
IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 1

Dynamic Caching Dependency-Aware Task
Offloading in Mobile Edge Computing

Liang Zhao, Zijia Zhao, Ammar Hawbani, Zhi Liu, Zhiyuan Tan, Keping Yu

Abstract—Mobile Edge Computing (MEC) is a distributed computing paradigm that provides computing capabilities at the periphery of
mobile cellular networks. This architecture empowers Mobile Users (MUs) to offload computation-intensive applications to large-scale
computing nodes near the edge side, reducing application latency for MUs. The resource allocation and task offloading in MEC has
been widely studied. However, the burgeoning complexity inherent to modern applications, often represented as Directed Acyclic
Graphs (DAGs) comprising a multitude of subtasks with interdependencies, poses huge challenges for application offloading and
resource allocation. Meanwhile, previous work has neglected the impact of edge caching on the offloading execution of dependent
tasks. Therefore, this paper introduces a novel dynamic caching dependency-aware task offloading (CachOf) scheme. First, to
effectively enhance the rationality of cache and computing resource allocation, we develop a subtask priority computation scheme
based on DAG dependencies. This scheme includes the execution sequence priority of subtasks on a single MU and the offloading
sequence priority of subtasks from multiple MUs. Second, a dynamic caching scheme, designed to cater to dependent tasks, is
proposed. This caching approach can not only assist offloading decisions, but also contribute to load balancing by harmonizing caching
resources among edge servers. Finally, based on the task prioritization results and caching results, this paper presents a Deep
Reinforcement Learning (DRL)-based offloading scheme to judiciously allocate resources and improve the execution efficiency of
applications. Extensive simulation experiments demonstrate that CachOf outperforms other baseline schemes, achieving improved
execution efficiency for applications.

Index Terms—Mobile Edge Computing, Dependency Application, Resource Allocation, Task Offloading, Dynamic Caching, Deep
Reinforcement Learning.

✦

1 INTRODUCTION

W ITH the rapid evolution of the Internet of Things
(IoT) and 6G mobile technologies, more and more

computation-intensive and latency-sensitive applications
emerge, such as Virtual Reality (VR), Augmented Reality
(AR) and mobile gaming, posing a formidable challenge for
IoT devices with limited computing and storage resources
[1]. Traditional cloud computing struggles to meet the needs
of these applications due to unpredictable transmission
costs [2]. Mobile Edge Computing (MEC) pushes comput-
ing resources from cloud centers to the edge of the radio
access network, allowing Mobile Users (MUs) to execute
applications directly on nearby edge servers, improving
Quality of Service (QoS) [3]. Although MEC presents a
promising alternative to traditional cloud computing, it
is imperative to acknowledge that MEC is complex and
offloading operations do not necessarily lead to superior
system performance [4]. The intricacies of the MEC environ-
ment are multi-faceted. First, the non-uniform distribution

• Liang Zhao, Zijia Zhao, and Ammar Hawbani are with the School
of Computer Science, Shenyang Aerospace University, Shenyang
110136, China. (e-mail: lzhao@sau.edu.cn, zijiazhaostu@163.com, an-
mande@ustc.edu.cn).

• Zhi Liu is with the Department of Computer and Network Engineer-
ing, The University of Electro-Communications, Tokyo, Japan. (e-mail:
liu@ieee.org).

• Zhiyuan Tan is with the School of Computing, Engineering and
the Built Environment, Edinburgh Napier University, UK. (e-mail:
z.tan@napier.ac.uk).

• Keping Yu is with the Graduate School of Science and Engineering, Hosei
University, Tokyo 184-8584, Japan. (email: keping.yu@ieee.org)

• Ammar Hawbani is the corresponding author.

of MUs often leads to overloading of some edge servers,
while others are underutilized [5]. Second, there is a dis-
crepancy between the abundance of user service requests
and the limited computational resources of edge servers.
In addition, in the MEC framework, the poorer radio link
states may result in higher offloading costs [6]. Therefore,
designing rational offloading algorithms to cope with the
complex MEC environment is a formidable undertaking.

Existing studies on application offloading in MEC sys-
tem are currently categorized into two ways, coarse-grained
scheduling and fine-grained scheduling [7]. The coarse-
grained scheduling operates at the application level. How-
ever, modern applications are increasingly fragmented into
interdependent subtasks, and traditional coarse-grained
scheduling struggles to meet the evolving user require-
ments [8]. The fine-grained scheduling approach models
applications as Directed Acyclic Graphs (DAGs) with inter-
dependencies. For example, in the data analysis pipeline,
one application can be divided into multiple dependent
subtasks, such as data preprocessing, feature extraction,
statistical analysis, and model training. Each subtask needs
to be executed in dependency order, and its delay directly
affects the real-time performance of the subsequent tasks
[9]. Although some studies have addressed the order of
subtasks execution, existing sequencing schemes are often
simple, focusing primarily on the offloading priority of
subtasks within a single application and then sequential
execution [10]. However, they neglect parallel processing
of subtasks within the same application, e.g., statistical
analysis and model training are subtasks that can be pro-
cessed in parallel in the above example because they do not

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 2

directly depend on the results of each other. They also fail to
consider resource competition among subtasks of multiple
applications. As a result, the challenge lies in effectively
handling subtask dependencies to maximize the utilization
of computation resources.

Meanwhile, edge content caching is proposed with the
aim of further enhancing the computation performance
of MUs by pre-caching the content frequently needed by
offloaded tasks on edge servers to effectively assist task
offloading decisions [11]. However, current research on
edge caching still faces many challenges. First, the caching
resources of edge servers are limited, and it is useful to
implement coordination among different servers in caching
schemes, but this aspect is usually ignored by current
researches [12]. In addition, most existing schemes adopt
static caching schemes that prioritize cache high popularity
content based on the popularity of historical offloading tasks
[13]. That is, the cached content on edge servers remains
unchanged and infrequently updated over long periods of
time, which does not achieve a relatively fair effect on the
popularity ranking results and at the same time exhibits
deficiencies in complex MEC environments. Therefore, there
is an urgent need to design a dynamic caching scheme that
can make more frequent cache adjustments according to the
actual needs of the offloading task to achieve better assisted
offloading effects and thus reduce latency.

In fact, offloading and caching are complementary, and
their effective combination can significantly improve the
performance of MEC system [14]. Only the content that
are frequently reused by the offloaded tasks can be suc-
cessfully cached. Conversely, if the content required by the
offloaded tasks has been cached, user latency and energy
consumption can be effectively reduced [15]. Given the
synergistic benefits of the combination of offloading and
caching, some schemes have emerged in the field of MEC,
however there are still some issues. First, existing static
caching schemes are difficult to flexibly adapt to uncertain
user service requests in MEC [16]. Second, most schemes
are based on the assumption of unlimited computational
and storage resources for edge servers, which is significantly
unrealistic to the real situation [17]. Finally, there is a lack of
a caching scheme specialized for DAG-dependent tasks to
effectively assist the offloading of such tasks [18]. Therefore,
it is necessary to design a solution that combines task
offloading and dynamic caching to better meet the complex
demands of DAG offloading tasks in MEC.

In light of the existing research landscape, which often
addresses individual aspects in isolation, this paper en-
deavors to present a comprehensive approach. We focus
on a persistent but frequently overlooked challenge—the
tasks with dependencies. We introduce a dynamic caching
dependency-aware task offloading (CachOf) scheme to min-
imize the computation latency of MUs in MEC. Specifically,
we formulate a quantitative computation scheme for sub-
task priority. In addition, we propose a dynamic caching
approach by comprehensively considering the popularity
of task requests, the priority of subtasks, and the mutual
coordination of cached resources on adjacent edge servers.
Finally, we model the task offloading process as a Markov
Decision Process (MDP) and design a resource allocation
scheme based on Deep Reinforcement Learning (DRL) [19].

To the best of our knowledge, this is the first study to com-
prehensively addresses task dependency, dynamic caching,
task offloading, and resource allocation in MEC. The main
contributions of this paper are summarized as follows.

• To enhance resource utilization and minimize la-
tency, we introduce a scheme for subtasks execution
and offloading order. This scheme offers two key
advantages: (i) the execution priority of subtasks
on an individual application takes into account the
dependency relationship and also improves the par-
allelism of subtasks processing as much as possible,
and (ii) the offloading priority of subtasks across
multiple applications considers edge server comput-
ing capability and the latest start time of subtasks.

• A dynamic caching scheme based on 0-1 knapsack
for DAGs is proposed. This scheme is based on the
results of subtasks offloading priority and dynami-
cally caches content under the constraint of limited
cache capacity, while also adjust the offloading deci-
sions by coordinating cached content across various
edge servers to achieve load balancing.

• The offloading process of dependent tasks is mod-
eled as a MDP, and the Deep Deterministic Policy
Gradient (DDPG) algorithm is utilized for offloading
decision. The objective is the minimization of system
delay by combining caching results and offloading
priority results.

The remaining part of this paper is structured as follows.
In Section 2, we describe the related work. In Section 3, the
system model and problem formulation are introduced for
clarity. Section 4 outlines the algorithm design and proposed
solutions. Sections 5 and 6 provide the experimental analysis
and draw conclusion, respectively.

2 RELATED WORK

In this section, we first analyze the priority computation
scheme, and then we delve into the task dependency-based
offloading scheme in MEC. Subsequently, existing studies
on cache-assisted offloading are surveyed, and finally the
combined performance of these studies with our scheme is
compared in Table 1.

2.1 Prioritization Scheme Based on Dependent Tasks
The execution order of tasks is significantly influenced by
task dependencies. In recent years, various studies have
explored methods for prioritizing dependent tasks. Liu et
al. [20] accurately prioritize all tasks based on their expected
completion time and efficiently assign tasks to appropriate
servers. Zhao et al. [21] employ the earliest start time of a
task as their prioritization criterion, aiming to optimize the
earliest completion time of subtasks; thus, tasks with smaller
earliest start times are granted higher priority. Liu et al. [22]
design a dynamic downward sorting mechanism and can
dynamically adjust the prioritization result according to the
resource distribution of the surrounding vehicles. Sahni et al.
[23] adopt a holistic approach, considering both the earliest
start time of a task and the start time of a network flow,
to design a priority calculation method for task scheduling
based on the priority list order.

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 3

TABLE 1
COMPARISON OF SOLUTIONS FOR RELATED WORK

Ref. Algorithm Offload Caching Considered Factors Optimization ObjectiveDependency RSU Collaboration Limited C2 Resource
[20] COFE Partial NA ✓ ✗ ✗ Minimize the average makespan.
[21] FS Partial NA ✓ ✗ ✗ Minimize overall completion time.
[22] RFID Partial NA ✓ ✗ ✗ Minimize overall completion time.
[23] JDOFH Partial NA ✓ ✗ ✗ Minimize the average delay.
[24] DAAS Partial NA ✓ ✗ ✗ Maximize the number of tasks.
[25] VTSPO Partial NA ✓ ✗ ✗ Minimize delay and energy.
[26] BAFOS Partial NA ✓ ✗ ✗ Minimize the average delay.
[27] DQNTS Partial NA ✓ ✗ ✗ Minimize the execution latency.
[16] LRRS Binary Static ✗ ✗ ✓ Maximize the frames number.
[17] TOSC-CF Binary Dynamic ✗ ✗ ✗ Minimize delay and energy.
[18] 0-1 ILP Binary Static ✗ ✗ ✓ Minimize energy consumption.
[28] COOR Binary Static ✗ ✓ ✓ Minimize the cost and delay.
[29] CGP Binary Dynamic ✗ ✓ ✗ Maximize the total QoS.

Ours DDPG Partial Dynamic ✓ ✓ ✓ Minimize the average delay.

2.2 Offloading Scheme Based on Dependent Tasks
The impact of task dependencies on the execution latency
of applications seeking offloading has garnered substantial
attention in recent years. This heightened interest reflects
the increasing emphasis on developing specialized offload-
ing schemes designed to address the challenges posed by
dependent tasks in MEC. Liao et al. [24] introduce a scheme
that integrates task dependency, assignment, and schedul-
ing, proposing an algorithm named DAAS to address this
issue. Li et al. [25] put forward the VTSPO algorithm, which
is based on PPO, to handle vehicle requests for offloading
services after subtask ordering. Bi et al. [26] model the
offloading sequence of dependent tasks as MDP and use the
Q-learning algorithm to solve it. Shang et al. [27] conceptual-
ize the application as a DAG, based on which a DQN-based
scheduling algorithm, DQNTS, is proposed to minimize the
execution delay of dependent tasks.

2.3 Service Caching Placement-assisted Offloading
Jointly optimized service caching placement and offloading
solutions have been extensively studied in recent years.
Service placement refers to the deployment of an entire
service (e.g., an application or a functional module) to a
specific edge node, and cache placement refers to storage
the data or computation results needed for the tasks that
frequently request service on the edge servers. Farhadi et
al. [16] propose a dual time-scale solution to handle both
service placement and task scheduling requests simultane-
ously. Dai et al. [17] introduce a dynamic caching approach
and dynamically adjusted the offloading scheme based on
what is cached in the server. Bi et al. [18] investigate the joint
optimization problem involving offloading policy, cache
placement and resource allocation. Li et al. [28] propose a
scheme called CooR to resolve the collaboration problem
between offloading and caching by utilizing the mutual col-
laboration between edge servers. Hudson et al. [29] propose
a Federation Learning (FL)-based algorithm to dynamically
predict future incoming requests from users to assist place-
ment decisions. We summarize these literatures in Table 1,
where the column “Limited C2 Resource” refers specifically
to studies that consider both edge server computing and

caching resource constraints. This design aims to highlight
the advantages of our scheme in considering dual resource
constraints in real-world scenarios, thus enhancing its utility
when compared with other schemes.

2.4 Summary

Based on our analysis of existing research, we summarize
their shortcomings as follows. First, most current task pri-
oritization schemes calculate subtask priorities based on
task attributes and execute them sequentially, overlooking
potential parallel execution and scheduling priority. Second,
many offloading schemes for dependent tasks neglect inter-
operability between edge servers and dynamic allocation
of limited computational resources. Finally, existing joint
caching placement and offloading optimization schemes
typically do not account for the influence of dependencies
on limited caching and offloading resources, and they often
have long cache update cycles, which poses challenges
in adapting to dynamic environments. In this work, we
propose a dynamic cache-assisted offloading scheme for
dependent tasks, which comprehensively considers the de-
pendencies between tasks, limited resource allocation, and
dynamic caching with the aim of minimizing system latency.

3 SYSTEM MODEL AND PROBLEM FORMU-
LATION
This section introduces a generalized MEC network model
considering sub-task dependencies represented as DAGs.
It then details the caching and computing models for de-
pendent tasks, followed by the optimization objective. Key
notations are summarized in Table 2.

3.1 System Model

3.1.1 Network Model
As illustrated in Fig. 1, in this paper, we consider an
edge network consisting N Base Stations (BSs), denoted as
B = {b1, b2, . . . , bN}. Each base station bn contains M mo-
bile devices in its coverage area and its index is denoted as
M = {1, 2, . . . ,M}, and the number of mobile users within

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 4

S1
S2

S3

Edge node

Mobile user

Caching content Task allocation

...

DAG task Content popularity

...

Fig. 1. An illustration of our MEC system model.

TABLE 2
KEY NOTATIONS LIST

Notation Description
N Number of RSUs
M Number of MUs
Cn Computing power of RSUs
Sn Storage capacity of RSUs
Vm The set of nodes of DAG
Em The set of edges of DAG
Um The set of weights of the edges of the DAG
vm,i A subtask of the application
dm,i Input data size of vm,i

cm,i Required CPU cycles by vm,i

tm,i Maximum acceptable latency of vm,i

evm,i,vm,j A directed edge of DAG
u
vm,j
vm,i

Weight of a directed edge in DAG
ttrans
vm,i

Data transmission delay before execution
twait
vm,i

Total waiting delay
ESTvm,i The starting execution time of vm,i

EFTvm,i The end execution time of vm,i

texevm,i,loc
The local execution delay of vm,i

texevm,i,off
The offloading execution delay of vm,i

h(vm,i) The offloading priority value of vm,i

Q(m) Offloading priority sorting set of MUs
g(vm,i) The scheduling priority value of vm,i

LSTvm,i The latest start time of vm,i

LFTvm,i The latest finish time of vm,i

ppren Popularity of historical offloaded content
ptn Ranking of popularity of current time slot
pcachen Cache allocation results
S State space
A Action space
R(S,A) Reward function

each BS is different. Each base station bn is equipped with an
edge server, noting its computational and storage capacities
as Cn and Sn, respectively. So that the base station can
provide computational services to MUs such as cell phones,
computers, and smart vehicles in its wireless coverage area.
The coverage of different base stations is intersected and
they are able to communicate with each other, denote the
transmission rate between two edge servers as rlk.

3.1.2 Task Model
For simplicity, we assume that there is only one application
on each MU and denote the deadline completion time
for each application as Tm. These applications consist of

vm,1

vm,2 vm,3 vm,4

vm,5 vm,6

vm,7

Access task

Exit task

vm,i The subtask node

The set of direct
precursors of vm,5

The set of direct
successors of vm,5

e(vm,i,vm,j)u(vm,1,vm,4)

Fig. 2. Example of DAG task of the application.

subtasks with dependencies, so they can be modeled as
DAGs, denoted DAG = {Vm, Em, Um}. As Fig. 2 shows
the example of an application modeled as DAG [30]. Where
Vm = {vm,1, vm,2, . . . , vm,I} is the set of subtasks and each
subtask is denoted as vm,i = {dm,i, cm,i, tm,i}, where dm,i is
the size of the input data of the subtask vm,i, cm,i is the num-
ber of CPU cycles required to complete the subtask vm,i,
and tm,i is the maximum latency tolerated by the subtask
vm,i. Em =

{(
evm,i,vm,j

)
| vm,i, vm,j ∈ Vm

}
is the set of all

directed edges, (evm,i,vm,j) denotes that subtask vm,i is the
direct predecessor of vm,j , denoted as vm,i = pre (vm,j),
and subtask vm,j is the direct successor of vm,i, denoted as
vm,j = suc (vm,i). Subtask vm,j can be executed only after
subtask vm,i is completed. Um =

{
u
vm,j
vm,i | vm,i, vm,j ∈ Vm

}
is the set of weights of all directed edges set, i.e., the
set of execution result sizes from the predecessor to the
successor, e.g., uvm,j

vm,i denotes the size of the amount of data
transferred to subtask vm,j after the computation of subtask
vm,i is completed. If neighboring subtasks vm,i and vm,j are
executed at the same location, no additional transmission
time is required; if neighboring subtasks vm,i and vm,j are
not executed at the same location, additional transmission
time is required. Also without loss of generality, we assume
that each DAG has an entry subtask vaccess

m and an exit
subtask vexit

m .

3.2 Caching Model

In this paper, we consider that the cache capacity of edge
server is limited, the total cache resource size is denoted as
Sn, and the capacity occupied by each sub-task is denoted
as sin, thus subject to the following capacity constraint.

f∑
i=1

sin ≤ Sn (1)

where f represents the number of cached contents. Since the
edge server’s caching resources are limited, the edge server
needs to decide what to cache.

The edge caching adopted in this paper is the content
caching of computational tasks, which can reasonably utilize
the resources and reduce the latency of task execution by
pre-caching the data and computational results required by
frequently requested tasks on the edge servers. Different
from the previous approach of static caching of content

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 5

with high popularity, this paper designs a dynamic caching
approach. The specific process is shown in Fig. 3.

1

2

t

¼

(1) Analyze the popularity of historical offloaded content

(2) Dynamic prevalence analysis

(3) Cache resource allocation

Fig. 3. The dynamic caching process.

First, bn analyzes the tasks received over a period of time
in history, calculates the number of times each type of task
has been requested, and considers tasks with a high number
of requests as tasks with high popularity.

Second, in each offloading cycle, the time slots are di-
vided according to the offloading order of the subtasks,
and the dynamic high popularity content is obtained in
each time slot based on the result of combining the cur-
rent requested offloading content with the historical high
popularity content.

Then, bn selects a more appropriate content cache based
on the computed high popularity sequence and the limited
storage space. Based on the caching results the offloading
decision can be adjusted to decide which subtasks are of-
floaded and which subtasks are executed locally. When the
computation results of the tasks requested to be offloaded
are cached, the task execution latency can be saved.

3.3 Computing Model

In this subsection, we focus on the latency cost imposed
on the system by task communication and computation
after the arrival of an application service request. Given
that applications can be aptly represented as DAGs, it is
imperative to acknowledge the inter-dependencies among
subtasks. These inter-dependencies inherently constrain the
execution order. In light of this, we first model the task
completion time as two parts: waiting time and execution
time, on the basis of which we formulate the optimization
objective. Of these, the computation of waiting time is
described in the supplementary material.

Any sub-task can choose to be executed locally or of-
floaded to the edge server, and the completion time of the
task will be different for different choices, so we discuss the
local computation and offloading computation separately.
First, regardless of whether a subtask is executed locally or
offloaded, the earliest start time is given by (2).

ESTvm,i = twait,vm,i (2)

Second, the delay for local execution of subtasks is ex-
pressed as in (3), where fm is the local CPU frequency of
the MU.

texevm,i,loc =
cm,i

fm
(3)

Finally, the delay for offloading of subtasks is given by (4),
where fn is the CPU frequency of the edge server.

texevm,i,off =
cm,i

fn
(4)

In summary, combining local computation, offloading com-
putation and caching, the execution delay is denoted by (5).

texevm,i
=


0, If it is cached;
texevm,i,loc

, If it is executed locally;
texevm,i,off

, If it is offloaded.
(5)

Since the size of the output data is much smaller than the
size of the input data after the computation is completed,
the downlink delay can be ignored when computing the
execution delay [31] [32]. Finally, the formula for the earliest
completion time of a subtask is expressed by (6).

EFTvm,i
= ESTvm,i

+ texevm,i
(6)

3.4 Problem Formulation
In this paper, we address the challenge of managing multi-
ple applications with dependencies in MEC. Our approach
involves designing a subtask offloading priority compu-
tation method and establishing a mechanism for resource
allocation priority. These serve as the basis for formulating
both caching and offloading schemes. Our objective is to
minimize the system average delay while satisfying the
maximum delay constraint for each task. To achieve this, we
formulate the optimization problem as shown in (7). And
then it is optimized based on the DRL algorithm in Section
4.3.

(P) : min Ω =
1

M

M∑
m=1

EFTvm,exit (7)

s.t. EFTvm,exit ≤ Tm,∀m ∈ M, (7a)

ESTvm,i
≥ 0,∀m ∈ M, ∀vm,i ∈ Vm, (7b)

ESTvm,i ≥ EFTvm,j + ttransvm,j
,∀vm,i, vm,j ∈ Vm, (7c)

where condition (7a) dictates that the completion delay of
all applications should be less than the maximum delay
constraint, otherwise it is considered to be a failure and is
computed as the maximum delay tolerance in the compu-
tation of the average delay. Condition (7b) indicates that all
subtasks start executing at a moment greater than or equal
to 0. Condition (7c) means that each subtask initiates its
execution once all of its predecessors have completed their
execution and handed over the results.

4 PROPOSED SOLUTION
In this section, we focus on introducing the CachOf scheme,
as depicted in Fig. 4, the primary design steps of CachOf
are as follows. First, we establish a prioritization scheme for
both the execution and offloading order of dependent tasks
(Section 4.1). Second, after obtaining the offloading priority
order, we design a dynamic caching method adapted to the
dependent tasks (Section 4.2). Finally, we employ a DRL-
based offloading method to achieve an optimal solution
(Section 4.3).

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 6

Priority Computing

Execution

priority

Offloading

priority

g1

g2

g3

g4
...

Dependency Latest start time

Dynamic Caching

1
2

t

¼

Historical popularity

Time-slotting

Collaboration popularity

 Resource allocation

sl
o

t
1

sl
o

t
2

sl
o

t
3

sl
o

t
t

¼

DDPG-Based Offloading Decisions & Resource Allocation

...

Environment
State

Actor network

Offloading actions

Q(actions)

Critic network

Memory replay

 Interaction Update

Output Sampling

Storage
(S,A,R,S

'

)

(S,A,R,S
'

)

(S,A,R,S
'

)

0-1 Knapsack

T

Fig. 4. A comprehensive strategy for DAG task offloading in MEC network.

4.1 Prioritization Method

There are two main parts in this subsection. First, computing
the execution priority of subtasks on the same applica-
tion based on the dependencies between subtasks. Second,
computing the offloading priority of subtasks on different
applications based on the latest start time.

4.1.1 Execution Priority of Subtasks within Application

In our research scenario, each application that requests
services is comprised of subtasks with dependencies, which
are representable as DAGs. Differing from conventional of-
floading priority computation methods, our approach con-
siders not only the influence of dependencies on subtasks
offloading order but also aims to optimize the utilization of
local and server resources in the device, it allows for parallel
execution of subtasks with mutually independent relation-
ships in the DAG structure. As a result, we introduce a
quantitative calculation method that systematically assigns
offloading priorities to each subtask within the DAG. This
method takes into account both the intricate dependency re-
lationships and the possibilities of parallel computation. The
specific quantitative calculation method is shown below.

If a subtask vm,i has no direct predecessor, set its priority
value to h(vm,i) = 0. Otherwise, its priority value formula
is defined as (8).

h(vm,i) = max
vm,j∈pred(vm,i)

{h(vm,j)}+ 1 (8)

That is, subtasks with the same priority value represent that
they can be executed in parallel, and subtasks with smaller
priority values are given an earlier execution order. Finally

each application generates a execution queue of subtasks
based on the priority value.

Q(m) = {h(vm,1), h(vm,2), ..., h(vm,n)} (9)

This means that subtasks in the queue are executed sequen-
tially and those with the same priority value can be executed
in parallel.

4.1.2 Offloading Priority of Subtasks across Applications
The previous researches either assume that the resources
of edge servers are unlimited and all offloaded tasks can
share these resources, or adopt a first-come-first-served
scheduling strategy. However, when multiple subtasks re-
quest resources at the same time, some of them have to wait
for the completion of other tasks to obtain resources due
to limited resources. How to effectively allocate resources
for task scheduling remains an urgent problem. Therefore,
we propose a method for calculating the task offloading
priority. The urgency of a subtask’s execution is calculated
by considering its latest start time. The earlier the latest
start time, the greater the urgency, the higher the offloading
priority, and thus the greater the urgency of caching and
resource allocation. First, the latest start time of a task is
computed as (10), where the larger the LSTvm,i , the more
urgent the task is.

LSTvm,i
= LFTvm,i

− texe
vm,i

(10)

Second, LFTvm,i
represents the latest finish time of the task,

which is formulated as (11).

LFTvm,i = min
j∈suc(vm,i)

(
LSTvm,j − ttrans

vm,j

)
(11)

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 7

Finally, the priority value of vm,i is described as (12).

g(vm,i) = LSTvm,i (12)

when making caching and offloading decisions, the offload-
ing priority of the task needs to be taken into account,
which is conducive to the rational allocation of resources.
Specifically, in dynamic caching schemes, time slots should
be allocated based on offloading priorities to ensure that
subtasks with higher offloading priorities are assigned to
the forefront time slots, thereby enhancing their execution
efficiency. When making offloading decisions, different ap-
plications are independent of each other, and the edge server
will receive requests from multiple applications. In this
scenario, priority should be given to executing offloading
decisions for subtasks with higher offloading priorities to
maximize overall system performance.

4.2 DAG-based Dynamic Caching Scheme
In this subsection, we first build a popularity analysis
scheme to optimize task offloading in DAGs by computing
task caching. Second, a caching resource allocation scheme
is designed to maximize cache resource utilization and load
balancing by dynamically changing the cache content with
limited edge server cache capacity. The detailed process is
outlined in the Algorithm 1.

4.2.1 Dynamic Popularity Analysis Method
Existing caching schemes are relatively static as they mainly
cache content with high historical popularity rankings and
usually have longer caching update cycles than task offload-
ing cycles. However, due to limited cache resources and
dynamic offloading requests, this approach may result in
unfair handling of slightly lower popularity content and
is difficult to adapt to highly dynamic offloading environ-
ments. To address this challenge, we develop a dynamic
popularity analysis scheme for dependent tasks. The scheme
is able to subdivide the entire offloading cycle into multiple
caching update cycles based on the offloading priority of the
subtasks, and dynamically adjusts the content popularity
in each caching cycle by considering the popularity of the
historical offloaded content and the load of the edge servers.

First, the edge server calculates the popularity of his-
torical offloaded content by tracking the number of times a
specific offloaded content, denoted as pi, has been requested
for service over a defined period, represented as PT

i in (13),
where pti is the number of requests for offloaded content pi
at moment t.

PT
i =

T∑
t=0

pti (13)

Next, PT
i in descending order, and its average value is set

to the threshold PT
i . Any offloaded content of PT

i ≥ PT
i is

listed as a high-popularity object and saved as a set.

P pre
n = {p1, p2, ..., pi} (14)

Subsequently, the system assigns tasks in the duplicate
coverage area to edge servers with relatively lower loads
based on the load status of neighboring edge servers. In this
case, the load of the edge servers is quantified by the num-
ber of tasks currently requesting processing as well as the

remaining computation resources, and their load informa-
tion is broadcast periodically. This can achieve dynamic load
balancing among servers, ensure reasonable distribution of
tasks, and improve overall resource utilization efficiency.

Then, once the edge server acquires the offloading pri-
ority value from nearby MUs, tasks with high priority are
executed first and low priority tasks are executed later, re-
sulting in time intervals. Our caching strategy utilizes these
intervals to divide the offload cycle into T small time slots.
Since the offloading priority of a task represents the urgency
of its execution, dividing the time according to this can be
a better representation of the dynamics, and can reasonably
utilize the cache resources.

Finally, at the beginning of each time slot t, each edge
server compares its calculated historical popularity set P pre

n

with the subtasks within the region requesting offloading.
Then, recalculate the number of requests for each content in
the set P pre

n , and record the content with high popularity as
(15), where j < i.

P t
n = {p1, p2, ..., pj} (15)

Update the set P t
n at the start of each time slot by removing

content that is no longer popular and adding new popu-
lar content. Compared to traditional caching methods, this
method caches more content relatively fairly with limited
caching resources and is more suitable for offloading tasks
with dependencies.

It can be seen that the caching scheme we devised is
similar to the prefetching operation in some ways, but
the key difference between the two is the way they are
implemented. Pre-fetching is usually based on prediction
algorithms that load content that is likely to be used in
advance before it is actually needed. Our proposed scheme,
on the other hand, is based on actual task requests and
historical high-popularity set, and dynamically adjusts the
cached content by comparing the task requests in the current
slot, thus ensuring faster access when subsequently needed.
Thus, our scheme is more consistent with the definition
of caching operations, focusing on optimizing resource uti-
lization and improving access efficiency, rather than simply
relying on prediction to load data.

4.2.2 Caching Strategy based on 0-1 Knapsack

Since the storage space of the edge server is limited and
the storage space required for each content to be cached
is different. How to cache as much more valuable content
as possible under the limited cache resource constraints is
the main issue discussed in this subsection. We adopt a
strategy for cache resource allocation based on 0-1 knapsack
[33]. The 0-1 knapsack problem refers to the optimization of
selecting non-repeating contents, each with unique values
and capacities, to achieve the maximum total value within a
fixed and limited capacity.

First, the storage capacity of the edge server is Sn, and
the content popularity ranking computed at each time slot t
is P t

n = {p1, p2, ..., pj}. Denote the storage capacity required
for each content to be cached as (16).

stn = {sp,1, sp,2, ..., sp,j} (16)

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 8

Algorithm 1 Dynamic caching scheme
Input: N RSUs with duplicate coverage, M DAG tasks

within each RSU, the cache capacity Sn, DAG task exe-
cution order Q(m) and offloading priority value g(vm,i)

Output: Cache contents within each RSU
1: Initialize the MUs within N RSUs to N sets

{f(1)}, {f(2)}, ..., {f(N)};
2: Initialize historical popularity set P pre

n , dynamic popu-
larity set P t

n, cache set P cache
n ;

3: Initialize the content set I , the set of subtasks J within
each RSU;

4: Computing historical offloaded content popularity
5: for i = 1 to I do
6: if PT

i > PT
i then

7: for j = len(P pre
n) to 0 do

8: if ppren [j] < PT
i then

9: ppren [j + 1]=ppren [j];
10: j −−;
11: end if
12: ppren [j + 1]=PT

i ;
13: end for
14: end if
15: end for
16: Edge servers collaborate with one another
17: for n = 1 to N − 1 do
18: η = intersection(f(n), f(n+ 1));
19: if len(f(n)) < len(f(n+ 1))) then
20: f(n) = union(f(n), η);
21: f(n+ 1) = difference(f(n+ 1), η);
22: else
23: f(n+ 1) = union(f(n+ 1), η);
24: f(n) = difference(f(n), η);
25: end if
26: for j = 1 to J do
27: j = random(I);
28: counts(j) = counts(j) + 1;
29: end for
30: P t

n = sorted(P pre
n , key = counts.get, reverse =

True;
31: end for
32: Cache resource allocation based on 0-1 knapsack
33: for n = 1 to N do
34: dp = [[0] ∗ (Sn + 1) for in range(len(P t

n) + 1)];
35: for i = 1 to len(P t

n) + 1 do
36: for j = 1 to Sn + 1 do
37: if ptn[i− 1][c] > j then
38: dp[i][j] = dp[i-1][j];
39: else
40: dp[i][j] = max(dp[i − 1][j], dp[i − 1][j −

P t
n[i− 1][c]] + P t

n[i− 1][v]);
41: end if
42: end for
43: end for
44: for i = len(P t

n), j = Sn to 0 do
45: if dp[i][j] ̸= dp[i− 1][j] then
46: P cache

n .append(P t
n[i− 1]);

47: j = j − P t
n[i− 1][c];

48: end if
49: i = i− 1;
50: end for
51: end for

The sum of the storage capacity of the content selected for
caching decision cannot exceed the total storage capacity of
the edge server. The value of them is expressed as (17).

vtn = {vp,1, vp,2, ..., vp,j} (17)

Denote the popularity as its value, i.e., the number of times
it has been requested in this time slot. Second, we solve
this 0-1 knapsack problem using a dynamic programming
approach to maximize the value of limited resources by
caching more reasonable content. Instead of the traditional
approach of just caching the content with the highest pop-
ularity ranking without considering the limited resources.
Finally, the content of the cache within the edge server is
represented as (18).

P cache
n = {p1, p2, ..., pk} (18)

Algorithm 1 describes the detailed process. Of these, the
detailed explanation and complexity analysis of Algorithm
1 is described in the supplementary material.

4.3 Partial Offloading Scheme based on DDPG
This paper models offloading decisions and dynamic re-
source allocation for tasks with dependencies as an MDP
with continuous action spaces, using a model-free DRL
framework for partial offloading. Unlike DQN, which is
unsuitable for continuous action spaces, we apply a DDPG-
based algorithm to address the DAG-based offloading prob-
lem [34]. DDPG, based on the Actor-Critic framework, ef-
fectively handles continuous actions and improves conver-
gence through dual actor and critic networks.

4.3.1 Design of SAR
When making offloading decisions, the designed state
space, action space, and reward function for the DDPG
algorithm are as follows.

(1)State space. After the offloading and scheduling prior-
ity of the dependent tasks and the content caching of the
edge servers are completed, the state of the whole system
is thus determined and represented as (19), where SU =
{DAGm, g(vm,i), Q(m)}, DAGm represents the DAG struc-
ture of each mobile user, g(vm,i) represents the scheduling
priority, Q(m) represents the offloading priority of the
subtasks in each user device. SC = {P pre

n , P t
n, P

cache
n },

representing the historical popularity analysis results, cur-
rent popularity analysis results, and the content even-
tually cached in the edge server, respectively. SV =
{Cn, Sn},represent the computational capacity of the edge
server and the storage capacity respectively.

S = {SU , SC , SV } (19)

(2)Action space. The MUs makes appropriate actions pro-
vided that the current state is known. That is, in the case of
limited edge server and local computational resources, sub-
tasks to be offloaded to the edge server and sub-tasks to be
executed locally are selected to achieve rational allocation of
computational resources.

A = {xn
m,i} (20)

It represents the i-th subtask of the m-th MU that chooses
where to offload to for execution. Where n ∈ {0, 1, ..., n}

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 9

denotes offloading to be executed locally or on one of the
RSUs within its RSU range, respectively.

(3)Reward function. In the current state S, the reward
function obtained by performing a certain action A is set
to R(S,A), which determines the convergence speed and the
degree of convergence of the DRL algorithm, so the goal of
the DRL algorithm is to maximize the reward, and in this
algorithm, the reward function is set as (21).

R = −
M∑

m=1

EFTvm,exit
(21)

The reward function is associated with the earliest comple-
tion time of the last subtask, meaning that when the opti-
mization goal is to minimize, the reward function is maxi-
mized.

Algorithm 2 CachOf offloading scheme
Input: Dynamic cache-optimized MEC networks
Output: Offloading decisions

1: Initialize actor network, critic network, target actor net-
work and target critic network with θµ, θQ, θµ

′
, θQ

′
;

2: Initialize B = 10000, T = 1000, γ, and τ ;
3: for episode = 1 to 1000 do
4: Reconfigure offloading and scheduling priority of

DAGs and the output of Algorithm 1;
5: Note the initial state s0;
6: for t = 1 to T do
7: Select action an(t) from the environment;
8: Perform an(t) and obtain reward rt;
9: Acquire the next state st+1;

10: if B is not completely occupied then
11: Store the entry (st, at, rt, st+1) into B;
12: else
13: Randomly substitute records (st, at, rt, st+1)

in B and sample mini-batch records from B;
14: Calculate the target Q value using Eq.(22);
15: Update critic policy parameters using Eq.(23);
16: Update actor policy parameters using Eq.(25);
17: if t mod d then
18: Perform a soft update on the parameters

of the target network using Eq.(24) and Eq.(26);
19: end if
20: end if
21: end for
22: end for

4.3.2 The AC Framework for the DDPG Algorithm
The aim of the DDPG algorithm is to maximize the reward
for actions made based on states by building an optimal
policy model. Here, the actor network is the strategy model,
which has inputs of states and outputs of actions. And the
critic network is the evaluation network, whose inputs are
states and actions, and whose output is an evaluation value,
based on which the actor network is optimized.

(1)Critic network. A stochastic sample (st, at, rt, st+1)
is selected from experience pool, critic network evaluates
(st, at) to obtain Qreal , and target critic network evaluates
(st, at) to obtain Qtarget .

Qtarget = rt + γQ′
(
st+1, µ

′
(
st+1 | θµ

′
)
| θQ

′
)

(22)

Here the neural networks with parameters Q and Q′ are
used to simulate the Q function and the target Q value,
in order to reduce the gap between Qreal and Qtarget , the
loss function of the critic network is reduced and the mean
square error loss function is used to update the current critic
network, where N represent the size of the mini-batch.

Loss =
1

N

N∑
i=1

(
Q

target
i −Q

(
si, ai | θQ

))2
(23)

And the gradient ascent method is used to softly update the
target critic network.

θQ
′
= τθQ + (1− τ)θQ

′
(24)

(2)Actor network. The current idea of updating the actor
network is to maximize the Q value obtained from the
output of the actor network after entering into the critic
network by optimizing the policy parameters in the actor
network, where the gradient ascent method is used for
updating.

∇θµJ ≈ 1

T

∑
i

∇aQ
(
si, ai | θQ

)
∇θµµ (si | θµ) (25)

Also, the gradient ascent method is used to softly update
the target actor network.

θµ
′
= τθµ + (1− τ)θµ

′
(26)

The specific process is described in Algorithm 2. And, the
detailed explanation and complexity analysis of Algorithm
2 is described in the supplementary material.

5 PERFORMANCE EVALUATION
In this section, we assess the performance of the proposed
CachOf scheme through simulation experiments. We begin
by outlining the simulation setup, including parameter set-
tings, evaluation metrics, and constraints. Then, we intro-
duce five comparison scenarios to analyze the performance
differences between CachOf and other baseline schemes. Fi-
nally, we conduct a comprehensive performance evaluation
based on these configurations.

5.1 Simulation Environment
In this subsection, based on the existing research, we per-
form simulation experiments by setting various parameters.
The simulation platform is built using Python 3.7, and
the corresponding source code and documentation can be
accessed at link1. First, we define the target scenario to
encompass ten heterogeneous RSUs, each equipped with an
MEC server. Second, to simulate applications with various
DAGs, we design a DAG generator to generate DAGs with
different structures and numbers of subtasks. We set the
latency constraint for each application to be Tm = 10 s, the
data size of each subtask to be dm,i = (0.8, 1.2) MB, and the
computational resource requirement of each subtask to be
cm,i = (0.1, 1) G. In addition, to model the randomness of
task requests in real scenarios, we assume that the arrival
rate γ of user requests conforms to a Poisson distribution
[35]. Next, we assume that the local computational resource

1. https://github.com/NetworkCommunication/CachOf

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 10

of the mobile user is fm = 0.5 GHz, the computational
and cache resources of the MEC server are Cn = (2, 2.8)
GHz and Sn = (20, 30) MB, respectively. Regarding the
parameter settings of the edge server, the parameters we
used are consistent with the common settings in current
MEC research [9, 11, 13, 17, 27]. This fact shows that our
parameter settings are in line with the common standards in
the field. Regarding the parameter settings of the application
programs, our parameter settings are consistent with some
of the typical vehicular application program parameters in
current in-vehicle edge computing [9, 25, 26]. This further
validates the reasonableness of our parameter settings and
their high degree of fit with practical applications. The
transmission power between the mobile user and the MEC
server is Pm = 0.1 W, and the channel bandwidth is Wm = 10
MHz. Finally, in the deep reinforcement learning algorithm
DDPG, we used a deep neural network containing 4 layers
and chose tanh as the activation function to apply to a con-
tinuous action space. Meanwhile, in order to obtain superior
system performance and faster convergence, we adjust the
size of the empirical pool to 6400 and the batch size to 64. In
addition, we set the learning rate of the actor network and
the critic network to 0.0001 and 0.001, respectively. More
detailed simulation parameters can be found in Table 3. In
addition, we put in the supplementary material about the
evaluation metrics and parameter constraints.

TABLE 3
MAIN PARAMETERS SETTING

Parameter Notation Value
Number of edge servers N 10
Edge server computing power Cn (2.0, 2.8) GHz
Edge server caching capability Sn (20, 30) MB
Computing power of the local fm 0.5 GHz
Latency constraints Tm 10 s
Input data of subtasks dm,i (0.8, 1.2) MB
CPU cycles required of subtasks cm,i (0.1, 1.0) G
Data upload power Pm 0.1 W
Channel bandwidth Wm 10 MHz
Noise power density N0 -174 dBm/Hz
Channel gain hn

(
10−8, 10−7

)
Arrival rate of tasks γ (0.4, 0.8)
Discount factor λ 0.99
Experience pool size e 6400
Batch size b 64
Learning rate α, β 0.0001,0.001

5.2 Comparison Schemes

This paper presents a dynamic cache-assisted offloading so-
lution for tasks with dependencies. We compare our CachOf
scheme with five baseline scenarios, each addressing key as-
pects of the research. To ensure reliable results, all scenarios
use consistent parameter settings. The evaluation highlights
the significant performance advantages of CachOf.

(1)StCach. This scheme does not consider a dynamic
caching scheme and still adopts the traditional static caching
approach, i.e., it does not consider collaborative caching
among edge caching servers and does not dynamically
update the cached content. In contrast, our scheme demon-
strates that dynamic caching can better adapt to dynamic en-
vironments by effectively utilizing limited cache resources

to cache more valuable content, thereby assisting in offload-
ing and reducing the latency of task execution.

(2)RdmOf. This scheme does not consider parallel pro-
cessing of subtasks with dependencies and resource com-
petition between multiple applications. The application per-
forms offloading in order based on dependencies only, and
randomly selects subtasks for scheduling when multiple
subtasks experience resource preemption on the edge server.
In contrast, our scheme demonstrates that the use of parallel
offloading and scheduling based on the LST effectively
improves the performance of computational offloading. The
scheme is able to fully utilize both edge and local resources
to ensure that the subtasks complete the computation as
much as possible within the latency constraints.

(3)CachDQN. The scheme uses DQN algorithm for mak-
ing offloading decisions. In contrast, we demonstrate that
the application of DDPG algorithm is more applicable in
the continuous action space. In the mobile edge computing
offloading scheme, using the DDPG algorithm can make
better offloading decisions, thus rationally utilizing compu-
tational resources and reducing computational latency.

(4)CachGA. This scheme employs a task offloading strat-
egy based on genetic algorithms, and its design is built on an
iterative optimization framework. In comparison, it can be
demonstrated that the deep reinforcement learning-based
solution outperforms the genetic algorithm-based solution
in reducing the overall system latency when solving the
MEC offloading problem.

(5)G+DQN [28]. This scheme optimizes the cache re-
placement strategy by Gibbs sampling algorithm and op-
timizes the offloading decision by DQN algorithm. Under
the premise of keeping the parameter settings consistent, it
can be demonstrated that our scheme takes full advantage
of edge and local resources and makes more intelligent
offloading decisions in continuous action space through
dynamic cache optimization, parallel offload scheduling,
and the application of DDPG algorithm.

Meanwhile, the evaluation analyses of all the experi-
ments described below are the average of the results of 10
independent runs with the same configuration. And in order
to improve the validity of the data, the rewards, delay and
offloading success rate generated per hundred episodes are
averaged in this paper.

5.3 Performance Evaluation

In this section, we evaluate the performance of the pro-
posed scheme in this paper with several other comparative
schemes in terms of the total reward, average delay, and
offloading success rate.

5.3.1 Evaluation of Total Reward
Fig. 5(a) shows the TR of four different schemes under 1000
episodes. To improve the reliability of the data, we use the
average of the rewards per 100 episodes. As shown in the
figure, the total rewards of all the schemes start to show
an increasing trend over time as the number of episodes
increases. This is because they are all trained using DRL
methods, and the DRL algorithms continue to optimize their
strategies through experience, so the total reward continues
to rise. It is clear from the figure that our proposed CachOf

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 11

1 2 3 4 5 6 7 8 9 10

-80

-75

-70

-65

-60

-55

-50

-45

To
ta

l R
ew

ar
d

Episodes*100

 CachOf
 StCach
 CachGA
 CachDQN
 RdmOf

(a)

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

Episodes*100

CachOf
 StCach
 CachGA
 CachDQN
 G+DQN
 RdmOf

A
ve

ra
ge

 D
el

ay
 (s

)

(b)

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s R

at
e

(%
)

Episodes*100

CachOf
 StCach
 CachGA
 CachDQN
 G+DQN
 RdmOf

(c)

Fig. 5. Comparative analysis of distinct schemes regarding (a) TR, (b)AD, and (c) SR under various number of episodes.

2.0 2.2 2.4 2.6 2.8

2

3

4

5

6

7

A
ve

ra
ge

 D
el

ay
 (s

)

RSU Computation Capacity (GHz)

 CachOf
 StCach
 CachGA
 CachDQN
 RdmOf

(a)

0.3 0.4 0.5 0.6 0.7

2

3

4

5

6

7

A
ve

ra
ge

 D
el

ay
 (s

)

MU Computation Capacity (GHz)

 CachOf
 StCach
 CachGA
 CachDQN
 RdmOf

(b)

8 9 10 11 12
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Su
cc

es
s R

at
e

(%
)

Latency Tolerance (s)

 CachOf
 StCach
 CachGA
 CachDQN
 RdmOf

(c)

Fig. 6. (a) Total delay under different RSU computation capacity. (b) Total delay under different MU computation capacity. (c) Success rate under
different latency tolerance.

scheme consistently outperforms the other schemes in terms
of total reward and tends to converge at the 500th episode,
whereas the other schemes start to converge at about the
600th episode. This is because the CachOf scheme not
only optimizes task offloading priority, but also adopts a
dynamic caching strategy, i.e., it focuses on the optimization
of the whole MEC network scenario, which makes its state
space more concise compared to the StCach scheme and the
RdmOf scheme. Meanwhile, it can be observed from the
figure that under the same constraints, the CachGA scheme
outperforms the CachDQN scheme, but is still inferior to the
CachOf scheme. This is because the GA algorithm can effec-
tively optimize the problem of complex search space and
overcome the deficiency of the DQN algorithm in terms of
local minimum and parameter sensitivity. On the contrary,
the DDPG algorithm employs deterministic strategy and
AC structure to deal with action continuity more effectively
and improve the learning efficiency. As a result, the CachOf
scheme is superior to other schemes in terms of total reward
and convergence speed.

5.3.2 Evaluation of Success Rate
In Fig. 5(c), the SR of the five different schemes under 1000
episodes is presented. From the figure, it is evident that the
SR of all the schemes shows a gradual increasing trend as
the number of episodes increases, and finally tends to be
stabilized. Notably, the SR of the CachOf scheme is con-
sistently higher than other schemes, which is attributed to
three key factors. First, the dynamic caching strategy em-
ployed by the CachOf scheme computes and caches more

popular content in each cycle, thus ensuring that more tasks
are completed in the same time period. Second, the offload-
ing priority policy proposed by the CachOf scheme enables
more tasks to be completed within the limited delay con-
straint by optimizing the order of subtask scheduling. Fi-
nally, the DDPG algorithm employed by the CachOf scheme
achieves more efficient offloading decisions in the continu-
ous action space.

In Fig. 6(c), the SR variation of the five schemes is com-
pared under different delay constraints. It can be observed
from the figure that the SR of all the schemes tends to
increase as the latency constraint increases. This is because
a larger latency constraint indicates that the execution of
the application is relatively less urgent and more tolerant
to offloading decisions, and thus more tasks can be ac-
complished within the latency constraint. Meanwhile, it is
particularly noteworthy that the SR of the CachOf scheme
is consistently the highest, especially when the latency con-
straint is small, the SR performance of the CachOf scheme
is superior compared to the other schemes. This indicates
that the CachOf scheme has higher reliability in handling
delay-sensitive tasks, thanks to the dynamic caching and
prioritization scheme adopted by the CachOf scheme, which
can effectively reduce the delay of computational offloading.

5.3.3 Evaluation of Average Delay
Fig. 5(b) illustrates the comparison of AD results for the
five schemes. The vertical coordinate represents the average
latency of each application and the horizontal coordinate
is the episode. The graphical representation highlights a

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 12

6 8 10 12 14
0

1

2

3

4

5

6

7

A
ve

ra
ge

 D
el

ay
 (s

)

The number of MU

 CachOf
 StCach
 CachGA
 CachDQN
 RdmOf

(a)

6 7 8 9 10
0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 D
el

ay
 (s

)

The number of subtask

 CachOf
 StCach
 CachGA
 CachDQN
 RdmOf

(b)

10 15 20 25 30
0

1

2

3

4

5

6

7

A
ve

ra
ge

 D
el

ay
 (s

)

RSU Cache Capacity (MB)

 CachOf
 CachGA
 CachDQN
 RdmOf

(c)

Fig. 7. Performance comparison of average delay under (a) different numbers of mobile users, (b) different numbers of subtasks, and (c) different
edge server cache capacity.

consistent decline in the average latency across all schemes.
Among them, the CachOf scheme always has the low-
est average latency, followed by the StCach scheme, the
CachGA scheme, and the CachDQN, while the G+DQN
scheme and the RdmOf scheme have the highest latency.
This is attributed to the efficient caching and offloading
prioritization implemented in the CachOf scheme. This
strategy maximizes the use of limited resources, enabling
the completion of multiple subtasks. In addition, the DDPG
algorithm outperforms other algorithms in offloading deci-
sions, resulting in further latency reduction.

Fig. 6(a) compares the the AD of the five solutions un-
der different edge server computation power. The findings
indicate a diminishing trend in the average computation
latency of all solutions with the augmentation of edge server
computation power. This is due to the fact that more tasks
can be offloaded to the edge server for execution when the
computational power of the edge server is increased, which
is much higher than that of the local users, leading to a
decrease in latency. It is especially noteworthy that the trend
of computation delay reduction is more significant for all
schemes with priority computation, due to their ability to
maximize the computational resources of edge servers by
designing scheduling prioritization schemes.

Fig. 6(b) analyzes the AD of the five scenarios under
different mobile user computing power. The results show
that the computational delay of all the scenarios shows a
decreasing trend as the mobile user computing power in-
creases. This arises from the fact that local has faster process-
ing speed when the edge server has insufficient computing
power and needs to perform tasks locally. Meanwhile, it
is worth noting that the CachOf scheme has a significant
performance improvement compared to the RdmOf scheme.
This is because the parallel offloading scheme used in the
CachOf scheme is able to maximize the utilization of both
edge servers and local computational resources at the same
time, holding all other conditions constant.

Fig. 7(a) depicts the AD comparison among five schemes
under varying mobile user request numbers within edge
servers. It is apparent that as the number of mobile users
increases, the average delay of each scheme gradually rises.
Significantly, beyond 10 applications, the growth of AD
becomes less pronounced. This is due to the surge in
application numbers exceeding the computational capacity

provided by edge servers, rendering some tasks incapable of
meeting latency constraints. Moreover, the CachOf scheme
demonstrates a significant computational latency advantage
over the StCach scheme. This is attributed to the strategic
utilization of cache resources, effectively facilitating offload-
ing and resulting in reduced computational latency under
severe computational resource constraints on edge servers.

Fig. 7(b) shows the results of the AD comparison of
the five schemes with different numbers of subtasks within
the application. In the figure, it is evident that with the
escalation in the number of subtasks, there is a tendency for
the average delay to increase across all schemes. However,
the AD of the CachOf scheme always remains at a low
level, much lower than that of the other schemes. This
is because as the number of subtasks increases, more de-
pendent subtasks are involved in the system, the overall
system complexity increases, and the latency required to
perform the tasks increases accordingly. At the same time,
the CachOf can effectively utilize resources and make the
best offloading decisions by using dynamic caching and of-
floading optimization schemes. Therefore, the performance
of CachOf is better than other schemes in all aspects.

Fig. 7(c) illustrates the comparative results of AD for five
schemes under various cache capacity conditions. Clearly, as
the cache capacity increases, there is a consistent downward
trend in the average delays for all schemes. Notably, this
downward trend becomes more pronounced with larger
cache capacities. The rationale behind this trend lies in the
increased cache capacity facilitating advanced pre-caching
of content supportive of task offloading on edge servers.
Consequently, this diminishes the complexity associated
with computation offloading, ultimately resulting in a re-
duction in overall delay.

6 CONCLUSION

In this paper, we propose a scheme named CachOf, an
offloading scheme for DAG-structured tasks aimed at reduc-
ing latency under limited computing and caching resources.
It includes a strategy for subtask execution and offloading
order, a dynamic caching approach for edge server col-
laboration, and an intelligent offloading decision scheme.
The main contribution lies in comprehensively considering
task dependency, resource allocation, dynamic caching, and

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 13

offloading decisions, making it highly applicable to real-
world MEC scenarios. Simulation results demonstrate that
CachOf outperforms other baseline schemes in terms of la-
tency, reward, and offloading success rate. Future work will
focus on MU collaboration and edge server load prediction
to further enhance system performance. In addition, we plan
to expand our research to include scenarios that account for
both uplink and downlink delays, as well as communication
bandwidth constraints and allocation.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant 62372310, in part
by the Liaoning Province Applied Basic Research Program
under Grant 2023JH2/101300194, in part by the UK Engi-
neering and Physical Sciences Research Council (EPSRC)
funded COG-MHEAR Programme (EPSRC Grant Reference:
EP/T021063/1), and in part by the LiaoNing Revitalization
Talents Program under Grant XLYC2203151.

REFERENCES

[1] X. Chen, M. Li, H. Zhong, X. Chen, Y. Ma, and C.-H.
Hsu, “Funoff: Offloading applications at function gran-
ularity for mobile edge computing,” IEEE Transactions
on Mobile Computing, pp. 1–18, 2023.

[2] L. Zhao, T. Li, E. Zhang, Y. Lin, S. Wan, A. Hawbani,
and M. Guizani, “Adaptive swarm intelligent offload-
ing based on digital twin-assisted prediction in vec,”
IEEE Transactions on Mobile Computing, pp. 1–18, 2023.

[3] S. Duan, F. Lyu, H. Wu, W. Chen, H. Lu, Z. Dong, and
X. Shen, “Moto: Mobility-aware online task offloading
with adaptive load balancing in small-cell mec,” IEEE
Transactions on Mobile Computing, pp. 1–16, 2022.

[4] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang,
“Deep reinforcement learning-based adaptive compu-
tation offloading for mec in heterogeneous vehicular
networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 7, pp. 7916–7929, 2020.

[5] L. Zhao, E. Zhang, S. Wan, A. Hawbani, A. Y. Al-
Dubai, G. Min, and A. Y. Zomaya, “Meson: A mobility-
aware dependent task offloading scheme for urban
vehicular edge computing,” IEEE Transactions on Mobile
Computing, pp. 1–15, 2023.

[6] L. Zhao, Z. Zhao, E. Zhang, A. Hawbani, A. Al-Dubai,
Z. Tan, and A. Hussain, “A digital twin-assisted intel-
ligent partial offloading approach for vehicular edge
computing,” IEEE Journal on Selected Areas in Communi-
cations, pp. 1–1, 2023.

[7] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multihop offloading
of multiple dag tasks in collaborative edge computing,”
IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4893–
4905, 2021.

[8] X. Lv, H. Du, and Q. Ye, “Tbtoa: A dag-based task
offloading scheme for mobile edge computing,” in ICC
2022 - IEEE International Conference on Communications,
2022, pp. 4607–4612.

[9] Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, and
F. Yang, “Dependency-aware task scheduling in vehic-
ular edge computing,” IEEE Internet of Things Journal,
vol. 7, no. 6, pp. 4961–4971, 2020.

[10] Z. Tang, J. Lou, F. Zhang, and W. Jia, “Dependent task
offloading for multiple jobs in edge computing,” in
2020 29th International Conference on Computer Commu-
nications and Networks (ICCCN), 2020, pp. 1–9.

[11] T.-Y. Kuo, M.-C. Lee, J.-H. Kim, and T.-S. Lee, “Quality-
aware joint caching, computing and communication
optimization for video delivery in vehicular networks,”
IEEE Transactions on Vehicular Technology, vol. 72, no. 4,
pp. 5240–5256, 2023.

[12] H. Tian, X. Xu, L. Qi, X. Zhang, W. Dou, S. Yu,
and Q. Ni, “Copace: Edge computation offloading and
caching for self-driving with deep reinforcement learn-
ing,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 12, pp. 13 281–13 293, 2021.

[13] Y. Dong, S. Guo, Q. Wang, S. Yu, and Y. Yang, “Content
caching-enhanced computation offloading in mobile
edge service networks,” IEEE Transactions on Vehicular
Technology, vol. 71, no. 1, pp. 872–886, 2022.

[14] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative
service caching and workload scheduling in mobile
edge computing,” in IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications, 2020, pp. 2076–
2085.

[15] Y. Liu, Q. He, D. Zheng, X. Xia, F. Chen, and B. Zhang,
“Data caching optimization in the edge computing
environment,” IEEE Transactions on Services Computing,
vol. 15, no. 4, pp. 2074–2085, 2022.

[16] V. Farhadi, F. Mehmeti, T. He, T. F. L. Porta, H. Kham-
froush, S. Wang, K. S. Chan, and K. Poularakis, “Service
placement and request scheduling for data-intensive
applications in edge clouds,” IEEE/ACM Transactions on
Networking, vol. 29, no. 2, pp. 779–792, 2021.

[17] X. Dai, Z. Xiao, H. Jiang, M. Alazab, J. C. S. Lui, G. Min,
S. Dustdar, and J. Liu, “Task offloading for cloud-
assisted fog computing with dynamic service caching
in enterprise management systems,” IEEE Transactions
on Industrial Informatics, vol. 19, no. 1, pp. 662–672, 2023.

[18] S. Bi, L. Huang, and Y.-J. A. Zhang, “Joint optimiza-
tion of service caching placement and computation
offloading in mobile edge computing systems,” IEEE
Transactions on Wireless Communications, vol. 19, no. 7,
pp. 4947–4963, 2020.

[19] J. Liu, M. Ahmed, M. A. Mirza, W. U. Khan, D. Xu,
J. Li, A. Aziz, and Z. Han, “Rl/drl meets vehicular
task offloading using edge and vehicular cloudlet: A
survey,” IEEE Internet of Things Journal, vol. 9, no. 11,
pp. 8315–8338, 2022.

[20] J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang,
“Efficient dependent task offloading for multiple ap-
plications in mec-cloud system,” IEEE Transactions on
Mobile Computing, vol. 22, no. 4, pp. 2147–2162, 2023.

[21] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Of-
floading dependent tasks in mobile edge computing
with service caching,” in IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications, 2020, pp. 1997–
2006.

[22] Z. Liu, M. Liwang, S. Hosseinalipour, H. Dai, Z. Gao,
and L. Huang, “Rfid: Towards low latency and reliable
dag task scheduling over dynamic vehicular clouds,”
IEEE Transactions on Vehicular Technology, pp. 1–15, 2023.

[23] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multihop offloading

IEEE TRANSACTIONS ON COMPUTERS, JUNE 2024 14

of multiple dag tasks in collaborative edge computing,”
IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4893–
4905, 2021.

[24] H. Liao, X. Li, D. Guo, W. Kang, and J. Li,
“Dependency-aware application assigning and
scheduling in edge computing,” IEEE Internet of Things
Journal, vol. 9, no. 6, pp. 4451–4463, 2022.

[25] C. Li, F. Liu, B. Wang, C. L. P. Chen, X. Tang, J. Jiang,
and J. Liu, “Dependency-aware vehicular task schedul-
ing policy for tracking service vec networks,” IEEE
Transactions on Intelligent Vehicles, vol. 8, no. 3, pp. 2400–
2414, 2023.

[26] X. Bi, X. Sun, Z. Lyu, B. Zhang, and X. Wei, “A back ad-
justment based dependent task offloading scheduling
algorithm with fairness constraints in vec networks,”
Computer Networks, vol. 223, pp. 1389–1286, 2023.

[27] Y. Shang, J. Li, M. Qin, and Q. Yang, “Deep reinforce-
ment learning-based task scheduling in heterogeneous
mec networks,” in 2022 IEEE 95th Vehicular Technology
Conference: (VTC2022-Spring), 2022, pp. 1–6.

[28] Z. Li, C. Yang, X. Huang, W. Zeng, and S. Xie, “Coor:
Collaborative task offloading and service caching re-
placement for vehicular edge computing networks,”
IEEE Transactions on Vehicular Technology, vol. 72, no. 7,
pp. 9676–9681, 2023.

[29] N. Hudson, H. Khamfroush, M. Baughman, D. E.
Lucani, K. Chard, and I. Foster, “Qos-aware edge ai
placement and scheduling with multiple implementa-
tions in faas-based edge computing,” Future Generation
Computer Systems, vol. 157, pp. 250–263, 2024.

[30] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multihop offloading
of multiple dag tasks in collaborative edge computing,”
IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4893–
4905, 2021.

[31] G. Ma, X. Wang, M. Hu, W. Ouyang, X. Chen, and Y. Li,
“Drl-based computation offloading with queue stabil-
ity for vehicular-cloud-assisted mobile edge computing
systems,” IEEE Transactions on Intelligent Vehicles, vol. 8,
no. 4, pp. 2797–2809, 2023.

[32] J. Zhang, X. Xu, S. Han, K. Zhang, P. Zhang, and S. Ren,
“Intelligent ultra-reliable and low latency communi-
cations: Security and flexibility,” IEEE Transactions on
Wireless Communications, vol. 22, no. 11, pp. 8392–8406,
2023.

[33] L. Ale, S. A. King, N. Zhang, A. R. Sattar, and J. Skan-
daraniyam, “D3pg: Dirichlet ddpg for task partitioning
and offloading with constrained hybrid action space
in mobile-edge computing,” IEEE Internet of Things
Journal, vol. 9, no. 19, pp. 19 260–19 272, 2022.

[34] H. Tabatabaee Malazi, S. R. Chaudhry, A. Kazmi,
A. Palade, C. Cabrera, G. White, and S. Clarke, “Dy-
namic service placement in multi-access edge com-
puting: A systematic literature review,” IEEE Access,
vol. 10, pp. 32 639–32 688, 2022.

[35] B. Han, V. Sciancalepore, Y. Xu, D. Feng, and H. D.
Schotten, “Impatient queuing for intelligent task of-
floading in multiaccess edge computing,” IEEE Trans-
actions on Wireless Communications, vol. 22, no. 1, pp.
59–72, 2022.

Liang Zhao (S’09-M’17) is a Professor at
Shenyang Aerospace University, China. He re-
ceived his Ph.D. degree from the School of
Computing at Edinburgh Napier University in
2011. He is also a JSPS Invitational Fellow
(2023). He was listed as Top 2 % of scientists
in the world by Standford University (2022 and
2023). He served as the Chair of several in-
ternational conferences and workshops, includ-
ing 2022 IEEE BigDataSE (Steering Co-Chair),
2021 IEEE TrustCom (Program Co-Chair), 2019

IEEE IUCC (Program Co-Chair). He is Associate Editor of Frontiers in
Communications and Networking and Journal of Circuits Systems and
Computers. He is/has been a guest editor of IEEE Transactions on
Network Science and Engineering, Springer Journal of Computing, etc.

Zijia Zhao is a student at Shenyang Aerospace
University, China. She is currently studying
for her M.S. degree in Computer Science,
Shenyang Aerospace University. Her research
interests mainly include mobile edge computing,
vehicle edge computing, computation offloading
and caching.

Ammar Hawbani is a Full Professor at the
School of Computer Science at Shenyang
Aerospace University. He earned his B.S. in
Computer Software and Theory from the Univer-
sity of Science and Technology of China (USTC)
in 2009. His academic journey continued with an
M.S. in 2012 and a Ph.D. in 2016, all from USTC.
Following his Ph.D. completion, he served as a
Postdoctoral Researcher in the School of Com-
puter Science and Technology at USTC from
2016 to 2019. Later, he worked as an Asso-

ciate Researcher in the School of Computer Science and Technology
at USTC from 2019 to 2023. Currently, he holds the position of Full
Professor at the School of Computer Science in Shenyang Aerospace
University. His research interests span IoT, WSNs, WBANs, WMNs,
VANETs, and SDN.

Zhi Liu (S’11-M’14-SM’19) received a Ph.D. de-
gree in informatics in National Institute of Infor-
matics. He is currently an Associate Professor at
The University of Electro-Communications. His
research interest includes video network trans-
mission and mobile edge computing. He is now
an editorial board member of IEEE Transactions
on Multimedia. He is a senior member of IEEE.

Zhiyuan Tan is an Associate Professor with the
School of Computing, Engineering and the Built
Environment, Edinburgh Napier University, UK.
He received his Ph.D. degree from the University
of Technology Sydney, Australia, in 2014, and
was a Postdoctoral Researcher with the Univer-
sity of Twente, NL between 2014 and 2016. He
is an Associate Editor of IEEE Transactions on
Reliability, IEEE Open Journal of the Computer
Society, Journal of Ambient Intelligence and Hu-
manized Computing and the Journal of Ambient

Intelligence and Humanized Computing, as well as an Academic Editor
of Security and Communication Networks. He is a Senior Member of the
IEEE and a Member of the ACM.

Keping Yu (Senior Member, IEEE) received
the M.E. and Ph.D. degrees from the Gradu-
ate School of Global Information and Telecom-
munication Studies, Waseda University, Tokyo,
Japan, in 2012 and 2016, respectively. He was
a Research Associate, a Junior Researcher, and
a Researcher with the Global Information and
Telecommunication Institute, Waseda University,
from 2015 to 2019, from 2019 to 2020, and from
2020 to 2022, respectively. He is currently an As-
sociate Professor, the Vice Director of Institute

of Integrated Science and Technology, and the Director of the Network
Intelligence and Security Laboratory (YU Lab), Hosei University, Japan.

