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The advancement of mobile multimedia communications, 5G, and Internet of Things (IoT) has led to the
widespread use of edge devices, including sensors, smartphones, and wearables. This has generated in a large
amount of distributed data, leading to new prospects for deep learning. However, this data is confined within
data silos and contains sensitive information, making it difficult to be processed in a centralized manner,
particularly under stringent data privacy regulations. Federated learning (FL) offers a solution by enabling
collaborative learning while ensuring privacy. Nonetheless, data and device heterogeneity complicate FL
implementation. This research presents a specialized FL algorithm for heterogeneous edge computing. It
integrates a lightweight grouping strategy for homogeneous devices, a scheduling algorithm within groups,
and a Split Learning (SL) approach. These contributions enhance model accuracy and training speed, alleviate
the burden on resource-constrained devices, and strengthen privacy. Experimental results demonstrate that
the GSFL outperforms FedAvg and SplitFed by 6.53× and 1.18×. Under experimental conditions with 𝛼 = 0.05,
representing a highly heterogeneous data distribution typical of extreme Non-IID scenarios, GSFL showed
better accuracy compared to FedAvg by 10.64%, HACCS by 4.53%, and Cluster-HSFL by 1.16%. GSFL effectively
balances privacy protection and computational efficiency for real-world applications in mobile multimedia
communications.
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1 INTRODUCTION
With the unceasing advancement of 5G technology and mobile multimedia communication, the
ubiquitous deployment of Internet of Things (IoT) [9] sensors, wearable devices, and smartphones
has led to a dramatic increase in the volume of private data emanating from a plethora of distributed
nodes within edge networks. This surge provides substantial opportunities for deep learning appli-
cations, notably within edge-based autonomous systems, where mobile multimedia communication
becomes a critical component. Such communication includes real-time video streaming, image
recognition, and voice interactions, which are indispensable for the functioning of deep learning
algorithms across the domains of computer vision [44], anomaly detection, and data mining [25]. In
the current digital era, the abundance of data presents unparalleled opportunities for the advance-
ment of deep learning, given that these algorithms necessitate copious volumes of data to construct
high-performance models via iterative training processes. Various organizations are harnessing big
data to optimize the processes and performance of Artificial Intelligence (AI) applications [28, 51].

However, the majority of this data is typically dispersed, existing in isolation, and forming distinct
data silos. Relying solely on data from individual devices could lead to models trained with inherent
biases due to the lack of comprehensive data. Moreover, a significant proportion of the data is
inherently sensitive. As a result of competition and privacy concerns within industries, devices are
unable to directly transmit private data to centralized servers for model training. Within edge-based
autonomous systems, particularly those related to mobile multimedia communication, such as
metaverse [58], deep vision [27], remote sensing systems [26], mobile edge networks [50], Internet
of Vehicles (IoV) [11], and intelligent transportation systems (ITS) [55]. There is a growing need
for solutions that ensure data privacy while simultaneously enabling efficient and autonomous
communication. These systems elevate the requirements for low-latency, high-reliability, and
privacy-protected multimedia data transmission.

With the continuous promulgation and enhancement of data privacy laws, such as the Cyberse-
curity Law of the People’s Republic of China implemented on June 1, 2017, the Personal Information
Protection Law that took effect on November 1, 2021, and the General Data Protection Regulation
(GDPR) [42] introduced by the European Union in 2018. In response, society is placing greater
importance on safeguarding information security and ensuring the protection of personal privacy.
Companies and institutions are intensifying their commitment to data security and the protection of
user privacy. Traditional distributed collaborative learning methods have not adequately addressed
data privacy issues [23], as they involve sending users’ private data to central servers for model
training, leading directly to the leakage and misuse of personal privacy information and data. These
enacted regulations pose novel challenges to the distributed data processing practices in the AI
field, with a rapidly growing demand for distributed AI solutions that safeguard privacy.
In recent years, researchers have been focusing on the issue of enabling data to be used in dis-

tributed collaborative learning without compromising data privacy. Specifically, they are exploring
methods to collaboratively train deep learning models with multiple parties without the need
to upload local user data. In 2016, McMahan et al. [31] at Google first introduced the concept of
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Federated Learning (FL), a novel paradigm for distributed collaborative learning. The prevalent FL
framework presumes that data holders (clients) form a federation, with edge devices serving as
clients, collectively training the FL model under the coordination of a central parameter server (the
FL server). FL allows numerous clients to conduct model collaborative training among multiple data
silos (or devices) without uploading local private data by transmitting model parameters or other
intermediate results. During the FL process, clients utilize their private data to train local models.
These trained parameters are then sent to the central server. The central server aggregates the
global model by combining the models received from all clients in each round of FL communication.
Subsequently, the central server broadcasts the global model to all clients for iterative updating.
It is evident that FL realizes the maximum utilization of data value on the basis of ensuring data
privacy, especially in the aspect of the Internet of Medical Things (IoMT). [54]
However, real-world scenarios pose significant challenges of heterogeneity [47] and resource

constraints [24], particularly within large-scale and complex edge networks. Heterogeneity en-
compasses data distribution heterogeneity among edge devices, known as data heterogeneity,
and variations in hardware capabilities of devices, known as device heterogeneity. The challenge
of resource constraints pertains to the limitations in computational capability, storage capacity,
and energy consumption of edge devices. Devices such as smartphones, sensors, and cameras are
commonly equipped with limited processor speeds, small-scale memory, and restricted battery
capacity. These limitations mean that such devices are incapable of performing complex compu-
tational tasks or operating continuously without frequent recharging. Resource scheduling [10]
and task scheduling [21] are critically important in practical distributed computing environments.
Therefore, the design of algorithms for edge computing must account for the characteristics of
these resource-constrained devices, aiming to minimize computation and communication loads
without sacrificing performance.

Since data is independently generated based on the behavior of terminal devices, its distribution
is typically Non-Independent and Identically Distributed (Non-IID). In the case of data generation
by terminal devices, if the user behavior patterns of different terminal devices vary significantly,
then the data generated by each terminal device will have unique characteristics and distributions,
which leads to the Non-IID of the data. Consequently, local datasets may not fully represent the
overall distribution, potentially leading to biased model updates and diminished model accuracy.
In application scenarios related to mobile multimedia communications, data often also exhibits
Non-IID characteristics.
In the face of data heterogeneity, common FL approaches use a single global model that is

shared by all clients for training across the whole federation. However, a single global model
cannot adequately accommodate all the diverse local data distributions. Google’s original FL
algorithm, FedAvg, exhibits poor convergence with highly heterogeneous data, manifesting in
a significant reduction in the accuracy of the FL model when learning from Non-IID data [30].
The decline in model performance is attributed to the client drift phenomenon [20], where local
models, starting from the same initial values, converge to different models after several rounds
of local training and global aggregation. This introduces unknown biases into the global model
during the aggregation phase, reducing the ultimate precision of the FL model and hindering
convergence, thereby extending the duration of FL training. In real-time application scenarios of
mobile multimedia communications, quickly training an effective model is of crucial importance for
business development. If the model training efficiency is low and it cannot adapt to heterogeneous
data in a timely manner, it will be unable to provide strong support for services, thus seriously
affecting the operating efficiency of the entire system.
In practical applications such as health monitoring with medical IoT devices [59], privacy

protection in mobile robotic systems [56], collaborative learning in automated vehicles operating
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over high-speed mobile networks [60], and precise positioning within intelligent transportation
systems [57], FL networks may involve a substantial number of various devices involved in mobile
multimedia communications, such as smartphones, sensors, and cameras. These IoT devices have
obvious differences in hardware capabilities. The disparity in hardware capabilities inevitably leads
to device heterogeneity [33], resulting in different storage capacity and computational capability. For
instance, in a mobile edge network, one client may be a smartphone while another is a smartwatch.
Compared to a smartwatch, a smartphone has greater storage capacity and stronger computational
power, which introduces device heterogeneity. Consequently, within the FL training process, devices
such as smartwatches may be subject to extended local runtimes. This prolongation increases the
likelihood of these devices being inadvertently discarded or lost. Such occurrences can detract from
the efficiency and stability of the FL system. In FL, clients are tasked with performing local updates
and transmitting the updated weight parameters back to the server side. However, client devices
might encounter failures during this process. During the synchronization phase for model updates,
devices characterized by limited computational resources may necessitate considerable time to
implement the model parameter update, potentially leading to their designation as stragglers within
the FL network. In general, device heterogeneity leads to system imbalances and inefficiencies due
to varying computational speeds or resources among different clients, causing system delays or
bottlenecks. Furthermore, the aforementioned scenario contributes to uncertainty and instability
within the system, stemming from the diverse states of client devices, which may range from
optimal functioning to system failures or complete losses. Moreover, device heterogeneity will also
lead to uneven security and privacy protection capabilities of different devices in processing data
and participating in the FL process. Some devices, due to resource constraints, cannot adopt complex
privacy protection technologies. Consequently, the heterogeneity of devices presents challenges
that necessitate addressing issues such as straggler mitigation [36] and ensuring fault tolerance
within the FL framework. This requires the implementation of adaptive mechanisms capable of
managing the variable feedback from a range of devices in large-scale resource-constrained edge
computing scenarios.

To augment the efficacy of FL within heterogeneous and resource-constrained scenarios, scholars
have introduced a multitude of strategies aimed at bolstering model precision despite the challenges
posed by data heterogeneity [40]. These include methods based on similarity, such as Multi-Task
Learning (MTL) [2, 16, 38], model interpolation [5, 6, 13], and clustering [1, 7, 12, 22, 29, 35, 43],
which aim to mitigate the issue of weight divergence caused by client drift phenomena. However,
most methods addressing Non-IID data have significant side effects due to substantial computational
and communication overhead. Moreover, some approaches expose clients’ raw data distribution
features to the server side for comparison, potentially leading to the leakage of user privacy
data. In response to device heterogeneity, academic circles have also proposed combining FL with
Split Learning (SL) mechanisms [4, 14, 15, 18, 37, 41, 46, 48, 52, 53]. In scenarios with limited
computational and storage resources, these mechanisms enhance training efficiency and reduce
device load. Furthermore, as the model architecture is partitioned between the client and the
server, SL offers better model privacy than FL, and the integration of SL mechanisms significantly
strengthens privacy protection.

Contemporary leading-edge methods for bolstering data privacy and security within the scope
of FL incorporate an array of sophisticated techniques. These include Differential Privacy (DP)
[49], secure multi-party computation (MPC) [8], and homomorphic encryption [32]. Each of these
approaches contributes uniquely to the overarching objective of preserving the confidentiality and
integrity of data during the FL process. Research by Song et al. [39] has shown that FL integrated
with these privacy protection technologies can provide robust security. Nevertheless, these methods
still face issues, as encryption technologies like homomorphic encryption and DP require extensive
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computational resources, and the key generation process during encryption is overly complex.
The performance drops noticeably as the number of clients increases. Furthermore, the use of
DP will reduce data utility, and the computational and communication costs of homomorphic
encryption and MPC are quite high [17]. Challenges related to computational overhead and privacy
protection hinder the widespread deployment of FL in heterogeneous and resource-constrained
edge computing scenarios. Designing accurate and efficient FL methods that do not expose user
privacy information has become one of the main bottlenecks in the design of heterogeneous
IoT edge intelligent systems. By optimizing existing FL architectures and training methods to
alleviate these issues, enhancing the adaptability of FL algorithms to data heterogeneity and device
heterogeneity, improving model accuracy and training efficiency, while protecting personal data
privacy and reducing the risk of data misuse, it can achieve practical and significant real-world
applications. Through these optimizations, this work will provide a safer and more efficient FL
method for mobile multimedia communication in mobile edge computing within heterogeneous
and resource-constrained scenarios.

In the context of mobile multimedia communications, the method proposed in this paper has mul-
tiple advantages to address related challenges. Firstly, for the resource-constrained edge computing
scenario, in order to ensure low latency, lightweight grouping strategies, intra-group selection
strategies, as well as model decomposition and adaptive channel pruning measures are adopted.
By grouping through lightweight hash encryption functions and selecting clients through the
Contextual Multi-armed Bandit (CMAB) strategy, the delay caused by excessive participation of
resource-constrained devices in training is avoided. At the same time, model decomposition and
channel pruning reduce the computing burden of devices, improve processing speed, and reduce
latency. Secondly, in terms of privacy protection, lightweight grouping strategies and split federated
learning mechanisms are employed. These measures meet the requirements of privacy protection
by reducing the transmission of original data and limiting the scope of data interaction, minimizing
the exposure of privacy data and controlling data access. Furthermore, the proposed algorithm
can be adaptively adjusted. At the data level, it adapts to data changes through data feature ex-
traction and update as well as grouping based on data distribution. At the device level, it copes
with device changes by using device capability perception and client scheduling as well as dynamic
adaptation of model decomposition and channel pruning. Finally, in the complex environment of
edge-based autonomous systems, the GSFL algorithm guarantees the stability and reliability of
mobile multimedia communications. The grouping strategy has fault tolerance. Grouping based on
data similarity enables devices in the same group to continue interacting in case of failures, and the
intra-group selection strategy can dynamically adjust client selection. The SL mechanism is robust.
Model decomposition allows the device-side and server-side models to continue operating in case
of failures, and adaptive channel pruning makes the model more stable in resource-constrained
scenarios.

The main contributions of this paper are as follows:

• Innovative FL Approach: This paper introduces GSFL, a novel FL algorithm that inno-
vatively combines a lightweight, dual-layer client selection method with a SL mechanism.
Tailored for heterogeneous and resource-constrained edge computing scenarios, GSFL en-
hances privacy and reduces computational overhead. The first layer of this approach groups
devices based on data similarity using a lightweight hash encryption function, while the
second layer optimizes training efficiency by selectively activating clients within these groups
based on their resource capabilities. Unlike certain methods that potentially entail the risk of
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privacy leakage, GSFL better protects users’ data privacy through grouping and SL mech-
anisms. This strategic integration of grouping and SL mechanisms ensures both efficient
resource utilization and improved data privacy.
• Performance under Non-IID Conditions: The dual-layer client selection method of GSFL
has been optimized for the Non-IID problem caused by different degrees of data heterogeneity.
Firstly, lightweight grouping is performed according to the data similarity of devices, reducing
unnecessary computing and storage overhead and enabling resources to be more reasonably
allocated to key tasks on devices. Then, the CMAB strategy is used to schedule clients within
groups for training, and training tasks are reasonably arranged according to the resource
status of devices to avoid excessive consumption of resources. This unique design enables
GSFL to better capture data features and reduce model update deviation when dealing with
Non-IID data. Thus, in comparison with traditional FL methods such as FedAvg and other
advanced strategies such as HACCS, SplitFed, and Cluster-HSFL, it not only achieves higher
accuracy but also significantly improves training efficiency.
• Significantly Reducing Computational Load: The SL mechanism adopted by GSFL effec-
tively reduces the computational load on the device side through model decomposition and
adaptive channel pruning. In the process of model decomposition, an appropriate splitting
point is selected according to the computing power of the device to divide the model into two
parts, the device side and the server side, so that the device only needs to process the model
part suitable for its own resources. At the same time, the adaptive channel pruning strategy
removes unimportant channels and reduces parameters and computational complexity. This
approach avoids the problem that the device cannot efficiently run the model due to limited
computing resources. Compared with methods that rely on complex encryption technologies
and have high computational overhead, it significantly improves the operating efficiency of
the device in resource-constrained scenarios.
• Adaptive adjustment and stability guarantee: The proposed GSFL algorithm shows strong
adaptability and effective guarantee for the stability and reliability of mobile multimedia
communications. In terms of adaptive adjustment, at the data level, data feature extraction
and grouping based on data distribution are used to adapt to data changes. At the device
level, device capability perception and client scheduling as well as dynamic adaptation of
model decomposition and channel pruning are used to deal with device changes. In terms of
stability and reliability guarantee, the fault tolerance of the grouping strategy enables devices
in the same group to continue interacting in case of failures and the client selection within
the group can be dynamically adjusted. The robustness of the SL mechanism allows the
device-side and server-side models to continue operating in case of failures. Adaptive channel
pruning makes the model more stable in resource-constrained scenarios, thus ensuring the
stable and reliable operation of mobile multimedia communications.

2 RELATEDWORK
In the realm of FL, data heterogeneity, device heterogeneity, and privacy protection have always
been focal points of research. Particularly in resource-constrained edge computing scenarios,
the limitations of devices’ computational capability, storage capacity, and energy consumption
impose heightened demands on the performance and efficiency of FL systems. Accordingly, re-
searchers have explored a variety of optimization strategies to accommodate these heterogeneous,
resource-constrained edge devices. These strategies aim to resolve the inconsistency in client data
distributions, alleviate the limitations of computational capability and storage capacity of devices,
and strengthen privacy protection. This will ultimately improve the feasibility and effectiveness of
FL in real-world applications.
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2.1 Similarity-based federated learning algorithm
Recent works have been dedicated to addressing performance issues caused by client drift when
learning on Non-IID data in FL. In contrast to the conventional approach of training a singular global
FL model, these strategies cultivate personalized models through the modification of the FL model’s
aggregation process. A significant amount of research has been conducted on personalized FL
methods based on similarity, with MTL and model interpolation focusing on pairwise relationships
between clients, while clustering looks at group relationships among clients.

2.1.1 Multi-task learning. MTL aims to train models that are proficient in concurrently execut-
ing multiple related tasks by exploiting shared domain-specific knowledge across these tasks to
enhance generalization capabilities. In the context of FL, this involves regarding each client as
an individual task within an MTL framework, thereby enabling the central server to discern and
exploit potential correlations among clients, as reflected by their heterogeneous local datasets.
Smith et al. [38] expanded distributed MTL into the domain of FL by devising a method for the
building of personalized models tailored to individual clients. However, their approach necessitates
the involvement of all participants in each training iteration, a requirement that may impede
scalability and practicality. The proposed MOCHA framework, while pioneering, is confined to
convex models, which limits its extensibility and generalization capabilities within the realm of
deep learning applications. Addressing these limitations, Corinzia et al. [2] introduced the VIRTUAL
algorithm, a virtual federated MTLmethod employing Bayesian techniques for variational inference,
capable of accommodating non-convex models. Despite its theoretical advancements, VIRTUAL is
computationally intensive, posing challenges for large-scale IoT edge FL implementations. In an
effort to refine model personalization within FL, Huang et al. [16] proposed the federated attentive
message passing (FedAMP) approach. FedAMP utilizes an attention mechanism to promote pairwise
collaboration among clients with similar data distributions, supported by personalized cloud models
for each client. Nonetheless, this approach imposes significant computational and communicative
burdens on the server, particularly within the scope of large-scale edge FL scenarios. Hanzely and
Richtárik [13] introduced an innovative method that integrates global and local model components
to craft personalized FL models. This method strives to strike a balance between generalization and
personalization across the server-hosted global models and the client-specific local models.

2.1.2 Model interpolation. Deng et al. [5] presented the adaptive personalized FL (APFL) algorithm,
which incorporates client-specific parameters to dynamically adjust the impact of local and global
models during the FL training process. This adaptive weighting aims to optimize personalization
for each individual client. Diao et al. [6] introduced HeteroFL, an innovative FL framework that
adeptly constructs adaptive personalized local models for each client by utilizing a centralized
global model. This method is designed to effectively mitigate performance challenges arising from
data heterogeneity. Model interpolation techniques employed within this framework utilize the
global model as a foundation for personalization, necessitating a meticulous determination of the
optimal synthesis of local and global models, referred to as the most favorable interpolation. This
complex interaction between the clients and the server during the model interpolation process
induces additional computational and communicative burdens. Such overheads have the potential
to inflate operational costs, a consideration that is particularly pertinent in large-scale FL scenarios
with inherent resource limitations. Furthermore, the sharing of local information, which is crucial
for the implementation of model interpolation, has the potential to jeopardize client confidentiality,
thus adding a substantial risk that needs to be addressed.

2.1.3 Clustering. For scenarios with significantly different clients or data distributions, training a
global FL model using a client-server architecture is not the optimal choice. Grouping the clients
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and then training a FL model for each group of clients, resulting in a multi-model approach, is
more suitable for resource-constrained and data-heterogeneous scenarios. Liu et al. [29] introduced
an edge-based FL method, termed eFL, which clusters end devices using model parameters. This
method calculates the cosine similarity across multiple dimensions between local and global model
parameters to assess the need for local updates, thereby reducing superfluous communication.
Devices are grouped based on network proximity and interact with the cloud through mobile
edge nodes within their clusters. In the clustered FL (CFL) algorithm, Sattler et al. [35] employed
an optimal bisection algorithm predicated on the cosine similarity of client gradient updates to
categorize FL clients into distinct clusters. However, the need for multiple communication rounds
to separate all inconsistent clients renders this method computationally and communicatively
demanding, potentially undermining its feasibility in resource-constrained scenarios. Briggs et
al. [1] devised a FL with hierarchical clustering (FL+HC) that initially trains a global model for a
predetermined number of iterations before employing a one-shot clustering of all clients based
on their gradient updates. Subsequent FL training is conducted independently within each cluster,
producing several FL models. While this approach is suitable for Non-IID data distributions, it
necessitates additional infrastructure to facilitate the hierarchical clustering and demands signif-
icant computational resources to determine pairwise distances among clients. Ghosh et al. [12]
proposed the iterative federated clustering algorithm (IFCA), which eschews the creation of a single
global model in favor of multiple models, each serving different client clusters. During the model
aggregation phase, the server consolidates models within each cluster. Duan et al. [7] introduced
FedGroup, a FL architecture that employs a static clustering strategy for clients and incorporates a
cold-start process for integrating new clients. The architecture utilizes Euclidean distance based on
decomposed cosine similarity and adopts the k-means++ algorithm to cluster local client updates,
thereby enhancing the efficiency of the FL process.

Although these clustering algorithms are innovative, they indeed share some common challenges.
For instance, both IFCA and FedGroup require a predetermined number of clusters, which is not
scalable for large numbers of edge devices. Moreover, eFL, CFL, FL+HC, IFCA, and FedGroup only
compare the Euclidean distance or cosine distance between different clients’ neural network update
parameters, which may lead to poor model similarity results and weak mitigation of Non-IID effects.
Liu et al. [22] proposed PFA, which groups clients with similar data distributions to collaborate,
ultimately providing clients with personalized FL models. However, PFA does not offer formal
privacy guarantees when extracting data distribution features, and it uses the FedAvg algorithm
to aggregate intra-group clients during group training without considering resource-constrained
edge scenarios, potentially leading to stragglers affecting the efficiency of FL. Wolfrath et al. [43]
proposed HACCS, a heterogeneity-aware clustering client selection method that extracts device
data distribution histograms and uses DP techniques to protect user privacy before clustering by
the server. However, applying DP directly to data distribution features reduces data utility, leading
to suboptimal clustering results and, consequently, reduced accuracy of the FL models obtained
from clustered FL.

2.2 Split-based federated learning algorithm
In scenarios with heterogeneous devices, SL has been incorporated into FL to enhance training
efficiency and reduce client-side burden, especially in scenarios constrained by computational and
storage resources. Additionally, the SL mechanism partitions the FL model architecture between
the client and server, with neither side having access to the models of the other. The exclusive use
of either client or server models makes reconstruction attacks challenging, thus enhancing the
privacy of users’ local data and strengthening the privacy protection capabilities of FL.
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He et al. [14] developed FedGKT, a framework that integrates SL with knowledge distillation,
utilizing two types of models. This structure integrates a computationally lightweight feature
extractor deployed on local devices, thereby diminishing the device’s computational demands,
and a more sophisticated model resides on the server. This configuration facilitates bidirectional
knowledge transfer: the server acquires feature maps and corresponding soft labels from the
devices, while the devices, in turn, are provisioned with soft labels from the server. The resultant
comprehensive model emerges as a synthesis of the insights gleaned from both the device and server
models, with the knowledge exchange being orchestrated asynchronously to mitigate the impact
of straggler effects. This innovative approach enhances the overall performance and efficiency of
the FL process. Thapa et al. [41] proposed the SplitFed algorithm, which addresses the inherent
limitations of slower execution speed in SL compared to FL and weaker privacy protection in
SL compared to FL. This algorithm combines the advantages of SL and FL to overcome these
drawbacks. The model is split and trained on both clients and servers, significantly diminishing
the computational demands on clients, making it suitable for resource-constrained devices, while
integrating DP to strengthen data privacy. Shen et al. [37] developed the RingSFL algorithm that
addresses client heterogeneity issues through a ring topology and model partitioning mechanism.
It reduces training time by adaptively allocating computational load and employs split models to
lower the resource demands on clients. This significantly reduces the load on resource-constrained
devices and enhances data privacy through model partitioning.
Zhang et al. [52] proposed the Cluster-HSFL algorithm, which combines clustering, SL, and FL

to amplify model training parallelism and reduce clients’ computational burdens. In addition to
elevating privacy protection, model partitioning diminishes the workload on individual clients,
thereby lowering training latency. Zheng et al. [53] introduced the PPSFL algorithm, which merges
FLwith SL and proposes a novel strategy formodel decomposition, mitigating the risk of information
leakage from intermediate results. The integration of Group Normalization (GN) layers into the
network, with private GN layers, alleviates the negative impact of heterogeneity on training while
promoting personalization for each client model. Khan et al. [18] put forward HSFL (Hierarchical
Split FL), a new framework designed to address the issues of resource limitation, single-point
failures, and slow convergence encountered by IoT devices during FL. This framework takes into
account the different capabilities of heterogeneous devices and reduces the workload on clients
through SL. Deng et al. [4] introduced an innovative hybrid framework that integrates SL with FL.
This framework adaptively partitions the machine learning model into sub-models designated for
the client and server sides, respectively, with the aim of delivering intelligent services within the
context of resource-constrained IoT scenarios. This research developed a lightweight, contextual
bandit learning-based adaptive model decomposition approach, offloading part of the model training
tasks to edge servers and experimentally validating its effectiveness in reducing training latency
and protecting data privacy.
He et al. [15] explored the domain of Unmanned Aerial Vehicles (UAVs), presenting a novel

hybrid method that combines SL with Multi-Agent Reinforcement Learning (MARL) within a FL
paradigm, denoted as SFL-MARL. This innovative approach is tailored to augment the efficacy
of UAV swarms operating in 5G networks, with a dual focus on minimizing communication
overhead and upholding privacy. The SL component of the approach effectively harnesses the
computational capability inherent to each UAV, thereby contributing to the refinement of model
precision. Through this approach, UAVs are empowered to conduct local machine learning model
training and to securely transmit encrypted model parameters to a centralized server utilizing
federated averaging techniques. Following the aggregation and enhancement of the model by
the server, the refined model is redistributed to each UAV, enabling local adjustments and fine-
tuning. This strategic integration of SL and MARL within a FL framework presents a promising
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direction for optimizing UAV swarm operations in next-generation wireless networks. Yin et al.
[48] introduced a novel hybrid federated SL framework that utilizes the collaborative training of
multiple working nodes in FL and the low computational load characteristic of SL to optimize
model training in wireless networks. To mitigate the computational idleness resulting from model
partitioning, the researchers designed a parallel computation scheme without sharing labels and
conducted a theoretical analysis of the impact of delayed gradients on convergence. Moreover, they
employed Generative Adversarial Networks (GANs) and multi-objective optimization to enhance
predictive performance. Yang et al. [46] focused their research on medical imaging networks,
incorporating homomorphic encryption into the training process to bolster privacy protection
and alleviate client-side load. Their approach facilitated the training of U-Net architectures while
enhancing privacy safeguards and reducing data volume requirements per client through SL.
The aforementioned studies indicate a significant volume of research on FL in heterogeneous

and resource-constrained edge computing. FL algorithms based on similarity particularly address
performance issues caused by client drift stemming from data heterogeneity, while those based on
SL focus on overcoming resource bottlenecks and straggler problems due to device heterogeneity.
Existing similarity-based FL algorithms, such as MTL and model interpolation, have to contend
with the high computational and communication costs associated with pairwise client relationships.
Moreover, model interpolation requires sharing of local information, which may expose clients to
privacy risks. When model parameters are used for clustering, the results may not be optimal, and
themitigation effect for Non-IID data can beweak. In contrast, using data distribution characteristics
for clustering can reduce data utility due to DP, thereby compromising the accuracy of the FL
model.
Algorithms based on SL significantly enhance privacy protection, but most methods have only

addressed challenges arising from device heterogeneity, without considering the setting under Non-
IID data heterogeneity. The SL mechanism introduces additional computational and communication
overheads, and certain methods lack essential lightweight techniques. Furthermore, the introduction
of heavyweight technologies such as MARL and homomorphic encryption incurs substantial
additional computational costs. Therefore, there is an urgent need to optimize existing FL methods
to comprehensively consider the challenges of heterogeneity, resource limitations, and privacy
constraints. The goal is to improve the adaptability of FL algorithms to data and device heterogeneity,
enhance model accuracy and training efficiency, and simultaneously reduce the risk of data misuse
and protect personal data privacy.

Differing from existing methods, this paper innovatively combines a lightweight, dual-layer client
selection method with a FL mechanism. In the first layer of the dual-layer client selection method,
lightweight hash encryption function is utilized to group devices based on data similarity. The
second layer selectively activates clients within these groups based on their resource capabilities,
thereby optimizing training efficiency. Subsequently, split and parameter aggregation are conducted
using a federated server, while training is performed using a cloud server. The proposed GSFL
algorithm is specifically tailored for heterogeneous and resource-constrained edge computing
scenarios, enhancing privacy and reducing computational overhead. This strategic integration of
grouping and SL mechanisms ensures efficient resource utilization and improved data privacy.

3 METHODOLOGY
3.1 Lightweight grouping federated learning method based on dual-layer client

selection
Given the vast amount of data samples acquired in edge computing and the limited computational
resources of IoT devices for extracting data distribution features, directly collecting and transmitting
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Table 1. Main notation in GSFL.

Notation Meaning

𝐶 The collection of devices, denoted as 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, the quantity of devices is
denoted as 𝑛. Here, 𝑐𝑖 represents the 𝑖𝑡ℎ device

𝑑𝑖 The device 𝑐𝑖 holds a private dataset, where |𝑑𝑖 | represents the size of the dataset
𝑥𝑖, 𝑗 The 𝑗𝑡ℎ data sample on device 𝑐𝑖
𝑦𝑖, 𝑗 The corresponding label of the 𝑗𝑡ℎ data sample on device 𝑐𝑖
𝐾 The number of groups
𝐺 The grouping result set of homogeneous devices
𝑃 Local model training rounds
𝑣𝑖 The vectorization result of extracting the ReLU layer feature map during pre-training

FL on device 𝑐𝑖
ℎ𝑖 The hash value obtained using a lightweight hash encryption function
𝐻 The hash value set of encrypted data distribution features ℎ𝑖
𝑀 The similarity matrix used to compare the similarity of data distributions
𝐸 Intra-group model training rounds
𝑉 Selected device set
𝑊 The weight parameters of the FL model

these features could increase the risk of privacy breaches. This reality is in conflict with the primary
goal of FL to enhance privacy protectionwithin distributedmachine learning. The overall framework
of the lightweight grouping FL method based on dual-layer client selection is illustrated in Fig. 1.
The first layer of client selection involves client grouping, which is collaboratively conducted by
the data feature extraction module (DFE) and the homogeneous device grouping module (HDG).
The second layer of client selection is carried out by the intra-group client scheduling module
(ICS). To achieve efficient personalized FL in a data-heterogeneous, resource-constrained edge
network, a data feature extraction module is essential. In the proposed similarity-based grouping
FL framework, acquiring data distribution features is a prerequisite for device grouping.
Considering the high heterogeneity of edge device data, the challenges of Non-IID data on the

speed and convergence of FL in real-world situations, and the limited network connectivity of IoT
devices in resource-constrained edge scenarios, it is impractical to require FL to perform model
updates and aggregation in parallel across all participating devices. In light of this, a homogenous
device grouping module was devised, primarily responsible for grouping similar devices at the
edge server, using similarity-based grouping methods to mitigate the impact of Non-IID data on
the performance of FL models in highly heterogeneous data scenarios. In heterogeneous data
scenarios, the edge server categorizes devices into homogenous groups and coordinates the FL
process within each group. Each device shares gradient updates only within its group, resulting in
distinct global models for different groups. Given that improper scheduling may lead to decreased
learning efficiency and delay issues, particularly in resource-constrained edge settings, the accuracy
of FL training depends on capturing the unique data distributions rather than necessarily involving
all clients. Therefore, based on device grouping, a certain number of devices are selected within
each homogenous group for FL training. Table 1 summarizes the main notation used in this article.

3.1.1 Data feature extraction module. Before device grouping and grouping FL start, the data feature
extraction module preprocesses the data distribution of the devices. The edge server broadcasts the
data feature extraction model. Each edge device 𝑐𝑖 performs pre-training on local private data 𝑑𝑖

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article . Publication date: March 2025.



12 Qi Liu et al.

Fig. 1. The overall framework diagram of lightweight grouping FL method based on dual-layer client selection.

before grouping. During the pre-training phase, the feature map is extracted from the Rectified
Linear Unit (ReLU) layer of the Convolutional Neural Network (CNN) and uses a lightweight hash
function encrypts the ReLU layer feature map to generate the encrypted data feature ℎ𝑖 (ie, the
encrypted data feature EDF), and then uploads it to the server for the next step of device grouping.
When the data situation changes, for example, due to changes in user usage habits or the influence
of environmental factors, the data features collected by devices may change. At this time, devices
can be pre-trained again, extract new data features and encrypt them before uploading to the server.
The server can regroup according to the new data features to adapt to the changes in data.

The data feature extraction module centers around employing the ReLU layer feature maps of
all devices by means of a lightweight hash encryption function for the generation of EDF. The
lightweight hash encryption function PHOTON-Beetle-Hash [19] used is mainly designed for
resource-constrained devices, enhancing user privacy protection for various devices. The function’s
small code size and low RAM requirements, coupled with low computational complexity, minimize
additional computational costs, making it ideal for resource-constrained edge computing systems.
After dimensionality reduction, these data features also reduce the communication overhead
between the device and the server. In mobile multimedia communication scenarios with a large
number of IoT devices participating, the delay caused by directly transmitting a substantial number
of original data features is avoided, thereby improving the efficiency of FL.
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3.1.2 Homogeneous device grouping module. The proposed homogeneous device grouping module
performs a second stage of preprocessing on the devices before formally performing grouping
FL. First, the edge server collects the EDF sent by all devices in the domain, that is, the encrypted
data feature ℎ𝑖 , and stores it in the set 𝐻 . Then, homogeneous device grouping module uses cosine
similarity to measure the similarity of data distribution between different devices, and saves the
calculation result of cosine similarity in a metric matrix S that can represent the degree of similarity
of data distribution between clients, such as shown in formula (1), S𝑖 𝑗 is the cosine similarity
between the two encrypted data features ℎ𝑖 and ℎ 𝑗 , that is, the data distribution similarity between
devices 𝑐𝑖 and 𝑐 𝑗 . If the data distribution changes and the original grouping result is no longer
appropriate, the grouping strategy can be reused to calculate the cosine similarity of data features.
For example, if a certain category of data becomes more important in a new situation or a new
data category appears, related devices may be regrouped into a more appropriate group.

S𝑖 𝑗 =
ℎ𝑖 · ℎ 𝑗
∥ℎ𝑖 ∥ ∥ ℎ 𝑗



 =

∑𝑛
𝑘=1 ℎ𝑖𝑘ℎ 𝑗𝑘√︃∑𝑛

𝑘=1 ℎ
2
𝑖𝑘

√︃∑𝑛
𝑘=1 ℎ

2
𝑗𝑘

(1)

Algorithm 1 Homogeneous Device Grouping.
Input: 𝐶 , 𝐺 , 𝐻 , 𝑃 ;
Output: Grouping result 𝐺 ;
1: Initialize 𝐺 ← {}, 𝐻 ← {};
2: for 𝑖 = 1 to 𝑛 do
3: for 𝑗 = 1 to 𝑃 do
4: Device 𝑐𝑖 pre-trains using its own data 𝑑𝑖 ;
5: end for
6: Extract feature map 𝑣𝑖 from ReLU layer;
7: Add to 𝐻 : ℎ𝑖 = PHOTON-Beetle-Hash(𝑣𝑖 );
8: end for
9: Compute the cosine similarity between different devices’ data distributions and save the result

in the similarity matrix𝑀 , where𝑀𝑖 𝑗 = cos(𝜃𝑖 𝑗 ) and 𝜃𝑖 𝑗 is the angle between 𝐻𝑖 and 𝐻 𝑗 :

𝑀𝑖 𝑗 =
𝐻𝑖 · 𝐻 𝑗
∥𝐻𝑖 ∥∥𝐻 𝑗 ∥

10: Edge server gets grouping result 𝐺 using improved ISODATA grouping on 𝑀 : 𝐺 ←
ISODATA(𝑀);

11: return Grouping result 𝐺 .

Improvements are made on the basis of iterative self-organizing data analysis technique (ISO-
DATA) algorithm to enable grouping based on the cosine similarity matrix and classify devices
with similar data distribution into the same group, as shown in Algorithm 1. The improved strategy
is as follows:

a) Initialization: 𝐾 devices are randomly selected as the initial grouping center, and the grouping
is divided into {𝑐1, 𝑐2, . . . , 𝑐𝑘 }, where 𝑐𝑖 is the edge device.

b) Device allocation: For each edge device 𝑐𝑖 , utilize its cosine similarity with each group center
𝑐 𝑗 and assign it to the group 𝐺 𝑗 with the highest similarity.

c) Update the grouping center: For group𝐺 𝑗 , the steps of center update are as shown in formula
(2), where 𝑐′𝑗 is the new center device of group 𝐺 𝑗 .
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𝑐
′
𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑐𝑖 ∈𝐺 𝑗

©­« 1��𝐺 𝑗 �� ∑︁
𝑐𝑘 ∈𝐺 𝑗

S𝑖𝑘
ª®¬ (2)

d) Calculate similarity and standard deviation: By calculating the intra-group similarity 𝜇 𝑗 and the
standard deviation 𝜎 𝑗 , the similarity between devices within the group and the degree of variation
in the similarity within the group can be evaluated. If the 𝜇 𝑗 of a group is very low and 𝜎 𝑗 is very
high, it means that there is a large difference within the group, and it may be necessary to split it
to form more homogeneous subgroups. The intra-group similarity 𝜇 𝑗 of group 𝐺 𝑗 can be obtained
by formula (3), and the calculation formula of standard deviation 𝜎 𝑗 is as shown in (4).

𝜇 𝑗 =
1��𝐺 𝑗 ��2 − ��𝐺 𝑗 �� ∑︁

𝑐𝑖 ∈𝐺 𝑗

∑︁
𝑐𝑘 ∈𝐺 𝑗 ,𝑘≠𝑖

S𝑖𝑘 (3)

𝜎 𝑗 =

√√√√
1��𝐺 𝑗 �� − 1 ∑︁

𝑐𝑖 ∈𝐺 𝑗

(∑
𝑐𝑘 ∈𝐺 𝑗 ,𝑘≠𝑖

S𝑖𝑘��𝐺 𝑗 �� − 1 − 𝜇 𝑗

)2
(4)

In formula (3), the double summation
∑
𝑐𝑖 ∈𝐺 𝑗

∑
𝑐𝑘 ∈𝐺 𝑗 ,𝑘≠𝑖

represents the calculation of the total
sum of similarities between all possible distinct device pairs (𝑐𝑖 , 𝑐𝑘 ) within the group 𝐺 𝑗 . The
denominator |𝐺 𝑗 |2 − |𝐺 𝑗 | indicates the total number of all possible unique device pairs within the
group𝐺 𝑗 . |𝐺 𝑗 | is subtracted from |𝐺 𝑗 |2 (all possible pairings among devices, including self-pairings)
as the self-pairings of devices do not need to be calculated.
If the center similarity 𝜇 𝑗𝑙 of two groupings is high and the grouping size is small, then the

grouping centers may be too close and can be merged to form a larger, more representative grouping.
The calculation formula of similarity 𝜇 𝑗𝑙 between groups is shown in (5).

𝜇 𝑗𝑙 =
1��𝐺 𝑗 �� · |𝐺𝑙 | ∑︁𝑐𝑖 ∈𝐺 𝑗

∑︁
𝑐𝑘 ∈𝐺𝑙

S𝑖𝑘 (5)

e) Split and merging:
Split operations are triggered when there is substantial variation in the data distribution within

a group. Specifically, a group 𝐺 𝑗 experiences a split process when the internal average similarity
𝜇 𝑗 falls below the threshold 𝑇𝜇,split and the standard deviation 𝜎 𝑗 exceeds the threshold 𝑇𝜎,split.
These conditions indicate that the data distribution within the group is not sufficiently uniform,
necessitating further subdivision to achieve more homogeneous subgroups.

Merging operations are considered when the centers of two groups are very close to each other.
A merge between groups 𝐺 𝑗 and 𝐺𝑙 is executed when the inter-group center similarity 𝜇 𝑗𝑙 exceeds
the threshold 𝑇𝜇,merge and the sizes of both groups are below the threshold 𝑇𝑠𝑖𝑧𝑒,merge. The objective
of merging operations is to reduce excessive split among groups, thereby enhancing the overall
efficiency of the system.

These processes are integral to maintaining optimal group configurations in systems that utilize
FL, ensuring that each group is as homogeneous as possible with regard to data distribution among
its devices.

f) Iteration and output: Repeat steps b) to e) until any of the following termination conditions are
met: the change of each group member is less than the threshold, or each group reaches the preset
target similarity, or the maximum number of iterations is reached. Finally, the output grouping
result𝐺 = {𝐺1,𝐺2, . . . ,𝐺𝐾 }, all devices in each group are isomorphic, that is, they have similar data
distribution.
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Algorithm 2 CMAB-based Client Scheduling Strategy.
Input: State report 𝑆𝑖 = {𝑈𝑖 , 𝑁𝑖 } for each device 𝑐𝑖 , 𝑈𝑖 represents the computational resource

situation, while 𝑁𝑖 signifies the network resource situation, Reward function 𝑓 (·), Number of
top devices to select𝑚, Number of rounds 𝑇𝑖𝑐𝑠 ;

Output: Selected device set 𝑉 for all rounds;
1: Initialize 𝑉 ← {};
2: for 𝑡 = 1 to 𝑇𝑖𝑐𝑠 do
3: for each device 𝑐𝑖 in 𝐶 do
4: Compute expected reward 𝑄𝑖,𝑡 = 𝑓 (𝑆𝑖,𝑡 ) + 𝜖𝑖,𝑡 ;
5: end for
6: Select𝑚 devices with the highest 𝑄𝑖,𝑡 and denote them as 𝑉𝑡 = {𝑐𝑖1, 𝑐𝑖2, . . . , 𝑐𝑖𝑚};
7: Add 𝑉𝑡 to the set 𝑉 ;
8: end for
9: return 𝑉 .

Algorithm 3 Intra-Group Federated Learning.
Input: 𝐶 , 𝐾 , 𝐸;
Output: Each intra-group model𝑊𝑘 trained by GSFL;
1: Call Algorithm 1 to get group result 𝐺 ;
2: for 𝑘 = 1 to 𝐾 in parallel do
3: for 𝑙 = 1 to 𝐸 do
4: Call Algorithm 2 to get scheduled client set 𝐼𝑘 ;
5: for Each client 𝑐𝑖 ∈ 𝐼𝑘 in parallel do
6: Client 𝑐𝑖 trains the received model locally for round 𝑙 :

𝑊 𝑙+1
𝑖 =𝑊 𝑙

𝑖 −
𝛼

|𝑑𝑖 |

|𝑑𝑖 |∑︁
𝑗=1
∇𝑓

(
𝑊 𝑙
𝑖 , 𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗

)
7: Client 𝑐𝑖 uploads local model𝑊 𝑙+1

𝑖 to edge server;
8: end for
9: Edge server aggregates uploaded models from selected clients within group into new

intra-group model:

𝑊 𝑙+1
𝑘

=

∑
𝑐𝑖 ∈𝐺𝑘

|𝑑𝑖 |𝑊 𝑙+1
𝑖∑

𝑐𝑖 ∈𝐺𝑘
|𝑑𝑖 |

10: end for
11: end for
12: return Each intra-group model𝑊𝑘 .

3.1.3 Intra-group client scheduling model. CMAB is based on the traditional Multi-armed Bandit
(MAB) and adds the element of "context". That is to say, at each decision-making moment, in
addition to choosing the arm of the slot machine, there will be some additional relevant information
(i.e., context) available, such as the characteristics of the user, the state of the environment, etc. This
contextual information can assist the player in making wiser decisions to enhance the possibility
of obtaining higher returns.

Through the intra-group client scheduling module, the CMAB strategy is adopted to select clients
for training according to the computing and network resource conditions of the device. This avoids

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article . Publication date: March 2025.



16 Qi Liu et al.

the increased delay caused by over-involvement of resource-constrained devices in training and at
the same time ensures the efficiency and reliability of training.

When the device situation changes, for example, when the computational capability of the device
changes due to hardware aging or software updates, or when network resources fluctuate due
to changes in the network environment, the device will report its new status to the server. The
server recalculates the expected reward according to the new status and adjusts the selection of
clients. For devices with reduced capabilities, their frequency of participating in training may be
reduced. For devices with improved capabilities, their opportunities to participate in training may
be increased, thus adaptively adjusting the training process.
In the scenarios configured in this article, each device group is treated as an arm in the CMAB

problem, and a subset of clients is selected for FL training at each action round. The client scheduling
strategy adopted by the intra-group client scheduling model is shown in Algorithm 2. At the start
of each round 𝑡 , devices within each group transmit status reports 𝑆𝑖,𝑡 = {𝑈𝑖,𝑡 , 𝑁𝑖,𝑡 } to the server,
detailing its own computing resources 𝑈𝑖,𝑡 and network resources 𝑁𝑖,𝑡 . In response, the server
implements a CMAB-based client scheduling policy based on these reports.

Specifically, the server calculates the expected reward𝑄𝑖,𝑡 of each device in the group, and selects
the top m devices as the client set 𝑉𝑡 = {𝑐1, 𝑐2, . . . , 𝑐𝑚}. These selected devices participate in FL
training as clients, receiving the corresponding intra-group models from the server for training on
local data. The trained gradients are returned to the server for aggregation and intra-group model
updates.
The expected reward 𝑄𝑖,𝑡 is calculated from the device resource status and a small random

number 𝜖𝑖,𝑡 , which can be learned from historical data, as shown in (6). The reward function is
given by formula (7), 𝜔1 and 𝜔2 are the importance weights of the two resources for the reward.
The computing resource utility function 𝑔

(
𝑈𝑖,𝑡

)
is designed as a Logistic function with a limit value

to simulate the diminishing marginal effect of increasing computing resources on performance
improvement, as shown in formula (8), where 𝛼 represents the saturation upper limit, i.e., the
maximum utility value. 𝜅 is the growth rate, which determines how quickly the function grows.
𝑈mid is the turning point at which the resource’s utility grows from fast to slow growth, that is, the
midpoint of the function, set to the median of the computing resources expected to be used. The
network resource utility function ℎ

(
𝑁𝑖,𝑡

)
is designed as a Logistic function with a soft saturation

upper limit, as shown in formula (9), where 𝛽 is the maximum contribution of network resources
to utility, 𝜆 is the rate at which network resource utility increases. The inflection point method
is used to analyze performance indicators and network resource data, and the point where the
second-order derivative is zero is found as the saturation point 𝑁sat of network resources. When
network resources reach this value, utility growth will become very slow. The CMAB strategy
dynamically adjusts the selection of clients according to 𝑔

(
𝑈𝑖,𝑡

)
and ℎ

(
𝑁𝑖,𝑡

)
. When a certain device

fails, the server can select other appropriate devices for training according to the status reports
of other devices, avoiding the stagnation of the entire training process due to individual device
failures and ensuring the stability of the system.

𝑄𝑖,𝑡 = 𝑓
(
𝑆𝑖,𝑡

)
+ 𝜖𝑖,𝑡 (6)

𝑓
(
𝑆𝑖,𝑡

)
= 𝜔1 · 𝑔

(
𝑈𝑖,𝑡

)
+ 𝜔2 · ℎ

(
𝑁𝑖,𝑡

)
(7)

𝑔
(
𝑈𝑖,𝑡

)
=

𝛼

1 + 𝑒−𝜅 · (𝑈𝑖,𝑡−𝑈mid )
(8)
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ℎ
(
𝑁𝑖,𝑡

)
=
𝛽 ·

(
1 − 𝑒−𝜆 ·𝑁𝑖,𝑡

)
1 + 𝑒−𝜆 · (𝑁𝑖,𝑡 −𝑁sat )

(9)

The server collects rewards, calculates the time difference error, and updates the parameter vector
𝛿𝑡 using formula (10), where 𝑟𝑡+1 is the actual reward obtained at time 𝑡 + 1, and 𝛾 is the discount
that determines the importance of future rewards. The factors, 𝑄𝑖,𝑡 and 𝑄𝑖,𝑡+1 are the expected
rewards at time 𝑡 and 𝑡 + 1 respectively. During the entire process, the cumulative regret 𝑅𝑇 of each
round is calculated to measure the algorithm performance. The accumulated regret 𝑅𝑇 , which is the
sum of regrets in all rounds, reflects the suboptimal selection of device sets. The calculation formula
is (11), where 𝑅𝑇 represents the accumulated regret in 𝑇 rounds, indicating the total performance
loss incurred due to not selecting the optimal device set. 𝑄∗,𝑡 represents the maximum reward that
may be obtained at time 𝑡 , estimated using the 𝜀-greedy strategy. Specifically, 𝑄∗,𝑡 is the maximum
reward observed up to the current time, while 𝑄𝑉𝑡 ,𝑡 represents the reward obtained by selecting 𝑉𝑡
at time 𝑡 . The goal of intra-group device scheduling is to minimize accumulated regret 𝑅𝑇 , thereby
improving the performance of the FL system and making optimal use of the computing and network
resources of each device. The specific intra-group FL process is presented in Algorithm 3.

𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑄𝑖,𝑡+1 −𝑄𝑖,𝑡 (10)

𝑅𝑇 =

𝑇∑︁
𝑡=1

(
𝑄∗,𝑡 −𝑄𝑉𝑡 ,𝑡

)
(11)

3.2 Grouping-Split federated learning
Grouping FL based on the SL mechanism mainly addresses the problems of weak privacy protection
and high device load in FL, and focuses on solving the impact of device heterogeneity. In traditional
FL, participants need to share original model or gradient information when performing model
aggregation, which may lead to the risk of privacy leakage. Grouping FL uses a SL mechanism
to divide the holistic model according to a hierarchical structure, so that participants only need
to transmit the model parameters or features within their respective groups without sharing the
holistic model or gradient information. Both the client and the server can only access a part of the
entire model, thereby reducing the risk of client or server privacy leakage due to reconstruction
attacks and effectively protecting privacy.

Device heterogeneity is also a focus of grouping FL. The server divides each device into different
groups based on the similarity of its data distribution. After completing the device grouping,
perform channel pruning on the device-side model and server-side model to remove unimportant
channels and reduce the amount of parameters and calculations. The models within each group
maintain a consistent hierarchical structure and number of channels. In this way, the impact of
model heterogeneity introduced by the SL mechanism is significantly reduced. This enables more
effective FL model aggregation, leading to overall model improvement and enhanced performance
of the holistic model.
Fig. 2 shows the overall framework of the privacy-preserving grouping FL method based on

SL, which includes edge devices at the terminal level, federated servers at the edge level, and
cloud servers at the cloud level. The figure shows the main workflow of the proposed method.
Through device grouping, model decomposition, and channel pruning, grouping FL based on SL
mechanism can improve privacy security, improve the effect of model aggregation, and improve
the stability of aggregation results and the performance of the final model. At the same time, since
the SL mechanism only needs to transmit the parameters or features of the model within the
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Fig. 2. The overall framework diagram of GSFL.

group, rather than the parameters or features of the holistic model, communication overhead is
reduced, and the holistic FL model is decomposed into the device part and the server part, which
reduces resources. The computational load of constrained devices improves the efficiency of FL.
This grouping FL method based on the SL mechanism is suitable for heterogeneous and resource-
constrained scenarios. While maintaining the ability to process Non-IID data, it introduces a more
powerful privacy protection method, optimizes the FL architecture, and enhances the privacy is
protected and the load of the device is reduced, which has important practical application value.

3.2.1 Model decomposition. In the privacy-preserving grouping FL process based on the SL mecha-
nism, each group has a unique group model. First, the federated server at the edge layer applies the
model decomposition strategy to analyze the hierarchical structure of the CNN model. It calculates
the computational complexity O𝑙 (measured in floating point operations, FLOPs) of each layer 𝑙
(the total number of layers is 𝐿), and the size of the output data N𝑙 (the size of the activation value,
i.e., the size of the feature map from one layer to the next). In the pre-training process necessary
for the grouping strategy, record the accuracy 𝑎𝑖 and loss value 𝑙𝑖 of each device 𝑖 in each round of
pre-training, and calculate the standard deviation of the accuracy 𝜎𝑎𝑖 and the standard deviation of
the loss value 𝜎𝑙𝑖 . Define the device performance score 𝑝𝑖 as (12). The higher the device performance
score, the smaller the performance fluctuation of the device during the pre-training process and the
more stable the performance. Use the exponential function 𝑒−𝜎𝑎𝑖 to process the standard deviation
of accuracy so that the smaller the accuracy fluctuation, the higher the score. Use the logarithmic
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function ln(1 + 𝜎𝑙𝑖 ) to process the standard deviation of loss value and place it in the denominator
position so that the greater the loss value fluctuation, the lower the score.

𝑝𝑖 =
𝑒−𝜎𝑎𝑖

1 + ln(1 + 𝜎𝑙𝑖 )
(12)

The average computational capability of edge devices within group 𝑘 is denoted as Ψ𝑘 , as shown
in formula (13). Using formula (14), among all layers whose computational complexity does not
exceed the device capability, select the layer with the smallest output data size as the split point 𝑠𝑝 ,
and divide each group model into a device-side group model and a server-side group accordingly.
Here, 𝜏 is a hyperparameter between 0 and 1, used to control the position of the split point. When
𝜏 is small, the split point will be closer to the shallow part of the CNN. Conversely, when 𝜏 is large,
the split point will be closer to the deep part of the CNN. The parameter 𝜏 can be fine-tuned to
precisely control the placement of the split point inside the CNN architecture, thus preventing it
from being too close to the network’s initial or shallow layers.

Ψ𝑘 =

∑𝑀
𝑖=1 𝑝𝑖 × Ψ𝑑𝑒𝑣𝑖𝑐𝑒𝑖∑𝑀

𝑖=1 𝑝𝑖
(13)

𝑠𝑝 = argmin
𝑙
{N𝑙 | O𝑙 ≤ Ψ𝑘 and 𝑙 ∈ {1, 2, . . . , 𝐿} , 𝑙 ≥ 𝜏𝐿} (14)

Model decomposition divides the group model into two parts: the device-side group model
and the server-side group model. This ensures that the edge device will not become slow due
to excessive computational load when executing the device-side model. Additionally, it aims to
reduce the amount of data transmitted over the network, thereby reducing communication latency.
Participants within each group are only responsible for training and updating the local device-side
group model, which is usually one or more layers of the holistic group model. Participants only
use local data to train their intra-group parts, without sharing raw data with other participants.
The cloud server is responsible for maintaining and updating the server-side group model for each
group, which typically contains the remaining layers and parameters of the group model. During
the training process, the cloud server receives model updates within the group from each group
and integrates these updates into the server part.

3.2.2 Adaptive channel-level pruning. In a heterogeneous and resource-constrained edge computing
scenario, smart devices typically exhibit variations in their characteristics. After completing the
device grouping, channel pruning needs to be performed on the device-side model and the server-
side model to remove unimportant channels. Reduce the amount of parameters and calculations
to reduce the load pressure on resource-constrained edge devices. This makes the model more
efficient in running on resource-constrained devices, reduces processing time, and ensures low
latency and high reliability. The adaptive channel pruning strategy involved is only performed in
the first communication round of FL, and will not change the structure of the device-side group
model after channel pruning in the subsequent training process.
Each client trains and evaluates the model on a local dataset, and the federated server collects

the model parameters of all clients and aggregates them. For each grouping, the 𝑙1-norm of each
channel in each convolutional layer of the global device-side group model is calculated as the
channel importance score 𝐼 (𝑖 )𝑐 , which is used for the evaluation of channel importance, as shown in
formula (15), where𝑤 (𝑖 )𝑐 represents the weight vector of the 𝑐-th channel of the 𝑖-th layer. Based on
the calculated importance score 𝐼 (𝑖 )𝑐 , all channels are sorted in order to identify the channel with the
lowest importance. According to the set pruning proportion 𝑝𝑘 , determine a threshold 𝑇𝑖𝑚𝑝𝑘 such
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that among all channels, the importance score of a proportion 𝑝𝑘 of channels is lower than 𝑇𝑖𝑚𝑝𝑘 .
In this context, 𝑝𝑘 denotes the predefined pruning ratio for the model associated with group 𝑘 . The
cloud server creates a mask matrixM(𝑖 ) for the convolution layer 𝑖 for channel pruning, so that
the mask matrix corresponds to the element𝑀 (𝑖 )𝑐 of the 𝑐-th channel as shown in (16). Finally, the
Hadamard product is calculated using the weight matrix and the mask matrix, that is, element-wise
multiplication, as shown in formula (17), each weight value will be multiplied by the corresponding
element (0 or 1) in the mask matrix. If the value in the mask is 0, the corresponding weight will be set
to 0 (i.e. pruned). If the value in the mask is 1, the corresponding weight remains unchanged. This
approach achieves selective pruning of channels in convolutional layer 𝑖 , removing less important
channels. For the global server-side model, perform the same channel pruning operation.

𝐼
(𝑖 )
𝑐 =




w(𝑖 )𝑐 



1

(15)

𝑀
(𝑖 )
𝑐 =

{
1, 𝑖 𝑓 𝐼

(𝑖 )
𝑐 > 𝑇𝑖𝑚𝑝

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(16)

w(𝑖 ) ← w(𝑖 ) ⊙M(𝑖 ) (17)

3.2.3 Grouping federated learning process based on split learning mechanism. All devices partici-
pating in FL undergo pre-training and extract data distribution characteristics using lightweight
hash encryption function. These characteristics are then sent to the federated server. The federated
server collects the data distribution characteristics of all devices and completes device grouping
based on this. When training starts, the federated server initializes the global device-side group
model𝑊𝐶

𝑡 and server-side group model𝑊 𝑆
𝑡 according to the model decomposition strategy, and

then selects a subset of clients from the groups of individual clients. At the beginning of each
round, each client selected to participate in training downloads𝑊𝐶

𝑡 from the federated server
and then uses its local data in parallel to perform forward propagation on the local device-side
group model until the split layer is reached. Afterwards, the shredded data is sent to the cloud
server, which also downloads𝑊 𝑆

𝑡 from the federated server and completes forward propagation
and backward propagation on the corresponding server-side group model. Subsequently, the cloud
server feeds back the gradient of the smashed data to the clients in each group to complete the
backpropagation process of the device-side group model. At the end of each round, the client
updates𝑊𝐶

𝑡 , which is then sent to the federated server for aggregation. Typically, the federated
server can be a trusted third party or authority that only assists in coordinating the entire training
process and implementing the aggregation of device-side group models. Therefore, unlike cloud
servers, federated servers do not necessitate high-performance computing resources. The specific
implementation of GSFL is illustrated in Algorithm 4.

4 EXPERIMENTS
4.1 Experimental setting
4.1.1 Dataset and model. The experiments employed datasets from Fashion-MNIST [45] and
MNIST [3], each comprising 10 distinct categories. To simulate data heterogeneity under a Non-IID
scenario, the data for each client was sourced from a Dirichlet distribution, Dir(𝛼). This approach
models varying degrees of data heterogeneity and imbalanced label distribution. A larger 𝛼 value
signifies a balanced distribution among categories, approaching an IID setting, whereas a smaller
𝛼 yields a noticeably heterogeneous data distribution. The first step is to determine the number
of categories to simulate, which defines the dimensions of the Dirichlet distribution. Next, an 𝛼
vector is established, where uniform values indicate an even distribution of categories, and smaller
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Algorithm 4 Implement of Grouping-Split Federated Learning (GSFL).

Input: T : Number of FL communication rounds.𝑊 (𝑡 )
𝑘,𝑖

: Device-side model for client 𝑖 in group 𝑘
at round 𝑡 .𝑊 ′(𝑡 )

𝑘
: Server-side model for group 𝑘 at round 𝑡 .

Output: Device-side model𝑊𝑘 and server-side model𝑊 ′
𝑘
for each group 𝑘 .

1: Call Algorithm 1 to get group result 𝐺 .
2: for each group 𝑘 ∈ 𝐺 do
3: Parameter server initializes device-side model𝑊 (0)

𝑘,𝑖
and server-side model𝑊 ′(0)

𝑘
according

to the model decomposition strategy.
4: end for
5: for 𝑡 = 1 to T do
6: for each group 𝑘 ∈ 𝐺 do
7: The parameter server calls Algorithm 2 to select a subset 𝑉 of clients within the group.
8: for each client 𝑖 ∈ 𝑉 do
9: Client 𝑖 performs forward propagation on𝑊 (𝑡 )

𝑘,𝑖
using local data 𝑑𝑖 up to the split layer

𝑠𝑝 .
10: Client 𝑖 sends the activation maps at the split layer to the cloud server.
11: end for
12: Cloud server downloads the server-side model𝑊 ′(𝑡 )

𝑘
from the parameter server, and

completes forward propagation and backpropagation on𝑊 ′(𝑡 )
𝑘

.
13: Cloud server sends the gradients back to the clients in group 𝑘 .
14: for each client 𝑖 scheduled within group 𝑘 do
15: Client 𝑖 completes backpropagation on𝑊 (𝑡 )

𝑘,𝑖
using received gradients.

16: Client 𝑖 sends the updated parameters to the parameter server.
17: end for
18: Parameter server aggregates the updates from the participating clients within each group

to update𝑊 (𝑡 )
𝑘,𝑖

and𝑊 ′(𝑡 )
𝑘

using (18) and (19).

𝑊
(𝑡+1)
𝑘,𝑖

=𝑊
(𝑡 )
𝑘,𝑖
− 𝛼

|𝑑𝑖 |

|𝑑𝑖 |∑︁
𝑗=1
∇𝑓 (𝑊 (𝑡 )

𝑘,𝑖
, 𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 ) (18)

𝑊
′(𝑡+1)
𝑘

=

∑
𝑐𝑙 ∈𝐺𝑘

|𝑑𝑖 |𝑊 (𝑡+1)
𝑘,𝑖∑

𝑐𝑙 ∈𝐺𝑘
|𝑑𝑖 |

(19)

19: end for
20: end for
21: return Device-side model𝑊𝑘 and server-side model𝑊 ′

𝑘
for each group 𝑘 .

values suggest a skewed distribution. Each client extracts a sample from the predefined Dirichlet
distribution, with each vector element representing the proportion of a specific category within
that client’s data. These proportions are used to generate the corresponding category labels for
each client. By adjusting the 𝛼 value, a range of category distribution scenarios can be simulated,
from balanced to imbalanced.

Specific 𝛼 values of 1.0, 0.5, 0.1, and 0.05 have been selected for the experiments. These selected
𝛼 values allow for a comprehensive investigation and demonstration of the effects of different
degrees of data heterogeneity on the experimental results, providing a deeper understanding of the
performance and behavior of the proposed method in various data distribution scenarios.
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• When 𝛼 is set to 1.0, the data distribution among categories is relatively balanced, closely
resembling an IID setting. This indicates that each category has a relatively equal likelihood
of occurrence. For instance, in the Fashion-MNIST dataset, the frequency of different clothing
items is approximately the same.
• When 𝛼 is 0.5, a moderate degree of heterogeneity emerges. Categories begin to exhibit some
imbalance, yet not to a significant extent. Consider the MNIST dataset; some digit classes
might occur more frequently than others, but the disparity is not overly pronounced.
• With 𝛼 values of 0.1 and 0.05, the data distribution becomes highly heterogeneous. In such
circumstances, certain categories might predominate the data for a specific client, while
others are scarce. For example, in a client’s data from the Fashion-MNIST dataset, one type
of clothing might constitute a large proportion, and others might be present only in small
quantities.

The model architecture employed is MobileNetV2 [34], a lightweight CNN designed specifically
for mobile devices and well-suited for edge computing. Given the resource constraints of FL clients
in resource-constrained scenarios, the smallest variant, MobileNetV2-0.25, was specifically utilized.
This model variant is particularly apt for edge computing in scenarios where resources are limited.

4.1.2 Comparison methods. In this paper, the comparative methods selected include the FL baseline
algorithm FedAvg, the grouping FL method HACCS which protects user data distribution charac-
teristics using DP techniques, the newly defined SplitFed approach to split FL, and Cluster-HSFL,
which combines grouping with the SL mechanism.

FedAvg [31]: This method involves multiple clients collaboratively training a shared global model
without sharing the original data. In the scenario set up for this paper, the global model is tested
on all clients to assess performance.
HACCS [43]: HACCS is a grouping FL method that accounts for data heterogeneity. Its core

concept groups similar clients into different groups to facilitate local training within each group.
This reduces the issue of weight divergence between groups, lowers communication overhead, and
results in a high-performance personalized FL model.

SplitFed [41]: SplitFed addresses the inherent drawbacks of slower execution in SL compared to
FL, and weaker privacy protection in FL as opposed to SL. By partitioning the model into multiple
parts and training them separately on the client and server, SplitFed significantly reduces the
computational demands on clients. This makes it suitable for resource-constrained devices and
enhances data privacy by integrating DP.
Cluster-HSFL [52]: The algorithm combines grouping, SL, and FL to augment the parallelism

inherent in model training and to attenuate the computational burden imposed on clients. It
mitigates the workload on individual clients by partitioning the model, thereby diminishing the
latency associated with training. Concurrently, it enhances privacy protection.

4.2 Experiment results
In the context of FL, the use of grouping can improve the accuracy of models. Fig. 3 demonstrates
client data distribution under different degrees of data distribution heterogeneity. The shades of
color represent the amounts of corresponding category data that different clients possess. The
darker the color, the greater the amount of data the client corresponding to the square holds for
the corresponding category. When the 𝛼 value is large, it implies a balanced distribution among
categories, approaching the IID setting. At this point, the color distribution in the figure is relatively
more balanced, and the color difference of each square is relatively small. When the 𝛼 value is small,
an obvious heterogeneous data distribution will occur. In this case, the color of some squares in the
figure will be significantly darker, while that of most squares will be very pale, which intuitively
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reflects the highly uneven distribution of data among different clients. Fig. 4 details the test accuracy
over 300 communication rounds under varying degrees of data distribution heterogeneity. The
introduction of a SL mechanism can also enhance privacy security and reduce the training latency
of the FL model. Table 2 shows the comparison results of training latency on the MNIST dataset for
the proposed GSFL algorithm and various other methods when the heterogeneity measure 𝛼 is set
to 0.5.

(a) 𝛼=1.0 (b) 𝛼=0.5

(c) 𝛼=0.1 (d) 𝛼=0.05

Fig. 3. Illustration of client data distribution under different degrees of data distribution heterogeneity.

According to the results in Fig. 4, the GSFL algorithm demonstrates superior performance over
FedAvg, HACCS, SplitFed, and Cluster-HSFL across various settings of the Dirichlet distribution
parameter (𝛼). This advantage is particularly pronounced under Non-IID conditions, where GSFL
consistently achieves the highest accuracy. When 𝛼 is set to 1.0, the data distribution is relatively
uniform, approximating an Independent and Identically Distributed (IID) scenario. In this scenario,
GSFL exhibits a significant performance edge. Specifically, GSFL shows an improvement of 2.39%
over FedAvg, 1.56% over HACCS, and 0.76% over Cluster-HSFL. These results underscore GSFL’s
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(a) 𝛼=1.0 (b) 𝛼=0.5

(c) 𝛼=0.1 (d) 𝛼=0.05

Fig. 4. Test accuracy (%) under various degrees of data distribution heterogeneity within 300 communication
rounds.

ability to enhance FL efficiency and model performance through its optimized client scheduling
strategy, even in scenarios with a more uniform data distribution. As 𝛼 decreases to 0.05, the
data distribution becomes highly skewed, simulating an extreme Non-IID scenario. Under these
conditions, the performance advantage of GSFL becomes even more evident. GSFL exhibits an
improvement of 10.64% over FedAvg and 4.53% over HACCS, highlighting its robust capability
in handling extreme Non-IID data distributions. Compared to SplitFed and Cluster-HSFL, the
improvements are 2.29% and 1.16%, respectively, further demonstrating GSFL’s effectiveness in
optimizing data heterogeneity.

The success of GSFL in terms of accuracy is due to its strategic client scheduling method, effec-
tively handling unique data distributions in Non-IID conditions. In contrast, FedAvg encounters
difficulties capturing these distributions, leading to a noticeable decline in performance. Moreover,
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Table 2. Training delay performance comparison among different methods on the MNIST dataset.

Accuracy
Delay(s)

GSFL Cluster-HSFL [52] HACCS [43] SplitFed [41] FedAvg [31]

25% 8.31 9.37 11.79 12.31 36.65
50% 25.89 27.75 28.53 28.36 89.93
75% 39.25 41.97 44.15 44.75 193.53
80% 51.46 55.14 57.91 58.32 236.72
85% 73.84 79.38 84.67 85.59 349.27
90% 97.66 102.91 112.35 115.71 637.51

GSFL’s strategy surpasses HACCS’s random device selection method, highlighting GSFL’s effec-
tiveness in managing Non-IID conditions and optimizing the outcomes of FL. Therefore, despite
HACCS’s focus on client personalization, GSFL demonstrates superior overall performance. Com-
pared to SplitFed and Cluster-HSFL, which also introduce SL mechanisms, GSFL adds a lightweight
homogenous device grouping module, which contributes to an increase in accuracy to a certain
extent. The SL mechanism incorporated in GSFL plays a crucial role in enhancing the participation
capabilities of resource-constrained devices in FL training. It reduces the computational burden
and data transmission requirements for these devices, enabling them to actively contribute without
being hindered by their limitations.
According to the results in Table 2, GSFL consistently outperforms other methods in terms of

latency performance. Notably, when achieving an accuracy of 90%, GSFL reduces training time
by 6.53× compared to FedAvg. The latency reductions compared to SplitFed and HACCS are also
significant, usually ranging between 1.10× and 1.18×. Relative to Cluster-HSFL, the reduction is
smaller but still between 1.05× and 1.13×. It should be noted that the random scheduling scheme
designed in the FedAvg method brings about a serious straggler problem during the FL training
process. This is manifested in the significantly higher latency required to reach the specified
accuracy compared to other methods, including GSFL. The straggler problem in FedAvg leads to
inefficiencies and prolonged training times, which negatively affects the overall performance and
scalability of the FL system. By contrast, GSFL and the other compared methods have addressed
this problem to varying degrees, contributing to their superior performance in terms of latency
and training efficiency.
These results indicate that both the grouping FL method HACCS and the split FL method

SplitFed can improve the training efficiency of FL. Combining grouping with SL further enhances
training efficiency while also bolstering privacy protection to some degree. Compared to the
similarly conceptualized Cluster-HSFL method, the method proposed in this paper is still somewhat
superior. This is because it combines the designed lightweight client scheduling method with
the SL mechanism, avoiding the extensive computational resource consumption that comes with
encryption technologies such as homomorphic encryption and DP. As a result, GSFL can improve
training efficiency and reduce device load in scenarios constrained by computational and storage
resources, which is reflected in the lowest FL training latency of GSFL compared to other methods.
Furthermore, the introduced SL mechanism provides enhanced model privacy over traditional
grouping FL methods.
Overall, GSFL has consistently demonstrated outstanding performance across a wide range

of scenarios. In both uniform and highly skewed data distributions, it outperforms competing
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methods, showcasing its adaptability and effectiveness. When it comes to latency, GSFL significantly
reduces training time, addressing the straggler problem and improving overall training efficiency.
The addition of the lightweight homogenous device grouping module and the strategic client
scheduling method, along with the SL mechanism, allows GSFL to handle data heterogeneity,
enhance model privacy, and optimize the outcomes of federated learning. Whether in scenarios
with ample resources or those constrained by computational and storage limitations, GSFL proves
to be a superior solution, offering enhanced performance and potential for widespread application
in diverse federated learning contexts.

5 CONCLUSION
This study introduces an innovative FL approach named GSFL, designed to address the challenges of
data privacy protection and heterogeneity in resource-constrained edge computing scenarios. GSFL
efficiently enhances the training efficiency by integrating a grouping strategy with a SL mechanism,
reduces the load on resource-constrained devices, and strengthens data privacy, especially under
Non-IID data conditions. Experimental results indicate that GSFL outperforms conventional FL
algorithms such as FedAvg, the DP-incorporating grouping FL method HACCS, the split FL method
SplitFed, and the grouping and SL integrated method Cluster-HSFL on the Fashion-MNIST and
MNIST datasets. Specifically, GSFL achieves the highest accuracy under Non-IID data conditions and
exhibits superior training efficiency compared to other algorithms, demonstrating its effectiveness
in handling Non-IID scenarios and optimizing FL outcomes. The strategic client scheduling method
employed by GSFL effectively manages the unique data distributions inherent in Non-IID conditions,
as opposed to mere random device selection methods. Moreover, GSFL’s lightweight homogenous
device grouping module further improves accuracy and training efficiency, while avoiding the use
of computationally intensive encryption technologies such as homomorphic encryption and DP.
Therefore, in scenarios constrained by computational and storage resources, GSFL helps to reduce
the burden on the device.

In summary, the GSFL algorithmmeets data privacy protection needs while effectively addressing
the issues of data and device heterogeneity in edge computing contexts, offering an efficient FL
solution suitable for large-scale, resource-constrained scenarios. Its innovation and practicality are
anticipated to advance the widespread application of FL technology in the field of mobile multimedia
communication, particularly in the deployment of edge autonomous systems. However, this study is
not without its limitations. Although GSFL has shown promise in controlled experimental settings,
its scalability to larger and more complex networks, encompassing thousands of devices, remains
to be evaluated. As network sizes increase, the complexity of client scheduling and data processing
might greatly increase. Moreover, the success of GSFL largely depends on the effective grouping of
devices based on data characteristics, which may not always be feasible or accurate in real-world
scenarios where data dynamics are constantly changing. Future work could focus on developing
more robust and scalable client selection algorithms that can handle larger federation of devices
without substantial trade-offs in performance or privacy. Additionally, to better manage the dynamic
nature of edge devices and data distribution, adaptive grouping strategies could be developed, which
would periodically reevaluate and readjust device groupings based on ongoing data characteristics.
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