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A B S T R A C T

As global warming provokes increasing attention from investors, this study disentangles global warming risk 
(GWR) for investors by leveraging energy futures volatilities. This study derives GWR from energy futures using 
an extreme gradient boosting (XGB)-genetic programming (GP) framework. Our XGB-GP framework develops 
volatility forecasting models for GWR from selected energy futures markets identified by XGB as key contributors 
to global warming, surpassing traditional models in forecasting accuracy. The originality of the study rests on the 
pioneering integration of the XGB-GP framework in predicting climate risk, linking energy futures markets with 
climate risk management and enabling feasible climate-featured portfolio hedging. Our study also sheds new 
insights for policymakers to design carbon trading systems and carbon pricing mechanisms, as they can use 
relevant energy futures prices as a basis for carbon trading calibration.

1. Introduction

Global warming has become one of the major concerning issues 
facing by human community at the moment (Amicarelli et al., 2021; Wu 
et al., 2024). The growing greenhouse gas (GHG) emissions resulted in 
notable changes toward our climate, putting human society and envi-
ronment into potential catastrophe (Agnew, 2024; Zhang et al., 2023). 
GHG emissions, on the other side, also have broadly impacted economic 
development and firm values. As noted by Nishitani and Kokubu (2012), 
reducing firm GHG emissions is a corporate social responsibility (CSR) of 
firms, and CSR success could reinforce firms’ reputational capital. 
Further, Cooper et al. (2018) reveal that the negative effect of GHG 
emissions on a company’s value is undermined by the damage it causes 
to the company’s reputation for social responsibility. Consequently, 
scholars in climate finance are investigating how investors exercise 
shareholder disciplines over firms with regard to companies facilitating 
a global transformation from an energy-intensive economy to a sus-
tainable economy through climate risk management (Hong et al., 2020; 
Stroebel and Wurgler, 2021). On these bases, the study of climate risk 
impacting on company value analysis attracts the attention of scholars 
(Bartram et al., 2022; Bose et al., 2024; Pham et al., 2024). There has 

been a heightened awareness among investors regarding the implica-
tions of climate risk, demanding to a greater transparency in the 
reporting such risk for companies (Huang et al., 2018). As a result, 
analyzing and hedging climate risks, such as global warming risk 
(GWR), are key ingredients of risk management for firms.

Nevertheless, one of the pivotal obstacles in assessing the effects of 
climate change on firm reputations, values, and behaviors is the 
complicated process of determining the explicit mechanism through 
which companies and financial markets are impacted. These concerns 
further extend to whether or not financial markets can help to evaluate 
and price those risks and potentially aid the risk management of climate 
change for investors and financial institutions (Sautner et al., 2023). 
Commodity futures markets, especially energy futures markets have 
significantly impacted on the climate risks and sustainable development 
(Gong et al., 2023; Hoque et al., 2023). As a result, the research question 
how financial market dynamics, particularly energy futures volatilities, 
can be leveraged to estimate and predict global warming risk (GWR) 
through greenhouse gas (GHG) emission fluctuations has been brought 
into being. This research theme is pivotal as GHG emissions may jeop-
ardize economic development and firm values (Cruz and Rossi- 
Hansberg, 2024).
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While prior studies explored the climate risks’ economic conse-
quences, few actionable hedging mechanisms have been proposed 
against such risk. Therefore, our paper intends to provide new under-
standing of global warming risk (GWR) in terms of GHG emission 
volatility by employing a machine learning approach from a financial 
market perspective. On this basis, this study further proposes a hedging 
portfolio from energy futures markets to neutralize the negative effect of 
GWR. Overall, we could furnish the research gap by offering the deep 
understanding regarding how financial markets price GWR and how 
markets can hedge against such risk.

In fact, global warming mainly stems from GHG emissions, and thus, 
this study uses GHG emission volatility to approximate the GWR. The 
main types of GHGs included in this paper are carbon dioxide (CO2), 
nitrous oxide (N2O), and sulfur hexafluoride (SF6). CO2, N2O and SF6 are 
the major contributors to global warming (Allen et al., 2009; Battaglia 
and Joos, 2018; Li et al., 2018). CO2 is the most prevalent greenhouse 
gas emitted by human activities. It absorbs and re-emits infrared radi-
ation, frustrating the heat release from Earth’s atmosphere, resulting in 
the greenhouse effect. Increased levels of CO2 amplify this effect, leading 
to increased global temperatures (Franta, 2018; Matthews et al., 2009). 
Although N2O is emitted in smaller quantities than CO2, it is a much 
more potent greenhouse gas.

Existing literature has identified the GHG emissions as key driver of 
global warming, generating profound effects on ecosystems and econ-
omies (Geiger et al., 2021). The transparency and accuracy of climate 
risk is increasingly demanding, yet existing climate risk studies preva-
lently rest their forecasting models on environmental data, neglecting 
the interconnectedness between energy markets and GHG volatilities. 
Current risk forecasting models, such as GARCH-family models, 
including GARCH-MIDAS model and HAR-RV models can be only 
applied in the area of energy futures market risk forecasting, few models 
can be used to predict GWR since the time series data of GWR is scarce. 
Our remarkable contribution thereby is proposing a cutting-edge 
methodology to scrutinize GWR in terms of GHG emission volatility 
from a novel angle. We synthesize the Extreme Gradient Boosting (XGB) 
with Genetic Programming (GP) method to create an XGB-GP method-
ology to examine the GWR. This framework challenges the “black box” 
paradigm of machine learning by providing interpretable GWR fore-
casting model, which considerably reduces forecasting errors compared 
to traditional methods. By employing the energy future market data, our 
framework further decomposes GWR using energy futures, which de-
livers practical hedging strategies operationalize climate risk 
management.

Since analyzing the GWR from the firm values and energy markets 
angle is crucial, our paper contribute to the existing literature by filling 
the research gap in several ways. Firstly, existing studies scrutinize the 
climate risk through the lens of climate models or environmental in-
dicators, which may not fully capture the dynamic interconnection be-
tween financial markets and climate risk (Bovari et al., 2018; Lamperti 
et al., 2019). There is a burgeoning number of literature suggests that 
financial market factors like energy market factors, are sound predictors 
of greenhouse gas emissions (Brehm, 2019; Guo et al., 2021). However, 
current literature has not scrutinized multiple factors in a comprehen-
sive framework by including financial market factors to forecast the 
GWR. Our paper can fulfill this research gap by putting GWR into the 
economic context by revealing how energy futures respond to GWR and, 
more importantly, which energy markets contribute more to GWR than 
other markets. This study enriches the global warming research area 
from an economic perspective other than the existing studies, which are 
based on environmental information. This scarcity of linking energy 
futures market volatilities directly to GWR highly motivates our 
research. Our study thereby furnishes the research gap by establishing a 
predictive model, which uses machine learning approach to learn from 
financial market data as a basis for forecasting GWR, providing a new 
perspective on how financial activities in the energy sector can influence 
environmental outcomes.

Without such vigorous climate risk forecasting model, current liter-
ature leaves the vital research question how to hedge and alleviate 
climate risk still open, given aforementioned massive climate risk effects 
on financial investments. Lacking of hedging strategies toward GWR 
substantiates the research motivation of our paper. Additionally, since 
the factors related to human activities cannot be used to hedge, our 
research lens of this paper is to focus on the GWR related to the financial 
markets and how the financial markets can be used to hedge such risk. 
The energy futures markets and the financial instruments that can be 
used for hedging are the key players of our paper. Our study thereby 
challenges this conventional paradigm by linking energy market vola-
tilities, to the volatilities of GHG emissions, including CO2, N2O, and 
SF6. By demonstrating that energy futures markets can serve as leading 
indicators of GHG emission risks, this study attempts to provide a deeper 
understanding of the global warming risk structure.

In addition, our XGB-GP framework can also shed new insights into 
GWR deconstruction. The key advantage of our XGB-GP framework is 
that the final model is a mathematical expression that can be interpreted 
and analyzed. This is a notable contrast to most machine learning 
models, which are often seen as black boxes (Chen et al., 2024). In 
addition, by using XGBoost’s information gain for feature selection, we 
can identify the most relevant features from the dataset, reducing the 
dimensionality and complexity of the problem. This makes the subse-
quent GP process more efficient and focused on the most important re-
lationships in the data. Subsequently, GP can automatically discover 
complex feature interactions and non-linear relationships, which might 
not be easily captured by traditional statistical methods or even other 
machine learning techniques (Jin et al., 2024).

Furthermore, our XGB-GP framework unravels that key contributors 
to CO2 emission volatility are the volatility of Brent oil futures, the 
volatility of coking coal futures, the volatility of gas futures, and the 
volatility of gasoline futures. The key contributors to N2O emission 
volatility are the volatility of coking coal futures, the volatility of gas-
oline futures, the volatility of thermal coal futures, and the volatility of 
WTI oil futures. Finally, the futures that have the highest prediction 
power for SF6 emission volatility are the volatility of Brent oil futures, 
the volatility of coke futures, the volatility of heating oil futures, and the 
volatility of Rotterdam Coal futures. Based on the key contributors of the 
three GHG volatilities, we developed three GHG volatility forecasting 
models (see Eqs. (17)–(19)). By employing those three volatility fore-
casting models, our results indicate that our XGB-GP framework exhibits 
a larger prediction accuracy than the traditional MIDAS model, with an 
overall forecasting error of approximately 2 %. Based on our key con-
tributors of GHG emission volatilities and volatility forecasting models, 
we propose a hedging portfolio for neutralizing three GHG emission 
volatilities (see Table 4), which could be extremely useful for firms in-
side related industries.

The structure of this paper can be outlined as follows. In Section 2, 
we provide an overview of the methodology applied in this paper as well 
as the sample data and variable measures regarding the GHG volatilities 
and energy futures market volatilities. Section 3 presents the empirical 
results and the model performance of GWR forecasting. In Section 4, we 
further discussed the implications of our empirical findings. Section 5
covers the conclusion summary of the study and highlights relevant 
research implications.

2. Data and methodology

2.1. Data and variables

In order to investigate the predictability of futures market volatilities 
on the GWR, we proxy GWR as the volatility of three GHG emissions, 
with these three GHGs the main contributors to global warming (Lashof 
and Ahuja, 1990; Shine et al., 2005; Zhang et al., 2021a). Specifically, 
the three main types of GHGs we include in this study are carbon dioxide 
(CO2), nitrous oxide (N2O), and sulfur hexafluoride (SF6). Further, as the 
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emission of GHG mainly stems from the burning of fossil fuels, including 
coal, gas and crude oil (Gillingham and Stock, 2018; Lichtfouse et al., 
2003), we use different energy futures markets to represent the volatility 
of fossil fuel within the financial markets as well as the hedging in-
struments. We define ti as the conditional volatility of a particular time 
series i for time t. Therefore, the conditional volatilities of the three 
gases are tCO2, tN2O, tSF6, respectively. Conditional volatility is esti-
mated with GARCH modeling. We use the percentage change for all 
variables in this paper to fit the GARCH model.

In particular, we include 12 major energy futures volatilities and 
three GHG emission volatilities, defining two vectors as described 
below: 

x→= σbo
t , σcc

t , σcf
t , σdo

t , σfo
t , σgas

t , σgo
t , σho

t , σtc
t , σrbc

t , σrc
t , σwo

t , (1) 

where σbo
t the volatility of Brent oil futures, σcc

t is the volatility of coking 
coal futures, σcf

t is the volatility of coke futures, σdo
t is the volatility of 

diesel oil futures, σfo
t is the volatility of fuel oil futures, σgas

t is the volatility 
of gas futures, σgo

t is the volatility of gasoline futures, σho
t is the volatility 

of heating oil futures, σtc
t is the volatility of Richards Bay Coal futures, 

σrbc
t is the volatility of Rotterdam Coal futures, σrc

t is the volatility of 
thermal coal futures, and σwo

t is the volatility of WTI crude oil futures. 
Further, 

y→= σCO2
t , σN2O

t , σSF6
t , (2) 

where σCO2
t is the volatility of CO2 emissions, σN2O

t is the volatility of N2O 
emissions, and σSF6

t is the volatility of SF6 emissions.
Additionally, we employ an environmental-related index from the 

stock market in China, which includes the environment protection sector 
(EP), hydropower development sector (HY), new energy vehicle sector 
(NEV), nuclear power development sector (NP), and solar photovoltaic 
sector (SP). These indices reflect the firm share price in those industries 
that are highly related to environmental protection and global warming 
issue.

The sample period covers 1 January 2016 to 1 January 2023. We 
select this period because the Paris Agreement, signed in December 
2015 as part of the United Nations Framework Convention on Climate 
Change, brought the global warming issue into a legal form (Guiot and 
Cramer, 2016). Therefore, we use the GHG index as a main explanatory 
variable to represent the GWR highlighted by the Paris Agreement. GHG 
index data are provided by the Global Monitoring Laboratory (GML) of 
the National Oceanic and Atmospheric Administration (NOAA), which is 
freely available to the public (Lan et al., 2023). Future market data on 
coal, gas, crude oil, and environmental-related stock indices are 
collected from WIND. The GHG index is monthly data, whereas the fu-
tures market data are daily data. Therefore, we use a high-frequency to 
low-frequency mapping technique for GWR prediction. We further use 
the MIDAS method as the benchmark model to evaluate our mapping 
technique. We describe our GARCH modeling and MIDAS methodology 
in the following two subsections.

2.2. GARCH model

GARCH modeling is widely used for volatility estimation and fore-
casting, especially for time-varying volatility in the finance area (Ding 
et al., 2019; Zhang et al., 2024). Consequently, we use GARCH modeling 
to estimate the volatility of GHG emissions, the volatility of the stock 
market subindex, and the volatility of futures prices.

The widely used GARCH (1,1) model takes the following format: 

σ2
t = α0 +α1σ2

t− 1 +α2ε2
t− 1 (3) 

where σt is the volatility of the time series employed (namely, the per-
centage change of GHG, stock market subindex and futures prices) and εt 
is the residual term taken from the conditional mean equation, which is: 

rt = ∅+ εt , (4) 

Ø presents the conditional mean and εt ~ N(0, σt
2).

2.3. Mixed data sampling

The dynamic conditional volatility for GHG emissions is on a 
monthly basis, and so there is a relatively limited data sample. To further 
forecast GHG emissions with a fruitful data sample, we employ the data 
from the energy market conditional volatility, which is on a daily basis 
and can enhance the forecasting sample capacity. As those two datasets 
have different data frequencies, the application of the mixed data sam-
pling (MIDAS) regression method is essential, as it can serve as the 
benchmark model to compare with our XGB-GP method.

Ghysels et al. (2007) developed the MIDAS model to handle mixed- 
frequency data in one regression model, especially when the explana-
tory variables are at a high frequency. The MDAS model can be 
formulated as follows: 

σM
t+1 = α+ β

∑q
D − 1

i=0

∑ND − 1

j=0
ωi+j*ND

(
φD)σD

ND − j,t− i + εt+1, (5) 

where σM
t+1 is the low-frequency data with the frequency M (the monthly 

GHG emission volatility at time t + 1, qD is the number of lags for the 
daily frequency data (the daily energy market conditional volatility), ND 

is the number days in one month (21 trading days in one month), ω is the 
weighting function regarding the energy market conditional volatility 
toward the GHG emission volatility, and φD represents the parameters in 
the Almon lag polynomial function since we use the Almon lag 
weighting (i.e., polynomial distributed lag) method for the MIDAS 
regression with the residual term εt+1.

2.4. Extreme gradient boosting

Extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016) is 
an advanced implementation of the gradient boosting algorithm. 
Gradient boosting is a method that goes through cycles to iteratively add 
models into an ensemble. It is a sequential technique that combines 
weak learners to create a strong learner by assigning accurate pre-
dictions on the basis of a cumulative error function. XGBoost was orig-
inally designed for speed and performance. It has several key advantages 
that have made it a popular choice among data scientists. First, it em-
ploys a highly efficient and powerful algorithm known for its speed and 
performance. Second, it includes built-in regularization parameters that 
impede overfitting. This means that it not only improves model per-
formance but also controls the model’s complexity, making it less likely 
to overfit to the training data. Third, it offers flexibility by supporting 
various objective functions, including regression, classification, and 
ranking. Additionally, XGBoost can handle missing values internally, 
reducing the need for external preprocessing. Finally, it supports parallel 
processing, making it highly scalable, and has built-in cross- validation 
capabilities at each iteration, making model selection easier.

The XGBoost algorithm follows a boosting framework where models 
are trained sequentially, and each subsequent model aims to correct the 
errors of the previous one. The general procedure can be broken down 
into the following steps: 

(1) Model Initialization

XGBoost begins by initializing a model with a constant value. This 
value is chosen to minimize the loss function L, which measures the 
difference between the predicted values and the actual target values 
based on the problem type. For example, in a regression problem with 
mean squared error (MSE) as the loss function, the model is initialized 
with the mean of the target values: 
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f0
( →

x

)
= argγmin

∑n

i=1
L(yi, γ) (6) 

where: 

• n is the number of data instances,
• →

x represents the features of the i-th instance,
• yi is the target value for the i-th instance,
• γ is the constant value that minimizes the loss function during 

initialization (e.g., the mean of target values for regression).

The loss function L varies depending on the task: 

• For regression problems, a common choice is the Mean Squared Error 
(MSE): 

L(yi, ŷi) = (yi − ŷi)
2
,

where ŷi is the predicted value. 

• For binary classification problems, a common loss function is Logistic 
Loss (Log Loss): 

L(yi, ŷi) = − [yi log(ŷi)+ (1 − yi, )log(1 − ŷi) ].

• For multiclass classification problems, a Softmax loss is often used to 
account for multiple class probabilities.

In this step, the loss function L is minimized to initialize the model 
with a constant value. It’s important to note that here is not the scaling 
factor used for the base learners; that is introduced in the boosting 
rounds. 

(2) Boosting Rounds (form m = 1 to M)

XGBoost runs for M boosting rounds (iterations), where each round 
builds a new base learner that is added to the model from the previous 
round. 

(a) Compute Pseudo-Residuals

In each round m, the pseudo-residuals rim are calculated as the 
negative gradient of the loss function L, evaluated at the current pre-
diction fm− 1( x→): 

rim = −

⎡

⎣
∂L
(

yi, f
(

→
xi

))

∂f
(

→
xi

)

⎤

⎦

f=fm− 1

for i = 1,…, n. (7) 

These pseudo-residuals represent the errors made by the current 
model and guide the construction of the next base learner. 

(b) Fit a Base Learner to the Pseudo-Residuals

A base learner (typically a decision tree) hm
( →

x
)
is then fitted to 

predict the pseudo-residuals. This involves constructing the tree by 
splitting the data into partitions that minimize the sum of residuals 
within each partition. 

(c) Compute the Optimal Multiplier

After fitting the base learner, the algorithm finds an optimal multi-
plier m that minimizes the loss when the new base learner is added to the 
current model: 

γm = argγmin
∑n

i=1
L
(

yi, fm− 1

(
→
xi

)
+ γhm

(
→
xi

))
.

This step ensures that the new base learner is appropriately scaled to 
maximize its contribution to improving the model’s performance. 

(d) Update the Model

The current model is updated by adding the newly scaled base 
learner to the previous model: 

fm( x→) = fm− 1( x→)+ γmhm( x→).

This process repeats for each boosting round, gradually refining the 
model to reduce the error in the predictions. 

(3) Final Model Output

After M boosting rounds, the final model is the sum of the initial 
model and all the subsequent base learners: 

f̂ ( x→) = fM( x→). (8) 

This final model is used for making predictions on new data. 

(4) Regularization

XGBoost includes regularization terms to prevent overfitting and 
improve generalization. This is done by adding a regularization term 
Ω(hm) to the objective function when computing m: 

γm = argγmin

[
∑n

i=1
L
(

yi, fm− 1

(
→
xi

)
+ γhm

(
→
xi

))
+Ω(hm)

]

. (9) 

The regularization function Ω(hm) typically takes the form: 

Ω(hm) = αT+
1
2

λ‖ω‖ 2,

where: 

• T is the number of leaves in the decision tree,
• ω is the vector of leaf weights,
• α and λ are regularization parameters that control the model’s 

complexity and prevent overfitting.

This regularization improves the robustness of the model, allowing it 
to generalize better on unseen data.

2.5. Genetic programming

Genetic Programming (GP) (Poli et al., 2008) is an evolutionary 
computation technique that automatically solves problems without the 
user having to know or specify the form or structure of the solution in 
advance. At the heart of GP is the idea of evolving computer programs 
using principles of evolution and natural selection, such as mutation, 
crossover (recombination), and survival of the fittest.

The general procedure of GP is as follows: 

(1) Population Initialization: A population of randomly generated 
computer programs (individuals) is created. Each individual is a 
potential solution to the problem at hand. We denote the initial 
population as P0 where P0 = {p1, p2, …, pn}, and n is the size of the 
population.

(2) Fitness Evaluation: Each individual in the population is evaluated 
for its fitness, i.e., how good of a solution it is to the problem at 
hand. This can be represented by a fitness function f: P → R, 
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where P is the population and R is the real number. The fitness of 
an individual program pi in the population is given by f (pi).

(3) Selection: individuals are probabilistically selected from the 
population for reproduction (mutation and crossover) based on 
their fitness. The fitter the individual, the higher the chance of 
being selected. This can be represented by a selection functions f: 
P × F → P′, where F is the fitness value of the population, and P′ is 
the selected population. P′ = s (P, F).

(4) Reproduction: The selected individuals undergo genetic opera-
tions such as crossover and mutation to produce offspring. 
Crossover can be represented as c: P′ × P′ → P″, where P″ is the 
new population after crossover. Mutation can be represented as 
m: P″ → P″’, where P″’ is the final new population after mutation.

(5) Replacement: The newly created offspring replace some or all of 
the individuals in the current population. This completes one 
generation.

(6) Termination: The above steps are repeated for many generations 
or until some termination conditions are met, such as a solution 
that satisfies minimum criteria, fixed number of generations 
reached, or allotted computation time reached. The final best 
solution is given by pbest = argmaxp∈P f(p).

2.6. Neural networks

In this study, we consider one simple form of the neural network, 
namely, the single-layer perceptron. It consists of an input layer and an 
output layer that are fully connected. Generally, it works as follows:

We denote the input as a vector →
x = [x1, x2,…, xn]

T, where n is the 
dimension of the input, and the weights if the neural network as a vector 
→
w = [w1,w2,…,wn]

T . 

(1) Linear Transformation: The first step in the neural network is a 
linear transformation of the input, which can be represented as a 
dot product between the input and the weight vectors:

z =
→
w

T→
x + b, (10) 

where b is a bias term. 

(2) Activation Function: The result of the linear transformation is 
then passed through an activation function. The choice of acti-
vation function can vary. In this work, we choose the sigmoid 
function, which can be represented as follows:

σ(z) = 1
1 + e− z. (11) 

Therefore, the output of the neural network, given an input →
x , is: 

ŷ = σ
( →

w
T→

x + b
)

(12) 

The weights →
w and bias b are learned from the data by minimizing a 

loss function, which measures the difference between the network’s 
predictions and the true values. For a binary classification problem, a 
common choice of loss function is the binary cross entropy loss: 

L(y, ŷ) = − ylog(ŷ) − (1 − y)log(1 − ŷ), (13) 

where y is the true value and ŷ is the predicted value. The weights and 
bias are updated by performing gradient descent on this loss function.

2.7. The proposed XGB-GP framework

As the prediction of GWR has no unanimous answer over the existing 
literature, following the vein of energy market risk prediction, the 
theoretical foundation of climate risk forecasting is inherently tied to 
synthesizing factors such as macroeconomic variables, and spanning 
historical volatility patterns, extracting available information from the 

historical data (Fu et al., 2024; Liu et al., 2018). In order to acquire 
information from the historical data, a large number of models have 
been applied in the volatility forecasting field, especially energy market 
risk prediction. Early GARCH-family models, leveraged low-frequency 
data but constrained in capturing intraday volatility dynamics 
(Escobar-Anel et al., 2025; Naysary and Shrestha, 2024), provoking in-
novations like HAR-RV models that integrate high-frequency data to 
encapsulate multi-scale risk persistence (Li et al., 2025). Additionally, 
popularized by artificial intelligentized models, machine learning 
techniques, such as LASSO and gradient-boosted decision trees (GBDT), 
have differentiated themselves for their ability to handle high- 
dimensional data and incorporate nonlinear relationships, out-
performing traditional linear models volatility forecasts (Lee et al., 
2022; Zhang et al., 2021b).

Our XGB-GP framework further extended the existing method to 
create interpretable climate risk forecasting models, whereas machine 
learning models usually produce black-box outputs without sufficient 
interpretability. The overall structure of our proposed XGB-GP frame-
work is illustrated in Fig. 1. We trained the XGB model on the dataset 
and compute feature importance scores using information gain, which is 
used to measure the effectiveness of a feature in splitting the data to 
create more homogeneous subsets. It is based on the concept of entropy, 
which quantifies the randomness or impurity of a dataset. In this work, 
information gain is used to determine the best split points in the tree 
structure. By extracting feature importance, we can identify the most 
relevant features in the dataset. Next, we select a subset of the top 4 most 
important features for GP processing.

We then use GP to evolve mathematical expressions that describe the 
relationship between these top 4 features and the target variable. We 
initialize a population of random symbolic expressions containing the 
selected features and evolve the population using GP’s standard pro-
cesses, such as selection, crossover, and mutation. The fitness of an in-
dividual expression can be evaluated based on its prediction accuracy. 
We continue the GP process for a fixed number of generations.

3. Results

3.1. Baseline results

Before we further analyze the GWR, it is essential to demonstrate the 
significance of GHG volatility on the financial investments, such as 
impacting on the stock market. Therefore, we scrutinize the influence of 
GHG volatility on the volatility of stock subindices, demonstrating the 
nexus of GWR with financial markets and firm value. In particular, we 
employ five environmental-related stock subindices in China: the envi-
ronmental protection sector index, hydropower development sector 

Fig. 1. The proposed XGB-GP framework.
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index, new energy vehicle sector index, nuclear power development 
sector index and solar photovoltaic sector index. Those five stock sub-
indices are constituted by the share price of listed companies that are 
significantly involved in the area of environmental protection and 
emission reduction.

Table 1 presents the baseline result of our paper, which delivers 
empirical data analysis of the five stock subindices volatilities regarding 
the impact of three GHG volatilities based on Eq. (14). It is observable 
that the CO2 emission volatility generates considerable impact on the 
stock subindices of the hydropower development sector, new energy 
vehicle (NEV) sector, nuclear power development sector and solar 
photovoltaic sector. In particular, CO2 emission volatility has the most 
significant impact on new energy vehicles according to the coefficients 
and statistical significance. Since CO2 emissions play key roles in global 
warming, governments worldwide have implemented policies to trun-
cate CO2 emissions, including promoting NEV utilization. In countries 
where there are strict regulations on CO2 emissions to achieve carbon 
neutrality, the NEV industry has experienced substantial growth. As in 
China, the government has implemented policies to promote NEVs, 
including subsidies and tax exemptions, which have led to a surge in 
NEV sales.

However, on the other hand, if there is a decrease in CO2 emissions 
due to a decrease in economic activity, the demand for NEVs may 
decrease as well. This is because NEVs tend to be more expensive than 
traditional vehicles, and consumers may be less willing to pay the pre-
mium for a vehicle that is perceived as less necessary. Therefore, the 
GWR in terms of CO2 emission volatility could shape NEV sales, which in 
turn can affect the listed companies inside the NEV industry, reflecting 
the NEV stock market subindex. The hydropower development, nuclear 
power development sector and solar photovoltaic sectors, which are 
highly correlated with the reduction of CO2 emissions, could also be 
affected by the CO2 emission volatility.

From Table 1, N2O volatility also exhibits crucial effects on the stock 
subindices of the environmental protection sector, hydropower devel-
opment sector, and nuclear power development sector. In fact, N2O is a 
potent GHG that has a tremendous global warming potential vastly 
greater than that of CO2. Therefore, any increase in N2O emissions can 
significantly contribute to global warming and climate change. It can 
create severe consequences for those sectors that concentrate GHG 
emissions reduction. In addition, the N2O emission variation may 
deteriorate the air quality. N2O is a precursor to ozone, which is a lethal 
air pollutant that can cause respiratory problems and other health issues. 
Moreover, N2O emissions can also erode the water quality. N2O can be 
converted to nitrate, which is a water pollutant that can cause eutro-
phication and other environmental problems. Therefore, an increase in 
N2O emissions can lead to a degradation in water quality, which can 
have significant impacts on aquatic ecosystems and human health. 
Therefore, the GWR in terms of N2O emission volatility could impact the 

environment protection sector and nuclear power development sector 
(global warming and air quality), as well as the hydropower develop-
ment sector (global warming and water quality).

It can also be observed in Table 1 that SF6 volatility has a significant 
impact on the stock subindices of the environmental protection sector, 
hydropower development sector, and solar photovoltaic sector. 
Currently, most medium- and high-voltage gas-insulated switchgear, 
including those deployed in solar photovoltaic (PV) powering systems, 
still uses sulfur hexafluoride (SF6) gas as the insulating medium. 
Therefore, the impact of SF6 emission reduction on the solar PV industry 
is increased costs. SF6 is a relatively inexpensive insulating gas; how-
ever, if the use of SF6 is eliminated because of global warming issues, 
alternative insulating gases may need to be used, which could elevate 
the production cost for the whole solar PV industry. Additionally, SF6 
emission reduction in the solar PV industry could also transform the 
design and operation of current solar PV powering systems. If SF6 is no 
longer used in switchgear, alternative technologies may need to be 
developed, which could impact the performance and cost of these sys-
tems and thus the whole industry. This could also be true for the hy-
dropower development listed companies, which may also depend on the 
use of SF6. Therefore, the GWR in terms of SF6 emission volatility could 
generate a considerable impact on the listed companies’ insider envi-
ronment protection, hydropower development, and solar photovoltaic 
sectors. 

σj
t = α0 + α1σCO2

t +α2σN2O
t +α3σSF6

t (14) 

where σj
t is the conditional volatility of a particular time series of stock 

market sector index j for time t, j includes the sector index mentioned in 
Section 2.1, namely, EP, HY, NEV, NP and SP.

3.2. Global warming risk decomposition

By using the stock market data, we have demonstrated the impor-
tance of GHG volatility on the financial markets in the previous session. 
In this subsection, we use the information from energy futures markets 
to investigate the impact of energy futures volatilities on GWR proxied 
by GHG volatility. We aim to constitute the GWR by four energy futures 
volatilities that have the most prediction power toward GWR among 12 
major energy futures markets.

The primary rationale for adopting machine learning methods in our 
research stems from the complexity of GWR, represented by GHG 
emission volatility. Traditional statistical methods often depend on 
restrictive assumptions, such as presumed data distributions, which may 
not adequately capture the intricate relationships and interactions 
among multiple influencing factors. In contrast, machine learning 
techniques, such as XGB, expertise in encapsulating complex in-
teractions and nonlinear relations among variables into the risk pre-
diction models, making them particularly suitable for analyzing GWR 
through financial market data. Additionally, GP complements this 
approach by providing interpretable symbolic expressions, thus over-
coming the common “black-box” limitations associated with various 
machine learning models.

Our proposed XGB-GP framework refines existing methodologies by 
significantly enhancing predictive accuracy, interpretability, and prac-
tical applicability. Specifically, the integration of XGB’s strong feature 
selection capability and GP’s symbolic regression approach results in 
improved forecasting performance, as demonstrated by the notably 
reduced prediction errors compared to traditional benchmark models 
like MIDAS. Furthermore, this combined approach provides explicit 
mathematical equations that clearly illustrate the relationships between 
energy futures market volatilities and GHG emission volatility, 
enhancing transparency and facilitating informed decision-making for 
stakeholders and policymakers. By effectively identifying the most 
influential energy futures markets through XGB’s feature selection, our 
method also reduces computational complexity and improves modeling 

Table 1 
The impact of GHG volatility on environment protection sector index volatility, 
hydropower development sector index volatility, new energy vehicle sector 
index volatility, nuclear power development sector index volatility, solar 
photovoltaic sector index volatility, respectively (see Eq. 14).

GHG volatility stock 
subindex

σEP
t σHY

t σNEV
t σNP

t σSP
t

σCO2
t

− 45.41 16.12** 98.32*** 28.24** 31.73*
(101.57) (7.89) (43.52) (13.56) (18.2

σN2O
t

40.47*** 144.15* 28.61 22.73** 32.74
(8.69) (85.51) (35.44) (11.09) (39.26)

σSF6
t

28.73* 30.75** 75.94 40.04 16.32***
(16.34) (16.91) (70.66) (83.09) (7.76)

Constant
0.04 0.021 0.01 0.095 0.007
(0.016) (0.017) (0.006) (0.085) (0.007)

Notes: The robust standard errors are in parentheses, with ***, ** and *, 
denoting significance at 1 %, 5 % and 10 %, respectively.
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efficiency.
Therefore, our proposed XGB-GP framework offers several notable 

advantages over existing methods. First, it significantly improves pre-
diction accuracy by effectively capturing complex nonlinear relation-
ships and interactions among predictors, outperforming traditional 
statistical models such as MIDAS and linear regression-based ap-
proaches. Second, it provides enhanced interpretability compared to 
purely black-box machine learning techniques (e.g., neural networks, 
random forests). By integrating GP, our model generates explicit sym-
bolic equations that clearly illustrate the relationship between energy 
market volatilities and CO₂ emission volatility. This transparency is 
particularly valuable for policymakers and practitioners. Third, the 
built-in feature selection capability of XGB identifies the most influential 
predictors, thereby reducing model complexity, improving computa-
tional efficiency, and enabling targeted monitoring of critical markets.

However, our proposed XGB-GP framework also has certain limita-
tions. One potential disadvantage is the increased computational 
complexity compared to simpler statistical models, as the GP component 
involves evolutionary processes that require more computational re-
sources and time. Despite these limitations, the proposed XGB-GP 
method demonstrates clear advantages in predictive accuracy, inter-
pretability, and feature relevance compared to existing methods, mak-
ing it a valuable tool for modeling and forecasting CO₂ emission 
volatility.

Therefore, we adopt the XGBoost method to aid our understanding of 
GWR since XGBoost can be used to identify the significance of different 
energy futures volatility in predicting GWR. Typically, energy futures 
volatility importance is measured by the total information gain and the 
total number of splits in the decision tree. The total information gain 
refers to the amount of information gained about the GWR from all 
energy futures volatilities, while the total split number represents how 
many times one energy futures volatility is split when creating the de-
cision tree. When anode is split into two leaves in XGBoost, the gain can 
be defined as: 

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

−
(GL + GR)

HL + HR + λ

]

− γ, (15) 

where GL and GR are the sums of gradient statistics for the left and right 
nodes after the split, respectively. HL and HR are the sums of the Hessian 
statistics for the left and right nodes after the split, respectively. λ is the 

regularization term for the leaf weights, and γ is the regularization term 
that controls the complexity of the tree (i.e., the number of leaves in the 
tree).

The total information gain across all splits of a feature used in the 
tree for the CO2 volatility prediction model, N2O volatility prediction 
model, and SF6 volatility prediction model can be found in Figs. 2, 3 and 
4, respectively.

In Figs. 2, 3 and 4, the total information gain is calculated based on 
the XGBoost algorithm. Specifically, when constructing decision trees 
within the XGBoost model, each node split generates a “gain” value, 
quantifying how effectively the split reduces the prediction error (i.e., 
impurity or randomness) of the model. The total information gain for 
each feature (energy futures volatility) is then obtained by summing the 
gain values across all splits where this specific feature is used. A higher 
total information gain implies that the feature contributes more signif-
icantly to reducing prediction errors and, consequently, plays a more 
important role in predicting the target variable. In this specific context, 
the target variable is the volatility of GHG emissions, including CO₂, 
N₂O, and SF₆. Therefore, features with higher total information gains are 
deemed more influential in explaining or predicting the fluctuations in 
GHG emissions.

Within our proposed XGB-GP framework, the total information gain 
plays a critical role in feature selection. Specifically, after training the 
XGBoost model, we rank the energy futures volatilities based on their 
total information gain to identify the most influential predictors of GHG 
emission volatilities. Subsequently, we select the top four energy futures 
volatilities with the highest information gains to serve as inputs for the 
GP algorithm. GP then evolves mathematical expressions that accurately 
capture the relationship between these selected energy futures volatil-
ities and the targeted GHG emission volatilities.

In particular, the feature importance results depicted in Figs. 3 and 4
reveal the relative contributions of various energy futures market vol-
atilities in predicting GHG emission volatility. Specifically, the 
computed importance indicates that certain energy futures markets, 
such as crude oil, natural gas, and coal, exhibit significantly higher 
predictive power compared to other markets. These results align with 
expectations, as these commodities are closely linked to energy pro-
duction and consumption patterns, directly influencing GHG emissions. 
The high volatility of these markets often reflects uncertainty and rapid 
shifts in global energy supply and demand, making them particularly 
informative predictors for GHG emission volatility.

Fig. 2. Feature importance in the CO2 volatility prediction model measured by information gain.
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These computed feature importance results are valuable for subse-
quent predictive work in several ways. Firstly, they facilitate targeted 
feature selection by identifying the most influential predictors, allowing 
for more streamlined and efficient forecasting models. By focusing on 
features with higher predictive power, future forecasting models can 
achieve improved accuracy and reduced complexity. Secondly, under-
standing the relative importance of different energy futures markets 
provides critical insights for policymakers and industry stakeholders, 
enabling them to prioritize monitoring efforts and formulate targeted 
risk management strategies. For example, heightened attention to 
markets with higher predictive importance (e.g., crude oil and natural 
gas) can help stakeholders anticipate potential spikes in GHG emissions 

and proactively implement mitigation measures.
According to the aforementioned total information gain, the top four 

features that affect GHG volatility are presented in Table 2. Specifically, 
the most influential futures that can predict CO2 emission volatility are 
the volatility of Brent oil futures, the volatility of coking coal futures, the 
volatility of gas futures, and the volatility of gasoline futures. Addi-
tionally, the most influential futures that can predict N2O emission 
volatility are the volatility of coking coal futures, the volatility of gas-
oline futures, the volatility of thermal coal futures, and the volatility of 
WTI oil futures. Finally, the futures that have the highest prediction 
power for SF6 emission volatility are the volatility of Brent oil futures, 
volatility of coke futures, volatility of heating oil futures and volatility of 

Fig. 3. Feature importance in the N2O volatility prediction model measured by information gain.

Fig. 4. Feature importance in the SF6 volatility prediction model measured by information gain.
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Rotterdam Coal futures. Based on the top four energy futures volatilities 
selected by XGBoost for three GHG XGBoost, we can construct our GWR 
prediction model by employing the GP method in the next subsection.

3.3. GP-based model specification

For our GP model development, we evolve the following Eq. (16)
based on the top 4 features selected by XGBoost, which are volatilities 
from different energy futures markets: 

f(x1, x2, x3, x4) = yi, yi ∈
→
y , i ∈ [1, 3]. (16) 

Specifically, our GP approach consists of the following parts: 

• Terminal Set: x1, x2, x3, x4 (i.e., top 4 selected features).
• Function Set: +, − , ×.
• Fitness measure: the error between the value of the individual 

function and the corresponding desired output.
• GP parameters: population = 10,000, the maximum length of the 

program = 1000 (i.e., up to 1000 subitems within one polynomial 
function), probability of crossover operation = 0.8 (i.e., 80 % of 
population functions will be mixed with other functions to generate 
new functions) and probability of mutation operation = 0.1 (i.e., 10 
% of population functions will be mutated to generate new 
functions).

• Termination criterion: the system runs up to 100 generations.

With the settings stated in the previous section, the best functions for 
the three GHGs obtained by GP are: 

σCO2
t =

(
σbo

t − σgo
t

)
*

σcc
t *σgo

t

σgas
t

+
(
σgas

t

)2*
σbo

t + σcc
t

σgas
t + σgo

t − σcc
t
, (17) 

σN2O
t =

(
σcc

t − σgo
t
)
*

σcc
t *σwo

t
σtc

t
+ σtc

t *
σgo

t +
(
σwo

t
)2

σcc
t

, (18) 

σSF6
t = σbo

t *
σrc

t

σho
t − σcf

t
+
(
σcf

t
)2*

σho
t + σrc

t
σbo

t
. (19) 

Therefore, our XGB-GP framework has created three GHG emission 
volatility forecasting models, namely, Eqs. (17)–(19) for CO2 emission 
volatility, N2O emission volatility, and SF6 emission volatility, respec-
tively. It is observable for all models that the GP has evolved into three 
models with two major terms. The first term is the volatility information 
extracted from vital energy futures markets selected by XGB. The second 
term is the variance information, which can serve as the second level of 
magnitude since the variance term (volatility squared term) is consid-
erably smaller than volatility. This variance information can be used to 
adjust the first volatility term in a subtle way to capture the infinitesimal 
movement of GHG emission volatility. In the next subsection, we eval-
uate the model performance compared with the MIDAS method using 
mean absolute error (MAE) and Root Mean Square Error (RMSE) loss 
functions.

3.4. Model performance evaluation with benchmark model

In order to evaluate our XGB-GP model performance, mean absolute 
error (MAE) and Root Mean Square Error (RMSE) were employed to 
obtain the volatility forecasting error generated by the models 
(Bollerslev et al., 2016; Somu et al., 2020). We find the periodic aver-
aged MAE as follows: 

MAET =
1
T
∑T

t=1
∣Observedt − Predictedt ∣,

where T is total observations during the forecasting period, Observedt is 
the observed energy futures volatility obtained from the corresponding 
energy futures markets and Predictedt is the energy futures volatility 
predicted from the corresponding models.

Furthermore, we obtain the periodic averaged RMSE as follows: 

RMSET =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T
∑T

t=1
(Observedt − Predictedt)

2

√
√
√
√ .

Lower MAE and RMSE imply higher forecasting accuracy with more 
prediction power toward GWR, and we use MIDAS as our benchmark 
model. As exhibited in Table 3, the errors in predicting using our GP 
method are significantly lower than those predicted by the MIDAS 
method. Using the MAE loss function, our XGB-GP method has an overall 
prediction error of 0.49 %, 2.21 %, and 0.82 % for CO2, N2O, and SF6 
volatility forecasting, respectively. In contrast, the traditional MIDAS 
method has overall prediction errors of 2.74 %, 4.75 %, and 3.34 %. It is 
clear that our XGB-GP method overwhelmingly surpasses the MIDAS 
method in terms of prediction accuracy. On the other hand, for the 
RMSE loss function, our XGB-GP method’s prediction errors are 0.65 %, 
3.08 %, and 1.02 % for CO2, N2O, and SF6 volatility forecasting, 
respectively.

The prediction accuracy for our XGB-GP method is also considerably 
higher than the MIDAS method exhibited in Table 3 regarding the RMSE 
loss function. Therefore, our proposed XGB-GP method provides a more 
accurate prediction of GWR and thus can be adopted as the fundamental 
model for constructing the portfolio to neutralize the GWR.

As a result, our empirical results clearly demonstrate that the pro-
posed XGB-GP model significantly outperforms the traditional MIDAS 
method in forecasting GHG emission volatility regarding the forecasting 
accuracy. Specifically, our XGB-GP method achieves substantially lower 
forecasting errors, as indicated by both MAE and RMSE, compared to the 
MIDAS benchmark. These findings underscore the superior predictive 
capability of our methodology, which effectively captures the nonlinear 
and interactive relationships among energy futures volatilities and GHG 
emissions.

In terms of model stability, our proposed framework leverages the 
robustness of XGB, which incorporates built-in regularization mecha-
nisms to mitigate overfitting, thus enhancing stability and generaliz-
ability. Additionally, GP contributes to model stability by evolving 
symbolic expressions through multiple generations, systematically 
refining solutions to achieve stable and interpretable models. Moreover, 
compared with other commonly used forecasting methods, such as 
traditional regression-based models and neural network-based ap-
proaches, our XGB-GP framework not only achieves higher predictive 

Table 2 
Global warming risk (i.e., CO2, N2O and SF6 emission volatility) decomposition.

GWR Features

σCO2
t σbo

t σcc
t σgas

t σgo
t

σN20
t σcc

t σgo
t σtc

t σwo
t

σSF6
t σbo

t σcf
t σho

t σrc
t

Notes: σbo
t is the volatility of Brent oil futures, σcc

t is the volatility of coking coal 
futures, σcf

t is the volatility of coke futures, σgas
t is the volatility of gas futures, σgo

t 

is the volatility of gasoline futures, σho
t is the volatility of heating oil futures, σrc

t is 
the volatility of Rotterdam Coal futures, σtc

t is the volatility of thermal coal fu-
tures, σwo

t is the volatility of WTI crude oil futures.

Table 3 
Model prediction accuracy for XGB-GP and MIDAS comparison using MAE and 
RMSE.

Forecasting error MAE RMSE

XGB-GP MIDAS XGB-GP MIDAS

CO2 volatility 0.49 % 2.74 % 0.65 % 3.17 %
N2O volatility 2.21 % 4.75 % 3.08 % 5.91 %
SF6 volatility 0.82 % 3.34 % 1.02 % 4.86 %
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accuracy but also offers greater transparency and interpretability 
through explicit mathematical expressions. This interpretability is 
particularly valuable for policymakers and industry stakeholders, as it 
provides clear insights into the underlying factors driving GHG emission 
volatility.

3.5. Hedging portfolio construction

Based on the results from previous subsections, we construct hedging 
portfolios to neutralize the GWR in terms of GHG volatilities in this 
subsection. According to Section 2.6, we employ the neural network to 
identify the weights for each futures to hedge against the GWR extracted 
from Table 2. Furthermore, in Table 4, we outline three GHG volatility 
hedging portfolios. In particular, for hedging one unit of CO2 volatility, 
we need to shorten 1.381 units of Brent oil futures, 0.272 units of gas 
futures, 0.138 units of gasoline futures and 0.791 units of coking coal 
futures. Likewise, to hedge one unit of N2O volatility, we need to shorten 
coking coal futures by 0.671 units, gasoline futures by 0.971 units, 
thermal coal futures by 0.798 units and WTI crude oil futures by 1.44 
units. Finally, in particular, for hedging one unit of SF6 volatility, we 
need to short 0.0551 units of Brent oil futures and 1.06 units of coke 
futures and long 0.101 heating oil futures and 0.0141 units of Rotterdam 
Coal futures. All hedging portfolios can be used to neutralize GHG vol-
atilities, relieving firms from GWR.

4. Discussions

Compared with prior studies that prevailing associate environmental 
factors with climate risk (Park and Lee, 2020; Ren et al., 2022), our 
study highlights the use of energy futures data to deconstruct GWR, 
emphasizing the dependencies of GWR on financial market fluctuations. 
Unlike traditional environmental risk assessments, our study reveals 
energy futures volatilities as leading factors influencing GHG emission 
fluctuations, leveraging forward-looking pricing mechanisms that inte-
grate geopolitical, economic, and policy-driven expectations (Yalew 
et al., 2020). This contrasts with studies attributing emission volatility 
solely to consumption patterns (Mideksa and Kallbekken, 2010), rather, 
we position energy market volatilities as critical mediators. Further-
more, the proposed hedging strategy extends beyond traditional sectoral 
analyses by operationalizing energy futures to manage climate risk 
exposure, supplementing existing static ESG frameworks with dynamic 
analysis of climate risk (Eskantar et al., 2024). Methodically, compared 
to existing machine learning models (Guo et al., 2023; Wang et al., 
2022), which focus on general predictive accuracy, our XGB-GP method 
specifically targets on GWR forecasting with explicit model formulation, 
suggesting actionable insights for regulatory compliance and low- 
carbon transitions.

Linking with existing literature of XGB and big data analytics studies, 
which verify that the XGB method can provide more accurate fore-
casting models (Guo et al., 2023; Wang et al., 2022). Our XGB-GP 
method also proposes a more accurate GWR prediction model in terms 

of GHG emission volatility. Accurate forecasting is valuable for firms to 
respond to the negative impact of global warming. As the global 
warming issue has created major concerns for policymakers in the global 
context, governments worldwide are adopting stringent climate policies 
and regulations to curb greenhouse gas emissions and promote a low- 
carbon economy. Our GHG emission volatility forecasting model can 
enable firms to anticipate regulatory changes based on precise GHG 
emission volatility and anticipate adapting to policy changes. This fa-
cilitates compliance, minimizing costs of noncompliance such as carbon 
emission penalties.

Unlike the current research focusing on the environmental factors to 
predict climate risk (Park and Lee, 2020; Ren et al., 2022), our study 
leverages energy futures market data to predict climate risk, which il-
lustrates the intricate relationships between climate risk and financial 
factors. Our results thereby show that energy futures volatilities can be 
used as prevailing predictors of GHG emission volatilities. It can be 
attributed that energy futures prices encapsulate expectations about 
future energy supply and demand since they are forward-looking future 
prices for energies. These expectations are shaped by a variety of factors, 
including economic outlook, geopolitical events and environmental 
policies (Yalew et al., 2020). Remarkably, concerns about global 
warming and the potential for increased GHG emissions are also 
embedded in these expectations. Consequently, energy futures prices 
and their volatilities can signal the market’s anticipation of these 
climate-related risks and the potential for increased GHG emissions. 
More importantly, changes in energy prices can have profound effects on 
energy consumption patterns (Mideksa and Kallbekken, 2010). As en-
ergy prices fluctuate due to supply and demand imbalances, which are 
influenced by climate change impacts, consumers and industries may 
adjust their behavior to be more energy-efficient or to switch to alter-
native energy sources. These adjustments in energy consumption pat-
terns can, in turn, feedback into GHG emissions, contributing to their 
volatilities as a result.

Based on energy market selections by XGB, our paper intends to 
formulate portfolios to hedge against GWR for all three GHG emission 
volatilities. Our proposed portfolio to hedge against GWR could reduce 
the financial risks associated with climate change. As global warming 
continues, major weather extremes will become more frequent and 
intense. These events could result in supply chain disruptions and 
increased insurance premiums. Our portfolio can hedge GWR according 
to GHG emission volatilities, and when GHG emissions become volatile, 
the probability of weather extremes occurrence increases. As a result, 
firms can thereby use our portfolio to hedge against high GHG emission 
volatilities.

On this basis, we reveal that CO2 emission volatility has a significant 
impact on the values of those firms inside the hydropower development 
sector, new energy vehicle sector, nuclear power development sector, 
and solar photovoltaic sector. N2O emission volatility has a significant 
impact on the values of firms inside the environmental protection sector, 
hydropower development sector, and nuclear power development 
sector. The SF6 emission volatility has a significant impact on the values 
of firms within the environmental protection sector, hydropower 
development sector, and solar photovoltaic sector. As a result, we 
demonstrate that GHG emission volatility has a close nexus with firm 
values in relevant industries. Therefore, our paper has several salient 
implications. First, it is evident that GWR has a substantial impact on 
stock markets and listed company values. The impact of global warming 
is reflected in the financial performance of firms. The negative impact of 
global warming on listed companies’ earnings has been well docu-
mented (Huang et al., 2018). Shareholders, investors, and other stake-
holders of listed companies are increasingly demanding that companies 
take responsibility for their environmental impact. Firms that under-
stand and hedge global warming risks demonstrate their commitment to 
sustainability, bolstering their reputation and strengthening stakeholder 
relations. Therefore, companies and investors need to learn how to 
manage their exposure to GWR stemming from climate change as 

Table 4 
CO2, N2O and SF6 emission volatility hedging coefficients.

σCO2
t HR σN20

t HR σSF6
t HR

σbo
t − 1.381 σcc

t − 0.671 σbo
t − 0.0551

σcc
t 0.791 σgo

t − 0.971 σcf
t − 1.060

σgas
t − 0.272 σtc

t − 0.798 σho
t 0.101

σgo
t − 0.138 σwo

t 1.440 σrc
t 0.0141

Notes: σbo
t is the volatility of Brent oil futures, σcc

t is the volatility of coking coal 
futures, σco

t is the volatility of coke futures, σgas
t is the volatility of gas futures, σgo

t 

is the volatility of gasoline futures, σho
t is the volatility of heating oil futures, σrc

t is 
the volatility of Rotterdam Coal futures, σtc

t is the volatility of thermal coal fu-
tures, and σwo

t is the volatility of WTI crude oil futures. HR is the hedging ratio.

S. Ding et al.                                                                                                                                                                                                                                     Environmental Impact Assessment Review 115 (2025) 107987 

10 



financial management increasingly focuses on ESG (environmental, so-
cial, and governance) considerations.

We further unveil the response of energy futures markets toward 
GWR. Energy markets have substantial carbon footprints, while com-
modity futures markets are closely related to respective industries. The 
energy industry, facing decarbonization, is expected to experience sig-
nificant changes in the coming years, with major implications for energy 
futures markets. Global demand for energy continues to rise, and an 
increasing share of that energy demand is being supplied by renewable 
sources such as solar and hydropower.

Intuitively, future non-renewable energy scarcity is already being 
priced, with the cost of renewables (fossil fuels) expected to fall (rise). 
Investors will be expected to become increasingly cautious of high- 
carbon-use assets, diversifying portfolios across lower-carbon-intensity 
investments. Our study decomposes GWR from the energy futures 
market to highlight a hedging portfolio within the energy futures market 
that has flexible investment opportunities.

Further, we disentangle the global warming risk from the energy 
market perspective toward creating an accurate GWR prediction model. 
Our decomposition of GWR from energy markets enables firms to make 
informed decisions about investments, resource allocation, and business 
strategies. The energy market, being a primary source of GHG emissions, 
is inherently linked to GWR. The volatility in energy futures can signify 
potential shifts in the market’s response to climate change policies and 
changing environmental conditions. By decomposing GWR from energy 
markets, we unravel the underlying factors contributing to these vola-
tilities, thereby enabling firms to make more informed decisions 
regarding investments, resource allocation, and business strategies. It 
could thereby empower companies to identify new opportunities related 
to the GWR, mitigate potential threats created by GWR, and allocate 
resources more effectively.

5. Conclusions

Considering that global warming is causing increasing concerns 
among investors and policy-makers worldwide, we disentangle and 
forecast GWR with energy futures volatilities. We first claim that GWR 
has a considerable effect on listed company values by impacting stock 
markets. We subsequently derive the GWR forecasting model from en-
ergy futures using an extreme gradient boosting (XGB)-genetic pro-
gramming (GP) framework. The XGB-GP framework creates volatility 
forecasting models for GWR proxied by GHG volatilities by selecting the 
major contributors to global warming from energy futures markets.

XGB methodology accommodates the main constituents of CO2, N2O, 
and SF6 emission volatilities within 12 major energy futures. Creating a 
GP algorithm for these three volatility forecasts, we demonstrate that 
our GP models are significantly more accurate than the MIDAS method 
in predicting greenhouse gas emission volatilities. Additionally, based 
on a decomposition of global warming risk by XGB-GP, we propose risk 
hedging portfolios using energy futures to mitigate risk to investors.

As our paper indicates, the use of energy futures volatilities as pre-
dictors of GHG emission volatilities emphasizes the role of energy 
markets in GWR assessment. Compared with existing studies, we 
demonstrate that the energy markets are closely intertwined with 
greenhouse gas emissions, and thus understanding these volatilities can 
provide further deconstruction of GWR evolving in the long-run. The 
long-term and dynamic analysis offers a more comprehensive frame-
work on GWR, which can aid the understanding in identifying trends 
and moving patterns of GWR. Further, by putting different energy 
markets within a single prediction framework of GWR, our paper also 
delivers the understanding of cross-market connection among different 
energy markets.

Moreover, another implication of our study is its potential to help 
investors to design hedging strategies in energy futures markets. Accu-
rate forecasts of GHG emission volatilities are essential for designing 
effective hedging strategies in energy markets, especially for those 

investors increasingly exposed to the risks associated with climate 
changes. They can thereby apply our XGB-GP model to develop more 
effective hedging strategies against GWR. Given the growing exposure of 
investors to climate related risks, accurate forecasts of GHG emission 
volatilities play vital role in designing effective hedging strategies. Our 
XGB - GP model, provides superior model performance in GWR fore-
casting, which can be further leveraged by investors. They can employ 
the improved forecasts to develop hedging strategies in energy futures 
markets. These strategies can be helpful to mitigate the risks related to 
GHG emission volatilities by taking positions in energy futures. This 
paper thereby bridges a critical gap in climate risk management, as 
existing studies often underestimate the impact of GWR as there are 
lacking of effective hedging tools.

Additionally, our study also illuminates the interactions between 
energy markets and climate change in policy formulation. Our study has 
emphasized the necessity for hedging GWR and other climate related 
risk, which sheds the insights for proposing financial instrument 
regarding the GWR. Policymakers could thereby collaborate with 
financial institutions to develop standardized financial instruments for 
investors to hedge the GWR and other climate related risk. Because 
developing standardized hedging instruments relies on the predictabil-
ity of GWR and other climate related risk. Our developed model that has 
improved the predictability of GWR largely facilitates such instrument 
development and thus delivers the policy feasibility. On the basis, 
creating standardized hedging financial instruments based on energy 
futures under our framework, policymakers can provide a more struc-
tured and accessible way for investors and companies to manage 
climate-related risks more effectively.

Finally, the findings of this study offer valuable insights for the 
design of emissions trading systems (ETS), which are steadily being used 
by governments to reduce GHG emissions. In an ETS, companies can 
acquire a predetermined quantity of emission allowances, which can be 
traded in the open market. The price of these allowances can be influ-
enced by energy prices and GWR. Understanding the energy futures 
volatilities with emission volatilities, this study provides policymakers 
with a valuable tool for forecasting the future price of emission allow-
ances and adjusting the supply of allowances as the futures markets 
move.

Although our study adopts the novel machine learning approach to 
scrutinize the global warming risk by employing energy futures data, it 
still suffers from research limitations. The main constraint of our paper is 
considering the futures markets as perfect markets where the market 
liquidity risk and transaction costs have been overlooked. Market 
liquidity risk can be manifested during episodes of geopolitical events, 
such as Russian-Ukraine conflict. Another limitation is that we focus on 
the financial perspectives of the climate risks where other policy related 
issues have not been taken into account, such as the climate policy 
uncertainty.

As a result, future research could extend this paper from those two 
aspects. First, it is essential to explore the role of futures market trading 
frictions such as transaction costs and liquidity risk in shaping hedging 
effectiveness for investors. Moreover, encompassing the impact of 
climate policy related data such as climate policy uncertainty index to 
could further strengthen GWR analysis and prediction. Future research 
that incorporates market trading friction factors as well as the climate 
policy uncertainty, could strengthen the effectiveness of hedging stra-
tegies for investors and enlarge policymakers’ capacity to design resil-
ient ETS architecture and risk management framework accommodating 
to both market shocks and evolving climate policies.
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