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A B S T R A C T

Climate change is a highly controversial topic within the socioeconomic context. Climate Policy Uncertainty 
(CPU) arises from the process of climate policies formulation and implementation. This uncertainty impacts 
financial market volatilities, including cryptocurrency markets. In this paper, we demonstrate the substantial role 
of CPU in forecasting volatilities in cryptocurrency markets using Genetic Programming (GP). Our study shows 
that different cryptocurrency markets respond differently to CPU across time scales. Our paper contributes to the 
literature by illustrating the impact of CPU on cryptocurrency market volatilities and analyzes it across different 
time horizons. Second, we build three volatility forecasting models for different cryptocurrency markets by 
incorporating CPU, which outperform traditional models. Our models can thereby illuminate portfolio con
struction and hedging strategies, providing valuable insights for investors and policymakers.

1. Introduction

Climate change can be characterized as one of the most disputable 
socioeconomic issues in the contemporary era. In response to the po
tential catastrophic risks imposed by climate change, governments are 
actively promoting various regulations and policies to mitigate such 
issue, which are known as the climate policies. Furthermore, the 
formulating and implementing of climate policies usually involve 
counterbalancing considerations, which engenders uncertainties of 
climate policies (Nesje et al., 2023), known as Climate Policy Uncer
tainty (CPU) (Fuss et al., 2008; Ren et al., 2022). This type of uncertainty 
places a complex layer of unpredictability into the financial market 
volatilities (Ding et al., 2021), creating a unique type of climate-related 
financial risk (Jin & Yu, 2023; Urom et al., 2020). As a result, scholars 
are gradually recognizing the interconnectivity between climate policies 
and financial market responses, particularly in cryptocurrency markets, 
which are sensitive to climate policy shifts, due to their energy-intensive 
characteristics (Wu & Ding, 2023; Zhang, Chen, et al., 2023; Zribi et al., 
2023).

Further, the effect of cryptocurrency market volatility could be 
amplified because of the interconnectedness between the crypto
currency market and other financial markets (Corbet et al., 2018; Demir 

et al., 2018; Gaies et al., 2021; Guesmi et al., 2023; Zhang et al., 2019; 
Zhang, Zhang, et al., 2023; Zhu et al., 2021). The volatility spillovers 
from the cryptocurrency market to traditional financial markets have 
been well documented, suggesting that the high volatility in crypto
currencies can affect broader economic stability (Ahmed et al., 2024; 
Ding et al., 2022; Karim et al., 2023; Wang et al., 2022; Zhao & Park, 
2024). Despite of the high volatility feature of the cryptocurrencies 
markets, they oftentimes exhibit low correlation with traditional 
financial markets during the high market volatility episodes (Feng et al., 
2018; Hasan et al., 2022; Platanakis & Urquhart, 2020). As a result, high 
traditional financial market volatilities during the geopolitical events, 
such as Russia–Ukraine conflict, resulted in the financialization of the 
cryptocurrency markets, where investors envision cryptocurrencies 
markets as safe haven and thus allocate a large number of assets into 
cryptocurrencies markets (Hsu et al., 2024; Tarchella et al., 2024). 
Cryptocurrencies there have rapidly evolved from speculative assets into 
vital components of the global financial system in the past decade, 
profoundly impacting on investment strategies, financial risk manage
ment, and financial market stabilization. Volatilities in those markets 
can be used to estimate risk levels, and thereby guide decision-making 
processes for investors and policymakers. As a result, accurate vola
tility forecasting, becomes a crucial ingredient for navigating 
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investments and regulations within those markets (Huang et al., 2023; 
Osman et al., 2023). Consequently, this unique asset characteristics 
necessitate portfolio risk diversification with cryptocurrencies. Con
cerning this uniqueness, it is therefore requisite to scrutinize crypto
currency volatility, which is a worthwhile endeavor to understand the 
updated financial portfolio investment as well as the corresponding 
financial risk management.

As a result, because the CPU has a significant impact on crypto
currency markets and more importantly, cryptocurrency markets are 
pivotal for constructing portfolios and managing financial risks. It is 
thereby essential to investigate the impact of CPU on cryptocurrency 
volatilities and thus how CPU can be useful in facilitating the crypto
currency volatility forecasting. Consequently, in this paper, we 
demonstrate that the CPU plays a crucial role in forecasting volatilities 
in cryptocurrency markets and then we model the CPU into crypto
currency volatility forecasting methods. In particular, we employ Ge
netic Programming (GP) to formulate a series of volatility forecasting 
models with explicit model format for three different cryptocurrency 
markets. Based on those three models, we are able to uncover different 
cryptocurrency markets respond to CPU differently, especially from the 
time scale perspective. The bitcoin market responds to both short and 
long-term CPU dynamics, whereas the other two cryptocurrency mar
kets, i.e., Ethereum (ETH) and XRP, are less sensitive to the long-term 
CPU fluctuations.

On the basis, the contributions of this paper are twofold. Firstly, 
consisting with existing literature, the study has demonstrated the 
impact of CPU on cryptocurrency market volatilities, suggesting that 
CPU can provide effective information for predicting cryptocurrency 
volatility, which is a crucial consideration for investors to construct their 
portfolios and manage financial risks. With the help of Genetic Pro
gramming (GP), we modeled CPU into our cryptocurrency volatility 
forecasting models to take advantage of useful information embedded in 
the CPU. In addition, our study extends this analysis further, investi
gating impact of CPU on cryptocurrency market volatilities over daily, 
monthly, and quarterly horizons. We reveal that the Bitcoin market is 
sensitive toward CPU from all three types of time horizons, while the 
ETH and the XRP markets are only sensitive to daily and monthly CPU, 
and daily and quarterly CPU respectively. This result further strengthens 
the understanding that how the CPU factor drives the cryptocurrency 
market volatilities and how it contributes to the cryptocurrency market 
volatilities in different time horizons across different cryptocurrency 
markets.

Another contribution of our study is the development of three 
distinct volatility forecasting models tailored to each of the three cryp
tocurrency markets, with varying time horizons for CPU integration. 
Volatility forecasting, especially within the cryptocurrency markets, 
presents a formidable challenge due to the extreme price fluctuations 
and high unpredictability that characterize these markets. Traditional 
machine learning methods are often obstructed in providing interpret
able models and necessitate considerable manual feature engineering 
(Cui et al., 2024). In response to these limitations, Genetic Programming 
(GP) emerges as a distinctive approach that evolves interpretable, 
symbolic models capable of inherently capturing non-linear relation
ships and interdependencies. Previous research into volatility fore
casting has predominantly employed machine learning and econometric 
techniques, with few studies harnessing GP for models specifically 
customized to the cryptocurrency markets. A crucial strain of previous 
works is that these forecasting models often rely on black-box ap
proaches, such as deep learning, which, despite their accuracy, lack of 
interpretability and fail to provide insights into market behavior, 
thereby limiting their practical usefulness in the financial markets.

Our study, on the other hand, adopts the GP method to aid the un
derstanding of mechanism how CPU can be impacting on the crypto
currency volatilities by providing explicit and interpretable volatility 
forecasting models. The inherent flexibility of GP enables the explora
tion and formulation of a diverse range of potential solutions, adapting 

its representational formats to achieve volatility forecasting goals. By 
accounting for the unique market features and different CPU time ho
rizons, we have been able to apply GP to generate three distinct models 
that are both explicit and interpretable. These models unveil the re
lationships between cryptocurrency volatilities and CPU, offering pre
cise volatility forecasting that can reinforce financial market decision- 
making, such as portfolio construction and hedging strategies, and 
providing actionable insights for investors and policymakers. Our 
empirical results also support that the performance of these models 
surpasses that of traditional volatility forecasting methods.

The remainder of the paper is structured as follows. Section 2 de
livers the literature review of cryptocurrency volatility forecasting. In 
Section 3, we depict the methodology applied in this paper with the 
sample data and variable measures regarding the CPU and crypto
currency market volatilities. The empirical results and the model per
formance of cryptocurrency market volatilities forecasting are presented 
in Section 4. Section 5 concludes the paper and gives research impli
cations of the paper.

2. Relevant literature

Regarding the fluctuations of cryptocurrency markets, various 
models have been applied by the academic community to investigate the 
moving patterns of cryptocurrency market volatilities. Among those 
models, the GARCH model is the prevailing model that is widely used, 
which aims to study the market volatility of cryptocurrencies. However, 
Charles and Darné (2019) investigated six GARCH models and found 
that these models were not suitable for predicting Bitcoin volatility. This 
argument evoked the discussion of cryptocurrencies volatility prediction 
in the academic community.

2.1. GARCH model applications in cryptocurrency markets

Aharon et al. (2023) adopt an asymmetric GARCH model to re- 
examine the cryptocurrency asymmetric volatility patterns, where the 
model includes a structural break detection mechanism. Chi and Hao 
(2021) used price sequences of Bitcoin and Ethereum to study the 
effectiveness of various volatility models, and found that the univariate 
GARCH model has a sound performance, directly demonstrating the 
superiority of GARCH volatility forecasting over option-implied vola
tility in predicting future realized volatility. Building on this, Fang et al. 
(2023) has illustrated that the DCC-GARCH model is expertized in sys
temic risk forecasting. Furthermore, Wang et al. (2024) employed the 
DCC-GARCHCONNECTEDNESS method to study the dynamic volatility 
spillovers between cryptocurrency and energy markets, further affirm
ing risk spillover structure from a multi-level analysis angle.

However, Ivanovski and Hailemariam (2023) proposed a GAS 
framework superior to the traditional DCC-GARCH model, using 
multivariate Generalized Autoregressive Score (GAS) model to study the 
time-varying dependencies between stock markets and cryptocurrency 
markets, capturing the persistence and nonlinearity of volatility be
tween stocks and cryptocurrencies. Jiang et al. (2022) proposed a new 
model that integrates Accelerated Generalized Autoregressive Score 
(aGAS) technique with the Gaussian-Cauchy Mixture model. It is argu
able that cryptocurrency returns, which are heavily tailed, can be well 
modeled with such method.

Nowadays, with the development of economy and scientific tech
nology, advanced methods emerged for predicting the volatility of 
cryptocurrencies, such as machine learning models and high moments 
techniques (Bouri & Jalkh, 2023; Dias et al., 2022; Feng et al., 2024; 
Qiao et al., 2020). The significant fluctuations in non-stationary cryp
tocurrency prices have prompted the need for high-precision prediction 
models. Due to the lack of seasonal effects and other high-difficulty re
quirements, it is difficult to make accurate predictions using traditional 
methods, making machine learning, especially ensemble and deep 
learning, the best technology for cryptocurrency price prediction. Based 
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on deep learning technology, D’Amato et al. (2022) developed a suitable 
model to capture the dynamic volatility of cryptocurrencies by capturing 
complex data interactions. This model is based on the Jordan neural 
network, which has stronger predictability compared to other models 
designed for time series. Similarly, Wang et al. (2023) demonstrated that 
machine learning application in terms of cryptocurrency volatility pre
diction can surpass traditional volatility models such as GARCH model 
by using internal and external determinants. Dudek et al. (2024)
compared several models and forecasting methods and they suggest that 
no unanimous approach can be perceived as the most effective in fore
casting the volatility of individual cryptocurrencies. The relative per
formance of different models can diverge depending on the 
characteristics of specific cryptocurrency markets.

In summary, various models have been applied for studying cryp
tocurrency market fluctuations, including traditional GARCH models 
and more advanced deep learning models. The selection of the suitable 
model in accommodating this issue has drawn plenty of concerns and 
the escalating levels of carbon dioxide emissions have positioned 
climate change as a critical challenge facing humanity, which attracted 
massive attention from the academia and the society. The interaction 
between the performance of cryptocurrencies and the flow of in
vestments may constrain the shift toward low-carbon, sustainable al
ternatives (Yan et al., 2022). This has initiated a contentious discourse 
on the nexus between cryptocurrency mining and environmental con
servation, drawing the gaze of numerous investors and market leaders 
(Arfaoui et al., 2023). Consequently, environmental, and particularly 
climate-related, policies have been identified as key influencers of 
cryptocurrency volatility (Pham et al., 2022).

2.2. Energy consumption of cryptocurrencies

The necessity of energy consumption for the mining and operation of 
cryptocurrency algorithms is considerable, exerting detrimental impacts 
on the environment (Howson, 2019). Academic research has been 
conducted to explore the correlation between environmental policy, its 
impact on the environment, and the volatility of cryptocurrencies. 
Empirical findings from (Jin & Yu, 2023) suggest that the uncertainty 
associated with climate policies has a markedly positive effect on the 
volatility of cryptocurrency prices, primarily due to extreme shocks in 
climate policy. In essence, abrupt and substantial modifications in 
climate policy contribute to increased cryptocurrency price volatility.

Moreover, energy-related assets volatility has also been scrutinized 
in the financial research field, coupled with cryptocurrencies. Sarker 
et al. (2023) examined the asymmetric effects of climate policy uncer
tainty (CPU) and the Global Energy Price Index (GEPI) on Bitcoin prices. 
Their longitudinal analysis revealed that changes, both increases and 
decreases, in CPU and GPEI significantly impact BTC, with both factors 
displaying a notable asymmetric influence on Bitcoin prices. The envi
ronmental impact of cryptocurrency mining embeds a direct linkage 
between CPU and cryptocurrency markets. Bitcoin and other proof-of- 
work cryptocurrencies rely on energy-intensive mining processes, 
which caused environmental concerns for their significant carbon 
footprints. Climate policies aimed at reducing greenhouse gas emissions, 
such as carbon taxes, create uncertainty for cryptocurrency miners, 
particularly in regions heavily reliant on fossil fuels (Zhang, Chen, et al., 
2023). In fact, the CPU is difficult to accurately measure and quantify. 
Unlike traditional economic indicators, CPU is an inherently multidi
mensional measure and it stems from the proxy estimation such as 
textual analysis of newspaper and legislative documents (Xu et al., 
2023). Although those estimations provide valuable approximations, 
they are prone to subjectivity and may fail to capture the full complexity 
of the whole policy blueprint.

Pham et al. (2023) discovered that the spillover effects between 
cryptocurrencies and assets related to green and fossil fuels vary over 
time, becoming more pronounced during periods of crisis. Anwer et al. 
(2023) utilized daily data from five global indices to investigate whether 

the green market mitigated the risks associated with cryptocurrencies 
and the carbon market, noting synchronous movements between the 
environmental sustainability index and the cryptocurrency index during 
the pandemic. Therefore, we argue that the climate policy can put heavy 
pressure on the cryptocurrency mining activities, which in turn, can 
affect the market price and market volatilities.

More recently, Ftiti et al. (2023) adopts heterogeneous autore
gressive models to predict the realized volatility in cryptocurrency 
markets with volatility decomposition. In addition, Feng et al. (2024)
developed a novel parameter tuning strategy applying in a number of 
regression models, including heterogeneous autoregressive model, Lasso 
regression and Ridge regression models to forecast volatility in crypto
currency markets. In contrast, our paper uses GP method to generate 
new volatility forecasting models cryptocurrency markets rather using 
or optimizing existing volatility forecasting models such as the hetero
geneous autoregressive model. Moreover, we propose different our 
volatility forecasting models for different cryptocurrency markets and 
we include the CPU factor to predict cryptocurrency market volatilities, 
which are unique compared with current research in cryptocurrency 
volatility forecasting. The inclusion of CPU factor in cryptocurrency 
volatility forecasting is also consistent with current study of climate 
finance (Xia et al., 2023; Zhao et al., 2024).

3. Data and methodology

3.1. Data and key variables

The data we employ in this paper covers the period of January 1, 
2018 to December 31, 2023. There are three main cryptocurrency 
markets we investigate in this paper, namely, bitcoin, ETH and XRP 
markets, which are the most actively traded cryptocurrency markets. 
Based on the GARCH model, we obtained main condition volatility 
terms for all three cryptocurrency markets, and those terms constitute 
the key variables of cryptocurrency volatility forecasting. As we have 
argued in the previous section that cryptocurrency markets are firmly 
intercorrelated with the energy consumption because of their mining 
activities, the market price might be highly sensitive to the change of 
climate policy.1 As a result, we incorporate the climate policy risk as 
another key variable to forecast the volatilities in those three markets. 
To measure the climate policy risk appropriately, we adopt the climate 
policy uncertainty (CPU) index proposed by Gavriilidis (2021), which is 
accessible from the online source.2

For the data sample period, we have divided into two different time 
horizons. We use the first three sample years as the in-sample period, 
namely, 2018–2020, and the 2021–2023 period as the out-of-sample 
period.

Before we define the conditional volatility for the cryptocurrency 
market, the daily return of cryptocurrency market serves as the funda
mental variable, which is: 

rt = ln
(
Pt
Pt− 1

)

, (1) 

where Pt is the daily cryptocurrency price for day t.
The CPU index, can be envisioned as a comprehensive metric for 

assessing the uncertainty surrounding climate-related policies. There
fore, the growth rate of climate policy uncertainty index also serves as 
the fundamental variable, which is: 

rcpu
t =

Icpu
t − Icpu

t− 1

Icpu
t− 1

, (2) 

where Icpu
t is the climate policy uncertainty index value for day t.

1 see Figure 1
2 see Gavriilidis (2021)
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3.2. GARCH model

The Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH) model, specifically the GARCH family models, have been 
extensively applied in financial literature for forecasting volatility, for 
both traditional financial and cryptocurrency markets (Çekin et al., 
2024; Díaz-Hernández & Constantinou, 2019; Ding et al., 2019; Hassan 
et al., 2024; Li et al., 2023). It is because GARCH models enable the 
modeling of volatility as a function of both past variances and past 
forecasting errors, thereby capturing the time-varying moving patterns 
of conditional volatilities in traditional financial and cryptocurrency 
markets (Apostolakis, 2024; Bouazizi et al., 2023; Fakhfekh & Jeribi, 
2020; Siu & Elliott, 2021).

The standard GARCH (1,1) model has the following form: 

σ2
t = α0 + α1σ2

t− 1 + α2ε2
t− 1, (3) 

where σt is the volatility of the target cryptocurrency market volatility 
time series and εt is the residual term from the return prediction equa
tion, which is: 

rt = ϕ + εt , (4) 

where ϕ is the conditional mean, and εt ∼ N
(
0, σ2

t
)
.

3.3. Genetic programming

Genetic Programming (GP) (Hirsh et al., 2000; Poli et al., 2008) is a 
computational intelligence method within the domain of evolutionary 
computation that undertakes the evolution of a population of computer 
programs, typically represented as GP trees, through a series of genetic 
operations analogous to natural selection processes—namely, selection, 
crossover, mutation, and replacement. This methodology has garnered 
widespread application across a diverse array of engineering and opti
mization challenges, distinguishing itself from other computational 
methods. GP’s first notable advantage in tackling forecasting issues is its 
highly flexible representation, which allows for a diverse range of po
tential solutions to be expressed and explored. Unlike more rigid algo
rithmic structures, GP is capable of adapting its representational form to 
better capture the complexities and nuances inherent in forecasting 
tasks. Secondly, the powerful search mechanisms inherent in GP enable 
it to navigate vast solution spaces with remarkable efficiency, thereby 
increasing the likelihood of identifying optimal or near-optimal solu
tions for forecasting problems. This robust search capability stems from 
the evolutionary principles underpinning GP, which guide the iterative 
refinement of program populations. The third significant merit of GP is 
the partial interpretability and exceptional execution efficiency of the 
heuristics it generates. This characteristic is particularly beneficial in 
practical applications, as it allows for a degree of understanding of the 
underlying decision processes, which is often a prerequisite in real- 
world scenarios. Moreover, the efficient execution of GP-generated so
lutions ensures that they can be readily deployed in dynamic and time- 
sensitive environments. In the traditional configuration of GP, a tree- 
based structure is employed, wherein each node of the tree functions 
as an operator and each internal terminal node serves as an operand. 
This architecture facilitates the straightforward encoding, evolution, 
and evaluation of mathematical expressions, which are fundamental to 
the problem-solving process. Furthermore, tree-based GP offers 
enhanced visualization of the evolved programs, contributing to 
improved comprehensibility and ease of analysis. The visual represen
tation of GP trees can be particularly insightful, offering stakeholders a 
tangible depiction of the solution’s structure and flow, which can be 
beneficial for refinement and explanation purposes.

Building upon the aforementioned strengths of GP, this study in
troduces a novel approach that leverages a data-driven GP model, 
rigorously trained with real market datasets, to forecast the volatility of 
three cryptocurrency markets by using conditional volatility terms with 

climate policy uncertainty. In an effort to construct this model, we have 
distilled the forecasting challenge into the task of calculating a specific 
function: 

f
(
Xt− 1,σ2,cpu

t− 1
)
= r2

t , (5) 

where r2
t is the realized volatility of different cryptocurrency markets 

estimated from daily squared returns of different cryptocurrency mar
kets, Xt is a vector of conditional volatilities and residual terms extracted 
from GARCH model, σ2,cpu

t is a vector of the volatility of climate policy 
uncertainty with different time horizon, namely, 1-day, 1-month and 3- 
month climate policy index volatilities. Specifically, our data-driven GP 
approach consists of the following parts: 

• Terminal Set: Xt− 1, σ2,cpu
t− 1 ,

• Function Set: + , − , × ,
• Fitness measure: the error between the value forecasted from the in

dividual function GP generated and the corresponding desired 
output r2

t ,
• GP parameters: population = 10,000, the maximum length of the 

program = 1000 (i.e. up to 1000 subitems within one polynomial 
function), probability of crossover operation = 0.8 (i.e. 80 % of 
population functions will be mixed with other functions to generate 
new functions) and probability of mutation operation = 0.1 (i.e. 10 
% of population functions will be mutated to generate new 
functions).

• Termination criterion: when the fitness measure reaches 0 or the 
system runs up to 100 generations, the system will terminate (For our 
work, the fitness measure will never reach 0, therefore the system 
will terminate after 100 generations).

This function (5) is derived and refined through our data-driven GP 
methodology, which employs a comprehensive data sample spanning 
the period from January 1, 2018 to December 31, 2023. The GP model’s 
development is underpinned by a systematic process that commences 
with the acquisition of real-world cryptocurrency market data. This data 
acts as the foundational bedrock upon which the GP evolves and vali
dates its predictive capabilities. By applying the evolutionary mecha
nisms intrinsic to GP (selection, crossover, mutation, and replacement), 
the model iteratively improves through generations, with the aim of 
enhancing its predictive accuracy and reliability in forecasting crypto
currency volatility. To ensure the robustness of our model, we have 
meticulously curated our dataset to encompass a representative sample 
of the cryptocurrency market within the specified time frame. This 
dataset encapsulates a variety of market volatility prediction variables, 
including conditional volatility terms and climate policy uncertainty, 
which serve as inputs to the GP model.

3.4. Model setup

In order to setup the cryptocurrency market volatility models using 
GP, it is essential to construct the input dataset. Firstly, by employing the 
GARCH model, we extracted four variables to forecast cryptocurrency 
market volatilities, namely, σ2,i

t and σ2,i
t− 1, which are conditional variance 

for cryptocurrency market i, at day t and t-1, ε2,i
t and ε2,i

t− 1, which are 
squared residual terms for cryptocurrency market i, at day t and t-1, as 
the input. In addition, we obtain three different time horizon CPU 
variance, namely, σ2,cpu

t,d , σ2,cpu
t,m ,σ2,cpu

t,q , which are CPU conditional variance 
at daily, monthly and quarterly time horizon, respectively, extracted 
from GARCH model, also as the input.

By putting those aforementioned seven variables into the input 
dataset, we apply GP method to develop volatility forecasting models for 
three different cryptocurrency markets with climate policy risks using 
this dataset. By using GP, we can incorporate the climate policy risk into 
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the volatility forecasting models at different time horizons. We use 1- 
day, 1-month and 3-month climate policy index volatilities to repre
sent three different policy effects, namely, short-term policy effect, 
middle-term policy effect and long-term policy effect, respectively. It is 
arguable that different cryptocurrency markets might respond to the 
climate policy in distinct manners. We employ those climate policy risk 
factors to distinguish the effect of climate policy on cryptocurrency 
markets.

Therefore, we use the approach based on function (5) and its cor
responding parts for the data mining of the three datasets for three 
different cryptocurrency markets. The GP approach can automatically 
identify the most relevant factors that can be used to predict crypto
currency market volatilities by targeting the fitness measure proposed.3

By processing the three datasets, we obtain three different volatility 
forecasting model regarding three cryptocurrency markets, namely, 
bitcoin, ETH and XRP.

In particular, the model for predicting bitcoin volatility is exhibited 
in Eq. (6):  

the model for predicting ETH volatility is exhibited in Eq. (7): 

r2,eth
t =

[
σcpu

t− 1,m*
(
σeth

t− 2 − εeth
t− 2

)/
σeth

t− 1

]2
+ εeth

t− 1*
(

εeth
t− 2 + σcpu

t− 1,d + σcpu
t− 1,m

)
, (7) 

and the model for predicting XRP volatility is exhibited in Eq. (8):  

It is noticeable that roles that climate policy risk played in three 
cryptocurrency markets are quite different. The volatility forecasting 
model for Bitcoin, in Eq. (6), highlights the significant roles played by 
climate policy risks over daily, monthly, and quarterly time horizons in 
predicting Bitcoin’s volatility. It is thereby arguable that Bitcoin market 
volatility is quite sensitive to the change of climate policy. The 
responsiveness of Bitcoin market volatility to climate policy risk tends to 
be rigorous at the initial stage, with policy effects that persist over 
extended periods, including both monthly and quarterly influences.

On the other hand, the volatility forecasting model for Ethereum 
(ETH), in Eq. (7), indicates that long-term climate policy risk exhibits 
limited impact on ETH market volatility. However, short-term and 
medium-term climate policy risks affect ETH market volatility, as evi
denced by the absence of the quarterly CPU volatility term in Eq. (7). 
This implies that the ETH market is more responsive to immediate and 
intermediate changes in climate policy rather than long-term shifts of 
the policy. Finally, the volatility forecasting model for XRP, as illus
trated in Eq. (8), reveals that medium-term climate policy risk has little 
effect on XRP market volatility. In contrast, short-term and long-term 
climate policy risks influence XRP market volatility, which can be 
observed by the absence of a monthly CPU volatility term in Eq. (8). It is 
thereby arguable that XRP market volatility is more susceptible to 

immediate and long-time changes in climate policy, while medium-term 
risks are less influential.

As a result, the distinguishing impacts of climate policy risks on the 
volatility of Bitcoin, Ethereum, and XRP unveils the fact that the re
sponses of three cryptocurrency markets to climate policy changes are 
the nuanced and varied over our sample period. Bitcoin market volatility 
demonstrates a broad sensitivity across multiple time horizons. On the 
other side, Ethereum volatility is primarily influenced by short- and 
medium-term climate policy risks, and XRP volatility is affected by both 
short- and long-term climate policy risks. Our results therefore unravel 
the impact climate policy on cryptocurrency market volatilities through 
a time horizon lens.

4. Empirical findings

In order to verify the model performance of our GP-developed 
models, we established a comparative framework by benchmarking 
our models against existing volatility forecasting models. Specifically, 

we employed both the traditional GARCH model and the CPU-adjusted 
GARCH model. The inclusion of the latter is intended to eliminate the 
information advantage that our models may take from the CPU index. 
Therefore, we compare the volatility forecasting errors with both 
GARCH model and GARCH-CPU model, which is a GARCH model added 
with a daily CPU volatility term. We compare our model across all three 
cryptocurrency markets to strengthen the result robustness of our paper.

By using the data from our sample period, we undertake both in- 
sample and out-of-sample period volatility forecasting. The perfor
mance of our GP-developed models is compared against the perfor
mance of both GARCH and CPU-GARCH model, which is CPU-adjusted 
GARCH model. The volatility forecasting performance of all three 
models in Bitcoin, Ethereum and XRP markets is presented in Tables 1, 2
Tables 3, 4 and Tables 5, 6, respectively.

Specifically, the traditional GARCH model is displayed as in Eq. (3), 
which is the basic model for our performance comparison. The CPU- 
GARCH incorporates the CPU conditional variance term into the 
GARCH model, which serves a more advanced version of GARCH model, 
taking the following form in Eq. (9): 

σ2
t = α0 + α1σ2

t− 1 + α2ε2
t− 1 + α3σ2,CPU

t− 1,d . (9) 

Furthermore, in order to compare the model performance, we use 
both Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 
The MAE is a widely used measure of prediction accuracy in time series 
analysis, providing an average of the absolute differences between 
predicted and actual values. The MAE measure can be defined as follows 
in Eq. (10) for market i: 

MAEi
t =

1
n
∑n

i=1

⃒
⃒r2,i

t − r̂2,i
t

⃒
⃒, (10) 

where r2,i
t is the actual value of volatility for cryptocurrency market i, ̂r2,i

t 

r2,btc
t =

[(
σ2,cpu

t− 1,d − σcpu
t− 1,m*σcpu

t− 1,q

)/(
σbtc

t− 1 + σbtc
t− 2

) ]2
+ εbtc

t− 1*
(

σcpu
t− 1,d − σcpu

t− 1,q

)
+ εbtc

t− 1*σcpu
t− 1,d*

(
σcpu

t− 1,m + σcpu
t− 1,q

)
, (6) 

r2,xrp
t =

[
σ2,cpu

t− 1,q*
(

σ2,xrp
t− 1 − εxrp

t− 2 + σcpu
t− 1,d

) ]/(
σ2,xrp

t− 1 + σ2,cpu
t− 1,m

)
− εxrp

t− 2*
(

σcpu
t− 1,q − σcpu

t− 1,d

)
. (8) 

3 see Figure 2
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Table 1 
Model performance comparison of all three models for Bitcoin volatility forecasting using MAE measure.

Year/Model GARCH GP-Model Improve rate CPU-GARCH GP-Model Improve rate

2018 0.002130 0.001841 13.57 % 0.001977 0.001841 6.91 %
2019 0.001615 0.001388 14.05 % 0.001542 0.001388 10.00 %
2020 0.003124 0.002184 30.08 % 0.002724 0.002184 19.82 %
2021 0.001919 0.001401 26.99 % 0.003657 0.001401 61.68 %
2022 0.001993 0.001554 22.04 % 0.001711 0.001554 9.11 %
2023 0.001152 0.000882 23.42 % 0.001094 0.000882 19.39 %

Table 2 
Model performance comparison of all three models for Bitcoin volatility forecasting using RMSE measure.

Year/Model GARCH GP-Model Improve rate CPU-GARCH GP-Model Improve rate

2018 0.003827 0.003294 13.95 % 0.003577 0.003294 7.94 %
2019 0.003397 0.002878 15.28 % 0.003138 0.002878 8.29 %
2020 0.011612 0.006201 46.60 % 0.008174 0.006201 24.13 %
2021 0.003298 0.000822 75.08 % 0.004597 0.000822 82.12 %
2022 0.003959 0.002497 36.93 % 0.002977 0.002497 16.13 %
2023 0.001327 0.001176 11.39 % 0.001286 0.001176 8.57 %

Table 3 
Model performance comparison of all three models for Ethereum volatility forecasting using MAE measure.

Year/Model GARCH GP-Model Improve rate CPU-GARCH GP-Model Improve rate

2018 0.003744 0.003223 13.92 % 0.003573 0.003223 9.79 %
2019 0.002289 0.002139 6.54 % 0.002183 0.002139 2.01 %
2020 0.006485 0.005165 20.36 % 0.006401 0.005165 19.32 %
2021 0.003388 0.002579 23.87 % 0.007848 0.002579 67.14 %
2022 0.002535 0.002228 12.11 % 0.002743 0.002228 18.77 %
2023 0.001277 0.000614 51.93 % 0.000903 0.000614 32.04 %

Table 4 
Model performance comparison of all three models for Ethereum volatility forecasting using RMSE measure.

Year/Model GARCH GP-Model Improve rate CPU-GARCH GP-Model Improve rate

2018 0.005888 0.005124 12.97 % 0.005639 0.005124 9.12 %
2019 0.004099 0.003731 8.98 % 0.003947 0.003731 5.48 %
2020 0.01638 0.01251 23.69 % 0.01393 0.01251 10.22 %
2021 0.007583 0.005217 31.20 % 0.01207 0.005217 56.78 %
2022 0.004621 0.003863 16.03 % 0.004479 0.003863 13.76 %
2023 0.00218 0.001282 41.17 % 0.001641 0.001282 21.86 %

Table 5 
Model performance comparison of all three models for XRP volatility forecasting using MAE measure.

Year/Model GARCH GP-Model Improve rate CPU-GARCH GP-Model Improve rate

2018 0.005555 0.004699 15.40 % 0.005441 0.004699 13.61 %
2019 0.002242 0.001707 23.87 % 0.001848 0.001707 7.63 %
2020 0.005565 0.004963 10.82 % 0.005168 0.004963 3.97 %
2021 0.007183 0.005812 19.09 % 0.007389 0.005812 21.34 %
2022 0.004164 0.002312 44.47 % 0.003362 0.002312 31.23 %
2023 0.003098 0.002688 13.22 % 0.002747 0.002688 2.15 %

Table 6 
Model performance comparison of all three models for XRP volatility forecasting using RMSE measure.

Year/Model GARCH GP-Model Improve rate CPU-GARCH GP-Model Improve rate

2018 0.012411 0.010244 17.46 % 0.011804 0.010244 13.22 %
2019 0.004425 0.003699 16.40 % 0.003885 0.003699 4.78 %
2020 0.020463 0.017935 12.36 % 0.019267 0.017935 6.92 %
2021 0.018559 0.01558 16.05 % 0.017884 0.01558 12.89 %
2022 0.005621 0.004257 24.27 % 0.005167 0.004257 17.62 %
2023 0.017223 0.016001 7.09 % 0.016288 0.016001 1.76 %
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is predicted value of volatility for cryptocurrency market i from vola
tility forecasting models, and n is the number of observations in one 
year. By calculating the MAE for our GP-developed models and 
comparing it with the MAE values obtained from the traditional GARCH 
and CPU-GARCH models, we can assess the relative accuracy of each 
model in forecasting cryptocurrency market volatility. Lower MAE 
values indicate superior model performance, reflecting a closer align
ment between predicted and actual volatility levels. In addition to MAE, 
we utilize the Root Mean Square Error (RMSE) to further evaluate the 
forecasting performance of our models. RMSE is a robust metric that 
penalizes larger errors more heavily, thus providing a more compre
hensive assessment of prediction accuracy. The RMSE measure can be 
defined as follows in Eq. (11) for market i: 

RMSEi
t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
r2,i

t − r̂2,i
t
)2

√

, (11) 

where r2,i
t is the actual value of volatility for cryptocurrency market i, ̂r2,i

t 
is predicted value of volatility for cryptocurrency market i from vola
tility forecasting models, and n is the number of observations in one 
year. We estimate the RMSE for our GP-developed models and 
comparing it with the RMSE values from the GARCH and CPU-GARCH 
models, we can determine the effectiveness of each model in mini
mizing forecasting errors. Lower RMSE values signify better model 
performance, indicating that the predictions are more accurate and 
reliable in capturing the volatility dynamics of cryptocurrency markets.

In Tables 1 and 2, we present the volatility forecasting results for the 
Bitcoin market. It is observable that our GP-model is overwhelmingly 
precise than both GARCH and CPU-GARCH model in predicting Bitcoin 
market volatilities. On average, our model is approximately 20 % 
improved than the two benchmark models using MAE4 and approxi
mately 25 % improved than the two benchmark models using RMSE.5

The comparison of forecasting accuracy for individual years reveals 
noteworthy improvements in 2020 and 2021, demonstrated by the 
empirical results presented in the two tables. These enhancements of 
forecasting accuracy may be largely attributed to the volatile fluctua
tions in Bitcoin market during this period because of the outbreak of 
COVID-19. Moreover, the in-sample period and out-of-sample period 
performance have trivial differences, indicating that our model perfor
mance is stable for both periods. This stability illuminates the robustness 
of our model, indicating its effectiveness in both historical and forward- 
looking market conditions.

In addition, we present the volatility forecasting results for the 
Ethereum market in Tables 3 and 4. It is clear that our GP-model is 
exceedingly accurate than both GARCH and CPU-GARCH model in 
predicting Ethereum market volatilities. On average, our model is 
approximately 28 % improved than the two benchmark models using 
MAE6 and approximately 20 % improved than the two benchmark 
models using RMSE.7 For the individual forecasting year performance 
comparison, it can be observable in the two tables that forecasting ac
curacy improvements in year 2021 and year 2023 are more significant. 
These years are in the episodes of pronounced volatility in the Ethereum 
market, unraveled by substantial price peaks.8 Our model’s ability to 
accurately forecast during these turbulent periods demonstrates that our 
model can particularly aid the volatility forecasting accuracy in rapidly 
evolving markets like Ethereum. Notably, the performance during the 
out-of-sample period surpasses that of the in-sample period, which 
further highlights the robustness of our model, indicating that our model 
refrains the overfitting problem.

The volatility forecasting results for the XRP market, as shown in 
Tables 5 and 6, indicate that our GP model is remarkably more precise 
than both the GARCH and CPU-GARCH models. On average, our model 
shows an improvement of approximately 13 % over the benchmark 
models using the MAE metric, shown in Table 5. Our GP model dem
onstrates an average improvement of approximately 10 %, as presented 
in Table 6 using RMSE. For individual year forecasting performance, all 
forecasting performance for XRP market is stable, where the perfor
mance of year 2023 is relative weak, which can be attributed to the 
stable movement of XRP in 2023.

We also show the volatility forecasting results for the XRP market in 
Tables 5 and 6. It is observed that our GP-model is overwhelmingly 
precise than both GARCH and CPU-GARCH model in predicting XRP 
market volatilities. On average, our model is approximately 13 % 
improved than the two benchmark models using MAE9 and approxi
mately 10 % improved than the two benchmark models using RMSE (see 
Tables 6). For individual year forecasting performance, all forecasting 
performance for XRP market is stable, where the performance of year 
2023 is relative weak, which can be attributed to the stable movement of 
XRP in 2023. Furthermore, the volatility forecasting performance of our 
GP-developed models for XRP market is substantially lower than the 
performance for Bitcoin market. In fact, such performance difference, 
technological foundations of these cryptocurrencies have contributed in 
a significant way. Bitcoin works under the energy-intensive proof-of- 
work (PoW) consensus mechanism. This mechanism requires massive 
amount of computational power and thus consumed tremendous energy 
during the Bitcoin mining. Therefore, the climate policy uncertainty can 
have a considerable impact on the Bitcoin market as new policy may 
require lower carbon emissions and impose energy usage quota. On the 
other hand, the operation framework of XRP tends to be less energy- 
intensive than the Bitcoin market, which alleviates its exposure to 
climate policy uncertainty. This fundamental difference in energy con
sumption directly influences the extent to which climate policy affects 
market volatility, with Bitcoin being more susceptible due to its higher 
energy consumption.

The performance of our GP-developed models in volatility fore
casting, exhibits substantial improvements over traditional GARCH and 
CPU-GARCH models. The utilization of the GP method to identify the 
exact format of volatility forecasting models by integrating climate risk 
factors represents a novel and powerful approach in financial modeling. 
This method allows for the discovery of complex, non-linear relation
ships that traditional models may fail to capture, thereby enhancing the 
accuracy and robustness of volatility predictions.

It is arguable that the capability of the GP-developed model to 
outperform traditional models across different cryptocurrencies (Bit
coin, Ethereum, and XRP) emphasizes the adaptability of evolutionary 
algorithms in financial volatility forecasting. The inclusion of climate 
risk factors into the model structure not only reflects the growing crucial 
effect environmental policy in financial markets but also provides a deep 
understanding of cryptocurrency market dynamics under the current 
climate policy framework. Our method coincides with the increasing 
emphasis on sustainable finance, where environmental risks are inte
grated into financial decision-making processes.

In Fig. 1, it is observable that high volatilities in different crypto
currency markets all concentrate in similar periods. In fact, volatility 
clustering is not only a characteristic of traditional financial markets but 
is also featured in the cryptocurrency markets, resulting from their dy
namic and speculative nature (Ahmed et al., 2024). In those three 
cryptocurrency markets, volatility clustering is particularly pro
nounced,10 as these markets are prevailing in their inherent volatility 
and the rapid transmission of information and sentiment across market 
participants. Our GP models’ superior performance in volatility 4 see Table 1

5 see Table 2
6 see Table 3
7 see Table 4
8 see Figure 1

9 see Tables 5
10 see Figure 1
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forecasting stems from the precise capture of volatility clustering phe
nomenon. It is because cryptocurrency markets usually exhibit complex 
interdependencies with CPU variations (Guo et al., 2024). Our GP 
framework thereby takes advantage of volatility clustering insights with 
CPU factor through its model evolvement, allowing our framework to 
effectively identify and exploit the underlying volatility clustering 
mechanisms. This is further supported by the finding that the crypto
currency markets can be segmented into a few clustering periods, with a 
majority of the market activity concentrated within these periods 
(Lorenzo & Arroyo, 2022), which, in turn, connected cryptocurrency 
markets to the climate-related financial risk.

5. Conclusion

To conclude, because climate change is a highly debated socioeco
nomic issue, governments implement climate policies to address its 
risks. Nevertheless, formulation and implementation involve counter
balancing considerations, resulting in Climate Policy Uncertainty (CPU). 
This paper shows that CPU significantly affects cryptocurrency markets 
and thus, how CPU can be modeled into cryptocurrency market vola
tilities. By employing Genetic Programming (GP), the paper formulates 
volatility forecasting models for three cryptocurrency markets with the 
incorporation of CPU. We reveal that different cryptocurrency markets 
respond to CPU differently in terms of time scale. Based on the empirical 
analysis from our framework, this study uncovers the varying respon
siveness of Bitcoin, Ethereum, and XRP markets to CPU across daily, 
monthly, and quarterly horizons, highlighting the importance of CPU in 

cryptocurrency volatility forecasting. Then, we propose tailored GP 
volatility forecasting models for each market, demonstrating their su
periority volatility forecasting performance over traditional forecasting 
methods. GP’s flexibility allows the models to encapsulate market in
tricacies, offering explicit and interpretable relationships that facilitate 
more informed financial decision-making and risk hedging strategies. 
Attributing to our explicit and interpretable models, they could be 
exceedingly helpful to investors and policymakers for constructing 
portfolios and formulating hedging strategies.

On the basis, our study can yield fruitful research implications. This 
paper delivers a pronounced understanding on how CPU can permeate 
into cryptocurrency market dynamics over various time horizons. Mar
ket participants can thereby adjust their trading and hedging strategies 
accordingly. Our multi-time horizon analysis reveals that the impact of 
CPU on cryptocurrency markets may be transient in the daily time ho
rizon, suggesting that market participants can capitalize on short-term 
volatility by adjusting their trading strategies and positions in 
response to CPU fluctuations. In addition, our research implications 
expand beyond short-term trading adjustments. For longer time hori
zons, the more pronounced relationship between CPU and crypto
currency volatility, can navigate investors to formulate a strategic 
approach for their risk management and investment in cryptocurrency 
markets for their long-run plan.

Our study also yields pivotal policy implications. Firstly, inclusion of 
CPU in cryptocurrency volatility forecasting can produce more accurate 
and reliable volatility forecasts, enabling better risk assessment and 
management for financial institutions. Accurate cryptocurrency 

Fig. 1. Plotting of price movement trend of three main cryptocurrency markets with the climate policy uncertainty index movement trend from January 1, 2018 to 
December 31, 2023.
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volatility forecasting, can help regulators anticipate market turbulence 
and implement precautious measures to mitigate potential risks, such as 
stress testing for cryptocurrency related financial products issued by 
financial institutions. Additionally, stable climate policies can attract 
long-term investment into the cryptocurrency markets, thereby reducing 
their overall volatility and enhancing their role in the broader financial 
ecosystem. By understanding how climate policy uncertainty affects 
market volatility, policymakers can develop risk management strategies 
that enhance the resilience of the financial system against climate- 
related shocks. Therefore, accurate volatility forecasting in crypto
currency markets can be a stabilizer in the financial ecosystem.
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