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ABSTRACT

Smart healthcare systems are gaining increased practicality and utility, driven by
continuous advancements in artificial intelligence technologies, cloud and fog

computing, and the Internet of Things (IoT). However, despite these transformative
developments, challenges persist within IoT devices, encompassing computational
constraints, storage limitations, and attack vulnerability. These attacks target
sensitive health information, compromise data integrity, and pose obstacles to the
overall resilience of the healthcare sector. To address these vulnerabilities, Network-
based Intrusion Detection Systems (NIDSs) are crucial in fortifying smart healthcare
networks and ensuring secure use of IoMT-based applications by mitigating security
risks. Thus, this article proposes a novel Secure and Authenticated Federated
Learning-based NIDS framework using Blockchain (SA-FLIDS) for fog-IoMT-
enabled smart healthcare systems. Our research aims to improve data privacy and
reduce communication costs. Furthermore, we also address weaknesses in
decentralized learning systems, like Sybil and Model Poisoning attacks. We leverage
the blockchain-based Self-Sovereign Identity (SSI) model to handle client
authentication and secure communication. Additionally, we use the Trimmed Mean
method to aggregate data. This helps reduce the effect of unusual or malicious inputs
when creating the overall model. Our approach is evaluated on real IoT traffic
datasets such as CICIoT2023 and EdgelloTset. It demonstrates exceptional
robustness against adversarial attacks. These findings underscore the potential of our
technique to improve the security of [oMT-based healthcare applications.

Subjects Computer Networks and Communications, Data Mining and Machine Learning, Security
and Privacy
Keywords Intrusion detection, Cybersecurity, Smart healthcare

INTRODUCTION

The rapid rise of technologies, particularly in artificial intelligence, has significantly
influenced various industries including healthcare (Lee ¢ Yoon, 2021). Smart healthcare
introduces innovative ideas and architectures that leverage the recent advancements in
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Information and Communication Technology (ICT), including the Internet of Things,
Cloud and Fog computing, wearable devices, Electronic Health Records (EHRs), and more
(Kumari et al., 2018). Thus, smart healthcare has the potential to enhance citizen health,
deliver exceptional services, reduce healthcare costs, and empower healthcare practitioners
to make more precise diagnoses and treatment decisions (Mondejar et al., 2021).

Motivation

Despite the transformative potential of smart healthcare systems, integrating various
technologies and medical devices also introduces significant vulnerabilities. Cyber-attacks
on IoT medical devices can compromise patient safety, data integrity, and the availability
of healthcare services (Djenne ¢ Saidouni, 2018). These attacks are becoming increasingly
sophisticated, and given the limited resources and insufficient computing capabilities of
many IoT devices, there is a substantial risk of these devices being exploited as bots for
launching further attacks (Bensaid et al., 2024). Therefore, deploying a Network-based
Intrusion Detection System (NIDS) is critical to ensure the sustainability and security of
smart healthcare-based IoMT applications (Saidi, Labraoui ¢ Ari, 2022), secure patient
data, and mitigate the evolving threats posed by cyberattacks. However, these systems tend
to generate high false positive rates and lack the scalability and efficiency required to
combat emerging cyber threats. The adoption of machine learning approaches within IDS
highlights the need for intelligent, anomaly-based detection systems that can operate with
minimal human intervention (Radjaa, Nabila & Salameh, 2023). However, these models
have common drawbacks, including reliance on a single entity to manage data from all
network users, large-scale medical data storage in cloud servers leading to potential single-
point failures, and concerns related to centralized data governance, which raise privacy
issues (Radjaa, Nabila & Salameh, 2023). To address these challenges, federated learning
(FL) offers a promising solution by allowing mobile devices to collaboratively train a
shared model while keeping data decentralized (Lim et al., 2020). Several studies have
employed FL-based IDS (Iwendi et al., 2021; Schneble ¢ Thamilarasu, 2019) to enhance
IoT security while preserving privacy. However, FL is susceptible to adversarial attacks
such as poisoning and Sybil attacks, which can distort model accuracy and convergence.
Thus, there is a crucial necessity for secure FL mechanisms to guard against manipulated
data and models. In this context, the integration of blockchain technology with FL can
provide an innovative framework to counter these attacks by ensuring immutability,
transparency, and security of the data and model updates (Qu et al., 2020; Ali, Karimipour
& Tarig, 2021).

Contributions

To the best of our knowledge, none of the prior research has specifically emphasized user
authentication within the FL process. In our article, we propose the SA-FLIDS framework,
a novel Secure and Authenticated FL-based NIDS framework using Blockchain for
protecting IoMT-enabled smart healthcare networks. SA-FLIDS employs a secure FL
approach for detecting anomalies in the IoMT network, thereby creating an intelligent
NIDS. This system can effectively identify and counter cyber-attacks aimed at IoMT
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devices, ensuring the security and integrity of the overall system. It is based on blockchain
and Self-Sovereign Identity (SSI) technologies for secure FL, employing an identity
management and devices authentication scheme to protect FL against adversarial attacks
and ensure that only trusted nodes (Benfriha et al., 2023) contribute to the training. Hence,
participants’ privacy is ensured by SA-FLIDS, as the centralized training module does not
share users’ private data. SA-FLIDS uses gRPC (Remote Procedure Call) for efficient node
communication and TLS (Transport Layer Security) for encrypted channels. It also
employs the trimmed mean method for model aggregation, reducing the impact of
adversarial data and outliers, enhancing resilience against data poisoning, and maintaining
the global model’s integrity. Our proposed model is assessed using the two latest datasets,
CICIoT2023 (Neto et al., 2023) and Edge-IloTset (Ferrag et al., 2022), and demonstrates
superior performance across key metrics including accuracy, precision, recall, and F1-
score, while maintaining a low rate of false positives. Moreover, we assess and evaluate the
blockchain-based client authentication framework, employing the decentralized identifiers
(DID) and verifiable credentials (VC) model through the Hyperledger Indy blockchain
and Aries library. The overall contributions of this article are outlined below:

1. We propose our Secure and Authenticated Federated Learning-based NIDS (SA-FLIDS)
framework to identify and prevent cyber-attacks in IoMT-enabled smart healthcare
systems.

2. We incorporate blockchain-based Self-Sovereign Identity (SSI) to authenticate
participants, ensuring that only trusted nodes participate in the Federated Learning (FL)
process.

3. We employ the trimmed mean method aggregation in FL. This approach enhances
resilience against data poisoning attacks and preserves the integrity of the global model
in a distributed IoMT environment.

4. We implement gRPC with TLS encryption in our work specifically for secure
communication in an FL-based NIDS for healthcare IoT. This combination ensures
both efficient and secure data exchange between IoMT devices, fog nodes, and servers.

5. We provide a comprehensive evaluation of our proposed system using two recent, real-
world IoT security datasets (CICIoT2023 and Edge-IIoTset), demonstrating its
effectiveness in detecting a wide range of attacks relevant to smart healthcare
environments.

RELATED WORK

This section provides an overview of relevant literature on federated learning (FL),
machine learning (ML), and blockchain in the context of Intrusion Detection Systems
(IDS) for IoT networks.

Schneble & Thamilarasu (2019) proposed FLIDS, an FL-based IDS for medical cyber-
physical systems (MCPS). Their model reduces communication and computation
expenses and is effective in identifying various attacks. However, it is vulnerable to
poisoning attacks.
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Similarly, Chatterjee & Hanawal (2021) applied FL with a convolutional neural network
for IoT intrusion detection. Their model handles non-IID data and dynamically optimizes
through weighted client aggregation. However, it lacks real-world applicability and
security considerations, making it vulnerable to network poisoning attacks.

The FL anomaly detection system presented by Man et al. (2021) uses GRUs with
preprocessing and ensemble learning, outperforming traditional approaches. However,
their model lacks security measures when sharing trained models, leading to a risk of data
leakage.

Rey et al. (2022) proposed an FL-based malware detection method for IoT devices but
overlooked channel security, reducing system resilience against attacks. Adversarial
machine learning algorithms could undermine their effectiveness in IoT healthcare
systems.

Ruzafa-Alcazar et al. (2021) integrated differential privacy techniques into training an
IDS for industrial IoT using FL. While offering privacy guarantees, it is susceptible to
inference attacks, impacting overall performance. Similarly, Zhao et al. (2019) introduced
the MT-DNN-FL (Multi-Task Deep Neural Network in FL), demonstrating high detection
rates and reduced training time. However, further optimization is needed to accommodate
IoT device limitations. Friha et al. (2022) presented FELIDS, a FL-based IDS for securing
IoT infrastructures, which uses local learning and the FedAvg algorithm, a widely adopted
aggregation method (McMahan et al., 2017). The global model, as computed in previous
studies (Schneble & Thamilarasu, 2019; Wang et al., 2022; Elayan, Aloqaily & Guizani,
2021; Wu et al., 2020) shares model updates between devices and an aggregation server.
While offering cost-effective computing, challenges such as communication latency and
privacy vulnerabilities require more advanced aggregation techniques.

Ashraf et al. (2022) proposed a blockchain-based FL IDS for IoT healthcare, with sensor
monitoring and an artificial neural network (ANN) model for attack detection.
Outperforming existing methods. However, privacy concerns and the decentralized nature
of patient data need to be addressed.

Preuveneers et al. (2018) integrated FL with a blockchain featuring access control for
IDS. The study’s model is relatively simple, limiting generalization. Similarly, Lakhan et al.
(2022) introduced the FL-BETS framework, safeguarding privacy and detecting fraudulent
activities using FL and blockchain technology. Computation overhead is a challenge,
requiring optimized FL algorithms for IoHT devices. Baucas, Spachos & Plataniotis (2023)
proposed a fog-based IoT platform using federated learning and blockchain to enhance
privacy and security in wearable healthcare devices. Their system maintains patient
privacy and provides robust access control, demonstrated through a custom testbed.
However, the study’s testing with only a single dataset type does not focus specifically on
securing the IoMT network. Furthermore, it does not specifically deal with adversarial
attacks on the federated learning process.

Sindhusaranya et al. (2023) proposed a privacy-preserving approach using FL-BEPP
(Federated Learning with Blockchain-Enabled Privacy Preservation) to address both soft
and hard constraints in fraud prevention and security for the Internet of Medical Things
(IoMT). Their method aims to enhance data privacy and security in healthcare systems.

Bensaid et al. (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2414 4/34


http://dx.doi.org/10.7717/peerj-cs.2414
https://peerj.com/computer-science/

PeerJ Computer Science

However, the implementation of blockchain transactions and federated learning model
updates introduces additional computational overhead, potentially resulting in increased
latency and reduced performance, especially in large-scale IoMT deployments. This trade-
off between enhanced security and system efficiency presents a challenge for widespread
adoption in complex healthcare networks.

Begum et al. (2024) proposed BFLIDS, a system combining blockchain and federated
learning for intrusion detection in IoMT networks. The approach uses decentralized model
training to preserve privacy, blockchain for secure record-keeping, and smart contracts for
system management. They modified the FedAvg algorithm to improve accuracy and
resilience against attacks. While BFLIDS showed competitive performance, the study
didn’t address the resource constraints of IoMT devices or the potential computational
overhead from smart contract integration.

The primary goal of the articles mentioned is to establish an IDS-based federated
learning framework to maintain security and preserve privacy in IoT applications.
However, many existing solutions encounter challenges in addressing specific potential
attacks, such as poisoning, Sybil, Data Tampering, and Eavesdropping attacks within FL-
based IDS, particularly in healthcare systems. Ensuring security and privacy in efficient FL-
based IDS remains a crucial concern, which is the focal point of our investigation in this
study.

To address these challenges, we introduce a new Secure and Authenticated FL-based
NIDS framework using Blockchain (SA-FLIDS) for fog-loMT-enabled smart healthcare
systems. The SA-FLIDS framework leverages FL to train a shared prediction model while
maintaining decentralized data on the devices themselves and incorporates a blockchain-
based SSI model for a privacy-preserving authentication scheme. This combination
ensures that only trusted IoMT devices contribute to the FL process. Moreover, our
framework distinguishes itself from existing literature by incorporating a robust
aggregation method, specifically the trimmed mean, to reduce the influence of outliers or
malicious participants while computing the global model. Furthermore, we use TLS
encryption combined with secure communication protocols like gRPC which helps ensure
data integrity during transmission between devices, fog nodes, and servers.

BACKGROUND

This section provides essential contextual background for our proposed model. Initially,
we introduce FL-based NIDS. Subsequently, we delve into Blockchain-based SSI
techniques that are pertinent to and integrated within our proposed framework.

Federated learning for loT intrusion detection

Federated learning offers enhanced privacy and security in IoT networks by minimizing
data transmission (Radjaa, Nabila & Salameh, 2023). In IDS, this approach enables the
development of more intelligent machine learning models exposed to diverse data
sources while ensuring user privacy (Sarhan et al., 2023). In this process, models are
downloaded and updated locally on IoT devices using their data, then transmitted to a
central server for aggregation, resulting in an improved global model. However, effective
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data distribution presents practical and technical challenges for successful federated
learning deployment.

Blockchain-based SSI

Now shifting our focus to Blockchain-based SSI, this section explores the utilization of
Blockchain technology in establishing secure and decentralized identity management
systems.

Blockchain

Is a distributed ledger technology for data transmission and storage that records the history
of all transactions. Blockchain has been involved due to its decentralization, immutability,
and persistence properties in the distributed peer-to-peer (P2P) network. It utilizes
asymmetric cryptography to ensure transactions are done safely (Saidi et al., 2022).
Blockchain is based on several elements used to create a secure, transparent, and
decentralized system. Each element plays a crucial role in maintaining the integrity and
functionality of the blockchain (Mboussam Emati ¢ Mboussam, 2023), including block,
transaction, consensus mechanism, smart contract, mining, immutable ledger,
cryptographic keys, and hash function.

Self-sovereign identity

is a decentralized approach and a new model for digital identity. Self-sovereign identity
(SSI) aims to empower individuals to possess and control digital proof of their credentials.
Thus, it helps to prove who we are by establishing trusted relationships to access
information (Saidi et al., 2022). SSI is based on two main standards: Decentralized
identifier (DID) and verifiable credential (VC):

e Decentralized identifier is a new type of identifier, defined by the W3C (Emati,
Mboussam & Tchendji, 2023). DIDs are designed to enable Self-Sovereign Identity on the
internet, providing a way for individuals to have control over their own digital identity
without the need for a central authority. Thus, users can selectively disclose only the
necessary information for a particular transaction or interaction (Saidi et al., 2022).

» Verifiable credential is a standard method for digitally expressing credentials in a
cryptographically secure way. It can include metadata, claims, and proofs used to verify a
credential (Thomas, Ramaguru ¢ Sethumadhavan, 2022). Credentials are created and
signed by the issuer using his private key and then issued to the holder, enabling the
verifier to confirm the VC. A holder keeps and shares the received credentials with a
verifier. The verifier accepts and approves these credentials (Figueroa-Lorenzo, Benito &
Arrizabalaga, 2021). based on the public key associated with a DID.

CYBER ATTACKS AND RISKS IN IOMT-ENABLED SMART
HEALTHCARE SYSTEMS

Due to the critical nature of patient well-being, reliable and secure communication is
vital in smart healthcare (Lee ¢ Yoon, 2021). Medical IoT devices, with resource
constraints like poor battery life and limited memory, are vulnerable to hacking attempts,
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potentially integrating them into botnets. Common cyberattacks on compromised IoMT
devices include:

e DoS and DDoS attacks aim to undermine IoMT availability, with DoS using a single
botnet and DDoS utilizing multiple botnets (Bensaid et al., 2024).

o Information gathering attacks collect comprehensive data about IoMT, often using
reconnaissance-like scanning attacks (Jensen, Gruschka ¢» Herkenhoner, 2009).

e Exploiting web-based vulnerabilities targets web services on IoMT devices, employing
methods like injection, hijacking, and DoS (Jensen, Gruschka ¢ Herkenhiner, 2009).

o Communication spoofing attacks enable unauthorized access to network traffic,
facilitating data theft and malware dissemination (van der Merwe et al., 2018).

e Brute-force attacks attempt to discover passwords or passphrases by iteratively trying
words from predefined lists (Stiawan et al., 2019).

o The Mirai attack, a widespread DDoS assault, specifically targets IoMT devices
(Gamblin, 2017).

Therefore, if a malicious IoMT device compromises a fog server, unauthorized access to
sensitive patient data and EHRs will be possible, affecting the data privacy and security of
patients. This compromised data often includes private and sensitive information such as
credit card details, health conditions, and other confidential data, thereby exposing
patients to significant risks. Additionally, the unavailability of fog servers disrupts essential
healthcare services such as the monitoring of patient’s vital signs. As a consequence, the
ability to track and monitor essential health indicators in real-time is compromised, posing
potential risks and presenting challenges in delivering timely and suitable care, as
illustrated in Fig. 1. Additionally, in critical situations, such as emergencies, the heightened
risk to patient’s lives, underscores the severity of potential consequences. Therefore, it is
crucial to establish robust cybersecurity measures and implement comprehensive security
protocols to protect patient data which are essential for the sustainability of critical
healthcare services and the effective mitigation of risks.

SA-FLIDS SYSTEM ARCHITECTURE AND DESIGN GOAL

In this section, we discuss the SA-FILDS architecture and the threat model, followed by the
design goals of the SA-FILD system.

SA-FLIDS system architecture

SA-FLIDS system brings a novel Secure and Authenticated Federated Learning-based
NIDS framework for Smart Healthcare using Blockchain Technology, secure
communication protocols, DID, and VC. SA-FLIDS system aims to examine network
traffic, identify and mitigate cyber-attacks against IoMT devices, and enhance the security
of smart healthcare systems. The architecture of our proposed model comprises three
layers: the Cloud layer, the Fog layer, and the IoMT devices layer, as depicted in Fig. 2.

1. Cloud layer: This layer provides an underlying infrastructure and resources that enable
the provision of on-demand and adaptable services accessible from any location
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Figure 1 Cyber-attacks in smart healthcare. Icon credit: Electronic Records icon (mcmurryjulie, https://
pixabay.com/fr/vectors/pronostic-ic%C3%B4ne-le-dossier-du-patient-2803190/, Pixabay license); Doc-
tor icon (Freepik, https://www.flaticon.com/free-icon/doctor_5065189, Flaticon license); Nurse icon
(Freepik, https://www.flaticon.com/free-icon/nurse_9133509, Flaticon license); Patient icon (Freepik,
https://www.flaticon.com/free-icon/patient_4228704, Flaticon License).

Full-size k&) DOT: 10.7717/peerj-cs.2414/fig-1
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Figure 2 The proposed model. Icon credit: Hospital icon (Freepik, https://www.flaticon.com/free-icon/
hospital 4320350, Flaticon license); Healthcare device icon (Smashicons, https://www.flaticon.com/free-
icon/healthcare-device_2904470, Flaticon license); Blockchain icon (jojooid, https://www.flaticon.com/
free-icon/blockchain_8757988, Flaticon license). Full-size K&l DOT: 10.7717/peerj-cs.2414/fig-2

(Saidi, Labraoui & Ari, 2022). Fog nodes and fog servers can dynamically allocate
resources based on their requirements during the FL process.

» Fog network layer: The intelligent NIDS based on FL and blockchain is deployed in
the Fog layer. This layer supervises the network and makes decisions regarding traffic
flow classification. It can be deployed at each hospital or clinic. The Fog Network
Layer consists of two distinct sub-layers:

 Fog server: Serving as the central server that initiates and constructs a shared global
model architecture among participating fog nodes. It is responsible for adding verified
model weights to the blockchain, ensuring that local model updates are securely and
transparently aggregated and shared across the network using the TLS protocol
(Moller et al., 2022). Additionally, blockchain is deployed for identity management to
ensure that only authenticated devices can participate in the FL.

2. Fog nodes: These distributed nodes consist of physical components such as mobile
devices, gateways, routers, and switches. They act as clients in FL, performing local
model training to protect sensitive medical data. Therefore, fog nodes are effective for
local model training due to their proximity to the fog server and the IoMT layer, as well
as their increased processing power, memory, and connection as compared to individual
IoMT devices. Furthermore, each fog node is identified by a DID which is registered into
the blockchain. DIDs are used to sign documents or transactions, create secure and
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persistent communication channels, and send encrypted private messages (Figueroa-
Lorenzo, Benito & Arrizabalaga, 2021).

3. IoMT layer: The Internet of Medical Things (IoMT) layer is used to sense, collect,
encrypt, and upload medical data to the fog nodes for private local model training. The
transmitted data can encompass both benign network traffic and potential cyber-attack
classification. Moreover, each IoMT device is identified by a unique DID registered on
the blockchain to handle the authentication process.

Challenges and design goal

FL systems are susceptible to various adversarial attacks, posing risks to their security, and
integrity, and hindering their deployment in NIDS. We detail the following attacks that
can be launched against FL systems:

o Sybil attack, a malicious participant creates multiple fake identities to disrupt FL,
injecting biased or misleading information into aggregated model updates
(Lian et al., 2023).

 Eavesdropping attack, involves unauthorized interception of communication between FL
participants, potentially leading to privacy breaches by accessing sensitive information
such as model updates or raw data (Lian et al., 2023).

e Data poisoning attack, in FL involves injecting adversarial data into the training set of
participating devices, aiming to compromise the integrity and performance of the global
model (Lian et al., 2023).

e Data tempering involves unauthorized modification of data in the FL process, aiming to
compromise the integrity and reliability of the global model by injecting malicious or
false information.

To tackle the challenges mentioned above, we are emphasizing the following
design goals:

 Ensuring the security of FL.

e Ensuring that only authenticated IoMT devices can participate in the FL using
blockchain-based DID to prevent Sybil attacks.

e Secure communication between IoMT devices, fog nodes, and fog servers, and prevent
data tampering and eavesdropping during communication between nodes.

 Reduce the influence of outliers or malicious participants when computing the global
model using a robust aggregation function to mitigate the impact of adversarial
participants engaging in poisoning attacks and introducing noisy data.

SA-FLIDS SYSTEM

This section presents details of our proposed scheme, SA-FLIDS, which aims to ensure
security and privacy preservation in an IoMT-enabled smart healthcare system.
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SA-FLIDS identification and authentication approaches
Figure 3 illustrates a sequence diagram of our system throughout its lifecycle, involving
nodes, a fog server (FS), and a blockchain (BC). The process contains three phases:

o Initialization phase:

1. Nodes and the FS request registration from the BC.

2. The BC responds by sending a DID, which includes a pair of keys and a VC scheme
for each entity.

¢ Mutual authentication phase:

1. Nodes send their VC to the FS, and the FS also sends its VC to the nodes. Both parties
then request verification from the BC.

2. The BC verifies the credentials and, if everything is in order, provides an
authentication token to both the nodes and the FS.

¢ Federated learning process phase:

1. The FS sends encrypted data, secured with its private key, to the Nodes, enabling
them to work on the data securely.

2. After processing, the nodes send encrypted updates, secured with their private keys,
back to the FS. The FS then aggregates these updates.

Bensaid et al. (2024), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2414 11/34


http://dx.doi.org/10.7717/peerj-cs.2414/fig-3
http://dx.doi.org/10.7717/peerj-cs.2414
https://peerj.com/computer-science/

PeerJ Computer Science

Verifiable

Credential

Metadata{ 2

} \‘.9“&-@\ )
AP Holder K

Claim{ T et .

re . €
«@ gy Prg
: / o , t)"”;9/ e
Proofs{ -3¢ o "of
&

} Q@q\
Issuer
1. Stowe parcipamts s amd schema
(]

om e im ledger &7 ‘
SN S &
& (E |

Composent of DD strectre

scheme | DID method | DID method specific identity

did : example : abcd1234

Figure 4 Trust triangle for VC. Icon credit: Blockchain icon: (© Abdul Basit Noohani Dreamstime.com,
https://www.dreamstime.com/visualize-power-blockchain-symbolic-icon-representing-secure-digital-
ledgers-decentralized-transactions-image291382086); Distributed Ledger icon (Kalashnyk, https://www.
flaticon.com/free-icon/documents_12864624, Flaticon license).

Full-size K&l DOT: 10.7717/peerj-cs.2414/fig-4

The SA-FLIDS model integrates a Blockchain-based DID and VC system to enhance
participant identification within the FL process. Figure 4 demonstrates the triangle of trust

and privacy in digital interactions, comprising three main parties: the issuer, holder, and
verifier. In this model:

1. The issuer is the hospital, which manages the blockchain. The blockchain stores only the
DIDs and VC schemes.

2. Nodes and FS act as both holders and verifiers depending on their role in mutual
authentication.

» When the fog server receives data from nodes, it acts as the verifier.

* When nodes receive an authentication query from the FS, they act as the verifier, and
the FS is the owner.

Initially, the issuer uploads proofs and stores participants’ DIDs and schema on the
blockchain ledger. Then, the holder receives and stores the issued credentials.
Subsequently, the holder presents the credentials to the verifier, who reads and verifies
them. This system ensures secure, private, and verifiable digital interactions.

Detectin process FL in SA-FLIDS system

After successful authentication and verification processes, the fog server sets up a global
model architecture distributed across the involved fog nodes. During each training round,
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Algorithm 1 Federated learning.

1: Initialize global model 0y

2:fort=1to T do

3:  for each fog node i do
Collect local data D; from IoMT devices
Train local model Hi on D;
Send 0; to server

end for

Aggregate local models: {0;,07, ..., 0N}

0;4, = Trimmed Mean({0;,0?,...,0N})

o 2 N I

10:  for each fog node i do

11: Distribute 0,1, to fog node i
12: end for
13: end for

14: Output: Final global model 01

every fog node updates its local model by conducting training on the data collected from
IoMT devices within its proximity. Subsequently, these fog nodes transmit their updated
models back to the central fog server. Then, the central fog server collects and aggregates
these models from all fog nodes using the robust trimmed mean aggregation. Next, the fog
server forwards the updated global model back again to all the fog nodes. This iterative
process is repeated for each training round until the final global model is obtained and
ready for use. Moreover, all those communications occur securely by using both the gRPC
framework for effective communication among nodes and the TLS to ensure end-to-end
encryption in the communication channels. The final global model is then used for the
detection classification process which is deployed in the NIDS to differentiate between
normal and potentially malicious traffic patterns. Algorithm 1 demonstrates the FL
process.

Trimmed-mean aggregation method

The Trimmed-Mean method enhances the accuracy and reliability of the global model in
FL by mitigating the influence of outliers and malicious participants. It removes a certain
percentage of extreme values from local models and calculates a weighted average of the
remaining models. The Trimmed-Mean formula is:

Zi (w; - m;)

Trimmed — Mean = &=/~ (1)
2 oiWi
where:
w; represents the weight of the i-th local model.
m; represents the i-th local model in the trimmed set M.
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Intelligent NIDS-based SA-FL for mitigation process

In the SA-FLIDS model, The fog server plays a dual role in the system, not only detecting
potential intrusions but also promptly and effectively responding to mitigate or minimize
the consequences of these attacks. Hence, the SA-FL model which is trained through the
robust process, is integrated into the NIDS and incorporates the intrusion detection and
response mechanism into the fog server’s architecture. The flow involves continually
monitoring fresh incoming traffic and sending it through the FL model for prediction,
which has previously been trained, to differentiate between normal and potentially
malicious traffic patterns. If the FL model predicts normal traffic, access is granted,
demonstrating the model’s ability to make real-time decisions based on learned patterns of
normal behavior. Otherwise, if the FL model identifies incoming traffic as indicative of an
intrusion or attack, it triggers an alarm in the system monitoring, promptly alerting the
system to the potential threat. Therefore, the NIDS responds in real-time, taking proactive
measures to block and drop malicious packets, as illustrated in Fig. 5.

EXPERIMENTS AND RESULTS

This study explores the potential of SA-FLIDS in detecting intrusion in IoMT networks. As
a result, this decentralized approach could be crucial for securing healthcare applications.
In this section, we present the experimental setup along with the evaluation metrics and
results.

Experimental setup
In this section, we delve into the experimental setup for both FL and blockchain-based SSI.

Experimental setup for federate learning

Table 1 presents the parameters used in federated deep learning. In our study, we
conducted experiments deploying our model with client sets denoted as K, where K = 10.
We employed the Independent and Identically Distributed (IID) approach, ensuring that
the data distribution across the dataset matches the distribution of data for each client.
Furthermore, To prevent overfitting, the following techniques were used:
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Table 1 Federated deep learning classifier parameter setting.

Parameter Value

Federated deep learning classifier Local epoch 10
Global epoch 4
Batch size 128
Hidden layer 2
Hidden nodes 128,64
Activation function Relu
Regularization L2
Classification function Sigmoid/softmax
Optimizer, learning rate Adam, 0.001
Loss function Binary_crossentropy

Categorical_crossentropy

» Stratified K-fold cross-validation: Set k = 5 to split the data into five subsets, evaluating
the model’s performance.

e L2 regularization: Applied with a factor of 0.01 to the dense layers, adding a penalty to
the loss function based on the weights’ magnitude, simplifying the model.

» Early stopping: With the patience of three, training stops if the validation loss does not
improve, monitoring the validation set’s performance.

Experimental setup for blockchain-based SSI

The simulation is carried out on a Lenovo ThinkPad P51 -Core i7 2.9 GHz-SSD 1 To-32
Go, computer running Ubuntu 18.04 LTS. The simulation environment is based on
Hyperledger Indy (Banerjee et al., 2022), a framework dedicated to self-sovereign identity
management. It offers an abstraction that enables DIDs and VCs to be created, verified,
and revoked. It embeds Hperledger ursa, a module that provides all the primitives for
cryptographic operations. We also use Hyperledger Aries (Manoj, Makkithaya ¢
Narendra, 2022). This is a library for creating agents that can manage the cryptographic
wallet of each player. It also offers interfaces for creating functionalities that realize the
behavior of the wallet owner.

The simulation begins with the initialization phase, during which 10 nodes plus the
server are each initialized in a Docker container as shown in Fig. 6. The server is the trusted
authority that manages the blockchain. It creates the genesis block and initializes the chain.
Each node is registered on the chain and receives a DID and an authentication scheme. Of
course, each DID is accompanied by its key pair, which is stored in each node’s wallet, and
the public keys are known to everyone. Next comes the authentication phase, when each
node sends its VC to the server, which verifies it and receives the server’s VC (mutual
authentication). The principle is to request the blockchain’s response to the VC presented
to it. Once each node’s authenticity has been verified. The nodes can exchange data.
Remember that confirmation of a VC leads to validation of a token, which has a lifetime
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(that of the session). Each node in possession of its token can then use it for future
exchanges. After authentication, the server sends the chunks of the dataset to the various
nodes using its private key as demonstrated in Fig. 3. The nodes receive them and can
proceed with processing. The different scores are exchanged using the same process. The
communication protocol in this phase is gRPC. However, the solution would work with
any other protocol, with security being guaranteed by the authentication token.

Datasets description

Datasets play an essential role in both training and assessing IDSs within IoT networks.
The choice of suitable datasets tailored to particular tasks holds significant importance,
particularly in evaluating the efficacy of FL approaches for IoT networks. In our

Bensaid et al. (2024), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2414 16/34


https://www.dreamstime.com/blockchain-concept-symbol-vector-icon-image222346576
https://www.dreamstime.com/blockchain-concept-symbol-vector-icon-image222346576
http://dx.doi.org/10.7717/peerj-cs.2414/fig-6
http://dx.doi.org/10.7717/peerj-cs.2414
https://peerj.com/computer-science/

PeerJ Computer Science

experiment, we incorporated two recent datasets specifically designed to mimic real-world
conditions for IDSs: CICI0oT2023 (Neto et al., 2023), made available in 2023, and the Edge-
IToTset dataset, released in 2022.

1. CICIoT2023 dataset: A Neto et al. (2023) novel and extensive IoT attack dataset to
foster the development of security analytics applications in real IoT operations. To
accomplish this, 33 attacks are executed in an IoT topology composed of 105 devices,
and all attacks are executed by malicious IoT devices targeting other IoT devices. We
analyzed a dataset containing 47 features (not including label and sublabel) based on
2,366,956 samples extracted from the first 10 CSV files provided by the Canadian
Institute.

2. Edge-IloTset dataset: 1t is tailored specifically for IIoT and IoT applications (Ferrag
et al., 2022), providing an authentic test environment closely resembling real-world IoT/
IToT settings. Within this environment, we conducted simulations of genuine
cyberattacks to collect datasets comprising both legitimate and malicious network
traffic. This dataset includes data generated by various IoT devices, spanning from heart
rate sensors to flame sensors, temperature, and humidity sensors. The testbed is
structured into seven interconnected layers. We utilized the Selected dataset for ML and
DL/DNN-EdgelloT-dataset CSV file (Banerjee et al., 2022), which contains 61 features
and 2,219,201 samples, encompassing both normal traffic and 14 distinct attacks in the
IoT and IIoT environment.

Preprocessing

The datasets undergo several preprocessing steps to ensure their suitability for analysis as
demonstrated in Fig. 7. After cleaning the data we first, address imbalanced data by
implementing SMOTE (Synthetic Minority Over-sampling Technique) and under-
sampling techniques to enhance predictive performance, particularly for minority
classes. Secondly, data transformation is conducted using the StandardScaler for
standardization, adjusting data to have a mean of 0 and a standard deviation of one.
Additionally, feature importance analysis is performed using insights from random forest
and XGBoost experiments. Finally, the processed dataset is split into an 80% training set
and a 20% testing set, ensuring no duplication between the two, contributing to refining
the dataset for subsequent analysis and modeling tasks. In the case of the CICIoT dataset,
we opt to eliminate the Brute and Web attack labels due to their limited number of
samples, which could potentially skew the analysis and compromise the reliability of the
results. The detailed features selected and the attacks used are outlined in Table 2
provided below.

Evaluation metrics

In this section, we introduce the metrics employed in our experiments to evaluate both FL
and SSI-based DID.
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Table 2 Datasets description for experimental evaluation.

CICIoT2023 Edge-IloTset

Features selected ‘flow_duration’, ‘Header_Length’, ‘Protocol Type’, ‘Rate’, Srate’, ‘http.content_length’, ‘http.request.method’, ‘http.referer’, ‘http.
request.version’, ‘tcp.ack’, ‘tcp.ack_raw’, ‘tcp.checksum’, ‘tep.
flags’, ‘tep. len’, ‘tep.seq’, “‘udp.time_delta’, ‘dns.qry.name.len’,

>

‘syn_count’,‘urg_count’,‘rst_count’, “Tot sum’, ‘Min’, ‘Max’,
‘AVG’, ‘Tot size’, TAT’, ‘Magnitue’, ‘Variance’

Label ‘Benign’, ‘DDoS’, ‘DoS’, ‘Mirai’, ‘Recon’, ‘Spoofing’

‘mqtt.conack flags’, ‘mqtt.protoname’, ‘mqtt.topic’

‘Man in the middle’, ‘Normal’

‘DoS/DDoS’, ‘Information gathering’, ‘Injection’, ‘Malware’,

Metrics used for federated learning evaluation

When conducting intrusion detection using federated deep learning performance analysis,

the most common metrics used are:

e True negatives (TN): Benign network activity correctly classified as normal.
e True positives (TP): Malicious network activity correctly identified as an attack.

« False positives (FP): Benign network activity incorrectly classified as malicious.

« False negatives (FN): Malicious network activity is incorrectly classified as normal.
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Table 3 Performance metrics.

Metric Formula Description

Accuracy TP + TN A measure that quantifies the proportion of instances correctly classified among the total number of observed
TP+ TN + FP+ FN  samples.

Precision TP A metric that indicates the proportion of correctly predicted positive instances out of the total predicted positive
TP + FP instances.

Recall TP The proportion of correctly identified positive samples.
TP + FN

F-measure 2 X Precision x Recall The harmonic mean of precision and recall.

Precision + Recall

Moreover, we have used a variety of measures to evaluate our proposed model,
including precision, recall, precision, F-score, and accuracy, to conduct a systematic
comparative analysis with other relevant approaches as demonstrated in Table 3.

Metrics used for blockchain-based SSI evaluation

To compute the metrics outlined below, we utilize the following formulas:

1. Startup duration (SD): The duration for the system to initiate.

2. Connect duration (CD): The time required for the system to establish connections
between nodes and the Fog server.

3. Publish duration (PD): The duration for the system to publish schema credentials and
related settings.

4. Issuing credential duration (ICD): The time taken for the system to issue credentials.

5. Completed credential exchanges duration (CCED): The total time needed for all
credential exchanges to conclude.Metrics such as SD, CD, PD, and ICD are used to
assess the Initialization phase, while CCED is used to assess the Mutual Authentication

phase.
6. Average time per credential duration (ATCD): The average time taken to issue a single
credential.
atcp= 1P ()
credentials
where:

ICD is the issuing credential duration.
N edentials i the total number of credentials issued.

7. Average time per transaction duration (ATTD): The average time taken per
transaction.

Ntransactions

T;
ATTD = —=L (3)

transactions

where:
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Niransactions 1 the total number of transactions.
T; is the duration of each transaction i.

Evaluation results

We utilize federated deep learning-based NIDS models to detect cyber-attacks in IToMT
environments, specifically focusing on the networks of healthcare applications. Our
training incorporates the most recent datasets for IDS, including CICIoT2023 and the
Edge-IIoTset dataset. We conduct experiments employing binary and multi-class
classification techniques for each dataset.

Binary classification
In this subsection, we present the evaluation results for binary classification scenarios using
FL. In addition, we provide an evaluation of blockchain-based SSI.

1. Federated learning evaluation results. We employed 150,000 samples for both
benign and attack instances in both datasets, ensuring a balanced dataset for a
comprehensive and meaningful comparison. Remarkably, our model demonstrates
impeccable performance, achieving perfect scores of 100% across all metrics for the Edge-
IToT dataset. In contrast, the results for the CICIoT2023 dataset remain highly promising,
with an accuracy of 99.09%, indicating a low error rate in classifying both benign and
malicious traffic. Furthermore, achieving a perfect precision of 100%, along with a recall of
98% and an F1-score of 99%, underscores the robust overall performance of the model, as
shown in Fig. 8.

The classification performance of our model is depicted through the confusion matrix
presented in Fig. 9, providing a concise summary of the model’s accurate and erroneous
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predictions The primary goal is to minimize both false positive and false negative rates,
ensuring precise classification outcomes. Our proposed model effectively achieves this
objective, exhibiting false positive and negative rates of 0% in the Edge-IIoTset dataset. For
the CICIoT2023 dataset, we observe a negligible false negative rate of 0.0017%, alongside
false positive rates of 0. 96%, which confirms the accuracy and efficiency of the model in
mitigating classification errors.

Furthermore, the receiver operating characteristic (ROC) curve and the area under the
curve (AUC) depicted in Fig. 10 offer a visual representation of our model’s ability to
distinguish between classes to highlight the model’s effectiveness, we achieve an AUC of
99.1% for CICII0T2023 notably 100% for the EdgelloTset dataset.

The training and validation loss curves for both the EdgelloTset and CICIoT2023
datasets demonstrate the promising performance of our federated learning model in binary
classification. As illustrated in Fig. 11, the models exhibit rapid convergence within the
initial epochs, followed by stable performance. The close alignment of training and
validation loss curves, particularly in later epochs, indicates good generalization without
significant overfitting. Both models achieve remarkably low final loss values (j 0.02) for
training and validation sets, suggesting high predictive accuracy. The EdgelloTset model
shows a slightly lower final loss, while the CICI0T2023 model displays smoother
convergence between training and validation losses. These results collectively suggest that
our approach effectively captures the underlying patterns in both datasets, promising
strong performance on unseen data in real-world applications.

2. SSI-based DID evaluation results. As illustrated in Fig. 12 below both datasets
exhibit similar startup durations (SD), with EdgelloTset demonstrating a marginally
quicker performance by 0.01 s. Furthermore, the EdgelloTset dataset shows a shorter
connect duration (CD) of 0.02 s compared to the CICIoT2023 dataset. Both datasets share
the same publish duration (PD) of 9.15 s. However, in terms of issuing credential duration
(ICD), the EdgelloTset dataset outperforms the CICIoT2023 dataset by 0.87 s. Regarding
completed credential exchange duration (CCED), the EdgelloTset dataset exhibits a
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Table 4 Classification report.

Dataset Class Precision Recall F1-score

CICIoT2023 Benign 83% 85% 84%
DDoS 100% 100% 100%
DoS 100% 100% 100%
Mirai 100% 100% 100%
Information gathering 81% 84% 83%
Spoofing 87% 80% 84%

Edge-IIoTset DoS/DDoS 91% 94% 92%
Information gathering 88% 88% 88%
Injection 77% 91% 84%
Malware attacks 97% 50% 74%
Man in the middle 100% 100% 100%
Normal 100% 100% 100%

reduction of 8.9 s compared to the CICI0oT2023 dataset. the CCED should normally be
higher because this is the mutual authentication phase since the FS must authenticate all
the nodes, and each node must authenticate the FS. Additionally, the average time per
credential duration (ATCD) is shorter for the ‘EdgelloTset’ dataset in comparison to the
‘CICI0oT2023’ dataset. Finally, the average time per transaction duration (ATTD) is
marginally higher for the ‘EdgelloTset” dataset when contrasted with the ‘CICI0T2023
dataset.

Multiclass classification

In this subsection, we present the evaluation results for both the CICIoT2023 and
EdgelloTset datasets in multiclass classification scenarios using FL. Additionally, we
provide an evaluation of SSI-based DID.

1. Federated learning evaluation results. The evaluation of both the CICIoT2023 and
Edge-IloTset datasets reveals strong performance across diverse classes, as demonstrated
in Table 4. Within the CICI0oT2023 dataset, each class achieves good performance in most
metrics. Notably, the DDoS, DoS, and Mirai attack classes in the CICIoT2023 dataset
exhibit great classification capabilities, demonstrating perfect performance across all
metrics with complete precision, recall, and F1-scores of 100%. Furthermore, the Spoofing,
Benign, and Information Gathering classes show good precision with 87%, 83%, and 81%,
respectively. However, their recall and F1 scores vary. The Benign class achieves a high
recall of 85% and an F1-score of 84%. The Information Gathering class presents a relatively
good recall of 84% and a corresponding F1-score of 83%. The Spoofing class achieves a
moderate recall at 80% and an F1-score of 84%.

Transitioning to the Edge-IloTset dataset Man in the Middle, and Normal classes also
exhibit high performance, achieving perfect precision, recall, and F1-scores of 100%.
followed by the DoS/DDoS class with high precision 91% and very high recall 99%,
resulting in a strong F1-score of 92%. Furthermore, other classes show more variability.
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The Information Gathering class has an excellent precision, recall, and f1-score with 88%.
The Injection class shows a precision of 77% and a high recall of 91%, leading to an F1-
score of 84%. The Malware Attacks class, despite its high precision of 97%, suffers from a
low recall of 50%, resulting in a lower F1-score of 74%.

The confusion matrix depicted in Fig. 13 provides valuable insights into the prediction
frequency for each class compared to their actual occurrences. Within the CICIoT dataset,
remarkable performance was observed for classes such as DoS, DDoS, and Mirai, with the
model accurately predicting all samples, achieving a flawless prediction rate of 100%.
Additionally, the classification of Reconnaissance exhibited high accuracy, with 84% of
samples correctly classified followed by Benign traffic with 85%. However, in subsequent
classes such as Spoofing, accuracy decreased, with only 80% respectively, of the samples
accurately classified. Likewise, within the Edge-IloTset dataset, classes like Man in the
Middle, and Normal traffic demonstrated robust performance, as the model accurately
predicts all samples, resulting in a 100% prediction rate. The classification of the DoS/
DDoS, Injection, and Information gathering class followed suit, with 94%, 91%, and 88%
respectively of samples correctly classified. Nevertheless, as we delve into subsequent
classes such as Malware, declined, with only 50%, respectively, of samples accurately
classified.

The ROC curves and AUC values for both datasets demonstrate excellent detection
capabilities across various attack types as presented in Fig. 14. In the EdgelloTset dataset,
most attacks show very good performance with AUC values above 0.90, with “Man in the
middle” and “Normal” attacks achieving perfect detection (AUC 1.00). While “Malware”
has the lowest performance (AUC 0.75), other attacks like “DoS/DDoS”, “Information
gathering”, and “Injection” exhibit strong performance (AUC 0.96-0.93-.94). The second
CICIoT2023 dataset similarly shows outstanding results, with DDoS, DoS, and Mirai
attacks reaching perfect detection (AUC 1.00). “Benign” and “Recon” categories perform
very well (AUC 0.90-0.91), and even the lowest performing “Spoofing” category maintains
good detection ability (AUC 0.88). Notably, all attack types in both datasets significantly
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Figure 14 ROC Curve AUC in multiclass classification.
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Figure 15 Train and validation loss of one local model in multiclass classification.
Full-size K&l DOT: 10.7717/peerj-cs.2414/fig-15

outperform the random guessing baseline, indicating robust and effective detection across
the board.

Figure 15 illustrates the training and validation loss curves for both the EdgelloTset
and CICIoT2023 datasets demonstrating the promising performance of our federated
learning model in multi-class classification. For the EdgelloTset, we observe a rapid initial
decrease in both training and validation loss, followed by a gradual convergence. The
CICIoT2023 dataset shows a more gradual, consistent decrease in both losses across
epochs. Importantly, neither dataset exhibits signs of overfitting, as the validation loss
continues to decrease alongside the training loss, with only minimal divergence in later
epochs. The EdgelloTset model achieves slightly lower final loss values (around 0.22)
compared to the CICIoT2023 model (about 0.24), suggesting robust performance across
different IoT datasets. The close alignment between training and validation losses,
particularly in later epochs, indicates good generalization capabilities of our federated
learning approach. These results suggest that our model effectively learns from local data
without compromising privacy while maintaining strong predictive performance across
diverse IoT classification tasks.

2. SSI-based DID evaluation results. As illustrated in Fig. 16 both datasets exhibit
similar startup durations (SD), with EdgelloTset demonstrating a slight advantage of
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Figure 16 Comparative performance analysis of blockchain-based SSI for multiclass classification.
Full-size K&] DOT: 10.7717/peerj-cs.2414/fig-16

0.08 s. The CICIoT2023 dataset shows a shorter connect duration (CD) by 0.01 s compared
to EdgelloTset. Additionally, both datasets share the same publish duration (PD) of 9.15s.
However, the CICIoT2023 dataset boasts a shorter issuing credential duration (ICD) of
0.29 s compared to EdgelloTset. Regarding the completion of the credential exchange
duration (CCED), the CICI0oT2023 dataset surpasses EdgelloTset by 5 s. The CCED
should normally be higher because this is the mutual authentication phase since the FS
must authenticate all the nodes, and each node must authenticate the ES. Furthermore, the
CICIoT2023 dataset demonstrates a shorter average time per credential duration (ATCD)
by 0.36 s compared to EdgelloTset. Lastly, the CICI0T2023 dataset shows a shorter average
time per transaction duration (ATTD) by 3 s compared to the EdgelloTset.

In Table 5 we provide a comparison between the performance of our work with other
FL-based state-of-the-art IDS. The proposed SA-FLIDS demonstrates superior
performance compared to existing state-of-the-art FL-based IDS approaches. It achieves
the highest accuracy of 100% for binary classification on the EdgelloTSet dataset with a
standard deviation ¢ = 0.00%, outperforming previous methods. For multiclass
classification, SA-FLIDS attains 93.48% accuracy and ¢ = 0.12% on EdgelloTSet and 92%
and ¢ = 0.47% on CICIoT2023, surpassing earlier works. The model’s consistently high
performance across different datasets containing emerging new cyber attacks on IoT
networks and classification tasks underscores its robustness and effectiveness in intrusion
detection for IoT environments.

Limitation of the experimental design

1. Scalability considerations: Our experiments involved a relatively small number of fog
nodes ( clients K = 10). While this setup demonstrated the effectiveness of our approach,
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Table 5 Comparisons between SA-FLIDS and State-of-the-art works. The bold values represent our
method's performance.

FL-based IDS Dataset Classifier Accuracy (%)

Begum et al. (2024) EdgelloTset binary BiLSTM 96
EdgelloTset multiclass BiLSTM 83
EdgelloTset binary CNN 85.31
EdgelloTset multiclass CNN 97

Baucas, Spachos ¢ Plataniotis (2023) Human activity recognition CNN 91.75

Chatterjee & Hanawal (2021) NSL-KDD MLP 88

Schneble ¢ Thamilarasu (2019) PhysioNet ANN 99

Ashraf et al. (2022) Ba-IoT binary ANN 99

Our EdgelloTSet binary LSTM 100, (¢ = 0.00)
EdgelloTSet multiclass 93.48, (¢ = 0.12)
CICIoT2023 binary 99.12, (o = 0.02)
CICIoT2023 multiclass 92, (6 = 0.47)

it may not fully represent the scalability challenges in larger, more complex IoMT
networks. Future work should explore the performance and efficiency of SA-FLIDS in
larger-scale deployments.

2. IID data assumption: Our current implementation assumes Independent and
Identically Distributed (IID) data across clients. This assumption may not hold in all
real-world scenarios, potentially impacting the model’s performance in non-IID
settings. Further investigation into non-IID data distributions is necessary.

Communication overhead and system performance

Our proposed architecture employs several strategies to minimize communication
overhead and optimize system performance. The integration of IoMT devices and DIDs in
the fog computing environment has been carefully designed to reduce network load:

1. Data exchange optimization: IoMT devices share data only during the initialization
phase, with subsequent communications limited to updates. This approach significantly
reduces the volume of data transferred across the network.

2. Efficient authentication: The system utilizes a session-based authentication
mechanism. A token is generated once per session, eliminating the need for repeated
DID authentications and thereby reducing associated overheads.

3. Two-stage communication process: The system operates in two distinct stages:

(a) Initial authentication using VC and DID communication.

(b) Subsequent update exchanges using the authenticated token.
This separation ensures that DID communication and network protocol operations
do not run concurrently, further optimizing resource usage.

4. Blockchain utilization: Blockchain’s role is to provide authentication support only,
handling DID and VC registration, verification, and revocation. It does not store FL
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Figure 17 Comparison of communication overhead. Full-size Kal DOI: 10.7717/peerj-cs.2414/fig-17

data. Consequently, its workload is limited to operations during the initialization phase
(allocation of DIDs), the authentication phase (creation and verification of VCs), and
the node revocation phase (revocation of VCs). Furthermore, no mining operations,
which are known to consume a lot of energy and computing power, are carried out. The
only situation requiring additional work is when a new node is added to the network,
which significantly reduces its workload and associated overheads.

5. Ensuring privacy and FL model implementation: What’s special about DIDs is that
they operate on the same principle as SSL/TLS certificates. Obtaining a DID implies
having a pair of public and private keys stored in a wallet, which is used to guarantee the
confidentiality of exchanges.

Figure 17 illustrates the total communication overhead for binary and multiclass
classification tasks using the CICIoT2023 and EdgelloTset datasets. The chart
demonstrates that multiclass classification requires significantly higher communication
overhead compared to binary classification for both datasets. Interestingly, while the
overhead for binary classification is identical (14.64 MB) for both datasets, there is a slight
difference in multiclass classification, with CICIoT2023 requiring marginally more
overhead (66.05 MB) than EdgelloTset (64.49 MB). This comparison provides insights
into the computational demands of different classification tasks and datasets in federated
learning-based intrusion detection systems.

SECURITY AND PRIVACY ANALYSES

Our research focuses on detecting potential attacks on smart healthcare systems enabled by
IoMT networks. The aim is to mitigate the risks associated with unauthorized access to
sensitive patient data through malicious IoMT devices. Thus, in this section, we
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Table 6 Comprehensive comparison between existing works and our model.

Models FL IDS Environment Security techniques of FL
Against adversarial Secure Blockchain SSI authentication
communication

Schneble & Thamilarasu (2019) v« Medical CPS X X X X
Chatterjee & Hanawal (2021) v v IoT network X X X X
Man et al. (2021) v v 10T network X X X X
Rey et al. (2022) v X  IoT network v X v X
Ruzafa-Alcdzar et al. (2021) v/ Industrial IoT network v X X
Zhao et al. (2019) v X  General purpose X X X X
Friha et al. (2022) v v Agriculture IoT X v v X
Ashraf et al. (2022) v v Healthcare IoT network X v X
Preuveneers et al. (2018) v/ Industrial IoT network X v X
Lakhan et al. (2022) v X Healthcare IoT network X X v X
OUR MODEL v v Healthcare IoT network v v v v

thoroughly investigate the SA-FLIDS model’s privacy and security features. It is important
to note that without appropriate security measures, people may be reluctant to participate
in healthcare applications, which ultimately hinders the success of these technological
advancements. Our SA-FLIDS framework addresses these concerns by providing robust
security measures, instilling confidence in users, and promoting widespread adoption and
sustainability of healthcare technologies. Additionally, the analysis process is rooted in a
theoretical exploration of SA-FLIDS’s resilience against potential attacks outlined in the
adversary model (“Detectin Process FL in SA-FLIDS system”).

Table 6 provides a detailed comparative analysis between the existing systems and our
proposed model. In this analysis, we examine the security commitments of the SA-FLIDS
model compared to other FL-based IDS. We also compare the SA-FLIDS system with the
broader context of security considerations in FL. Notably, the SA-FLIDS model advances it
further by incorporating additional layers of security, such as user authentication and
communication channels security during the FL process, by using a reliable aggregation
technique. Furthermore, our comprehensive approach enhances the level of sensitive data
protection and stands out as the only scheme incorporating SSI for user authentication in
the FL process. This feature strengthens the system’s security posture by ensuring
authorized access and preventing unauthorized participation.

Data privacy and security analysis

SA-FLIDS leverages a fog-based NIDS powered by FL for data privacy-preserving. This
allows the NIDS to effectively classify and detect malicious network traffic in real-time,
protecting patient privacy and health data confidentiality. On the other hand, Also, the SA-
FLIDS system deploys its security shield close to the source, which leads to a seamless
granting of access to normal traffic while automatically blocking malicious intrusions,
ensuring a secure and trustworthy healthcare environment.
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Table 7 Summary of attack scenarios and countermeasures.

Adversarial attacks Description Countermeasures

scenario on FL

Sybil attacks Adversary creates multiple fake identities to Utilizes blockchain-based DIDs and VCs for unique identification and
disrupt the FL process. authentication of nodes, preventing fake identities.
Data poisoning attacks Adversary injects malicious data to degrade Employs trimmed mean aggregation to minimize the influence of outliers
global model performance. and malicious data.
Eavesdropping and data Unauthorized interception or modification Ensures secure communication using gRPC framework with TLS for end-
tampering attacks of communication data. to-end encryption.
Unauthorized access and Adversaries gain unauthorized access by  Incorporates blockchain-based SSI technologies to ensure that only
authentication attacks exploiting weak authentication. authenticated devices can participate in the FL process.

Moreover, our system ensures FL protection through the implementation of
blockchain-based SSI technologies. These technologies play a crucial role in securing the
system against authorization and privacy concerns using the DID and VC techniques. By
leveraging the immutability and integrity features of blockchain, it becomes practically
impossible for any entity to manipulate, replace, or falsify user identities stored on the
blockchain.

Analysis of FL attacks
Table 7 provides adversarial attack scenarios targeting the FL process and how our models
resist those attacks.

Analysis of cyber-attacks in healthcare systems

After applying the countermeasures, we achieve a secure and authenticated FL (SA-FL)
system. This SA-FL system is then integrated into an IDS to identify and mitigate cyber-
attacks on IoMT network traffic, specifically for healthcare applications. Resisting a range
of attacks such as DoS, DDoS, Information Gathering, Web-Based Vulnerabilities,
Communication Spoofing, Brute-Force, and Mirai IoT threats. The model ensures data
security and integrity by preventing unauthorized access, maintaining fog server access,
and safeguarding patient lives. By implementing robust security measures, SA-FLIDS
promotes the sustainability of the smart healthcare system by fostering user adoption and
confidence in healthcare technologies.

CONCLUSION AND FUTURE WORK

This article introduces SA-FLIDS, a Secure and Authenticated Federated Learning-based
Network Intrusion Detection System designed for Fog-IoT-enabled smart healthcare
systems. Our research aims to detect and counter cyber attacks on IoMT by harnessing fog
computing capabilities. Additionally, we aim to preserve data privacy and reduce
communication overhead, while addressing vulnerabilities like poisoning and Sybil attacks
inherent in decentralized FL paradigms. We achieve this by employing a blockchain-based
SSI model for client authentication and using trimmed mean aggregation in FL. In
addition, secure communication transfer is ensured through TLS and gRPC protocols.
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Performance evaluation demonstrates that SA-FLIDS not only detects attacks on the
Internet of Medical Things (IoMT) but also meets criteria for privacy preservation,
scalability, and sustainability. Furthermore, Our SA-FLIDS framework achieves high
accuracy with negligible false positives and false negatives, particularly in binary
classification scenarios. Our future endeavors will focus on evaluating the performance of
our proposed model across various domains of IoT applications. Additionally, we aim to
explore the application of FL with non-distributed IID data distributions.
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The source code (complete implementation of the SA-FLIDS framework, including the
Federated Learning process, the blockchain-based Self-Sovereign Identity (SSI)
component, and the necessary scripts for, model training, and evaluation) for the SA-
FLIDS framework is available at Zenodo: teamflssi. (2024). teamflssi/Secure-and-
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- CICIoT2023 dataset: (Neto, Dadkhah, and Ferreira 2023), https://www.unb.ca/cic/
datasets/iotdataset-2023.html.
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- Edge-IloTset dataset: (Ferrag et al., 2022), https://www.kaggle.com/datasets/
mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot.
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