress, “Information technology — Document
description and processing languages — Office Open XML File

Formats —Part 1: Fundamentals and Markup Language Reference,”

vol. 2012. ISO/IEC, Geneva, p. 5030, 2012.
[12] B. Parducci, H. Lockhart, E. Rissanen, and R. Levinson, “XACML

v3.0 Hierarchical Resource Profile Version 1.0,” 2014.

[13] B. Parducci, H. Lockhart, and E. Rissanen, “XACML v3.0 Multiple
Decision Profile Version 1.0,” 2010.

[14] Sergey Simakov, M. Sieber, and M. Norden, Azure RMS Security

Evaluation Guide. Microsoft, 2015.

