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Abstract-- The diagnostic of electrical machines is of paramount importance, particularly with the Motor Current Signature Analysis 

(MCSA) method. MCSA stands out as a potent and non-intrusive tool for evaluating the condition of electric motors. This paper introduces an 
innovative approach for the diagnosis of rotor asymmetries, broken rotor bars, in induction machines operating in steady state directly fed from 
the grid, emphasising the decomposition of line currents within specific rotating frames. A novel methodology is proposed, and its results are 
meticulously compared with those obtained through the conventional Fast Fourier Transform (FFT) diagnostic technique. In particular, the 
newly introduced methodology exhibits enhanced sensitivity, surpassing the capabilities of conventional FFT. Additionally, the innovative 
approach is proven to be capable of quantifying the increase in fault harmonics in correlation with the load on the machine, aligning with the 
results observed through conventional FFT analysis. The findings strongly indicate that this pioneering technique offers a more robust and 
reliable means of diagnosing induction machines when compared to the traditional FFT method, by enhancing sensitivity and providing a 
nuanced understanding of fault harmonic variations with load changes. 
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1 Introduction 
Induction machines are the workhorse of industry and are well-known for their reliability and durability. However, they are 

still susceptible to failure. Rotor cage faults occur in percentages ranging from 7% to 12% of total induction motor failures [1]-
[3]. Despite their relatively low rate of occurrence, detecting and diagnosing these faults is vital due to their potential to trigger 
severe side effects. Broken rotor fragments can hit the stator winding, inflicting serious damage to its insulation. Furthermore, 
the redistribution of currents in adjacent bars rises thermal stress, leading to a gradual propagation of the fault, underlining the 
critical role of diagnostics in pre-empting such complications. 

As reviewed in [4], the main cause of rotor cage failures lies in weak connections between the cage bars and its end rings that 
are worsened by operating conditions that induce overheating and thermal stress. The probability of a rotor cage failure is 
greatly related to the rotor manufacturing process. Fabricated rotors are more susceptible to rotor cage faults, as they tend to 
appear as a breakage of a rotor bar near the weld between the bar and the short-circuit end ring. In contrast, die-cast rotors have 
greater resilience to this failure and rarely suffer from it. A particular case is given by submersible motors for deep wells: these 
motors have fabricated copper bars, but instead of an end ring made up of a solid piece, they use multiple copper foils with the 
same shape as ferromagnetic laminations. This type of end ring is prone to accelerated wear due to internal cooling water and 
high-speed rotation [5]. Additionally, manufacturing flaws, such as material impurities, presence of porosity (air bubbles), 
magnetic anisotropy of the laminations, or imperfections, contribute to deficiencies in the rotor cage. 

In the long term, these factors become more pronounced, particularly under magnetic stresses induced by magnetic forces, 
variable frequency content or additional harmonics (leading to magnetic saturation effects), local maxima of magnetic fields at 
sharp edges and corners, and irregular distribution of eddy currents [6]. Environmental factors, such as humidity, dust, high 
pressure, and corrosive agents [4]-[7], also play a significant role in the deterioration of the rotor cages leading to an asymmetric 
rotor. 

The asymmetry resulting from the breakage of the rotor bars disrupts the distribution of the magnetic flux. Rotor flux 
perceives this disruption as an open or partially open circuit, especially if the bar is cracked rather than completely broken [8]. 
These distorted rotor flux contribute to the generation of unaccounted electromagnetic torque, leading to increased torque and 
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speed ripple. As a result, higher levels of noise and vibration are produced within the motor. Furthermore, bar breakages can 
also affect the laminations close to the points where they occur. 

In summary, a defect in the rotor cage of an induction motor produces a distortion in the magnetic flux of the rotor. As torque 
production is primarily based on the interaction between the magnetic fluxes of the stator and the rotor, which are connected to 
each other by slip and, therefore, by speed, any irregularities in the rotor flux cause ripples in the stator flux. These fluctuations 
are then transmitted to the stator current, as explained in [9],[10], and manifest themselves as additional harmonics in the 
currents. 

Numerous diagnostic techniques have been developed for steady-state diagnosis of broken bars in induction motors. Among 
all the techniques developed, FFT emerged as the most prevalent of all [11]-[18], [23]-[25], [27]-[30]. Reference [11] shows the 
conventional use of the FFT for the diagnosis of broken bars in induction machines, while [12] and [13] are two recent good 
reviews of diagnostic techniques for rotor asymmetries. Additionally, [14] is a good review that focuses on intelligent 
techniques for fault diagnosis of rotating machinery. 

It is worth commenting that, recently, alternative methods, such as integrating stray flux measurements with FFT or Short-
Time Fourier Transform (STFT) analysis, have been proposed [15], [16]. In [17], Independent Component Analysis (ICA) was 
employed to process FFT spectra for fault detection, supported by Artificial Neural Networks (ANN), while [18] utilised FFT 
spectra within an intelligent multi-agent system to detect broken rotor bars.  

Deep learning approaches techniques have also been developed for rotor asymmetries in induction motors. [19] extends the 
use of Convolutional Neural Network (CNN) and Recursive Neural Network (RNN) by incorporating Natural Language 
Processing (NLP) to enhance previous learning models for the diagnosis of induction motors. In [20] machine learning 
techniques such as Random Forest (RF), ANN, k-Nearest Neighbors (kNN), and Decision Tree (DT), are evaluated using a 
confusing matrix for the diagnosis of rotor asymmetries in induction motors, concluding that RF outperforms the other models 
evaluated. Finally, [21] employs the Principal Component Analysis (PCA) and PLECS-Matlab co-simulations to train a model 
for fault detection in induction machines using ratio of variances and the Hotelling’s T2 distribution. 

The use of four different complex filters based on the Kalman filter for the diagnosis of Wound Rotor Induction Motors 
(WRIM) is presented in [22]. The variations of these complex filters are the Dual Unscented Kalman Filter (DUKF), the 
Extended Kalman Filter (EKF), the Dual Extended Kalman Filter (DEKF) and Unscented Kalman Filter (UKF) concluding that 
the DUKF is the best option among the four. 

In off-line testing, [23] introduced an enhanced Discrete Fourier Transform (DFT) with zero-padding of the sampled stator 
current to mitigate FFT spectral leakage for broken bar diagnosis. References [24] and [25] applied FFT to the stator current in 
the d-q frame, leveraging the robustness of this approach in distinguishing broken bars from mechanical oscillations. While [24] 
utilized the magnitude of certain frequency components in active and reactive current spectra as fault indicators, [25] 
demonstrated the immunity of the d-component of current to load oscillations, proposing its spectrum as a fault indicator. In 
particular, [24] required three-phase current measurements. In [26] the normalised frequency domain energy operator, combined 
with complex operators such as the Teager-Kaiser energy operator, are employed to diagnose rotor asymmetries under steady 
and slightly varying speed conditions. 

Park's vector approach [27]-[33] has also been utilised to identify rotor asymmetry faults in induction motors effectively. 
These references are relevant to this work, as they also focus on decomposing currents either in fixed frames or within the 
frequency supply frame. For example, in [27], fault detection relies on scrutinizing the deformation of Park’s currents to discern 
potential motor faults. In [28], a departure from conventional Park's vector analysis is noted, where active and reactive current 
Park's vectors are employed to detect rotor asymmetries under load oscillations. Meanwhile, [29] explores the diagnosis of 
faults, examining the Hilbert Modulus Current Space Vector (HMCSV) and the Hilbert Phase Current Space Vector (HPCSV) 
through the FFT. The findings suggest that the HPCSV spectrum exhibits a richer harmonic content compared to that of the 
HMCSV spectrum. In [30] introduces a method involving the application of elliptic and notch filters on Park's vector 
components, followed by monitoring the higher harmonic index. 

More recent advances in the fault diagnosis techniques by using the Park’s vector approach are [31]-[33]. In [31] the MCSA 
and the Extended Park’s vector approach utilising both neural and non-neural methods are developed. This study explores the 
PCA, Curvilinear Component Analysis (CCA) and Independent Component Analysis (ICA), alongside linear dimensional 
reduction techniques such as Long Short-Term Memory (LSTM) and Shallow Dense Neural Networks (SDNN), concluding that 
the PCA-SDNN achieves the best accuracy. In [32] a comparison between the Model Based Residual Spectrum Analysis 
(MRSA) with the conventional extended Park’s vector Modulus approach is carried out, showing that the MRSA exhibits 
superior sensitivity and performance for the diagnosis of rotor asymmetries in induction motors. Finally [33] applies the DWT to 
analyse the stator phase current and the Energy Eigen Value (EEV) analysis to determine the severity of faults in rotor 
asymmetries. This study finds that the methodology performs better when the control of the machine is done by the Predictive 
Torque Control (PTC) rather than when the control is done by the Direct Torque Control (DTC). 

One of the common denominators of the diagnostic techniques already developed is that they are based on sophisticated 
signal processing techniques, intricate filters, and artificial intelligence methods. However, these methods are typically 
computationally intensive. While these approaches have proven effective in the detection of rotor asymmetries, they come with 
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several inherent limitations. 
Firstly, these methods are typically computationally intensive, requiring significant processing power and specialised 

hardware, which may not be feasible low-cost industrial settings. The complexity of these techniques also demands extensive 
data preprocessing and parameter tuning, which can introduce variability in diagnostic accuracy and reliability. 

Secondly, many of these approaches depend on large datasets for training and validation, particularly in the case of machine 
learning and deep learning-based methods. The availability of high-quality data is often limited, and the process of acquiring 
such data can be time-consuming and costly. Moreover, AI-driven techniques may struggle when generalising as they may 
require retraining or fine-tuning when applied to different machines or operating conditions. 

Additionally, some traditional signal processing methods, such as wavelet analysis or empirical mode decomposition, require 
expert knowledge for proper implementation and interpretation of the results. The effectiveness of these methods is highly 
dependent on the selection of appropriate parameters, such as decomposition levels, filter bandwidths, mother wavelet functions, 
etc, which can vary across different applications. 

Another critical limitation can be their sensitivity to noise and environmental disturbance as many industrial environments 
are subjected to them. While advanced filtering techniques can mitigate some of these effects, they often add another layer of 
complexity and computational burden. 

Finally, the integration of these techniques into existing monitoring systems can be challenging due to the need of specialised 
software or hardware increasing the overall cost of implementation, in contrast to the more efficient and computationally 
lightweight approach developed in this work. 

This research introduces an innovative methodology that avoids complex signal processing or filtering, centred on calculating 
the average value of stator currents decomposed in a rotating frame, reducing the complexity of the approach and its 
computational effort for the diagnosis of rotor asymmetries in induction machines fed directly from the grid. The main 
contributions of this study are: 

• Introduction of a new harmonic-aligned rotating frame approach for the diagnosis of rotor asymmetries in induction 
motors. 

• Enhanced sensitivity of the rotor asymmetry fault detection compared to conventional FFT approaches. 
• Ability to quantify the fault severity based on the load by using normalised values. 
• Reduction of the computational complexity compared to the conventional FFT approaches by tracking harmonics in 

steady state conditions. 
• Validation of the results with experimental data comparing healthy versus faulty squirrel cage induction motors with 

different levels of load. 
The paper is structured as follows: Section 2 presents the physical basis of broken bar faults, while Section 3 introduces the 

novel methodology for diagnosis within rotating frames. Section 4 details the proposed approach, followed by the experimental 
validation in Section 5, where the results are compared with conventional FFT techniques. Finally, Section 6 offers the 
conclusions and highlights the main findings of this study. 

2 Physical Basis Fault 
Rotor asymmetries in induction machines are a phenomenon associated with actual faults, such as Broken Rotor Bars (BRB). 

These faults cause asymmetries between phase impedances that lead to unbalanced phase currents. Consequently, a negative 
sequence system of currents flows through the windings, producing inverse rotating magnetic fields. These inverse magnetic 
fields induce the characteristic harmonic components in the currents of the windings installed at the other side of the air gap. 

This paper introduces a methodology based on the well-established Motor Current Signal Analysis (MSCA) theory for the 
detection of characteristic patterns of the fault components produced by rotor asymmetries. 

A rotor asymmetry produces a substantial increase in the amplitude of the lower and upper sideband components of the stator 
current, whose frequencies are given by [34]: 

𝑓𝑓𝑟𝑟𝑟𝑟(𝑠𝑠) = (1 ± 2 ∙ 𝑠𝑠) ∙ 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 (1) 

where 𝑓𝑓𝑟𝑟𝑟𝑟 are the frequencies of the main rotor asymmetry fault-related components in the stator current in Hz, s is the slip at 
which the induction motor is operating per unit, and 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 is the supply frequency in Hz. 

Conventional MCSA uses (1) to find the frequencies at the current spectrum, where the fault components appear when a rotor 
asymmetry fault is developed. 

3 Physical Basis Approach 
The distribution of currents along the periphery of an electrical machine’s stator is a crucial factor in determining its magnetic 

field as the current sheet [35] represents the density of current per unit of peripheral length in the air gap, essentially denoting 
the linear current density of the load within the machine. 

However, in practical scenarios, the current sheet within real machines is a discrete function due to the presence of individual 
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conductors housed within the machine’s slots. This discrete nature is not ideal for mathematical analysis. To overcome this, the 
current sheet is expanded into a Fourier series. This transformation results in a set of spatial current sheets, all exhibiting 
sinusoidal characteristics and corresponding to different harmonics. 

The most common scenario in industrial settings involves three-phase symmetrical machines, where the real axis, x, is 
oriented to align with the direction and magnitude of the R phase (Fig. 1). In a machine featuring three independent phases, 
where the currents 𝑖𝑖𝑅𝑅(𝑡𝑡), 𝑖𝑖𝑆𝑆(𝑡𝑡) and 𝑖𝑖𝑇𝑇(𝑡𝑡) flow through its winding, regardless of the number of pole pairs, p, the machine’s 
current sheet is expressed as: 

𝑖𝑖𝑟𝑟𝑠𝑠𝑟𝑟,ℎ(𝑡𝑡) = 𝑖𝑖𝑅𝑅(𝑡𝑡) + 𝑖𝑖𝑆𝑆(𝑡𝑡) ∙ 𝑒𝑒𝑗𝑗ℎ𝛾𝛾 + 𝑖𝑖𝑇𝑇(𝑡𝑡) ∙ 𝑒𝑒𝑗𝑗2ℎ𝛾𝛾  (2) 

where 𝛾𝛾 = 2 ∙ 𝜋𝜋 3⁄  and h is the harmonic order. 
In an ideal scenario under a constant load, a current sheet would adhere to a precise path, represented by a dashed line in Fig. 

1, indicating a uniform and consistent current distribution in the air gap without any presence of harmonics. However, when 
harmonics are introduced into the system, they disrupt this uniformity, causing the current sheet to undergo modulation. This 
modulation manifests as oscillations between the inner and outer solid black circles drawn in Fig. 1. 

The introduction of harmonics denotes the incorporation of additional frequencies beyond the fundamental supply frequency. 
These additional frequencies alter the pure sinusoidal waveform of the current, leading to fluctuations or variations in its 
behaviour. The observed oscillations between the inner and outer solid black circles signify the resultant changes in the 
amplitude or spatial distribution of the current sheet due to the presence of these harmonic frequencies or changes in load. 

 
Fig. 1. Generic current sheet in an induction machine stator 

 
The resultant current sheet, depicted by the black dashed vector in Fig. 1, combines all the current harmonics inherent in the 

line currents. This current sheet can be mathematically represented through a Fourier series as follows: 

𝑖𝑖(𝑡𝑡) = 𝑖𝑖0 + � 𝑖𝑖𝑛𝑛 ⋅ sin(𝜔𝜔𝑛𝑛 ∙ 𝑡𝑡 + 𝜑𝜑𝑛𝑛)
𝑛𝑛=∞

𝑛𝑛=1

 (3) 

This equation shows the decomposition of the current sheet into a series comprising a DC value in amperes, 𝑖𝑖0, and an 
infinite sum of harmonic components, ∑ 𝑖𝑖𝑛𝑛 ⋅ sin(𝜔𝜔𝑛𝑛 ∙ 𝑡𝑡 + 𝜑𝜑𝑛𝑛)𝑛𝑛=∞

𝑛𝑛=1 , where 𝑖𝑖𝑛𝑛 is the n-harmonic magnitude in amperes, 𝜔𝜔𝑛𝑛 is the 
n- harmonic angular frequency in rad/s, 𝑡𝑡 is the time in seconds and 𝜑𝜑𝑛𝑛 is the initial shift angle in radians of each harmonic 
component. 

The representation of the current sheet, the black dashed vector, based on its harmonic components, is illustrated in Fig. 2. It 
is important to note that, for simplicity, the depiction in Fig. 2 involves only two harmonics at constant load, represented by 
solid blue and red vectors, chosen without sacrificing the generality of the concept. This simplified representation aids in 
visualizing the impact of harmonics on the overall nature of the current sheet: as if there were no harmonics, the current sheet 
will rotate following the dashed circle, or the trajectory of the blue vector, whereas the introduction of harmonics, the red vector, 
modulates the current sheet between the solid black inner and outer circles. 

The current sheet represented by the black dashed line in Fig. 2 can be projected onto either the x or y fixed axis displayed in 
it. However, this decomposition into a fixed frame does not offer significant benefits because projecting the current sheet onto 
either axis yields a modulated waveform similar to the original current sheet. Hence, such projection does not distinctly simplify 
the current analysis. 

When comparing the use of the current sheet versus employing the FFT methods that rely on a single-line current analysis, 
the advantage lies in potentially reducing specific harmonics. For instance, the current sheet might diminish certain harmonics, 
such as the third or multiples of three, in comparison to a single-line current. 
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This paper proposes a novel approach centred on establishing a rotating frame precisely aligned with the harmonic of interest 
to track it effectively. This innovative approach involves synchronising a rotating frame to the desired harmonic frequency. By 
aligning a rotating frame precisely with the desired harmonic and allowing it to rotate at the harmonic frequency, the projection 
of this harmonic onto the xr1 rotating frame remains constant, as depicted in Fig. 3. Simultaneously, the average value of other 
harmonics on the rotating frame becomes zero due to their sinusoidal nature. Moreover, when projected onto the yr1 axis of the 
rotating frame, the tracked harmonic also registers an average value of zero. 

This innovative approach of employing a rotating frame aligned with specific harmonics aims to provide a clearer and more 
stable representation of the desired harmonic, facilitating its isolation and analysis by effectively nullifying other harmonic 
components that might introduce noise or unwanted variations into the analysis. This pioneering technique not only enhances the 
precision of isolating and analysing specific harmonics but also offers a structured and reliable methodology for fault detection 
and diagnosis, leveraging the advantages of a rotating frame aligned with the targeted harmonic of interest. 

4 Proposed Approach 
The proposed approach for harmonic tracking of machine currents in their rotating frame involves a systematic series of 

steps, which are: 
1. Decompose the voltages in a fixed frame. 
2. Calculate the instantaneous frequency of the voltage phasor. 
3. Decompose the line currents in a fixed frame. 
4. Determine the frequency of the harmonics to track. 
5. Find the initial shift angle of the rotating frame that rotates at the fundamental harmonic frequency. 
6. Find the initial shift angle of the rotating frame which rotates at the fault harmonic frequency. 
7. Determine the current of the fundamental harmonic aligned with the xr1 rotating at the speed of the fundamental 

current, Ixr1fsup. 
8. Determine the current of the fault harmonic aligned with the xr1 rotating at the speed of the fault current, Ixr1fra. 
9. Normalise and quantify the severity of the fault. 

 
A flowchart showing the nine steps involved in doing the proposed approach is presented in Fig. 4 
 
 
 

 
Fig. 2. Modulation of the current sheet due to harmonics on a fixed reference frame, x-y. The blue harmonic has a frequency fr and a magnitude m, and the 

red harmonic has a frequency 1.5 x fr and a magnitude 0.5 x m. a) Initial, b) Initial position + 72 electrical degrees, c) Initial position + 144 electrical 
degrees, d) Initial position + 216 electrical degrees, e) Initial position + 360 electrical degrees 

 
 
 

 
Fig. 3. Representation of the current sheet harmonics on a rotating frame at a frequency fr , xr1-yr1, where the x-axis is aligned with the blue harmonic. The 

blue harmonic has a frequency fr and a magnitude m, and the red harmonic has a frequency 1.5 x fr and a magnitude 0.5 x m. a) Initial, b) Initial 
position + 72 electrical degrees, c) Initial position + 144 electrical degrees, d) Initial position + 216 electrical degrees, e) Initial position + 360 
electrical degrees 
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Fig. 4. Flow chart of the implementation of the proposed approach 

 
The actual implementation of the proposed approach is as follows. Initially, the voltages, 𝑣𝑣𝑅𝑅(𝑡𝑡), 𝑣𝑣𝑆𝑆(𝑡𝑡) and 𝑣𝑣𝑇𝑇(𝑡𝑡) are 

decomposed into a fixed reference frame, x-y, through (4) and (5), where 𝑣𝑣𝑥𝑥(𝑡𝑡) is the projection of the current sheet on the x-
axis and 𝑣𝑣𝑦𝑦(𝑡𝑡) on the y-axis:  

𝑣𝑣𝑥𝑥(𝑡𝑡) =
2
3
∙ 𝑣𝑣𝑅𝑅(𝑡𝑡) −

1
3
∙ 𝑣𝑣𝑆𝑆(𝑡𝑡) −

1
3
∙ 𝑣𝑣𝑇𝑇(𝑡𝑡) (4) 

𝑣𝑣𝑦𝑦(𝑡𝑡) = −
1
√3

∙ 𝑣𝑣𝑆𝑆(𝑡𝑡) +
1
√3

∙ 𝑣𝑣𝑇𝑇(𝑡𝑡) (5) 

Once that is done, the next step is to find the angle of the voltage, which will allow the calculation of the instantaneous 
frequency of the fundamental harmonic. The angle of the phasor voltage can be found by: 

𝑣𝑣𝑟𝑟𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = tan−1 �
𝑣𝑣𝑦𝑦(𝑡𝑡)
𝑣𝑣𝑥𝑥(𝑡𝑡)

�  (6) 

And the instantaneous frequency of the supply is calculated as: 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) =
𝑑𝑑𝑣𝑣𝑟𝑟𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)

𝑑𝑑𝑡𝑡
 (7) 

The currents, 𝑖𝑖𝑅𝑅(𝑡𝑡), 𝑖𝑖𝑆𝑆(𝑡𝑡) and 𝑖𝑖𝑇𝑇(𝑡𝑡), are also decomposed into the same fixed frame, where the voltages where previously 
decomposed, using (8) and (9), where 𝑖𝑖𝑥𝑥(𝑡𝑡) is the projection of the current sheet on the x-axis and 𝑖𝑖𝑦𝑦(𝑡𝑡) on the y-axis of the 
fixed reference frame:  
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𝑖𝑖𝑥𝑥(𝑡𝑡) =
2
3
∙ 𝑖𝑖𝑅𝑅(𝑡𝑡) −

1
3
∙ 𝑖𝑖𝑆𝑆(𝑡𝑡) −

1
3
∙ 𝑖𝑖𝑇𝑇(𝑡𝑡) (8) 

𝑖𝑖𝑦𝑦(𝑡𝑡) = −
1
√3

∙ 𝑖𝑖𝑆𝑆(𝑡𝑡) +
1
√3

∙ 𝑖𝑖𝑇𝑇(𝑡𝑡) (9) 

Subsequently, the components 𝑖𝑖𝑥𝑥(𝑡𝑡) and 𝑖𝑖𝑦𝑦(𝑡𝑡) projected on the fixed reference frame are projected now into the rotating 
fundamental frequency reference frame, which axes are xr1fsup and yr1fsup, and on the fault harmonic frequencies reference frame, 
which axes are xr1fra and yr1fra, computed by using (10) and (11). 

 
𝑖𝑖𝑥𝑥𝑟𝑟1ℎ(𝑡𝑡) = 𝑖𝑖𝑥𝑥(𝑡𝑡) ∙ cos�𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ ∙ t + 𝜑𝜑0h� − 𝑖𝑖𝑦𝑦(𝑡𝑡) ∙ sin�𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ ∙ t + 𝜑𝜑0h�  (10) 

 
𝑖𝑖𝑦𝑦𝑟𝑟1ℎ(𝑡𝑡) = 𝑖𝑖𝑥𝑥(𝑡𝑡) ∙ sin�𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ ∙ t + 𝜑𝜑0h� + +𝑖𝑖𝑦𝑦(𝑡𝑡) ∙ cos�𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ ∙ t + 𝜑𝜑0h�  (11) 

 
The decomposition of the harmonic of interest involves knowing the angular rotational frequency of the desired harmonic, 

𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ , and the initial shift angle, 𝜑𝜑0h, of the rotating frame. 
For the fundamental frequency, 𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ is set as: 

𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ = 𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2 ∙ 𝜋𝜋 ∙ 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 (12) 

It is also necessary to find the value of 𝜑𝜑0𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 which is equal to 𝜑𝜑0h , (11), when the condition 𝑖𝑖𝑦𝑦𝑟𝑟1ℎ = 0, (11), with 
𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ = 𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , is satisfied. 

The fault harmonic, 𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ, which is related to the mechanical speed, is calculated through (13): 
𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ = 𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓 = 2 ∙ 𝜋𝜋 ∙ 𝑓𝑓𝑟𝑟𝑟𝑟 (13) 

Analogously as for the fundamental frequency, 𝜑𝜑0𝑓𝑓𝑓𝑓𝑓𝑓  is equal to 𝜑𝜑0h, (11), when the condition 𝑖𝑖𝑦𝑦𝑟𝑟1ℎ = 0, (11), with 
𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ = 𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓  is satisfied. 

A more detailed explanation of the decomposition of voltage and current vectors in fixed and rotating frames can be found in 
[36]. Following the determination of the rotating frame speed, 𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ  and initial shift angle 𝜑𝜑0h  for each harmonic from (11), 
the 𝑖𝑖𝑥𝑥𝑟𝑟1ℎ(𝑡𝑡) component is recalculated by inputting the now known 𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ  and 𝜑𝜑0h values into (10). 

Finally, these recalculated values are normalised and transformed into a logarithmic scale using (14), which calculates the 
Power Spectrum Density (PSD), the measure of the signal’s power content versus its frequencies, of the analysed signals: 

PSD = 20 ∙ log10 ��
𝚤𝚤𝑥𝑥𝑟𝑟1 𝑓𝑓𝑟𝑟𝑟𝑟���������
𝚤𝚤𝑥𝑥𝑟𝑟1 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠����������

��  (14) 

where 𝚤𝚤𝑥𝑥𝑟𝑟1 𝑓𝑓𝑟𝑟𝑟𝑟��������� represents the average value of current sheet in the fault harmonic rotating frame, and 𝚤𝚤𝑥𝑥𝑟𝑟1 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠���������� represents the 
average of the current in the fundamental frequency component. This comprehensive approach enables the quantification and 
normalization of the fault in the system. 

5 Experimental Validation 

5.1 Experimental Setup 
The experimental setup, Fig. 5, comprises two Siemens 750 W squirrel cage induction motors (1LA7083-4AA10) with the 

following rated values: 230/400 V, 3.2/1.6 A  ∆/Y, 1395 rpm, cos(𝜑𝜑) = 0.81, 50 Hz. They are arranged in a star configuration 
and connected to the power grid. The load for these motors is provided by a Lucas Nülle magnetic-powder brake, along with its 
corresponding control unit, enabling precise measurement of torque and speed signals.  

The data collection is carried out by two custom-made boards, each equipped with voltage and current Hall-effect transducers 
manufactured by LEM. The data acquisition system uses a National Instruments (NI) cDAQ 9174 chassis equipped with NI 
9215 modules. 

One of the induction motors underwent a modification to emulate the BRB fault condition under investigation, whereas the 
other remained unmodified. Specifically, in the faulty motor, a hole was strategically drilled in the squirrel cage end ring at a 
rotor bar end, mitigating potential damage to the rotor lamination as shown in Fig. 6. 

Two Load Levels (LL), 50% and 70% of the rated values of the induction motors, were selected to test the proposed 
methodology. These specific load levels were chosen as induction motors are designed to operate efficiently within the 50% to 
100% range of its rated load, with a peak efficiency typically occurring around 75% of the rated load [37]. Additionally, 
induction motors are commonly operated below their full rated load to provide spare capacity for potential overloads.  
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Diagnosing BRB at load levels lower than the rated load is known to present additional challenges. At lower load levels than 
the rated load point, the magnitudes of the BRB fault harmonics are reduced, and the fault harmonics are closer to the 
fundamental frequency, making their detection more challenging than at the machine’s rated load. Therefore, testing induction 
motors at 50% and 70% load levels is considered to provide a practical and relevant assessment of the proposed methodology, 
reflecting common industrial operating conditions. 

 

 
Fig. 5. Test bench: (1) Induction motor under test; (2) Magnetic powder brake; (3) Control unit; (4) Bespoken board with Hall effect transducers for current 

and voltage measurements; (5) DAQ board by National Instruments; (6) Laptop. 
 

 
Fig. 6. Squirrel cage induction machine rotor with a broken bar. 

 
For each load level, 10 tests were conducted, 5 on a healthy motor and 5 on a motor with a broken bar. This dual load 

approach ensures a comprehensive evaluation of the proposed diagnostic technique's performance across different operational 
conditions, providing a well-rounded perspective on its behaviour and response under different load levels. During each test, the 
three-phase currents, voltages, and motor speed were recorded with a sampling frequency of 50 kHz for a duration of 10 
seconds. 

Subsequently, the 20 tests were analysed using a MATLAB script where the proposed approach was implemented, as 
detailed in section 4. The analysis was performed on MATLAB version R2023b, running on a Windows 11 laptop equipped 
with a 12th generation Intel® Core™ i7-1255U processor (1.70 GHz), a 64-bit operating system, and 32 GB of RAM. The 
results of this analysis are presented in the following subsection. 

5.2 Results 
The experimental results are organised into three tables. Table 1 shows the supply frequency at which both motors are fed 

from the grid and the fault harmonic frequency function of the speed for each test performed at the two different load levels.  
Table 2 provides the initial shift angles of the supply and fault harmonic rotating frames, which are a crucial step in the 

harmonic tracking. The shift angle values in Table 2 ensure the correct alignment of the rotating frames for both the supply and 
fault harmonics. The correct alignment is fundamental for the accurate harmonic decomposition and subsequent fault analysis. 

Table 3 shows a comprehensive quantification of the fault analysis. Table 3 compares the PSD values considering both 
healthy and faulty states and load levels. The quantification of the proposed methodology aligns with the conventional results 
obtained via FFT analysis of the R phase current. This comparison offers a validation and a broader perspective on the fault 
assessment methodology employed. The experimental process is explained in detail in the following paragraphs. 
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Table 1. Supply frequency, 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠, and fault frequency, 𝑓𝑓𝑟𝑟𝑟𝑟, of the tests. 

Test Load Test 
𝒇𝒇𝒔𝒔𝒔𝒔𝒔𝒔 (Hz) 𝒇𝒇𝒓𝒓𝒓𝒓 (Hz) 

Healthy BRB Healthy BRB 

Load Level 1 
50% of the rated 

load 

1 50.06 50.00 47.19 47.19 
2 50.01 50.00 47.07 47.27 
3 50.01 50.04 47.06 47.22 
4 50.00 50.04 47.02 47.25 
5 50.01 50.02 47.07 47.31 

Load Level 2 
70% of the rated 

load 

1 50.01 50.01 45.71 45.39 
2 50.01 50.03 45.76 45.50 
3 50.00 50.00 45.57 45.25 
4 50.01 49.99 45.50 45.26 
5 49.98 49.98 45.55 45.35 

 
 
 

Table 2. Initial shift angle of the supply, 𝜑𝜑0𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, and fault, 𝜑𝜑0𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, rotating frames. 

Test Load Test 
Initial shift angle, 𝝋𝝋𝟎𝟎𝒇𝒇𝒔𝒔𝒔𝒔𝒔𝒔, of the fundamental harmonic 

rotating frame (°) 
Initial shift angle, 𝝋𝝋𝟎𝟎𝒇𝒇𝒇𝒇𝒓𝒓𝒓𝒓, of the fault harmonic rotating 

frame (°) 
Healthy BRB Healthy BRB 

Load Level 1 
50% of the rated 

load 

1 90.3 56.3 33.3 99.3 
2 167.7 172.7 21.1 69.2 
3 35.6 155.6 20.4 93.2 
4 16.4 11.6 84.1 43.0 
5 113.3 63.5 157.4 6.0 

Load Level 2 
70% of the rated 

load 

1 15.2 18.1 178.4 117.2 
2 2.2 56.9 18.7 121.3 
3 100.5 27.6 158.8 43.7 
4 138.8 71.4 121.9 153.6 
5 114.8 163.1 4.0 32.9 

 
 
 

Table 3. Quantification of the fault by the new proposed method and the conventional FFT method. 

Test Load Test Proposed method PSD (dBs) FFT PSD (dBs) 
Healthy BRB ∆𝑷𝑷𝑷𝑷𝑷𝑷 Healthy BRB ∆𝑷𝑷𝑷𝑷𝑷𝑷 

Load Level 1 
50% of the 
rated load 

1 -85.27 -57.40 27.87 -66.73 -56.34 10.39 
2 -89.60 -57.49 32.11 -66.54 -57.38 9.16 
3 -84.23 -56.62 27.61 -71.55 -56.05 15.50 
4 -90.24 -60.00 30.24 -68.93 -55.80 13.13 
5 -87.91 -57.70 30.21 -68.98 -56.87 12.11 

Load Level 2 
70% of the 
rated load 

1 -94.29 -60.42 33.87 -72.42 -53.46 18.96 
2 -108.11 -63.26 44.85 -71.53 -53.63 17.90 
3 -87.99 -58.25 29.74 -68.99 -54.19 14.80 
4 -90.37 -60.22 30.15 -71.01 -53.28 17.73 
5 -98.39 -54.50 43.89 -69.37 -54.40 14.97 

 
 
 
The practical diagnosis process starts by recording the speed, which allows the calculation of the fault frequency component, 

three-phase voltages, which allow the calculation of the grid frequency, and three-phase currents, which allow the calculation of 
the current sheet, as shown in Fig. 7 to Fig. 9 for the particular load level of 50% of the rated load of the machine under 
investigation. 

The three voltages are transformed into the x-y fixed axis using (4) and (5) to determine the supply frequency. The resulting 
x-y representation of the voltages is shown in Fig. 10. The instantaneous angle and frequency of the supply are then calculated 
using (6) and (7). 
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a)  
 

 
b) 

Fig. 7. Steady state speed for the induction motor under test with one broken bar at 50% of the rated load. a) Healthy, b) Faulty  

 
a) 

 
b) 

Fig. 8. Three phase voltages supplied to the stator of the induction motors under test with one broken bar. Phase R in blue colour, phase S in red colour and 
phase T in orange colour, at 50% of the rated load of the machine under investigation. a) Healthy, b) Faulty 
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a)  

 
b) 

Fig. 9. Three phase currents from the stator of the induction motors under test with one broken bar. Phase R in blue colour, phase S in red colour and phase 
T in orange colour, at 50% of the rated load of the machine under investigation. a) Healthy, b) Faulty 

 

 
Fig. 10. Decomposition of the three phase voltages on the fixed x-y axis. 

 
The next step is to decompose the currents on the fixed x-y axis using (8) and (9), enabling their further decomposition in the 

supply and fault frequency rotating frames through (10) and (11). To achieve a correct decomposition into the rotating frames, 
the frequency and initial shift angle of the rotating frame must be known. The rotating frame speed is derived using (12) and 
(13), respectively, from the supply and fault frequencies reported in Table 1. The initial shift angle for the supply frequency 
rotating frame, 𝜑𝜑0𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, is then determined by an iterative algorithm which aligns the xr1 axis of the rotating frame at the supply 
frequency with the harmonic rotating at the supply frequency of the current. This process is repeated for the fault frequency 
rotating frame, where the fault frequency rotating frame is aligned with the harmonic rotating at the fault frequency, returning 
the initial shift angle for the fault frequency rotating frame, 𝜑𝜑0𝑓𝑓𝑓𝑓𝑓𝑓. All the initial shift angles, 𝜑𝜑0𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝜑𝜑0𝑓𝑓𝑓𝑓𝑓𝑓 , for each test are 
shown in Table 2. 

Upon correct alignment of the rotating frames, the current is decomposed onto the supply frequency rotating frame in its 
xr1fsup component using (10). The xr1fsup component becomes a DC signal with high-frequency ripple due to inherent harmonics 
in the currents, as depicted in Fig. 11. The value of interest is the average value of the xr1fsup component, denoted as 𝚤𝚤𝑥𝑥𝑟𝑟1 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠����������, as 
other harmonic components average to zero due to their sinusoidal nature. 

This process is replicated for the rotating frame set at the fault component frequency. The current phasor representation in 
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this frame yields a sinusoidal current at the frequency difference between the supply and fault component frequencies, as shown 
in Fig. 12. As for the supply frequency rotating frame, the interest lies in the average value of the xr1fra component, denoted as 
𝚤𝚤𝑥𝑥𝑟𝑟1 𝑓𝑓𝑟𝑟𝑟𝑟���������, representing the fault harmonic magnitude, as other harmonic components average to zero due to their sinusoidal 
nature. 

Finally, the DC components of the phasor current rotating at the supply and fault frequencies, shown in Fig. 11 and Fig. 12, 
are inputted into (14) to determine the machine's state. The quantification of the fault is presented in Table 3 and compared to 
the results obtained via conventional FFT analysis of the R phase current, satisfactorily validating the newly employed fault 
assessment methodology. 

 

a)  
b) 

Fig. 11. Representation of the three phase currents on the rotating frame at the supply frequency fully aligned with the xr1 axis at 50% load. a) Healthy, b) 
Faulty 

 

 
a) 

  
b) 

Fig. 12. Representation of the three phase currents on the rotating frame at the fault frequency fully aligned with the xr1 axis at 50% load. a) Healthy, b) 
Faulty 
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Table 3 highlights a substantial distinction in the quantification of healthy and faulty states when employing the proposed 
method. Specifically, the difference between a healthy and faulty state, (15), as determined by this method, is consistently at 
least 27 dBs greater than that observed when the machine is analysed using conventional FFT analysis. In contrast, the 
conventional FFT diagnostic technique demonstrates a discernible but comparatively smaller difference of at least 9 dBs 
between healthy and faulty states. 

∆𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑅𝑅𝐵𝐵 − 𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟ℎ𝑦𝑦  (15) 

Furthermore, the new proposed method is also able to quantify the severity of the fault function of the load of the machine: as 
it is seen in Table 3, the fault quantification difference tends to increase when the machine is more loaded following a similar 
trend that is seen when the machine is diagnosed by the conventional FFT technique. 

The proposed methodology shows a greater distinction between healthy and faulty states than the conventional FFT and 
robustness across different load conditions. From Table 3 it is seen that the quantification difference between the faulty and 
healthy states tends to increase with higher machine loads. This suggests that the proposed method is sensitive to fault 
progression and can capture subtle variations in the currents that become more pronounced as the load increases. 

Under lower load conditions, the method still provides a clear distinction between healthy and faulty states with greater 
sensitivity than the conventional FFT. As the load increases, the PSD difference grows even larger, indicating that the method 
effectively captures the intensification of the fault related signature. This behaviour aligns with the physical expectation that 
rotor asymmetries generate stronger harmonic distortions when the motor operates under higher torque demands. 

6 Conclusions 
This paper introduced an innovative methodology for diagnosing induction machines operating in steady state, focusing on 

the decomposition of the fundamental and fault frequency components in rotating frames. The proposed methodology is 
systematically compared to the conventional FFT diagnostic technique, revealing comparable results with an additional 
noteworthy advantage as the new methodology demonstrates increased sensitivity in contrast to the conventional FFT technique. 
Specifically, the conventional FFT technique exhibits a difference of approximately 10 dB between a healthy machine and a 
faulty machine. The newly proposed methodology yields a substantial difference of around 30 dB, underscoring its superior 
sensitivity in distinguishing between healthy and faulty machine states. 

Furthermore, the new methodology can also quantify the severity of faults in relation to the load on the machine. The 
observed increase in the difference between healthy and faulty cases with an increase in machine load aligns with the trends seen 
in the conventional FFT technique, indicating that the proposed methodology effectively captures the severity of the fault in a 
manner consistent with established diagnostic approaches. 

This new methodology can be applied to the diagnosis of rotor asymmetries, and it can potentially be extended to other faults 
such as eccentricity (static, dynamic, or mixed) or bearings. The main drawback of this new method is its inability to diagnose 
rotor asymmetries under transient conditions. Since this approach relies on a numerical diagnosis rather than the interpretation of 
graphical results, and its calculations align with those used in vector control of induction machines, it appears to be a strong 
candidate for integration into Variable Speed Drives (VSD) for automatic fault detection in induction motors. Both the drawback 
of the approach and its practical implementation in VSD are potential future research works. 

These compelling findings emphasise the enhanced sensitivity and efficacy of the newly introduced fault assessment 
methodology. The results suggest that this innovative approach offers a more robust and reliable means of diagnosing machine 
states compared to traditional FFT analysis, marking a significant advancement in the field of induction machine diagnostics. 
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7 Appendix 
Table 4 summarises the nomenclature employed in the paper by showing the symbols, their definitions and their units to 

enhance the readability of the work. 
Table 4. Nomenclature 

Symbol Definition Units Symbol Definition Units 

𝑓𝑓𝑟𝑟𝑟𝑟 
Frequencies of the main rotor asymmetry 
fault-related components in the stator 
current 

Hz 𝑖𝑖𝑥𝑥𝑟𝑟1ℎ(𝑡𝑡) Projection of the current phasor on the 
x-axis of rotating frame of frequency h A 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 Supply frequency Hz 𝑖𝑖𝑦𝑦𝑟𝑟1ℎ(𝑡𝑡) Projection of the current phasor on the 
y-axis of rotating frame of frequency h A 

𝛾𝛾 Constant equal to 2 ∙ 𝜋𝜋 3⁄  rad 𝑝𝑝 Pole pairs  
ℎ Harmonic order  𝜑𝜑𝑛𝑛 Initial shift angle of the n-harmonic rad 

𝑖𝑖(𝑡𝑡) Total current sheet A 𝜑𝜑0ℎ Initial shift angle of a phasor at 
frequency h rad 

𝑖𝑖0 DC current A 𝑠𝑠 Slip PU 
𝑖𝑖ℎ𝑖𝑖(𝑡𝑡) Current phasor of harmonic i A 𝑡𝑡 Time s 
𝑖𝑖𝑛𝑛 n-harmonic magnitude A 𝑣𝑣𝑟𝑟𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) Angle of the voltage phasor rad 

𝑖𝑖𝑅𝑅(𝑡𝑡) Line current phase R A 𝑣𝑣𝑅𝑅(𝑡𝑡) Line voltage phase R V 
𝑖𝑖𝑟𝑟𝑠𝑠𝑟𝑟,ℎ(𝑡𝑡) Current sheet of harmonic order h A 𝑣𝑣𝑆𝑆(𝑡𝑡) Line voltage phase S V 
𝑖𝑖𝑆𝑆(𝑡𝑡) Line current phase S A 𝑣𝑣𝑇𝑇(𝑡𝑡) Line voltage phase T V 

𝑖𝑖𝑇𝑇(𝑡𝑡) Line current phase T A 𝑣𝑣𝑥𝑥(𝑡𝑡) Projection of the voltage phasor on 
fixed x-axis V 

𝑖𝑖𝑥𝑥(𝑡𝑡) Projection of the current phasor on the x-
axis of a fixed frame A 𝑣𝑣𝑦𝑦(𝑡𝑡) Projection of the voltage phasor on 

fixed y-axis V 

𝑖𝑖𝑦𝑦(𝑡𝑡) Projection of the current phasor on the y-
axis of a fixed frame A 𝜔𝜔𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑎𝑎ℎ Angular frequency of a rotating frame 

at frequency h rad/s 

𝑖𝑖𝑥𝑥𝑟𝑟1𝑓𝑓𝑟𝑟𝑟𝑟(𝑡𝑡) 
Current phasor 𝑖𝑖𝑟𝑟𝑠𝑠𝑟𝑟,ℎ(𝑡𝑡) on the rotating 
frame rotating at rotor asymmetry fault 
frequency 

A 𝜔𝜔𝑛𝑛 n-harmonic angular frequency rad/s 

𝑖𝑖𝑥𝑥𝑟𝑟1𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) Current phasor 𝑖𝑖𝑟𝑟𝑠𝑠𝑟𝑟,ℎ(𝑡𝑡) on the rotating 
frame rotating at supply frequency A  
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